Competition between Electron and Phonon Excitations in the Dynamics of Nitrogen Atoms and Molecules at Metal Surfaces

eman ta zabal zazu

L. Martin-Gondre^{1,2}, M. Alducin^{1,2}, G. A. Bocan³, K. R. Geethalakshmi¹, J. I. Juaristi^{1,2}, and R. Díez Muiño^{1,2}

¹Centro de Física de Materiales (CSIC-UPV/EHU), Spain ²Donostia International Physics Center DIPC, Spain ³Centro Atómico Bariloche, Argentina

Energy loss in reflection (and adsorption) processes

Gas/surface dynamics: Adiabatic \rightarrow Non adiabatic **Theory**: Ground state \rightarrow Excited states

Energy loss of reflected molecules: N₂ on W(110)

Experimental conditions

- T_s=1200K
- T_{rot} <5K (J=0)
- Normal incidence and detection

 Experimental data by Hanisco and Kummel,
 J.Vac.Sci.Technol. A 11 ,1907 (1993)

Dynamics of diatomic molecules on metal surfaces: Theory

First step: Calculation of the PES

Calculation of the Potential Energy Surface (PES)

- adiabatic approximation
- frozen surface approximation \Rightarrow **6D PES**: V(X, Y, Z, r, θ , ϕ)

6D PES construction

- extended set of DFT energy values, V(X, Y, Z, r, θ, ϕ)
- interpolation of the DFT data: Corrugation reducing procedure (CRP)

[Busnengo et al., JCP 112, 7641 (2000)]

Dynamics of diatomic molecules on metal surfaces: Theory Second step: Dynamics in the PES

Classical trajectory calculations: Monte Carlo sampling

- incidence conditions are fixed: (E_i, Θ)
- sampling on the internal degrees of freedom:
 (X, Y, θ, φ) and on Φ (azimuthal angle of trajectory)

description of electronic excitations by a friction coefficient

Juaristi et al., PRL 100, 116102 (2008)

energy dissipation channels: phonon excitation

Generalized Langevin Oscillator (GLO) model

Surface motion is described in terms of a single 3D harmonic oscillator with a 3x3 frequency matrix.

Coupling between the molecule and the surface phonons is described by a space rigid shift of the 6D PES.

Dissipation and thermal fluctuations are included with the help of a ghost 3D oscillator, subject to damping and random forces.

- S. A. Adelman J. of Chem. Phys. 71, 4471 (1979).

- John C. Tully J. of Chem. Phys. 73, 1975 (1980).

- H. F: Busnengo et al. Phys. Rev. B 72, 125411 (2005)

Energy loss of reflected molecules: N₂ on W(110)

Experimental conditions

- T_s=1200K
- T_{rot} <5K (J=0)
- Normal incidence and detection

electronic friction

phonons

phonons + friction

Phonon excitations are responsible for most of the energy transfer observed experimentally

Martin-Gondre et al., Phys. Rev. Lett. 108, 096101 (2012)

A different system: Atomic N on Ag(111)

Atomic N on Ag(111)

Effusive beam of N atoms on Ag(111)

Effusive beam of N atoms on Ag(111)

Martin-Gondre et al., Phys. Rev. Lett. 108, 096101 (2012)

Effusive beam of N atoms on Ag(111)

Martin-Gondre et al., Phys. Rev. Lett. 108, 096101 (2012)

Energy dissipation channels in atomic adsorption at metal surfaces

Initial kinetic energy is transferred to the surface

Energy dissipation channels in the adsorption of N atoms on Ag(111)

Time evolution of energy dissipation channels in the adsorption of N atoms on Ag(111)

E_i=100 meV, *θ_i*=40, *T*=500K

- Initial position of adsorbed N atoms
- Final position of adsorbed N atoms (after 10 picoseconds)
- Final position of adsorbed N atoms (after 20 picoseconds)

Adsorption of N atoms on Ag(111): Time scale of the dissipation

Conclusions

• Phonon excitations are responsible for most of the energy transfer between Nitrogen and metal surfaces (at least in the systems studied so far).

• The contribution of phonon and electron excitations to the energy transfer is roughly additive.

• Electronic friction is an additional channel able to accelerate the accommodation process of adsorbates at metal surfaces.

thank you for your attention

