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Abstract: Plasmonic resonances in metallic nanostructures can strongly enhance the emission
from quantum emitters, as commonly used in surface-enhanced spectroscopy techniques. The
extinction and scattering spectrum of these quantum emitter-metallic nanoantenna hybrid systems
are often characterized by a sharp Fano resonance, which is usually expected to be symmetric
when a plasmonic mode is resonant with an exciton of the quantum emitter. Here, motivated by
recent experimental work showing an asymmetric Fano lineshape under resonant conditions, we
study the Fano resonance found in a system composed of a single quantum emitter interacting
resonantly with a single spherical silver nanoantenna or with a dimer nanoantenna composed of
two gold spherical nanoparticles. To analyze in detail the origin of the resulting Fano asymmetry
we develop numerical simulations, an analytical expression that relates the asymmetry of the
Fano lineshape to the field enhancement and to the enhanced losses of the quantum emitter
(Purcell effect), and a set of simple models. In this manner we identify the contributions to the
asymmetry of different physical phenomena, such as retardation and the direct excitation and
emission from the quantum emitter.

© 2023 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

Plasmonic resonances supported by metallic nanoantennas can confine light to hot spots of
extremely small effective volumes (of the order of ∼ 10 nm3) [1–5], leading to very efficient
interaction with quantum emitters, such as quantum dots, solid-state color centers, or molecules.
This interaction can modify the optical properties of the optical transition of a quantum emitter
(QE), for example enhancing its emission rate, which can be exploited in a variety of applications
in nanophotonics [6–8]. For example, in surface-enhanced spectroscopy, the coupling with the
plasmonic nanoantennas enables the optical characterization of very small amounts or even
single molecules [3,4,9–17]. Other applications include quantum information processing [18,19],
biosensing [20,21], or the enhancement of optical non-linearities [22–24].

In this context, the elastic response of QEs interacting with nanoantennas often results in a
distinctive narrow spectral feature, the so-called Fano resonance, that has been characterized in
many different nanophotonic systems [14,25–32]. The Fano resonance can consist in a symmetric
dip in the spectrum or in a very asymmetric lineshape [11,13,33–35]. It is generally well
understood that the asymmetry of the Fano features depends strongly on the detuning between the
resonance of the QEs and that of the plasmonic nanoantenna. A symmetric Fano dip is typically
expected when the detuning of the QE and the nanoantenna resonances is zero (resonant system),
and it becomes increasingly asymmetric as the detuning is increased [10–13]. However, it has
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been recently emphasized [14] that clear asymmetric Fano lineshapes can also be found for zero
detuning. In this paper, we analyze in detail the origin of the additional asymmetry of the Fano
lineshape in the spectra of resonant plasmon-exciton systems. We consider an exciton of a single
QE in resonance with an optical mode of a metallic nanoantenna, but the conclusions can be
extended to other similar systems.

In this study, we first focus (sections 2–3) on the extinction cross-section spectrum of a silver
spherical nanoparticle interacting resonantly with a QE. We first introduce a simple model that
identifies why a symmetric Fano feature is typically expected under resonant conditions [10–13],
and then we use rigorous electromagnetic calculations to show that an asymmetry in the spectrum
can be present in a realistic configuration. The different phenomena that lead to the asymmetry
are introduced and analyzed in detail in section 3, where we first develop an analytical expression
that decomposes the Fano asymmetry factor into two different contributions. Furthermore,
we implement a series of simple models to analyze how the Fano asymmetry is influenced by
different aspects in the nanoantenna-QE interaction, such as retardation, direct illumination
and emission of the QE, and the contribution to the dielectric permittivity of the nanoantenna
from the band structure of d-electrons. Finally, in section 4 we illustrate the general validity of
our study by analyzing a more complex nanoantenna, a dimer composed of two spherical gold
nanoparticles. This study can help to better understand the asymmetry in Fano features beyond
the detuning between exciton and plasmon resonances.

2. Fano asymmetry under resonant conditions

To illustrate why a symmetric Fano dip is expected under resonant conditions of excitation of a
nanoantenna and a QE, and to expose how this expectation is not always fulfilled, we first compare
i) the extinction cross-section of a canonical nanoantenna-QE system obtained using a simple
model that results in a symmetric Fano dip with ii) the exact calculations giving an asymmetric
Fano lineshape. We consider a silver spherical nanoparticle (nanoantenna) of radius r = 20 nm
coupled to a QE under weak illumination. We treat the QE as a point-like dipole, representing
an excitonic transition with polarizability along the direction perpendicular to the surface of
the plasmonic nanoantenna (x-axis). The dipolar plasmon mode of the nanoantenna and the
excitonic transition of the QE are resonant at the same wavelength λ0 (frequency ω0 = 2πc0/λ0,
with c0 the speed of light in vacuum). The system is situated in a vacuum, and it is excited by a
plane wave of amplitude E0 polarized parallel to the dipole orientation (Fig. 1(a)).

To obtain the extinction spectrum of the hybrid QE-nanoantenna system, we first consider a
simple dipole-dipole interaction model that treats the spherical nanoantenna as a second point-like
dipole positioned at its center, representing the dipolar plasmon mode. In typical plasmonic
systems, the fields induced by the nanoantenna at the position of the QE are much larger than
the incident field [3,9], so that the direct illumination of the QE can be neglected. Using this
assumption and the quasistatic approximation, we obtain the following coupled equations for the
dipole moments (oriented along the x-axis) induced in the QE, pe, and in the nanoantenna, pa:

pe = αeG
qs
x,xpa, (1)

pa = αa(E0 + Gqs
x,xpe), (2)

with αa and αe the polarizability of the nanoantenna and of the QE, respectively, and Gqs
x,x the

{x, x}–component of the quasistatic Green’s function, which describes the field propagation
between dipoles. Within a Drude model description of the permittivity of the metal and using a
Drude-Lorentz model for the optical response of the QE, the αe and αa polarizabilities become:

αe =
Ae

ω2
0 − ω

2 − iγω
, (3)
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Fig. 1. Fano asymmetry under resonant nanoantenna-QE conditions. (a) Scheme of the
system studied in sections 2–3. A QE is placed at a distance d from the surface of a silver
spherical nanoparticle of radius r. An excitonic transition couples resonantly with the dipolar
mode of the nanoparticle. The excitonic transition in the QE is polarized along the x-axis
that joins the center of the nanoantenna and the QE. The system is illuminated by a plane
wave propagating along the z-axis with electric field polarized along the x-axis. (b) and (c)
Extinction cross-section of the hybrid system, σExt, normalized to the spectra of the bare
sphere, σ(0)Ext as obtained within (b) the simple dipole-dipole interaction model described in
sections 2 and 3.3.1 and (c) within the rigorous Mie’s theory calculations. The spectra are
vertically displaced by 1.25 for clarity and plotted as a function of the wavelength detuning
(∆λ = λ − λ0) with respect to the resonance of both nanoantenna and QE (λ0). Each spectral
line is evaluated for different distances, d, between the QE and the surface of the antenna
(indicated in the figure). In both calculations, the radius of the silver spherical nanoparticle
is r = 20 nm. The exact calculations consider the experimental permittivity of silver [36] to
model the response of the nanoantenna (leading to λ0 = 359.78 nm). On the other hand, in
the approximated dipole-dipole interaction model we use the Drude model to describe the
dielectric function of the silver nanoantenna, εa = 1 − ω2

p/[ω(ω + iκ)], with ℏωp = 6.06 eV
and ℏκ = 0.62 eV, obtaining λ0 = 354.59 nm for the dipolar excitation.

