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Many-body physics in small systems: Observing the onset and saturation of correlation in linear
atomic chains
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The exact study of small systems can guide us toward relevant measures for extracting information about
many-body physics as we move to larger and more complex systems capable of quantum information processing
or quantum analog simulation. We use exact diagonalization to study many electrons in short one-dimensional
atom chains represented by long-range extended Hubbard-like models. We introduce a measure, the single-
particle excitation content (SPEC) of an eigenstate and show that the functional dependence of the SPEC on
the eigenstate number reveals the nature of the ground state (ordered phases), and the onset and saturation
of correlation between the electrons as Coulomb interaction strength increases. We use this SPEC behavior to
identify five regimes as interaction is increased: A noninteracting single-particle regime, a regime of perturbative
Coulomb interaction in which the SPEC is a nearly universal function of eigenstate number, the onset and
saturation of correlation, a regime of fully correlated states in which hopping is a perturbation, and the SPEC
is a different universal function of state number and the regime of no hopping. In particular, the behavior of the
SPEC shows that when electron-electron correlation plays a minor role, all of the lowest-energy eigenstates are
made up primarily of single-particle excitations of the ground state, and as the Coulomb interaction increases,
the lowest-energy eigenstates increasingly contain many-particle excitations. In addition, the SPEC highlights a
fundamental distinct difference between a noninteracting system and one with minute very weak interactions.
Although the SPEC is a quantity that can be calculated for small exactly diagonalizable systems, it guides our
intuition for larger systems, suggesting the nature of excitations and their distribution in the spectrum. Thus, this
function, such as correlation functions or order parameters, provides us with a window of intuition about the
behavior of a physical system.
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I. INTRODUCTION

Quantum simulation of small physically realizable sys-
tems (e.g., chains of precision-placed atoms on surfaces or
dopant atoms in silicon) provides an opportunity to learn
about many-body physics at larger scales. Although larger-
scale quantum simulators with 50 to hundreds of atoms are
becoming possible [1–3], the majority are still much smaller
[4–8], particularly, in solid-state realizations. Studying these
smaller systems theoretically has the advantage that we can
exactly diagonalize their Hamiltonian, inspect the full spec-
trum of their eigenstates, and learn what both the ground
and the excited states of that spectrum can reveal about the
nature of the system. Even for small systems we gain insight
into many-body behavior both from a theoretical perspective
and with an eye toward experimental realization of quantum
simulators for these systems. Hubbard model realizations are
becoming a common stepping stone on the road to building
universal quantum computers [9–12] and are being developed
in ultracold atom systems in optical lattices [4] and solid-state
systems, such as gate-defined quantum dots [5], and donor
dots in semiconductors [6–8]. In this paper we use exact diag-
onalization of a small spinless electron system to find all of the
many-body eigenstates, which gives us access to a wide range
of exact quantities. We calculate the extent to which each
of the eigenstates consists entirely of single-particle (s.p.)
excitations of the ground state (GS) of the system, which we
refer to as the single-particle excitation content (SPEC) of
an eigenstate. Expanding our scope to all of the eigenstates
provides a significant new perspective beyond what can be
learned from examining only the ground state, in addition to
confirming previously known ground-state behaviors in a new
way. The SPEC of the excited states makes visible a funda-
mental difference between an unperturbed Hamiltonian and
one with a minute perturbation, no matter how small. It also
provides a division of the parameter space of our Hamiltonian
into regimes which we can identify as those with different
ground-state behaviors.

We work with a linear chain of atoms half-filled with
spinless electrons, which we describe using a long-range-
extended Hubbard model. By extended we mean that unlike
a typical Hubbard Hamiltonian which has only on-site inter-
actions between the electrons and a hopping kinetic energy,
we use a Coulombic (∼1/r with r as the distance between
charges) interaction between electrons and between electrons
and the atomic cores. We vary the ratio of Coulomb interaction
strength λee to the hopping t to examine the different regimes
of behavior that this model gives rise to. As the Coulomb inter-
action is turned on it causes correlation between the electrons
and then eventually strong Wigner crystallization that isolates
electrons to individual sites of the lattice in an every-other-site
pattern [13].

The range of the electron-electron interaction, whether
short or long range, plays an important role in defining the
physics of interacting systems. Long-range interactions allow
the transfer of information and the spread of entanglement to
exceed the Lieb-Robinson bound [14], which describes entan-
glement spread under only local interactions and implies our
ability to efficiently simulate a one-dimensional (1D) system
classically, e.g., using density-matrix renormalization-group

(DMRG) or matrix product states [15]. In a 1D system with
only nearest-neighbor hopping and interaction, information
transfer will be local, the system integrable, and the system
will not thermalize following a quench, whereas next-nearest-
neighbor hopping and interactions break integrability, leading
to quantum chaotic behavior and thermalization [16].

