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We use a recently derived gauge-invariant formulation of the problem of a two-level system coupled to an
optical cavity to explore the transition between the weak and the ultrastrong coupling regimes of light-matter
interaction. We explore this transition using the intensity correlations g(2)(τ ) of the emitted light, and we find
strong, unbounded bunching of the emission from systems governed by the Rabi Hamiltonian. Surprisingly,
this effect is observed not only in the ultrastrong coupling regime, but also for weakly coupled systems, where
the Jaynes-Cummings Hamiltonian would predict the opposite, antibunched emission. This suggests that the
higher-order correlations are a particularly sensitive probe of the divergence between the Jaynes-Cummings and
Rabi Hamiltonians, and they can serve as an indicator of the breakdown of the rotating wave approximation. Our
findings indicate also that the boundary between the weakly, strongly, and ultra-strongly-coupled dynamics is
much richer than currently accepted.
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I. INTRODUCTION

Many systems studied in cavity quantum optics are varia-
tions of its fundamental workhorse: a two-level system (TLS)
coupled to an optical cavity [1,2]. The behavior of the cavity-
TLS system (CTS) is dictated by the relationships between
the coupling strength (g) and the characteristic resonant fre-
quencies (ωσ and ωa) and dissipation rates (γ and κ) of the
TLS and the cavity, respectively. In particular, if g is smaller
than the dominant losses of the system [g � (κ + γ )/2, defin-
ing the weak coupling (WC) regime], any energy that enters
the system is likely lost before the exchange of excitations
between the cavity and the TLS can occur. On the other
hand, in the strong coupling (SC) regime for which g exceeds
the losses of the system [g � (κ + γ )/2], the cavity and the
TLS can coherently exchange excitations before the energy
is dissipated, inducing a hybridization in the response of the
CTS [3–5].

Large coupling strengths can lead the system into the so-
called ultrastrong coupling (USC) regime, where g becomes
comparable to the resonant frequencies of the cavity and TLS
[6]. The phenomenological limit for the onset of the USC is
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typically defined as g � 0.1ωa or g � 0.1ωσ (USC systems
are commonly studied in a resonant configuration where ωa =
ωσ = ω0). Importantly, systems operating in the USC regime
exhibit new characteristics and nontrivial properties, such as
the existence of a nonvacuum ground state [7,8], which would
be largely missed if attempting to describe them using the
typical approximations applied in the WC or SC regimes—
most importantly, the rotating wave approximation (RWA).

The emergence of new effects in the USC, and its boundary
with WC and SC regimes, is typically quantified through the
study of one-photon spectra S(1)(ω) of the emitted light by
tracing the intensities and frequencies of the spectral features,
leading to the usual criterion for USC (g � 0.1ωa). Alterna-
tively, we could choose to focus on the statistics, rather than
spectrum, of the emitted light by measuring its intensity corre-
lations g(2)(τ ) through the Hanbury, Brown, and Twiss (HBT)
interferometer [9–12] shown schematically in Fig. 1(a). Inten-
sity correlations should constitute a more sensitive probe to
the non-number-conserving dynamics generated by the Rabi
Hamiltonian [13], and they might delineate a far more com-
plex boundary of the USC regime.

In this work, we analyze the emission of an incoherently
pumped CTS, operating in the WC, SC, and USC regimes. We
focus on studying the intensity correlations g(2)(τ = 0) ob-
tained with two models: the quantum Rabi model (QRM), and
its widely used approximation—the Jaynes-Cummings model
(JCM). We embrace the formulation of the QRM recently
derived in a series of papers which have reconciled long-
standing questions about ensuring gauge invariance [14–19],
and proposed a complete description of the interaction be-
tween a USC system and the environment. This formulation
of the gauge-invariant QRM offers an opportunity to carefully
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FIG. 1. (a) Setup of the studied system. An incoherently driven
TLS interacts with an optical cavity. The emission of the cavity is
analyzed with a Hanbury, Brown, and Twiss (HBT) interferome-
ter (further discussed in the text), giving the intensity correlations
g(2)(τ ). (b) Intensity correlations g(2)(0) as a function of the coupling
parameter η = g/ω0, calculated using the QRM (solid lines; see
details in Sec. II A) and the JCM (dashed lines; Sec. II B). For the
strong incoherent pumping rate (�/γ = 10, orange lines), the results
of the two models coincide in the WC regime (η � 2.5 × 10−2) and
diverge for USC η � 0.1; for the weak pumping rate (�/γ = 10−6,
dark blue lines), correlations obtained with the JCM and the QRM
differ in the USC and WC regimes for any η � 5 × 10−3.

study two questions, which are of critical importance to the
field of cavity electrodynamics: (i) How does the statistics of
emission from a CTS change as we transition between differ-
ent coupling regimes? (ii) How does the JCM break down in
the USC regime? To illustrate these effects, in Fig. 1(b) we
plot g(2)(0) calculated using the QRM (solid lines) and the
JCM (dashed lines), and two different pumping rates (details
of the models and excitation schemes are discussed in Sec. II).
In contrast to the reported works on the emission from a
thermally pumped CTS [20,21], we find that under incoherent
illumination of the TLS, the emission of the CTS appears to
exhibit a seemingly unbounded bunching g(2)(0) � 1 [22].
Furthermore, we find that the two models (JCM and QRM)
can deviate significantly both in the USC [see the dashed and
solid orange lines diverging in Fig. 1(b) for η = g/ω0 � 0.1]
as well as in the WC regime (blue lines diverge for η ∼ 10−2;
for the parameters used in Fig. 1, the WC is defined as η �
2.5 × 10−2; see Sec. II A for details). The value of η at which
the two models deviate depends on the incoherent pumping
rate.

The strong deviation between the JC and QR models, ob-
served even in the WC regime in Fig. 1(b), is a surprising
result with far-reaching consequences. The JCM is the default
model for the majority of quantum-optical systems operating
in the WC and SC regimes, including the circuit QED [23],
exciton polaritons [24], or quantum plasmonics [25]. It is
therefore critical to understand how the Jaynes-Cummings
model unravels when probed using higher-order correlations
by comparing it to the more complete quantum Rabi model,
and carefully analyzing their relationship.

This work is structured as follows: In Sec. II we for-
mally introduce the system under study, the quantum Rabi
and Jaynes-Cummings Hamiltonians, and describe the for-
mulation of the excitation, emission, and dissipation of the
system. In Sec. III we identify the key mechanism which
gives rise to the strong bunching, shown in Fig. 1(b). Fi-
nally, in Sec. IV we probe the extent of this effect in the
USC, SC, and WC regimes, and we discuss how the in-
tensity correlations can help us identify the breakdown of
the RWA.

