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Abstract: In the realm of nanotechnology, the integration

of quantum emitters with plasmonic nanostructures has

emerged as an innovative pathway for applications in

quantum technologies, sensing, and imaging. This research

paper provides a comprehensive exploration of the pho-

toluminescence enhancement induced by the interaction

between quantum emitters and tailored nanostructure con-

figurations. Four canonical nanoantennas (spheres, rods,

disks, and crescents) are systematically investigated theo-

retically in three distinct configurations (single, gap, and

nanoparticle-on-mirror nanoantennas), as a representative

selection of the most fundamental and commonly studied

structures and arrangements. A detailed analysis reveals

that the rod gap nanoantenna configuration achieves the

largest photoluminescence enhancement factor, of up to
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three orders of magnitude. The study presented here pro-

vides insights for the strategic design of plasmonic nanoan-

tennas in the visible and near-IR spectral range, offering a

roadmap for these structures to meet specific requirements

in plasmon-enhanced fluorescence. Key properties such as

the excitation rate, the quantumyield, the enhanced emitted

power, or the directionality of the emission are thoroughly

reviewed. The results of this overview contribute not only

to the fundamental understanding of plasmon-enhanced

emission of quantum emitters but also set the basis for

the development of advanced nanophotonic devices with

enhanced functionalities.

Keywords: plasmonic nanoantennas; photoluminescence

enhancement; PLEF; FDTD; quantum emitters

1 Introduction

Quantum emitters (QEs), such as semiconductor quantum

dots, molecules and vacancies in diamond, have been pro-

posed for a variety of technological applications in differ-

ent fields, including sensing, imaging, and spectroscopy,

due to their ability to absorb and emit photons of specific

energy [1]–[8]. The emission and absorption of light can be

enhanced in the presence of metallic nanostructures that

sustain localized surface plasmon polaritons (LSPPs). These

plasmonic modes intensify and localize electromagnetic

fieldswithin nanoscale volumes, overcoming the diffraction

limit of light and enhancing the excitation of QEs strategi-

cally placed in the proximity of themetallic surface [9]–[27].

Additionally, as predicted by Purcell [28] and theoretically

and empirically studied in the last two decades [14], [22],

[29]–[43], plasmonic modes in metallic nanostructures also

accelerate the spontaneous emission rate of QEs, due to

the introduction of new radiative and non-radiative decay

channels, i.e., an enhanced local density of photonics states.

Further, these nanostructures can modify the radiation pat-

tern of the quantum emitter, enabling a more directional

emission as compared to that of the isolated QE [44]–[53].
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Metallic nanostructures are often called nanoanten-

nas due to their capability to modify the absorption and

emission of light [49], [54]–[56]. This capability is har-

nessed in a variety of plasmon-enhanced applications

including surface-enhanced Raman spectroscopy (SERS)

[25], [57]–[70] and surface-enhanced infrared absorption

(SEIRA) [71]–[77]. In this work, we focus on the capability

of plasmonic nanostructures to control and enhance pho-

toluminiscence (PL) from quantum emitters [20], [31]–[34],

[37]–[40], [42]–[45], [48], [49], [78]–[88]. The use of metallic

structures to control fluorescence can be traced back to

more than two decades ago. Thomas et al. [29] for instance,

determined that a system comprising a two-level molecule

in proximity to a single silver nanostructure could signifi-

cantly enhance its photoluminescence by an order of mag-

nitude. The key strategy employed to enhance the QE pho-

toluminescence in these studies is to boost the excitation of

the QE while simultaneously maintaining a high radiation

efficiency, or radiative yield, defined as the ratio between

the radiative and total decay rates [33]. Similarly, control

over the emission directionality has been also demonstrated

[44], [45], [50], [53].

A successful approach to enhance photoluminescence

from QEs consists in positioning it within the plasmonic

nanocavity formedbetweenmetallic nanostructures,where

the electromagnetic field is strongly confined. A straightfor-

ward configuration for creating such a plasmonic nanocav-

ity is the dimer (or gap) nanoantenna, composed of two

closely locatedmetallic nanostructures [61], [64], [89]–[105].

This type of nanoantenna yields significant enhancement of

photoluminescence, reaching several orders of magnitude

(e.g. 103 in the case of a gold nanorod dimer [43]). A related

approach to create a plasmonic nanocavity involves a single

nanostructure located above ametallic substrate, creating a

nanometric gap separating both structures. This construct

is commonly known as nanoparticle-on-mirror (NPoM),

and the resulting photoluminiscence enhancement is sim-

ilar to that observed in gap nanoantennas [17], [22], [40],

[106]–[117]. Such nanoparticle-on-mirror antennas have

been exploited in different applications for optical sensing,

imaging, and single photon sources [20], [38], [108], [112],

[114], [115], 117]–[121].

The advances in nanofabrication have opened new

capabilities to develop a wide landscape of nanoantenna

configurations that can be employed to enhance photolu-

minescence from a QE. The performance of each of these

configurations strongly depends on a variety of parameters,

encompassing aspects such as shape, size,materials, and the

relative position of the nanoantennas and QEs [56], [99]. A

clearmap of general properties of different types of nanoan-

tennas emphasizing their advantages and disadvantages

should thus serve to guide effective experimental imple-

mentation of optimized plasmon-enhanced fluorescence.

This work provides a comparative overview of the pho-

toluminescence enhancement produced by four canonical

gold nanostructures (spheres, rods, disks, and crescents)

in three widely-used configurations (single nanoantenna,

gap nanoantenna, and nanoparticle-on-mirror). Plasmonic

materials like silver andaluminumalso offernotable advan-

tages in different spectral regions. Silver, for example, pro-

vides a stronger plasmonic response in the visible and near-

UV range due to reduced inter-band transitions, though it is

more prone to oxidation [122]–[124]. Aluminum, commonly

used in UV applications, is cost-effective and abundant but

experiences higher losses in the visible range [123], [125],

[126]. On the other hand, gold is commonly chosen for its

superior chemical and thermal stability, alongwith its effec-

tive plasmonic performance in the visible and near-infrared

regions, making it a versatile material across a broader

range of applications. Thus, we consider the coupling with

gold nanostructures. The size of these gold plasmonic anten-

nas is systematically varied within experimentally accessi-

ble ranges to tune their optical resonances and maximize

light emission from a QE nearby. The resulting structures

can be fabricated using well-established techniques such as

colloidal chemistry (bottom-up) or lithography (top-down),

ensuring nanoantennas of high quality, yield, and repro-

ducibility. Thus, the parameters guiding this investigation,

as well as the structures studied, are drawn from the exten-

sive literature on previous experimental works [127]–[135].