The strength of the interaction relative to the hopping
is a key parameter which defines the phases of these sys-
tems. One-dimensional fermion systems have been studied
extensively, e.g., Refs. [17–19], often with an emphasis
on short-range interactions. When the fermions experience
long-range Coulomb repulsion, Schulz [20] showed using
bosonization that the ground state is a Wigner crystal (WC)-
like state for a continuous infinite 1D region. The defining
feature of this WC-like state is quasi-long-range order (quasi-
LRO) in which the density-density correlation function shows
an incipient charge-density wave (CDW) that decays slower
than a power-law ∼e−√

α ln x with α ∼ t/λee, so with a
stronger interaction the quasi-LRO decays more slowly. Al-
though Schulz showed that this is the ground state at any
strength of the Coulomb interaction, once a finite lattice
of atomic sites is introduced there will be several different
ground-state phases as one tunes the strength of interaction
[21–24]. Different authors disagree on how to name these
phases, but they broadly agree on many of their character-
istics. Here we briefly describe the previous work but delay
discussing these characteristics until the results section for
ease of comparison.

In 1978, Hubbard [25] considered a Hubbard model with
long-range but convex interactions and no hopping, which
allows analytical solution by considering how to minimize the
energy of placing me classical electrons on Ns sites. He named
this ground state a generalized Wigner lattice. At half-filling
the doubly degenerate ground states have electrons only on
either odd or even sites. This corresponds to the t = 0 limit
that we will discuss with our model.

When hopping is included, numerical solutions are typi-
cally needed. In 2000 Capponi et al. [21] considered spinless
fermions with Coulomb repulsion on a lattice of varying
lengths with periodic boundary conditions using exact diago-
nalization. By considering the thermodynamic limit of infinite
chain length they investigated whether the system would be
insulating or metallic and looked at how their numerical
results departed from analytical predictions for a Luttinger
liquid. More recently, Li [23] extended the work of Capponi
by studying larger lattices also with periodic boundary con-
ditions with long-range interactions of varying power laws,
including a Coulombic 1/r using DMRG, rather than exact
diagonalization. Finally, Ren et al. [24] used DMRG to study
the phase diagram of the XXZ model of an anisotropic spin
chain (a static 1D lattice of spin-1/2 particles with long-
range interactions via Pauli spin matrices, also with periodic
boundary conditions). Although their model should map to
the interacting fermion model of Capponi [21] and Li [23],
they do observe differences in the phase diagram, including
a region of intermediate strength Coulomb interaction with
the ground state in a phase that corresponds to Luttinger
liquid behavior in the fermion system, a phase absent from
Li [23] and Ren’s [24] studies of fermions with long-range
interactions.
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In 2003, Valenzuela et al. [22] used a variational ansatz
wave function to describe a smooth crossover between
Hubbard’s generalized Wigner lattice behavior and a state
with weak charge-density modulation as well as delocalized
charge. (For fillings smaller than 1/2 they also obtain a phase
similar to to Schultz’s [20] with quasi-LRO.) Their variational
ansatz differs from the numerical approaches discussed so far,
yielding only an approximation for the ground state but not
any excited eigenstates.

This paper is organized as follows: Sec. I A on the model
and methods describes the details of the Hamiltonian we study
and defines both single-particle excitations and what we mean
by the “single-particle excitation content” of an eigenstate.
In Sec. II we then describe the behavior of the SPEC and
show how the SPEC allows us to identify five regimes of
behavior for different interaction strengths. These regimes
are the noninteracting case, the no-hopping case, perturbative
regimes around each of these cases, and the intermediate
regime of onset and saturation of correlation. We finish with a
conclusion in Sec. III.

A. Model and methods

We consider linear chains consisting of Ns atoms at fixed
sites (indexed by i and j at positions xi, x j with unit spacing)
with me spinless electrons moving from site to site via a
nearest-neighbor hopping t . An electron on site i interacts
Coulombically with the other electrons (Vee) and with the
nuclei of each of the atoms (Vnuc). Results presented here are
for charge neutral systems in which each site has a nuclear
charge of Z = me/Ns, so the attractive interaction between an
electron at xi and each of the atoms (at positions x j) is

Vnuc(xi ) =
∑

j

−λnucZ

(|xi − x j | + ζnuc)
, (1)

whereas the repulsive interaction between electrons at xi

and x j consists of a direct Coulomb interaction reduced by
exchange which we assume affects only nearest-neighbor
electrons,