II. FRAMEWORK OF THE MODELS

In this section, we briefly review the formulation of the
quantum Rabi (Sec. II A) and Jaynes-Cummings (Sec. II B)
Hamiltonians. We describe how to formally address the in-
teraction of such systems with the environment, and how to
access the spectra and the intensity correlations of the emitted
light.

A. Quantum Rabi model

The exact description of the interaction between the cavity
and the TLS is given by the quantum Rabi Hamiltonian, which
we choose to write in the Coulomb gauge [14,15,26] as

Ĥ = h̄ωaâ†â

+ h̄ωσ

2
{σ̂z cos[2η(â + â†)] + σ̂y sin[2η(â + â†)]}. (1)

This form of the Hamiltonian was first derived by Di Ste-
fano et al. in Ref. [14], and it solves the critical problem of
the gauge-invariance required from the Hamiltonian. Here ωa

and ωσ are the resonant frequencies of the cavity and TLS,
respectively. In this work, we consider a resonant system
with ω0 ≡ ωa = ωσ , and introduce the normalized coupling
parameter η = g/ω0. Operator â denotes the cavity photon
annihilation, and σ̂z = σ̂ σ̂ † − σ̂ †σ̂ and σ̂y = i(σ̂ † − σ̂ ) are
the z and y Pauli operators associated with the TLS. The QR
Hamiltonian does not conserve the number of excitations, but
conserves its parity.

To characterize the statistical properties of the emission of
the CTS, we study the intensity correlations of the emitted
photons, g(2)(τ = 0), measured as

g(2)(τ ) = 〈I1(t + τ )I2(t )〉
〈I1(t + τ )〉 〈I2(t )〉 , (2)

where I1(t + τ ) and I2(t ) are the photocurrents registered by
the two detectors of the HBT interferometer, and τ is the
time delay between the detection events [see Fig. 1(a)]. For
zero time delay (τ = 0) and sufficiently large t (so the system
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FIG. 2. Eigenvalues obtained as a function of the coupling
strength within the (a) JCM and (b) QRM. For each |ν〉 (for the
JCM) or |ν〉R (for the QRM) eigenstate, we show 
E : the differ-
ence between its eigenenergy (h̄ων) and the ground-state energy
(h̄ω0).

reaches the steady state), this quantity is related to the statis-
tics of photons inside the cavity as [12]

g(2)(0) = 〈x̂†
ax̂†

ax̂ax̂a〉ss

〈x̂†
ax̂a〉2

ss

, (3)

where 〈Ô〉ss denotes the expectation value of operator Ô in the
steady state (ss). The operator

x̂a =
∑

ν,μ;ων>ωμ

|μ〉R R〈μ| i(â† − â) |ν〉R R〈ν| (4)

is the dressed operator of the cavity, which mediates the
losses and emission from the cavity [15,17]. It is expressed
in the basis of eigenstates |μ〉R because the emission from
the cavity occurs due to the transitions between the eigen-
states of the Hamiltonian (see Refs. [16,27] for an in-depth
discussion of this formulation and the role of the secular
approximation). Kets |ν〉R and |μ〉R in Eq. (4) are the eigen-
vectors of the QRM Hamiltonian, and h̄ων > h̄ωμ are their
respective eigenvalues, plotted as a function of η in Fig. 2(b).
The notation for QRM eigenstates used throughout the text,
|ν〉R ≡ |n±〉R, is chosen to recall the JCM polaritons [|n±〉 =
(|n, g〉 ± |n − 1, e〉)/

√
2], as the two match in the limit of

vanishing coupling g [see Figs. 2(a) and 2(b)]. Note that
throughout the text, we follow this naming convention for the
eigenstates even after the eigenvalue crossing points (see the
color code in the figure).

The dynamics of the system, described through the den-
sity operator ρ̂, is given by the master equation with the
gauge-invariant formulation of the Hamiltonian [14,17] and
dissipation terms [15,16,27]:

∂

∂t
ρ̂ = Lρ̂

= 1

ih̄
[Ĥ, ρ̂] + �

2
Dx̂†

σ
[ρ̂] + γ

2
Dx̂σ

[ρ̂] + κ

2
Dx̂a [ρ̂], (5)

with L denoting the Lindbladian superoperator, and
DÔ[ρ̂] = (2Ôρ̂Ô† − Ô†Ôρ̂ − ρ̂Ô†Ô) denoting the Gorini-
Kossakowski-Sudarshan-Lindblad (GKSL) terms expressed

through the dressed operators x̂a [Eq. (4)] and x̂σ [15]:

x̂σ =
∑

ν,μ;ων>ωμ

|μ〉R R〈μ| (σ̂ † + σ̂ ) |ν〉R R〈ν| . (6)

The GKSL terms are introduced to describe the interac-
tion between the TLS, cavity, and the bath following Refs.
[15,19,28], including modeling the incoherent pumping of the
TLS (with rate �), the dissipation of the TLS (γ ) and of the
cavity (κ). The dissipation is assumed to be additive, and we
neglect any bath-mediated TLS-cavity interaction [7,16], and
define the steady state of the system via the density operator
ρ̂ss as ∂t ρ̂ss = 0.

We choose the pumping mechanism and parameters which
correspond to recent experiments with plasmonic CTS sys-
tems, which have reportedly reached values of η close to
0.1 [29–38]. In particular, we explore the emission from a
CTS under incoherent pumping of the TLS, corresponding
to driving the atomic systems with a far blue-detuned laser,
followed by a spontaneous cascade to the excited state of the
TLS (see Fig. 1(a)). In the plasmonic CTS considered here,
the cavity is characterized by resonant frequency ω0 (set to
h̄ω0 = 1 eV), and a low quality factor Q = ω0/κ , defined by
the dissipation rate κ , and set to Q = 20. The emitter (such
as a single molecule [29,31] or a quantum dot [34,37,38])
is modeled as a TLS with decay rate γ /ω0 = 10−3. These
parameters establish the upper limit for the WC regime η =
g/ω0 < κ/(2ω0) = 0.025. For reference, we note that the
characteristic cooperativities C = 4g2/(κγ ) in our study are
C = 0.08 (for η = 10−3) and C = 800 (for η = 0.1).

This framework is used to calculate the dependence of
g(2)(0) [Eq. (3)] on the coupling parameter η = g/ω0, plotted
in Fig. 1(b) as solid orange and blue lines, for the case of
strong (�/γ = 10) and weak (�/γ = 10−6) pumping, respec-
tively. All calculations in this paper have been carried out
using the Python package QuTiP [39–41].