The aim of this overview is to provide a guide for

researchers from various fields to select and design optimal

QE – nanoantenna configurations targeting different appli-

cations in the visible and near-IR spectral range [51], [53],

[136]–[138]. We begin by providing a concise overview of

the theoretical background, focusing on how to describe the

plasmonic enhancement of the photoluminescence signal,

and introduce the contributions of the excitation rate and

quantum yield to the total power of light emitted. We also

briefly detail the numerical methodology applied in our

work, based on the use of the finite-difference time-domain

(FDTD) method to solve Maxwell’s equations for the near-

and far-field calculations. We then outline the four canoni-

cal nanostructures and the three configurations considered,

discussing the main features of the optical response of each

structure. Finally, we present and discuss a comprehensive

comparison of the effect of the twelve different plasmonic

nanostructures on the excitation enhancement, the decay

rates, and quantum yield of the QE, as well as on the result-

ing photoluminescence enhancement factor (PLEF) and on

the directivity of the QE – nanoantenna systems.
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2 Theoretical background

We investigate the enhancement of the photoluminescence

emitted by a quantum emitter when it is placed near a

metallic nanoantenna. We assume that the QE – nanoan-

tenna system is in the weak coupling regime, i.e., the inter-

action is not large enough to reach strong coupling and thus

it does not trigger phenomena such as vacuum Rabi oscilla-

tions or the emergence of hybrid polaritonic modes (at an

energy different to that of QE and nanoantenna excitations

[139]–[142]). However, from the value of the Purcell Factor

and of the plasmonic losses computed in this work, it is pos-

sible to obtain the coupling strength between a plasmonic

mode and a particular QE of a given oscillator strength [143]

and thus to estimate the response under strong-coupling

conditions [144]. We consider a simplified model of the QE,

which is described as a three-level quantum system with

ground |0⟩, excited |1⟩ and intermediate fluorescent |i⟩ lev-

els (Figure 1a), surrounded by a lossless medium (vacuum

for simplicity). The photoluminescence emission from this

single QE in vacuum involves three consecutive processes:

(i) absorption of a photon of energyℏ𝜔exc = ℏ𝜔0→1 that pro-

motes an electron from the ground |0⟩ to the excited |1⟩ state

(blue arrow in Figure 1a; ℏ reduced Planck constant), (ii) a

fast non-radiative relaxation from the excited state |1⟩ to

the intermediate state |i⟩ (red arrow) and (iii) the electronic

decay from the intermediate state |i⟩ to the ground state |0⟩

(green arrow) that can result in the emission of a photon.

The spectrum of the light emitted within this simplified

model adopts the form of a Lorentzian peak with central

energy ℏ𝜔em = ℏ𝜔i→0 [24], [36], [145], [146].

We briefly review the established derivation of the

equation that describes the photoluminescence signal from

such a 3-level QE coupled to the nanoantenna [31], [36]. This

derivation considers the population of each level: N0 for

the ground state, N1 for the excited state, and Ni for the

intermediate fluorescent state, with N0 + N1 + Ni = 1. The

population equation for state |0⟩ is:

dN0

dt
= −

N0𝜎
abs
0→1

I
loc
0→1

ℏ𝜔0→1

+ NiΓT
i→0

, (1)

where 𝜎abs
0→1

is the absorption cross-section of the |0⟩→ |1⟩

transition, I loc
0→1

is the local illumination intensity calculated

at the position of the QE, andΓT
i→0

the total decay rate associ-

ated with the |i⟩→ |0⟩ transition. The first term in the right-

hand side of Equation (1) describes the depopulation of the

ground state due to the excitation of the QE to the state |1⟩ by

a photon of energy ℏ𝜔0→1. This term is proportional to the

population of the ground state (N0), the absorption cross-

section, and the local illumination intensity. Further, the
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Figure 1: Key magnitudes determining plasmon-enhanced

photoluminescence. (a) Energy level diagram of a three-level quantum

emitter (QE) with ground (|0⟩), excited (|1⟩), and intermediate fluorescent

(|i⟩) states. Upon excitation by a photon of energy ℏ𝜔exc = ℏ𝜔0→1,

the QE can emit a photon of energy ℏ𝜔em ≈ ℏ𝜔i→0 after non-radiative

relaxation decay from the |1⟩ to the |i⟩ state. The power emitted to the

far field by the QE in free space is denoted as P0, and the incident power

Pin. (b) Schematic representation of the system consisting on a QE (gray

sphere) coupled to a metallic nanoantenna (golden sphere). The power

emitted by the QE – nanoantenna system to the far field is labeled

as Pout. The power emitted in the presence of the nanoantenna is

proportional to two factors represented in (c–d): (c) excitation

enhancement |K0→1|
2, where |K0→1| = |E‖|∕|E0‖| is the electric field

enhancement, |E‖| is the amplitude of the electric field component along

the direction of the |0⟩→ |1⟩ transition (evaluated at the location of

the QE), and |E0‖| is the corresponding electric field value of the incident

illumination; (d) radiative yield 𝜂i→0, defined as the ratio of the radiative

decay rate ΓR

i→0 to the total decay rate Γ
T

i→0 = ΓR

i→0 + ΓNR

i→0 + knr
i→0

of the

quantum emitter, where ΓNR

i→0 is the non-radiative decay rate induced by

the QE-nanoantenna interaction and knr
i→0

is the non-radiative intrinsic

decay rate of the QE. The photoluminescence enhancement factor (PLEF)

of the QE – nanoantenna system is determined by the ratio Pout∕P0,
as defined in Equation (3).

normalization of this term by ℏ𝜔0→1 converts its magnitude

from energy to number of excitations (per unit of time). The

local intensity is proportional to the square of the electric

field enhancement induced by the plasmonic nanoantenna,

I
loc
0→1

= |K0→1|
2I0 = |E‖∕E0‖|2I0, with I0 the intensity of the

excitation, K0→1 the field enhancement, and E‖ and E0‖ the

component of the electric fields parallel to the dipole orien-

tation of the |0⟩→ |1⟩ transition, with and without antenna,

respectively (Figure 1c). For convenience, we will hence-

forth denote the parallel component of the electric fields as
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E and E0, without additional notation. The fields are evalu-

ated at the excitation frequency𝜔0→1 and position of the QE.

This description assumes that the fields are almost constant

in all the volume occupied by the (small) QE (point-dipole

approximation) [29], [36], [145], [147], which is valid except

for extremely localized fields such as in picocavities [115],

[148], [149]. Crucially, plasmonic nanoantennas possess the

capability to focus the electric field within very confined

volumes [13], [26], [49] where |K0→1|
2 ≫ 1.

The second term in the right side of Equation (1) cap-

tures the relaxation process of the excited quantum emit-

ter from the intermediate |i⟩ to the ground |0⟩ state, with

energy difference ℏ𝜔i→0. This term is directly proportional

to the population in the |i⟩ state (Ni) and to the total decay

rate associated with the |i⟩→ |0⟩ transition
(
ΓT
i→0

)
[36].

The term ΓT
i→0

encompasses three distinct contributions

(Figure 1d): (i) the radiative decay rate
(
ΓR
i→0

)
or rate of

photon emission to the far field, (ii) the non-radiative decay

rate
(
ΓNR
i→0

)
associated with decay processes where the

energy is dissipated by the plasmonic antenna without pho-

ton emission (typically as heat), and (iii) the non-radiative

intrinsic decay rate
(
knr
i→0

)
due to internal transitions within

the QE that are not included explicitly in the simplified

level scheme considered here. Thus, ΓT
i→0

= ΓR
i→0

+ ΓNR
i→0

+
knr
i→0

, where only ΓR
i→0

is associated with the emission of a

photon of energy ℏ𝜔i→0. Equation (1) does not include the

(spontaneous or stimulated) decay of the excited state |1⟩

to the ground state because this process is considered to be

very slow (compared to that of the |1⟩→ |i⟩ transition). This

assumption is standard in photoluminescence studies, and

is well justified for isolated QEs, but could break for strong

plasmonic field enhancement [42], [150], [151].

