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Abstract
Frequency-resolved photon correlations have proven to be a useful resource to unveil
nonlinearities hidden in standard observables such as the spectrum or the standard (color-blind)
photon correlations. In this manuscript, we analyze the frequency-resolved correlations of the
photons being emitted from an optomechanical system where light is nonlinearly coupled to the
quantized motion of a mechanical mode of a resonator, but where the quantum nonlinear
response is typically hard to evidence. We present and unravel a rich landscape of
frequency-resolved correlations, and discuss how the time-delayed correlations can reveal
information about the dynamics of the system. We also study the dependence of correlations on
relevant parameters such as the single-photon coupling strength, the filtering linewidth, or the
thermal noise in the environment. This enriched understanding of the system can trigger new
experiments to probe nonlinear phenomena in optomechanics, and provide insights into
dynamics of generic nonlinear systems.

1. Introduction

As light emerges from an open system, it carries a lot of information about the system and its dynamics. It
is up to our ingenuity to learn how to extract that information. For example, by counting the number of
photons at a given frequency ω [1] using a photodetector with spectral resolution Γ, we can obtain the
emission spectrum SΓ(ω), and extract information about the underlying level structure of the system. If
instead we perform a Hanbury Brown–Twiss (HBT) experiment [2], splitting the emitted light into two
beams and measuring their intensity correlation, we can measure its second-order coherence for delay τ

g(2)(τ ) [3, 4] which informs us about the statistical nature of the emitted light, e.g., whether it is of a
quantum or classical character. These two observables (SΓ(ω) and g(2)(τ)) are arguably the most
fundamental ones to characterize open quantum optical setups. However, sometimes the information they
carry is not sufficient to unravel the dynamics of complex quantum systems—most notably, when several
processes lead to multiple emission lines with competing statistics.

One of the additional tools at our disposal is the frequency-resolved version of the standard two-photon
correlation function, g(2)

Γ (ω1,ω2; τ), implemented by adding two frequency filters of linewidth Γ, at
frequencies ω1,2, in each of the paths of the HBT setup [5–9] (see the schematic in figure 1(a)). Originally,
frequency-resolved correlations were only studied in resonance fluorescence and for particular frequency
pairs, as their computation was found to be exceedingly cumbersome for more complex systems [5–9].
However, recent theoretical developments [10–13] triggered by the work of del Valle and co-authors [10]
have simplified this framework, and enabled the computation of full frequency correlation maps
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Figure 1. (a) Schematic of a generic OM system in which an optical cavity (with photon creation/annihilation operators a†/a) is
dispersively coupled to a mechanical mode (with phonon creation/annihilation operators b†/b). The spectrum of light emitted
from the cavity mode a, SΓ[a](ω1), is measured by frequency-blind detection of the photons passing through a spectral filter
tuned to frequency ω1 with resolution Γ. Directly extending this detection setup, we can measure the frequency-resolved
correlations g(2)

Γ [a](ω1,ω2) by splitting the light emitted from the cavity, filtering each of the beams separately, and measuring
intensity correlations of the photocurrents from the frequency-blind detectors. (b) Illustrative one-photon spectrum SΓ[a](ω) of
an OM system illuminated by a laser with frequency ωL, and operating in the single-photon strong coupling regime. It includes a
dominant elastic scattering peak at ω = ωL, broadened by the filter resolution Γ, and lower- and higher-frequency peaks
corresponding to the phonon creation (Stokes) and annihilation (anti-Stokes) lines shifted from ωL by multiples of the phonon
frequency ωb. (c) Schematic two photon spectrum (TPS; equation (11)) of the cavity mode a of an OM system, with red and blue
regions denoting frequency bunched g(2)

Γ [a](ω1,ω2) > 1 and antibunched g(2)
Γ [a](ω1,ω2) < 1 emission regions, respectively.

Throughout this work, the spectra and color maps in TPSs are given in logarithmic scale.

g(2)
Γ (ω1,ω2; τ = 0), labeled as two-photon spectra (TPS), in a number of more complex systems [14–16].

Remarkably, the TPS can unveil nonlinear processes hidden in standard observables [14–16], and have been
instrumental in inspiring novel sources of quantum light [17–20] or spectroscopy techniques [21, 22].
These tantalizing prospects have boosted experimental progress on the topic, resulting already in the
observation of the TPS of several systems [23–25].

An intriguing system that is known to exhibit very rich physics, but whose TPS has not yet been
considered, is single-mode cavity optomechanics (OM) [26], in which the optical and motional degrees of
freedom of a resonator are nonlinearly coupled (see schematic in figure 1(a)). Cavity OM systems are
particularly interesting as a platform for studying frequency-resolved intensity correlations, since the typical
OM emission spectrum includes several lines from competing processes involving the creation or
annihilation of vibrational quanta—phonons (figure 1(b)). Intensity correlations between such processes
have been used for the heralded generation of single phonons [27–32]. However, the theoretical
descriptions of these correlations are based on simplified models [33], and provide a limited picture of the
complex landscape of frequency-resolved correlations. Besides, these experiments have been performed in
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the linear regime, where the nonlinearity of the coupling is removed by strongly driving the cavity [34]. To
access the signatures of the nonlinear OM coupling, initial studies proposed to measure the effective
photon–photon Kerr-like interaction through frequency-blind intensity correlations [35, 36], or
OM-induced transparency at the frequency corresponding to a multi-phonon emission [37]. In this context,
the additional information revealed by frequency-resolved correlation measurements could open new paths
to access and characterize the OM nonlinear response.

In this manuscript, we present the first complete analysis of the emission statistics from a generic OM
system by studying its frequency-resolved photon correlations g(2)

Γ (ω1,ω2; τ), and identifying its features
with the system’s underlying processes: (i) the effective Kerr cavity nonlinearity induced by the
photon-phonon interaction, and (ii) a family of higher-order terms defining multi-phonon transitions,
linear in the optical degree of freedom. We study the evolution of these features in terms of both the
parameters of the OM system, e.g., the ratio of the optomechanical single-photon coupling to the cavity
losses g0/κ, as well as the characteristics of the external measurement setup, e.g., the frequency filter
linewidth Γ. We also calculate the temporal dynamics of frequency-resolved correlations g(2)

Γ (ω1,ω2; τ),
demonstrate how they encode information about the nature of emission processes, and discuss the
relationship between the spectral and temporal resolution of the measurement setup. Finally, we show how
some of these frequency regions can be associated with the emission of non-classical light by studying the
violation of the Cauchy–Schwarz inequality (CSI) [17, 38].

The manuscript is structured as follows. In section 2, we introduce the theoretical foundations of the
paper, introducing the single-mode cavity OM Hamiltonian in section 2.1, and defining the spectra SΓ(ω)
and frequency-resolved correlations g(2)

Γ (ω1,ω2; τ) in section 2.2. In section 3 we study the TPS of two
simpler nonlinear Hamiltonians, namely, a coherently driven Kerr cavity and cavity-multi-phonon
interactions, which are instrumental for understanding the frequency-resolved correlations of the cavity
OM Hamiltonian characterized in section 4. Finally, in section 5 we demonstrate the violation of CSI in
some frequency regions of the TPS, and summarize our findings in section 6.

