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Abstract: We use time-dependent density functional theory (TDDFT) within the jellium model
to study the impact of quantum-mechanical effects on the self-interaction Green’s function
that governs the electromagnetic interaction between quantum emitters and plasmonic metallic
nanoantennas. A semiclassical model based on the Feibelman parameters, which incorporates
quantum surface-response corrections into an otherwise classical description, confirms surface-
enabled Landau damping and the spill out of the induced charges as the dominant quantum
mechanisms strongly affecting the nanoantenna–emitter interaction. These quantum effects
produce a redshift and broadening of plasmonic resonances not present in classical theories
that consider a local dielectric response of the metals. We show that the Feibelman approach
correctly reproduces the nonlocal surface response obtained by full quantum TDDFT calculations
for most nanoantenna–emitter configurations. However, when the emitter is located in very
close proximity to the nanoantenna surface, we show that the standard Feibelman approach fails,
requiring an implementation that explicitly accounts for the nonlocality of the surface response
in the direction parallel to the surface. Our study thus provides a fundamental description of
the electromagnetic coupling between plasmonic nanoantennas and quantum emitters at the
nanoscale.

© 2022 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

Due to the excitation of localized surface plasmons, metallic nanoparticles strongly enhance the
amplitude of the incident light and confine the electromagnetic field well below the diffraction
limit, thus acting as optical nanoantennas [1]. When a quantum emitter (QE), such as an organic
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molecule or a quantum dot, is placed close to a plasmonic nanoantenna, the absorption and
emission rate of the QE is greatly increased, leading to a plethora of interesting phenomena
[2–7]. For example, the spontaneous decay rate and exciton energy of the QE are drastically
modified, and hybrid plasmon–exciton polaritonic states can be created in the strong-coupling
regime [8–13]. The coupling between QEs and plasmonic nanoantennas has been extensively
used in a variety of applications, such as in surface-enhanced fluorescence [14–16], biosensing
[17,18], or single-molecule detection [19,20], among others.

Together with the experimental progress, considerable theoretical effort has been devoted to
accurately describing the electromagnetic interaction between a QE and a nanoantenna, and
several models at different levels of approximation have been adopted [21–25]. An approach often
used to model the exciton dynamics in the QE is the point-dipole approximation, which describes
the QE as a structureless two-level electronic system under weak illumination [26–29]. Despite
its simplicity, the point-dipole approximation is found to properly describe typical situations
where the spatial extent of the QE is much smaller than the effective field localization of the
plasmonic resonance and the electronic orbitals of the QE and those of the metal atoms forming
the nanoantenna do not spatially overlap. Indeed, in such situations, the spatial variation of the
electric field and the actual electronic structure of the QE [30–34] or charge-transfer processes
related to electron tunneling [35–38] have almost no effect in the optical nanoantenna–QE
coupling.

Within the point-dipole approximation, the electromagnetic coupling between a QE and a
nanoantenna can be described by the dyadic Green’s function, Ĝ(r, rQE,ω) [26,34,39–42], which
provides the electric field induced by a metallic nanoantenna at a position r in response to the
electromagnetic radiation of a point dipole located at rQE oscillating at frequency ω. In the weak
nanoantenna–QE coupling regime, the self-interaction given by Ĝ(r = rQE, rQE,ω) determines
the enhancement of the total decay rate of the QE (Purcell effect, [43]) and the change of its
resonant energy (Lamb shift) produced by the plasmonic environment.

A proper description of the self-interaction Green’s function requires a realistic model for the
optical response of metals. To this end, a local dielectric function obtained experimentally or
from simple theoretical models is commonly used. However, such a dielectric function does
not include quantum phenomena relevant in plasmonic nanoantennas, such as electron spill-out,
Landau damping, finite-size effects, electron tunneling and nonlocal dynamical screening [44–52].
These nonclassical phenomena, inherent to the quantum nature of electrons in metals, have greater
impact when reducing the characteristic dimensions of the system, e.g. the size of the metallic
nanoparticles, the gap separation in nanoparticle ensembles, or the nanoantenna–QE distance.
Quantum effects become particularly important in systems with characteristic dimensions below
∼ 10 nm [53–55].

In this context, diverse semiclassical models have been developed to partially account for
certain nonclassical effects [56]. For example, some of these approaches introduce the intrinsic
nonlocality of the metals by combining classical electrodynamics and hydrodynamic descriptions
of the induced charges with the use of phenomenological parameters [57–72]. Moreover, other
semiclassical descriptions account for the spill-out of the induced electron density and Landau
damping by incorporating ab initio quantum surface-response corrections at the metal–dielectric
boundaries in the solution of Maxwell’s equations. This can be achieved thanks to the use of
the so-called Feibelman parameters obtained from quantum calculations [73–81]. By means of
these approaches, it has been predicted that nonclassical phenomena can substantially influence
the optical nanoantenna–QE interaction [55,82–90]. However, fully quantum calculations of
representative systems, based e.g. on the time-dependent density functional theory (TDDFT),
are often required to ensure that all the quantum effects affecting the interaction are correctly
described and to establish the validity of the different semiclassical models.
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In this work, we use a many-body quantum approach, within the Kohn–Sham (KS) scheme of
TDDFT (widely used for plasmonic systems [91–101]), to study the coupling between canonical
metallic nanoantennas and QEs. The nanoantenna–QE separations are set sufficiently large
so that electron tunneling is negligible and the electromagnetic interaction determines the
optical properties of the system. However, we consider nanoantenna–QE separations small
enough for other quantum phenomena such as nonlocality to be important. Without any
aprioristic assumption, we calculate the self-interaction Green’s function Ĝ(rQE, rQE,ω) that
governs the nanoantenna–QE coupling. A comparison with classical results obtained within the
local-response approximation (LRA) reveals the importance of quantum effects. Further, the
comparison between the TDDFT results and a semiclassical nonlocal model that incorporates
quantum surface-response corrections via the Feibelman parameters serves to identify surface-
enabled Landau damping and spill-out of the induced electron density as the dominant quantum
mechanisms dramatically influencing the electromagnetic nanoantenna–QE interaction.

TDDFT also provides a benchmark to establish the validity range of the standard implementation
of the semiclassical Feibelman formalism to adequately account for the dominant quantum
phenomena arising in the electromagnetic interaction between a QE and a nanoantenna. The
standard Feibelman approach, as used here, neglects the nonlocal surface response in the direction
parallel to the surface (long-wavelength limit), enabling an efficient implementation of nonlocality
in nanoscale geometries [79]. Here we identify situations of very small nanoantenna–QE distance
where the standard implementation of the Feibelman approach eventually fails, indicating that the
dispersion of the Feibelman parameters with respect to the wavenumber parallel to the surface
needs to be considered.

Atomic units (au) are used throughout the text unless otherwise stated.

2. System and methods

We analyze the electromagnetic coupling between a point-like QE and two different canonical
metallic nanoantennas. First, we consider in Sections 3.1, 3.2, and 3.3 the case of a single
spherical nanoparticle, where the QE is placed at a distance d from the nanoparticle surface
(Fig. 1(a)). Then, in Section 3.4, we analyze a metallic dimer composed by two identical spherical
nanoparticles separated by a gap of size D (Fig. 1(b)). The QE is situated at the center of the gap
(z = 0). We define the coordinates such that the center of the nanoparticle(s) is at the z-axis. The
entire system is surrounded by vacuum.