B. Jaynes-Cummings model

The Jaynes-Cummings model (JCM) can be derived from
the QRM by taking three approximations. First, we expand
the interaction term in the QRM Hamiltonian as

σ̂z cos[2η(â + â†)] + σ̂y sin[2η(â + â†)]

= σ̂z + 2ησ̂y(â + â†) + O(η2), (7)

and we drop the terms nonlinear in η. Next, we introduce
the rotating wave approximation (RWA) by removing the so-
called non-number-conserving terms σ̂ â + σ̂ †â† to find the
JCM Hamiltonian

ĤJC = h̄ω0â†â + h̄
ω0

2
σ̂z + ih̄ω0η(σ̂ †â − â†σ̂ ). (8)

Figure 2(a) shows the eigenvalues |ν〉 of the JCM Hamilto-
nian, which, for small η, converge with the eigenvalues of the
QRM Hamiltonian [Fig. 2(b)].

The third approximation in the JCM regards the emission,
dissipation, and absorption of the system, which, within the
JCM, are mediated by the bare â and σ̂ operators (instead of
the dressed x̂a and x̂σ operators). The correlations arising in
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this model can thus be calculated as

g(2)
JC = 〈â†â†ââ〉ss

〈â†â〉2
ss

, (9)

where the steady state ρ̂ (JC)
ss is obtained from the standard

master equation [42],

∂

∂t
ρ̂ (JC) = 1

ih̄
[ĤJC, ρ̂ (JC)] + �

2
Dσ̂ † [ρ̂ (JC)]

+ γ

2
Dσ̂ [ρ̂ (JC)] + κ

2
Dâ[ρ̂ (JC)], (10)

as the solution to ∂t ρ̂
(JC)
ss = 0.

The JCM summarized in Eqs. (8) and (10) has been ex-
tensively used to describe the properties of weakly coupled
CTSs [12]. In this work, it establishes a point of comparison
to identify the features that can arise in the QRM. We use the
JCM to calculate the intensity correlations g(2)

JC (0), shown in
dashed orange and blue lines in Fig. 1(b) for the strong and
weak incoherent pumping, respectively. In the former case,
the JCM correctly reproduces the results of the exact QRM
below the USC threshold η � 0.1, but fails for larger η, where
the g(2)(0) obtained with the JCM saturates at g(2)(0) < 1
(see Appendix A for analytical equations), while in the exact
QRM, g(2)(0) keeps increasing with η. Furthermore, for the
weak incoherent pumping (blue lines), we find significant dif-
ferences between the JCM and QRM even in the WC regime
(the JCM and QRM differ for η � 5 × 10−3). This unexpected
breakdown of the JCM for small η is discussed in detail
below.

III. ORIGIN OF THE BUNCHING IN ULTRASTRONGLY
COUPLED SYSTEMS

In this section, we demonstrate that the strong bunching
identified in the USC regime in Fig. 1(b) can be traced to
characteristics (decay pathways and population) of the single
|3−〉R eigenstate. To justify the focus on that particular eigen-
state of the QRM Hamiltonian, in Fig. 3 we plot the exact
values of g(2)(0) (solid blue line) obtained for an intermediate
pumping �/γ = 10−3 together with approximated results. We
start by approximating the steady state density matrix as being
diagonal in the basis of the |ν〉R eigenstates of the QRM
Hamiltonian,

ρ̂ss ≈
∑

ν

Rν |ν〉R R〈ν| . (11)

The approximation is justified by noting that the system is
driven with an incoherent pumping mechanism, and—much
like any weakly coupled, thermally populated system—should
exhibit limited coherence. We explore the validity of this
approximation in Appendix B, where we show the values of
the steady state density matrix as a function of the coupling
strength. We can thus approximate g(2)(0) [Eq. (3)] as (see the
derivation in Appendix E)

g(2)(0) ≈
∑

ν,μ Rν |R〈μ| x̂ax̂a |ν〉R |2(∑
ν,μ Rν |R〈μ| x̂a |ν〉R |2)2 , (12)

where |μ〉R and |ν〉R are the eigenstates of the QRM Hamilto-
nian. The intensity correlations calculated by truncating the

FIG. 3. Intensity correlations within several approximations: ex-
act values of g(2)(0) (solid blue line); the diagonal approximation
truncated to the states {|0〉R , |1−〉R , |1+〉R , |2−〉R , |2+〉R , |3−〉R}
in Eq. (11) (solid orange line); and the diagonal approximation
considering only the R〈3−| x̂ax̂a |1−〉R term in the numerator of
g(2)(0) in Eq. (12) (|3−〉R → |1−〉R (solid green line). The cal-
culations shown in this figure are obtained with the QRM for
�/γ = 10−3.

double sum in the numerator up to |3−〉R are shown with
the solid orange line in Fig. 3—this approximation gives a
very good agreement with the exact calculation for η � 2.5 ×
10−2; as we have numerically verified, the deviation observed
in the WC regime η � 2.5 × 10−2 is not due to the truncation
of the basis, but rather due to the effect of the off-diagonal
terms of ρ̂ss.

We can further approximate g(2)(0) by limiting the double
sum in Eq. (12) over ν and μ to the |ν〉 = |3−〉R and |μ〉 =
|1−〉R term:

g(2)(0) ≈ R3− |R〈1−| x̂ax̂a |3−〉R |2(∑
ν,μ Rν |R〈μ| x̂a |ν〉R |2)2 . (13)

This approximation, denoted in Fig. 3 with the green line,
explores the role of the particular, correlated two-photon emis-
sion from |3−〉R to the |1−〉R state.

Equation (13) shows that the singular role of the |3−〉R
polariton in the onset of bunching can be ascribed to two ef-
fects: the presence of a two-photon emission pathway towards
|1−〉R, and a comparatively large, nonthermal population of
this state, expressed in our model as R3−.

To analyze the latter effect in detail, we plot in Fig. 4 the
populations Rν of all the relevant eigenstates of the QRM
Hamiltonian as a function of the normalized coupling η for
the intermediate pumping �/γ = 10−3. Initially, the eigen-
states are populated according to their respective eigenvalues,
with the lower-energy states being more populated. While this
mechanism holds for η < 0.05, Fig. 4 shows that for larger
coupling, the population R3− (orange solid line) rapidly grows
at a rate proportional to η4, becoming larger than R2+ (purple
solid line), and eventually approaching R1+ (red solid line) for
η > 0.1. This increase of R3− far exceeds that observed within
the JCM (see the orange dashed line denoting the population
of |3−〉).

This large population of the |3−〉R polariton can be at-
tributed to the new, direct excitation pathway introduced in
the QRM [see Fig. 5(a)]. In this model, the |3−〉R polariton
can be directly driven from the ground state |0〉R through the
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FIG. 4. Populations of the polaritonic states Rν (see labels) cal-
culated with the QRM (solid lines) and JCM (dashed lines) for the
intermediate pumping �/γ = 10−3.

