

Havana, February 1 - 5, 2010 Pre-conference School, January 27-30, 2010

Electronic excitations in elementary reactive processes at metal surfaces

Ricardo Díez Muiño Centro de Física de Materiales Centro Mixto CSIC-UPV/EHU San Sebastián (Spain)

Contributors

<u>Donostia - San Sebastián</u> Maite Alducin (CSIC) Ricardo Díez Muiño (CSIC) Itziar Goikoetxea (PhD, CSIC) Iñaki Juaristi (UPV) Geetha Kanuvakkarai (Post-doc, CSIC) Ludovic Martin (Post-doc, DIPC)

<u>Others</u>

Fabio Busnengo (Rosario, Argentina) Antoine Salin (Bordeaux, France)

Havana, February 1 - 5, 2010 Pre-conference School, January 27-30, 2010

outline

- brief introduction: adiabatic processes
- electronic excitations at the surface: friction
- electronic excitations at the molecule

gas/solid interfaces

static properties (equilibrium)

- adsorption sites and energies
- chemical bonding
- induced reconstructions
- self-assembling

experimental techniques:

- LEED, STM, PE, etc.

dynamical properties

- reaction rates (adsorption, recombination, ...)
- diffusion
- induced desorption
- energy and charge exchange

experimental techniques:

- molecular beams, TPD, etc.

an important goal is to understand how solid surfaces can be used to promote gas-phase chemical reactions

surface face and reactivity

N₂ + 3H₂ → 2NH₃ rates of ammonia synthesis over five iron single-crystal surfaces

12 T = 673 K20 atm 3:1 H₂:N₂ 10 0 -Se 8 E, NH₃/ 6 moles Fe (110) (210) (111) (211) (100) (110) Surface Orientation

Fe (100)

Figure 7.14. Rates of ammonia synthesis over five iron single-crystal surfaces with different orientations: (111), (211), (100), (210), and (110) [38].

dissociative adsorption of N₂ on W(100) and on W(110)

dynamics of diatomic molecules on metal surfaces: theory

theoretical model: two steps

- 1.- calculation of the Potential Energy Surface (PES)
- adiabatic approximation
- frozen surface approximation \Rightarrow 6D PES: V(X, Y, Z, r, θ , ϕ)

6D PES construction

- extended set of DFT energy values, V(X, Y, Z, r, θ, ϕ)
- interpolation of the DFT data: corrugation reduction method

[Busnengo et al., JCP 112, 7641 (2000)]

2.- classical trajectory calculations: Monte Carlo sampling

- incidence conditions are fixed: (E_i, Θ)
- sampling on the internal degrees of freedom: (X, Y, θ , ϕ) and on Φ (azimuthal angle of trajectory)

Alducin et al., PRL 97, 056102 (2006); JCP 125, 144705 (2006)

why N₂ abundantly dissociate on W(100) and not on W(110)

Alducin et al., PRL 97, 056102 (2006); JCP 125, 144705 (2006)

in summary, dynamics matters

Havana, February 1 - 5, 2010 Pre-conference School, January 27-30, 2010

 \sim

outline

- brief introduction: adiabatic processes
- electronic excitations at the surface: friction
- electronic excitations at the molecule

dynamics of diatomic molecules on metal surfaces

theoretical model: two steps

classical trajectory calculations: Monte Carlo sampling

- incidence conditions are fixed: (E_i, Θ)
- sampling on the internal degrees of freedom: (X, Y, θ, φ) and on Φ (azimuthal angle of trajectory)

non-adiabatic effects: electron-hole pair excitations

chemicurrents

Gergen et al., Science 294, 2521 (2001).

friction in N₂/Ru(0001)

Luntz *et al.*, JCP 123, 074704 (2005) Díaz *et al.*, PRL 96, 096102 (2006)

vibrational promotion of electron transfer

NO on Cs/Au(111) electron emission as a function of initial vibrational state

adiabatic approximation for H₂ on Pt(111)

Nieto et al., Science 312, 86 (2006).