We consider closed-shell free-electron (jellium) metal nanoparticles. The radius of the
nanoparticles is a = 65.83 a0 (≈ 3.5 nm), which guarantees a well-developed plasmonic
response [102] in the TDDFT simulations (a0 = 0.053 nm is the Bohr radius). The surface-
to-emitter distance is sufficiently large to ensure that the electron densities of the metallic
nanoparticles at the position of the QE are negligible, and therefore there is no electron
tunneling [54,103–107]. Specifically, we consider surface-to-emitter distances d in the range
of d = 10 − 42 a0 (≈ 0.5 − 2.2 nm) for the case of the single nanoantenna, and gap separations
of D = 2d = 20 − 45 a0 (≈ 1.1 − 2.4 nm) for the dimer structure. We use the point-dipole
approximation to model the QE and thus neglect its spatial extent.

We focus on the study of Ĝ(rQE, rQE,ω), which provides the electric field E(rQE,ω) created
by the metallic nanoantenna at a position rQE in response to a point dipole pd located at the same
position,

E(rQE,ω) = Ĝ(rQE, rQE,ω) · pd, (1)
where ω is the resonant frequency of the QE. We refer to Ĝ(rQE, rQE,ω) as the self-interaction
Green’s function. Notice that the definition of Ĝ(rQE, rQE,ω) given by Eq. (1) differs from that
used in other works [108] by a factor 1/(ω2µ0) in SI units (with µ0 the vacuum permeability),
and that Ĝ(rQE, rQE,ω) only considers the electric field reflected by the metallic nanoantenna
(and not the one induced by the isolated QE).
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Fig. 1. Sketch of the studied systems, consisting of a QE modeled as a point dipole pd placed
(a) at a distance d from the surface of a single spherical metallic nanoparticle, and (b) at the
center of a gap of size D formed by two identical spherical metallic nanoparticles. The point
dipole is oriented along the z-axis, which is also the axis of the dimer. Each nanoparticle is
represented within the free-electron (jellium) model and contains 4458 conduction electrons,
resulting in a radius a = 65.83 a0 (≈ 3.5 nm). The calculated ground-state electron density of
the nanoparticles, n0(r), is represented by the fuchsia filled-line, and the gray line represents
the background jellium edge considered in the classical LRA calculations.

Importantly, Ĝ(rQE, rQE,ω) determines the total decay rate (Γ) and the Lamb shift (∆ω) of a
QE that interacts weakly with the plasmonic nanoantenna [34,40–42],

Γ = γ0 + γ
nr
QE + 2|µ|2Im{k̂ · Ĝ(rQE, rQE,ω) · k̂}, (2a)

∆ω = −|µ|2Re{k̂ · Ĝ(rQE, rQE,ω) · k̂}, (2b)

with γ0, γnr
QE and µ being the spontaneous decay rate in vacuum, the non-radiative intrinsic loss

rate, and the transition dipole moment of the QE along the k̂-direction, respectively [108]. The
unit-length vector k̂ defines the orientation of pd. We note that the enhancement of the decay rate
due to the nanoantenna–QE coupling is often normalized by γ0, which gives the Purcell factor

FP =
Γ − γnr

QE

γ0
= 1 +

3c3

2ω3 Im{k̂ · Ĝ(rQE, rQE,ω) · k̂}, (3)

c being the speed of light in vacuum [109,110].
We restrict our analysis to the case of a point dipole oriented along the z-axis, pd = pd ẑ,

where ẑ is the unit-length vector along the z-axis. Moreover, we use rQE = rQE ẑ, so that
Ĝ(rQE, rQE,ω) can be considered as a scalar, Ĝ(rQE, rQE,ω) ≡ G(rQE, rQE,ω), because of
the symmetry. Retardation effects are neglected due to the small size of the system. In the
upcoming subsections, we briefly explain the three different models used in this work to obtain
G(rQE, rQE,ω), namely the TDDFT, the classical LRA, and the semiclassical model based on the
Feibelman parameter.

2.1. Time-dependent density functional theory (TDDFT)

The electronic structure of the nanoantennas is described in the TDDFT calculations within the
jellium model of free-electron metals [111,112], where the ions at the lattice sites are modeled as
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a uniform positive charge with density

n+=
(︃
4
3
πr3

s

)︃−1
(4)

distributed over the spatial extent of the nanostructures. We use a Wigner–Seitz radius equal to
that of sodium, rs = 4 a0, which allows us to use the values of the Feibelman parameters calculated
in recent works for that material [78] when comparing with the semiclassical theory. Note also
that the dipolar plasmon frequency of sodium nanoparticles lies at optical frequencies, very
close to that of gold nanoparticles, thus placing the results within the frequency range relevant
for actual applications in plasmonics. The closed-shell nanoparticles contain 4458 conduction
electrons, which sets the radius of the background jellium edge to a = 65.83 a0 (≈ 3.5 nm). As
compared to fully atomistic descriptions, the jellium model allows us to tackle nanoparticles of
larger size so that the plasmonic excitations are well developed.

We first calculate the electron density n0(r) of the system in the ground-state configuration
within static density functional theory (DFT) [113,114],

n0(r) =
∑︂
j∈occ
χj |Ψ

0
j (r)|

2, (5)

where χj accounts for spin and symmetry degeneracy, and the summation runs over the occupied
(j ∈ occ) ground-state KS orbitals, Ψ0

j (r). The equilibrium electron density n0(r) of the metallic
nanoantennas shown in Figs. 1(a-b) (fuchsia filled curves) nicely illustrates quantum phenomena
such as electron spill-out and Friedel oscillations [115,116]. Details on the self-consistent
ground-state calculations for both the single and the dimer structures can be found in prior works
[117].

In order to obtain the self-interaction Green’s function, GTDDFT(rQE, rQE,ω), we solve the
time-dependent KS equations of TDDFT for the occupied KS orbitals Ψj(r, t),

i
∂

∂t
Ψj(r, t) = Ĥ[n](r, t)Ψj(r, t), (6)

where the Hamiltonian

Ĥ[n] = T̂ + Vh[n](r, t) + Vxc[n](r, t) − Vext(r, t), (7)

is a functional of the time-dependent electron density,

n(r, t) =
∑︂
j∈occ
χj |Ψj(r, t)|2. (8)

In Eq. (7), the kinetic-energy operator is given by T̂ = − 1
2∇

2. Since the size of the considered
systems is much smaller than the relevant optical wavelengths, retardation effects are neglected.
The Hartree potential Vh is then obtained from Poisson’s equation, ∇2Vh(r, t) = −4π

(︂
n(r, t)−n+

)︂
,

and the exchange–correlation potential Vxc[n](r, t) is calculated using the functional of Gunnarsson
and Lundqvist [118] within the adiabatic local-density approximation (ALDA) [113,119]. Vext(r, t)
is an impulsive potential created by a point dipole of sufficiently small amplitude pd to ensure a
linear response,

Vext(r, t) = pd ẑ ·
r − rQE

|r − rQE |3
δ(t), (9)

with δ(t) the Dirac delta function. Vext(r, t) appears with a minus sign in the Hamiltonian Ĥ[n]
given by Eq. (7) because Vext(r, t) is applied to electrons with charge qe = −1. The initial



Research Article Vol. 30, No. 12 / 6 Jun 2022 / Optics Express 21164

conditions in Eq. (6) are given by the ground-state KS orbitals, Ψj(r, t = 0) ≡ Ψ0
j (r). Short

time-step propagation algorithms based on Split-Operator techniques are used to solve Eq. (6)
in real time [120], with the orbitals Ψj(r, t) represented on a spatially-discretized grid using
a spacing of ∼ 0.35 a0. For the single nanoparticle we use a spherical mesh, whereas for the
dimer we adopt cylindrical coordinates. Both single and dimer antenna geometries possess
rotational symmetry with respect to the z-axis, which strongly reduces the computational load.
The propagation time-step is typically ∆t ∼ 0.05 au.