2. Theoretical framework: setup and observables

2.1. Single-mode cavity OM
Single-mode cavity OM studies the interaction of a single quantized mode of an optical cavity, with
frequency ωa, with a quantized vibrational, or phonon, mode of frequency ωb, as schematically depicted in
figure 1(a). The photon–phonon coupling can be implemented in various physical systems using radiation
pressure [26], the photoelastic effect [39], or Raman scattering in molecular systems [40–42]. Irrespective
of the physical mechanism inducing such interaction, the OM Hamiltonian can be written as (using � = 1
throughout the manuscript):

HOM = ωaa†a + ωbb†b − g0a†a
(
b + b†

)
, (1)

where a†(a)/b†(b) are the bosonic creation (annihilation) operators of the photon/phonon mode, and g0

denotes the single-photon coupling parameter. The system is typically coherently driven with a laser exciting
the cavity field, described by the following Hamiltonian:

HL (t) = iΩ
(
a eiωLt − a† e−iωLt

)
, (2)

where Ω is the driving amplitude and ωL the laser frequency. In a frame rotating with ωL the total
Hamiltonian, i.e., H(t) = HOM + HL(t), becomes time-independent:

H = Δaa†a + ωbb†b − g0a†a
(
b + b†

)
+ iΩ

(
a − a†

)
, (3)

where Δa = ωa − ωL is the detuning between the cavity and laser frequencies.
Importantly, neither the optical cavity nor the mechanical mode are isolated from the photonic and

phononic environments, inducing dissipation into them at rates κ and γ, respectively. To formally account
for such losses, we describe the state of the OM system using the density matrix ρ. Assuming that the
environmental timescales are much faster than the system ones (Born–Markov approximation), the
dynamics of the system is then described by the following master equation [43]:

dρ

dt
= −i[H, ρ] +

κ

2
La[ρ] +

γ
(
nth

b + 1
)

2
Lb[ρ] +

γnth
b

2
Lb†[ρ], (4)

where LO[ρ] =
(
2OρO† − O†Oρ− ρO†O

)
are the Gorini–Kossakowski–Sudarshan–Lindblad (GKSL)

terms, and nth
b is the thermal population of the phonon bath, which both increases the decay rate of

phonons, and governs the rate of incoherent pumping of mechanical vibrations by the thermal
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environment. Importantly, this thermal phonon bath population depends on the ratio between the phonon
energy �ωb and the thermal energy kBT, such that it will be very small for high-frequency optical phonon
modes, e.g., in molecular systems [40, 41, 44, 45]. For the sake of illustration we will assume nth

b (T) ≈ 0
throughout most of this manuscript to keep the discussion of the physics simpler, and only briefly consider
the effect of thermal population on frequency-resolved correlations in section 4. We will also ensure that the
optical cavity is always weakly populated 〈a†a〉 � 1.

Throughout this manuscript, we will always consider the sideband-resolved regime, where ωb > κ, now
commonplace in many cavity OM systems [26]. The naming of this limit refers to the ability of the cavity to
resolve the main relevant scattering processes identified in the system (see figure 1(b)): elastic/Rayleigh
scattering corresponding to emission processes that involve no exchange of excitations with the mechanical
mode, so that the frequency of scattered photons matches that of the incident laser ωR = ωL; Stokes and
anti-Stokes processes in which the cavity photon either loses or absorbs the energy of one phonon (or an
integer number n of phonons) so that light is emitted at ωS/aS = ωL ∓ nωb. Furthermore, we will consider
systems operating from the more accessible weak coupling limit (g0 � κ) to the more demanding strong
single-photon coupling regime (g0 � κ) approached in physical setups based on cold atoms [46], molecular
OM [40, 41, 44, 45], microwave micromechanics [47], and phoxonic crystals [48]6.
Polaron transformation of the OM Hamiltonian: Kerr nonlinearity and cavity-multi-phonon interaction. To
gain insight into the underlying dynamics of the OM system, and the statistics of the emitted light, it is
instructive to perform the polaron transformation U = exp

[
(g0/ωb)a†a(b† − b)

]
[35, 36] on the OM

Hamiltonian. This transformation decouples the photon and phonon modes in HOM, at the expense of
transforming the harmonic cavity Hamiltonian into an anharmonic one:

H̃OM = U†HOMU = Δaa†a + ωbb†b −Δg(a†a)2, (5)

with Kerr nonlinearity parameter Δg = g2
0/ωb. The eigenstates of the transformed Hamiltonian are then

defined by the photon/phonon number states |na, nb〉 and have the following energies:

Ena ,nb
= nbωb + naωa −Δgn2

a. (6)

In the regime where the nonlinearity Δg becomes comparable to the cavity losses κ, the system cannot
readily absorb two photons with the same frequency, resulting in the well-known OM photon blockade
effect [35, 36].

In the transformed picture with non-vanishing pumping Ω �= 0, the explicit interaction between
photons and phonons appears in the transformed coherent pumping term which, in the frame rotating with
ωL, takes on the form:

H̃L = U†HLU = iΩ
[

a e(g0/ωb)(b†−b) − a† e−(g0/ωb)(b†−b)
]

, (7)

as well as in the transformed GKSL terms, which we will for now omit. The transformed Hamiltonian H̃L

can be broken into several contributions by expanding the exponential:

H̃L = iΩ
(
a − a†

)
+ iΩ

g0

ωb
(a + a†)(b† − b) + iΩ

g2
0

2ω2
b

(a − a†)(b† − b)2 + · · ·

=

∞∑
n=0

iΩfn

[
a − (−1)na†

] (
b† − b

)n

=

∞∑
n=0

H̃(n)
L , (8)

where fn =
(
g0/ωb

)n
/n!. When g0/ωb � 1, the first term of the expansion—the standard coherent driving

term—dominates.
We therefore see that the transformed driven OM Hamiltonian, H̃ = U†HU includes two terms which

can induce nonlinear dynamics: (i) the anharmonicity of the optical mode described by Hamiltonian H̃OM,
and governed by Δg = g2

0/ωb, and (ii) a series of cavity-phonon coupling terms in H̃L, determined by
parameters fn ∝

(
g0/ωb

)n
, and describing n-phonon mediated processes. A large part of the literature

discussing OM in the single-photon strong coupling regime is focused on exploring the photon blockade
effect induced by the Kerr nonlinearity Δg > κ, and identified in frequency-blind correlations in the limit

6 Fishbonelike crystals developed by Guo et al in reference [48] exhibit record single-photon cooperativity C0 ∼ 200, but operate deeply
in the sideband-unresolved regime.
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of Ω→ 0 [35, 36]. Here instead, we study the frequency-resolved photon correlations and explicitly
consider both sources of nonlinearities. In fact, for pedagogical purposes, we will analyze in section 3
separately the TPS of these two contributions, namely, of a coherently driven Kerr-cavity Hamiltonian (in
subsection 3.1), and of a higher-order multiphonon terms of equation (8) (in subsection 3.2), which will
help us to understand the TPS features of the complete cavity-driven OM Hamiltonian studied in section 4.

2.2. Optical observables: spectrum and correlations
As mentioned in the introduction, light emitted by the cavity carries information that can be used to
characterize its underlying dynamics. The simplest measurement that one can perform is to count the
number of photons emitted around a given frequency ω, within a frequency window Γ determined by the
resolution of the photodetector, or the spectral width of the filter set up before the color-blind detector
(see schematic in figure 1(a)). We label this magnitude as the one-photon spectrum, and calculate it as
follows [1]:

SΓ[a](ω) = lim
t→∞

1

π
R

∫ ∞

0
dτ e−(iω+Γ/2)τ 〈a†(t + τ)a(t)〉. (9)

Throughout this manuscript, we always use bracket notation, i.e., [a], to denote the field operator that is
being measured by the detector, e.g., here the cavity mode a. In the above equation, limt→∞ indicates that
the dynamics of the one-photon correlator 〈a†(t + τ)a(t)〉 should be calculated in the steady state. This
definition also assumes a Lorentzian filter profile with linewidth Γ, which naturally broadens the emission
lines. For example, elastic scattering from the cavity will no longer appear as a Dirac delta δ(ωL), but rather
as a Lorentzian with linewidth Γ centered at ωL which, as we will see, sometimes masks other features in the
OM spectrum. Theoretically, this elastic contribution can be removed by observing that the optical mode a
can be represented as the sum of its mean value and fluctuations a = 〈a〉+ δa, and calculating only the
spectrum of the operator δa, which we will denote as SΓ[δa]. In an experiment, this removal can be
achieved by self-homodyning the emitted light with the one of the driving laser [49, 50].

Another widely used quantity in the characterization of quantum optical setups is the second-order
coherence function, labeled as g(2)[a](τ) [3, 4] (denoting again in the bracket the field operator being
measured), and defined as:

g(2)[a](τ) = lim
t→∞

〈a†(t)a†(t + τ)a(t + τ)a(t)〉
〈a†(t)a(t)〉〈a†(t + τ)a(t + τ)〉 . (10)

Experimentally, g(2)[a](τ) is measured with a HBT setup by dividing the light emitted from the cavity with
a beam splitter, and then measuring intensity correlations between the photon detection in each of the
beams [2]. This quantity allows one to distinguish between the classical and quantum nature of the
emission. For example, the detection of g(2)[a](0) < 1 (subpoissonian) or g(2)[a](0) < g(2)[a](τ)
(antibunched) can both only be obtained with quantum light fields [3, 4].