�/2Dx̂†
σ

incoherent pumping term introduced in the master
equation (5). We illustrate this effect in Fig. 5(b) by plotting
the |R〈3−| x̂†

σ |0〉R |2 matrix element, which quantifies the effi-
ciency of the direct excitation pathway, as a function of η. We
identify a clear scaling with η4 until η ≈ 0.5, as in R3−.

To dominate the statistical properties of the emission, the
direct excitation pathway would have to be proportional to
the incoherent pumping rate �, and compete with the sequen-
tial excitation pathway |0, g〉R → |1±〉R → |2±〉R → |3−〉R,
with total rate ∝ �3. We can identify this competition in
Fig. 5(c) by plotting the population R3− as a function of � for a
range of coupling parameters η. The direct mechanism domi-
nates the pumping for small �, where its linear dependence on
the pumping rate makes it more efficient than the sequential
pumping mechanism. Only when we increase � does the latter
process become more efficient and we recover R3− ∝ �3 [43].
The transition from the linear to the cubic dependence on �,
or from the direct to sequential excitation mechanisms, shifts
towards larger � as we increase the coupling strength η. This
is because the overall efficiency of the direct excitation, gov-
erned by the matrix element |R〈3−| x̂†

σ |0〉R |2, grows rapidly
with η [see Fig. 5(b)].

IV. PROBING THE BREAKDOWN OF THE RWA

In Sec. III we traced the bunching in the USC regime seen
in Figs. 1(b) and 3 to the direct excitation and two-photon
emission from the |3−〉R polariton. Here, we explore the
extent of this new effect, and we identify the threshold for
the deviation between the JCM and the QRM. Figures 6(a)
and 6(b) compare the values of g(2)(0) calculated with the
QRM and the JCM, respectively, for a range of the normalized
coupling strengths η and pumping rates �. As we discuss
below, these results demonstrate that the deviation between
JCM and QRM depends strongly on the latter parameter (�),
in a manner that can be explained using the formulation laid
out in Sec. III.

A. Qualitative dependence of the bunching on the pumping

The map of intensity correlation shown in Fig. 6(a) indi-
cates that the bunching observed in the QRM depends on the

FIG. 5. (a) Schematic and (b),(c) dependencies of the sequen-
tial and direct excitation pathways of the |3−〉R polariton in the
QRM. (a) The two mechanisms are characterized by a cubic and
linear dependence of the process on the incoherent driving rate �,
respectively. (b) Efficiency of the direct excitation of the |3−〉R state
directly from the |0〉R state, quantified as |R〈3−| x̂†

σ |0〉R |2, growing
approximately as η4 (until η ≈ 0.5), and matching the dependence
of R3− shown in Fig. 4. (c) Populations of the |3−〉R eigenstate as
a function of incoherent pumping rate � for a range of coupling
parameters η (from bottom to top, η = 10−3, 5 × 10−3, 10−2, 5 ×
10−2, 0.1, 0.5, 1).

rate of incoherent pumping � for a wide range of coupling
parameters η. We explore this effect in more detail in Fig. 7(a),
where we plot vertical cross sections of Fig. 6(a)—the depen-
dence of g(2)(0) on �—for η = 0.1 to 1, and we find that the
intensity correlations generally follow

g(2)(0) ∝ 1

�
. (14)

This dependence results from the direct excitation mechanism
of the polariton |3−〉R: In the USC regime, the contribu-
tion from that polariton dominates the numerator of g(2)(0)
approximated as in Eq. (13), with the numerator propor-
tional to R3− ∝ � (as discussed in Sec. III). Conversely, the
denominator of Eq. (13) is dominated by the contribution
from the |1±〉R eigenstates ∝ R1±. Since both |1−〉R and
|1+〉R are populated directly from the ground state, we find
R1± ∝ �. Thus we recover the g(2)(0) ∝ R3−/(R1±)2 ∝ 1/�
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FIG. 6. Dependence of g(2)(0) on the pumping rate � and the
coupling strength η obtained within the (a) QRM and (b) JCM. The
color map indicates in blue and red the antibunching [g(2)(0) < 1]
and bunching [g(2)(0) > 1] regions, respectively. The color scale of
g(2)(0) is linear from g(2)(0) = 0 to 2 and logarithmic from g(2)(0) =
2 to 10, where it saturates.

dependence, and identify that g2(0) is indeed unbounded as a
function of �.

Equation (14) can be used as a marker for the breakdown of
the JCM, since in that model the direct pumping mechanism of
high-order polaritons is absent, and consequently the intensity
correlations are largely constant for small � [see Fig. 6(b)].
This point is further explored in the following subsection.

B. Breakdown of the JCM Hamiltonian in the WC regime

Figure 6(a) shows that in the QRM, the strong bunching re-
gion can also be identified for η in the WC and SC regimes. In
particular, for very weak incoherent pumping (�/γ � 10−5),
the strong bunching appears for couplings as small as η ≈
2.5 × 10−2, highlighting a significant deviation between the
predictions of the JCM (where g(2) < 1 for all η) and of the
QRM. To demonstrate this effect more clearly, in Fig. 7(b) we
plot horizontal cross sections of Fig. 6—the dependence of
g(2)(0) on η calculated for different pumping rates � using the
QRM (solid lines) and the JCM (dashed lines) shown only for
�/γ = 10−6 and 10.

The difference between the QRM and JCM in the WC
and SC regimes has the same origin as in the USC regime:
the direct excitation of the |3−〉R eigenstate in the QRM. As
we discuss in Sec. III, this direct mechanism can be dom-
inant for any η, providing that the pumping is sufficiently
small. Conversely, in the JCM, for small � (� � γ ), g(2)(0)

FIG. 7. Landscape of g(2)(0) as a function of (a) normalized
incoherent pumping rate �/γ , and (b) coupling parameter η = g/ω0.
In (a) the collection of lines represents results for the coupling param-
eter varied linearly in the range η ∈ [0.1, 1]. In (b) we exponentially
increase the pumping rates from �/γ = 10−6 to 10. The solid lines
are obtained with the QRM, and the dashed orange and blue lines in
(b) show the results obtained within the JCM for �/γ = 10−6 and
10, respectively.

is determined by the population of the polariton with two-
photon terms |2±〉 (we neglect the far smaller contribution
from |3±〉). Since this polariton is excited through a sequen-
tial process, its population is proportional to �2. Normalized
by the square of the population of the |1±〉 states (∝ �2),
the intensity correlation in the weak pumping and coupling
limit of the JCM is independent of �, and does not support
bunched emission pathways (we derive this result explicitly
in Appendix A).