αa =
Aa

ω2
R − ω2 − iκω

, (4)

where the strength of the coupling between the two dipoles is determined by the polarizability
amplitude of the QE, Ae, and that of the plasmonic nanoantenna Aa. The frequency ωR = ωp/

√
3

is the frequency of the dipolar plasmon resonance in the nanoantenna (with ωp the Drude plasma
frequency). Here we chose ωR to match ω0 (ωR = ω0), the resonant excitation frequency of the
QE. Last, ω = 2πc0/λ is the frequency (with λ the wavelength) and γ and κ are the spontaneous
decay rate of the QE and the plasmonic intrinsic decay rate, respectively. Throughout this work
we consider that the dipole moment of the excitonic transition is µ = 0.05e·nm (e is the electron
charge), which sets the polarizability amplitude of the QE Ae = 2ω0µ

2/ℏ and the spontaneous
decay rate γ = ω3

0µ
2/(3πε0ℏc3

0) (ℏ is the reduced Planck constant). We do not consider other
intrinsic molecular losses beyond γ. Substituting Eqs. (3) and (4) into Eqs. (1) and (2) one
obtains:

(ω2
0 − ω

2)pe − iωγpe = AeG
qs
x,xpa, (5)

(ω2
0 − ω

2)pa − iωκpa = AaG
qs
x,xpe + AaE0. (6)
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Here, the polarizability amplitude of the nanoantenna determines how efficiently is the system
excited (via the term AaE0). Equations (1)–(6) and the expression used to obtain Aa are discussed
in more detail in section 3.3.1.

We note that Eqs. (5) and (6) are very similar to those obtained with phenomenological models
that assume that the QE and the plasmonic nanoparticle can be treated as two coupled harmonic
oscillators. This coupled-harmonic-oscillators model has been frequently used to describe the
interaction between quantum emitters and nanoantennas [14,37,38].

We show in Fig. 1(b) the extinction cross-section spectrum of the hybrid QE-nanoantenna
system obtained using Eqs. (5) and (6) for different values of the separation distance d between
the QE and the surface of the nanoantenna (the value of d affects the quasistatic Green’s function,
Gqs

x,x, and, thus, the QE-nanoantenna interaction). The extinction cross section σExt is normalized
to the corresponding value of the bare nanoantenna σ(0)

Ext and it is obtained assuming that the
direct emission of the QE is negligible (pa ≫ pe), which is a typical situation in plasmonic
systems. In this case, the optical theorem [39] gives

σ
simp
Ext (ω) =

2π
λε0

Im
{︃

pa(ω)

E0

}︃
, (7)

where ε0 is the vacuum permittivity and the super index “simp” emphasizes that this is a simplified
expression that only considers the emission from the nanoantenna.

The normalized extinction cross-section in Fig. 1(b) features an almost constant background
and the emergence of a spectrally narrow dip at the resonant wavelength λ0 for all the separation
distances d considered. The background corresponds to the very broad plasmonic response and
the dip to the Fano feature. Importantly, the Fano dip obtained within this simple dipole-dipole
interaction model (Eqs. (5)–(7)) is always perfectly symmetric. The origin of this symmetric
Fano dip can also be understood from a different perspective as a result of the interference of the
fields scattered by the systems (see Appendix A).

We next use Mie’s theory to obtain the exact electromagnetic response of the system
(Supplement 1). Figure 1(c) shows the resulting extinction cross section obtained for the same
system and distances d as in Fig. 1(b). These exact calculations exhibit again a broad background
due to the response of the bare plasmonic nanoantenna and a narrow Fano feature caused by the
coupling between the QE exciton and the plasmonic resonance of the nanoantenna. However, the
Fano lineshapes show clear differences compared to those obtained with the simple dipole-dipole
interaction model (Eqs. (5)–(7) and Fig. 1(b)). Overall, the Fano features are broader for the exact
calculations than for the simple model. Further, the exact calculation also results in a shift of the
Fano features, induced by the photonic Lamb shift, not included in the simple model. The shift
and larger broadening are clearer for small nanoantenna-QE separation distances (d<20 nm) and
are mainly a consequence of the coupling between the QE exciton and the higher-order modes of
the nanoantenna [40–51]. Crucially, the Fano feature obtained within the exact calculations is
not necessarily a perfectly symmetric dip, but it can take different lineshapes. This shape evolves
from a broad and almost symmetric dip at short separation distances (d<15 nm) towards a narrow
and almost symmetric peak at large separation distances (d>60 nm). In the range between these
two extremes, the Fano feature becomes clearly asymmetric.

Thus, we have shown that the prediction of a symmetric Fano dip obtained with a simple
dipole-dipole interaction model can strongly differ from the results of the exact calculations, where
significantly asymmetric lineshapes emerge (see also discussion based on fields interference
in appendix A). We emphasize that this asymmetry is not due to plasmon-exciton detuning
as the resonance condition of zero detuning is preserved in all cases. In the following, we
analyze in detail the different physical mechanisms that lead to asymmetric Fano lineshapes for
QE-nanoantenna systems under resonant conditions.

https://doi.org/10.6084/m9.figshare.21929802
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3. Dissection of the asymmetry

To analyze the Fano asymmetry in more detail we first describe, in subsection 3.1, an equation of
the Fano lineshape that allows for quantifying the asymmetry with a single factor q [14,26]. Then,
in subsection 3.2, we show that this asymmetry factor can be decomposed into two contributions,
each of them described by a simple analytical expression. We finally evaluate in subsection 3.3
the asymmetry factor using a series of analytical dipole-dipole interaction models of increasing
accuracy to understand how different phenomena affect the Fano profile. Throughout this section
we study the same system introduced in section 2 (scheme in Fig. 1(a)).

3.1. Fano lineshape

The extinction cross-section of a QE-nanoantenna system excited by a plane wave can be described
by a modified Fano lineshape [14,26] (assuming that the spectral width of the QE emission is
much smaller than the width of the spectral response of the nanoantenna):

σExt(Ω)

σ
(0)
Ext

≈
(Ω + q)2 + B
Ω2 + 1

, (8)

which depends on three parameters, q, Ω, and B (see section S1 of Supplement 1 for a detailed
derivation). q is the total asymmetry factor (also called Fano-parameter) that captures the
asymmetry of the Fano lineshape of the extinction cross-section spectrum, and it is the main
focus of this work (in section S6 of Supplement 1 we also study the asymmetry of the Fano
features found in resonant conditions in the scattering cross-section spectrum). Ω is a normalized
frequency given by

Ω =
ω′

0
2 − ω2

ωγ′
, (9)

where
ω′

0 = ω0 + ∆ω, (10)

and
γ′ = (1 + PF)γ. (11)

∆ω is the photonic Lamb Shift that corresponds to a slight shift in the resonant frequency
from ω0 to ω′

0. PF in Eq. (11) denotes the Purcell Factor, which describes the broadening of
the dip and which is directly related to an increase of the local photonic density of states [40].
Both effects can be clearly observed in the spectra of Fig. 1(c). The expression of γ′ assumes no
intrinsic losses beyond γ, but it can be modified in a straightforward manner to include additional
intrinsic losses. Last, B in Eq. (8) is the zero-dip parameter that can be related to the factor q and
the contrast C =

√︁
2(B + 1)q2 + (B − 1)2 + q4. Here, we define the contrast C of the Fano feature

as the difference between the maximum and the minimum of the Fano feature in the normalized
extinction cross-section spectrum (see inset in panel 2 of Fig. 2(e)).

Thus, changes on the Fano spectral lineshape can be understood by analyzing the parameters,
q, C, PF, and ∆ω (the last two determining Ω). These parameters can be obtained from the
classical Green’s function and the field enhancement of the plasmonic antenna at the position of
the emitter according to the expressions derived in Supplement 1, section S1. In Fig. 2(a)-(d), we
systematically study the dependence of these parameters with the radius of the silver spherical
nanoparticle, r, and the distance between the antenna and the emitter, d. All values are obtained
from exact Mie’s theory calculations using the experimental values of the silver permittivity
[36] and assuming resonant conditions; i.e., for each radius, we find the frequency of the dipolar
plasmonic resonance of the antenna (lowest-energy peak in the extinction cross-section spectrum
of the bare nanoantenna), and we modify the energy of the QE transition accordingly. To illustrate

https://doi.org/10.6084/m9.figshare.21929802
https://doi.org/10.6084/m9.figshare.21929802
https://doi.org/10.6084/m9.figshare.21929802
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Fig. 2. (a-d) Contour plots of the parameters defining the Fano lineshape, obtained within
Mie’s theory. (a) Purcell Factor, PF, (b) Lamb Shift, ∆ω, (c) contrast, C, and (d) total
asymmetry factor, q as a function of the distance, d (the minimum distance in the panels is
d = 2 nm), from the QE to the surface of a silver spherical antenna with different radius, r.
The resonance of the QE is chosen to match the frequency of resonance of the nanoantenna
for all sizes of particles, r. (e) Normalized extinction spectra evaluated for points marked as
1, 2, 3, and 4 in (a)-(d). The values of r and d for each point are indicated in the labels of (e).

the resulting Fano lineshape described by the parameters in Figs. 2(a)-(b), we also show, in
Fig. 2(e), the extinction cross section spectrum for four different points indicated in Figs. 2(a)-(d)
(the values of r and d for each point are given in the labels of Fig. 2(e)).