Importantly, g(2)[a](τ) as defined in equation (10) accounts for all the different emission processes
occurring in the system regardless of their frequencies. In complex quantum systems, however, where
several emission processes with different frequencies and statistics simultaneously occur, this results in a loss
of information which can be recovered by placing frequency filters in each of the paths of the HBT
configuration (see figure 1(a)). This upgrade results in the measurement of the frequency-resolved
two-photon correlations, which can be calculated as follows [5–9]:

g(2)
Γ [a](ω1,ω2; τ) = lim

t→∞

〈
:T

[
A†
ω1,Γ(t)A†

ω2,Γ(t + τ)Aω2,Γ(t + τ)Aω1,Γ(t)
]

:
〉

SΓ[a](ω1)SΓ[a](ω2)
. (11)

Here, Aω1,Γ(t) =
∫ t
−∞ds e(iω1−Γ/2)(t−s)a(s) are the operators describing light passing through the Lorentzian

frequency filters, and T and : : enforce the time- and normal-ordering of the cavity mode operators a. For
τ = 0, this magnitude defines the TPS [14–16] g(2)

Γ [a](ω1,ω2; τ = 0) ≡ g(2)
Γ [a](ω1,ω2), which carries

information about the correlations of the photons emitted at frequencies ω1 and ω2, given a filter linewidth
Γ (see figure 1(c) for an example of a TPS from an OM system). Generalizing the notation inherited from
the standard photon correlations, we will refer to the emission with g(2)

Γ [a](ω1,ω2) > 1 and
g(2)
Γ [a](ω1,ω2) < 1 as frequency bunched and antibunched, respectively7. As shown in other works

[10, 14–16], the TPS is typically characterized by a grid of horizontal and vertical features, crossed by
antidiagonal ones. The latter includes to filtering frequencies corresponding to two-photon processes in

7 However, as we discuss in more detail in section 5, frequency-resolved correlations by themselves do not carry straightforward infor-
mation about the classical or quantum statistics of the emitted light, such that frequency antibunching should not be directly identified
with quantum light emission.
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which the intermediate state is virtual, i.e., not an eigenstate of the system, dubbed in other works as
leapfrog processes [14]. The former (vertical/horizontal structure) corresponds to fixing one of the filters at
a transition frequency between the eigenstates of the system. In the limit of very large filter linewidths, as
expected, we recover the standard colorblind correlation measurements, that is g(2)

∞ [a](ω1,ω2; τ)
= g(2)[a](τ).

Similarly to what it occurs for SΓ[a](ω), the frequency-resolved photon correlations near the elastic
scattering frequencies might also be dominated by those of the laser light g(2)

Γ [a](ω1 ≈ ωL,ω2 ≈ ωL) ≈ 1.
Thus, in order to unveil the intrinsic dynamics of the OM interaction Hamiltonian, we will—when
explicitly noted—consider both the TPS of the mode a, and of the fluctuations δa. The latter will be
denoted as g(2)

Γ [δa](ω1,ω2), and calculated from equation (11) by replacing the operator a with δa. In an
experiment, this measurement could be performed though the extension of the self-homodyning setup
described in reference [49], where the light emitted from the cavity is mixed with the driving laser before
splitting it in the HBT setup. Another option to remove the elastic spectral components is to use notch
filters. However, to model the effect of these filters properly, one would need to extend the formalism used
here, suited for Lorentzian filters, e.g., by adopting the approach developed by Kamide et al [51], which lies
beyond the scope of this work.

The numerical framework for calculating the TPS is based on the contributions from del Valle et al [10]
and Holdaway et al [13], and described in more detail in appendix A.

3. Correlations of underlying nonlinear processes

In section 2 we have shown how, using the polaron-transformed picture, the OM Hamiltonian can be
mapped to that describing a pair of decoupled harmonic (b) and anharmonic (a) oscillators (see
equation (5)), whereas the cavity driving Hamiltonian can be expanded into a series of terms which include
the standard coherent drive, but also higher-order nonlinear interaction terms (see equation (8)). Since all
of these processes contribute to the frequency-resolved correlations of the full OM Hamiltonian, in this
section we consider the frequency correlations induced by each of these individual nonlinear processes
separately. This will help us to understand the complete picture when we analyze it in section 4.

Before we continue, we should note that throughout this section we discuss the spectra and correlations
of mode a for the respective Hamiltonians expressed through this operator, as if these Hamiltonians were
given in an untransformed picture. Similarly, we will consider the GSKL term in the original form, given by
the second and third terms on the right-hand side of equation (4).

3.1. Coherently driven Kerr system
The first ingredient of the transformed optomechanical Hamiltonian that gives rise to non-trivial
correlations is the phonon-mediated Kerr cavity interaction. Its Hamiltonian reads:

HKerr = Δaa†a −Δg(a†a)2

= (Δa −Δg)a†a −Δg(a†)2a2, (12)

which, to account for losses, has to be complemented with the aforementioned GKSL term κ/2La[ρ].
Furthermore, we assume that the cavity is driven by a coherent laser described by the Hamiltonian
H(0) = −iΩ(a† − a), and define the complete Hamiltonian HKerr,Ω = HKerr + H(0). We note that the TPS of
Kerr cavities was considered before in reference [52], but in a very different scenario—in the regime of very
large Kerr nonlinearity, where one must redefine the observables to obtain physical results, and under
incoherent cavity pumping.

Before considering directly the TPS of the coherently driven Kerr Hamiltonian, HKerr,Ω, we will first
develop some intuition of its emergent features by expanding the Kerr nonlinearity around the fluctuations
δa of mode a using a → δa + α and α = 〈a〉 8, arriving at:

(a†)2a2 →
(
δa† + α

)2
(δa + α)2 = α4 + 2α3(δa† + δa) + 4α2δa†δa + α2

[(
δa†

)2
+ δa2

]

+ 2α
[
δa†δa2 +

(
δa†

)2
δa
]
+
(
δa†

)2
δa2. (13)

The terms in the first line of this expansion represent energy shifts and an additional coherent driving of δa.
The second line describes one-mode squeezing, or degenerate parametric amplification, corresponding to
the simultaneous creation or annihilation of two cavity photons by the incident laser, which results in a

8 We further simplify the Hamiltonian by ensuring that α is real, by adding the phase arg(α) to the operators δa.
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Figure 2. Spectra SΓ[a](ω) (solid lines), SΓ[δa](ω) (dashed lines), and TPS maps g(2)
Γ [a](ω1,ω2), g(2)

Γ [δa](ω1,ω2) of the Kerr
Hamiltonian discussed in section 3.1. In (a) we show schematically the lowest energy levels of the Kerr Hamiltonian, as a
function of Kerr nonlinearity, and denote (i) two-photon leapfrog process mediated by a virtual state and (ii) single photon
resonant fluorescence transition inducing strong emission at the laser frequency ωL. These processes are marked in the TPS in
(b)–(d) using the same (i) and (ii) labels. In (b), (c) we plot one- and two-photon spectra (TPS) of the fluctuations δa, for the
nonlinear Hamiltonians given above the panels, including (b) one-mode squeezing of mode δa and (c) effective coherent
pumping and Kerr nonlinearity of δa. In (d) we present the spectra and correlations of both the cavity mode a (solid lines in the
plot of SΓ[a] in the upper panel, and TPS maps of g(2)

Γ [a] below the diagonal line in the lower panel), and their fluctuations δa
(dashed lines in the upper plots of SΓ[δa], and maps above the diagonal line g(2)

Γ [δa]), in a driven Kerr system defined by
Hamiltonian HKerr,Ω = HKerr + H(0) . Insets in (c, d) show the TPS near the elastic scattering peaks. For all these systems we set
Ω/κ = Δg/κ = Δa/κ = 0.5, filter linewidth as Γ/κ = 0.05, decay rate of phonons as γ/κ = 0.1, and consider laser tuned to
the first excited eigenstate ωL = ωa −Δg.

strong correlation of field components oscillating at frequencies ω1 and ω2 with ω1 + ω2 = 2ωL. The third
line describes cubic processes, and the fourth the Kerr nonlinearity of the fluctuations δa.

