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SYNOPSIS 

Data on the tensile yield behavior of poly(viny1 chloride) (PVC), reported in the literature, 
are interpreted in terms of a model involving a cooperative movement of several independent 
structural units, all with the same activation enthalpy. This analysis leads to physical 
parameters such as the internal stress, activation volume, and enthalpy, etc. These values 
are discussed and compared with those determined from thermodynamical considerations 
using stress relaxation tests and tensile curves at a constant strain rate. 0 1996 John Wiley 
& Sons, Inc. 

INTRODUCTION 

Bauwens-Crowet et al.' reported data on the tem- 
perature and strain rate dependence of the tensile 
yield stress of PVC. According to the authors, the 
data could be described by an equation derived from 
the Ree-Eyring theory: 

U 

T 

+ A,  sinh-'( C,$ ex.[$]) (1) 

where u is the yield stress, i the strain rate, T the 
absolute temperature, k Boltzmann's constant and 
Q,, Qs the activation energies for the a and p tran- 
sitions, respectively. The yield stress against log 
(strain rate) curves, at  different temperatures, could 
be fitted by eq. (1) with the following values for the 
parameters: 

A,  = 68.6 X lop4 MPa/K 

Q, = 249.7 kJ/mol; C ,  = s 
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AD = 98.98 X MPa/K; 

Qs = 58.52 kJ/mol; Cs = 4.26 X 10-los 

The set of parallel u / T  against log i curves, at  each 
temperature, can be looked upon as generated by 
the shift of one curve along line d, which joins the 
intersections of the asymptotes of the u(E) curves at  
each temperature. In this way the authors built a 
master curve for a reference temperature of 273 K. 
The slope of the straight line d was found to be 

The master curve covers several decades of the strain 
rate scale and it is possible to extrapolate the yield 
stress to rates which cannot be reached experimen- 
tally. Furthermore, Bauwens-Crowet et al.' inter- 
preted the data in terms of two processes: 

the a range, below the straight line d, where 
the second term of eq. (l), containing the pa- 
rameters of the &process, can be neglected. The 
molecular motions which take place under the 
action of the yield stress in this range may cor- 
respond to translations of the main chains. 
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110 POVOLO, SCHWARTZ, AND HERMIDA 

the ,6 range, above d, where the two terms of 
eq. (1) are important. Furthermore, the inter- 
section of every u/T against log E curve with d 
has, according to the authors, the character of 
a secondary transition, that is, the /3 transition. 
This secondary transition is associated to local 
relaxation movements of the macromolecular 
chains. 

Similar considerations were made by Bauwens- 
Crowet2 for data of the yield stress against log strain 
rate of poly(methy1 methacrylate) (PMMA). Foth- 
eringham and C h e r r ~ , ~ . ~  however, described the yield 
stress of PMMA and PVC using a model based on 
n activated rate processes. They determined the 
probability of a successful cooperative event as the 
product of the probabilities of the simultaneous oc- 
currence of the n transitions. That is to say, they 
considered that the yield stress of a cooperative sys- 
tem has the strain rate dependence of a single ac- 
tivated rate process, but to the nth power. More re- 
cently, Povolo and Hermida5 have discussed in detail 
the different models used to describe the tempera- 
ture and strain rate dependence of the yield stress 
of PMMA. It was concluded that the data can be 
very well described as a cooperative movement of 
several independent structural units, all with the 
same activation enthalpy. 

It is the purpose of this paper to show that also 
the tensile yield stress of PVC can be described with 
the same cooperative model and the physical pa- 
rameters obtained (activation volume and enthalpy 
and internal stress) are discussed and compared with 
the values obtained through a thermodynamic anal- 
ysis of the plastic deformation of glassy polymers. 