From the time-dependent electron density n(r, t) obtained by solving Eqs. (6)–(8) self-
consistently, we calculate the time-dependent electric field Ẽ(r = rQE, t) induced by the metallic
nanostructure at the position rQE of the QE,

Ẽ(r = rQE, t) = ∇Vh[n](r = rQE, t). (10)

Ẽ(rQE, t) = Ẽ(rQE, t) ẑ is oriented along the z-axis due to the symmetry of the system.
Finally, by using the time-to-frequency Fourier transform, we obtain the frequency-resolved

self-interaction Green’s function [121],

GTDDFT(rQE, rQE,ω) =
1
pd

∫ Tf

0
dt Ẽ(rQE, t) ei(ω+iη/2)t⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏞

E(rQE,ω)

, (11)

where Tf = 3500 au is the total propagation time used in our simulations (enough to achieve
convergence), and η = 0.07 eV accounts for relaxation processes beyond the (ALDA) TDDFT
description of the many-body dynamics such as the interaction of excited electrons with phonons
and many-body inelastic electron–electron scattering events [122,123].

2.2. Classical local-response approximation (LRA)

The classical nonretarded self-interaction Green’s function is obtained in the frequency domain
from the electrostatic potential Vind(r,ω) induced by the metallic nanostructure in response to
the external excitation Vext(r,ω) of a point dipole oscillating at a transition frequency ω,

Vext(r,ω) = pd ẑ ·
r − rQE

|r − rQE |3
. (12)

The induced potential Vind(r,ω) satisfies Laplace’s equation

∇2Vind(r,ω) = 0. (13)

Within the LRA, results are obtained by applying the standard hard-wall boundary conditions
at the metal–vacuum interfaces,

n̂ ×
(︁
Eout

LRA − Ein
LRA

)︁
= 0,

n̂ ·
(︁
Dout

LRA − Din
LRA

)︁
= 0,

(14)

and using a Drude-type local dielectric function to characterize the metal,

εm(ω) = 1 −
ω2

p

ω2 + iγpω
. (15)

In Eq. (14), the superscript ‘in’ defines the fields within the region inside the metal while
the superscript ‘out’ those in the surrounding vacuum, and n̂ is the normal unit vector pointing
outwards from the metal boundary. ELRA(r,ω) = −∇ (Vext(r) + Vind(r,ω)) is the total electric
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field, and DLRA(r,ω) = ε(r,ω)ELRA(r,ω) is the electric displacement field in a medium with
dielectric function ε(r,ω). The boundary conditions given by Eq. (14) are consistent with the
polarization charges being located strictly at the metal boundary. In this work, the plasma
frequency ωp =

√︂
3
r3
s
= 5.89 eV and the intrinsic damping parameter γp = 0.1 eV are used

in Eq. (15). The value of parameter γp is obtained from the comparison of the absorption
spectrum of a single spherical nanoantenna calculated with TDDFT and with the semiclassical
model, as explained in Appendix A. In the case of a point-like QE at position rQE exciting the
single spherical nanoparticle of radius a, Eqs. (13)–(14) can be solved analytically, and the
self-interaction Green’s function reads [21]

GLRA(rQE, rQE,ω) = −∇Vind(r = rQE,ω) =
∞∑︂
ℓ=1

(ℓ + 1)2
a2ℓ+1

R2ℓ+4
εm(ω) − 1
εm(ω) +

ℓ+1
ℓ

, (16)

with R the distance between the position rQE of the QE and the center of the nanoparticle and ℓ
the multipole order of the plasmonic resonance. The numerical implementation used to solve
Eqs. (13)–(14) for the dimer structure is based on a coupled-multipole method [124,125], which
uses the solution of the individual spherical nanoparticles. Details can be found in Ref. [38].

2.3. Semiclassical Feibelman approach

The semiclassical nonlocal model employed here is based on the Feibelman surface-response
function d⊥(ω) [73–75], a (frequency-dependent) complex-valued function that accounts for the
position of the centroid of the induced charges with respect to the positive background edge of
the nanoparticles. For a more complete picture, one could also include another parameter, d∥(ω),
related to the parallel component of the induced current at the metallic surface. However, d∥(ω)
vanishes for charge-neutral planar surfaces [55,78], and for curved surfaces d∥(ω) is expected to
be much less important than d⊥(ω) [75]. Therefore, in this work we consider d∥(ω) = 0.

The parameter d⊥(ω) incorporates important quantum-mechanical effects, since its real and
imaginary parts are related to the spill-out of dynamical screening charges and surface-enabled
Landau damping, respectively. Moreover, as the d⊥(ω) parameter is typically extracted from
TDDFT calculations that inherently account for the finite compressibility of the electron gas, the
Feibelman model also incorporates nonlocal effects of the electron dynamics in bulk [56]. This
d⊥(ω) parameter, usually obtained for a planar metal–vacuum interface, has been widely used to
address the optical response of arbitrary-shaped metallic nanostructures [55,78,90,126]. The
current implementation of the d⊥(ω) parameter neglects the nonlocality of the metal response in
the direction parallel to the surface (long-wavelength limit). This is a reasonable approximation
when the radius of curvature of the nanostructure or the typical length of the variation of the
external potential along the surface is much larger than the Fermi wavelength. One of the
objectives of the present work is indeed to test the validity of the above approach for situations
where the radius of curvature of the system is small and the external potential along the metal
surface (here created by the point-dipole QE) varies rapidly.

In brief, the Feibelman model is an extension of the classical LRA that allows us to account
for the smooth variation of the induced electron density across the metal–vacuum interface.
Within this semiclassical approach, the self-interaction Green’s function is also obtained from the
electrostatic potential Vind(r,ω) (Eq. (13)) with the use of a Drude-type local dielectric function
εm(ω) (Eq. (15)). However, in contrast with the hard-wall boundary conditions applied at the
metal–vacuum interface within the classical LRA, here we use the following expressions obtained
in Ref. [79],

n̂ ×
(︁
Eout

F − Ein
F
)︁
= −d⊥(ω) n̂ × ∇

[︂
n̂ ·

(︂
Eout

F − Ein
F

)︂]︂
,

n̂ ·

(︂
Dout

F − Din
F

)︂
= d∥(ω) ∇ ·

[︂
n̂ ×

(︂
Dout

F − Din
F

)︂]︂
,

(17)
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where the subscript ‘F’ denotes that the fields are calculated within the Feibelman model. As
mentioned above, in this work we consider d∥(ω) = 0 and use the d⊥(ω) function obtained by
Christensen et al. [78] within the jellium model (Na, rs = 4 a0) for a semi-infinite planar metal
surface (see also Ref. [55]).

Similarly to the classical LRA, using the Feibelman model one obtains an analytical solution
of the potential Vind(r,ω) induced by a single spherical nanoantenna of radius a in response
to the point-dipole excitation. The resulting nonretarded self-interaction Green’s function for
d∥(ω) = 0 is given by [55,75]

GF(rQE, rQE,ω) =
∞∑︂
ℓ=1

(ℓ + 1)2
a2ℓ+1

R2ℓ+4

(εm(ω) − 1)
(︂
1 + ℓ

a d⊥(ω)
)︂

εm(ω) +
ℓ+1
ℓ − (εm(ω) − 1) ℓ+1

a d⊥(ω)
. (18)

For d⊥(ω)/a → 0, i.e., for situations where the radius of the nanoparticle a is much larger
than the surface-response correction d⊥(ω), Eq. (18) reduces to the classical LRA expression of
GLRA(rQE, rQE,ω) given by Eq. (16).

