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ABSTRACT: We use time-dependent density functional theory and a semiclassical model to study second-harmonic generation in a
system comprising a quantum emitter and a spherical metallic nanoparticle, where the transition frequency of the quantum emitter is
set to be resonant with the second harmonic of the incident frequency. The quantum emitter is shown to enable strong second-
harmonic generation, which is otherwise forbidden because of symmetry constraints. The time-dependent density functional theory
calculations allow one to identify the main mechanism driving this nonlinear effect, where the quantum emitter plays the role of an
optical resonator that experiences the nonlinear near fields generated by the metallic nanoantenna located nearby. The influence of
the intrinsic properties of the quantum emitter and the nanoantenna, together with the relative position of both in the coupled
system, allows for a high degree of control of the nonlinear light emission. The main effects and contributions to this nonlinear
process can be correctly captured by a semiclassical description developed in this work.

KEYWORDS: second-harmonic generation, plasmonics, quantum emitter, nonlinear optical response, electromagnetic coupling

The coupling between incident electromagnetic radiation
and collective electronic excitations, so-called surface

plasmons, in metallic nanoparticles (MNPs) allows one to
localize, enhance, and control the near fields around the
nanoparticles at scales well below the wavelength of light. The
resonant excitation of the plasmonic modes, along with the
intrinsic nonlinearity of the metals, results in a strong nonlinear
optical response of plasmonic structures with a great variety of
applications.1,2 In particular, second-harmonic generation
(SHG), whereby two photons at the fundamental frequency
are absorbed to emit one photon at the second-harmonic
frequency is at the focus of very active research owing to its
practical and fundamental interest.3−12 For typical plane-wave
incidence, the SHG is forbidden for materials and nanostruc-
tures that are centrosymmetric. This nonlinear response is thus
very sensitive to the geometry of the system and to surface effects
that eventually may break the symmetry constraints and lead to
the emission of light at the second harmonic.2,13−18 In this
context, it has been shown that plasmonic structures resonant at
the fundamental or at the second-harmonic frequency (or at
both frequencies) can give rise to manyfold enhancement of the

SHG.8,9,19−31 Recent experiments have also shown the polar-
ization-resolved probing of the nonlinear near field distribution
of metallic structures by using doubly resonant plasmonic
antennas.32 On the other hand, the coupling of a quantum
emitter (QE), such as an organic molecule or a quantum dot
with a plasmonic nanoantenna, has been widely studied in
previous works, analyzing diverse aspects such as surface-
enhanced Raman scattering, single-molecule spectroscopy,
strong coupling or the effect of electronic conductivity through
molecules.33−41 Moreover, the capability of the MNP-QE
interaction to modify the second-harmonic emission has been
demonstrated for plasmonic nanostructures,42,43 and also the
strong nonlinear response of graphene nanostructures has been
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proposed as a way to excite the electronic transitions in atomic
or molecular species.44

Here we study the SHG resulting from a hybrid system
consisting of a QE placed in the vicinity of a spherical MNP, as
scketched in Figure 1a. The small individual centrosymmetric
nanoparticle does not allow for second-harmonic emission, but
the presence of the QE lifts this symmetry constraint. When the
electronic transition frequency of the QE is resonant with the
second harmonic of the incident frequency, the QE plays the
role of an optical resonator, which efficiently couples to the
nonlinear near fields induced around the nanoparticle, extracting
them to the far field and thus producing SHG.32 This MNP-QE
system thus enhances the frequency conversion and allows for its
control. To calculate the nonlinear response of the coupled
system and to reveal the physical mechanisms behind the SHG
in this situation, we use a quantum approach based on the time-
dependent density functional theory (TDDFT).45,46 With the
insights obtained from the TDDFT calculation, we develop a
semiclassical model. We show that, for the cases where the
quantum calculations are doable, the semiclassical model
reproduces the TDDFT results. This semiclassical model also
allows for addressing more general and complex situations
beyond the reach of TDDFT, so that it makes possible a detailed
study of the sensitivity of SHG to different parameters that
characterize the system. In particular, we demonstrate the
polarization conversion of the nonlinear signal, as well as the
existence of various regimes of SHG determined by the intrinsic
losses of the QE. The methodology and results obtained in our
study can pave the conceptual road for enhancing and
optimizing second-harmonic generation mediated by quantum
emitters coupled to plasmonic systems.47,48

■ TDDFT CALCULATIONS
Nonlinear Response of an Individual Metallic Nano-

antenna. Prior to the discussion of the MNP-QE system, we
analyze the nonlinear optical response of an individual spherical
MNP calculated within TDDFT. We describe the electronic
structure of the MNP within the Jellium model, which is well
adapted to TDDFT studies and correctly addresses the quantum
many-body dynamics of conduction electrons including the
response to strong optical fields.49−53 The ions at the metal
lattice sites are represented by a homogeneous positive
background charge of density
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which neutralizes the total charge of the MNP. Atomic units
(au) are used throughout this paper unless otherwise stated. For
theWigner−Seitz radius, rs, we use the typical value for Nametal
rs = 4 a0 (a0 = 0.053 nm is the Bohr radius). We address a
relatively large spherical nanoparticle that contains 1074
conduction electrons, with a radius a = 40.96 a0 (≈ 2.2 nm).
The linear optical response of the Na nanosphere is
characterized by the well-developed dipolar plasmon resonance
at frequency ωDP = 3.17 eV, close to that of gold nanoparticles
and within the range of excitation energies in organic dyes.54

Despite the simplicity of the model, it has successfully offered
semiquantitative insights as well as robustly described strong
nonlinear effects in plasmonics.55−60 The purpose of the present
work is indeed to use a simple, yet realistic modeling scheme to
identify and control the main processes governing SHG from a
QE coupled to a MNP.

We first perform density functional theory61 (DFT)
calculations of the ground state of the metallic nanoparticle
characterized by an electron density n0(r) = ∑j=occ χj|Ψj

0(r)|2,
where the sum runs over the occupied Kohn−Sham (KS)
orbitalsΨj

0(r), and the statistical factors χj account for both spin
and symmetry degeneracy. We then use TDDFT to retrieve the
time evolution of the electron density n(r, t) =∑j=occ χj|Ψj(r, t)|

2,
when the system is subjected to a quasi-monochromatic external
pulse. The time-dependent KS orbitals Ψj(r, t) are represented
on a spatial mesh in spherical coordinates and their time
evolution is obtained from the time-dependent KS equa-
tions45,46

∂
∂

Ψ = ̂[ ] Ψi
t

t H n t tr r r( , ) ( , ) ( , )j j (1)

with the use of a short-time propagation algorithm.62 The initial
conditions are given by the ground state of the system: Ψj(r, t =
0) =Ψj