In figure 2(b), we plot the spectra SΓ[δa] (upper panel) and TPS g(2)
Γ [δa] (lower panel) of the

fluctuations δa including only the terms describing the squeezing of δa for a system exhibiting a strong Kerr
nonlinearity Δg/κ = 0.5 and fixing the laser detuning to Δa = Δg

9. While the one-photon spectrum
shows a single Lorentzian peak, the TPS exhibits a clear leapfrog bunching behavior along the antidiagonal
ω1 + ω2 = 2ωL, as we predicted to occur due to the degenerate parametric amplification. We also identify
indistinguishability bunching along the diagonal ω1 = ω2 [14, 15], which emerges because the photons
emitted within the finite-time response time of the filters (Γ−1), appear as if they arrived simultaneously at
the detector, resulting in an increase of the frequency-resolved bunching along this line.

In figure 2(c) we plot the spectra and TPS corresponding to a nonlinear Kerr interaction between the δa
operators, including also the driving term ∝α3(δa† + δa) for the same parameters as panel (b). In this case,
we find that besides the leapfrog and indistinguishability bunching features, a blue region of weak frequency
antibunching emerges around the central region (see the zoom in the inset panel). Its origin can be
attributed to the nonlinear energy shift of the excited states due to the Kerr nonlinearity, which prevents the
driving term from populating efficiently the state |2〉 (see figure 2(a)). The system then becomes

9 A different detuning choice would result in quantitatively different, but qualitatively similar features of g(2)
Γ [a] and g(2)

Γ [δa]
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reminiscent of a two-level system, whose TPS was discussed in reference [14], exhibiting particularly strong
antibunching near the resonance ωi ∼ ωL along the antidiagonal ω1 + ω2 = 2ωL (see inset in figure 2(c)).
In the case of frequency-blind correlations, this is equivalent to the photon blockade effect.

Finally, we plot in figure 2(d) the spectra and the TPS for the coherently driven Kerr Hamiltonian
HKerr,Ω, for both the cavity mode a, and its fluctuations δa (plotting each TPS separately by cutting the
correlation map along the diagonal defined by ω1 = ω2). Both the spectra and TPS of mode a are nearly
identical to those exhibited by the fluctuations δa in figure 2(c). The main difference between the spectra of
a and δa in figure 2(d) is that the latter does not include the filter-broadened elastic scattering peak.
Further, the TPS of δa for the HKerr,Ω Hamiltonian does not show the blue dip on the antidiagonal (see inset
in figure 2(d)). This indicates that the admixing of the coherent field 〈a〉 to the light emerging from a Kerr
system can switch the statistical properties of the leapfrog-dominated emission from strong frequency
bunching to antibunching. A similar effect was recently analyzed by Casalengua et al in the context of
frequency-blind correlations [53].

3.2. Multi-phonon processes
The second nonlinear ingredient of the polaron-transformed OM Hamiltonian is described by the series of
terms, written in equation (8), linear in the optical degree of freedom a, and increasingly nonlinear in the
mechanical mode operator b. In figure 3 we analyze how they contribute to the emergence of additional
features in the spectra and TPS of the system:
1st term H̃(1)

L = iΩg0/ωb

(
a + a†

) (
b† − b

)
. Since this Hamiltonian does not include a laser driving term, we

find that 〈a〉 = 0. Thus, the one-photon spectra and TPS of the a mode will be the same as the one of δa,
which is what is plotted in figure 3(b). In that figure, we observe how the spectra SΓ[a](ω) develops in this
case three peaks corresponding to the elastic (ω ≈ ωL) and Stokes/anti-Stokes emission processes
(ω ≈ ωL ∓ ωb), denoted as processes (iii) and (iv) in figure 3(a). Regarding the corresponding TPS, its most
prominent feature corresponds to the strong bunching antidiagonal around ω1 + ω2 ≈ 2ωL. This feature
can be understood by separating the passive (beamsplitter-like) ab† + a†b and active (two-mode-squeezing)
ab + a†b† interaction terms. In a perturbation picture, the latter will drive the system into states |ia, ib〉,
generating strong a ↔ b intensity correlations, and the former will transfer these correlations into intensity
autocorrelations of mode a (simultaneously, b), populating the state |2a, 0b〉. This is effectively the same
mechanism (quadratic in both g0 and Ω) as the degenerate squeezing identified in the expansion of the Kerr
interaction, and thus results in the strong antidiagonal bunching line in the TPS (we discuss these features
in more detail in appendix B).

On top of this strong bunching antidiagonal, the TPS develops a vertical/horizontal grid of correlations
≈1 (white regions) when fixing one of the filters to the Stokes/anti-Stokes frequencies, marked as (iii) and
(iv) in figures 3(a) and (b). These correlations correspond to emission processes between the real energy
levels of the system and will be discussed in more detail in the subsequent section.

Finally, let us note that the Hamiltonian H̃(1)
L is identical to the linearized OM Hamiltonian, and

describes the dynamics of OM systems operating in the single-photon weak-coupling limit (g0 � κ), which
is where the majority of OM systems currently work.

2nd term H̃(2)
L = iΩg2

0/(2ω2
b)
(
a − a†

) (
b† − b

)2
. In figure 3(c) we plot the one-photon spectra and TPS of

this Hamiltonian for both the cavity mode a and its fluctuations δa. The one-photon spectra are both
dominated by two peaks: one at the laser frequency ω ≈ ωL, and another one displaced twice the phonon
frequency ω ≈ ωL − 2ωb. This translates into a TPS developing two strong bunching antidiagonals at both
ω1 + ω2 ≈ 2ωL, 2ωL − 2ωb. Again, these features can be intuitively understood by expanding H̃(2)

L into two
terms:

(a† − a)(b† − b)2 = (a† − a)

⎡
⎢⎣(b†)2 + b2︸ ︷︷ ︸

sq

dis︷ ︸︸ ︷
−2b†b − 1

⎤
⎥⎦ . (14)

(i) In the absence of the b-squeezing terms (sq) or additional driving terms, the b mode population vanishes
〈b†b〉 = 0, and the dispersive term dis turns into a coherent drive for mode a, decoupled from b, generating
TPS features ∼1 at ω1/2 = ωL. Alternatively, in the absence of the dis terms, this Hamiltonian becomes

similar to H̃(1)
L with two-phonon operators replacing single-phonon operators. This explains the onset of

the strong antidiagonal ω1 + ω2 = 2ωL and indistinguishability bunching lines along the diagonal of the
TPS of Hamiltonian H̃(2)

L in figure 3(c). (ii) The two-photon Stokes emission peak in the one-photon
spectra and the shifted antidiagonal ω1 + ω2 = 2ωL − 2ωb can be explained by tracking the Hilbert space
accessed by the Hamiltonian H̃(2)

L when both the sq and dis terms are present: |ia, ib〉 such that ib is even.
This space includes both states |2a, 0b〉 and |0a, 2b〉, that can be connected by a two-photon processes with
energy given by ω1 + ω2 = 2ωL − 2ωb, which defines the off-centre diagonal observed in figure 3(c).
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Figure 3. Spectra SΓ[a](ω) (solid lines), SΓ[δa](ω) (dashed lines), and TPS maps g(2)
Γ [a](ω1,ω2) g(2)

Γ [δa](ω1,ω2) of
multi-phonon processes discussed in section 3.2. In (a) we show schematically the lowest energy levels of the multi-phonon
Hamiltonian H̃L, as a function of the effective Kerr nonlinearity, denoting the single photon (iii) Stokes and (iv) anti-Stokes
emission process, as well as (v) the two-photon leapfrog transition with the final state corresponding to an excited phonon state
|0a, 1b〉. These processes are marked in the TPS in (b–d). Panels (b), (c) correspond to the results when including only particular
terms of the explicitly expanded multi-phonon Hamiltonian H̃L (equation (8)), while (d) considers the full expansion. The
spectra in (c), (d) exhibit a central peak corresponding to the elastically scattered laser light (ω1 = ωL), and strongly asymmetric
peaks originating from multi-phonon processes which can be assigned to particular terms in the expansion (b), (c). Similarly,
TPS maps include multiple antidiagonal features arising from the subsequent terms in the Hamiltonian. In (c, d), we present the
spectra and correlations of both the cavity modes a (solid lines in upper plots of SΓ[a], and maps below the diagonal line g(2)

Γ [a]),
and their fluctuations δa (dashed lines in upper plots of SΓ[δa], and maps above the diagonal line g(2)

Γ [δa]). For all these systems
(b)–(d), we consider large single-photon coupling g0 = κ and coherent pumping Ω/κ = 0.1, we set the filter linewidth as
Γ/κ = 0.05, the frequency ωb/κ= 2 and the decay rate of phonons as γ/κ = 0.1, and consider a laser tuned to the first excited
eigenstate ωL = ωa −Δg.