For the dimer structure, we extend the numerical method used for the classical LRA [38]
so as to account for the modified boundary conditions given by Eq. (17) (see further details in
Appendix B). For simplicity, in the following we generically use G(rQE, rQE,ω) to refer to any of
GTDDFT(rQE, rQE,ω), GLRA(rQE, rQE,ω) and GF(rQE, rQE,ω).

3. Results and discussion

In this section, we present the results for the electromagnetic coupling between a quantum emitter
and spherical metallic nanoantennas. First, in Section 3.1, we focus on the role of quantum
phenomena by comparing quantum TDDFT and classical LRA results for a quantum emitter in
front of a single spherical nanoantenna. Then, in Section 3.2, we compare results of TDDFT and
the semiclassical Feibelman model for the same system. In Section 3.3, we use the Feibelman
model to analyze the origin of the observed quantum effects, and discuss the validity range and
shortcomings of the long-wavelength Feibelman approach that neglects the nonlocality of the
metal response in the direction parallel to the surface. Finally, in Section 3.4, we extend the
present analysis to the case of a spherical dimer nanoantenna, showing that the surface quantum
effects observed for the single spherical nanoparticle are also present in the dimer case and that
the long-wavelength Feibelman model does not describe accurately situations of gap distances
narrower than D ∼ 1.5 nm.

3.1. Quantum TDDFT vs. classical LRA

We first analyze the quantum effects that influence the self-interaction Green’s function
G(rQE, rQE,ω) obtained for a QE placed in front of a single spherical nanoparticle. The
QE is oriented in the radial direction perpendicular to the nanoparticle surface (see sketch in
Fig. 1(a)). To identify the quantum effects, we first compare in Fig. 2 the classical LRA (panels
a-b) and the TDDFT (c-d) results. We plot both the imaginary (a, c) and real (b, d) parts of
G(rQE, rQE,ω) determining the Purcell factor and Lamb shift, respectively. Results are shown as
a function of the transition frequency of the QE, ω, and the distance d between the QE and the
surface of the spherical nanoparticle, d = R − a.

Classical LRA calculations predict a dependence of G(rQE, rQE,ω) on frequency determined
by various multipolar plasmon modes excited by the QE, resulting in several peaks in the
spectra of Im{G(rQE, rQE,ω)} (Fig. 2(a)). The three lower-frequency sharp resonances are
associated with the dipolar (DP, ℓ = 1), quadrupolar (QP, ℓ = 2), and octupolar (OP, ℓ = 3)
plasmons of the spherical nanoantenna. Their frequencies ωℓ are given by the poles of Eq. (16),
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Fig. 2. (a,b) Classical LRA result of the (a) imaginary part (Im{G(rQE, rQE,ω)}), and
(b) real part (Re{G(rQE, rQE,ω)}) of the self-interaction Green’s function G(rQE, rQE,ω)
obtained for a point-like QE placed in front of a single Na spherical nanoantenna of radius
a = 65.83 a0 (≈ 3.5 nm). Results are shown as a function of the frequency ω of the
oscillating QE and the surface-to-emitter distance, d. Panels (c) and (d) correspond to the
results obtained with TDDFT simulations. In (a) and (b), the upper and lower range of
values in the color bar denote saturation.

Re
{︁
ϵm(ωℓ) +

ℓ+1
ℓ

}︁
= 0, resulting for a metal described with a Drude dielectric function in

ωℓ = ωp

√︃
ℓ

2ℓ + 1
. (19)

From Eq. (19) it follows that the frequencies of the DP, QP and OP are respectivelyωDP ≈ 3.4 eV,
ωQP ≈ 3.7 eV, and ωOP ≈ 3.85 eV. The high-frequency broad peak at ωPSM ∼ 4 eV (i.e. close
to the surface plasmon frequency ωSP = ωp/

√
2) corresponds to the so-called pseudomode

[127], which is composed by a pilling up of several overlapping high-order plasmonic modes
(ℓ = 4, 5, 6, . . . ) with closely-spaced resonant frequencies.

At small d ≈ 0.53 − 1 nm, Im{G(rQE, rQE,ω)}, as calculated within the classical LRA, is
dominated by the pseudomode excitation. As the distance between the QE and the nanoantenna
increases, Im{G(rQE, rQE,ω)} decreases, and the relative contribution of different plasmon
modes changes in favor of the low ℓ resonances. Thus, for large d ∼ 1.6 − 1.8 nm, the values
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of Im{G(rQE, rQE,ω)} attained within the pseudomode frequency range become comparable to
those at the sharp DP and QP resonances. The faster decrease of the resonances associated with
high-order plasmon modes with increasing d can be inferred from Eq. (16), where R = a+ d. We
also note that the value of Im{G(rQE, rQE,ω)} obtained for a QE resonant with the pseudomode
at ωPSM = 4.05 eV and located at d = 0.58 nm corresponds to a Purcell factor Fp ≈ 5.2 × 106

(Eq. (3)). This very large value is explained by the small volume of the nanoantenna (and thus
strong field localization).

In contrast with the classical results, Im{G(rQE, rQE,ω)} calculated with TDDFT (Fig. 2(c))
mainly reveals a single broad feature [128] for the range of distances considered in this study.
At small separation d ≈ 0.53 − 1 nm, the maximum value of Im{G(rQE, rQE,ω)} is reached
within the frequency interval ω ∼ 3.6 − 3.7 eV, i.e., it is redshifted with respect to the classical
pseudomode peak. As d increases, the resonant feature slightly shifts to lower frequencies.
Moreover, the overall profile somewhat sharpens, albeit, in sheer contrast with the classical
theory, the contributions of different plasmon modes remain spectrally broader and are barely
resolved. Consistent with the strong broadening of the plasmon resonances due to quantum
effects, the TDDFT results show smaller values of Im{G(rQE, rQE,ω)} at resonance, and thus
lower QE decay rates, as compared to the classical LRA prediction. For example, for a QE
placed at a distance d = 0.58 nm, the resonant Purcell factor Fp calculated within TDDFT is
Fp ≈ 1.5×106. This is more than three times smaller than the maximum LRA value. On the other
hand, the broadening of the spectra leads to a larger off-resonant Im{G(rQE, rQE,ω)} obtained
with TDDFT as compared to classical LRA predictions.

We next compare the classical LRA and quantum TDDFT results for the real part of the
self-interaction Green’s function, Re{G(rQE, rQE,ω)}, which determines the Lamb shift of the
QE transition frequency. As depicted in Fig. 2(b), and consistent with the results obtained
for the imaginary part of the Green’s function (Fig. 2(a)), the frequency dependence of
Re{G(rQE, rQE,ω)} obtained from classical LRA calculations features a rich resonance profile.
For an individual plasmonic mode, the Kramers-Kronig relations would lead to a sign change
of Re{G(rQE, rQE,ω)} at the resonance frequency. In the full calculations, Re{G(rQE, rQE,ω)}
does not show the sign change at resonance for low ℓ modes and small distances, because of the
off-resonant contribution associated with neighboring plasmon modes with larger ℓ. It is only at
the pseudomode frequency that the contribution of the nearly degenerate resonances leads to a
change of sign of Re{G(rQE, rQE,ω)} from positive values at frequencies below ωPSM ∼ 4 eV
to negative values above this frequency. When d increases, the contribution from off-resonant
neighboring modes is reduced so that, in addition to the pseudomode resonance, the sign change
of Re{G(rQE, rQE,ω)} can be observed at the DP and QP resonances. This appears particularly
clear in Fig. 3 discussed below, where we show the frequency dependence of the Green’s function
calculated for a set of fixed separations, d, between the QE and the metallic surface.