0(r). The effective Hamiltonian of the system, Ĥ[n](r, t),
comprises several terms

̂ [ ] = ̂ + [ ] + [ ] +
̂ [ ]
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H n tr

H xc
( , )

ext

MNP

(2)

In eq 2, T̂ is the kinetic energy operator. The Hartree
potential, VH[n](r, t), is calculated by solving Poisson’s
equation, ∇2VH[n](r, t) = −4π(n(r, t) − n+), where we neglect
retardation effects due to the small size of the MNP. The
exchange-correlation potential, Vxc[n](r, t), is described within
the adiabatic local density approximation45,46 (ALDA) using the
exchange-correlation kernel of Gunnarsson and Lundqvist.63

Finally, Vext(r, t) = rEext(t) is the potential of an electron
interacting with an incident laser pulse described within the
dipole approximation. We consider an incident laser pulse with
Gaussian envelope and an electric field given by

= ̂ Ω − σ−
−i

k
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2

(3)

where z ̂ is the unit vector along the positive direction of the z-
axis. The excitation frequency Ω lies within the infrared−visible
range, and the duration of the pulse is set to σ = 5× 2π/Ω. In our
calculations, the arrival time of the pulse t0 is set to t0 = 5σ.
In order to analyze the nonlinear optical response of the

individual MNP, we calculate the time evolution of the electron
density and obtain the time-dependent electric near field
(induced field) created by the MNP in response to an incident
electromagnetic pulse, Eind(r, t) = ∇VH[n(r, t)]. We also obtain
the induced dipole moment by integrating the differential charge
density δn(r,t) over the entire nanoparticle volumeV, as pnp(t) =
−∫ Vδn(r, t) r dV, where δn(r, t) = n(r, t) − n0(r). The
frequency-resolved quantities are obtained from the time-to-
frequency Fourier transform,
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(4)

The Gaussian filter introduced in eq 4 partially accounts for
decay and dephasing processes of the collective density
oscillations that are not included in the present (ALDA)
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TDDFT approach,64−66 such as the electron−phonon scattering
and the inelastic many-body electron−electron scattering.
Employing a Gaussian filter allows one to reach convergent
spectral response at high-harmonic frequencies. This approach
is justified since the fundamental frequency is strongly detuned
from the MNP dipolar plasmon resonance so that no electron-
density oscillation and high-harmonic generation is expected
when the laser is switched off. To be consistent, we apply a
Gaussian filter given by the envelope of the incident pulse.
The nonlinear optical response of the spherical MNP

calculated with TDDFT in the absence of the QE is analyzed
in Figure 1b. In the upper panel, we show the intensity spectrum
of the induced dipole moment |pnp(ω)|

2, which is proportional
to the power of the light emitted to the far field. In the lower
panel, we show the spectrum of the induced near field |Eind(ω)|
at the z-axis, at 18 a0 (≈ 1 nm) from the MNP surface. Results
are obtained for an incident Gaussian electromagnetic pulse
with fundamental frequencyΩ = 1.585 eV (half of the frequency
of the MNP dipolar plasmon ωDP = 3.17 eV), and intensity I0 =
108 W cm−2 (E0 = 4.8 × 10−5 au, dashed blue line) and I0 = 1010

W cm−2 (E0 = 4.8 × 10−4 au, red line), averaged over the
duration of the pulse σ. The corresponding energy per incident

pulse is well below the documented damage threshold of small
metal nanoparticles.67−69 The induced dipole moment |pnp(ω)|

2

(upper panel of Figure 1b) exhibits only odd harmonics. Thus,
only odd multiples of the incoming frequency are emitted into
the far field consistent with the inversion symmetry of the MNP
which prevents even-harmonic generation.70,71

In contrast to the far-field response, both odd and even
harmonics are present in the spectrum of the electric near field
induced by the individual MNP (lower panel of Figure 1b).
Indeed, at the metal−vacuum interface the inversion symmetry
is locally broken, and short-range even-harmonic electric fields
can be induced close to the metal surface.72−76 Overall, the
nonlinear response for I0 = 1010 W cm−2 is several orders of
magnitude larger than that for I0 = 108 W cm−2. This large
increase is in accordance with the I0

k/2 dependence of the kth
harmonic of the electric field expected from the standard theory
of nonlinear optics.70

The color maps of the charge density and of the radial
component of the electric near field induced by the incident z-
polarized Gaussian electromagnetic pulse are shown in Figure 1c
for the fundamental, second, third, and fourth harmonics. The
induced charge density δn(r, ω = kΩ) of the kth harmonic and

Figure 1. (a) Sketch of the system under study: the radius of the spherical Na nanoparticle is a = 40.96 a0 (2.2 nm), and the point-like QE is located at
positionR, at a distance d from the nanoparticle surface. (b) Nonlinear optical response of the sphericalMNP calculated within TDDFT in the absence
of theQE. Results are obtained for an incident z-polarized Gaussian electromagnetic pulse withΩ = 1.585 eV (half of the frequency of theMNP dipolar
plasmon ωDP = 3.17 eV), and intensity I0 = 108 W cm−2 (dashed blue line) and I0 = 1010 W cm−2 (red line). The top panel shows the square of the
induced dipole moment |pnp(ω)|

2, and the bottom panel shows the absolute value of the spectrum of the electric near field |Eind(ω)| induced at the z-
axis at 18 a0 (1 nm) from the MNP surface. (c) Color maps of the real part of the charge density (left) and of the radial component of the electric near
field (right) induced at the fundamental, second, third and fourth-harmonic frequency by a z-polarized Gaussian electromagnetic pulse with
fundamental frequency Ω = 1.585 eV and intensity I0 = 1010 W cm−2 incident at the individual spherical MNP in the absence of the QE. Results are
rotationally symmetric with respect to the z-axis, and they are shown in the (x, z)-plane normalized to the unity. The coordinates axes are indicated in
panel a, and the coordinate origin is at the center of the nanoparticle.
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the corresponding near field Eind(r,ω = kΩ) are shown in the (x,
z)-plane. Note that because of the symmetry of the
configuration, the calculated color maps are independent of a
rotation around the z-axis. At odd harmonics (k = 1,3), the
induced densities are antisymmetric with respect to the (x, y)-
plane, n(x, y, z, kΩ) = −n(x, y, − z, kΩ), which results in a net
dipole moment (see Figure 1b). In contrast, a quadrupolar-like
near field and symmetric charge density, n(r, kΩ) = n(−r, kΩ),
are induced at even harmonics (k = 2,4).19,77−82 The dipole
moment is zero in this case, and only a weak multipole emission
into the far field is possible. Thus, despite the second harmonic
being at resonance with the dipolar plasmon of the MNP, the
latter can not be excited because of the symmetry selection rules.
Another consequence of the symmetry selection rules is that, in
the (x, y)-plane of symmetry, the even-harmonic near field is
oriented perpendicularly to the z-polarized incident pulse.
Hybrid Metal Nanoparticle−Quantum Emitter Sys-

tem. We consider a QE located in the proximity of the MNP
surface as a transducer between the local even-harmonic near
field created by the individual nanoparticle and the far-field
radiation. The transition frequency of the QE is set such that it is
resonant with the second harmonic of the fundamental field.
The QE plays the role of an optical resonator, sensitive to the
second-harmonic electric near field.32 We model the QE as a
point-like dipole that represents a structureless two-level system
subjected to weak illumination.83,84 This two-level system
represents a HOMO−LUMO transition in a molecule or any
electronic transition in an atom or quantum dot. The
expectation value of the QE dipole moment, pQE(t), evolves in
time according to85