We always assumeweak enough illumination, ensuring

that N0 ≈ 1, so the steady-state solution of Equation (1) is

Ni =
𝜎abs
0→1

ℏ𝜔0→1ΓT
i→0

I
loc
0→1

=
𝜎abs
0→1

ℏ𝜔0→1ΓT
i→0

|K0→1|
2
I0. (2)

Further, the emitted light power Pout is proportional to

the population of the intermediate state Ni and to the radia-

tive emission rate ΓR
i→0

. From Equation (2), Pout is thus pro-

portional to |K0→1|
2ΓR

i→0
∕ΓT

i→0
= |K0→1|

2𝜂i→0, where 𝜂i→0 =
ΓR
i→0

∕ΓT
i→0

is the radiative yield, a parameter that describes

the probability that a QE in state |i⟩ results in the emission

of a photon, instead of in a non-radiative or internal decay

process. Therefore, the photoluminescence enhancement

factor of a QE due to the presence of ametallic nanoantenna

can be calculated as:

Pout

P0

= |K0→1|
2 𝜂i→0

𝜂0
i→0

, (3)

where P0, 𝜂
0
i→0

= ΓR0
i→0

∕
(
ΓR0
i→0

+ knr
i→0

)
, andΓR0

i→0
are the emit-

ted power, the intrinsic quantum yield and the radiative

decay rate of the isolated quantum emitter in the absence of

the nanoantenna (in this situations, the non-radiative decay

due to the QE – nanoantenna interaction is zero, ΓNR0
i→0

= 0;

the intrinsic decay rate knr is considered to be unaffected by

the antenna) [36], [109]. For simplicity, we are assuming that

the decay rates and thus the quantum yield are constant in

the spectral width of fluorescent emission.

The usual goal is to use a plasmonic nanoantenna to

enhance the PLEF, Pout∕P0 ≫ 1, but this is not always the

case. In the following, we identify quenching of the emis-

sionwith Pout∕P0 < 1, i.e., with emission inhibition [22], [32],

[33], [45]. Equation (3) indicates that this enhancement only

depends on the near-field enhancement at the illumination

frequency 𝜔exc (resonant with the |0⟩→ |1⟩ transition) and

on the yield at the emission frequency 𝜔em (corresponding

to |i⟩→ |0⟩ transition). We highlight that this description

would not be fulfilled under very strong illumination [36],

[152]. In the present work, we consider the excitation and

emission evaluated at the same frequency, 𝜔exc = 𝜔em, for

the sake of simplicity and to provide a clearer interpretation

of the underlying principles. However, it is important to note

that the field enhancement and quantum yield estimations,

as presented here, are also valid to evaluate PLEF in other

scenarios where 𝜔exc ≠ 𝜔em.

In the following, to simplify the analysis, we assume

that the QE has no intrinsic losses, knr = 0, so that the

intrinsic quantum yield is equal to one, 𝜂0
i→0

= 1. Under this

assumption, Equation (3) becomes

Pout

P0

= |K0→1|
2𝜂i→0 = |K0→1|

2 ΓR
i→0

ΓR
i→0

+ ΓNR
i→0

, (4)

which indicates that any enhancement of the photolumi-

nescence can only be due to an enhancement of the exci-

tation |K0→1|
2 > 1, because by definition 𝜂i→0 < 1. Using a

QE with a low intrinsic quantum yield, 𝜂0
i→0

≪ 1, can result

in much stronger PLEF, as described by Equation (3), but

not in a larger total emitted power Pout. Hereafter, 𝜂
0
i→0

= 1

and we simplify the notation of K0→1 and 𝜂i→0 to K and 𝜂,

respectively.

3 Calculation method

The PLEF, Pout∕P0, produced by the plasmonic nanoanten-

nas is calculated using electrodynamics simulations based

on the finite-difference in time-domain method [153]. We

thus neglect quantum effects, such as charge-transfer pro-

cesses due to electron tunneling across energy barriers
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[102], [154], [155], which might be relevant in situations

involving extremely small (subnanometric) separation dis-

tances and that likely result in a decrease of photolumines-

cence emission due to the quenching of the local electric

field as well as the quenching of the molecular transition

that occurs when electronic states of the metal and QE

hybridize [156], [157]. Following Equation (4), we perform

two types of simulations for each configuration, the first one

tofind the excitation enhancement |K|2 at the position of the

emitter, and the second one to obtain the radiative yield 𝜂

together with the radiative and non-radiative decay rates.

We first consider illumination by a linearly polar-

ized plane wave that excites the bare nanoantenna in the

wavelength range 500 nm ≤ 𝜆exc ≤ 2, 000 nm (with 𝜆exc =
2𝜋c∕𝜔exc and c the speed of light in vacuum). The resulting

electric field enhancement, |K|2 = |E∕E0|2, is obtained by

placing an electric-field point monitor at the position of the

QE to record the electric field E, and using the correspond-

ing E0 value of the incident illumination to normalize the

results. Importantly, this simulation does not include the

QE. The polarization and direction of the incidence plane

wave, as well as the position where the QE will be placed

and orientation of its dipolar transition, are indicated in

Section 4.1.

Once the illumination and field enhancement condi-

tions are established, we simulate the emission process by

including the QE. In this case, the QE is modelled as a point-

like electric dipole source with an emission wavelength in

the 500 nm ≤ 𝜆em ≤ 2, 000 nm range (with𝜆em = 2𝜋c∕𝜔em).

We assume the dipole is oriented perpendicular to the

nanoantenna surface, as this orientation contributes more

significantly to the PLEF compared to when it is oriented

parallel, as demonstrated in several studies [24], [30], [31],

[36], [42], [44], [158], [159]. The power radiated to the far

field of the entire QE – nanoantenna system (Pout) is then

obtained by integrating the emitted power over a closed-

surface monitor surrounding the system, separated from

the source by a distance of twice the maximum wavelength

of the dipole source. Simultaneously, within the same sim-

ulation, we determine the total power (i.e., including radia-

tive and non-radiative contributions) emitted by the dipole

source in the presence of the nanoantenna (PT
dip
) by integrat-

ing the emitted power over a closed-surface monitor sur-

rounding only the dipole source. Additionally, we simulate

the power emitted to the far field by the dipole source in the

absence of the nanoantenna
(
P
0
dip

)
. The plasmon-induced

change of the total ΓT, radiative ΓR, and non-radiative ΓNR

decay rates, as well as the radiative yield 𝜂, can then be

directly related to these values as [159]:

ΓT

Γ0
=

PT
dip

P
0
dip

,

ΓR

Γ0
= Pout

P
0
dip

, and

ΓNR

Γ0
= ΓT

Γ0
− ΓR

Γ0
,

𝜂 = ΓR

ΓT
= Pout

PT
dip

,

(5)

where Γ0 is the spontaneous decay rate of the QE in the

absence of nanoantenna and no intrinsic losses are consid-

ered, knr = 0. The set of Equations (5) shows, that in this

case, the quantum yield does not depend on P0
dip
.

In addition to enhancing the photoluminescence of the

QE, the nanoantenna has also the capability to direct the

emitted power towards a preferential direction [44]–[52].

This effect can be quantified through the directivity D at a

particular set of angular coordinates (𝜃, 𝜙), defined as

D(𝜃, 𝜙) = 4𝜋P(𝜃, 𝜙)

Pout

, (6)

where P(𝜃, 𝜙) represents the power per unit solid angle

emitted in a particular direction (evaluated in the far field),

and 𝜃 and 𝜙 are the polar and azimuthal angles, respec-

tively (𝜃 measured from the positive z axis of the Carte-

sian coordinates and 𝜙 measured in the xy plane from the

positive x axis, see Figure S1). Notice that P(𝜃, 𝜙) is normal-

ized by the total radiated power Pout, so that D = 1 for an

isotropic source. The determination of the power emitted

by the different nanoantenna configurations follows the

same methodology as in the previous simulations. Specif-

ically, P(𝜃, 𝜙) is calculated over the same closed-surface

power monitor surrounding the system, which computes

the far-field projection in the direction described by (𝜃, 𝜙)

[160].

