

Why N₂ molecules with thermal energy abundantly dissociate on W(100) and not on W(110)

Ricardo Díez Muiño Unidad de Física de Materiales Centro Mixto CSIC-UPV/EHU San Sebastián (Spain)

Predicting Catalysis: Ammonia Production from First Principles' Symposium Leiden, 21-23 June 2006

Maite Alducin DIPC San Sebastián Spain

H. Fabio Busnengo Universidad de Rosario Argentina

Antoine Salin Université de Bordeaux France

physics and chemistry in San Sebastián

Donostia International Physics Center DIPC

Departamento de Física de Materiales UPV/EHU

Unidad de Física de Materiales UFM CSIC

- motivation: surface face and reactivity
- N₂/W(110):
 - potential energy surface from DFT
 - classical dynamics
- dissociation of N_2 on W(110) and W(100)
- conclusions

surface face and reactivity $N_2 + 3H_2 \rightarrow 2NH_3$ rates of ammonia synthesis SURFACE over five iron single-crystal surfaces CHEMISTRY AND CATALYSIS 12 T = 673 K20 atm 3:1 H_:N_ Fe (111) 10 0 × -Sec 8 NH₃/cm² 6 moles Fe (110) (111) (211) (100) (210) (110) Surface Orientation Fe (100)

Figure 7.14. Rates of ammonia synthesis over five iron single-crystal surfaces with different orientations: (111), (211), (100), (210), and (110) [38].

surface face and reactivity

- the rate-limiting step in ammonia formation is the dissociative adsorption of N₂ on the surface
- two possible reasons for the difference in reactivity over different faces:
 - surface roughness (work functions)
 - unique active sites at the surface

INTRODUCTION TO SURFACE CHEMISTRY AND CATALYSIS

Gabor A. Somorjai

Figure 7.15. Schematic representations of the idealized surface structures of the (111), (211), (100), (210), and (110) orientation of iron single crystals. The coordination of each surface atom is indicated [38].

two questions to answer:

two questions to answer:

- DFT GGA (PW91) calculation wit
- Plane-wave basis set and US pseu

- periodic supercell: 5-layer slab and 2x2 surface cell
- 30 configurations = 5610 ab-initio values
- interpolation through the corrugation reducing procedure [Busnengo *et al.*, JCP 112, 7641 (2000)]

UFM unidad de física de materiales

classical dynamics

- classical trajectory method
- adiabatic description (no diss

- 5000 trajectories per incident energy

direct and indirect channels in the dissociation process

two channels to reach dissociation: direct path

two channels to reach dissociation: indirect path (trapping)

dynamic trapping in a well in both faces W(100) W(110) 310 meV 705 meV 868 meV 395 meV 1091 meV Z(Å): 1.9 2.65 223 meV Z(Å): 2.5 2.62 approach to surface: vertical over a surface atom

final state features: N adsorption on W

W(100)

adsorption energy DFT = 7.4 eV Exp. = 6.6-7 eV adsorption distance DFT = 0.63 Å W(110)

adsorption energy DFT = 6.8 eV Exp. = 6.6 eV adsorption distance DFT = 1.15 Å

for thermal energies, long distances matter

conclusions

dissociative adsorption of N_2 molecules at W(110) surfaces

is a non-activated process

nevertheless, classical dynamics show that

the sticking coefficient at thermal energies $S_0 \sim 10^{-3}$

is two orders of magnitude smaller than that of the W(100)

the big difference in the value of S_0 is already determined

at distances of Z = 3.25 Å from the surface and

arises from the behavior of the PES in the entrance channel

UFM unidad de física de materiales

thank you for your attention

Leiden, 21th June 2006