γ ω α̈ + ̇ + =t t t tp p p E R( ) ( ) ( ) ( , )QE QE QE 0
2

QE 0 tot (5)

where γQE refers to the intrinsic losses of the QE, α0 is the QE
oscillator strength, and ω0 is the QE resonant frequency. As we
already stated earlier, we are interested in the case when ω0 =
2Ω. Thus, theQE is set to be resonant with the second-harmonic
frequency in all our calculations, so that a variation ofΩ implies
simultaneous variation ofω0. For simplicity, α0 is always taken as
a scalar α0 = 1 au, corresponding to an isotropic QE. In the
TDDFT calculations we consider intrinsic losses γQE = 0.1 eV.
The total electric field Etot(R,t) acting on the QE is given by

the sum of the incident laser field Eext(t) and the field Eind(R,t)
induced by theMNP at the position of theQE,Etot(R,t) =Eext(t)
+Eind(R,t). Note thatEind(R,t) includes the reaction of theMNP
not only to the incident pulse, but also to the presence of the QE.
It is thus responsible for the QE self-interaction. To verify that
the transition is not saturated (and thus that the description of
the QE as a classical dipole given by eq 5 holds), we performed
additional calculations where we explicitly addressed the
quantum dynamics of the two-level system treated in the basis
of the ground and excited states.
The QE dipole acts as an additional radiation source emitting

into the far field as well as affecting the dynamics of the
conduction electrons of the MNP. Because of the small size of
the system, retardation effects can be neglected, so that the QE
placed at a positionR near theMNP induces an electric potential
given by

= − · −
| − |

V t tr p
r R
r R

( , ) ( )QE QE 3 (6)

where the transition charge density of the QE is represented
using the point-dipole approximation. Thus, the effective

Hamiltonian acting on the conduction electrons of the MNP,
which includes the QE potential, becomes:

̂ [ ] = ̂ [ ] + +H n t H n t V t V tr r r r( , ) ( , ) ( , ) ( , )MNP ext QE (7)

Equations 1, 5, 6, and 7 are solved self-consistently allowing to
obtain the frequency-resolved quantities of interest such as the
dipole moment induced in the MNP pnp(ω), in the QE pQE(ω),
and the total dipole moment given by the sum of both, p(ω) =
pnp(ω) + pQE(ω).
We initially place the QE at the z-axis, corresponding to the

direction of polarization of the incident laser pulse. For this
geometry, only z-polarized dipole moments are induced in the
QE and in the MNP. The system then possesses cylindrical
symmetry with respect to the z-axis, which greatly reduces the
computational demands.
We use an incident z-polarized Gaussian electromagnetic

pulse with intensity I0 = 1010 W cm−2, and fundamental
frequency Ω = 1.585 eV such that the second harmonic is at
resonance with the dipolar plasmon of the MNP. The electric
field of the pulse is shown with dashed black line in Figure 2a.
The QE is located at d = 18 a0 (≈ 1 nm) from the MNP surface.
A dipole moment pQE(t) induced at theQE due to its interaction
with the MNP is shown in Figure 2a by the red line. The
resonant excitation of the QE manifests itself at long evolution
times after the passage of the electromagnetic pulse where
pQE(t) oscillates at the QE transition frequency, ω0 = 2Ω. The
excited QE strongly modifies the nonlinear response of the
system.
In contrast with the individual MNP, the hybrid MNP-QE

structure features strong emission at the even harmonics, as we
show in Figure 2b. In this figure, the intensity spectrum of the
total induced dipole moment |p(ω)|2 of the hybrid MNP-QE
structure is shown by the blue line. The reference results
obtained for the nonlinear response of the individual MNP
(without QE) are shown by the dashed red line. The even
harmonics in the far field emerge because the QE breaks the
reflection symmetry with respect to the (x, y)-plane, and thus the
total inversion symmetry of the system.18 Note that the spectra
in Figure 2b are artificially broadened because of the Gaussian
filter (see eq 4). In the next section we introduce a semiclassical
method that allows to overcome the difficulty of the (ALDA)
TDDFT calculations to describe relaxation processes induced
by the interaction of excited electrons with phonons and by
many-body inelastic scattering events.64−66

The resonance between the transition frequency of the QE
and the second harmonic of the incident light greatly enhances
the intensity emitted by the system at 2Ω. To illustrate this
resonance effect, in the inset of Figure 2b, we show the results
obtained for a different situation. The QE transition is set
resonant with 4Ω, and the system is illuminated by a Gaussian
pulse with fundamental frequency Ω such that the fourth
harmonic matches the frequency of the MNP dipolar plasmon,
4Ω =ωDP = 3.17 eV. For this excitation frequency, |p(ω)|

2 at the
second harmonic decreases by several orders of magnitude in
favor of the emission at the fourth harmonic resonant with the
QE transition.
Let us now focus on the physical mechanism determining the

nonlinear second-harmonic response of the hybrid MNP-QE
system. The polarization of the QE mainly oscillates at the
fundamental and at the second-harmonic frequency of the
incident pulse. Indeed, the QE transition is resonant with the
second harmonic, however the field acting on the QE at the
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fundamental frequency is orders of magnitude stronger than the
near field induced by the MNP at 2Ω. As a result, the off-
resonant polarization of the QE might be strong. Thus, two
distinct channels might contribute to the second-harmonic
polarization of the coupled MNP-QE system: (i) the excitation
of the QE at the resonant second-harmonic frequency and
associated QE polarization induces a second-harmonic dipole
moment in theMNP due to the linear interaction, and (ii) the off-
resonant polarization of the QE at the fundamental frequency
lifts the symmetry constraint as far as the entire system is
considered and allows for the second-harmonic dipole moment
to be induced via the nonlinear process.
In order to obtain the respective weight of the different

channels inducing a second-harmonic dipole at the MNP, we
proceed as follows. Using the Fourier analysis, we split the dipole
moment of the QE obtained from the TDDFT calculation into a
sum of the two leading contributions, pQE(t) = pQE