Theoretical Considerations 

According to the cooperative model, the relationship 
between the yield stress and the strain rate is given 
by3,* 

where ui is the internal stress associated to the elas- 
tic recovery process before and after yield and u is 
the activation volume. Furthermore, an Arrhenius 
temperature dependence for l* is usually assumed, 
that is, 

being Co the preexponential factor and AH the ac- 
tivation enthalpy of the cooperative process. From 
eq. (2) it follows that 

- = -  U ui + B sinh-l[ (f y] 
T T  (4) 

with B = 2k/u. Thus, eq. (4) describes the yield stress 
against log E curves for the cooperative model. This 
equation, however, has four adjustable parameters: 
n, ui, B, or u and &*. Since each individual curve, 
measured at  a given temperature, covers only few 
decades of the log .i scale, it is difficult to determine 
the parameters for a single curve. This problem can 
be solved on building a master curve, that is, on 
superposing the individual segments onto one mea- 
sured at  a temperature T,. In fact, the master curve 
covers several decades of the strain rate scale and 
lets to determine the parameters of eq. (4) with 
greater accuracy. The scaling conditions for this 
equation have been discussed elsewhere: together 
with the procedure employed to calculate the pa- 
rameters. Briefly, the derivative of eq. (4) can be 
represented in a normalized plot6 as 

x 1  
n 2  

y = - + - log(1 + 102"'") 

with 

x = log e - log c* 

and 

(5) 

Eq. (5) has only one adjustable parameter: n. Hence, 
if the derivative of the master curve represented in 
a double-log plot can be superposed onto one of the 
curves of y against x ,  given by eq. (5)-only by hor- 
izontal and vertical translations-the parameters n, 
B, and E* of eq. (4) can be established. Effectively, 
n comes out straightforward from the parameter of 
the curve fitted to the derivative of the master curve. 
The horizontal and vertical shifts needed to super- 
pose the origin of both coordinate systems give log 
c* and log(2.303B/n), respectively. Once n, 23, and 
d.* are known, going back to eq. (4), the internal 
stress is determined in order to provide a good fit to 
the experimental points of the master curve. Fur- 
thermore, the scaling conditions lead to the following 
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relationship between the parameters of eq. (4) and 
the translation paths 

ui = (p log C* + C)T 

Tlog&-- AH ] + CT (6) 
2.30312 

where A log C and A(u/T)  are the horizontal and 
vertical shift paths used to superpose the curve 
measured at a temperature T onto the master curve 
at T,; p is the slope of the translation path used to 
build the master curve. Then, once ui(T,) and 
E*(T,) are known for the master curve it is possible 
to determine these parameters for each of the in- 
dividual curves by using eqs. ( 7 )  and (8). 

RESULTS 

The tensile yield data for PVC reported by Bauwens- 
Crowet et a1.l are shown in Figure 1. The experi- 
mental details are indicated in the original publi- 
cation. A computer program described elsewhere 
was used to obtain the master curve and the trans- 
lation paths, finding essentially the same values as 
those reported by Bauwens-Crowet et al. It is noticed 
that the shape of the master curve obtained through 
this program is independent of the temperature 
chosen as reference. The master curve for T, = 273 

6o 

50 t 1 

0 
-6 -4 -2 0 

log( i : s )  

Figure 2 Master curve of the segments represented in 
Figure 1, built a t  273 K, with the translation paths given 
by Bauwens-Crowet et al.' 

K is shown in Figure 2. Its derivative was fitted to 
eq. (5)  leading to the values of n, log C* and u in- 
dicated in Table I. Also ui , as determined from eq. 
( 4 ) ,  is given in the same table. It should be pointed 
out that the parameters of Table I fit not only the 
master curve of Figure 2 but also its derivative. The 
quality of the fitting to the master curve through eq. 
(4)  is indicated by the full curve in the same figure. 
Once the parameters of the master curve, that is at 
T = T,, are known, it is possible to determine the 
parameters at the other temperatures by using eqs. 
( 7 )  and (8) and the translation paths A log 1. and 
A ( a / T )  reported by Bauwens-Crowet et a1.l. The 
results obtained in this way are indicated in Table 
I1 and the fitting to the individual curves is repre- 
sented by the full curves of Figure 1. Figure 3 shows 
that the parameter log 1.* of the individual yield 
curves is linearly related to 1/T. In fact, a least 
square fitting of this representation gives a straight 
line with an excellent correlation coefficient, that 
is, the Arrhenius dependence given in eq. ( 3 )  is ver- 
ified with the values of Eo and A H  detailed in Table 
I. Finally, the values of A H ,  i0 and p given in Table 
I and the values of ui given in Table I1 lead to the 
average value of C for eq. (6)  indicated in Table I. 
Thus, the temperature dependence of ui results 

-5 -4 -3 -2 - I  0 with 0.0' ' " " " " " 

log( i s )  

Figure 1 Tensile yield data, at the indicated tempera- 
tures, for PVC'. The full curves correspond to eq. (2) with 
the parameters given in Tables I and 11. 