Vee(xi, x j ) = λee(1 − fexδ|i− j|,1)

(|xi − x j | + ζee )
, (2)

where λee and λnuc are scale factors accounting for the strength
of these interactions, including any dielectric screening as
well as the size of the lattice spacing. Variables ζee and ζnuc

are cutoffs that account for the spread of the electron orbital
on a site. In all results presented here ζee = ζnuc = 0.5 or half
a lattice spacing. We assume each site has a single accessible
orbital, so with spinless electrons each site can accommodate
only one electron. The fraction by which the nearest-neighbor
electron interaction is reduced due to exchange is fex = 0.2 in
the results presented here (but see the Supplemental Material
[26] for results for other values of the exchange fraction as
well as modifications of the range of the Coulomb/nuclear
interaction, filling factor, and system size).

The full Hamiltonian is then,

Ĥ =
Ns∑

i=1

(
−t (ĉ†

i ĉi+1 + ĉ†
i+1ĉi ) + Vnucn̂i +

i−1∑
j=1

Veen̂in̂ j

)
.

(3)

We express the Hamiltonian in a many-electron site basis and
solve for the many-electron eigenstates and energies by direct
diagonalization (LAPACK DSYEV). For comparison with theo-
ries of bulk materials, the value of the ratio λee/t corresponds
to the ratio of the Wigner-Seitz radius (rs = L/2me) to the
Bohr radius (a0 = h̄2/me2) (in which L is the length of the
system, me is the number of electrons, h̄ is Planck’s constant,
and m and e are the mass and charge of the electron). Thus,
small λee/t corresponds to the limit of high electron density
and small Wigner-Seitz radius in which hopping is relatively
more important than the Coulomb interactions.

1. Single-particle excitations

For zero Coulomb interaction, the many-electron eigen-
states �N (x1, . . . , xme ) (where N is the many-electron eigen-
state index and x1, . . . , xme are the position coordinates
for the me electrons) are each a single determinant of me

single-electron eigenstates (noninteracting modes) that are the
solutions of the same system with one electron φn(x) (where
n labels the single-particle eigenstates that make up the N th
many-electron eigenstate, and x is the position coordinate for
a single electron),

〈
x1, . . . , xn

∣∣�λee=0
N

〉 = 1√
me!

∣∣∣∣∣∣
φn1 (x1) · · · φnme

(x1)
...

...

φn1

(
xme

) · · · φnme

(
xme

)
∣∣∣∣∣∣.
(4)

When the Coulomb interaction is turned on, the many-
electron eigenstates are superpositions of many determinants
with increasing departure from the single-determinant behav-
ior as the interaction strength increases.

The single-particle excitation (SPE) of the many-electron
ground state that takes a single particle from site j to site i can
be written as

c†
i c j |�GS〉, i �= j,

where c†
i (ci ) is an operator that creates (destroys) a particle

at site i. The set of all single-particle excitations is defined by
the above states for all values of i and j. The full set can be
equivalently defined by the states,

a†
man|�GS〉, m �= n,

where a†
m (am) instead creates (destroys) an electron in

the noninteracting single-electron state φm. Similarly, a
two-particle excitation of the ground state consists of
a†

ma†
napaq|�GS〉, m �= n �= p �= q (or a similar construction

with site creation and destruction operators).
A many-body excited state can be characterized by the

number of one-, two-, three-, ... particle excitations that make
it up. We show in this paper that the single-particle excitation
content of the many-body excited states plays an important
role, providing a way to characterize the effects of Coulomb
interactions on the many-body states. We focus on the ex-
tent to which different many-electron eigenstates consist of
single-particle excitations of the interacting ground state. For
this purpose we define an orthonormal basis |ui〉 that spans
the full set of all single-particle excitations and a projection
operator P̂SPE = ∑

i |ui〉〈ui|, that projects onto that subspace.
Computationally we find the spanning orthonormal basis by
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Gram-Schmidt (G-S) decomposition: For each particular vec-
tor representing an excitation of the ground-state c†