Ω (t) + pQE
2Ω(t),

one oscillating at the fundamental frequency, pQE
Ω (t), and the

other one at the second-harmonic frequency, pQE
2Ω(t). We then

run two different TDDFT simulations, where the electron
density of the MNP evolves (i) solely under the action of the
potential created by the point dipole oscillating at the second-

harmonic frequency, = − ·Ω −
| − |

V t tr p( , ) ( ) r R
r RQE QE

2
3 , with no

external laser pulse applied (Vext = 0), and (ii) under the action
of the external laser pulse and the potential created by the point
dipole osci l lat ing at the fundamental frequency,

= − ·Ω −
| − |

V t tr p( , ) ( ) r R
r RQE QE 3 . The self-consistency loop is

stopped in both cases, in the sense that the MNP does not act

back on the QE. More details of this procedure can be found in
the Supporting Information.
As shown in Figure 2c, the second-harmonic response of the

MNP obtained in scenario i and shown with blue line, closely
corresponds to the result of the complete self-consistent
calculation (black line). The second-harmonic response
obtained under scenario ii is smaller by more than 2 orders of
magnitude (red line). These results point toward the following
main physical mechanism underlying the far-field SHG in the
present system:

• The interaction of the (strong) incident laser pulse with
the conduction electrons of the MNP generates a second-
harmonic near field.

• The second harmonic of the near field of the MNP
resonantly drives the dipolar polarization of the QE at 2Ω.

• The resulting QE dipole oscillates at 2Ω and radiates into
the far field in the presence of the MNP antenna.

The physical process revealed by the TDDFT simulations
(sketched in Figure 2d) is consistent with the mechanism
considered in previous related work,44 and it gives rise to a
practical semiclassical approach that can be used to describe
more complex situations due to the intrinsic losses of the QE or
its position. We develop this semiclassical approach in the
following section.

■ SEMICLASSICAL MODEL
The understanding of the physical mechanism behind the SHG
established above with the TDDFT can be used to develop a
semiclassical model capable of reproducing the role of the QE in
the second-harmonic response of the coupled system. This

Figure 2. (a) Time evolution of an incident z-polarized Gaussian electromagnetic pulse Eext(t) with fundamental frequency Ω = 1.585 eV (dashed
black line) and of the dipole moment pQE(t) of the QE located at d = 18 a0 (1 nm) from the MNP surface (solid red line). Results are normalized to
their maximum value. (b) Intensity spectrum of the total dipole moment |p(ω)|2 of the hybrid MNP-QE system (solid blue line) and of the individual
MNP (dashed red line). Results are obtained for an incident z-polarized Gaussian electromagnetic pulse with fundamental frequencyΩ = 1.585 eV and
intensity I0 = 10

10 W cm−2. In the inset, the solid blue line corresponds to the same result as in the main panel and the dashed black line corresponds to
the results obtained for the transition frequency of the QE resonant with the fourth harmonic of the incident light, ω0 = 4Ω, with Ω = 0.79 eV. (c)
Second-harmonic dipole moment of the MNP when interacting with the QE from a full calculation (black line), when interacting with the QE
oscillating only at 2Ω (blue line), and when interacting with the QE oscillating atΩ (red line, amplified 50 times) for the same parameters as in panel b.
For further details see the main text. (d) Sketch of the main physical process behind the SHG in the present system. The MNP induces a near field at
2Ω that excites the emitter. Then, the linear MNP-QE interaction at 2Ω generates the emission into the far field at the second-harmonic frequency.
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model goes beyond the TDDFT because it naturally
incorporates the losses and the plasmon decay, and thus lifts
the necessity of using artificial broadening of the spectral
features. Moreover, it allows one to analyze systems without
axial symmetry, i.e., situations of arbitrary polarization of the
incident pulse and location of the QE. An analysis of the latter
would be computationally out of reach for the TDDFT
calculations.
In this semiclassical model, the QE is excited by the incident

laser pulse and by the nonlinear electric near field induced by the
MNP. This nonlinear near field is obtained from the TDDFT
calculations of the individualMNP, i.e., in the absence of theQE.
The excited QE then radiates into the far field in the presence of
the MNP. The last stage of the calculation, which involves the
coupling of the QE with the MNP and the resulting light
emission to the far field, is treated within a classical framework.
Using the dyadic Green function formalism,84−87 we obtain

ω α ω ω α ω ω

ω ω α ω ω

= − ⃡

= + ⃡

− G

G

p R R E R

p p p

( ) ( ( ) ( , , )) ( ) ( , ),

( ) ( ) ( ) ( ),

QE QE
1

QE tot

np np
TDDFT

np 0 QE

(8)

where pnp
TDDFT(ω) is the dipole moment of the individual MNP

induced by the incident laser pulse, calculated with TDDFT in
the absence of the QE. This contribution is zero for even
harmonics. The electric field at the position R of the QE, Etot(R,
ω), is given by

ω ω ω= +E R E R E( , ) ( , ) ( )tot ind
TDDFT

ext (9)

where the field of the external laser pulse Eext(ω) is added to the
electric field Eind

TDDFT(R, ω) created by the noninteracting MNP.
The field Eind

TDDFT(R, ω) is obtained from the TDDFT
calculation for the individual MNP subjected to a Gaussian
laser pulse, and it introduces all the second-harmonic non-
linearity. The polarizability of the QE, αQE(ω), and that of the
Na nanoparticle of radius a, αnp(ω), are found from
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where

ω
ω

ω γω
ϵ = −

+ i
( ) 1m

p
2

2 (11)

stands for the metal dielectric function described within the
Drude model, with plasma frequencyωp and intrinsic loss rate γ.
Finally, in eq 8 G⃡0 and G⃡(R, R, ω) are the dyadic Green

functions: G⃡0 provides the electric field at the center of theMNP
produced by a unitary point dipole placed at position R.85 G⃡(R,
R,ω) is the self-interaction dyadic Green function that expresses
the electric field created by theMNP at positionR in response to
a point dipole located at the same position. This can be fully
defined by the components perpendicular and parallel to the
MNP surface,88
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where the summation over l represents a multipole expansion
with a formally infinite number of multipoles (lmax = ∞). In
practice, we found that lmax ∼ 15 guarantees the convergence of
the Green function for our system. The metal dielectric function
ϵm(ω) is given by eq 11, where the plasma frequency ωp = 5.49
eV and attenuation γ = 0.218 eV are determined from the fit to
the plasmon resonance in the optical absorption spectrum of the
individual MNP calculated with linear-response TDDFT. These
parameters, fixed prior to the Green function calculation, are
used throughout our work for theDrude description of themetal
nanoparticle in the semiclassical model. This parametrization
allows to recover the localized plasmon energy and Landau
damping of the MNP for the size used in this work.49,89 For
further details we address the reader to the Supporting
Information.
As reported in the literature,90,91 the induced charges are

generally not located exactly at the geometrical surface, but they
are instead shifted inward or outward, depending on the actual
band structure of the material. Therefore, to account for this
effect, we introduce a distance shift Δd in the semiclassical
model. In practice, for the QE located at a distance d from the
geometrical surface of the MNP the semiclassical model
calculations are performed for a reduced “effective” separation
deff = d − Δd, where Δd = 1.5 a0. The TDDFT results naturally
include the spill-out effect and are not a subject to the distance
shift. As a result, e.g., the TDDFT data obtained for the QE
located at d = 18 a0 from the MNP surface has to be compared
with semiclassical model results obtained for deff = 16.5 a0.