As compared to the classical LRA, and similar to the results obtained for the imaginary part,
the TDDFT calculations in Fig. 2(d) show smaller absolute values of Re{G(rQE, rQE,ω)} (Lamb
shift) and a broader structure at the resonant frequency ω ∼ 3.3 − 3.7 eV. This holds for the
entire distance d range considered in our study. Notably, a single broad resonance is formed
in the TDDFT results and Re{G(rQE, rQE,ω)} changes its sign from positive to negative only
at the resonant frequency ω ∼ 3.3 − 3.7 eV, i.e. at lower frequency than within the classical
LRA. As a consequence, for QEs with transition frequencies within the range of ω ∼ 3.7 − 4 eV,
each model predicts a photonic Lamb shift ∆ω ∝ Re{G(rQE, rQE,ω)} of opposite sign (Eq. (2b)).
For example, according to LRA, a QE located at d = 0.52 nm and characterized by a transition
dipole moment µ = 0.1 e nm and vacuum resonant frequency ω = 4 eV experiences a redshift
of ∆ω ≈ −131 meV. In contrast, TDDFT predicts a blueshift of ∆ω ≈ 33 meV under the same
conditions.
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Fig. 3. Real part (upper panels a-e) and imaginary part (lower panels f-j) of the self-
interaction Green’s function obtained for a point-like dipole in front of a single spherical Na
nanoantenna of radius a = 65.83 a0 (≈ 3.5 nm), as calculated from TDDFT (solid lines),
within the Feibelman formalism (dashed lines) and within the classical LRA (dotted gray
lines). Each panel corresponds to a selected surface-to-emitter distance d, ranging from
d = 0.58 nm (rightmost panels) to d = 2.22 nm (leftmost panels), according to the labels on
top.

3.2. Quantum TDDFT vs. semiclassical Feibelman approach

The semiclassical Feibelman formalism described in Section 2.3 is designed to account for
quantum effects such as the nonlocality of the electron response and the spill-out of the induced
charges that can be behind the differences between the classical LRA and TDDFT results
discussed above. Analyzing the capability of the Feibelman formalism to reproduce the TDDFT
results will thus allow for dissecting the role of these quantum effects in determining the plasmon
resonances and their contribution to G(rQE, rQE,ω). To this end, we compare in Fig. 3 the real
part (upper panels a-e) and the imaginary part (lower panels f-j) of G(rQE, rQE,ω) as calculated
using the three different approaches (TDDFT, LRA, and Feibelman). Results are shown as
a function of the transition frequency of the QE, for selected values of the surface-to-emitter
distance d. The solid and dashed color lines show the reference TDDFT results and the data
obtained using the long-wavelength Feibelman formalism, respectively. The LRA results are
plotted by gray-dotted lines. The overall good agreement between the TDDFT and the Feibelman
formalism in Fig. 3 establishes the validity of the latter and allows us to use the framework of the
Feibelman theory to analyze the role of the quantum phenomena manifested in G(rQE, rQE,ω),
as we discuss below.

We first focus on the results at relatively large distance d = 1.38 − 2.22 nm (panels a-c and
f-h), where the agreement between the long-wavelength Feibelman approach and TDDFT is
particularly good. The semiclassical Feibelman model accurately reproduces the TDDFT results
of the spectral position and resonance profile of G(rQE, rQE,ω), thus correctly accounting for the
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redshift and larger broadening of the peaks as compared to classical LRA. On the other hand,
for distances below d ≤ 0.95 nm (panels d-e and i-j), the semiclassical Feibelman results are
redshifted with respect to those of TDDFT, i.e., the semiclassical model overestimates the redshift
of the plasmonic modes from the resonant frequencies obtained within the LRA as d decreases.
Thus, based on this comparison, we conclude that for small QE–metal surface distances, d, the
calculations based on the long-wavelength Feibelman parameters provide a qualitative agreement
with TDDFT, but not quantitative accuracy.

3.3. Interpretation of the quantum effects within the Feibelman approach and its
limitations

Both the overall good agreement and the discrepancy for small separation can be easily understood
from the analytical Feibelman expression of G(rQE, rQE,ω). The resonant frequencies ωℓ can be
found from the poles of Eq. (18),

Re
{︃
εm(ωℓ) +

ℓ + 1
ℓ

− (εm(ωℓ) − 1)
ℓ + 1

a
d⊥(ωℓ)

}︃
= 0, (20)

so that, for a Drude-type dielectric function (Eq. (15)), ωℓ can be obtained from the following
expression:

ω2
ℓ ≈ ω

2
p
ℓ

2ℓ + 1

(︂
1 −

(ℓ + 1)
a

Re {d⊥(ωℓ)}⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏞
spill-out of the

induced electron density

)︂
, (21)

where ωℓ>>γp is assumed. Equation (21) shows similarities with expressions obtained within
other nonlocal models [65]. For the present Na jellium material, where interband transitions are
negligible, the finite electrostatic potential barrier at the jellium surface allows for the induced
electron density to spill out of the metal boundary, giving rise to positive values of Re {d⊥(ω)}
in the frequency range of interest [78]. The positive Re {d⊥(ω)} decreases ωℓ in Eq. (21) and we
conclude that the spill-out of the induced electron density is responsible for the redshift of all
the resonant frequencies ωℓ , as compared to the LRA values given by Eq. (19). This redshift is
larger for plasmonic modes of higher order ℓ.

To illustrate this discussion, we show in Fig. 4(a) the resonant frequencies ωℓ of the first
ten plasmonic modes (ℓ = 1 − 10) of the single spherical nanoantenna as obtained from the
LRA (Eq. (19), red dots), the TDDFT (orange dots) and the long-wavelength Feibelman model
(Eq. (21), blue dots). For simplicity, we calculate the Feibelman ωℓ values as the frequency at
which the imaginary part of the corresponding ℓ-contribution to G(rQE, rQE,ω), Gℓ(rQE, rQE,ω),
is maximum (Eq. (18)), and we have checked that the results are consistent with Eq. (21). In
Appendix C. we explain the procedure used to obtain the TDDFT values of ωℓ .

The results in Fig. 4(a) show good agreement between the TDDFT and the Feibelman formalism
for the first four resonant frequencies ωℓ (ℓ ≤ 4), which explains the match in the spectral position
of G(rQE, rQE,ω) obtained by the two models for relatively large distance d = 1.38 − 2.22 nm,
where the response is mostly dominated by these low-order modes (panels a-c and f-h of Fig. 3).
However, for higher-order plasmonic modes ℓ ≳ 5, the values of ωℓ within the semiclassical
Feibelman formalism start to decrease with increasing ℓ, instead of getting larger as occurs
for small ℓ and for the TDDFT results. Thus, the Feibelman approach results in considerably
lower values of ωℓ as compared to the TDDFT predictions. As a consequence, since the relative
contribution of these high-order modes ℓ ≳ 5 becomes important only for very small d, the
Feibelman calculations produce an additional redshift of G(rQE, rQE,ω) as compared to TDDFT
for small separation distances d ≤ 0.95 nm. This effect can be clearly identified in panels d-e
and i-j of Fig. 3. We believe that the mismatch between the Feibelman and the TDDFT values
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Fig. 4. (a) Resonant energies ωℓ of the first ten plasmonic modes (ℓ = 1 − 10) as obtained
from the LRA (red dots), TDDFT (orange) and Feibelman model (blue), measured in units
of the plasma frequency ωp = 5.89 eV. (b) Contribution of the first seven plasmonic modes
Gℓ(rQE, rQE,ω) (ℓ = 1 − 7) to the imaginary part of the self-interaction Green’s function
G(rQE, rQE,ω), as obtained from TDDFT calculations (solid lines), within the Feibelman
formalism (dashed lines) and within the classical LRA (dashed-dotted lines). Left-side
panel corresponds to a surface-to-emitter distance d = 0.95 nm, and right-side panel to
d = 0.58 nm. The spectra in panel (b) are shifted vertically for visibility.

of ωℓ for ℓ ≳ 5 is a consequence of the approximation adopted to implement the calculation of
d⊥(ω). Indeed, the d⊥(ω) parameter is obtained by considering the long-wavelength limit (small
wavenumber in the direction parallel to the surface) [74] in a planar metal–vacuum interface
[55,78], which translates, in the case of a spherical nanoparticle, into the condition ℓd⊥(ω)/a<<1.
Thus, for a given radius a of a nanoparticle, large values of ℓ, above a threshold value, do not
fulfill this condition. Indeed, for small nanoantenna–QE separation, large ℓ values are required,
and thus the Feibelman approach under the long-wavelength limit becomes inaccurate in such a
situation.