i c j |�GS〉,
we create a basis vector |ui′ 〉 by normalizing the vector that
consists of the components of the excitation vector that are
orthogonal to the ground state and to all previous basis vec-
tors |ui′′ 〉(i′′ < i′). (In the noninteracting case single-particle
excitations will be eigenstates of the Hamiltonian and will al-
ready be orthogonal, but this is not true when interactions are
present.) Because some of those components may be small,
the normalization of the orthogonalized basis state has the
effect of magnifying the components that are kept to make a
new orthonormal basis state. We apply a cutoff, only including
a new orthonormal basis state if the sum of the magnitudes of
all of the components to be kept to make the new orthogonal
basis state is, before normalization, greater than εG-S. As we
will discuss later, the choice of cutoff can affect our esti-
mate of single-particle excitation content when interactions
are weak and the interacting ground state includes many small
single-electron excitations of the noninteracting ground state.
Correct choice of cutoff is, thus, a regularization of the theory
needed to get physically meaningful results: The cutoff needs
to be chosen to exclude numerical error in the noninteracting
and no-hopping cases, however, the most inclusive cutoff is
the most accurate in other cases. If a more exclusive cutoff
were used, the order that the single-particle excitations are
included in the Gram-Schmidt process could affect (slightly)
the SPEC, however, with an inclusive cutoff the answer is
order independent. The size of the single-particle excitation
basis {|ui〉} is me(Ns − me) for a noninteracting system (or a
system with no hopping) when the ground state consists of ex-
actly me fully occupied modes (sites) and Ns − me completely
unoccupied ones and is N2

s − 1 for an interacting system with
hopping when the ground state consists of modes or sites that
are occupied with nonunity nonzero probability. There are N2

s

combinations of c†
i c j , but the ground state itself is not part of

the single-particle excitation basis.
The SPEC of a particular many-electron eigenstate |�N 〉 is

then

〈�N |P̂SPE |�N 〉 =
∣∣∣∣∣
∑

i

〈�N |ui〉
∣∣∣∣∣
2

. (5)

The SPEC is, thus, the probability that an eigenstate can be
found in the single-particle excitation subspace, or alterna-
tively, the extent to which it can be defined entirely as a linear
combination of single-particle excitations of the ground state.
To simplify the display of the information contained in the
plots of single-particle excitation content, we can also plot a
rolling partial sum of the SPEC over the N-lowest many-body
eigenstates,

N∑
N ′=1

∣∣∣∣∣
∑

i

〈�N ′ |ui〉
∣∣∣∣∣
2

. (6)

The single-particle excitation content is independent of which
set of single-particle excitations we use, those from the site
basis or the mode basis.

Because any linear combination of single-particle exci-
tations will live entirely in this single-particle excitation
subspace, the remaining subspace consists of correlated par-
ticle excitations in which two or more particles are moved

FIG. 1. Excitation energies (logarithm scale) for all many-body
eigenstates of 6 electrons on a chain of 12 atoms, exchange fraction
of 0.2. The horizontal axis is the ratio of the Coulomb interaction to
the hopping on the logarithmic scale. Vertical dotted lines indicate
regions of different behaviors discussed in the text.

coherently. The excitation c†
i c jc

†
kcl |�GS〉 is distinct from

the excitation (c†
i c j + c†

kcl )|�GS〉, the latter being entirely a
single-particle excitation.

The single-particle excitation content is distinct from but
related to the quasiparticle weight. The relationship between
the two is considered in the Supplemental Material [26] to this
paper and references therein [27,28].

II. THE SPEC: IDENTIFYING FIVE REGIMES
OF INTERACTION EFFECTS

In the following, we will show that the SPEC can be used
to characterize the effects of the electron-electron interaction.
We will show that there are five regimes of behavior identified
by the very different functional form of the SPEC as a function
of eigenstate number in each regime. As we vary the ratio
of the electron-electron (and electron-nuclear) interactions to
the hopping in the Hamiltonian for linear atomic chains, we
use the behavior of the SPEC to identify two integrable cases
(λee/t = 0 and t/λee = 0) and three regimes in between as
suggested by the dashed lines in the plot (Fig. 1) of the
variation of the excitation energy for excited states with λee/t .
(Figure 1 shows the difference in energy from the ground
state on the logarithmic scale for all the excited states of six
electrons on a chain of 12 atoms when the exchange reduc-
tion is 0.2. The horizontal axis is the ratio of the Coulomb
interaction to hopping on the logarithm scale. Throughout
the main paper we show plots for the half-filled 12 atom
chain. However results are similar for other size chains, see
the Supplemental Material [26].) In region 1, the excitation
energies depend only weakly on the interaction strength. In
region 2, the excitation energies exhibit significant increases
with increasing interaction as well as significant crossings and
mixings of levels. In region 3, the excitation energies scale
linearly with the strength of the interaction as the hopping
becomes much smaller than the interaction: Correlation sat-
urates because movement of the electrons is suppressed. In
addition, the ground state is becoming degenerate. We will
discuss the noninteracting regime (Sec. II A), the no-hopping
regime (Sec. II B), and then regimes 1 (Sec. II C), 3 (Sec. II D),
and 2 (Sec. II E), in turn.
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FIG. 2. Single-particle excitation content for eigenstates of a 12
atom chain with six electrons, |∑i〈�N |ui〉|2 for (a) λee = 0, t =
1 (no states above 100 have any single-particle content), (b) t =
0, λee = 0.5, and (c) λee = t = 1. There are (12

6 ) = 924 eigenstates
for this system. The red line indicates the relative excitation energy
of each eigenstate.