■ RESULTS AND DISCUSSION

TDDFT vs Semiclassical Model Results. A detailed
comparison between the TDDFT and semiclassical model
calculations is shown in Figure 3. Along with the overall good
agreement, which establishes the validity of the semiclassical
model, the results of the quantum and semiclassical approaches
reveal some differences. Below we discuss the similarities and
differences observed.
In Figure 3a, we start with the comparison between the Green

function G⊥(R, R, ω) obtained from the classical expression in
eq 12 and the corresponding result from the TDDFT
calculations. Within the TDDFT, we apply the standard
linear-response procedure, where the MNP is excited by an
impulsive perturbation given by the potential of a small z-
oriented dipole ζ located at R = (0,0, a + d),

ζδ= − ̂· −
| − |

V t tr z( , ) ( )r R
r Rext 3 . Here δ(t) is the Dirac delta

function. From the time-dependent electron density n(r, t) we
obtain the z-component of the time-dependent field induced at
the dipole position tR( , ). Finally, the time-to-frequency
Fourier transform yields the frequency-resolved quantity

ω
ζ

R( , )1 , which can be directly compared with the classical

result G⊥(R, R, ω).
In general, in Figure 3a, both the semiclassical model (dashed

lines) and quantum (solid lines) results show good agreement in
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the range ω = 2−3.4 eV, with a dipolar plasmon resonance of
similar strength atωDP = 3.17 eV. However, two clear differences
between the two approaches can be observed: First, for the
quantum description of the MNP, along with the collective
plasmon features, intense single particle electron−hole pair
excitations appear at low energies (ω ∼ 1−2 eV) because of the
finite size of the system. This quantum effect is absent in the
semiclassical model based on the Drude dielectric function of
the free-electron gas. As a second difference, the higher-order
multipole plasmonic resonances atω∼ 3.5 eV are less developed
in the quantum response as compared to the semiclassical one.
This is connected to the diffused nature of the surface-charge
density in the quantum description due to dynamical nonlocal
screening, which does not allow higher-order plasmon modes to
be formed in small nanoparticles. A larger MNP would be
needed to obtain well-defined multipolar plasmon modes. To

illustrate the effect of the multipolar excitations, we performed
an additional calculation ofG⊥(R, R,ω) by only considering the
lowest dipolar and quadrupolar terms (lmax = 2) in the multipole
expansion given by eq 12. Much better agreement with the
TDDFT results is obtained in this case at energies near 3.5 eV as
shown by the inset of Figure 3a. We checked that the agreement
between the TDDFT and the semiclassical model improves
when increasing the MNP-QE separation d, consistent with the
decrease of the relative contribution of the high-ordermultipoles
with increasing d (see eq 12 where |R| = a + d).
We further validate the semiclassical approach by comparing

the TDDFT and semiclassical results for the nonlinear response
of the hybridMNP-QE system excited by a z-polarized Gaussian
pulse with fundamental frequencyΩ = 1.585 eV and intensity I0
= 1010 W cm−2. In Figure 3b, we show the intensity spectrum of
the total dipole |p(ω)|2 obtained with the TDDFT (solid blue
line) and the semiclassical model (dashed red line) calculations.
An excellent agreement between the two approaches is obtained
for the nonlinear polarization at the second harmonic, which is at
the focus of the present work.
For higher-order harmonics, in particular the higher-order

even harmonics that can be generated only owing to the
interaction with the QE, the agreement strongly worsens. This
indicates that other nonlinear processes beyond the scope of the
present model become important for such low intensity
emission. It is worth noting that for the sake of comparison
between the two approaches, the Gaussian filters employed in
the Fourier analysis of the time-dependent quantities in the
TDDFT are also accounted for in the semiclassical model
calculations shown in panels b and c of Figure 3, as we detail in
the Supporting Information.
The results discussed so far were obtained for the second

harmonic at resonance with the dipolar plasmon of the MNP.
One would expect that under these conditions the SHG is very
efficient. Indeed, the emission of the QE resonantly excited by
the 2Ω near field of the MNP is further enhanced by the dipolar
resonance of the MNP playing the role of a nanoanten-
na.8,9,26−32 On the other hand, the second-harmonic near field of
the MNP that drives the QE, Eind

TDDFT(R, ω = 2Ω), has a
quadrupolar character19,77−82,92 (see Figure 1c). Therefore, it
should be stronger when the second-harmonic frequency
matches the quadrupolar plasmon resonance of the MNP92

(2Ω =ωQP = 3.4 eV, see Supporting Information). This, in turn,
should also lead to an efficient excitation of the QE and thus
increase the emitted second-harmonic signal.
In order to find the optimal conditions for the SHG, we use

the TDDFT and the semiclassical method to study how the
second-harmonic radiation into the far field depends on the
fundamental frequency. In Figure 3c, the intensity spectrum
|p(ω = 2Ω)|2 is shown as a function of the distance d of the QE
from the MNP surface for three different frequencies Ω of the
incident Gaussian laser pulse. First, the values of Ω are set such
that the second harmonic matches the dipolar (2Ω = 3.17 eV,
dipole resonant) and the quadrupolar (2Ω = 3.4 eV, quadrupole
resonant) plasmonic resonances of the MNP. We consider as
well the reference case where both the fundamental frequency
and the second harmonic are out of resonance with any of the
plasmonic modes of the MNP (2Ω = 2.4 eV, off resonant). We
recall that the transition frequency of the QE is always set
resonant with the second harmonic, ω0 = 2Ω.
As a first observation from the results shown in Figure 3c, we

would like to emphasize that the semiclassical model does an
excellent job in reproducing the TDDFT results. Both