In all the simulations, the QE – nanoantenna systems

are centered in a cubic simulation domain with perfect

matched layers (PML, 60 layers) as boundaries in the three

directions. The length of the cubic domain is four times

the maximum wavelength considered for the simulations,

i.e., 8,000 nm in length. The Courant number, defined as

cΔt∕Δx, whereΔt is the time step, andΔx is the spatial step,
is set below 0.9 to maintain the stability of the FDTD simu-

lations [153]. In addition, we conduct convergence testing to

ensure the accuracy of our findings. The refractive index of

gold is taken from Ref. [161], and the medium surrounding

the antennas is considered as vacuum.
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4 Results and discussion

4.1 Description of the nanoantennas

We explore four canonical nanostructures across three dis-

tinct antenna configurations, resulting in a total of twelve

arrangements (Figure 2). This array of setups is selected to

give a general overview of the capacity to enhance photo-

luminescence from QE – nanoantenna systems that can be

fabricated with a high degree of control. First, we select

four metallic nanostructures that are commonly studied,

synthesized and used in nanophotonics: spherical parti-

cle, rod, disk, and crescent nanostructures (Figure 2a, d, g,

and j, respectively). The first two, spheres and rods, are

nowadays relatively straightforward to fabricate through

bottom-up techniques, such as colloidal chemical synthesis,

with precise control over their size [127], [131], [132], [134].

Moreover, advances in self-assembly techniques allow for

the arrangement of several QE units, and introduce paths

towards the placement of QEs at controlled distances from

the nanoparticles [43], [162]–[168]. The other two selected

nanostructures, disks and crescents, can be fabricated with

precise control over their shape and size through top-down

methods like lithography and evaporation techniques. In

these systems, the placement of quantum emitters is facili-

tated by deposition techniques such as dip coating or chemi-

cal self-assembly [169], [170]. Further, while we focus in indi-

vidual nanoantennas, this approach offers advantages for

the fabrication of periodic arrays with different symmetries

[128]–[130], [133], [135].

We consider three different arrangements of these four

canonical nanostructures: single nanoantennas (with the

QE in proximity to one isolated nanostructure) [13], [42],

[51], [80], [84], [85], [88], [168], [171], gap nanoantennas (or

dimers, where two similar nanostructures are separated by

a gap with the QE in between) [43], [53], [172], [173], and

nanoparticle-on-mirror constructs (where the QE is posi-

tioned in the gap between a metallic nanostructure and a

metallic substrate that acts as a mirror [22], [40], [113], [133],

[174], [175]). All of these configurations have been shown to

Figure 2: Nanoantennas considered in this work to enhance the photoluminescence of a nearby QE, represented by an electric dipole (red arrow).

The canonical nanostructures are: (a–c) spherical particle, (d–f) rod, (g–i) disk, and (j–l) crescent, which adopt three configurations: (a, d, g, j) single,

(b, e, h, k) gap, and (c, f, i, l) nanoparticle-on-mirror nanoantennas. The electric dipole, symbolizing the quantum emitter, is located at a distance d

from the surface of the nanostructures (at the gap center, when a gap is present), with its direction perpendicular to the nanoantenna surface,

as indicated in the corresponding right-hand schematics in each panel.
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be well-suited for self-assembly of quantum emitters and

to strongly enhance their light emission [32], [37], [40], [43],

[51], [53], [86], [99], [116], [130], [137], [176], [177].

In all these systems, the size of these nanostructures

plays a crucial role in determining their optical properties

and performance in a specified spectral range. We choose

the sizes based on the capabilities of fabrication techniques

with demonstrated high quality and reproducibility [127],

[129]–[135]. We consider spherical particles of diameter

20 nm ≤ DSph ≤ 250 nm. The rods have total lengths in the

range 25 nm ≤ LRod ≤ 350 nm, with circular cross-section

of fixed diameter DRod = 25 nm (that is, the aspect ratio

LRod∕DRod is varied from 1 to 14), and with hemispherical

end-caps. The diameter of both the disk and crescent (DDsk

and DCrs, respectively) ranges from 100 nm to 500 nm, with

fixed thicknesses of tDsk = tCrs = 30 nm. The edges of the

disks and crescents form sharp, rectangular angles, with the

crescents finished off with slightly curved tips. Additional

size specifications for the crescent nanostructures can be

found in the Supporting Information (Figure S2, where all

geometries are illustrated). Henceforth, for simplicity, we

collectively refer to the geometrical parameter that we sys-

tematically modify for each nanostructure (DSph, LRod, DDsk,

andDCrs) as their “size”. Other specific references to individ-

ual geometrical parameters aremade throughout the text as

needed.

With regard to the gap nanoantenna and nanoparticle-

on-mirror structures, the rods are aligned along the same

axis in the gap nanoantenna, and vertically to the substrate

in the nanoparticle-on-mirror configuration, which maxi-

mizes the electric field enhancement in the gap (Figure 2e

and f). We choose the metal-insulator-metal stack con-

figuration for the disk gap nanoantenna, disk-on-mirror

and crescent-on-mirror configurations (Figure 2h, i, and l,

respectively), as widely explored in the literature [51], [96],

[98], [130], [133], [178]–[182], [182]. Regarding the crescents

gap nanoantenna (Figure 2k), we consider two merged

crescent nanostructures, with one of them rotated at an

azimuthal angle relative to the other in order to achieve

the desired gap aperture (20 nm). Thus, the gap is formed

between the tips of each crescent. This distinctive structure

is fabricated using a double evaporation process [128], [129].

Additionally, to obtain the PLEF, we simulate the

response for two different excitations: an incident light

beam (e.g. a laser) modelled as a plane wave, and an emit-

ting dipole representing the quantum emitter. The prop-

agating direction and polarization of the plane wave are

selectedwith the aim atmaximizing the enhancement of the

electric field by the nanoantennas. Having as a reference the

coordinate axis in the schematics on the right-hand side of

each of the panels in Figure 2, the plane wave propagates in

the −z direction for single and gap nanoantennas with the
electric field polarization in the x direction, and inclined 45◦

from this direction (in the xz plane, with electric field polar-

ized also along this plane) for all nanoparticle-on-mirror

nanoantennas.

The distance between the dipole and the nanoan-

tenna surface is fixed at d = 10 nm (except when otherwise

stated), and the QE is in the middle of the gap for the gap

nanoantenna and nanoparticle-on-mirror configurations.

This specific distance is selected based on a comprehensive

analysis of both theoretical predictions and experimental

constraints, as further detailed in Section 4.3. Therefore,

the gap size of the gap nanoantenna and nanoparticle-on-

mirror is always 20 nm, which is enough to facilitate fab-

rication and to ensure enough room to locate relatively

large emitters (such as quantum dots) at a distance of a few

nanometres from themetallic surfaces, and thus to diminish

quenching of the emission [32], [33], [45]. As illustrated in

Figure 2, the dipole is placed near the tip of the rods, and

either directly above or below the flat surface of the disks, in

this case near the edge (5 nm lateral displacement towards

the center). This lateral position is chosen instead of the

center to ensure efficient excitation of the dipolar mode

of the individual disks. In the case of the crescents, the

emitting dipole is placed in front of the tips (single and gap

configurations) or between the tip and substrate. The ori-

entation of the dipole is indicated in Figure 2 and is always

chosen to obtain an efficient coupling with the nanoan-

tenna modes (e.g. along the dimer or the particle-substrate

axis). For the crescent-gap configuration, a fixed gap size of

20 nm not only ensures large photoluminescence enhance-

ment but also prevents the occurrence of Fano resonansces.