A. Noninteracting regime λee/t = 0

When there are no Coulomb interactions between elec-
trons, the ground state consists of a single Slater determinant
of the me lowest single-particle states of a finite 1D chain.
Each excited state consists of a Slater determinant of single-
particle states in which one or more of the me lowest
single-particle states is replaced by a higher-energy single-
particle state. Thus, each excited state consists entirely of
either a single- or a multiple-particle excitation of the ground
state. This is seen in Fig. 2(a) which shows the SPEC of the
excited states of the noninteracting system of six electrons on
a chain of 12 atoms. The eigenstates that are single-particle
excitations (states 1–11, 13–19, etc.) have a SPEC of one,
and all other states have zero SPECs. The partial sum of the
SPEC of the N-lowest eigenstates, shown as the black curves
in Figs. 3(a) and 3(b) rises to me ∗ (Ns − me) in the lower part
of the spectrum of many-body eigenstates and then remains
constant, indicating that all of the possible single-particle
excitations are used up by the low-energy many-body states.
This free-fermion regime can be described by a Luttinger
liquid [29], whereas the inclusion of long-range interactions
induces departures from Luttinger behavior [21]. Likewise,
the SPEC for λee/t = 0 with me ∗ (Ns − me) excitations is dis-
tinct from the SPEC for small λee/t , even in the limit of very
small λee/t because there are always N2

s − 1 single-particle
excitations when interactions are included.

B. No-hopping regime t/λee = 0

When there is no hopping between sites, each eigen-
state consists of a Slater determinant of single-particle states
that are localized to sites. As discussed by Hubbard [25],
the ground state is a Wigner crystal (“generalized Wigner
lattice”), the exact details of which are determined by the

FIG. 3. Rolling sum of the single-particle excitation content for
eigenstates of a 12 atom chain with six electrons for the perturbative
regimes near the noninteracting state (upper two panels) and near the
Wigner state (lower two panels). The right two panels have a more
inclusive cutoff (εG-S = 10−18) whereas the left two panels have a
more exclusive cutoff (εG-S = 10−7). With an inclusive cutoff, the
SPEC curves are universal for a wide range of interaction strengths
(curves overlap for many values).

exchange fraction fex, the number of sites, and the filling. For
six electrons on 12 atoms with fex = 0.3 the ground state has
electrons on sites 2, 3, 6, 7, 10, and 11, which we refer to as a
paired Wigner crystal. When fex = 0.2 (or any value less than
0.22) the ground state is degenerate with one state having elec-
trons on sites 2, 3, 5, 7, 9, and 11, and the other on sites 2, 4,
6, 8, 10, and 11. Sites 1 and 12 are not occupied in the ground
state because the nuclear attraction pulls electrons toward
the center of the chain. The states which are single-particle
excitations (of just one of the degenerate ground states) are
shown in Fig. 2(b). The partial sum of the the SPEC [the
black curves in Figs. 3(c) and 3(d)] again shows that there
are only me ∗ (Ns − me) single-particle excitations, although
they are no longer confined to the lowest part of the spectrum
since moving multiple electrons at the same time is often a
lower-energy excitation. Again, the SPEC clearly shows that
this regime is distinct from the large λee/t limit where for
interacting electrons there are N2

s − 1 single-particle excita-
tions, no matter how strong the interaction.

C. Weak interaction λee/t � 1

In the small interaction regime, the ground state is per-
turbed from the noninteracting ground state we discussed
above. This can be seen in Fig. 4, which shows the
ground-state expectation value of the single-particle excitation
operator a†

man for the Coulomb interaction strength of zero
and t . The diagonal elements show the occupancy of the
noninteracting single-particle modes (one or nearly one for
modes 1–6 and zero or nearly zero for modes 7–12). When
the diagonal elements alone are plotted (see the Supplemental
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FIG. 4. The expectation value of the single-particle excitation
operator in mode space (projection of the ground state onto the
single-particle excitations of the ground state in the wave-function
basis) 〈�GS|a†

man|�GS〉 for (a) no interaction and (b) a Coulomb
interaction equal to the hopping. Note the color scale differs between
(a) and (b).