Furthermore, we note that the non-vanishing coherent amplitude contribution α to the a operator
generates a strong elastic, filter-broadened emission line in the spectrum SΓ[a], which also generally lowers
the values of the observed TPS g(2)

Γ (ω1,ω2), by flooding the detection with coherent light (with values ∼1).
This effect can be seen by comparing the TPS correlations obtained for a and for the δa fluctuations
(regions below and above the diagonal in figure 3(c))
Full Hamiltonian H̃L. Finally, we show in figure 3(d) the spectra and TPS of the entire series of linear drive,
single- and multi-phonon processes H̃L given in equation (8) (see caption of figure 3 for parameters), for
both operator a and its fluctuations δa. The spectrum is made up of multiple emission peaks at
ωi = ωL ± nωb, which are also visible in the TPS as vertical and horizontal lines. We also identify a series of
antidiagonal bunching features ω1 + ω2 = 2ωL + nωb resulting from the multi-phonon leapfrog transitions,
including one (n = −1) depicted in panels (a) and (d) as (v), which describes emission into the excited
vibrational state |0a, 1b〉. Interestingly, the TPS of the cavity mode g(2)

Γ [a](ω1,ω2) and its fluctuations
g(2)
Γ [δa](ω1,ω2) shown in figure 3(d) appear to be qualitatively very different. In particular, one observes

that the absence of the elastic scattering contribution seemingly removes all the traces of frequency
antibunched (blue) emission. This is particularly striking along the central antidiagonal line, where the
strong frequency antibunching in g(2)

Γ [a](ω1,ω2) near the elastic emission peak is entirely replaced by a
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bunched characteristic of fluctuations g(2)
Γ [δa](ω1,ω2), similarly to what occurs in the TPS of the coherently

driven Kerr cavity that we show in figure 2(d). We note that this strong contrast, and more generally, the
presence of large white and blue areas in the TPS g(2)

Γ [a] in figure 3(d), is largely due to the linear drive
included in H̃L, but absent in H̃(1,2)

L . In the presence of coherent driving, in figures 3(b) and (c) we would
also find mostly white g(2)

Γ [a], with some significantly frequency antibunched (blue) areas.

4. Frequency-resolved correlations in single-cavity OM cavities

In the previous section we studied the features of the TPS of the two terms that form the HOM in the
polaron picture. With this knowledge as a basis, in this section we finally consider the emission from
single-cavity OM systems as described in equations (3) and (4), and analyze their TPS in detail. We relate to
the knowledge developed in the previous section when possible, and expand it when new features emerge in
the correlation maps of the OM setup.

In particular, we study the dependence of the TPS on relevant parameters of the system such as
optomechanical coupling and thermal phonon population, in subsection 4.1. Then, in subsection 4.2 we
consider the dynamics of the correlations with time-delay τ of some of the features of the TPS: the
Stokes–anti-Stokes, and leapfrog correlations.

4.1. One- and TPS
In figure 4 we plot the spectra and TPS of cavity OM setups for three different single-photon couplings
strengths g0/κ = (0.1, 0.5, 1), corresponding to effective Kerr nonlinearities Δg/κ = (0.005, 0.125, 0.5). As
in figures 3(c) and (d), we consider spectra calculated from both the cavity mode operator a (SΓ[a] and
g(2)
Γ [a](ω1,ω2)), and its fluctuations around the steady-state displacement δa (SΓ[δa] and g(2)

Γ [δa](ω1,ω2)),
displayed together again by cutting the correlation map along the diagonal.

For the weakest coupling g0/κ = 0.1, the one-photon spectrum of mode a, shown in solid gray line in
figure 4(a), is almost entirely dominated by the elastic peak, as it also occurs for the corresponding
color-blind photon correlations, which display a value very close to 1, i.e., g(2)(0) = 0.99. Interestingly, the
corresponding TPS already reveals a non-trivial correlation structure with some regions of frequency
bunching and antibunching. For example, the TPS features a vertical and horizontal grid of uncorrelated
transitions characterized by g(2)

Γ [a](ω1,ω2) ≈ 1 (marked by a grid of white lines, and including Stokes and
anti-Stokes processes denoted schematically as (iii) and (iv) in figure 3(a)). Conversely, the spectrum and
TPS of the fluctuations are similar to those shown and discussed in figure 3(b) corresponding to the
Hamiltonian H̃(1)

L : in the spectrum (dashed black line in figure 4(a)) the elastic scattering peak becomes
suppressed, which favors the observation of the phonon sideband peaks; in the TPS, the weak
frequency-antibunched regions disappear favoring the appearance of frequency-bunched regions. The most
prominent features are still the horizontal/vertical grid of uncorrelated (white) Stokes/anti-Stokes
transitions, and the bunched antidiagonal line at ω1 + ω2 = 2ωL. This qualitative resemblance with the
features of H̃(1)

L corroborates our expectation that in the regime of weak single-photon coupling g0/κ � 1
analyzed in figure 4(a), the TPS of an OM system will be nearly identical to that described by linearizing the
OM Hamiltonian.

As we increase the coupling g0 (figures 4(b) and (c)) toward the single-photon strong coupling regime,
where the linearized Hamiltonian fails to describe the response of the optomechanical system [35, 36], we
begin to observe features originating from the nonlinear form of the coupling. In the spectra SΓ, we find
additional Stokes and anti-Stokes peaks, corresponding to the multi-phonon processes. In the TPS, we also
identify antidiagonal bunching lines (at ω1 + ω2 = 2ωL − nωb for n = 1, 2, 3, . . .) originating from leapfrog
emission driving the system to the excited vibrational states (including processes (v) marked in figure 3(a)
for n = 1), and a much weaker antidiagonal line at ω1 + ω2 = 2ωL + ωb, describing emission induced by
the laser driving the system from the excited vibrational states. For the largest coupling (panel (c)), we
find—as in figure 3—a weak and narrow antibunching along the central antidiagonal (see panel (f)),
resulting from the interference of elastic scattering peak and leapfrog emission. We also find that some of
the previously highlighted features become stronger, e.g., the antidiagonal bunching line at ω1 + ω2 = 2ωL,
as well as the frequency-antibunched (blue) regions for operator a.