P A H  ui ( 0 )  = - - = 195.4 MPa (10) 2.30312 
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Table I 
Yield Curve of PVC' at 273 K 

n = 10 
ui = 42.8 MPa 
p = -6.37 X lo-' MPa/K 

Parameters for the Master Tensile 

u = 0.105 nm3 

C = 0.24 MPa/K 
A H  = 58.5 kJ/mol 

log(i* s) = 1.3 

log(& s) = 12.47 

DISCUSSION 

The Two Processes and the Cooperative Model 

In the model proposed by Bauwens-Crowet e t  al.' 
and Bauwens' the analysis in terms of eq. ( 1 ) leads 
to  abnormally high values for the reciprocal of the 
frequency factor and the activation energy for the 
a-process, namely, C, and Q,. A comparison between 
the yield stress data and the loss peak in the P-tran- 
sition rate for PVC leads also to inconsistencies, the 
same as those determined for an equivalent analysis 
of the yield stress curves of PMMA.5 These points 
have been discussed very recently5 and will not be 
repeated here. 

Fotheringham and Cherry3 have used the master 
curve of Bauwens-Crowet e t  al.,' reduced to 353 K, 
to fit the data of the yield stress of PVC to eq. (2). 
This temperature was selected since it can be rea- 
sonably assumed that ci = 0. The author used a 
computer to optimize the parameters obtaining n 
= 7.69 and u = 0.18 nm3. No information was given 
about i*. These parameters, however, do not fit the 
derivative of the master curve. In fact, a much higher 
activation volume is needed to fit the derivative of 
the master curve of Figure 2 of Fotheringham and 
Cherry's paper3 to  eq. (5). In other words, the pa- 
rameters proposed by these authors do not fit both 

the master curve and its derivative, which is not the 
case when the master curve of Figure 2 is fitted to 
eq. (4) with the parameters given in Table I. In effect, 
there are some inconsistencies with the parameters 
proposed by these authors. However, the cooperative 
model with the parameters determined in this paper 
describes all the features of the master curve. 

Thermally Activated Process 

It is interesting to compare the results obtained in 
this work with those given by a kinetic and ther- 
modynamic analysis of plastic flow in polymeric 
glasses. Haussy et a1.: Escaig" and Lefebvre and 
Escaig" have studied the thermally activated de- 
formation of glassy polymers. and Pink et  
al.14*15 have applied this formalism to analyze the 
plastic deformation of PVC. All these authors have 
used the procedure developed by Schoek" for a 
thermodynamic analysis of the rate equation for 
dislocations moving by thermal activation under in- 
ternal and external stresses. Cagnon17 has extended 
this formalism by suggesting a new procedure to de- 
termine the Gibbs free energy from the stress de- 
pendence of the activation volume. According to the 
thermal activation analysis, the plastic strain rate 
is given by 

Table I1 
[A(u /T) ]  Shift Paths, and Parameters of 
Individual Yield Curves Measured at 
Temperature T 

Horizontal [ A  log(i)] and Vertical 

223 
238 
273 
296 
303 
313 
323 
333 
343 

2.52 
1.64 
0 

-0.87 
-1.1 
-1.42 
-1.73 
-2.01 
-2.27 

-0.164 
-0.107 

0 
0.056 
0.072 
0.093 
0.112 
0.131 
0.148 

-1.22 
-0.34 

1.30 
2.17 
2.40 
2.72 
3.03 
3.31 
3.57 

71.5 
62.8 
42.8 
29.8 
25.7 
20.0 
14.5 
8.6 
3.0 

I \ 
h 
n 

'W 
M 

3 

3.0 3.5 4.0 4.5 

UT [ 10.) K-']  

Figure 3 log k* against 1/T according to Table 11. The 
full line corresponds to eq. (3) with the parameters given 
in Table I. 
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d In 1. 
dT 

AH, = k T 2  - 

1. = E,(u, “exp [ - “1 (11) 

ostruct .  

where E,(u, 5“) is the preexponential factor and 
AG,(u, T )  is the Gibbs free activation energy, both 
assumed to be stress and temperature dependent. 
The true activation volume is 

which gives the size of the activation event, that is, 
the number of atoms activated coherently. 