Figure 3. Comparison between the TDDFT and semiclassical model
results for the QE placed at the z-axis in front of the MNP. (a) Real
(blue) and imaginary (red) part of the frequency-dependent self-
interaction dyadic,G⊥(R,R,ω), for a z-polarized point dipole located at
distance d = 26 a0 (1.3 nm) from the MNP surface. Dashed lines: eq 12
with lmax = 15. Solid lines: TDDFT. Results obtained with lmax = 2 (i.e.,
including only the two lowest-order collective excitations of the MNP)
are compared with the TDDFT data in the inset. (b) Intensity spectrum
of the induced total dipole |p(ω)|2 obtained from the TDDFT
calculations (blue line) and from the semiclassical model (red line).
Results are shown as a function of the frequency measured in units of
the fundamental frequencyΩ= 1.585 eV of the incident laser pulse. The
QE is located at d = 18 a0 (1 nm) from the MNP surface. (c) Second-
harmonic dipole |p(ω = 2Ω)|2 calculated using the semiclassical model
(dashed lines) and TDDFT (solid lines). Results are shown as a
function of the MNP-QE distance d for three different fundamental
frequencies 2Ω = 2.4 eV, 2Ω = 3.17 eV, and 2Ω = 3.4 eV. In panels b and
c, a z-polarized Gaussian pulse of intensity I0 = 1010 W cm−2 is used.
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approaches show the strongest SHGwhen the second-harmonic
frequency matches the dipolar plasmon resonance of the MNP,
while the off-resonant conditions lead to the smallest SHG.
Furthermore, for all three excitation frequencies the power
emitted to the far field at the second harmonic monotonically
decreases with increasing distance d. This behavior reflects the
decrease of the nonlinear near field created by the MNP.
However, as we show using the semiclassical model in the next
section, the frequency and distance dependence of the SHG is
strongly dependent on the intrinsic losses of the QE. This aspect
of the problem cannot be addressed within the present TDDFT
because it lacks the description of the decay and dephasing
processes,64,65 forcing an artificial broadening of the spectral
features with, e.g., the Gaussian filters applied to connect the
time-resolved and the frequency-resolved quantities. As a
consequence, reliable information can only be obtained from
TDDFT for the cases when the QE has large intrinsic losses.
Influence of the Losses and Position of the QE in the

SHG. The semiclassical model established in the previous
section can be used for a detailed study of the SHG from the
hybrid MNP-QE structure in response to incident plane-wave
illumination. In particular, the analysis of the dependence of the
SHG on experimentally relevant parameters, which was not
computationally possible with TDDFT, becomes within reach.
Namely, we are interested in the dependence of the SHG on the

fundamental frequency, on the intrinsic QE losses, and on the
relative position of the QE.
The relationship between the second-harmonic dipole ⃗ Ω2

induced by an incident plane wave with average intensity I0 and
previous results of the frequency-resolved dipole p(ω) induced
by an electromagnetic Gaussian pulse (eq 3) is given by

π
σ

ω⃗ = = ΩΩ
I

cE
p

8 2
( 2 )2

0

0
2

(13)

where c is the speed of light in vacuum and σ and E0 are the
duration and the amplitude of the electromagnetic Gaussian
pulse used in the TDDFT simulations, respectively (see details
in the Supporting Information). p(ω = 2Ω) is calculated using
the semiclassical model (eq 8).
The color maps in Figure 4 show the second-harmonic

response | ⃗ |Ω2
2 of the coupled MNP-QE structure subjected to

an incident z-polarized plane wave with frequency Ω and
average intensity I0 = 1010 W cm−2 for different locations of the
QE, defined by the distance d from the nanoparticle surface and
the polar angle θQE (see insets in Figure 1a and Figure 4a for the
geometry of the system). The range of distances d = 1−5 nm
covered in our study is set such that retardation effects can be
neglected. The results are axially symmetric with respect to the
z-axis, and without loss of generality, we consider that the QE is
placed in the (x, z)-plane.

Figure 4. Second-harmonic response | ⃗ |Ω2
2 of the coupledMNP-QE system illuminated with an incident z-polarized plane wave with frequencyΩ and

average intensity I0 = 10
10 W cm−2 for different positions of the QE in the (x, y)-plane. The distance is measured from the surface of the MNP, and the

QE is placed at a point given by (d, θQE). The polar angle θQE is measured with respect to the symmetry z-axis parallel to the electric field vector of the
incident electromagnetic plane wave. For a sketch of the geometry, see Figure 1 and panel a of the present figure. The panels of the figure correspond to
the results obtained for different values of the fundamental frequency Ω (rows) and intrinsic QE losses γQE (columns). We set Ω such that (i) the
second harmonic is at resonance with the quadrupolar plasmon of the MNP (2Ω = 3.4 eV, quadrupole resonant, top row), (ii) the second harmonic is
at resonance with the dipolar plasmon of the MNP (2Ω = 3.17 eV, dipole resonant, middle row), and (iii) the fundamental frequency and the second
harmonic are off-resonance with any mode of the MNP (2Ω = 2.4 eV, off resonant, bottom row). The choice of γQE illustrates the situations with high
(γQE = 10−1 eV, left column), intermediate (γQE = 10−3 eV, center column), and low (γQE = 10−7 eV, right column) QE losses. For the values used at
each panel, see also the labels in the figure.
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Figure 4 shows the dependence of the SHG on the QE
position for different fundamental frequencies, Ω, and intrinsic
losses of the QE, γQE. Specifically, we performed calculations for
(i) high QE losses (γQE = 0.1 eV), which often occur in
experiments at room temperature, (ii) intermediate losses (γQE
= 10−3 eV), and (iii) low losses (γQE = 10−7eV), close to the
spontaneous decay rate of the QE. Similar to the discussion in
Figure 3c, we consider the fundamental frequencies correspond-
ing to three different situations: (i) second harmonic is at
resonance with the dipolar plasmon of the MNP (dipole
resonant); (ii) second harmonic is at resonance with the
quadrupolar plasmon of the MNP (quadrupole resonant); (iii)
the second harmonic and the fundamental frequency are off-
resonance with any plasmon mode of the MNP (off resonant).
Some common features can be pointed out in Figure 4. First,

the symmetry with respect to the position of the emitter given by
the angle θQE = π/2, which reflects the symmetry of the system
with respect to the (x, y)-plane. Second, the SHG is generally
stronger for theQE placed around the z-axis (θQE≈ 0 and π), the
region where the near field excited at 2Ω is more intense (due to
its quadrupolar spatial profile, see Figure 1c). Indeed, the near
field resonantly excites the QE and partially imprints its spatial
distribution into the dependence of the second-harmonic signal
on the position of the QE. As another result common for large
and intermediate QE losses: the strongest SHG is obtained for
the second-harmonic frequency at resonance with the dipolar
plasmon of the metal nanoparticle, which corroborates the
TDDFT results discussed in the previous section. Themaximum
second-order nonlinear hyperpolarizability αm̂

(2)(2Ω; Ω, Ω)
(which relates the m-polarized second-harmonic dipole ⃗ Ω2
induced in the total system with the intensity I0 of the incident
plane wave) is |αm̂