Additionally, the Feibelman formalism can also be used to explain the broad resonance profile
of G(rQE, rQE,ω) shown by the TDDFT results in Figs. 2 and 3. From Eq. (18), we infer that the
broadening κℓ of the ℓ-resonance, Gℓ(rQE, rQE,ω), is given within the Feibelman model by

κℓ ≈ γp + ωℓ
ℓ + 1

a
Im {d⊥(ωℓ)}⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏞

surface-enabled Landau damping

, (22)

which expresses an enhancement of the total damping κℓ produced by surface-enabled Landau
damping because Im {d⊥(ωℓ)} is positive [55]. As a consequence, different plasmonic ℓ-
modes within TDDFT spectrally overlap, giving rise to the generally broad profile of the total
G(rQE, rQE,ω), which includes the contributions Gℓ(rQE, rQE,ω) from all ℓ-modes (Figs. 2 and 3)
[128].

In order to illustrate the consequences of surface-enabled Landau damping, in Fig. 4(b) we
show the contribution of the first seven plasmonic modes Gℓ(rQE, rQE,ω) (ℓ = 1 − 7) to the
spectra of the imaginary part of the self-interaction Green’s function G(rQE, rQE,ω), as obtained
from the three different models employed in this work. Results are shown for d = 0.95 nm
(left-side panel in b) and d = 0.58 nm (right-side panel in b). As expected, within the classical
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LRA (dashed-dotted lines) all the multipoles have the same broadening, with full width at half
maximum (FWHM) equal to γp. In contrast, both TDDFT (solid lines) and the Feibelman
model (dashed lines) predict an increasing of the FWHM with increasing plasmonic order ℓ,
as given by Eq. (22). Finally, the comparison of the results obtained for d = 0.95 nm and
d = 0.58 nm, Fig. 4(b) corroborates that the relative contribution of higher-order plasmonic
resonances increases with decreasing surface-to-emitter distance d within the three models
employed in this work (LRA, TDDFT and Feibelman).

3.4. Quantum TDDFT vs. semiclassical Feibelman approach in a nanoparticle dimer

In this subsection, we extend the analysis to a metallic dimer nanoantenna comprising two
identical spherical nanoparticles, where the QE is placed at the center of the gap of size D, as
sketched in Fig. 1(b). This configuration has received special attention due to its capability to
strongly enhance the amplitude of the incident electric field within the nanogap [129], leading to
very efficient nanoantenna–QE interaction. Thus, the study of nonclassical effects in the dimer
nanoantenna–QE coupling appears particularly interesting.

Figure 5 shows the real (right-side panels) and imaginary (center panels) parts of the self-
interaction Green’s function G(rQE, rQE,ω) calculated for the dimer configuration, as provided
by classical LRA calculations (top), TDDFT (middle), and the semiclassical Feibelman model
(bottom). The QE is oriented along the dimer axis (the z-axis). Results are shown as a function
of the transition frequency of the QE, ω, and the size of the gap, D. Thus, the distance d between
the QE and the surface of each nanoparticle forming the nanogap is d = D/2.

Both the imaginary part (Fig. 5(b)) and real part (Fig. 5(c)) of G(rQE, rQE,ω) calculated
within the classical LRA show similar behavior for the dimer configuration as for the single
nanoantenna (compare Figs. 5(b-c) and 2(a-b)). For the range of the gap size D = 20 − 45 a0
(≈ 1.06 − 2.4 nm) covered in Fig. 5, the classical LRA results show a rich resonance profile with
at least three well-defined resonances, namely the bonding dipolar plasmon (BDP, ωBDP ∼ 3 eV),
the bonding quadrupolar plasmon (BQP, ωBQP ∼ 3.5 eV) and the broad dimer pseudomode
(ωPSM ∼ 3.75 − 4.1 eV). These BDP, BQP and pseudomode are formed due to the optical
hybridization between the plasmonic ℓ-order modes of the single nanoparticles [130]. For all the
D values considered, the BDP and BQP resonances are narrow, while the pseudomode is broad
because this mode originates from the hybridization of high-order plasmonic modes ℓ ≥ 3 of
the isolated nanoparticles with closely-spaced resonant frequency. The spectral weight of the
pseudomode within the classical LRA considerably increases for small gap separations, and it
becomes dominant for gaps smaller than D ≲ 36 a0 (D ≲ 1.9 nm).

In contrast to these classical LRA predictions, the TDDFT results (panels e,f) show only two
distinct modes: a BDP at ωBDP ∼ 2.75 eV and a pseudomode at ωPSM ∼ 3.25 − 3.5 eV. Within
TDDFT, the BDP is the dominant resonance for the whole range of gap sizes covered in this
work, and its spectral weight increases as the gap separation D becomes larger. The semiclassical
Feibelman model (panels h-i in Fig. 5) accurately reproduces the TDDFT spectra when comparing
the strength and the spectral position of the BDP and the pseudomode. The broadening of the
BDP resonance is also well reproduced by the Feibelman model. However, we note that the
pseudomode obtained from the Feibelman calculations is sharper (albeit still broad) than the one
obtained within TDDFT. This effect is directly related to the redshift of the high-order modes
ℓ ≳ 5 with increasing ℓ shown by the Feibelman model in Fig. 4 for a single nanoantenna, which
is expected to be reflected also in the dimer results. Since the high-ℓ resonances of the single
nanoantenna have lower frequency, they cannot contribute to the broadening of the pseudomode
in the large frequency range ωPSM ∼ 3.5 eV.

For the sake of a quantitative comparison between the LRA, TDDFT and Feibelman results,
we show in Fig. 6 the frequency dependence of G(rQE, rQE,ω) calculated for a set of fixed gap
separations D, as obtained from a cut of Fig. 5. Although there are quantitative discrepancies



Research Article Vol. 30, No. 12 / 6 Jun 2022 / Optics Express 21173

Fig. 5. Self-interaction Green’s function G(rQE, rQE,ω) obtained for a point-like QE placed
at the center of the gap of size D formed by two identical Na spherical nanoantennas of
radius a = 65.83 a0 (≈ 3.5 nm). The QE is oriented along the dimer z-axis. a-d-g Sketches
of the system studied within the three models employed in this work: (a) classical LRA,
where the dielectric response of the metal is described by a local dielectric function εm(ω)
and standard hard-wall boundary conditions are applied at the metal–vacuum interface, (d)
TDDFT, where the time evolution of the electron density n(r, t) =