It is worthwhile to consider how these striking differ-
ences can emerge in the WC limit, and far below the USC
threshold g � 0.1ω0, where the QRM and JCM would be
conventionally expected to match. To derive ĤJC, in Eq. (8)
we (i) performed the expansion of the QRM Hamiltonian
Ĥ in a power series of η, and dropped terms scaling with
higher powers of η, and (ii) applied the RWA to remove the
non-number-conserving terms. Figure 6 shows that QRM and
JCM can diverge for arbitrarily small η, suggesting that the
error in g(2)(0) introduced by the series truncation in (i) can
be made arbitrarily small. Thus, we can trace the observed
differences to the application of the RWA.

This interpretation lays out an interesting proposal for
observing the breakdown of the RWA in the WC limit. An
experimental assessment of this effect would constitute a chal-
lenge, mostly due to the very short decoherence time of the
molecules, further reduced by the high-cooperativity coupling
to the cavities, resulting in sub-ps timescales for the detection
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FIG. 8. Emission spectra from the USC system for the parameter
η changing linearly from 0.1 to 0.7, in 
η = 0.02 steps. The spectra
are shifted vertically for clarity. Features describing transitions be-
tween eigenstates of the QRM Hamiltonian are traced and marked.
The spectra are calculated within the QRM for an intermediate
pumping rate �/γ = 10−3.

of bunching (see discussion on experimental feasibility in
Appendix G). These requirements can be partially relaxed
by considering atoms with smaller γ and reduced coopera-
tivity. Alternatively, a weaker pumping—while reducing the
emission and coincidence rate—should boost the bunching
effect (see Fig. 6), making its observation possible even after
averaging over a longer detection window.

C. Emission spectra

To conclude our characterization of the QRM, we now
study the dependence of the one-photon emission spectrum
S(1)(ω) on the coupling strength. We show that the differences
below the USC between the QRM and the JCM are much
smaller for S(1)(ω) than for the intensity correlations g(2)(0),
emphasizing the interest of using the intensity correlation to
identify the breakdown of the JCM.

In Fig. 8, we plot the emission spectra S(1)(ω) for a range
of coupling strengths η. We calculate S(1)(ω) within the QRM
as [15,17,42]

S(1)(ω) ∝
∫ ∞

−∞
〈x̂†

a (τ )x̂a(0)〉ss e−iωτ dτ, (15)

where x̂a and x̂†
a are the dressed annihilation and creation

operators of the cavity, respectively [see Eq. (4)]. For a de-
tailed study of the emission from the TLS (S(1)

σ calculated
from the two-time correlators between x̂σ operators) in the
USC regime, we direct the reader to Ref. [19]. Each spectral
feature in the figure corresponds to a transition between the

FIG. 9. Comparison between the emission spectra obtained with
the QRM (solid lines) and JCM (dashed lines) for different couplings
strengths, as indicated in the figure. Panels (a) and (b) correspond to
different pumping rates, �/γ = 10−3 and 10−6, respectively.

eigenstates of the system, which we identify by matching
the frequency of the peak with the difference between the
eigenfrequencies of the system [see Fig. 2(b)]. We plot these
spectra as functions of the rescaled frequency (ω − ω0)/η
to compensate for the η-dependence of the Rabi splitting
between the polaritons.

The smallest coupling strength considered in Fig. 8 corre-
sponds to the low limit of the USC, η = 0.1. This spectrum
displays two peaks of similar intensity, which, as in the
JCM, correspond to the emission of a single photon via
the |1−〉R → |0〉R (lower frequency feature) and |1+〉R →
|0〉R (higher frequency) transitions. Only when we increase
the coupling strength to about η ≈ 0.3 do the spectra de-
velop additional features: the strength of the spectral peak
corresponding to the |1−〉R → |0〉R transition increases, and
two new peaks, corresponding to the |3−〉R → |2−〉R and
|2−〉R → |0〉R transitions (as labeled in the figure), emerge.
The visibility of each peak can be compared to the populations
of the initial states participating in the emission processes. For
instance, the two new peaks follow the same dependence on
η as the populations R3− and R2−, respectively (Fig. 4), so
that, for η > 0.05, the two populations begin to grow very
rapidly with increasing η. Simultaneously, as we increase the
coupling η, spectral features continuously shift, reflecting the
changes to the spectrum of the QRM Hamiltonian [Fig. 2(b)].

To verify the sensitivity of S(1) to η, and the breakdown
of the RWA, in Fig. 9 we compare the spectra obtained
from the JCM (dashed lines) and the QRM (solid lines) also
using weaker incoherent pumping � and various couplings
η = 10−3, 10−2, and 0.1 (note that η = 10−3 and 10−2 are
below the minimum value considered in Fig. 8, and give no
peak-splitting). The spectra point to small differences between
the two models for the larger η for both considered pumping
rates, which would be likely difficult to identify in experi-
mental settings. On the other hand, as shown in Figs. 6 and
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7(b), the g(2)(0) obtained for �/γ = 10−3 and 10−6 show
qualitative differences for η � 2.5 × 10−2 due to the direct
excitation pathway discussed in Sec. III. The lack of sensi-
tivity of S(1)(ω) to the direct excitation pathway is due to
the fact that the emission from the lower |1−〉R and |1+〉R
states predominantly govern the emission spectra for η � 0.3.
The excitation and emission from these eigenstates are not
impacted by the direct excitation mechanism discussed above,
and do not flag the breakdown of the RWA. We thus conclude
that the intensity correlations are a far more powerful tool than
measuring the one-photon emission spectra for the identifi-
cation of phenomena caused by the non-number-conserving
terms of the QRM Hamiltonian.

V. CONCLUSIONS

In this work, we analyze the statistics of the emission from
a generic quantum system comprising an incoherently driven
two-level emitter interacting with a cavity. We identify an
emergence of unbounded bunching as the system approaches
the USC regime. By expressing the dynamics of the system in
the basis of the polaritonic eigenstates of the quantum Rabi
Hamiltonian, we can attribute the bunching to the singular
behavior of the individual eigenstate |3−〉R, which (i) decays
through a correlated two-photon emission, and (ii) is very
strongly populated by a new, direct excitation mechanism
from the ground state.

Our work shows that intensity correlations g(2)(0) are a
much more sensitive tool for observing the phenomena in-
duced by the non-number-conserving terms in the QRM than
the one-photon emission spectra. Indeed, we find that the
intensity correlations can identify a breakdown of the rotating
wave approximation far below the conventional limit of the
USC, with the exact limit determined by the rate of incoherent
pumping.