(2)(2Ω;Ω,Ω) | = 5.1 × 105 au and |αm̂
(2)(2Ω;Ω,

Ω) | = 2.3 × 106 au for high and intermediate losses, respectively
(see details in Supporting Information).
Themost prominent feature revealed by the results in Figure 4

is however the key role played by the intrinsic QE losses in the
efficiency of the SHG and its dependence on the QE position. In
general, lower intrinsic losses allow to reach significantly larger
SHG. Remarkably, with γQE ranging from high (10−1 eV) to
intermediate (10−3 eV) and low (10−7 eV) losses, the character
of the distance d-dependence of the SHG (within the studied
distances) changes completely. While | ⃗ |Ω2

2 is monotonously
decreasing for large QE losses in the range of distances
considered, it is maximized at d ∼ 1.5−2 nm for intermediate
losses, and at d∼ 15−20 nm for low losses (this last result is not
shown in the figure because it falls outside the validity limit of the
nonretarded approximation used in our calculations). As a
further striking result, for low intrinsic QE losses, the resonant
condition with the dipolar plasmon 2Ω = ωDP leads not to the
largest but to the smallest SHG. The maximum SHG is obtained
in this case for the QE resonant with the quadrupolar plasmon
mode of the MNP and for off-resonant conditions, reaching a
maximum second-order hyperpolarizability |αm̂

(2)(2Ω; Ω, Ω)| =
1.4 × 107 au. Our results show that this second-order nonlinear
hyperpolarizability can be 3 orders of magnitude stronger than
that of a typical highly nonlinear material such as BaTiO3 of
similar geometry and size (see Supporting Information).
However, we note that the scaling of the SHG with the size of
the nanoparticles may be different for the two systems.
In order to understand these results, it is useful to consider the

respective weights of the contributions to the total second-

harmonic dipole from the QE, ⃗ Ω2
QE
, and from the MNP, ⃗ Ω2

np
,

where ⃗ = ⃗ + ⃗Ω Ω Ω2 2
QE

2
np
. For simplicity, we discuss the case of

the QE located at the z-axis, but the same arguments are valid for
other geometries. From eq 8 one obtains
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These expressions are very useful since they do not depend on
the characteristics of the QE. As shown in Figure 5a for the three
excitation frequencies, at large distance d the SHG is dominated
by the dipole moment induced by the QE (dashed lines), while
at short separation distances the dipole moment of the MNP
provides the leading contribution (solid lines). Note that given
the scaling of theMNP polarizability with the particle radius, αnp

Figure 5. (a) Relative contributions of the MNP: | ⃗ | | ⃗ |Ω Ω/2
np

2 (solid

lines), and of the QE: | ⃗ | | ⃗ |Ω Ω/2
QE

2 (dashed lines) to the total nonlinear
dipole of the system at the second-harmonic frequency. Results are
shown as a function of the MNP-QE distance d. The QE is located at
the z-axis (θQE = 0). (b) Additional broadening of the QE transition
because of the interaction with the MNP. The quantity α0 Im {z ̂ G⃡(R,
R,2Ω) z}̂/2Ω is shown as a function of the MNP-QE distance d. (c)
Dependence of the polarization direction of the total emitting dipole
ϕ on the angular position θQE of the QE. The QE distance from the
MNP surface is fixed to d = 2 nm, and γQE = 10−3 eV. θQE = 0
corresponds to the QE located at the z-axis, and θQE = π/2 corresponds
to the QE located at the x-axis (see inset). In all the panels of the figure
we consider three different fundamental excitation frequencies
corresponding to Ω = 1.7 eV (second harmonic at resonance with
the quadrupole plasmon of theMNP, blue lines),Ω = 1.585 eV (second
harmonic at resonance with the dipolar plasmon of theMNP, red lines),
and Ω = 1.2 eV (off-resonant conditions, green lines).
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∼ a3, and the dependence on the separation distance of the
projection of the Green dyadic on the near field, z ̂ G⃡0 z ̂∼ 1/|a +
d|3, the crossover region would move to larger distances d with
increasing MNP radius.
Along with the relative contributions of the nonlinear

polarizations of the QE and of the MNP to the SHG, the
response of the QE (probing the 2Ω near field) is an important
characteristic of the system. The self-interaction due to the
presence of the MNP modifies the total decay rate of the QE,
therefore once we have discussed the relative contribution of the
QE and of the MNP to the SHG, it is useful to discuss how the
decay rate of the QE changes due to this self-interaction with the
MNP. The “effective” broadening (or, equivalently, total decay
rate) of the QE resonance (Purcell effect) can be found from eq
8 and eq 10,

γ γ α′ = + { ̂ ⃡ Ω }̂ ΩGz R R zIm ( , , 2 ) /2QE QE 0 (15)

where zG⃡̂z ̂∼ 1/|R|6 = 1/(a + d)6 in first approximation (l = 1 in
eq 12). We show the self-interaction contribution to γQE

’ (last
term in eq 15) in Figure 5b. Because of the frequency
dependence of the MNP polarizability, this is largest when the
second-harmonic frequency is resonant with the dipolar
plasmon of the MNP and smallest for the off-resonance
conditions. Importantly, the broadening γQE′ of theQE transition
determines the maximum nonlinear polarization of the QE that
can be reached at resonance with the second-harmonic near field
of the MNP, ω0 = 2Ω.
We are now in a position to explain the main trends observed

in Figure 4. Let us consider first the case of large intrinsic losses
γQE = 10−1 eV dominating the decay of the QE over the extra
losses introduced by the self-interaction, so that the “effective”
broadening remains unchanged, γQE′ ≃ γQE (see Figure 5b). The
QE dipole at the second-harmonic frequency can then be

estimated from γ⃗ ∝ ΩΩ E R( , 2 )/2
QE

ind
TDDFT

QE. The near field at

the second-harmonic frequency induced by the MNP in
response to the incident field is of quadrupolar character so

that Eind
TDDFT ∼ 1/|R|4, and correspondingly ⃗ ∝ | |Ω R1/2

QE 4.
Furthermore, the second-harmonic dipole of the MNP resulting
from the interaction with the QE can be obtained from eq 8.