These resonances could result from interference between

the quadrupolar mode of the crescent and additional dipo-

lar or quadrupolar modes with large charge concentration

at the tips when the gap is smaller than 10 nm [183], [184].

Bymaintaining this gap size, we ensure that these modes do

not influence the interaction between the crescent and the

emitter.

4.2 Plasmonic response
of the four canonical nanostructures

We focus in this section on characterizing the plasmonic

modes of the four individual single nanoantennas within

the visible-near IR spectral range (500 nm ≤𝜆 ≤ 2,000 nm).

We calculate the extinction cross-section spectrum (𝜎Ext)

of these nanoantennas in the selected size range (Figure 3,

left panels). In all cases, one dominant resonant band can

be appreciated, corresponding to the lowest order mode,

which becomes more intense, wider, and redshifts as the

nanostructure size increases. This redshift demonstrates the
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Figure 3: Plasmonic response of the single nanoantennas under plane wave illumination. (Left column panels) Extinction cross-section spectra (𝜎Ext)

as a function of excitation wavelength and size of the considered single gold nanostructures: (a) sphere of diameter in the range 20 nm ≤ DSph ≤

250 nm, (b) rod of length in the range 50 nm ≤ LRod ≤ 350 nm (with fixed rod diameter of DRod = 25 nm and hemispherical caps), (c) disk

of diameter in the range 100 nm ≤ DDsk ≤ 500 nm, and (d) crescent of diameter in the range 100 nm ≤ DCrs ≤ 500 nm. The thicknesses of the disk

and crescent are tDsk = tCrs = 30 nm. (Central column panels) Spatial distribution of the normalized electric field (|E∕E0|) and (right column panels)
corresponding surface charge distribution (𝜌) of the corresponding nanostructures with sizes that yield the maximum electric field at 𝜆exc = 520 nm

for the spherical nanoparticle, 𝜆exc = 1,100 nm for the disk, and 𝜆exc = 1,550 nm for the rod and crescent nanostructures, revealing the dipolar nature

of the excited nanoantenna mode (blue crosses in 𝜎Ext maps indicate the selected excitation wavelengths for visual aid). The sizes in the central and

right columns are (a) DSph = 100 nm, (b) LRod = 330 nm, (c) DDsk = 400 nm, and (d) DCrs = 330 nm. The antenna geometry as well as the polarization

and direction of the incident plane wave are indicated in the insets.

tunability of the nanoantennas response [124], [185]. The

resonance occurs at shorter wavelengths for the spherical

particle (resonance between ∼520 nm and ∼720 nm in the

considered size range), and at much larger wavelengths for

the other nanostructures, enabling a resonant responsewell

into the near infrared region. Thewidth of the resonances is

particularly large for big spherical and disk nanostructures,

and smaller in the other cases. This different behaviour is

explained by the larger volume of the former ones, which

leads to very strong radiative losses [186], [187], as well as

by large gold losses near the surface plasmon at ≈520 nm
wavelength [124], [188] (see Figure S6a–c).

To demonstrate the nature of the lowest-order modes

of these single nanoantennas, we plot in Figure 3 the spatial
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distribution of the normalized electric field (|E∕E0|, central
column panels) and of the corresponding electric surface

charge distributions (𝜌, panels on the right hand side) when

the system is excited at thewavelength of the resonant peak.

For rods and crescents we chose the size that results in a

resonance at wavelength 𝜆 = 1, 550 nm, as this wavelength

is particularly important in telecommunications, because

it corresponds to the main window of weak absorption in

glass fibers. The resonance of spherical and disk nanoan-

tennas does not reach 𝜆 = 1, 550 nm for the simulated sizes,

and thus we chose the sizes with resonance at 520 nm and

1,100 nm, respectively. The field and surface charge distri-

bution clearly indicate that the main extinction band cor-

responds in all the cases to the excitation of the plasmonic

dipolar mode. This mode is characterized by a spatial distri-

bution of positive and negative surface charges at opposite

sides of the nanoantenna. These charges induce a strong

electric field in their proximity, extending away a few tens

of nanometers outside the nanoantenna surface, indicating

that this specific region is optimal for the excitation of the

quantum emitter. The electric dipole is thus placed in this

region in the simulations, as described in Section 3.

4.3 Effect of QE – nanostructure distance
on PLEF

The separation distance between the QE and the plasmonic

nanostructure has a very large impact on the PLEF. To

Figure 4: Excitation enhancement (|K|2, black solid line and circles,

left axis), radiative yield (𝜂, blue solid line and triangles, right axis),

and PLEF (|K|2𝜂, red solid line, left axis) of the dipole – single spherical

nanoantenna. As sketched in the inset, the results are plotted

as a function of separation distance (2.5 nm ≤ d ≤ 50 nm) between the

surface of the sphere and the position of the QE, the latter corresponding

to the position where the field is evaluated to obtain |K|2, or where

the dipole is placed to calculate 𝜂. The diameter of the gold spherical

nanostructure is 100 nm and the excitation (𝜆exc) and emission (𝜆em)

wavelengths are both set at 520 nm, the resonant wavelength

of the dipolar mode of this nanoantenna.

illustrate this effect, we choose as an example a single spher-

ical nanoantenna of diameter DSph = 100 nm. We plot in

Figure 4 the excitation enhancement (|K|2) at the position

of the QE under plane-wave illumination, as well as the

radiative yield (𝜂) characterizing the emission from this QE

and the resulting PLEF
(
Pout∕P0 = |K|2𝜂

)
. The excitation

is tuned to the dipolar mode of the nanoantenna, 𝜆exc =
520 nm, and the distance is varied in the range of 2.5 nm ≤

d ≤ 50 nm. For simplicity, the difference between excitation

and emission wavelength is neglected, i.e., 𝜆exc = 𝜆em is

considered in all the calculations.

The excitation enhancement increases rapidly as the

distance decreases (black line and circles in Figure 4),

which shows that the plasmons are strongly confined to

the region near the nanoantenna. In contrast, the radiative

yield approaches unity when the emitter is positioned far

from the nanoantenna, but diminishes rapidly at shorter

distances (blue line and triangles). This decrease is the con-

sequence of a faster increase of the non-radiative decay rate,

compared to the radiative decay rate, as energy from the

emitter is transferred to higher order modes of the nanoan-

tenna [33], [44], [79]. As a result, the optimum distance

for PLEF (red line) is around d = 10 nm for the spherical

nanoantenna in Figure 4, as indicated by the red line.

The spherical nanoantenna considered in Figure 4 has

the advantage of simplicity, but it is far fromoptimal tomax-

imize field-enhanced photoluminiscence. Other structures

such as rods, as well as gap and nanoparticle-on-mirror

nanoantennas, can lead to much stronger field enhance-

ment (Section 4.4) and a slower decrease of the radiative

yield with decreasing distance. The latter effect is due to

a larger contribution to the decay rate of the lower-order

radiative modes in these systems, as compared to that of

the higher-order modes. Notably, decreasing the gap size

(and thus the QE – nanoantenna distance) in gap and

nanoparticle-on-mirror nanoantennas, results in a much

faster increase of the field enhancement, as compared to the

decrease of the radiative yield, except for very narrow gaps,

so that the optimal distance of the emitter to the metallic

surface in this type of antennas is significantly smaller, as

explicitly shown in Figure S3. We fix the QE distance to

10 nm in the following as a compromise between maximiz-

ing PLEF in optimized systems, and facilitating fabrication

and ensuring enough room to locate the QEs.