These findings call for an experimental verification,
and further theoretical studies, to verify the robustness of
the identified excitation and emission mechanisms. Our
model can be extended to account for the more com-
plex decay dynamics and energy structure of the quan-

tum emitter involving dark excitonic states or pure de-
phasing, as well as the interaction with a structured
reservoir.
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APPENDIX A: CORRELATIONS IN THE
JAYNES-CUMMINGS HAMILTONIAN

In this Appendix, we derive an analytical expression for
g(2)(0) as obtained with the approximated JCM Hamiltonian.
We focus here on the same CTS system introduced in the main
text, but we consider only the weak-illumination case, where
the incoherent pumping of the TLS has a rate much smaller
than the TLS losses, � � γ . We identify the minimum
set of operators for which the master equations form an
almost closed system (see the discussion below): v =
(â†â, σ̂ †σ̂ , â†σ̂ , âσ̂ †, â†âσ̂ †σ̂ , â†ââσ̂ †, â†â†âσ̂ , â†â†ââ)T .
The equations of motion for the expectation values of these
operators can be approximately expressed as

d

dt
〈v〉 = M 〈v〉 + b, (A1)

with

M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−κ 0 −g −g 0 0 0 0
0 −γ g g 0 0 0 0
g −g − 1

2 (� + κ + γ ) 0 −g 0 0 0
g −g 0 − 1

2 (� + κ + γ ) −g 0 0 0
� 0 0 0 −(γ + κ ) g g 0
0 0 0 0 −2g − 1

2 (� + γ + 3κ ) 0 g
0 0 0 0 −2g 0 − 1

2 (� + γ + 3κ ) g
0 0 0 0 0 −2g −2g −2κ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (A2)

and vector b = (0, �, 0, 0, 0, 0, 0, 0)T . Here we truncated the
set of equations by considering that the pumping rate of
the system, �, is very small. Thus, in the steady state, the
TLS is mostly in the ground state. Hence, we approximate
[45]: (i) 〈σ̂ σ̂ †〉 ≈ 1, (ii) 〈â†â†ââσ̂ σ̂ †〉 ≈ 〈â†â†ââ〉, and (iii)
〈â†â†ââσ̂ †σ̂ 〉 ≈ 0. In the steady state d

dt 〈v〉ss = 0, and we can
derive closed expressions for 〈â†â〉ss and 〈â†â†ââ〉ss. We are

interested only in the values of 〈â†â〉ss and 〈â†â†ââ〉ss in the
two opposite limits of g � � (vanishing coupling) and g � κ

(beyond the SC regime). We obtain an expression that is valid
in both limits by approximating the exact formulas for 〈â†â〉ss

and 〈â†â†ââ〉ss assuming κ � γ � �:

〈â†â〉ss ≈ 4g2�(4g2 + κ2)

κ (γ κ3 + 16g4 + 4g2κ2)
, (A3)
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FIG. 10. (a)–(d) Elements of the steady-state density matrices calculated for increasing values of the coupling parameter η = g/ω0 denoted
at the top. The figure shows the logarithm of the absolute value of the first 6 × 6 elements of the density matrices [see Eq. (B1)], where
the columns and rows in the figure indicate the different combinations of |μ〉R and R〈ν| in Eq. (B1). The results are color-coded, and the
approximated numerical values for the largest terms are explicitly listed in the panels. The density matrices are obtained within the QRM for
an intermediate pumping rate, �/γ = 10−3.

〈â†â†ââ〉ss ≈ 32g4�2

3κ2(γ κ3 + 16g4 + 4g2κ2)
. (A4)

The �2 dependence of 〈â†â†ââ〉ss reflects our intuition that
the two-photon states in the JCM should be excited via a
sequential excitation from the ground state. This intuition fails
for the QRM Hamiltonian, as discussed in Sec. III.

The intensity correlations are found, in the two limits of
interest, as

g(2)(0)
κ�γ���g−−−−−−→ 2

3

γ

κ
, (A5)

g(2)(0)
g�κ�γ��−−−−−−→ 2

3
. (A6)

Note that g(2)(0) is obtained here and in all the paper by
neglecting the direct emission from the TLS, which is an
invalid approximation for very small g in Eq. (A5) (unless the
emission of the TLS is filtered out). If direct emission of the
TLS is included, Eq. (A5) should be modified. The clearer
situation is in the limit of g = 0. In this case, the emission of
the system is only given by the TLS, which emits one photon
at a time resulting in g(2)(0) = 0.

APPENDIX B: APPROXIMATING THE
STEADY-STATE DENSITY MATRIX

In Sec. III, we calculate g(2)(0) considering several approx-
imations of the density matrix of the steady state, such as
truncating the Hilbert space to the |3−〉R state, and neglecting
the off-diagonal elements. We found that these approxima-
tions are convenient for analyzing g(2)(0) beyond the WC
regime (i.e., for η > 2.5 × 10−2; see the discussion of Fig. 3).
However, the steady-state off-diagonal elements can be cru-
cial in some cases, like evaluating the QRM in the WC regime
(see Fig. 3).

In Fig. 10 we show the diagonal and off-diagonal Rμ
ν ele-

ments of the steady-state density matrix,

ρ̂ss =
∑
μ,ν

Rμ
ν |μ〉R R〈ν| , (B1)

where |μ〉R and |ν〉R are the eigenstates of the
QRM Hamiltonian. In the figure, we show Rμ

ν for

the first six eigenstates of the system, |μ〉R , |ν〉R =
{|0〉R , |1−〉R , |1+〉R , |2−〉R , |2+〉R , |3−〉R}, and four
coupling parameters η = 0.001, 0.1, 0.25, and 1 (as denoted
in the figure).

All the density matrices show an approximate block-
diagonal form, with dominant Rn±

n± and Rn±
n∓ terms. For the

larger couplings [Figs. 10(b)–10(d)], ρ̂ss shows some addi-
tional coherence terms between eigenstates with the same
parity of excitations, i.e., Rm±

n± and Rm±
n∓ terms with m and n

(m �= n) being both even or odd numbers (e.g., the R3−
1− and

R1+
3− terms). As we increase η, the density matrices experience

three main changes: (i) the ratio between the diagonal Rn±
n±

and off-diagonal Rn±
n∓ terms (Rn±

n±/Rn±
n∓) decreases, (ii) the Rn−

n−
population of the lower |n−〉R eigenstates becomes higher
than the Rn+

n+ population of the upper |n+〉R eigenstates, and
(iii) the population of the higher-order eigenstates increases
significantly. In particular, the population of |3−〉R increases
from R3−

3− ≈ 10−17 at η = 0.001 to R3−
3− ≈ 10−6 at η = 1, and

becomes comparable to that of the lowest n = 1 eigenstates.