∑︁
j∈occ χj |Ψj(r, t)|2 is

obtained from the time-dependent KS equations and (g) Feibelman model, which uses the
local dielectric function εm(ω) to describe the bulk response of the metals but incorporates
quantum surface-response corrections at the metal–vacuum interface by means of the
d⊥(ω) parameter. Imaginary part (panels b-e-h) and real part (c-f-i) of the self-interaction
Green’s function G(rQE, rQE,ω) as obtained from the classical LRA (b-c), TDDFT (e-f)
and Feibelman model (h-i). Results are shown as a function of the transition frequency of
the QE, ω, and the size of the gap, D. In (b), (c), and (h), the upper and lower range of
values in the colorbar denote saturation.
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between the TDDFT and the Feibelman results for narrow gaps D ∼ 1 − 1.5 nm (panels d, e, i, j
in Fig. 6), the overall good agreement between the two approaches indicates that the spill-out
of the induced charges and surface-enabled Landau damping, already discussed in the single-
nanoantenna system, are also the main quantum mechanisms influencing G(rQE, rQE,ω) in the
dimer nanoantenna. Moreover, these results corroborate the validity of the long-wavelength limit
implementation of the Feibelman approach to adequately describe the electromagnetic interaction
between a QE and a plasmonic gap nanoantenna for situations where the gap separation is larger
than D ∼ 1.5 nm (panels a, b, c, f, g, h in Fig. 6). However, similar to the single-nanoparticle
case in Sections 3.2 and 3.3, for smaller gap separations in a dimer, D<1.5 nm, the limitations of
the approximation used to obtain the Feibelman parameter (neglecting the dependence of d⊥(ω)
on the wavenumber parallel to the metal surface) affects the accuracy of the results, since in such
a case, high-order plasmonic modes ℓ are also relevant.

D=2.65 nm D=2.33 nm D=1.90 nm D=1.48 nm D=1.06 nm

Fig. 6. Real part (upper panels a-e) and imaginary part (lower panels f-j) of the self-
interaction Green’s function obtained for a point-like dipole placed at the center of a gap of
size D formed by two identical Na spherical nanoantennas of radius a = 65.83 a0 (≈ 3.49 nm),
as calculated from TDDFT (solid lines), within the Feibelman formalism (dashed lines) and
within the classical LRA (dotted gray lines). Each panel corresponds to selected gap sizes
D ranging from D = 1.06 nm (rightmost panels) to D = 2.65 nm (leftmost panels). Gap
separation distances are indicated on the top panels.

4. Summary and conclusions

In this work, we study the influence of quantum phenomena on the electromagnetic interaction
between a point-like quantum emitter (QE) and canonical metallic nanoantennas. We focus on
the study of the self-interaction dyadic Green’s function Ĝ(rQE, rQE,ω) obtained for a single
spherical nanoparticle and a dimer comprising two identical spherical nanoparticles, with the
QE oriented perpendicular to the metal surfaces. In the case of the dimer, the QE is located



Research Article Vol. 30, No. 12 / 6 Jun 2022 / Optics Express 21175

in the middle of the gap. We consider sufficiently large nanoantenna–QE separations so that
charge-transfer processes related to electron tunneling do not play a role.

We first calculate Ĝ(rQE, rQE,ω) in the presence of Na jellium nanoparticles using time-
dependent density functional theory (TDDFT), and then employ analytical expressions derived
from a semiclassical model in order to identify the origin of the quantum effects that influence
the nanoantenna–QE coupling. This semiclassical model incorporates surface quantum-response
corrections by means of the Feibelman d⊥(ω) parameter obtained under the long-wavelength
limit. The overall good agreement between TDDFT and the semiclassical model for both the
single and the dimer antennas confirms that surface-enabled Landau damping and the spill-out of
the induced electron density drastically affect the electromagnetic nanoantenna–QE interaction.
These mechanisms explain why the resonances of Ĝ(rQE, rQE,ω) obtained from TDDFT are
redshifted and broader as compared to those obtained from a classical calculation using the
local-response approximation (LRA) of the optical response of the metals.

We find that these quantum effects become more significant with increasing order ℓ of the
plasmonic resonance. The analysis of the TDDFT calculations indicates that the higher the value
of ℓ, the larger the broadening κℓ produced by surface-enabled Landau damping and the redshift
produced by the spill-out of the dynamical screening charges. Thus, the quantum phenomena
explored here show greater influence for very small distance between the QE and the metallic
surface and when the QE is coupled to high-order plasmonic modes of the nanoantenna.

We also find that the long-wavelength Feibelman calculations employed in this work describe
more accurately the Green’s function of a dipolar emitter when considering QEs coupled to
low-order plasmonic modes. However, these calculations fail when the contribution from antenna
high-order modes (ℓ ≳ 5) is large, as occurs when the distance d between the QE and the
nanoantenna is very small, d ∼ 0.6 nm. As a consequence, in the dimer configuration the present
Feibelman calculations underestimate the broadening of the pseudomode and become inaccurate
for gap separations of the order of D ∼ 1 − 1.5 nm.

The shortcomings of the Feibelman calculations are due to the limitations of using a d⊥(ω)
parameter obtained for a model planar metal–vacuum interface where the dependence of d⊥(ω)
on the wavenumber parallel to the metal surface (or, equivalently, angular momentum ℓ for
spherical nanoparticles) is neglected. For more accurate results, it is necessary to go beyond this
long-wavelength limit of d⊥(ω) to properly account for the nonlocality of the surface response
in the direction parallel to the surface, since this affects the results in situations where the
nanoantenna–QE distance is small (high-order ℓ modes involved).

Our study thus provides a fundamental description of the quantum phenomena influencing the
electromagnetic interaction between a QE and plasmonic nanoantennas for nanoantenna–QE
distances as small as ≈ 0.5 nm. For even smaller separation, charge-transfer processes between
the QE and the metallic nanoantenna can influence the optoelectronic response of the system, so
that a many-body treatment based on TDDFT of both the QE and the metallic nanoparticles [38]
is well suited to naturally account for any quantum effect in these extreme situations.

Appendices

A. Determining the damping parameter γp used in the LRA and in the Feibelman
calculations

The value of the damping parameter γp used in the Drude-type dielectric function ϵm(ω) (Eq. (15))
for the classical LRA and in the Feibelman results is obtained from the fitting of the absorption
cross-section spectrum σabs(ω) of a single Na nanoparticle calculated with TDDFT to the result
obtained within the Feibelman model. The absorption cross section σabs(ω) reads

σabs(ω) =
4πω

c
Im{α(ω)}, (23)
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where c is the speed of light and α(ω) the polarizability of the spherical particle of radius a.
Within the Feibelman formalism (for d∥(ω) = 0), α(ω) is given by

α(ω) = a3 (ϵm(ω) − 1)(1 + d⊥(ω)/a)
ϵm(ω) + 2 − 2(ϵm(ω) − 1)d⊥(ω)/a

, (24)

with a = 65.83 a0 the radius of the single spherical nanoparticle. The polarizability within the
TDDFT is obtained from the dipole moment induced in response to an impulsive plane-wave
excitation, as explained in Ref. [117]. Figure 7 shows very good agreement between the TDDFT
results (solid blue line) and the Feibelman formalism (dashed red line) when using γp = 0.1 eV,
thus justifying the value used in this work.
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Fig. 7. Comparison between the absorption cross section obtained from TDDFT calculations
(solid blue line) and within the Feibelman formalism using an intrinsic damping parameter
γp = 0.1 eV in the Drude dielectric function given by Eq. (15) (dashed red line). The spherical
nanoparticle contains 4458 conduction electrons, resulting in a radius of a = 65.83 a0.