4.4 Excitation enhancement

To analyze more systematically the differences and sim-

ilarities between all the different systems sketched in

Figure 2, we focus first on the excitation enhancement by

the incoming plane-wave illumination. Figure 5 shows the

calculated maps of the intensity excitation enhancement
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Figure 5: Excitation enhancement maps
(
|K|2 = |E∕E0|2

)
of the twelve considered nanoantennas (see insets and Figure 2 as a guide) at the positions

where the quantum emitters is placed (green crosses, d = 10 nm distance from metal surface). The results are obtained as a function of the nano-

structure size (the geometrical parameter under modification is indicated in the y-label) and excitation wavelength (𝜆exc). The geometry

of the nanoantennas and the polarization of the excitation plane wave are described in Section 4.1.

|K|2 = |E∕E0|2 as a function of the excitation wavelength

and size of the nanostructures. We evaluate the field at the

positions indicated by the crosses in the insets, at 10 nm

from the metal surfaces. These positions correspond to the

QE locationswhen calculating the PL, butwe emphasize that

the QEs are not included in these excitation enhancement

calculations.

In general, the excitation enhancement is dominated by

the bright lowest-energy mode of each nanoantenna, which

redshifts, broadens and induces large field enhancements
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as the size of the nanoantenna increases. Notably, this mode

can be shifted to wavelengths well into the mid-IR spec-

tral range. Plotting the field and charge distribution (see

Figure 3d for the crescent, for instance) confirms that the

fields are enhanced more strongly at the gaps and/or the

region near the tips, so that in all cases the position of the QE

(i.e., the position where the fields are evaluated in Figure 5)

corresponds to a location of strong field enhancement.

Additionally, a weaker peak at lower wavelengths, cor-

responding to a higher order mode, can be observed for

some of the systems, most prominently for the crescent gap

nanoantenna in Figure 5k. The calculated surface charge

distribution induced at the crescent gap indicates that this

additional mode is quadrupolar (Figure S4). We also note

that some modes cannot be excited under normal illumi-

nation due to symmetry (subradiant or dark modes) [52],

[189], [190], but they can be excited efficiently by a dipole

strategically placed close to the nanoantenna (Figures S5

and 6).

Focusing next on the losses, the dominant mode of the

sphere gap and sphere-on-mirror nanoantennas inherits

the large spectral width of the single sphere dipolar mode,

again due to large radiative losses for large diameter and

strong gold absorption near 𝜆exc ≈ 520 nm. On the other

hand, it is more instructive to analyze themodewidth of the

three disk nanoantenna configurations (Figure 5g–i). The

initially broad resonant band in the spectra of the single

disk nanoantenna narrows very significantly for both the

disk gap and the disk-on-mirror nanoantennas, due to a

much weaker radiative nature of the modes excited there.

In the case of the disk gap nanoantenna, the incoming light

induces a dipole in the bottom disk of opposite direction

to that of the top disk (see Figure S7), so that the radia-

tion from both of them partially cancels (i.e., weaker radi-

ation losses) [180] and the quality factor of the resonances

(ratio of the resonant frequency to the full-width half max-

imum) increases. The opposite charges at both disks are

also responsible for the intense and strongly confined fields

in the inter-disk gap. A similar effect explains the narrow

peaks of the disk-on-mirror nanoantenna, where the image

charges of opposite sign induced at the substrate play a

similar role as those induced at the bottom disk in the gap

configuration.

Last, we compare the magnitude of the |K|2 excitation

enhancement for the twelve different systems. All of them

can significantly amplify the electric field at the specified

QE location, with enhancement factors ranging from ∼10
to over ∼103, potentially reaching up to 6,000 for the rod

gap nanoantenna. Single nanoantennas exhibit the small-

est enhancement, with the gap nanoantennas consistently

performing the best under this criterion. On the other

hand, comparing the four canonical nanostructures, the rod

stands out for producing the highest field amplification. As

a consequence, the rod gap nanoantenna (Figure 5e) can

be noted as the most effective one in enhancing the excita-

tion of the quantum emitters. However, many of the other

nanoantennas also result in very large values of |K|2 at

resonance, with |K|2 > 100 for all systems at the optimal

size, except for the single spherical and the single disk

nanoantennas. This diversity provides researchers with a

versatile range of options to select the nanoantenna that

most effectively meets the requirements and overcomes the

practical limitations of a specific application.

4.5 Radiative yield of the QE – nanoantenna
systems

To analyze the emission process, the crucial parameter

in typical photoluminescence experiments is the radia-

tive yield, 𝜂 = ΓR∕(ΓR + ΓNR), as given by the radiative

(ΓR) and non-radiative (ΓNR) decay rates of the quantum

emitter in close proximity of the plasmonic nanoantenna

(Section 2 and Equation (4), obtained for no intrinsic losses).

The behavior of ΓR and ΓNR is described in Support-

ing Information (Figures S5 and S6, respectively). In this

section, we analyze the dependence of the radiative yield on

wavelength and size of the nanoantennas for all the systems

considered here. The results (see Figure 6) are obtained by

solving the response of the system when illuminated by a

dipole source at d = 10 nm from the nanostructure surface,

following the methodology detailed in Section 3. For ref-

erence, the plasmonic resonant positions (extracted from

Figure 5) are indicated in Figure 6 with blue dashed lines,

which show that one needs to be careful when interpreting

the radiative yield, because the maxima of 𝜂 do not neces-

sarily correspond to the plasmonic resonances.

In most cases, the radiative yield at the resonant fre-

quencies associatedwith large field enhancement (Figure 5)

falls within the 𝜂 ≈ 0.4− 0.8 range. These results show

that absorption in the metal generally leads to a moderate

decrease of the radiative yield at resonance, much weaker

than the enhancement of the excitation studied in Figure 5.

The consequence is an increase of the photoluminescence

signal, as shown in the next section. Further, it is worth

noting that we consider in this work a QE with no intrinsic

losses kNR = 0, but when k
NR is large the intrinsic yield of

the isolated QE is small, and thus the plasmonic response

can actually increase the yield [109].

By comparing the different systems, one can observe

that spherical nanoantennas of diameter exceeding

100–150 nm demonstrate particularly large radiative yield

(Figure 6a–c; note that the colorbar changes from panel to
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Figure 6: Maps of radiative yield (𝜂 = ΓR∕ΓT) of the dipole – nanoantenna systems in the corresponding insets (also Figure 2) calculated for

d = 10 nm dipole-nanoantenna distance and no intrinsic losses (kNR = 0). The yield is obtained as a function of the nanostructure size (the geometrical

parameter changed is indicated in the y-label) and emission wavelength (𝜆em). The point-like dipole that excites the nanoantennas is enclosed by a

gray sphere in the insets to distinguish it from the background and to represent the finite physical size of the QE. The geometry of the nanostructures

and the dipolar excitation are described in Section 4.1. Blue dashed lines indicate the main plasmon resonant positions of the nanoantennas.

panel). We attribute this finding to the very large volume

of these structures, which increases radiation efficiency.

The strong dependence of radiation efficiency on size also

explains the weaker yield that is typically found as the size

of the antennas is reduced to very small sizes in Figure 6.

To further stress this connection between nanoantenna

volume and radiative yield, we note as an example that a

single sphere of 60 nm diameter and a single rod of 250 nm

in length (DRod = 25 nm), both of approximately the same

volume, present a similar yield at the dipolar resonance,
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𝜂 ≈ 0.4. This analysis emphasizes the importance of taking

into account both the nanoantenna geometry and aspect

ratio in the pursuit of optimizing radiative yield.