Material [26]) the mode occupancy is seen to be similar to
a Fermi function with the noninteracting case a perfect step
function, and the interactions smearing the Fermi sea similar
to a finite temperature. The values of off-diagonal elements
are zero for the noninteracting case and increase with the
Coulomb strength as the ground state becomes dressed by the
interaction.

The particular single-particle excitations of the ground
state begin to mix together in linear combinations in this
regime. This can be seen in Fig. 5 which shows the projection
of the 12 lowest excited states onto each of the possible
single-particle excitations (in the single-particle mode basis)
of the ground state for λee = t . The figure shows that the
lowest-energy eigenstates consist of linear combinations of
multiple single-particle excitations. In this regime the low-
energy excitations are plasmonic [30]. The first excited state is
made mostly from the one way to shift one electron from the
highest occupied single-particle state to the first unoccupied
single-particle state. The next two excitations are determined
mostly by the two ways that one electron can be excited with
a change in the single-particle index of two. These first three
excitations correspond to the fundamental plasmon mode, the
plasmon mode with two nodes, and the doubly excited fun-
damental plasmon mode [30]. Excitations with larger changes
in single-particle index correspond to higher-order plasmon
modes and other multiply excited plasmonic excitations.

In the weak interaction regime the SPEC is sensitive to
εG-S, the cutoff used to decide whether a particular single-
particle excitation of the ground state has enough new
orthogonal components to be included in the single-particle
excitations basis. More basis states are included, capturing
more of the SPEC if a smaller cutoff is used. Genuine but
small perturbations in the ground state may be excluded or
not depending on that cutoff, influencing the total number
of single-particle excitations of the ground state that appear
(saturation value of the curve). In this perturbative regime, the
ground state consists of an unperturbed ground state mixed
with the unperturbed excited states, making more single-
particle excitations of the ground state possible. (This is
because single-particle modes are no longer completely filled
or completely empty.) However, the larger the interaction,
the greater the mixing, and the less likely that any particular
single-particle excitation of the ground state will be excluded
by the cutoff. It is the inclusive cutoff that captures the true

FIG. 5. Coulomb strength of λee = t . The projection of the low-
est 12 states onto each single-particle excitation of the ground state
in the s.p. mode basis 〈�N |a†

man|�GS〉 with removal mode n on hor-
izontal axes and creation mode m on vertical axes. The off-diagonal
lines are plasmonic behavior: Collective excitations in which many
electrons all have the same momentum shift.

SPEC in these cases. Nonetheless, the behavior at other cutoff
values give us insight into the meaning of the SPEC and why
its sum over all states is discontinuous between the noninter-
acting and interacting cases.

Figures 3(a) and 3(b) show the rolling sum of the SPEC
for small interactions with an exclusive (large εG-S) cutoff and
an inclusive (small εG-S) cutoff, respectively. For a nonzero
Coulomb interaction up to and including λee = t the behavior
of the SPEC is remarkably similar for all interaction strengths,
provided the inclusive cutoff is used. The SPEC is nearly a
smooth function of eigenstate number (and of energy) with
nearly all the nonzero SPEC occurring in the bottom quarter of
the spectrum of eigenstates as shown in Fig. 2(c) for λee = t .
When a small enough cutoff is used, the rolling sums for
0 < λee/t � 1 fall on the same quasiuniversal curve which
saturates at me ∗ (Ns − me). This shows that there are dis-
tinctly different behaviors between the noninteracting case
and any case with interaction, no matter how small. For any
value of a perturbing Coulomb interaction (no matter how
small and up to λee = t) the perturbation mixes excited states
into the ground state, and single-particle excitation content is
present in many more of the excited eigenstates. This discrete
jump in the saturation value of the sum over SPEC points to
the existence of small but well-defined excitations that come
into existence in the presence of even the weakest interaction.
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FIG. 6. Probability of measuring the interacting ground state in the ground states of the two limits t = 0 and λee = 0.

This is consistent with the observation of Schulz [20] that
the Wigner crystal (in continuous 1D systems) occurs for any
Coulomb interaction strength and highlights the fundamental
difference between weak interaction and no interactions.

As can be seen in Fig. 6 the ground state of the system
in this regime still only has minute departures from the non-
interacting limit: The overlap between the full ground state
and the product state of the lowest six modes is nearly one.
Yet those departures already have the defining character of the
interacting ground state.