For all the radii considered, the Purcell Factor, PF, (Fig. 2(a)), and the photonic Lamb shift ∆ω
(Fig. 2(b)) strongly increase when the QE approaches the antenna, as shown in previous studies
[40–48]. This increase is due to the more efficient coupling of the QE with the plasmonic modes
of the nanoantenna, particularly with high-order modes. In subsection S7 of Supplement 1, we
show a cut in the contour plot of PF in Fig. 2(a) as a function of the separation distance d for
three fixed reference values, r = 15 nm, r = 45 nm, and r = 65 nm.

On the other hand, the contrast, C, presents a more complex dependence with the radius, r,
and the distance, d (Fig. 2(c)). We can distinguish three different distance regimes in this figure.
For short distances (d ≲ 10 nm), the QE couples very efficiently to the higher-order modes of
the spherical nanoparticle, and the resulting quenching of the emission [49–51] leads to the
disappearance of the Fano dip (small contrast). For intermediate distances (compared to the
radius, i.e. 10 nm ≲ d ≲ 3r), the quenching becomes less significant, and the Fano feature
emerges with a reasonably big contrast (1 ≳ C ≳ 0.5, purple-reddish region in Fig. 2(c)). In
this regime of distances, the contrast is smaller for spheres with r ≳ 40 nm, which is mainly
a consequence of two destructive interference effects, the first between the excitation of the
QE by the illumination plane–wave and by the antenna-induced near fields, and the second
between the light emitted by the QE directly and via the nanoantenna. Last, as the separation
distance is made significantly larger than the radius (d ≳ 3r), the QE progressively decouples
from the nanoantenna, and the extinction cross-section of the whole system evolves toward the
superposition of the peak of the extinction cross-section of the QE in a vacuum on top of the broad
background spectrum of the bare spherical nanoparticle. We can then express the extinction
cross–section of the whole system at very long separation distances as (σ(0)

Ext + σ
QE
Ext )/σ

(0)
Ext, where

σQE
Ext is the extinction cross-section of the QE in a vacuum. As we have considered that the

https://doi.org/10.6084/m9.figshare.21929802
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QE only has radiative losses due to the spontaneous decay, σQE
Ext is larger than the extinction

cross-section of the bare spherical nanoparticle σ(0)
Ext [52] (σQE

Ext = 6π(ω0/c0)
2>σ

(0)
Ext), and the

contrast becomes higher than one, C>1.
Last, Fig. 2(d) shows the relatively complex dependence of the total asymmetry factor q with

radius r and distance d. The Fano asymmetry is small (|q|<0.2) for d ≲ 10 nm (corresponding to
a symmetric dip) and for large distances, d ≳ 150 nm, (corresponding to an almost symmetric
peak). At intermediate distances (10 nm ≲ d ≲ 150 nm) the asymmetry is significantly larger,
with a maximum value at a distance d ∼ 50 nm, which is strongly dependent on the radius. We
also find that at large distances (d ≳ 150 nm) the asymmetry can take negative values and show
a damped oscillatory behavior of q with d (the dependence of q for a larger range of distances
is shown in section S5 of Supplement 1). Understanding this complex behavior is the main
objective of this work and it is analyzed in detail next.

3.2. Analytical expression of the total asymmetry factor

To further analyze the total asymmetry factor q of the Fano lineshape, we first separate it into
two main contributions, qE and qR according to the following analytical expression (derived in
section S1 of Supplement 1 by applying the optical theorem [39]):

q =
Aeλ

2
0

2πσ(0)
Extγ

′c0
Re{(−izd)e−i2πzd/λ0 (K + 1)GFF

x,x} =

=

(︄
Ae

2σ(0)
Extc0ε0

Im{K}

γ′

)︄
⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏞

qE

+

(︄
Ae

2σ(0)
Extc0ε0

Re{K}Im{K}

γ′

)︄
⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏞

qR

,
(12)

where ε0 is the vacuum permittivity, γ′ corresponds to the effective decay rate of the QE
(including the Purcell effect induced by the nanoantenna, Eq. (11)), Ae is the amplitude of the
polarizability of the QE (Eq. (3)), and σ(0)

Ext is the extinction cross section of the nanoantenna in the
absence of the QE. GFF

x,x is the (x, x) component of the Green’s tensor that gives the total emission
of the QE towards a detector situated in the far field in the forward z direction (considering the
direct emission as well as the antenna-mediated one), and zd is the distance to the detector (which
does not affect the final result). K is the field enhancement factor that we define as EAE

x = KE0,
where EAE

x is the x-component of the electric field induced by the nanoantenna at the position of
the emitter under illumination by a plane wave of amplitude E0. K does not include the direct
illumination of the emitter.

The first line in Eq. (12) shows the dependence of the total asymmetry factor q on the emission
and the excitation of the QE, i.e. on GFF

x,x and (K + 1) respectively. Further, we can relate the
emission and the excitation of the QE using reciprocity [53–55], and write q only as a function of
the enhancement K (second line of Eq. (12), see section S1 of Supplement 1). This simplification
allows us to focus on the effect of the enhancement K, and to split q into two different contributions
that we denote qR and qE (as indicated in Eq. (12)).

We focus first on the asymmetry factor qR. In section S2 of Supplement 1, we show that this
factor fully describes the asymmetry in resonant conditions if we ignore the direct excitation
and emission of the QE (q = qR). If we decompose explicitly the field enhancement into its
amplitude |K | and phase φA, we obtain:

qR =
Ae

2σ(0)
Extc0ε0

|K |2 sin(2φA)

γ′
. (13)

https://doi.org/10.6084/m9.figshare.21929802
https://doi.org/10.6084/m9.figshare.21929802
https://doi.org/10.6084/m9.figshare.21929802
https://doi.org/10.6084/m9.figshare.21929802
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We can further simplify Eq. (13) by connecting |K | with the enhanced decay rate γ′ as:

|K + 1|2

γ′
=
η

Dγ
, (14)

where η is the radiative yield (defined as the ratio between the radiative and the total decay rate
of the QE in the presence of the nanoantenna) [49]. D is a parameter that models the change of
the directionality of the emission of the QE due to the presence of the nanoantenna [44,56] and
it is typically close to one (D ∼ 1). We show in the section S3 of Supplement 1 how to derive
Eq. (14) by using reciprocity [53–55] and provide the exact definition of the directionality D.
For plasmonic nanostructures |K | is often much larger than 1 and we can then approximate the
equality in Eq. (14) as |K |2

γ′ ≈
η

Dγ , which results in

qR ≈
Ae

2σ(0)
Extc0ε0

η

Dγ
sin(2φA). (15)

Thus, the asymmetry factor qR only depends in this case on the phase of the field enhancement
φA, but not on its amplitude. In the simplified dipole-dipole interaction model considered in
section 2 (Eqs. (5)–(7)), φA = π/2 at resonance, and thus qR = 0. When φA deviates from π/2
(for example, due to retardation) qR ≠ 0, introducing an asymmetry in the Fano feature.

Figure 3(a) shows the values of qR calculated using the full electromagnetic Mie’s theory
to describe the scattering of the silver spherical nanoparticle. qR is again plotted in resonant
conditions as a function of the radius of the silver spherical nanoparticle r and the distance d
between the emitter and the surface of the nanoparticle. |qR | is largest for intermediate distances
(20 nm ≲ d ≲ 80 nm) where retardation is significant (and thus φA substantially different than
π/2) and |K | is of the order of 1 (see Eq. (13)). At shorter distances, |K | increases so that Eq. (15)
becomes more accurate, and at the same time sin(2φA) takes values close to 0, since retardation
becomes negligible. As a consequence, |qR | strongly decreases. On the other hand, at larger
distances, |K |2 becomes very small and γ′ becomes similar to the intrinsic decay rate γ. Thus,
|qR | gradually approaches 0, according to Eq. (13).