APPENDIX C: EFFECTIVE THERMAL PUMPING

While our work focuses on the experimentally viable
mechanism of incoherent driving of the TLS, it is worth
comparing this framework to other driving mechanisms. In
particular, we can consider the pumping of both the TLS and
the cavity due to the coupling with two thermal baths, both
at the same temperature, as discussed in Refs. [20,21]. In this
case, the steady state of the system is given by the statistical
mixture of the eigenstates of the QRM Hamiltonian, with
parameters

Rν
(Th.) ∝

[
exp

(
Eν

kBT

)
− 1

]−1

, (C1)

where Eν is the energy of the νth eigenstate (calculated with
respect to the energy of the ground state), kB is the Boltzmann
constant, and T is the temperature of the thermal bath.

Figure 11 shows the correlations obtained with the QRM
considering the pumping by a thermal bath at different tem-
peratures [from T = 750 to 3000 K; for reference, we also
include a secondary vertical axis in the figure with kBT/(h̄ω0)
values]. For each temperature, we show the dependence of

043213-9



ÁLVARO NODAR et al. PHYSICAL REVIEW RESEARCH 5, 043213 (2023)

FIG. 11. g(2)(0) of a thermally pumped CTS as a function of the
coupling strength η, and of the temperature T of the thermal bath
[for reference, we give a secondary vertical axis with the values of
kBT/(h̄ω0)]. The results of the calculation are obtained within the
QRM. The color map indicates in blue and red the antibunching
[g(2)(0) < 1] and bunching [g(2)(0) > 1] regions, respectively. The
color scale of g(2)(0) is linear from g(2)(0) = 0 to 2 and logarithmic
from g(2)(0) = 2 to 4, where it saturates.

g(2)(0) on the coupling strength η. For η � 0.1, Fig. 11 shows
that regardless of the coupling strength between the cavity
and the TLS, the emission of the system follows a thermal
statistic, g(2)(0) = 2 [20]. On the other hand, for η � 0.1, the
system emission becomes nonclassical: For low temperatures
T � 1750 K and large couplings η � 0.1, the system emission
results in antibunching with g(2)(0) < 1. For high tempera-
tures T � 1750 K and large couplings η � 0.1, the emission
of the system results in a strong bunching with g(2)(0) > 2.
This behavior is very different from that studied in the main
text for incoherent illumination of the TLS. The intensity cor-
relation under thermal pumping in Fig. 11 attains a maximum
value of 4 (compared to ≈107 in Fig. 7) and it does not show
any signature of the unbound increase for weaker pumping.

The general behavior we show in Fig. 11 is in qualita-
tive agreement with the results reported in Ref. [20], where
the authors also analyze the emission statistics of a ther-
mally pumped CTS as a function of temperature and coupling
strength. There are, however, some qualitative differences due
to the description of the Hamiltonian and emission operators
in the QRM [14–16] [Eqs. (3) and (4)]. For example, neglect-
ing the gauge correction of the QRM Hamiltonian results in an
antibunched emission of the system for higher temperatures
than in Fig. 11 (results not shown here).

APPENDIX D: OTHER DETECTION SCHEMES

Several recent contributions (Refs. [46,47]) have discussed
alternative formulations of the intensity correlations, as de-
fined by the time derivatives of x̂a:

g(2)(0)[ ˙̂xa] = 〈 ˙̂x†
a

˙̂x†
a

˙̂xa ˙̂xa〉ss

〈 ˙̂x†
a ˙̂xa〉2

ss

, (D1)

FIG. 12. Intensity correlations calculated with different defini-
tions of the intensity correlations: The blue line corresponds to the
scenario in which the detectors couple to the dressed operators of
the photonic excitations in the cavity, x̂a [see Eq. (3)]. The red and
green line corresponds to the scenario in which the detectors couple
to the first [Eq. (D2)] and second [Eq. (D4)] time derivatives of x̂a,
respectively. All the calculations are done within the QRM for an
intermediate pumping rate, �/γ = 10−3.

with

˙̂xa =
∑

μ,ν;ων>ωμ

−i(ων − ωμ) |μ〉R R〈μ| i(â† − â) |ν〉R R〈ν| ,

(D2)
where |μ〉R and |ν〉R are the eigenstates of the QRM Hamilto-
nian [Eq. (1)], and ων > ωμ are their respective eigenvalues.
This scenario in which g(2)(0) depends on the ˙̂xa operators
describes an HBT interferometer with capacitive detectors
that couple with the time derivative of the photons emitted by
the cavity [46] (instead of coupling directly with the photons
emitted in the cavity).

For completeness, we also consider the detectors of the
HBT interferometer as coupled to the second-time derivative
of the x̂a operators (as studied in Ref. [47]),

g(2)(0)[ ¨̂xa] = 〈 ¨̂x†
a

¨̂x†
a

¨̂xa ¨̂xa〉ss

〈 ¨̂x†
a ¨̂xa〉2

ss

, (D3)

with

¨̂xa =
∑

μ,ν;ων>ωμ

−(ων − ωμ)2 |μ〉R R〈μ| i(â† − â) |ν〉R R〈ν| .

(D4)
Figure 12 shows the evaluation of g(2)(0)[ ˙̂xa] and g(2)(0)[ ¨̂xa],
compared to g(2)(0)[x̂a] [the latter corresponds to the results
in the main text, Eq. (3)]. All formulations of g(2)(0) have
excellent agreement in the weak coupling regime (η � 2.5 ×
10−2) and show the same qualitative trend for larger couplings
(i.e., all formulations find a large bunching effect for the
USC regime). However, some quantitative differences appear
for η � 0.05. These differences for large η arise from the
(ων − ωμ) and (ων − ωμ)2 factors in Eqs. (D2) and (D4),
respectively. Intuitively, the influence of these extra factors is
small in the weak-coupling regime: In the WC regime (η �
2.5 × 10−2), the QRM eigenstates approach the description
of the JCM polaritons, so that |μ〉R R〈μ| i(â† − â) |ν〉R R〈ν|
in Eqs. (D2) and (D4) is only nonzero for three conditions, ei-
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ther |μ〉R = |n − 1±〉R with |ν〉R = |n±〉R, |μ〉R = |n − 1∓〉R
with |ν〉R = |n±〉R, or |μ〉R = |0〉R with |ν〉R = |1±〉R—i.e.,
in the weak coupling, the ˙̂xa operators describe only tran-
sitions between the nearest branch of eigenstates. Thus,
the prefactor (ων − ωμ) can only include (ωn± − ωn−1±) or
(ωn± − ωn−1∓) terms. Furthermore, for small η, the eigenval-
ues of the two polaritons in each branch are very similar and
differ by (ωn± − ωn−1±) ≈ (ωn± − ωn−1∓) ≈ ω0, resulting in

lim
η→0

g(2)(0)[ ˙̂xa] = ω4
0

ω4
0

〈x̂†
ax̂†

ax̂ax̂a〉ss

〈x̂†
ax̂a〉2

ss

= g(2)(0)[x̂a] (D5)

or

lim
η→0

g(2)(0)[ ¨̂xa] = ω8
0

ω8
0

〈x̂†
ax̂†

ax̂ax̂a〉ss

〈x̂†
ax̂a〉2

ss

= g(2)(0)[x̂a]. (D6)

As η becomes larger, the eigenstates of the QRM differ from
the JCM polaritons, and new transitions between eigenstates
emerge. As a consequence, the (ων − ωμ) factors can strongly
vary from one transition to another, ultimately weighting each
term differently in the series of Eqs. (D2) and (D4). Thus, for
large η, g(2)(0)[x̂a], g(2)(0)[ ˙̂xa], and g(2)(0)[ ¨̂xa] deviate quanti-
tatively.