Previous authors identify this regime as a “metallic Wigner
crystal” [21,23] or a “weakly pinned small-amplitude charge-
density wave” [22]. Their focus is largely on whether the
system is metallic in the thermodynamic limit, and by this
measure their weakly interacting regime continues all the way
to λee/t = 4 or 5 where there is a crossover rather than a sharp
transition. As we will see below, there is also something of a
crossover in the behavior of the SPEC at that value. Character-
istics ascribed to this phase include: metallic or quasimetallic
(extrapolation to long chains gives a disappearing charge gap
and high charge stiffness), a charge-density modulation that
is small compared to the delocalized charge and disappears
in the long chain limit and having strong departures from
Luttinger liquid behavior that grow with λee/t .

D. Very strong interaction λee/t � 100

The region with the highest Coulomb interaction strengths
is analogous to the small interaction case. However, now the
occupation of particular sites in the chain is the applicable
basis rather than the noninteracting single-particle modes be-
ing the relevant unperturbed basis. With an inclusive cutoff,
the SPEC curves are all the same, up to the slight change in
the order of a few of the levels. The SPEC curves for this
region are shown in Figs. 3(c) and 3(d). The single-particle
excitations are no longer confined to the low-energy part of the
spectrum due to strong correlations induced by the extreme
Coulomb interaction strength. Both the universal nature of
the SPEC curve and the linear scaling of the energy levels
with interaction strength seen in Fig. 1 point to the fact that
the correlation is fully saturated: There is little reordering

or mixing of levels as the interaction strength is varied. The
Wigner crystal found at the extreme limit of no hopping is
essentially present throughout this region.

We have defined the boundaries for the perturbative re-
gions based on the dependence of the SPEC on the cutoff.
However, Fig. 6 shows the probability of finding the ground
state in the Wigner crystal of the t = 0 limit or the Slater
determinant of the λee = 0 limit as a function of the strength
of the Coulomb interaction. The vertical lines indicating the
perturbative regions from the SPEC analysis align with the
regions of significant probability of finding the ground state
in one of the limiting unperturbed ground states.

Previous authors refer to this regime as an “insulat-
ing charge-density wave” [21,23] or a “generalized Wigner
lattice” [22]. It is characterized by a thermodynamically sig-
nificant charge-density modulation and an insulating character
(identified by a finite structure factor divided by chain length
and a finite charge gap in long-chain extrapolation). As men-
tioned in the previous section, these authors identify this
regime with λee/t > 4 or 5. However, the charge-density mod-
ulation is fully saturated for λee/t � 100. The next section
will discuss the crossover regime between the regimes of
weak and very strong interaction and the use of the charge-
density-wave- (CDW-) and bond-order-wave- (BOW-) order
parameters as measures for these regimes.
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FIG. 7. Rolling sum of single-particle excitation content for
eigenstates of a 12 atom chain with six electrons for nonperturbative
region.
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FIG. 8. Probability density of finding two electrons separated
by a distance j for the ground state of six electrons on a 12 atom
chain, varying the Coulomb interaction λee, measured in units of the
hopping t after Ref. [31].

E. Intermediate interaction: Onset and saturation
of correlation 1 < λee/t < 100

In between the two perturbative regions is the region of
increasing correlation. Correlation due to Coulomb repul-
sion causes the many-body eigenstates to cross and mix, and
the ground state of the system is fundamentally changed.
The single-particle excitation content is no longer sensitive
to the cutoff used, giving the same results for a very wide
range of values of εG-S. The SPEC curves transition gradually
between the quasiuniversal curves for the two perturbative
regimes as seen in Fig. 7. However, as noted previously, the
crossover assigned to λee/t = 5 by Refs. [21–23] is visible
in the SPEC curves as a transition from a mostly smooth
curve in which single-particle excitations primarily make up
low-energy eigenstates to a curve with discontinuities in
which the single-particle excitations are not confined to the
low-energy part of the spectrum.

That this is the region in which correlation sets in can be
seen in Figs. 8 and 9. We use two measures of correlation:
The first, used by Gambetta et al. [31] and Wang et al. [32], is
the probability density of finding two electrons separated by a

distance j,

P( j) =
∑

i

〈�GS|c†
i c†

i+ jci+ jci + c†
i c†

i− jci− jci|�GS〉. (7)

We see in Fig. 8 that the departure from a linear decrease
with distance grows in the intermediate region of Coulomb
interaction (λee/t = 1 − 100) and saturates at the upper limit
of the region (λee/t = 100) with evidence of every-other site
occupation.

The second measure is the charge-density wave order pa-
rameter, defined by

OCD =
Ns−1∑
	i=1

(−1)	i

(Ns − 	i)

Ns−	i∑
i=1

〈�GS|c†
i cic

†
i+	ici+	i|�GS〉. (8)

As can be seen in Fig. 9, the charge-density wave order pa-
rameter maintains a constant value in the strong correlation
regime but does not grow uniformly throughout the regime of
onset and saturation of correlation.