We next analyze the second asymmetry contribution, qE ∝ Im{K}/γ′ (Eq. (12)), which
appears when the direct excitation and emission of the QE is considered. The results of the
Mie’s calculation of qE are shown in Fig. 3(b). qE is small for long QE–nanoantenna distances

(a) (b)

Fig. 3. Values of the two asymmetry factors qR and qE. The values of (a) qR and (b) qE
given in Eq. (12) are shown for different radius r and distances of the QE to the surface d
(the minimum distance in the panels is 2 nm). These results are obtained using Mie’s theory
and the experimental permittivity of silver [36]. For each radius, r, the resonance of the QE
is chosen to match the frequency of the resonance of the nanoantenna.

https://doi.org/10.6084/m9.figshare.21929802


Research Article Vol. 31, No. 6 / 13 Mar 2023 / Optics Express 10305

(d>100 nm) because |K | approaches 0 and γ′ ≈ γ (we focus here on the absolute value of
qE and we discuss the change of sign for d ≈ 150 nm below). Indeed, for long distances the
system starts to decouple and we can approximately consider the response of the QE and the
nanoantenna separately. These two contributions interfere constructively so that we can directly
add up their respective extinction cross sections according to the optical theorem (see section S1
of Supplement 1). Thus, the final extinction cross-section spectrum is given by a symmetric peak
due to the QE emission added to the broad plasmonic peak (panel 4 in Fig. 2(e)), corresponding
to low values of qE and q.

Furthermore qE is also small at short distances (d ≲ 20 nm). In this case |K | ≫ 1 so that
qE ∝ Im{K}/γ′ → 0 because γ′ ∝ |K + 1|2γ (from Eq. (14)). These low values of qE for
small d could be expected since qE is given by the direct excitation of the QE; therefore qE
becomes negligible if the direct excitation is very small in comparison with the excitation via the
nanoantenna.

qE thus becomes largest for intermediate separation distances (20 nm ≲ d ≲ 80 nm), as
Fig. 3(b) shows. In this range of distances, the field induced by the spherical nanoparticle is
of similar strength as the field of the incident plane-wave (|K | ≈ 1). The excitation of the QE
is then given by an interplay between the direct and the antenna-mediated illumination, which
carry a different phase leading to large values of the asymmetry factor qE ≳ 0.6. We note that
in all this discussion, we have focused on the direct excitation, but a similar analysis can also
be developed in terms of the direct emission of the antenna, according to reciprocity, which
was adopted in the derivation of the expression of qE in Eq. (12). The analysis of the qE and
qR factors thus already gives insights into the general behavior of the total asymmetry factor q
(Eq. (12)) shown in Fig. 2(d). Notably, the relatively low values of q obtained for intermediate
radius (40 nm ≲ r ≲ 60 nm) in the 20 nm ≲ d ≲ 80 nm separation distance range, which results
in a characteristic “saddle” shape, are due to the addition of two asymmetry factors, q = qE + qR
of similar absolute value but opposite sign.

3.3. Effect of different optical response approximations on the asymmetry

To further understand the origin of the asymmetry q and its contributions, qE and qR, under
resonant conditions, we adopt different analytical dipole-dipole interaction models of increasing
levels of complexity. A general dipole-dipole description of the QE-nanoantenna system
introduced in section 2 (Fig. 1) is given by

pe = αe(E0 + Gx,xpa), (16)

pa = αa(E0 + Gx,xpe), (17)

where E0 is the amplitude of the excitation field and pa and αa are the induced dipole and the
polarizability of a single plasmonic mode of the nanoantenna (in our case the dipolar plasmonic
mode), respectively. pe and αe are the corresponding magnitudes of the exciton of the QE. αe
is given by Eq. (3) and during this section we use different models to describe αa. Gx,x is the
{x, x}-component of the Green’s function that describes the interaction between the QE and the
nanoantenna (either the quasistatic or the fully retarded expression).

Finally, the extinction cross section of the QE-nanoantenna system can be obtained from the
optical theorem [39] as:

σExt =
2π
λε0

Im
{︃

pa + pe
E0

}︃
. (18)

In the following, we introduce different approximations in Eqs. (16)–(18). In subsection 3.3.1
we first discuss the simplifications necessary to reproduce the simple model discussed in section
2 (Eqs. (1)–(6)). We then systematically modify this model to progressively build up a more
rigorous model that nicely reproduces results obtained with Mie’s theory (Figs. 2(d) and 3). In

https://doi.org/10.6084/m9.figshare.21929802
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this manner we can better identify how different effects contribute to each of the features of the
total asymmetry factor in resonance.

We show in Fig. 4(a)-(g) the total asymmetry factor q and its contributions qR and qE when
different modifications of the dipole-dipole interaction models are implemented. Each column of
the figure shows the results for particular assumptions in the model (as indicated by labels at
the bottom) and the first, second, and third row of the figure provide the values of qR, qE, and q
(respectively) evaluated for the same ranges of radius r and distances d as those in Figs. 3 and
2(a)-(d).

No RC RC IRCRC RC

(a) (b) (c) (d) (e) (f)

RC No RC

(g)

Fig. 4. Behavior of the asymmetry factors in the extinction cross-section in resonant
conditions (zero detuning between the nanoantenna and QE resonances) according to
different models. Each (a)-(g) column contains three panels showing the values of the
asymmetry factors qR (first row), qE (second row), and the total asymmetry factor, q = qE+qR,
(third row). The asymmetry factors are calculated for different values of the radius r of
the silver spherical nanoantenna, and the distance d between the nanoantenna and the QE.
The resonance of the QE is chosen to match the frequency of the dipolar resonance of the
nanoantenna for each radius r. The values shown in each (a)-(g) column are obtained using
the different models described in subsection 3.3. The values of the asymmetry factors are
saturated for values larger than 0.6 and smaller than −0.3. At the bottom of each (a)-(g)
column, we indicate the main features of the considered model with four labels colored in
green, yellow, or red. The red labels indicate a less accurate description of a given feature,
while the yellow and green indicate a progressively more accurate description. The label
“εMD” indicates that we use the modified Drude expression to describe the permittivity of
the nanoantenna. “εExp” indicates that we use the experimental values of the permittivity of
the nanoantenna [36]. “No RC” indicates that we do not consider the radiative correction.
“RC” indicates that we consider a simple radiative correction. “IRC” indicates that we use
an improved version of the radiative correction (31) [57]. “qE” indicates that we do not
consider the direct excitation and emission of the QE (and thus qE = 0). “qE” indicates that
we do consider the direct and emission of the QE. “Gqs

x,x” indicates that we use the quasistatic
Green’s function described in section 2. “GF

x,x” indicates that we use the full expression of
the Green’s function [40].
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3.3.1. Simple reference model

We consider first the simple dipole-dipole interaction model introduced in section 2. (Eqs. (5)–(7)).
This simple model describes the optical response of the coupled QE-nanoantenna system using
four simplifications in Eqs. (16)–(18):

i) The polarizability of the spherical nanoantenna, αa, is obtained using the quasistatic
approximation,

αa = 4πε0r3 εa − 1
εa + 2

, (19)

where εa is the dielectric permittivity of the nanoantenna.

ii) We describe the permittivity of the metallic nanoantenna using the Drude’s model,
εa = 1 − ω2

p/[ω(ω + iκ)], where ωp is the plasma frequency, and κ are the plasmon losses.
Inserting εa into Eq. (19), directly recovers the expression of the polarizability given
in Eq. (4), with Aa = 4πω2

pε0r3/3 and ω0 = ωp/
√

3. This expression of αa is purely
imaginary at resonance (ω = ω0).

iii) The QE is only excited by the field created by the nanoantenna (corresponding to Gx,xpa in
Eq. (16)), neglecting the direct excitation of the QE by the incident plane wave. Further,
we also neglect the direct emission of the QE to the far field as it is usually smaller
than the emission mediated by the nanoantenna. According to the optical theorem, the
extinction cross-section is then directly given by the induced dipole at the nanoantenna,
σExt ∝ Im{pa}.

iv) The interaction between the QE and the nanoantenna is described using the quasistatic
Green’s function

Gqs
x,x =

1
2πε0(r + d)3

, (20)

which is real-valued.