APPENDIX E: DERIVATION OF THE APPROXIMATED
EXPRESSION FOR g(2)(0) IN EQ. (12)

Here we derive Eq. (12) in the main text. By considering
the diagonal steady state approximation introduced in Eq. (11)
in the main text, we can write the expected value of any
operator Ô in the steady state as

〈Ô〉ss = Tr{Ôρ̂ss}

≈ Tr

{
Ô

(∑
ν

Rν
ν |ν〉R R〈ν|

)}

=
∑

ν

Rν R〈ν| Ô |ν〉R. (E1)

We then apply this formula to the expected value of
〈(x̂†

a )n(x̂a)n〉ss [n = 1 and 2 for the numerator and denominator
of g(2)(0), respectively], resulting in

〈(x̂†
a )n(x̂a)n〉ss ≈

∑
ν

Rν R〈ν| (x̂†
a )n(x̂a)n |ν〉R

=
∑

ν

Rν R〈ν| (x̂†
a )nÎ(x̂a)n |ν〉R, (E2)

where we have included in the last step the Î identity
matrix. Because the eigenstates of the QRM Hamiltonian
are orthonormal, we can write the identity matrix as Î =∑

μ |μ〉R R〈μ|, and thus∑
ν

Rν R〈ν| (x̂†
a )nÎ(x̂a)n |ν〉R

=
∑
μ,ν

Rν R〈ν| (x̂†
a )n |μ〉R R〈μ| (x̂a)n |ν〉R

=
∑
μ,ν

Rν |R〈μ| (x̂a)n |ν〉R |2, (E3)

FIG. 13. Intensity correlations calculated using the QRM, as-
suming a bath with a flat spectra response (solid blue lines), and an
Ohmic bath (orange dashed lines). In the latter model, we replace
the constant decay rates for the TLS and the cavity (γ and κ) with
a rate that is dependent on the transition energy [see Eq. (F1)]. The
remaining parameters are as in Fig. 1(b).

where we have used the property 〈b|Ô†|a〉 = (〈a|Ô|b〉)∗. Ap-
plying Eq. (E3) for n = 1 [denominator of g(2)(0)] and n = 2
[denominator of g(2)(0)] directly results in Eq. (12).

APPENDIX F: EFFECTS OF THE OHMIC
BATH SPECTRUM

Few models of the bath have been discussed in the lit-
erature, including the spectrally flat (Fig. 5 in Ref. [15]) or
Ohmic bath (where the density of states is proportional to
frequency; see, e.g., [16]). These publications identified quan-
titative differences from the emission spectra between the two
bath models deep in the USC regime, where the emission
spans across a wide spectral range.

In Fig. 13, we compare the intensity correlations calculated
using the flat and Ohmic bath models. To this end, we revisit
the setup discussed in Fig. 1(b), and calculate g(2)(0) using the
flat bath (where the decay rates γ and κ are constant for each
transition frequency ωkl ; blue solid lines), and the Ohmic bath
(where we replace

γ → γ
ωkl

ω0
, κ → κ

ωkl

ω0
, (F1)

and plot the results with orange dashed lines).
The differences between the two models are negligible

for the weakly coupled system, and both models predict the
strong bunching in the USC. Quantitative changes can be
identified in the USC, consistent with the studies of the spectra
in QRM [15,16]. These changes are mostly due to the correc-
tions to the TLS decay rates.

We have also verified numerically that the same agreement
between the two bath models, with deviations occurring in the
USC, can be observed for the entire range of pumping rates
discussed in this work (not shown here).
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APPENDIX G: EXPERIMENTAL FEASIBILITY OF
BUNCHING MEASUREMENTS

In the limit of weak coupling and high cooperativity, the
rate of photon emission from the cavity can be estimated in
several ways:

(i) In the steady state, the system balances pumping and
emission; therefore, neglecting nonradiative processes, we can
expect the photon emission rate as approximately equal to the
incoherent pumping rate �.

(ii) The bulk of the emission should come from the
lowest-order and highest-population polaritonic states with
appreciable cavity components, like the |1+〉R or |1−〉R;
therefore, the photon emission rate is approximately given by
the product of this population, and the emission rate from that
state.

We now discuss these effects in the context of an experi-
mental system with a single molecule in a plasmonic cavity
with subwavelength mode volume, as discussed in the main
text [see the schematic in Fig. 1(a) and the discussion in
Sec. II A]. For the parameters where we expect a deviation
between the predictions of the JCM and QRM (see Fig. 6),
for example η = 0.1 or C = 800, and �/γ = 10−3, the emis-
sion rates can be estimated from these two methods as � =
10−6ω0 ∼ 2π × 2 × 108 s−1 and κR1+ ∼ (2π × 1013 s−1) ×

10−5 = 2π × 108 s−1 (see Fig. 4 for estimates of R1+). With
the perfect collection efficiency, we would therefore expect
detection every 1 ns on average.

Bunching predicted by the QRM, and measured as g(2) >

1, should vanish on the timescales dictated by the decoher-
ence of the emitter given here by the product of cooperativity
and the emitter decay rate Cγ ≈ 800 (2π × 2 × 1011 s−1) ≈
2π × 2 × 1014 s−1, that is, the bunching would vanish within
approximately 0.1 ps. The probability of a coincidence detec-
tion within that 0.01 ps window is of the order of 0.01 ps/1 ns
≈10−5, which yields the coincidence rate of 10−5 × (2π ×
108 s−1) = 2π × 103 s−1.

This coincidence rate can also be estimated by assuming
that the two-photon emission is exclusively due to the relax-
ation from the |3−〉R state [see the discussion in Sec. III and
Eqs. (11) and (12)], and given by a product of its popula-
tion (∼10−10; see Fig. 4) and emission rate taken as Cγ ≈
2π × 2 × 1014 s−1. This approach yields a similar estimate of
coincidence rate of 2π × 2 × 104 s−1.

While this coincidence rate was estimated with generous
assumptions about the collection efficiency, it remains several
orders magnitude larger than the rates reported in contribu-
tions on the characterization of statistics of faint emission
from nonclassical emitters [48,49].
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