This is given by α⃗ = Ω ⃡ ⃗Ω ΩG(2 )2
np

np 0 2
QE
, which results in the

following dependence of the second-harmonic dipole with the

QE position: ⃗ ∝ | |Ω R1/2
np 7. Therefore, the maximum total

nonlinear dipole ⃗ Ω2 is reached for small d (the MNP
dominating regime), and it is monotonically decreasing with
increasing d as a consequence of the drop-off of both the second-
harmonic near field and the MNP-QE interaction. Since the
emission is maximum for short distances where it is dominated
by the nonlinear dipole moment of the MNP, the power emitted
to the far field is enhanced when the second-harmonic matches
the dipolar plasmon, i.e., when the MNP polarizability is largest.
Let us consider now the case of low intrinsic losses γQE = 10

−7

eV such that the decay of the QE polarization is determined by
the self-interaction for all the distances in the figures: γQE

’ ≃ α0
Im {z ̂ G⃡(R, R,2Ω) z}̂/2Ω (plotted in Figure 5b). The nonlinear
dipole of the QE at the second-harmonic frequency can then be

estimated from γ⃗ ∝ Ω ′Ω E R( , 2 )/2
QE

ind
TDDFT

QE. The dependence

of ⃗ Ω2
QE

on the separation distance d is thus governed by that of
the self-interaction γQE′ ∼ 1/|R|6 and that of the quadrupole near

field at the second harmonic Eind
TDDFT ∼ 1/|R|4. As a result,

⃗ ∝ | |Ω R2
QE 2, while ⃗ ∝ | |Ω R1/2

np
. The largest nonlinear dipole

can finally be reached at large |R| owing to the polarization of the
QE. The system is in the regime where the emission from theQE
dominates and the SHG intensity increases as ∼|R|4. Addition-
ally, since Im{z ̂ G⃡(R,R,ω) z}̂ is maximum at resonance with the
dipolar plasmon of the MNP, setting 2Ω = ωDP leads to a larger
width of the QE resonance (larger losses) and thus to smaller
SHG. Thus, the largest nonlinear signal is obtained in this
regime for the second harmonic in resonance with the
quadrupolar mode of the MNP and for off-resonance
conditions. Apart from the losses introduced by the MNP, the
second-harmonic near field Eind

TDDFT(R, ω = 2Ω) induced by the
individual MNP is stronger for the second harmonic matching
the quadrupolar plasmon resonance of the MNP,92 2Ω = ωQP =
3.4 eV, which finally results in the largest SHG as shown in
Figure 4g. Interestingly, the reduction of the second-harmonic
signal at small |R| because of the self-interaction terms observed
here has a similar physical origins as the well-known effect of the
QE luminescence quenching in the linear case.84,87

For intermediate losses γQE = 10−3 eV, the “effective”
broadening of the QE is given by the self-interaction at small
distances d from the surface and saturates to the intrinsic value
γQE at larger distances (see Figure 5b). As a consequence, by
increasing d the induced QE polarization at the second

harmonic changes its distance dependence from ⃗ ∝ | |Ω R2
QE 2

to ⃗ ∝ | |Ω R1/2
QE 4 leading to a maximum of the SGH for the d =

1.5−2 nm distance range.
To close this section it is worthwhile to point out an attractive

possibility to control the polarization of the light emitted at the
second-harmonic frequency, owing to the quadrupolar character
of the second-harmonic near field of the MNP induced by the
plane-wave excitation. In Figure 5c we analyze the direction of
polarization of the total second-harmonic dipole of the system
for different positions of the QE. The direction of polarization of
the nonlinear dipole is defined by the angle ϕ , measured

between ⃗ Ω2 and the positive direction of the z-axis. The
position of the QE is given by the corresponding angle θQE (see
inset). The QE is placed at different θQE while keeping a fixed
distance d = 2 nm from the MNP surface. The calculations are
performed considering intermediate intrinsic losses γQE = 10−3

eV, but the same qualitative behavior is found for other cases.
When the QE is located at θQE = 0 or θQE = π, corresponding

to the polarization direction of the external laser field, the total
emitting dipole is z-polarized (ϕ = 0), i.e., it is parallel to the
excitation laser. In contrast, when the QE is placed at θQE = π/2
the induced dipole is x-polarized (ϕ π= /2). This implies a full
polarization conversion of the second-harmonic radiation with
respect to the fundamental wave. This result is a robust
consequence of the symmetry of the system, as discussed in
previous sections. When the QE is located at the z-axis, the
system has a rotation symmetry with respect to the z-axis, thus
no x- or y-polarized SHG can be produced. In a similar way,
when the QE is located at the x-axis, the system is symmetric
with respect to the (x, y)-plane, and therefore the z-polarized
SHG is forbidden.

■ SUMMARY AND CONCLUSIONS

We have studied how the coupling of a QE with a
centrosymmetric MNP alters the nonlinear response of this
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compound system and enables otherwise forbidden SHG. Using
TDDFT simulations we have shown that when the second
harmonic of the fundamental frequency is resonant with the
transition frequency of the quantum emitter, the latter plays the
role of an optical resonator that scatters the local second-
harmonic near field created by the MNP into the far field.
For the present model, the TDDFT calculations reveal the

following three-step scenario of the SHG process: first, theMNP
generates a second-harmonic near field in response to the
incident radiation, second, the QE is resonantly excited at 2Ω by
this near field, and finally, the QE emits in the presence of the
MNP.We would like to stress however that the generalization of
this mechanism to other systems has to be done carefully
considering the relevant characteristics of the QE and the
plasmonic nanoobject. In particular, the polarization of the QE
at the fundamental frequency can also lead to an appreciable
nonlinear response of the MNP as would be, for instance, the
case of a small MNP and a strongly polarizable QE.
The insights provided by the TDDFT calculations allowed to

develop a semiclassical model of the second-harmonic response
of the MNP-QE system. Using the semiclassical model, we have
demonstrated that the efficiency of the SHG, its dependence on
the position of the QE, and its dependence on the frequency
match between the plasmon modes of the MNP and the QE
transition is determined by the relative importance of the
intrinsic losses of the QE and the broadening of the QE
transition due to the self-interaction via the MNP. We have
shown that it is possible to obtain orders of magnitude stronger
SHG by reducing the intrinsic losses of the QE. Owing to the
large SHG obtained in the present system, we believe that the
effect of the QE will persist in a practical experimental situation
where the MNP geometry imperfections and the substrate may
produce a ‘background’ SHG.
Finally, we have demonstrated the possibility to control the

polarization of the light emitted at the second harmonic. We
have shown that the polarization of the total second-harmonic
dipole of the MNP-QE system depends on the position of the
QE with respect to the axis defined by the polarization of the
incident light. In particular, this allows to obtain a full
polarization conversion where the dipole emitting at the second
harmonic is perpendicular to the illuminating field.
Although the results shown in this work are obtained for a

model spherical nanoparticle and a structureless QE, the
qualitative conclusions driven here stem from the robust
phenomenon of generation of even-harmonic signal in the
near field close to the MNP surface, from general symmetry
constraints, and from the physics of optical resonators
interacting with plasmonic nanoparticles. It thus appears from
our findings that the hybrid MNP-QE structure can be a
promising platform for enhancing second-harmonic generation
and probing the nonlinear near fields of metallic nanostructures.
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