In the following, it is useful to summarize the optical response of the QE-nanoantenna system
assumed in this simple model by displaying the set of equations summarizing the model:

pa = αa(E0 + Gqs
x,xpe), (21)

pe = αeKE0, (22)

KE0 = Gqs
x,xpa, (23)

γ′ =

[︃
1 + Im

{︃
Aeαa
γω0

(Gqs
x,x)

2
}︃]︃
γ, (24)

σExt =
2π
λε0

Im
{︃

pa
E0

}︃
, (25)

where we have introduced the connection of the field enhancement factor K at the position of the
QE with the induced dipole moment of the nanoantenna and the Green’s function (Eq. (23)). We
also include the expression of the Purcell-enhanced effective decay rate of the QE, γ′ (Eq. (24)).
Both K and γ′ are key parameters to understand the changes on the asymmetry of the Fano
feature. This simple reference model always predicts a zero asymmetry factor (q = 0, qE = 0,
and qR = 0), as shown in section 2, and thus it is not included in Fig. 4.
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3.3.2. Contribution of d-electrons to the permittivity

The first modification to the simple dipole-dipole interaction model consists in changing the
dielectric permittivity of the nanoantenna from the simple Drude model εa = 1−ω2

p/[ω(ω + iκ)]
into a modified Drude expression εMD

a = ε∞ − ω2
p/[ω(ω + iκ)] (with ε∞ = 6, ℏωp = 9.17

eV, and ℏκ = 21 meV). εMD
a approximately includes the effect of the d-electrons of silver,

which allows for better describing the optical response of the silver nanoantenna. Within this
description, Eqs. (21)–(25) remain valid except that the polarizability of the nanoantenna is now
αMD

a = 4πr3(εMD
a − 1)/(εMD

a + 2), so that αMD
a is no longer a perfect Lorentzian function. As a

consequence the induced field enhancement K is not purely imaginary at resonance and the Fano
feature at resonance is no longer perfectly symmetric, q = qR ≠ 0, according to Eq. (15) (qE = 0
because we are not considering yet the contribution of the direct emission and excitation of the
QE). We show in Fig. 4(a) the results of the total asymmetry factor q and its contributions qE and
qR obtained within this model as a function of the radius r of the spherical nanoparticle and the
distance d between the QE and the surface of the nanoparticle. We observe how, although within
this model q ≠ 0 and qR ≠ 0, the asymmetry remains very small with q ≤ 0.01.

3.3.3. Simple radiative correction

We next consider a simple radiative correction to the nanoantenna polarizability αRC
a = αMD

a /[1−
iαMD

a (2π/λ)3/(6πε0)] [40,57,58] that accounts for the radiation damping of the nanoantenna
in a vacuum. This correction incorporates the scattering losses that broaden the resonance,
which were neglected in the previous quasistatic description (Fig. 4(a)). We note that, once
the radiative correction is introduced, the maximum of the extinction cross section σ(0)

Ext of the
bare nanoantenna dipolar resonance red-shifts spectrally with increasing size, and is found at a
slightly shorter wavelength than the corresponding maximum of the near–field enhancement |K |

[59,60]. In this paper we always consider that the resonant frequency of the QE, ω0, matches the
frequency at which σ(0)

Ext is maximum. We show in section S5 of Supplement 1 that the effect of
setting ω0 to the maximum of |K | is weak.

We show in Fig. 4(b) (second column of the figure) the resulting total asymmetry factor q (and
its contributions, qE and qR) obtained after substituting αMD

a by αRC
a in the simplest dipole-dipole

interaction model (21–23). This change mainly affects the value of K, which acquires a larger real
part at resonance as compared to the previous model (the phase of K deviates further from π/2)
and, thus, q = qR increases (Eq. (13)), with qE remaining equal to zero. In particular, qR becomes
larger with increasing r, as the effect of the radiative correction increases with the size of the
nanoantenna. qR also increases for shorter d due to the stronger enhancement |K |. However, the
asymmetry remains small (hardly noticeable in Fig. 4(b), with max(qR) ≈ 0.14). Last, we note
that this low value of q may lead to think that the radiative correction is of little importance in the
description of the total asymmetry factor. However, we emphasize in subsection 3.3.7 that, once
we go beyond the quasistatic approximation of the Green’s function, it is critical to consider a
correct description of the radiative correction.

3.3.4. Direct excitation and emission of the QE

In the next step we introduce the direct excitation of the QE by the plane wave and the direct
emission of the QE to the far field (third column, Fig. 4(c)). These two effects are introduced
at the same time because, due to reciprocity [53–55], their contribution to the asymmetry is
identical (demonstration in section S1 of Supplement 1). After all these changes the response of
the system is given by the following modified equations:

pa = α
RC
a (E0 + Gqs

x,xpe), (26)

pe = αe(1 + K)E0, (27)

https://doi.org/10.6084/m9.figshare.21929802
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KE0 = Gqs
x,xpa, (28)

γ′ =

[︃
1 + Im

{︃
Aeα

RC
a

γω0
(Gqs

x,x)
2
}︃]︃
γ, (29)

σExt =
2π
λε0

Im
{︃

pa + pe
E0

}︃
. (30)

The direct excitation of the QE by the incident plane wave of amplitude E0 is described by
the term αeE0 in Eq. (27). Similarly, the direct contribution from the QE to the extinction cross
section is given by the term ∝ Im{pe} in Eq. (30). In this scenario, the qE contribution to the
asymmetry is no longer zero, and the full expression of the total asymmetry factor, q = qE + qR,
needs to be considered (Eq. (12)). On the other hand, qR remains unchanged as compared to the
previous model.

As shown in Fig. 4(c) the resulting qE dominates the total asymmetry factor q, and follows
similar trends with distance as those described when discussing the results of the exact calculation
in Fig. 3. qE is small at long separation distances (d>100 nm) because the QE and the nanoantenna
start to behave independently, and also at short distances (d ≲ 20 nm) because the direct excitation
of the QE is very small compared to the excitation via the nanoantenna. qE is thus maximum at
intermediate distances within this model (20 nm ≲ d ≲ 80 nm) where the excitation of the QE
via the nanoantenna is of the same order of magnitude than the direct excitation by the incident
plane wave. The distance that maximizes qE follows a linear dependence with increasing radius r.
More precisely, the maxima are found for an approximately constant distance between the QE
and the center of the nanoantenna (d + r). This behavior occurs because in this description the
near fields are evaluated using the quasistatic Green’s function, which only depends on (d + r)3.
Further, despite the similar behavior of qE obtained with this model, and that obtained with the
rigorous calculation (compare Figs. 4(c) and 3(b)), some differences still remain. In particular
the latter decays more slowly with distance, it changes its sign as the distance increases, and
the maximum of qE is found at a similar distance d for all radii. Moreover, the current model,
given by Eqs. (27)–(30), is clearly insufficient to reproduce the exact qR contribution (compare
Figs. 4(c) and 3(a)).

3.3.5. Full retarded Green’s function

In order to further approach the exact response of the interacting system, we replace the quasistatic
near-field Green’s function in Eqs. (26)–(30) with the full expression [40] of the Green’s function
GF

x,x. Gqs
x,x = 1/[(2π)ε0(r+d)3] (Eq. (20)) is always a real number but GF

x,x is complex, with a phase
that changes with distance d largely due to the retardation phase associated with the propagation
of the fields. Furthermore, GF

x,x decays more slowly than Gqs
x,x with d because it includes terms

decaying as 1/(r+d) and i/(r+d)2 (corresponding to the far- and intermediate-field contributions,
respectively). These changes directly affect the phase and the modulus of the enhancement factor
(K = GF

x,xpa/E0) and thus both qE and qR (Eq. (12)), as shown in Fig. 4(d) (fourth column).
We first observe that the distance-dependence of the amplitude and phase of K induces the

change of sign of qE for d ≈ 150 nm (change from red to blue color), and also the overall slower
decay of its absolute value (|qE |) with d discussed above. We show in section S5 of Supplement
1 that qE oscillates for larger separation distances. The maxima values of qE are larger than those
in the previous model, mainly due to the far- and intermediate field contributions.

