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SYNOPSIS 

Stress relaxation of commercial poly(viny1 chloride) (PVC) is measured at strains below 
3% and at different temperatures below the glass transition temperature. First it is shown 
that below the yield point the material follows a linear viscoelastic behavior. Then the data 
a t  a fixed deformation level (0.03) are fitted by considering a lognormal distribution function 
of relaxation times. Furthermore, from the measured stress-strain curves, the temperature 
dependence of the elastic tensile modulus is determined. The temperature dependence of 
the elastic modulus, the relaxation strength, and the parameters of the distribution: mean 
relaxation time, T,, and half-width, p, are given. Moreover, the distribution function and 
the temperature dependence of its characteristic parameters are discussed in terms of a 
cooperative model of the mechanisms involved in the mechanical relaxation of glassy poly- 
mers. Finally, the relationship proposed between the tensile modulus and the free volume 
helps explain the temperature dependence of the relaxation strength. 0 1996 John Wiley & 
Sons, Inc. 
Keywords: stress relaxation PVC - lognormal distribution cooperative model 

INTRODUCTION 

The viscoelastic behavior of unplasticized poly(viny1 
chloride) (PVC) has been reported by several au- 
thors. Becker’ studied dynamical properties of PVC 
characterized by an average molecular weight of 
35,000 and a glass transition temperature Tg = 347 
K measured by dilatometric methods. He reported 
the real component of the dynamic modulus and the 
loss factor for frequencies between 2 and approxi- 
mately 1000 Hz, and temperatures between 277.5 
and 426 K. By using the method of reduced variables 
and the Williams-Landel-Ferry (WLF) relation- 
ship: he obtained an activation energy depending 
on temperature above Te This activation energy de- 
creases with temperature, reaching a value of the 
order 336 kJ/mol for temperatures above 283 K. 

Sommer3 also studied the viscoelastic behavior of 
unplasticized PVC by making dynamic and quasi- 
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static experiments in samples with the same tran- 
sition temperature and average molecular weight as 
those used by Becker. Sommer reported the tensile 
modulus as a function of time for temperatures be- 
tween 297 and 399.5 K. The real component of the 
dynamical modulus and the loss factor were also re- 
ported in the same temperature range, for frequen- 
cies between and lo4 Hz. Sommer used also the 
time-temperature superposition to build master 
curves for the measured mechanical properties and 
determined the corresponding spectra. From a shift 
of the spectra with temperature he obtained a tern- 
perature-dependent activation enthalpy which in- 
creased with temperature, reaching a maximum of 
335 kJ/mol at 353 K, both for quasistatic and dy- 
namic experiments. 

Struik4 reported several creep data in commercial 
PVC, both at  low and high strains. These experi- 
ments were mainly centered in the study of the aging 
behavior at different temperatures below Te The 
creep curves were interpreted in terms of the equa- 
tion 
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with J ( t )  the creep compliance, Jo its value at t = 0, 
to and m structural constants, and t the time. Fur- 
thermore, according to this author, the stress relax- 
ation for short times is described by 

where o(t) is the stress a t  the time t and oo is the 
initial stress. The main effect of aging is to change 
to, and for a long-term relaxation test started at  an 
aging time, t,, the stress will be given by 

Struik, however, does not give values of the physical 
quantities involved in the creep process, like acti- 
vation enthalpy, distribution of retardation times, 
relaxation strength, etc. 

More recently, Ngai and Yee' analyzed some 
stress relaxation data in unplasticized and plasti- 
cized PVC. The torsional stress relaxation mea- 
surements were performed at a shear strain of 0.6% 
and at temperatures between 283 and 333 K.6 Ac- 
cording to these authors, the shear relaxation mod- 
ulus, G(t), can be expressed by 

G(t)  = G, + (G, - G,)exp[-(t/~*)l-~] (4) 

where G, and G, are the relaxed (equilibrium) and 
the unrelaxed (glassy) moduli, respectively. T* is an 
average relaxation time and n is a parameter that 
depends on temperature. G, was neglected in com- 
parison with G, and because n was slightly depen- 
dent on temperature, it was replaced by its mean 
value n = 0.75. With these assumptions, a master 
curve was built using the time-temperature super- 
position. Furthermore, for unplastized PVC the 
WLF equation led to an activation enthalpy which 
increases from 135.6 to 288 kJ/mol, as the temper- 
ature rises from 313 to 333 K. However, below 313 
K and down to 283 K the activation enthalpy was 
practically independent of temperature, with a value 
of the order of 135.6 kJ/mol. The material had a 
weight-average molecular weight Mw = 79,490 and 
Tg = 354.4 K, as determined by differential scanning 
calorimetry (DSC) at 10 K/min. 