This crossover region also sees the development and dis-
appearance of bond-order oscillations. A bond-order wave is
a state of broken symmetry in which the expectation value
of the kinetic-energy operator alternates between every two-
nearest-neighbor sites. Its order parameter is defined by

OBO =
Ns−1∑
	i=1

(−1)	i

(Ns − 	i)

Ns−	i−1∑
i=1

〈�GS|(c†
i ci+1 + c†

i+1ci )

× (c†
i+	ici+	i+1 + c†

i+	i+1ci+	i )|�GS〉. (9)

This order parameter measures the asymmetry of the bond
strengths for odd and even bonds (odd bonds being those
between the first and the second sites, the third and the fourth,
etc.). A bond-order wave phase is defined as the existence of
this order parameter in the infinite-chain length limit, which
we do not evaluate here. (Finite Luttinger liquid systems ex-
hibit bond-order oscillations that are not thermodynamically
significant [33].) Discussions of the bond-order wave phase
may be found in Refs. [33–35]. The Supplemental Material
[26] and references therein [36–42] discuss our choice of
order parameter.

One way to interpret the bond-order wave in a finite chain
is as a charge-density wave which is shifted to lie between
the sites. With this interpretation, Fig. 9 shows the growth
of charge-density order with increasing interaction strength.
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FIG. 9. BOW- and CDW-order parameters of the ground state as a function of Coulomb interaction strength.
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Figure 7 shows that for smaller interaction strength (approxi-
mately λee/t � 4) all low-energy excited states are primarily
single-particle excitations, and higher-energy states are pri-
marily multiple-particle correlated excitations. This reflects
the low correlation seen in the order parameter (Fig. 9) and
probability of separation (Fig. 8). The rolling sum of the
SPEC is a smooth function of eigenstate number, implying
that multiple-particle excitations are being mixed into all
states smoothly as a result of interactions. As the interaction
becomes stronger, lower-energy states gain multiple-particle
excitation content, and higher-energy states gain single-
particle excitation content as correlations develop. For the
strongest interactions, neighboring excited states with nearly
the same energy can have much different single-particle ex-
citation content, and many more states in the low part of
the spectrum have nearly zero SPEC (because moving two
or more electrons simultaneously is both lower in energy
once they are correlated and is very close to being an exact
eigenstate of the system once Wigner crystallization has set
in). Thus, the previously smooth curve of the rolling sum of
the SPEC becomes rough as the SPEC of two consecutive
eigenstates take very differing values.

III. CONCLUSION

We have considered small finite systems of interacting
electrons with an eye toward what they can reveal about
extended many-body physics. As quantum analog simulation
in small systems develops experimentally, we expect that ex-
periment coupled with such numerical analysis will enable a
clearer understanding of large-scale phenomena and greater
design capability. Understanding the nature of excited states
is crucial for designing active systems, which will necessarily
leave their ground state.

Using the single-particle excitation content of the excited
states of a many-electron Hamiltonian we have identified

five regimes in the parameter space of the Hamiltonian. This
identification is largely consistent with and supplements
previous analyses of the ground-state phase space of this
system. This is, in part, because the possible single-particle
excitations out of an interacting ground state reflect the nature
of that ground state. We observe unique signatures in the
SPEC of the eigenstate spectrum which allow us to identify
the noninteracting and no-hopping regimes, perturbative
regimes around each of those, and a broad crossover region
between them in which correlation grows and saturates. As
shown in the Supplemental Material [26], these signatures
persist upon varying the range of interactions, the filling
(number of electrons), the exchange fraction, and the size of
the chain. This suggests that the behavior might be similar for
other systems, for example, in higher-dimensional geometries
or other forms of Hamiltonian.

When the rolling sum of the SPEC of the excited states
has a universal curve as a function of eigenstate number and
is sensitive to the cutoff for including minute quantities of a
single-particle excitation in the vector space, the Hamiltonian
is in a perturbative regime near a limit with a separable ground
state (one that can be written as a Slater determinant of single-
particle states). As strongly correlated behavior reorders and
redefines the eigenstates the curve of the SPEC varies as well.

Small systems provide the opportunity for exact analysis of
the entire spectra, finding all of the excitations of the systems.
We have shown how this analysis provides new ways to define
the different regimes of the many-body interactions and corre-
lations, clearly identifying distinct differences that arise when
interactions are turned on or hopping is turned off and the
quasiuniversal behavior that arises in the perturbative regimes
of weak interaction or weak hopping. Exact analysis of small
systems and determination of the full spectrum of excitations
also provides an opportunity to develop a full analysis of the
dynamics of these systems.
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