Further, we obtain clearly larger values of |qR | than in the previous model, with values of up to
|qR | ≈ 0.45, as compared to |qR | ≲ 0.14 in Fig. 4(c). According to Eq. (13) we can directly relate
these high values of qR to changes of phase of the field enhancement, φA. When the full Green’s
function GF

x,x is used, φA can considerably differ from π/2 for moderate and large d, which
explains the relatively large values of |qR |. |qR | is maximum for (r + d) ≈ 100 nm and it decays

https://doi.org/10.6084/m9.figshare.21929802
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for larger distances because the field enhancement becomes very small and, thus, |qR | ∝ |K |2/γ′

(Eq. (13)) progressively approaches zero.
The asymmetry contributions qE and qR take similar absolute values of opposite signs at

intermediate distances (20 nm <d<100 nm). As a consequence, the total asymmetry q = qE + qR
partially cancels in this regime, specially for radius 25 nm ≲ r ≲ 70 nm. Thus, q presents
a saddle point centered at r ≈ 40 nm and d ≈ 80 nm. The qualitative dependence of q with
radius and distance within this model is in good agreement with the rigorous Mie’s theory results
(Fig. 2(d)). We thus conclude that this improved model contains the fundamental elements to
capture the main features of the behavior of the total asymmetry factor.

3.3.6. Experimental permittivity

We can further increase the agreement with the Mie’s theory calculation by using the experimental
values εExp

a of the permittivity of silver, as taken from Ref. [36], instead of the modified Drude
model. The polarizability of the nanoantenna then becomesαRC-Exp

a = α
Exp
a (1/1−i(k3/6πε0)αExp

a )

with αExp
a = 4πr3(ε

Exp
a − 1)/(εExp

a + 2). Figure 4(e) (fifth column) shows the asymmetry
contributions calculated with this assumption. The changes as compared with the previous model
(Fig. 4(d)) are relatively small, and are mostly found for small spheres (r<25 nm), where we find
an increase of |qE | and a decrease of |qR |. Indeed, smaller spheres resonate at shorter wavelengths,
for which the contribution of the d-electrons to the experimental permittivity significantly
modifies the plasmonic response. The changes on the asymmetry due to the influence of the
d-electrons can be larger in other materials. For example, in section S5 of Supplement 1, we
show that including this effect is crucial to accurately describe the asymmetry factor for a QE
interacting with a gold nanoantenna.

3.3.7. Improved description of the radiative correction

Last we introduce a more accurate description of the radiative–corrected polarizability following
Ref. [57]:

αIRC
a =

α
Exp
a

1 − 3
5x2 ε

Exp
a −2

ε
Exp
a +2

− iαExp
a

(2π/λ)3
6πε0

− 3 x4

350
(ε

Exp
a )2−24εExp

a +16
ε

Exp
a +2

(31)

with x = 2πr/λ.
We implement this improvement to the dipole-dipole interaction model, which can be

summarized in a set of equations as:

pa = α
IRC
a (E0 + GF

x,xpe), (32)

pe = αe(E0 + K), (33)

KE0 = GF
x,xpa, (34)

γ′ =

[︃
1 + Im

{︃
Aeα

IRC
a
γω0

(GF
x,x)

2
}︃]︃
γ, (35)

σExt =
2π
λε0

Im
{︃

pa + pe
E0

}︃
. (36)

For ease of reference, we summarize all the aspects that are included in Eqs. (32)–(36) but not
in Eqs. (21)–(25) (the latter corresponding to the simplest model considered in this section): i)
the direct excitation and emission of the QE are included in Eqs. (33) and (36), respectively, ii)
the propagation of the fields beyond the quasistatic approximation is included by the full Green’s
function in Eqs. (32), (34), and (35), and iii) we use a modified version of the polarizability of
the spherical nanoparticle αIRC

a in Eqs. (32) and (35) that incorporates the effect of the radiation
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damping of the nanoantenna and considers the influence of d-electrons on the permittivity of the
material.

Figure 4(f) (sixth column) shows that by introducing the improved radiative correction
(Eq. (31)) the values of the asymmetry change very little, with the largest changes occurring for
r>50 nm (as compared to the results of the previous model in Fig. 4(e)). In particular the maxima
of |qR | and qE for r>50 nm have been displaced in Fig. 4(f) towards slightly larger distances
d. The reason for this displacement is that the new radiative correction redshifts the resonant
wavelength for large particles, which changes the ratio between the QE-nanoantenna distance and
the wavelength, (r + d)/λ (affecting the full Green’s function GF

x,x).
The resulting values of the total asymmetry factor q and the qR and qE contributions that

are obtained within this improved model (Fig. 4(f)) are in very good agreement with the exact
results shown in Figs. 2(d) and 3(a)-(b) for the radius and distances considered. The main
difference occurs in the shortest range of distances, d<10 nm. For such distances the Mie’s
theory calculation results in a very large increase of the decay rate γ′ due to the coupling with
the high-order modes of the plasmonic response [49], which is not included in the dipole-dipole
description analyzed here. The large increase of γ′ strongly reduces the asymmetry by increasing
the denominator in Eq. (12). However, this decrease is hard to appreciate in the figures, as the
value of q predicted by the most refined dipole-dipole interaction model (Eqs. (33)–(36)) is
already small for these short distances.

Equations (33)–(36) allow for a simple quantitative description of the total asymmetry factor
that enables to identify the different effects that influence the value of q. However, it is instructive
to further analyze the importance of the radiative correction. In the discussion above, the
introduction of the simpler radiative correction only led to a very small change of the asymmetry
(compare Fig. 4(a) and Fig. 4(b)), but this effect is small only when considering very simple
dipole-dipole interaction models. If the radiative correction is neglected in the final expressions
(Eqs. (33)–(36)) we obtain a completely inaccurate response for the total asymmetry factor (and
its contributions). This can be observed by comparing Fig. 4(g) (seventh column) with Fig. 4(f),
where the only difference between the two is that Fig. 4(g) ignores the radiative correction. We
have verified that including the radiative correction is necessary for all the models that use the
full Green’s function.

We have thus shown, in this section, how each approximation in the dipole-dipole interaction
affects the description of the Fano asymmetry for zero-detuning. This has allowed us to associate
the different aspects of the asymmetry with relevant physical effects.

4. Fano resonance in dimers

In the previous sections we have analyzed in detail the asymmetry of the Fano lineshape that
is revealed in the extinction cross section spectrum of a QE placed near a spherical metallic
nanoparticle (Fig. 1(a)), chosen as an example of a canonical nanoantenna. To demonstrate that
a similar analysis can be applied to more general nanostructures, we consider next the Fano
asymmetry for a QE situated in a junction between two spherical gold nanoparticles (a dimer
nanoantenna). This dimer configuration has been intensely studied because it induces a much
larger near–field enhancement than the single spherical nanoparticle, as sought, for example, in
surface-enhanced spectroscopy [4,5,61–66].

We show in Fig. 5(a) a scheme of the dimer configuration. The system is driven by an incident
plane wave of amplitude E0 that propagates along the z-axis, and polarized along the x-axis parallel
to the orientation of the point-like dipole that represents the QE and to the axis of symmetry of
the two spherical nanoparticles. We consider gold instead of silver nanoparticles in this section.
Despite having larger absorption losses, gold is widely used in surface-enhanced spectroscopy
because it does not oxidize and it is more handleable in experiments. The permittivity of gold is
taken from Johnson and Christy [36], the two spherical nanoparticles have a radius of r = 40
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nm, and we vary their surface-to-surface distance 2d. The emitter is placed in the middle of
the gap between the two nanoparticles (at distance d from the surface of each of them), and its
properties are the same as in the previous sections (strength µ = 0.05 e·nm, intrinsic decay rate
corresponding to the spontaneous radiative decay, and resonance frequency tuned as a function
of d to always match the dipolar resonance of the nanoantenna [67]), i.e., we keep the condition
of zero-detuning in all cases analyzed and shown here.