Huang *et al.*, Science **290**, 111 (2000) White *et al.*, Nature **433**, 503 (2005)

friction coefficient:

description of electronic excitations by a friction coefficient

previously used for:

FEG with electronic density n₀

but for this system, dissociation is roughly decided at Z=2.5A (low energies)

Juaristi et al., PRL 100, 116102 (2008)

International

Juaristi et al., PRL 100, 116102 (2008)

why the excitation of electron-hole pairs is not relevant

classical equations of motion for each atom "*i*" in the molecule $m_i(d^2r_i/dt^2)=-dV(r_i,r_j)/d(r_i) - \eta(r_i)(dr_i/dt)$ friction coefficient velocity

energy loss of reflected molecules: N₂ on W(110)

energy losses in the reflected molecules due to electronic excitations are < 100 meV

Juaristi et al., PRL 100, 116102 (2008)

Energy loss of reflected molecules: N₂ on W(110)

Energy loss of reflected molecules: N₂ on W(110)

- A local description of the friction coefficient shows that electronic excitations play a minor role in the dissociation of N₂/W and H₂/Cu: The Born-Oppenheimer approximation remains valid in these systems.
- Open questions still remain about the role of electron-hole pair excitations in other situations, in which non-adiabatic effects are due to the crossing of two or more potential energy curves, with possible transfer of charge included.

Havana, February 1 - 5, 2010 Pre-conference School, January 27-30, 2010

outline

- brief introduction: adiabatic processes
- electronic excitations at the surface: friction
- electronic excitations at the molecule

\rightarrow O₂ on metal surfaces : can we enhance dissociation?

electronic excited states may play a role

non-adiabatic effects in the incoming O₂ molecule

Yourdshahyan *et al.*, PRB **65**, 075416 (2002) Behler et al., PRL 94, 036104 (2005) Carbogno et al. PRL 101, 096104 (2008)

we prepare the incoming O₂ molecule in an excited state

➡ adsorption of O₂ on flat Ag surfaces

• Ts < 150K: O₂ adsorbs only molecularly (E_i < 1eV)</p>

molecular beam experiments

\rightarrow O₂/Ag(100) - theoretical calculations

calculation of the Potential Energy Surface (PES)

- Born-Oppenheimer approximation
- frozen surface approximation \Rightarrow 6D PES: V(X, Y, Z, r, θ , ϕ)

- incidence conditions are fixed:
 (E_i, Θ)
- Monte-Carlo sampling on the internal degrees of freedom:
 (X, Y, θ, φ) and on Φ (parallel velocity)

building the 6D PES

numerical procedure

• O₂ in vacuum **spin-triplet** ground state:

- about 2300 spin-polarized DFT values
- interpolation of the DFT data:

Corrugation reducing procedure

[Busnengo et al., JCP 112, 7641 (2000)]

DFT energy data

- DFT GGA (PW91) calculation with VASP
- plane-wave basis set and US pseudopotentials
- periodic supercell: (2 x 2) and 5-layer slab

top view

front view

dissociation probability of spin-triplet O₂/Ag(100)

the question

can we enhance O₂ dissociation on clean Ag(100) ?

differences between SP and NSP PESs

dissociation is enhanced for singlet O₂

dissociation occurs for E_i < 1 eV dissociation can increase in one order of magnitude

Alducin, Busnengo, RDM, JCP 129, 224702 (2008)

dissociation is enhanced for singlet O₂

Alducin, Busnengo, RDM, JCP **129**, 224702 (2008)

dissociation is enhanced for singlet O₂

dissociation occurs for E_i < 1 eV

dissociation can increase in one order of magnitude

for $\Theta \neq 0^{\circ}$, singlet-O₂ is more efficient than triplet-O₂ with the same total energy

International

available paths to dissociation are different (and more!)

it is not the same road

triplet O₂

singlet O₂ + 1 eV

 Dissociation increases in about one order of magnitude, if singlet–O₂ molecular beams are used.

 The enhancement of the dissociation rate is not only due to the extra energy that we are adding to the system.
 A different spin state in the incoming O₂ molecule opens new paths to dissociation.

Havana, February 1 - 5, 2010 Pre-conference School, January 27-30, 2010

thank you for your attention