Finally, the TPS for both the cavity operator a and the fluctuations δa include a grid of vertical and
horizontal antibunching features coming from single-photon transitions between the relevant energy levels
of the system, including ωi = ωL ± ωb (processes (iii, iv) in figure 3(a)). Let us now highlight how the TPS
look like around some relevant crossings of this grid:

• The Stokes–Stokes correlation (point C in figure 4(d)) features a structure, in both a and δa, similar
to one identified in Kerr cavities (see figure 2(d)) or two-level systems [14], with vertical (ω1 = ωS)
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Figure 4. (a)–(c) Spectra SΓ[a](ω) (solid), SΓ[δa](ω) (dashed), and TPS maps g(2)
Γ [a](ω1,ω2), g(2)

Γ [δa](ω1,ω2) of a cavity OM
system (equations (3) and (4)) in the sideband-resolved regime (ωb/κ = 2), for three values of g0/κ = (0.1, 0.5, 1). For these
parameters, the photon nonlinear shift induced by the phonons is Δg/κ = (0.005, 0.125, 0.5), and the values of the
frequency-blind two-photon correlations g(2) given above the spectra indicate the onset of a strong photon blockade.
(d) Guidelines of different processes (i–v) appearing in the TPS of OM, shown schematically in panels in figure 2(a) and in
figure 3(a). We also mark as A, B, C and D the specific pairs of filter wavelengths that are discussed in the main text. (e)–(g)
Magnified regions of the TPS maps near the Stokes–anti-Stokes emission correlation ((e,g), ω1/2 = ωL ± ωb), and near the
elastic scattering peaks (f), for both the fluctuations δa and dressed cavity field a. For all the systems we set the filter linewidth as
Γ/κ = 0.05, the frequency ωb/κ= 2 and the decay rate of phonons as γ/κ = 0.1, and consider a laser with amplitude
Ω/κ = 0.1 tuned to the first excited eigenstate ωL = ωa −Δg.

and horizontal (ω2 = ωS) lines depicting strong antibunching, and crossing with the bunching
features associated with the leapfrog ω1 + ω2 = 2ωL − 2ωb and indistinguishability. This
two-level-like TPS results from the effective Kerr detuning between the states connected via Stokes
transitions: |0a, 0b〉, |1a, 1b〉 and |2a, 2b〉.

• The anti-Stokes–anti-Stokes (point D) crossing is mostly dominated by the elastic response since the
probability for these anti-Stokes processes to occur is very low with these system parameters.

• The Stokes–anti-Stokes correlations (ω1/2 = ωS/aS = ωL ± ωb), identified as point A in figure 4(d),
are highlighted in figures 4(e) and (g) for the TPS of the fluctuations (δa) and cavity mode,
respectively. In both cases, we clearly find that the strong bunching associated with the leapfrog
process (i) becomes significantly suppressed (note the logarithmic color scale) when the filters are
tuned to the Stokes and anti-Stokes lines [33]. This change of behavior occurs because different
photon-emission processes start to dominate the correlations (strongly affecting both the numerator
and denominator in equation (10)): (a) Stokes–anti-Stokes transitions mediated by a real, one-phonon
state |0a, 1b〉, described by sequential transitions (iii) and (iv) depicted in figure 3(a). As described in
reference [40], in the absence of thermal phonon population, and for sufficiently weak coherent
pumping, an anti-Stokes photon is necessarily accompanied by a previous Stokes process, yielding
bunching. (b) Transitions from a two-photon state, similar to the leapfrog process (i), but where the
intermediate state is a proper energy level of the system, (c) Stokes and anti-Stokes transitions mediated
by the thermal phonons (when present). The contribution from these three mechanisms and, when
present, interference with the elastic scattering, can give rise to a nontrivial dependence of
Stokes–anti-Stokes correlations on the coupling parameter g0 and the time delay τ , which we discuss
in detail in the following subsections.

4.2. Stokes–anti-Stokes and leapfrog correlations—dependence on parameters
In this section, we will explore in more detail the dependence on the parameters of the OM system of some
of the features of the TPS discussed in the previous section. In particular, we choose two points of the TPS
of figure 4, namely, a point that corresponds to a leapfrog correlation line (B in figure 4(d)) and the
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Figure 5. (a), (b) Dependence of the two-photon correlations on the single-photon coupling parameter g0, calculated for (a) the
cavity mode a and (b) its fluctuations δa. We consider correlations of Stokes–anti-Stokes pairs (orange lines; ω1 = ωL − ωb,
ω2 = ωL + ωb), leapfrog transitions (green; ω1 = ωL − 0.5ωb, ω2 = ωL + 0.5ωb) and frequency-blind correlations g(2)(τ)
(blue), with the solid and dashed lines denoting calculations assuming vanishing (nth

b = 0) and non-vanishing (nth
b = 0.1)

thermal populations of phonons, respectively. The filter width is set to Γ/κ = 0.05. Besides these parameters, for all the systems
we set (ωb, γ)/κ = (2, 0.1), and consider the laser with amplitude Ω/κ = 0.1 tuned to the first excited eigenstate ωL = ωa −Δg.

Stokes–anti-Stokes correlations (point A in figure 4(d)). We plot in green/orange lines, respectively, in
figure 5(a) the evolution of their correlations as a function of the granularity parameter g0/κ (the
importance of the width of the filter is discussed in appendix C). We also plot together with them the
evolution of the colorblind photon correlation g(2)

Γ [a](0) (solid blue). The correlations g(2)
Γ [a](ω1,ω2) in this

panel are obtained for the cavity operator a. We observe that the leapfrog correlation grows from the
elastic-field induced g(2)

Γ [a](ω1,ω2; τ = 0) ≈ 1, to become very strongly bunched for g0/κ ∼ 0.7, and then
relaxing back to 1 for g0/κ ∼ 1. On the contrary, the Stokes–anti-Stokes correlations exhibit a strong
frequency antibunching for coupling parameters g0/κ ∼ 0.05, and then grows to develop a strongly
bunched signal until it relaxes back to one, similarly to the leapfrog point correlations. In both cases, it is
important to note the higher sensitivity to g0/κ of the frequency-resolved correlations compared to its
colorblind counterpart, which only starts deviating from the elastically dominated correlations to show the
expected OM blockade [35, 36] for g0/κ� 0.3. Note that all these observations still hold if we consider a
nonvanishing incoherent thermal pumping of the mechanical degree of freedom (nth

b = 0.1, depicted by
dashed lines of the same color).

A particularly striking feature of the frequency-resolved correlations depicted in figure 5(a) is the strong
frequency antibunching displayed by the Stokes-anti Stokes correlations for small g0/κ parameters. To learn
more about its behavior, as we did in previous Sections, we will compare the results of figure 5(a) with the
correlations of the fluctuations δa for the same parameters, which is shown in figure 5(b). There, we find no
trace of frequency antibunching for any of those points, as the Stokes–anti-Stokes, leapfrog, and even the
frequency-blind correlations exhibit bunching for the entire range of the coupling parameter. This
calculation suggests that the frequency antibunching of the Stokes–anti-Stokes point could be related to the
effective interference between the Stokes emission, and the elastically scattered laser light, in an effect which
we dub as interference antibunching. We will confirm this intuition in the next subsection by studying in
detail the time dynamics of such correlation points.

4.3. Dynamics of frequency-resolved correlations
In this section, we will consider the dynamics of the frequency-resolved correlations in the
Stokes–anti-Stokes and leapfrog emission processes discussed in the previous section. Furthermore, we will
also study in more detail the mechanism of interference antibunching previously suggested as an
explanation for the Stokes–anti-Stokes correlation behavior, and briefly comment on the connection
between the temporal and spectral resolution of our setup.

4.3.1. Stokes–anti-Stokes correlation dynamics
To illustrate the origin of the interference antibunching of the Stokes–anti-Stokes correlations found for
g0/κ < 0.1, we plot in figure 6(a) the time-delayed correlations g(2)

Γ [a](ωS,ωaS; τ) (solid orange line) for the
parameters that maximize the antibunching found in figure 5(a): (g0,Γ)/κ = (0.08, 0.05). We observe in
these time-delayed correlations that the antibunching g(2)

Γ [a](ωS,ωaS; τ = 0) < 1 results from the
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Figure 6. Two-photon time-delayed correlations g(2)
Γ [a](ω1,ω2; τ ) of (a), (b) Stokes–anti-Stokes and (c) leapfrog emission from

OM systems, calculated for the cavity fields a (solid lines), and fluctuations δa (dashed lines), with insets to the right of the figure
representing spectra SΓ (solid lines) and SΓ[δa] (dashed lines). Vertical gray strips in the insets represent the spectral positions
and widths Γ of the filters, superimposed on the emission spectra. For the Stokes–anti-Stokes correlations, we choose the
coupling parameters and filter widths (a) (g0,Γ)/κ = (0.08, 0.05) and (b) (g0,Γ)/κ = (1, 0.5), and for the leapfrog case we set
(c) (g0,Γ)/κ = (0.2, 0.05). We assume the vanishing thermal phonon populations nth

b = 0, and set all the remaining parameters,
including phonon decay rate γ/κ = 0.1, to the values listed in the caption of figure 5.

large-amplitude oscillations with frequency ωb, which are not present when considering correlations of the
fluctuations g(2)

Γ [δa](ωS,ωaS; τ) (dashed red line). This corroborates our previous statement that the
interference antibunching results from the elastic component dominating over the anti-Stokes emission
line, rather than originating from the Stokes–anti-Stokes emission mediated by a real one-phonon state
|0a, 1b〉.