Fig. 5. Characterization of the Fano asymmetry in the extinction cross–section of a QE
coupled to a metallic dimer obtained at zero detuning (resonant conditions). (a) Scheme
of the dimer nanostructure. A QE with dipole momentum polarized along the x-axis is
placed between two gold spherical nanoparticles of radius r = 40 nm at a distance d from
the surface of each of them (the separation between the center of the two nanoparticles is
2(d + r)). The dimer axis is parallel to the x-axis. The system is illuminated by a plane
wave propagating along the z-axis and with the electric field polarized along the x-axis.
(b) Normalized extinction cross-section spectra σExt/σ

(0)
Ext of the coupled emitter-dimer

nanoantenna system. The spectra are vertically displaced by 1.5 for clarity. Each Fano
lineshape is evaluated for different values of d that range from d = 2.5 nm to d = 250 nm
(see labels in the figure). The spectra are grouped in three separate panels, each of them
plotted over a different spectral range, ∆λ. (c) Dependence with distance d of the Fano
total asymmetry factor q (blue line) together with its contributions qE (orange line) and qR
(green line). For each separation distance d of the calculations in (b) and (c) we have set the
resonance of the QE to match the frequency of resonance of the nanoantenna.

Figure 5(b) shows the extinction cross-section spectrum of this hybrid system calculated for
different values of d, as obtained from the solution of Maxwell’s equations using the Matlab
package MNPBEM17 [68–70] (the details of these calculations are given in the section S4 of
Supplement 1). A clear Fano feature is observed in all spectra, showing a qualitatively similar
dependence with distance as the results of the single spherical nanoparticle (Fig. 1(c)). In both
situations the Fano lineshape obtained at small distances d ≲ 10 nm corresponds to a broadened
and almost symmetric dip, while at much larger separation distances, d ≳ 200 nm, we observe
an almost symmetric narrow peak. Thus, q ≈ 0 in these two situations. For values of d between
these two extremes, the Fano spectrum shows various degrees of asymmetry.

Despite these qualitative similarities, the results obtained for the dimer nanoantenna (Fig. 5(b))
and a single silver nanoparticle (Fig. 1(c)) show some clear quantitative differences. For instance,
the Purcell factor PF and the photonic Lamb shift ∆ω experienced by the emitter, which describe
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the broadening and shift of the Fano feature, respectively, are much larger in the case of the dimer
due to the stronger field confinement [4,61,66] (PF ≈ 1.4 × 104 and ∆ω/γ ≈ 3.2 × 105 for the
dimer and d = 2.5 nm, to be compared with PF ≈ 4.3 × 102 and ∆ω/γ ≈ 4.4 × 103 for the single
silver spherical nanoparticle system of the same radius r and distance d). We also observe that
there is a clear asymmetry for a larger range of distances in the dimer as compared to the single
silver nanoantenna of the same radius (compare the three panels in Fig. 5(b) and Fig. 1(c))

To study the Fano asymmetry of the dimer system in more detail, we show in Fig. 5(c) the
dependence with d of the total asymmetry factor q (blue line) and its two components qE (orange
line) and qR (green line), as obtained from Eq. (12) (with q = qE + qR). For separation distances
d ≳ 30 nm the total asymmetry factor q is mainly influenced by the qE contribution, i.e. it is
mostly due to the direct excitation and emission of the QE. In a similar way as for the single
spherical nanoparticle, qE is larger at intermediate distances (20 nm ≲ d ≲ 200 nm for the dimer),
when the excitation and emission of the QE via the nanoantenna has a magnitude comparable to
the direct excitation by the incident plane wave and the direct emission of the QE to the far field,
respectively. Outside this range of distances this condition is not verified and qE is small.

On the other hand, the qR contribution (green line in Fig. 5(c)) dominates the total asymmetry
factor for d ≲ 30 nm. The distance dependence of qR can again be explained using Eq. (13),
which indicates that qR ∝ |K |2 sin(2φA)/γ

′. The |K |2/γ′ factor in this expression explains
many aspects of the general tendency of |qR |. For long separation distances, d ≳ 200 nm, the
field-enhancement factor |K | approaches zero, leading to small values of |qR |. For short distances
d ≲ 10 nm the quenching induced by the coupling of the emitter with the high–order modes of
the plasmonic dimer also becomes important [49]. As a consequence, the plasmon-enhanced
decay rate γ′ = (1 + PF)γ takes significantly higher values than the enhancement of the intensity
|K |2, leading to small values of |qR |. Between these two regimes of d, |K |2/γ′ is maximized,
so that |qR | can be relatively large. Additionally, qR is also influenced by the phase φA of the
enhancement, which changes with distance largely due to propagation effects. The resulting
sin(2φA) factor has an oscillatory behaviour with the separation distance with an approximated
period of 200 nm, and the changes of sign are directly reflected in the oscillation of qR, as shown
in Fig. 5(c) (green line). Further, sin(2φA) decreases sharply if the distance becomes smaller
than d ≲ 10 nm, emphasizing the rapid decrease of qR for this range of distances.

Overall the general trends of |qR | obtained for the dimer system as a function of separation
distance d (Fig. 5(c)) resemble the result obtained for the silver spherical nanoparticle (Fig. 3(a)),
both showing a clear maximum for intermediate distances. However, some significant differences
can be pointed out. The range of distances where |qR | is large extends towards significantly
smaller d in the case of the gold dimer (|qR |>0.25 for 10 nm ≲ d ≲ 70 nm) as compared to the
single silver spherical nanoparticle (|qR |>0.25 for 40 nm ≲ d ≲ 80 nm and r = 40 nm). Further,
qR takes relatively large positive values in the dimer structure (d ≲ 100 nm in Fig. 5(c)), in
contrast to the negative values of qR calculated for the single spherical nanoparticle of the same
radius (d ≲ 100 nm in Fig. 3(c)). This last difference mostly occurs due to the stronger influence
of the d-electrons in the permittivity of gold (used for the dimer material) as compared to silver
(for the response of a single gold spherical nanoparticle, see section S5 of Supplement 1). The
contribution of the d-electrons significantly modifies the phase of the field enhancement φA, and
thus the asymmetry.

5. Summary and conclusions

We analyze in detail the asymmetry of the Fano feature found in the extinction cross-section
spectrum of a nanoantenna interacting with a QE resonantly, i.e. the QE and the nanoantenna
have the same resonant excitation frequency, and thus, the asymmetry is not due to the detuning.
We have focused on the coupling with an exciton of a single QE but the conclusions also
apply to coupling with many QEs or with molecular vibrations. We first consider a spherical
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silver nanoantenna under laser illumination as a canonical nanoantenna. We show that the
spectra obtained with exact electromagnetic calculations of the optical response of the hybrid
QE-nanoantenna system under zero detuning present an asymmetry not found in a very simple
dipole-dipole interaction description.

The asymmetry of the Fano feature is quantified through a parameter q. We derive an analytical
expression of q that depends mainly on the field-enhancement and the plasmon-enhanced losses
of the QE. This expression can be decomposed into two contributions, q = qE + qR, where qE is
mainly connected with the direct emission and excitation of the QE, while qR mostly captures
other phenomena (such as retardation) that affect the phase of the field enhancement that the
nanoantenna induces on the QE.

The analytical expression of q evaluated with different dipole-dipole interaction models (with
an increasing degree of complexity) allow us to analyze in detail the origin of the asymmetry.
These models improve the description of the polarizability of the spherical nanoparticle and that
of the Green’s function that governs the QE-nanoantenna interaction. The implementation of
these models enables to identify the influence of five effects on the asymmetry: i) the radiation
damping of the nanoantenna, which makes it necessary to introduce a radiative correction to
its response. Ignoring this correction results in an completely unreliable description of the
optical response of large nanoparticles and thus of the resulting asymmetry; ii) the influence of
d-electrons on the permittivity of the plasmonic material, and thus of the polarizability of the
nanoantenna. This contribution is particularly important for nanoantennas that resonate at shorter
wavelengths (for example, small spherical nanoparticles); iii) the direct excitation of the QE by
the incident field exciting the system and the direct emission of the QE to the far-field, i.e. the two
contributions to the qE asymmetry factor discussed above; iv) the propagation of the fields beyond
the quasistatic near-field approximation. The asymmetry can be affected by the slowly-decaying
terms of the vacuum Green’s function (intermediate and far-field terms) and, especially, by
the retardation-induced changes of the phase of the fields induced by the nanoantenna at the
position of the emitter (and vice–versa); v) the changes of the optical response of the nanoantenna
due to its high–order modes. The high–order modes of the nanoantenna are not included in
the dipole-dipole interaction models analyzed in this work, but their influence is revealed by
comparing our most complete dipole-dipole interaction model with the rigorous calculations.
These rigorous calculations show reduced values of the asymmetry for short distances between
the QE and the nanoantenna due to the quenching induced by the coupling of the QE exciton to
the high-order plasmonic modes of the nanoantenna [49].