Struct. means any structural variable. The ap- 
parent activation enthalphy is 

which, according to eq. (11) reduces to 

AH, = AG, + TAS ,  + k T 2  ___ 

where AS, is the activation entropy. Escaig estab- 
lishes that eq. (14) becomes simply” 

AH, = AG, + TAS ,  = AH, (15) 

with AH, the true activation enthalpy “if the tem- 
perature derivative of E, is taking as negligible when 
compared with AH,; for, it should usually be 
screened out by the dominant exponential T-depen- 
dence from the AG, term. Therefore, as far as AHo 
is measured under condition of constant micro- 
structure, we can have good confidence in taking it 
for the true activation enthalpy 

The apparent activation volume is given by 

Let us assume that the structure is constant, then 
1. is only a function of u and T [see eq. ( l l ) ] ;  because 
of that, in what follows the subscript Struct. will be 
dropped from eqs. (12) to (14) and (16). Conse- 
quently, a Maxwell-type relationship for the defor- 
mation rate is written as 

d In 1. d In 1. 
d(ln C) = - d T  + -1 du (17) 

aT 10 T 

so that, making 1. = constant [d(ln 1.) = 01 and sub- 
stituting eqs. (13) and (16) into the derivatives it 
follows 

AH, = -TV, *I 
dT ~ 

It is generally assumed in the 1iteratureg-l7 that the 
stress and temperature dependence of go of eq. (1 1) 
can be neglected, in comparison with the much 
stronger dependence of AG, on these variables, in 
such a way that AH, = AH, and V, = V,. Then, 
eq. (18) can be used to calculate AH, from tensile 
data, obtained at  1. = constant. V, can be obtained 
either through the changes in the strain rate during 
the tensile test or through stress relaxation exper- 
iments. All the previous concepts will be applied to 
the constitutive equation used in this paper to de- 
scribe the tensile yield behavior of PVC, that is, to 
eq. ( 2 ) .  On differentiating this equation it is easy to 
show that 

and 

u - ui + T -  dui]( tanh [(a ;k;)u])-l 
d T  

with n, u, AH and ui given in Tables I and 11. On 
taking into account eq. (9), eq. (20) can be rewritten 
as 

Furthermore, it can be easily shown that eqs. (20) 
or (21) are equivalent to eq. (18). 

Correlation Between Parameters Determined 
from Stress Relaxation or Tensile Tests and 
Using the Constitutive Equation 

The activation volumes, calculated with eq. (19), are 
shown in Figure 4 against stress.  pink"^'^ and Pink 
et al.l4.l5 have measured the apparent activation 
volume of PVC through tensile and stress relaxation 
experiments. The values shown in Figure 4 are quite 
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Figure 4 Apparent activation volume against yield 
stress calculated with eq. (19). 

similar to those reported in Figure 10 of Pink et al.15 
as obtained by stress relaxation in PVC. The values 
obtained by analyzing the stress relaxation data 
through Feltham’s method” are quite similar to the 
limiting value nu/2 of eq. (19), when [(u - ui)u/2kT] 
9 1. This asymptotic value is indicated by the broken 
straight line in Figure 4. Feltham’s method is based 
on the assumption that the stress relaxation curves 
give a linear plot u (log time). Pink13 calculated the 
activation enthalpy by using eq. (18) and the tem- 
perature dependence of the yield point, both in ten- 
sion and compression, at  a strain rate of 3.4 X 
s-’. The activation volumes were measured by strain 
rate changes, at the same initial strain rate at  each 
temperature. In our constitutive equation, the yield 
stress, at  a fixed strain rate, can be expressed as a 
function of temperature on considering eq. (4) with 
1. = 3.4 X s-’ and the calculated parameters ui, 
u, n and E*. The values obtained for the yield stress 

90 l o  O 
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0 1 
O o  i 

I 0 1  

1 
0 ’  ’ I 

‘I- [KI 
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Figure 5 
= 3.4 X 

Tensile yield stress against temperature at  e 
s-’, calculated with eq. (4). 