On the other hand, the radiative yield at resonance

can be comparatively low for the disk gap and crescent-

on-mirror nanoantennas (Figure 6h and l), despite a rel-

atively large volume. This low 𝜂 is a consequence of the

destructive interference of the emission from the dipoles of

opposite orientation excited at each of the two disks, or at

the nanostructure and the substrate. The radiative yield can

be increased in these structures, for example, by the use of

a nanopillar [191].

For completeness, the maps of radiative ΓR∕Γ0 and

non-radiative ΓNR∕Γ0 decay rate enhancements are shown

in the Supporting Information, in Figure S5 and S6, respec-

tively. The radiative rate follows rather closely the behavior

of the square of the field enhancement |K|2 in Figure 5

due to the reciprocity principle [49], [56], [192]. The non-

radiative rate of the systems involving the rods, disks and

crescents show similar resonant bands as the radiative rate

and the field enhancement, but higher-order modes can be

more prominent due to their larger associated losses. In con-

trast, no dipolar-mode band is observed in the non-radiative

rate contribution when the QE is near a spherical nanopar-

ticle because the coupling with the high order modes (or,

equivalently, with the pseudomode [68], [193]) dominates

the interaction in that case.

4.6 Photoluminescence enhancement factor
of the canonical QE – nanoantenna
configurations

The enhancement of the photoluminescence emitted by

QEs coupled to nanoantennas is governed by the combined

effects of the excitation enhancement |K|2 = |E∕E0|2 at the
excitation wavelength (Figure 5) and the radiative yield 𝜂 =
ΓR∕ΓT at the emission wavelength (Figure 6). This rela-

tionship is encapsulated in the expression Pout∕P0 = |K|2𝜂,

derived in Section 2 for a simple situation with no intrin-

sic losses of the QE (Equation (4)). Figure 7 showcases the

computed PLEFs for all the canonical dipole – nanoantenna

systems studied here, considering 𝜆exc = 𝜆em for simplicity.

A large PLEF is observed across the twelve nanoanten-

nas under consideration, ranging from 10 to 103. The sin-

gle spherical nanoantenna demonstrates the least favorable

enhancement, achieving up to over 10 times. In contrast,

the rod nanostructure stands out as the choice of maxi-

mum potential enhancement, reaching up to 400 times for

the single configuration, 3,000 times for the gap configura-

tion, and 1,200 times for the nanoparticle-on-mirror configu-

ration. Figure S8 in the Supporting Information shows that

the orientation of the rod is critical in the nanoparticle-

on-mirror configuration, as much smaller enhancements

are obtained for horizontally oriented rods. Only the single

crescent nanoantenna equals the PLEF of the single rod

counterpart. It is worth mentioning that the crescent gap

nanoantenna can achieve PLEF as high as 6 × 103 in the

mid-IR range (2, 500 nm ≤ 𝜆 ≤ 4, 000 nm) for the consid-

ered size range (Figure S9). The maps obtained resemble

visually those representing the excitation enhancements

displayed in Figure 5, as both show clear bands associ-

ated with the excitation of the resonant modes. However,

both excitation enhancement and radiative yield need to

be considered for a detailed analysis. For example, in

small nanoantennas, the PLEF can decrease much faster

for decreasing size than one could expect from the excita-

tion enhancement, as a consequence of a decreasing radia-

tive yield. This effect can be appreciated more directly in

the single spherical and sphere-on-mirror nanoantennas

in Figure 7a and c, respectively. As a further example, the

crescent-on-mirror nanoantenna induces a five-fold higher

|K|2 excitation enhancement compared to the sphere-on-

mirror nanoantenna, but the radiative yield at resonance

of the latter (𝜂 ≈ 0.75) significantly exceeds that of the for-

mer (𝜂 ≈ 0.075). As a consequence, the sphere-on-mirror

nanoantenna can enhance the photoluminescence twofold

more than the crescent-on-mirror nanoantenna.

We highlight that large PLEF >25 can be obtained in

all possible configurations except for the single spherical

nanoantenna, and even stronger values of up to 14,000

can be obtained by reducing the gaps size, as illustrated

in Figure S10 in the Supporting Information. Notice that,

although Figure 7 considers a large range of emission wave-

lengths and nanoantenna sizes, the emission (and excita-

tion) wavelengths are fixed in many typical experimen-

tal realizations. We consider this situation explicitly by

selecting two representative wavelengths, (i) 𝜆em = 𝜆exc =
650 nm, a value in the visible range that has been used

in laser diodes technology [194]–[196], and where conve-

nient quantum emitters can be found, and (ii) 𝜆em = 𝜆exc =
1, 550 nm, an infrared wavelength that is standard in silica

fiber-based communication technology [147]. Figure 8a–h

compare the PLEFs of all the twelve dipole – nanoantenna

systems as a function of the size of the nanoantennas for

these two wavelengths (corresponding to vertical cuts in

Figure 7).

We first focus on the emission at visible wavelengths,

𝜆em = 650 nm. Many systems display comparable enhance-

ment, PLEF ≈ 10-102, at this wavelength for the optimal

sizes. For example, the rod – gap nanoantenna (which has

the advantage of requiring relatively little gold material
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Photoluminescence enhancement factor, P/P0=|K|2
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Figure 7: PLEF maps (Pout∕P0 = |K|2𝜂∕𝜂0) of the dipole – nanoantenna systems in the insets (also Figure 2) as a function of the nanostructure size
and emission wavelength (𝜆em). The dipole that excites the system is placed at d = 10 nm from the nanostructure and has no intrinsic losses (kNR = 0).

The geometry of the nanostructures and the polarization of the excitation plane wave are defined in Section 4.1. These results are obtained

by multiplying the excitation enhancement (Figure 5) by the radiative yield (Figure 6), considering 𝜆em = 𝜆exc. The point-like dipole is enclosed

by a gray sphere in the insets to distinguish it from the background.

for fabrication owing to its small volume [43]) presents a

maximum PLEF ≈110.
Alternatively, systems that comprise spherical

nanoparticles show a very broad maximum due to the low

quality factor of the resonance, but significant PLEF in the

visible range, up to 102, can still be reached for large diame-

ter and for the gap or nanoparticle-on-mirror nanoantennas

(Figure 8a), while photoluminescence is strongly quenched

for small diameters, i.e., Pout∕P0 < 1. Only the single

crescent and crescent-on-mirror nanoantennas quench
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Figure 8: PLEF at 𝜆em = 650 nm (top panels) and 𝜆em = 1, 550 nm (bottom panels) of the dipole – nanoantenna systems in the insets (also Figure 2),

as a function of the nanostructure size for (a, e) sphere, (b, f) rod, (c, g) disk, and (d, h) crescent nanostructures with single (black line), gap (blue line),

and nanoparticle-on-mirror (red line) nanoantennas. The distance of the dipole from the nanoantenna is d = 10 nm. These results correspond to

vertical cuts in Figure 7. A gray dashed line serves as a reference, indicating the threshold below which photoluminescence is quenched, i.e.,

where the decrease in quantum yield outweighs the increase in excitation enhancement resulting in PLEF<1.

the photoluminiscence, or result in an extremely weak

enhancement (PLEF≲ 1) for all sizes considered (Figure 8d).

The reason is that the higher modes supported by these

systems at 𝜆em = 650 nm are very weakly radiative, not

coupling efficiently with far-field radiation.

Last, we examine in Figure 8e–h the PLEF in the

near-infrared 𝜆em = 1, 550 nm wavelength. The maximum

enhancement achieved at the optimal size is generally

larger than for the visible 𝜆em = 650 nm wavelength. Once

again, rod nanoantennas outperform others in enhancing

the PL, butmanyother configurations enable enhancements

in the range PLEF ≈101 − 103.