Further, we note that although the effect of the high-order modes for moderate and large
separation distances is relatively small for a single nanoantenna under laser illumination, it could
be more important when the illumination is a point-like source (tunneling current or a transition
dipole moment in a molecule) that can couple very efficiently to highly-confined modes. This
aspect could explain, for instance, the asymmetry observed in recent experiments that analyzed
the emission spectrum of a QE placed in a plasmonic nanocavity formed between the metallic tip
of a scanning tunneling microscope and a metallic substrate, with the system being excited by the
localized fluctuation of the tunneling current at optical frequencies [14].

Last, we show that the asymmetry analysis can also be applied to more complex nanostructures.
Specifically, we show that the modifications of the Fano features obtained for the single silver
spherical nanoantenna is similar to the results obtained for a gold dimer nanoantenna, with some
quantitative differences. As an example of these differences, the asymmetry contribution qR
is mainly positive for the gold dimer system and mainly negative of the single silver spherical
nanoparticle (of the same radius), which is mostly due to the larger influence of the d-electrons
in the permittivity of gold. However, we emphasize that the effects behind the origin of the
asymmetry are similar in both systems. Thus we conclude that the analysis proposed in this
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work provides insights into the origin of the asymmetry of the Fano lineshape applicable to very
general systems in nanophotonics.

Appendix A: origin of the Fano asymmetry as an interference effect

In this appendix we discuss how the asymmetry in the Fano lineshape of the extinction spectra
can be understood in terms of the phases of the different contributions to the scattered electric
field (or far-field), as sketched in Fig. 6 [26]. With this aim, we only need to consider the field
scattered in the forward direction Ed

x , which directly gives the extinction cross-section according
to the optical theorem [39] (σExt = 2λIm{zde−i2πzd/λEd

x/E0}, with zd the distance from the center
of mass of the nanoantenna to the detector).

Fig. 6. Scheme of the scattering process for our system. The incident plane wave (black
arrows) illuminate the QE and the nanoantenna. The nanoantenna scatters the incident light
directly (in the absence of the QE) to the far-field (solid blue arrow), and it also generates a
near-field that excites the exciton of the QE (dashed blue arrow). The excited QE generates a
field on the nanoantenna that is scattered back to itself, causing a self-interaction (dashed red
arrow), and a modification on the induced dipole moment on the QE. The self-consistently
excited QE emits directly (in the absence of the nanoantenna) to the far-field (solid orange
arrow) and also excites the nanoantenna (green dashed arrow). The field induced by the QE
on the nanoantenna is also scattered to the far-field (solid green arrow).

We first consider the scenario where the plane-wave illumination only excites the nanoantenna.
In this scenario, the QE is only driven by the near field induced by the nanoantenna (dashed
blue arrow in Fig. 6), i.e., we ignore the direct excitation of the QE by the plane wave (an
approximation often valid in plasmonic systems). Moreover, in this initial scenario, we also
ignore the direct emission by the exciton of the QE (solid orange arrow). Thus, we can distinguish
between two contributions to the scattered electric field at the detector: the scattering of the
nanoantenna in the absence of the QE, E⃗A-FF (solid blue arrow), and the scattered field by the
nanoantenna due to its excitation by the QE, E⃗EA-FF (solid green arrow). In simple scenarios,
we can predict the spectral symmetry of the Fano feature by analyzing the phase of these two
contributions to the total far-field emission.

To analyze the phases φA-FF and φEA-FF of the respective far-field contributions, E⃗A-FF and
E⃗EA-FF, we connect them with the phases of the near-field interactions between the antenna and
the QE. First, in the absence of the QE, the nanoantenna is only excited by the incident plane
wave and it generates a near field at the QE position, E⃗A-NF (dashed blue arrow in the figure).
E⃗A-NF has a phase φA-NF = φA-FF − δFF + δNF, where δFF = 2πzd/λ is the propagation phase from
the center of mass of the antenna to the detector. δNF = φA-NF − (φA-FF − δFF) is the difference
between φA-NF, the phase of the near field generated by the bare nanoantenna at the position of
the QE and (φA-FF − δFF), the phase of the far-field emission of the bare antenna subtracting the



Research Article Vol. 31, No. 6 / 13 Mar 2023 / Optics Express 10316

phase acquired due to propagation, δFF. δNF can include effects such as the near-field contribution
of high-order modes supported by the nanoantenna. However, in a simple scenario where an
electric dipole mode dominates the behavior of the nanoantenna, δNF is directly given by δP, the
phase acquired by the field propagation from the nanoantenna to the QE.

On the other hand, the fields scattered by the nanoantenna induce a dipole moment at the QE
with phase φA-NF + φE + φSI, where φA-NF is the phase of the fields scattered by the nanoantenna
in the absence of the QE as described above, and φE is the phase of the polarizability of the bare
QE. The φSI phase is included to take into account that the field scatters back onto the QE. This
self-interaction of the QE (dasher red-line in the figure) can be modeled as a modification of the
polarizability of the QE (see section S1 of Supplement 1), which adds the φSI phase to the response
of the bare QE. The dipole moment induced at the QE, generates a field at the center of the
nanoantenna E⃗EA-NF (dashed green line in the figure) with phase φEA-NF = φA-NF + φE + φSI + δP.

The near-field E⃗EA-NF excites the nanoantenna, which later scatters to the far-field giving the
E⃗EA-FF contribution with a phase

φEA-FF = φEA-NF + φA-FF + δ
′
NF. (37)

δ′NF is the difference in phase in the emission of the bare nanoantenna to the far field between a
situation when it is excited with a plane wave and when excited by a point-like dipole (with the
same phase). In the situation where the emission is equal in the direction towards the detector
and the direction toward the source of the excitation (as all systems considered here), we then can
apply reciprocity [53–55] and obtain δ′NF = δNF.

The difference between the phase φEA-FF of the E⃗EA-FF contribution and the phase φA-FF
of E⃗A-FF leads to constructive or destructive interference, which gives the Fano feature. For
example, the symmetric Fano dips obtained under resonant conditions in Fig. 1(b) for the simple
dipole-dipole interaction model (introduced in section 2) are due to perfect destructive interference
between E⃗EA-FF and E⃗A-FF at resonance (i.e., φA-FF − φEA-FF = π for resonant illumination). This
condition is fulfilled because, within this model, the δNF phase directly corresponds to the phase
of the near-field propagation δNF = δP, and δP = 0 due to the quasistatic approximation assumed
in the simple dipole-dipole interaction model, which also causes the self-interaction to have a
zero phase (φSI = 0). Furthermore, in the simple dipole-dipole interaction model, the phase
of E⃗A-FF is φA-FF = φA + δFF, where φA is the phase of the polarizability of the nanoantenna.
Finally, this model considers that the polarizability of the nanoantenna and of the QE (Eqs. (3)
and (4)) are purely imaginary at resonance (φA = π/2 and φE = π/2). Thus, by considering all
these effects, we obtain that, φA-FF = π/2 + δFF and φEA-FF = 3π/2 + δFF, resulting in perfect
destructive interference at resonance.

However, when considering the exact response, different phenomena can affect the phase of
the fields scattered by the QE and the nanoantenna and, thus, introduce an arbitrary degree of
asymmetry of the Fano lineshape even in resonance. For example, the phase of the field directly
scattered by the nanoantenna to the far field (minus the propagation to the far-field, φA-FF − δFF),
and the phase of the near fields induced by the nanoantenna at the QE (φA-NF) can be different
from π/2. The latter occurs, for instance, when the retardation in the propagation of the fields
from the nanoantenna to the QE is considered. Furthermore, the direct excitation of the QE by the
incident illumination and the direct emission of the QE, which were neglected above, needs to be
considered in the exact calculations. The direct illumination modifies the field exciting the dipole
and, thus, its phase. The direct emission of the QE contributes to the total scattered electric
field (orange line), introducing an additional interference in the total emission of the system. In
Supplement 1, we show that the near field is also strongly affected by similar interference effects.
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