0 

0 

0 

0 

0 
0 

0 

0 

1.0 t 
210 240 270 300 330 

T [KI 
0 

Figure 6 
tivation volume at C = 3.4 x 

Temperature dependence of the apparent ac- 
s-’. 

at this strain rate are indicated in Figure 5; they 
result quite similar to those of Figure 2 of Pink13 at  
the same temperatures. Moreover, eq. (19) and (4) 
are employed also to calculate the apparent acti- 
vation volumes at  constant strain rate; these values 
are represented in Figure 6 as a function of tem- 
perature and in Figure 7 as a function of stress. 
Again, Figure 7 agrees with the dependence calcu- 
lated by Pink,13 and shown in Figure 5 of his paper. 
By using eqs. (4), (16), and (21) it is possible to cal- 
culate the activation enthalpy at  a fixed strain rate. 
The results, obtained for 1. = 3.4 X s-’ and rep- 
resented in Figure 8 as a function of u, exhibit a 
good concordance with the ones reported in Figure 
6 of Pink.I3 Furthermore, according to Figure 8, for 
very low stresses, AH, tends to have a limiting value 
of the order of 361 kJ/mol. This value is nearly the 
same as the one suggested by Pink when u tends to 
zero? AH, = AH, x 5.6 X lO-”J (337 kJ/mol). 

1 . 8 .  

0 

0 

0 

0 

0 
0 

0 

0 

Figure 7 Apparent activation volume against yield 
stress a t  k = 3.4 x 5-l .  
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Figure 8 Apparent activation enthalpy against the yield 
stress at i. = 3.4 x s-'. 

According to Schoek," the Gibbs free activation 
energy is given by 

AHo + uVoT(d In 9/dT) 
1 - T ( d  In 9dT)  AG, = (22)  

where 9 is the shear modulus. AG, calculated using 
eq. (22)  with the values of u, Vo and AHo given in 
Figures 5 , 6  and 7 and 9 = E/3 ,  being E the Young's 
modulus as determined by Pink13-up to 300 K 
through a tensile test at E = 3.4 X s-'-is shown 
in the curve (a) of Figure 9. Curve (b) in Figure 9 
shows the values of AG, obtained with the same 
equation but with the shear modulus determined by 
Heijboer,Ig in a more extended interval of temper- 
atures with a torsion pendulum at a frequency of 
the order of 1 Hz. The value of AG, obtained with 
the shear modulus of Pink are quite similar to those 
reported by this author in Figure 8 of his paper.13 
In summary, it can be stated that the activation pa- 
rameters obtained by using the constitutive equation 
given by the cooperative model are quite similar to 
those obtained through tensile and stress relaxation 
experiments. Pink et al.15 have measured the inter- 
nal stresses as a function of temperature in PVC 
through stress relaxation experiments. The reported 
values are slightly higher than those given in Table 
11. The author, however, have pointed out that the 
stress relaxation was not completed and the internal 
stress was extrapolated, certainly obtaining higher 
values than the real ones. 

Finally, it is noticed that recent stress relaxation 
experiments in PVC2' performed at  stresses below 
the yield stress lead to internal stresses quite similar 
to those given in Table 11. 

Comparison Between the Cooperative and the 
Thermal Activation Models 

According to eq. (11) the apparent activation volume 
is given by 

and the apparent activation enthalpy by 

If E O  is constant, on combining eqs. (23)  and (24)  
with eqs. (19) and (20)  it follows 

(r - U i ) U  -l 

- 21T = (tanh" 2kT 1) (25)  

and 

= AH - - n u  [a - ui (0)]  ( tanh [('i;)u])-l (26)  
2 

Furthermore, the integration of eq. (25)  gives 

-AG, = n k T  In(sinh[( u 2kT - U i ) U  ]] + F ( T )  (27)  

I80 

30 I 
0 

I 
200 240 280 320 3 60 

T IKI 

Figure 9 Gibbs free activation energy against temper- 
ature calculated using eq. (22) with the modulus reported 
by: (0) Pink13 and (0) Heijboer.'' The full lines-(a) and 
(b)-are the linear regressions of both curves a t  low tem- 
peratures. 
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where F ( T )  is a function of temperature. On sub- 
stituting eq. (27)  into eq. (26)  it results 

F ( T )  = -AH + constant (28)  

which, replaced into eq. (27) and taking into account 
eqs. ( 2 )  and ( 3 )  finally gives 