B. Introducing the Feibelman d⊥(ω) parameter in the optical response of a spher-
ical dimer

The self-interaction Green’s function G(rQE, rQE,ω) of a spherical dimer antenna is obtained
within the Feibelman formalism from the potential Vind(r,ω) (Eq. (13)) induced in response to
the external potential Vext(r) of a point dipole (Eq. (12)) by applying the modified boundary
conditions given by Eq. (17). This induced potential can be written as a sum of the contributions
of each nanoparticle forming the dimer, Vind(r1,ω) = Vind,1(r1,ω) + Vind,2(r2,ω). The position
vectors r1 and r2, with origins at the center of the corresponding nanoparticle, are related in
spherical coordinates [(ri, θi, φi) with i = 1, 2] by r2 =

√︂
r2
1 + (2a + D)2 − 2(2a + D)r1 cos θ1,

cos θ2 = (r1 cos θ1 − (2a + D))/r2, and φ2 = φ1.
Due to the spherical symmetry of the nanoparticles, it is convenient to expand Vind,i(ri,ω)

(with i = 1, 2) inside (ri<a) and outside (ri>a) the metal boundaries in a spherical harmonics
basis set Ym

ℓ
(θi, φi) [125],

Vind,i(r1,ω) =
ℓmax∑︂
ℓ=0

ℓ∑︂
m=−ℓ

bℓm
i (ω) Ym

ℓ (θi, φi)

⎧⎪⎪⎨⎪⎪⎩
rℓi /a

ℓ ri<a

aℓ+1/rℓ+1
i ri>a,

, (25)

where ℓmax is an integer number large enough to achieve convergence.
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The coefficients bℓm
i (ω) (with i = 1, 2) are determined by applying the modified boundary

conditions given by Eq. (17). For d∥(ω) = 0, we obtain

bℓm
1 (ω) = ξ(a, ℓ,ω)

∫
Ω1

dΩ1 [Ym
ℓ (θ1, φ1)]

∗ ∂

∂r1

(︁
Vext(r1) + Vind,2(r2,ω)

)︁
|r1=a,

bℓm
2 (ω) = ξ(a, ℓ,ω)

∫
Ω2

dΩ2 [Ym
ℓ (θ2, φ2)]

∗ ∂

∂r2

(︁
Vext(r2) + Vind,1(r1,ω)

)︁
|r2=a,

(26)

with
ξ(a, ℓ,ω) =

−a(εm(ω) − 1)(1 + ℓd⊥(ω)/a)
(ℓ + 1)(1 + ℓd⊥(ω)/a) + ℓεm(ω)(1 − (ℓ + 1)d⊥(ω)/a)

, (27)

and the integrals extending over the solid angles Ωi = {θi, ϕi}.
Inserting Eq. (25) into Eq. (26), the coefficients bℓm

1 (ω) and bℓm
2 (ω) can be written in matrix

form,
bℓm

1 (ω) =
(︂
I − T2→1T1→2

)︂−1 (︂
bℓm

ext,1(ω) + T
2→1bℓm

ext,2(ω)
)︂

,

bℓm
2 (ω) =

(︂
I − T1→2T2→1

)︂−1 (︂
bℓm

ext,2(ω) + T
1→2bℓm

ext,1(ω)
)︂

,
(28)

where I is the identity matrix,

bℓm
ext,i(ω) = ξ(a, ℓ,ω)

∫
Ωi

dΩi [Ym
ℓ (θi, φi)]

∗ ∂

∂ri
Vext(ri)|ri=a, (29)

and the elements (ℓm, ℓ′m′) of matrices T2→1 and T1→2 are given by

T2→1
ℓm,ℓ′m′ = ξ(a, ℓ,ω)

∫
Ω1

dΩ1[Ym
ℓ (θ1, φ1)]

∗ ∂

∂r1

(︄
Ym′

ℓ′ (θ2, φ2)
aℓ′+1

rℓ′+1
2

)︄
|r1=a,

T1→2
ℓm,ℓ′m′ = ξ(a, ℓ,ω)

∫
Ω2

dΩ2[Ym
ℓ (θ2, φ2)]

∗ ∂

∂r2

(︄
Ym′

ℓ′ (θ1, φ1)
aℓ′+1

rℓ′+1
1

)︄
|r2=a.

(30)

Once the coefficients bℓm
1 (ω) and bℓm

2 (ω) are obtained by solving Eq. (28), the electric potential
induced by each metallic nanoparticle is completely determined according to Eq. (25), and
therefore, the self-interaction Green’s function of a spherical dimer within the Feibelman model
can be straightforwardly calculated using GF(rQE, rQE,ω) = −∇Vind(r = rQE,ω). Notice that
the same procedure reported in this Appendix is used to obtain the classical LRA results of the
dimer, where one can apply the condition d⊥(ω) = 0, and thus ξ(a, ℓ,ω) = −a(εm(ω)−1)

(ℓ+1)+ℓεm(ω)
.

C. Contribution of plasmonic modes of order ℓ to the total self-interaction Green’s
function within TDDFT

In this Appendix, we explain how we obtain within TDDFT the resonant frequencies ωℓ shown
in Fig. 4(a), as well as the contribution Gℓ(rQE, rQE,ω) of different plasmonic modes of order ℓ
to the total Green’s function spectra shown in Fig. 4(b). The self-interaction Green’s function
G(rQE, rQE,ω) of the studied metallic nanoantennas is obtained within TDDFT from the time-
dependent Hartree potential Vh[n](r, t) (Eq. (10)). This Hartree potential satisfies Poisson’s
equation

∇2Vh[n](r, t) = −4π (n(r, t) − n+) . (31)

For the single spherical metallic nanoparticle subjected to external illumination polarized
along the z-axis, the system possesses rotational symmetry with respect to the z-axis, i.e., it
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is independent of the azimuth angle φ. It is thus convenient to write Vh[n](r, t) as a sum of
Legendre polynomials Pℓ(cos θ),

Vh[n](r, t) =
∞∑︂
ℓ=0

1
r
ϕℓ(r)Pℓ(cos θ). (32)

Then, by expressing the operator ∇2 in spherical coordinates, Eq. (31) can be written as

∞∑︂
ℓ=0

1
r

[︃
d2

dr2 −
ℓ(ℓ + 1)

r2

]︃
⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏞

Aℓ

ϕℓ(r)Pℓ(cos θ) = −4π
∞∑︂
ℓ=0

nℓ(r, t)Pℓ(cos θ), (33)

where

nℓ(r, t) =
2

2ℓ + 1

∫ 1

−1
(n(r, t) − n+)Pℓ(cos θ)d(cos θ), (34)

and we express the operator Aℓ =
[︂

d2

dr2 −
ℓ(ℓ+1)

r2

]︂
in matrix form using the method of Fourier-

Grid-Hamiltonian [131].
From Eq. (33), ϕℓ(r, t) is then directly obtained from

ϕℓ(r, t) = −4πA−1
ℓ [r nℓ(r, t)] . (35)

Thus, according to Eqs. (10)–11 the contribution Gℓ(rQE, rQE,ω) of the different plasmonic
ℓ-modes to the total self-interaction Green’s function G(rQE, rQE,ω) can be obtained within
TDDFT from

Gℓ(rQE, rQE,ω) =
1
pd

∫ Tf

0
∇ϕℓ(r = rQE, t)Pℓ(cos θ = 1)ei(ω+iη/2)tdt, (36)

with TF = 3500 au the total propagation time and η = 0.07 eV.
The TDDFT results of Gℓ(rQE, rQE,ω) obtained from Eq. (36) do not follow a perfect

Lorentzian profile (Fig. 4(b)), and therefore defining a resonant frequency ωℓ of the plasmonic
mode ℓ is not straightforward. This is particularly evident in the case of resonances with large
plasmonic order ℓ, which exhibit a broad and complex spectral structure. In this study, we define
the resonant frequency ωℓ within TDDFT (shown in Fig. 4(a)) as the mean value between the
two frequencies at which Im{Gℓ(rQE, rQE,ω)} is half of the maximum value.
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