In practical applications, plasmonic nanoantennas

are often integrated with dielectric substrates or placed

within surrounding media, both of which can influence

PL enhancement effects. A substrate or a medium with a

higher refractive index can induce a redshift in the plasmon

resonance and alter the local electric field distribution near

the nanostructures, with part of the electric field tending

to be redirected toward the substrate, which can reduce

the intensity of the field available to interact with the QE

[49], [56], [171], [197]–[199]. Nevertheless, themain objective

of our study is to provide a comprehensive guide and a

strong foundation for understanding the intrinsic behavior

of plasmonic nanoantennas. While substrates or surround-

ing media may cause a resonance shift, the core principles

and findings remain applicable. A simple adjustment for the

redshift would effectively account for these environmental

effects without diminishing the relevance of the insights

described here.

In this context, significant fluorescence enhance-

ment has been documented in various experimental

studies, indicating that our predictions are consistent with

real-experimental observations. For instance, Orrit et al.

observed an enhancement factor of up to 1,100-fold in gold

nanorods, primarily due to the proximity of the emitter to

the regions of maximum electric field enhancement of the

rods [88]. Similar enhancements were reported in polymer-

coated gold nanorods [200] and shell-isolated nanoparticles

(SHINs) [201]. Furthermore, studies utilizing DNA origami

for the arrangement of nanoparticles have shown a max-

imum enhancement of two or even three order of magni-

tude [37], [43], affirming the critical role of emitter position-

ing. Additionally, various nanoparticle-on-mirror configu-

rations exhibit enhancement factors ranging from tens to

thousands [175]. These experimental findings corroborate

the practical relevance of our theoretical predictions as a

robust framework for guiding future experimental endeav-

ors in plasmonic nanoantenna research.

4.7 Directivity

Another significant aspect of the light emitted by QE –

nanoantenna systems is its directivity (Equation (6)), which

indicates the extent to which the nanoantennas emit selec-

tively towards a given direction. The top right insets in
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Figure 9: Polar plots of the directivity of the dipole – nanoantenna systems displayed in the bottom right insets of each panel (also Figure 2).

In all cases, 3D polar plots as a function of the polar (𝜃) and azimuthal (𝜙) angles are shown on the top-right inset and a 2D cut is shown on the left.

The full 3D directivity is represented with color gradient ranging from blue, representing the minimum value (0), to red, signifying the maximum

directivity. The 2D-polar plots are displayed along the green or red circle in the top right insets, the former included in the xz plane and the latter

in the yz plane, according to the coordinate axis also shown in the figures. The sizes of the nanostructures correspond to those that maximize

the PLEF at the photon emission wavelength 𝜆em = 1, 550 nm.
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Figure 9 illustrate the directivity for the twelve dipole –

nanoantenna systems through 3D polar plots as a function

of the polar (𝜃) and azimuthal (𝜙) angles. The plots of the

left side display 2D cuts at relevant planes. The directivity is

shown for selected nanoantenna sizes that yield maximum

PLEF at 𝜆em = 1, 550 nm (Figure 8).

In general, the directivity pattern and its maximum

value vary strongly from system to system, but the values

remain relatively modest, which is a direct consequence

of the reduced size of the nanoantennas [202]. The sys-

tems based on spherical nanoparticles (Figure 9a–c) or rods

(Figure 9d–f) exhibit an axisymmetric directivity pattern

with respect to the z axis (see coordinate axis in the figure),

inherited from the common rotational symmetry of the sys-

tem and illumination. On the other hand, the directivity pat-

terns of the systems based on disks (Figure 9g–i) and cres-

cents (Figure 9j–l) are non-axisymmetric, because the sym-

metry is broken by the nanostructures or because the dipole

is moved away from the symmetry axis of the nanoantenna.

We first focus on the single and gap nanoantenna con-

figurations (i.e., no gold substrate), where two different

types of emission patterns can be observed. On the one

hand, the systems using spherical nanoparticles and rods

present the characteristic emission of a dipole oriented

along the z axis (corresponding to the orientation of the

dipole and the symmetry axis of the antennas), with pref-

erential emission towards the perpendicular xy plane. In

contrast, for disks and crescents, the emission is preferen-

tially in the z direction, also when the dipole is oriented in

this same direction. This difference highlights that, when

an emitter couples to a nanoantenna, it is the properties

of the excited plasmonic modes that often determine the

directivity pattern [50], [52], [53]. More complex directivity

patterns are possible by coupling the quantum emitter with

higher order modes of the systems studied [40], [51].

Furthermore, the substrate has a strong effect on the

directivity, blocking the direction in the downwards direc-

tion. In the case of crescent-on-mirror and disk-on-mirror

nanoantennas, the emissionpattern in theupwarddirection

is very similar to that of the gap disk and gap crescent

antennas. On the other hand, the sphere-on-mirror and rod-

on-mirror antennas emit preferentially towards a 𝜃 = 60◦

angle with respect to the z axis, instead of 𝜃 = 90◦ for the

equivalent systems without a substrate.

We last note that, according to the reciprocity principle

[49], [56], [192], any nanoantenna operates similarly as a

receiver and a transmitter, that is, if the system emits light

preferentially in a certain direction, it also enhances the

local field more efficiently when the incident light is incom-

ing from that same direction (and opposite orientation).

Therefore, to ensure themaximum excitation enhancement

of the quantum emitter, the applied external light source

should propagate along the same direction of themaximum

radiation of the nanoantennna, i.e., the maximum of the

directivity, according to Figure 9 (with opposite orientation,

and assuming again the same illumination and emission

wavelength).

5 Conclusions

This work emphasizes the advantages of metallic nanos-

tructures as effective enhancers of the photoluminescence

emission from quantum emitters. The manipulation of size

and shape of the nanostructures emerges as a crucial strat-

egy in optimizing and fine-tuning enhancements for spe-

cific wavelength and directional preferences. Notably, we

show that a large variety of metallic nanoantenna systems

can strongly enhance the signal when their size is ade-

quately tailored. Among the various nanoantennas studied,

the rod gap nanoantenna exhibits the highest local elec-

tric field enhancement and photoluminescence. In contrast,

systems based on spherical nanoparticles, while demon-

strating lower PLEF, exhibit a high quantum yield across

a broad spectrum of wavelengths and can be more eas-

ily fabricated in combination with self-assembly. Crescent

gapnanoantennas, typically fabricated through lithography,

display a large capability to enhance the electric field in

the mid-IR spectral range, making them valuable building

blocks for application in sensing and spectroscopy within

this range. The disk gap and disk-on-mirror nanoantennas

are easier to fabricate than the crescent and still offer large

PLEF. This study provides valuable guidance in understand-

ing and designing QE – nanoantenna hybrid systems with

particular experimental conditions and available fabrica-

tion techniques, for specific applications. These applications

could include biosensors, light-emitting diodes, and single-

photon sources. While our results are based on idealized

simulations that assume perfect emitter orientation and

positioning, practical implementationsmay encounter chal-

lenges due to fabrication imperfections or misalignment of

emitters. However, the guidelines presented here provide

clear direction for optimizing emitter-antenna interactions

and can serve as a strong foundation for experimental

designs. Moreover, novel chemical techniques, such as DNA-

based self-assembly, offer promising solutions for overcom-

ing these limitations by precisely positioning quantum emit-

ters within nanoantenna gaps.

Overall, this research serves as a comprehensive guide

for researchers looking to use plasmonic nanostructures

to enhance photoluminescence from quantum emitters,

offering insights into future advancements in nanophotonic
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device design and applications of on-chip nanophotonic

devices.
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