Notably, the strong bunching of the fluctuations in figure 6(a) is asymmetric near τ = 0, and decays as
exp(−Γ|τ |) (with filter response time) for larger delays. Since this emission pathway is mediated by an
excited phonon state, we would expect the correlations to decay over time with the characteristic rate of
phonon decay (γ) instead. This discrepancy can be attributed to the choice of very narrow filters
Γ/γ = 0.5,Γ/κ = 0.05, made to prioritize the spectral resolution of the TPS. This narrow filter linewidth
imposes a poor temporal response of the setup, which effectively masks the intrinsic dynamics of the
Stokes–anti-Stokes emission pathway. This issue can be solved by choosing a range of parameters such that
Γ ∼ ωb,κ � γ, which would reduce the spectral selectivity of the detection but could offer insights into the
dynamics of such processes. We consider such an arrangement in figure 6(b), setting wide filters Γ/κ = 0.5,
and simultaneously increasing the coupling g0/κ = 1 to amplify the anti-Stokes emission. We plot the
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correlations with (g(2)
Γ [a], solid orange line), and without the elastic component (g(2)

Γ [δa], dashed red line).
As previously observed [30], g(2)

Γ [a](ωS,ωaS; τ) is now strongly asymmetric with respect to delay τ . This
reflects the fact that in the regime of near-zero steady-state phonon populations, a phonon-annihilating
anti-Stokes emission has to be preceded by a Stokes emission in which that phonon is generated. In other
words, the two-photon process occurs with a given temporal order. Furthermore, the correlations decay
approximately as exp(−γτ) for τ > 0, which demonstrates that the increased time resolution, offered by a
broad Γ � γ filter, allows us access to the vibrational dynamics of the system. In appendix C we provide
additional calculations that illustrate the impact of the filtering linewidth on the frequency-resolved
correlations of these systems.

4.3.2. Leapfrog dynamics
We can perform a similar analysis for the frequency-resolved correlations between the strongly bunched
photons emitted in a leapfrog process. The temporal dynamics of this process (figure 6(c)) again shows
large oscillations resulting from the interference with the elastic peak (solid green line), that are removed if
we instead consider the correlations of the fluctuations δa (dashed line). The resulting correlations are
clearly symmetric with respect to the delay time τ , highlighting the fact that there is no particular time
order of the emission, and decay exponentially over time. In principle, since this two-photon transition is
not mediated by the emission or absorption of phonons, the decay of correlations over time should be
governed by the characteristics of the cavity–κ—and the temporal resolution of the detection setup
determined by Γ. For the regime of parameter chosen, i.e., Γ/κ = 0.05, it is the temporal response of the
filter which provides the decay time of the correlations. As with the Stokes–anti-Stokes correlations, to
resolve the intrinsic dynamics of the leapfrog correlations, governed by κ, one would require much broader
filters Γ > κ, and a system where the leapfrog processes would be separated far enough from Stokes and
elastic emission lines.

5. CSI: non-classicality

Despite the gain of information provided by the frequency-resolved correlations, when compared to their
color-blind counterpart these measurements also have an important drawback regarding the ability to
unambiguously discern between quantum and classical light fields. While g(2)(0) < 1 or g(2)(0) < g(2)(τ ) are
unambiguous signatures of non-classicality, the observation of g(2)

Γ [a](ω1,ω2) < 1 or g(2)
Γ [a](ω1,ω2; 0)

< g(2)[a](ω1,ω2; τ) is not. For example, a classical field with phase fluctuations can induce such
frequency-resolved antibunching [24] without the presence of quantum nonlinearities.

It is, however, possible to test the non-classical character of the correlations between different frequency
channels ω1 and ω2 by using the information encoded in the TPS g(2)

Γ [a](ω1,ω2) (or in the correlations of
any other mode, for example δa). The idea consists in harnessing one of the features of classical correlations
between two random variables, that is, the CSI [38]. Identifying the intensities at the two frequencies with
such variables, we can write down the CSI as

[
g(2)
Γ [a](ω1,ω2)

]2
� g(2)

Γ [a](ω1,ω1) g(2)
Γ [a](ω2,ω2). (15)

Since the CSI should hold for any classically correlated variables, one can define a parameter (introduced in
reference [19]) that indicates the degree of CSI violation:

RΓ[a](ω1,ω2) =

[
g(2)
Γ [a](ω1,ω2)

]2

g(2)
Γ [a](ω1,ω1) g(2)

Γ [a](ω2,ω2)
, (16)

yielding a sufficient condition for the observation of non-classical correlations that is RΓ[a](ω1,ω2) > 1.
Furthermore, we can also measure the degree of non-classicality of the inelastically scattered light, by
calculating RΓ from the fluctuations δa, denoted as RΓ[δa](ω1,ω2). In figures 7(a) and (b) we plot the
frequency maps of RΓ[a] and RΓ[δa] for the same parameters as in figures 4(a) and (c), showing how the
strongly bunched regions of the TPS often display a large CSI violation (in green), being therefore a source
of non-classical correlations. The results in (a) correspond to g0/κ = 0.1 and reveal a strong violation of
CSI over a broad region near the ω1 + ω2 = 2ωL antidiagonal. For g0/κ = 1 (panel (b)) the CSI is violated
for narrower regions around multiple ω1 + ω2 = 2ωL + nωb antidiagonals. As in figure 4(c), these
additional features originate form the intrinsic nonlinearity of the optomechanical Hamiltonian, and are
therefore absent in the CSI maps of its linearized form (not shown here). We also find that the violation of
CSI can be enhanced if we remove the coherent elastic field which dominates the emission in (a). One of the
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Figure 7. Degree of CSI violation RΓ[a](ω1,ω2) and RΓ[δa](ω1,ω2) (equation (16)) in an optomechanical system in the (a)
weak g0/κ = 0.1 and (b) strong g0/κ = 1 single-photon coupling regime. Besides the parameters given in the plots, for all the
systems we set the linewidth of the filter as Γ = 0.05κ, the energy and decay rate of phonons as ωb/κ = 2 and γ/κ = 0.1, and
consider laser with amplitude Ω/κ = 0.1 tuned to the first excited eigenstate ωL = ωa −Δg.

differences with the already observed CSI violation in OM systems [30] is that here one does not rely on a
heralding preparation step.

We note that beyond testing the statistics of the emission from an OM system, the violation of CSI can
be used to guide the design of novel sources of non-classical light emitting at a combination of a range of
frequencies marked in figure 7 in green.

6. Conclusions & outlook

In summary, we present a systematic study of frequency-resolved correlations in cavity optomechanical
systems in the sideband-resolved regime and for moderate to strong single-photon coupling strengths. We
show how the two-photon correlation spectra unveil a rich landscape of correlations hidden in other
observables. We also provide an intuitive picture that explains these correlations based on the anharmonic
level structure and multi-mode squeezing Hamiltonians appearing through the nonlinear optomechanical
coupling, and test their non-classical nature based on the CSI violation. Importantly, non-trivial
frequency-resolved correlations appear already for smaller coupling strengths than for the frequency blind
correlations, thus opening new avenues to observe nonlinear phenomena in optomechanical systems
operating far from the single-photon strong coupling limit.