AG, = k T  ln(Co/C) + constant 

= k T  ln(Co/C) + AGO 

= a k T  + AGO (29)  

with 

Eq. (30)  with C = 3.4 X 
given in Table I leads to 

s-l and the value of CO 

The slope of the straight line of Figure 9(a) gives 

a, = 7.32 (32)  

and the one of curve (b) leads to 

The values of a given by eqs. (32)  and (33)  are much 
lower than the theoretical value given by eq. (30).  
Furthermore, according to Escaig,'" on reverting eq. 
(11)  it is possible to write at  constant strain rate 

AG, = k T  In(&/&) = a k T  (34)  

with a of the order of 20 for thermoplastics and 
strain rates between and spl. Eq. (34)  as- 
sumes that .& does not depend on temperature. On 
comparing eqs. (34) and (29)  it is easy to show that 
both equations are equal only if 

7 . AGo/kT c0 = coe (35)  

which is incompatible with the assumption made in 
eq. (34),  that is, io independent of T. 

In summary, there are some inconsistencies in 
the assumption that io of eq. (11)  does not depend 
neither on a nor on T and, consequently, in the cal- 
culation of AG, by means of eq. (22).  Moreover, if 
the material obeys the constitutive eq. ( 2 )  then, if 
(a - ai)u/2kT 4 1, 

sin"" a - ai)u ] N [' a - ai)u ] 
2kT 2kT 

and 

showing that, in this limit, eq. (2) is equivalent to 
eq. (11)  with a constant activation free energy and 
a preexponential factor which depends on a and T. 
In the other limit, that is, when (a - ai)u/2kT & 1, 
eq. ( 2 )  reduces to 

C = Co exp{ -[AH - nu(a - ai )] /2kT}  (37)  

establishing that eq. ( 2 )  is equivalent to eq. (11) with 
an activation free energy depending on stress and 
temperature-through ai-and a constant preex- 
ponential factor. The problem is that in our exper- 
imental range, that is, in the range of stresses and 
temperatures covered by Figure 1, (a - ai)u/2kT 
varies between approximately 0.1 and 0.7 showing 
that none of the limits imposed by eqs. (36)  and (37)  
are satisfied. In this situation it is difficult to reduce 
eq. ( 2 )  to eq. ( 1  1)  and the values of V,, AHa and AG, 
obtained through the thermal activation analysis 
should be considered with caution. Further work is 
needed in order to solve this problem. 

It is also interesting to point out that Pink13 ob- 
served that ". . . the deformation cannot be studied 
below 185 K since brittle fracture takes place in a 
pre-yield region. The variation of this ductile-brittle 
transition temperature with strain rate can be an- 
alyzed in terms of an Arrhenius equation leading to 
a pre-exponential value of s-l and to an "acti- 
vation energy" of 62.3 kJ/mol." These values are 
very closed to those of CO and AH indicated in 
Table I. 

Finally, it is pointed out that eq. ( 2 )  gives more 
information on the material than a simple tensile 
curve of the yield stress vs. temperature, at  constant 
strain rate. Effectively, eq. (2)  relates the mechanical 
variables a, at, and C with temperature, leading to 
describe not only tensile tests but also other me- 
chanical experiments. 

CONCLUSIONS 

In this paper, a cooperative model based on the si- 
multaneous evolution of n independent processes is 
applied to tensile yield data in PVC. The constitutive 
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equation associated to this model is characterized 
by four parameters: ci, n, E * ,  and u .  These param- 
eters are calculated not only for the master curve 
but for the individual segments as well, providing a 
good fitting of the experimental data. Furthermore, 
the translation paths employed to build a master 
curve let to establish that E *  is thermally activated, 
giving an activation enthalpy. 

On the other hand, thermodynamic parameters 
such as the apparent activation volume and enthalpy 
and the Gibbs free energy are calculated using the 
constitutive equation. These values are in good 
agreement with the ones determined from stress re- 
laxation curves and a( T ) plots at  constant 1.. 

Consequently, the improvements of the consti- 
tutive equation to characterize the tensile yield evo- 
lution of PVC are clear since this equation not only 
enables to calculate thermodynamic parameters but 
also provides an analytical relationship between the 
temperature and the mechanical variables. 
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