Furthermore, we believe this work opens many research directions that one can follow. For example,
although we focused on a particular range of parameters involving low optical quality factors, Qs, and
high-frequency optical phonons, which best describes the novel implementation of OM in molecular
systems [40, 41], there are many other relevant questions to be answered, e.g., what will be the role of
phonon population in systems with low-frequency phonon modes where this population will be
non-negligible?; how will the correlation maps change with incoherent pumping?; how will the balance of
effects of Kerr and multi-phonon nonlinearities change in larger-Q, weakly pumped cavities? Another
interesting direction of research would be to harness the knowledge about the correlations of photon and
phonon emission to develop new ways to generate non-classical sources of light and sound. For instance,
recent contributions proposed to realize bright sources of N-photon [17, 18] or phonon [54] bundles, by
engineering the density of states for certain multi-photon and phonon emission, respectively. Extension of
these proposals toward the intensity correlations between the photons and phonons in optomechanical
systems, could pave the path toward developing optically heralded multi-phonon sources.
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Appendix A. Numerical calculation of spectra and two-photon spectra

The TPS were calculated using the method developed originally by del Valle et al [10]. In that work, the
authors proposed to calculate the spectra and frequency-resolved correlations by coupling the mode of
interest—in this case the cavity mode a—to additional sensor modes with bosonic annihilation operators
ς i, characterized by resonant frequencies ωi, and spontaneous decay rates Γ:

Hς =
∑
i=1,2

ωiς
†
i ςi + εi(ςia

† + ς†i a). (A.1)

The spectra SΓ(ω)[a] and frequency-resolved correlations g(2)
Γ [a] can be then retrieved from the respective

steady-state expectation values as

SΓ(ω1)[a] = lim
ε1→0

Γ

2πε2
1

〈ς†1 ς1〉, (A.2)

g(2)
Γ [a](ω1,ω2) = lim

ε1,ε2→0

〈ς†1ς
†
2 ς1ς2〉

〈ς†1ς1〉〈ς†2 ς2〉
. (A.3)

This method can be naturally extended to measure the spectra and correlations of other modes, by simply
substituting the mode operator a in equation (A.1). For example, spectrum SΓ[δa] and TPS g(2)

Γ [δa] of
cavity mode fluctuations δa are found by calculating equations (A.2) and (A.3) for sensors governed by
Hamiltonian

Hς ,δa =
∑
i=1,2

ωiς
†
i ςi + εi

[
ςi

(
a† − 〈a〉∗

)
+ ς†i

(
a − 〈a〉

)]
. (A.4)

This calculation is simplified by the observation that, in the limit of vanishing coupling εi → 0, the
detection setup does not perturb the system, and the value of 〈a〉 can be calculated in the absence of Hς ,δa.

The procedure proposed in this original work was then simplified following distinct, but ultimately
equivalent formulations by López Carreño et al [12], and by Holdaway et al [13]. In the latter, the authors
simultaneously solved two inherent difficulties of the original method: ensuring that the backaction from
sensors onto the quantum system is vanishingly small while retaining the numerical accuracy of the
method, and avoiding increasing the Hilbert space of the system by including the sensors in the quantum
system. Our implementation of this algorithm uses the QuTiP toolbox [55, 56], and linear algebraic solvers
for sparse matrices (scipy.sparse.linalg.spsolve) to calculate the vectorized auxiliary conditional states |ρ j

i 〉〉.
To calculate the maps of the CSI violation, we modified this algorithm to calculate intensity
auto-correlations g(2)

Γ (ωi,ωi) = limεi→0 〈(ς†i )2ς2
i 〉/〈ς

†
i ςi〉2. The expression for 〈(ς†i )2ς2

i 〉, quadratic in the
cavity-sensor coupling parameter εi, is found by following the recipe detailed in section 3.1 of reference [13]
up to equation (17), and—adopting the notation from that contribution—defining the following auxiliary
conditional states: ρ2

0 (in vectorized form denoted as |ρ2
0〉〉), ρ2

1 (|ρ2
1〉〉) and ρ2

2 (|ρ2
2〉〉) as

|ρ2
0〉〉 ≈

−i
√

2ε

L0 − (Γ− 2iω1)
|ρ1

0〉〉a†, (A.5)

|ρ2
1〉〉 ≈

iε

L0 −
(

3
2Γ− iω1

) (a|ρ2
0〉〉 −

√
2|ρ1

1〉〉a†
)

, (A.6)

|ρ2
2〉〉 =

i
√

2ε

L0 − 2Γ

(
a|ρ2

1〉〉 − |ρ1
2〉〉a†

)
, (A.7)
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Figure B1. TPS of a two-mode squeezing Hamiltonian given in equation (B.1), calculated as correlations of (a) mode a, (b)
modes a and b. All parameters match those used in figure 3 of the main text.

and identifying

〈(ς†i )2ς2
i 〉 = 2

( εi

2π

)2
Tr

(
ρ2

2

)
. (A.8)

For the details of this method and clarification of the notation used, we direct the reader to reference [13].
We should note that this autocorrelation could equivalently be calculated by considering the

cross-correlation between two identical sensors (ω1 = ω2 and ε1 = ε2) using the algorithm proposed in
reference [13]. However, we found that, for each point on the map of CSI, this method requires 9 calls to
the scipy.sparse.linalg.spsolve procedure to calculate the vectorized density matrices (one for each of
equation (25a-h) in reference [13]), compared to 5 required for the implementation described above (two
for |ρ0

1〉〉 and |ρ1
1〉〉 and 3 for equations (A.5)–(A.7)).

The Python implementation of this method is available upon request from the corresponding authors.

Appendix B. TPS of two-mode squeezed Hamiltonians

In section 3.2, when analyzing the correlations induced by the term H(1) of the Hamiltonian H̃L describing
multi-phonon processes (equation (8)), we briefly mentioned that the two-mode squeezing (active) terms
ab + a†b† drive the systems into strongly correlated states |ia, ib〉, but do not—in the absence of passive
terms ab† + a†b—induce strong autocorrelations of mode a.

To illustrate this mechanism, we consider the Hamiltonian with only the active terms

H = Δaa†a + ωbb†b + iΩ
g0

ωb
(a†b† − ab), (B.1)

and, in figure B1(a), plot the TPS of mode a: g(2)
Γ [a], finding only the diagonal indistinguishability feature.

To identify the antidiagonal leapfrog bunching, we show in (b) the two-mode frequency resolved correlation
of modes a and b – g(2)

Γ [a, b], calculated from equation (A.3) using the correlations between the two sensors
coupled to the optomechanical system via the Hamiltonian

Hς ,ab =
∑
i=1,2

ωiς
†
i ςi + ε1

[
ς1a† + ς†1 a

]
+ ε2

[
ς2b† + ς†2 b

]
. (B.2)

Appendix C. Dependence of correlations on the width of the filter

In figure C1 we explore the dependence of selected correlations on the width of the filters. In the limit of
large Γ, irrespective of the frequency of the filters, we recover the values of frequency-blind correlations g(2)

(shown with blue lines).
In the limit of narrow filters, the frequency-resolved (Stokes–anti-Stokes and leapfrog) correlations of

mode a and its fluctuations become identical as the elastic contribution is filtered out. With the increasing
spectral resolution, all information on the time of emission is lost. Interestingly, unlike for the incoherently
pumped systems discussed by Gonzalez-Tudela et al [14], we do not recover the simple general limits of
g(2)
Γ (ω1,ω2) = 2 for ω1 = ω2, and = 1 for ω1 �= ω2.
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Figure C1. Dependence of the two-photon correlations on filter width Γ, calculated for the cavity modes with (a,
g(2)
Γ [a](ω1,ω2; τ = 0)) and without (b, g(2)

Γ [δa](ω1,ω2; τ = 0)) the contribution from the elastic component. In all the cases we
consider correlations of Stokes–anti-Stokes pairs (orange solid and dashed lines; ω1 = ωL − ωb, ω2 = ωL + ωb), leapfrog
transitions (green; ω1 = ωL − 0.5ωb, ω2 = ωL + 0.5ωb) and frequency-blind correlations g(2)(τ) (blue) with the solid and
dashed lines denoting calculations assuming vanishing (nth

b = 0) and non-vanishing (nth
b = 0.1) thermal populations of

phonons, respectively. Besides the parameters given in the plots, for all the systems we set the energy and decay rate of phonons
as ωb/κ = 2 and γ/κ = 0.1, and consider a laser with amplitude Ω/κ = 0.1 tuned to the first excited eigenstate ωL = ωa −Δg,
with coupling g0/κ = 0.5.
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[20] López Carreño J C, del Valle E and Laussy F P 2017 Photon correlations from the Mollow triplet Laser Photon. Rev. 11 1700090
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