It is the purpose of this article to present tensile 
stress relaxation data obtained in commercial PVC. 
The measurements were performed at strain levels 
below the yield strain and at  temperatures below TP 
The data are interpreted in terms of a lognormal 
distribution of relaxation times and several physical 
parameters obtained from the experimental stress 

relaxation curves are analyzed in terms of a coop- 
erative model. 

EXPERIMENTAL PROCEDURE 

Material 

The material used was commercial PVC-CAW, fab- 
ricated according to DIN 4102-B1 standard by SI- 
MONA AG from Kim, Germany. The density and 
Young's modulus at  room temperature are p = 1.42 
g/cm3 and E = 3.2 GPa, respectively. We determined 
a weight-average molecular weight Mw = 71,837 with 
a polydispersivity Mw/Mn = 1.832. The glass tran- 
sition temperature, measured by DSC at 10 K/min, 
is Tg = 349.1 K. 

Dogbone-type specimens were machined from the 
original 2-mm-thick sheet with a gauge length of 25 
mm and a width of 4.2 mm. 

Mechanical Tests 

Previous to the tensile and stress relaxation tests, 
the specimens were located in a metallic capsule 
which was introduced in an oil bath and annealed 
in air at 393 K during 5 h. Afterwards, the specimens 
were slowly cooled by shutting of the power supply 
of the oil bath. Such a treatment ensured reproduc- 
ibility both in the tensile and stress relaxation tests. 

During the mechanical tests, performed in air 
above room temperature, the specimens were located 
in a test chamber heated by an oil bath. In this way 
the samples were heated without being in contact 
with the oil. The temperature was measured with 
two thermocouples located in the grips in contact 
with the heads of the specimen. Through this mea- 
surement homogeneity in temperature can be en- 
sured, as well as stability, with fluctuations lower 
than 0.25 K during the whole stress relaxation test, 
which lasted for several hours. The measurements 
below room temperature were performed in vacuum 
to avoid absorption of water, which appeares a t  273 
K, affecting the results. 

The tensile and stress relaxation tests were per- 
formed in an Instron 1122 tensile machine, with an 
automatic data adquisition system which allowed 
measurements of the stress relaxation for times from 
10-1 to near lo6 s. At each temperature, for the stress 
relaxation tests, the machine was stopped at differ- 
ent strains below the yield point and the stress was 
measured as a function of time. 
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RESULTS 

Tensile Modulus 

The tensile modulus of the PVC used in this work 
was measured by using the following procedure. 
During a tensile test, in the elastic regime of the 
tensile curve, the rate of change of the load, P = dP/ 
dt, where P is the load, is given by7 

P = uc ( 5 )  

with u the velocity of the crosshead of the tensile 
machine and C the elastic constant of the machine 
and the sample. Because both machine and sample 
are submitted to the same load, that is, are disposed 
“in series,” it follows 

1 1 L  - -  - - + -  
C K AE 

where K is the elastic constant of the machine (load 
cell plus grips and loading bars), A and L are the 
initial cross section area and length of the sample, 
respectively, and E is the Young’s modulus of the 
specimen. K can be determined by measuring a 
specimen of known E in the linear region at the 
beginning of the P against t curve. This was per- 
formed by using a characterized specimen of stain- 
less steel leading to 

K = 1.67 MN/m (7) 

Once K is known, it is possible to determine E for 
PVC by using eq. (5) to eq. (7) with the load rate P 
measured at  the beginning of the tensile curve. The 
results obtained are shown in Figure 1, together with 
some results published in Polymer Handbook,’ by 
Pink: and the one provided by the supplier of the 
material. It is seen that our data have a linear de- 
pendence with temperature, which is expressed as 

with Eo = 13.3 -t 0.7 GPa and C; = 34 f 2 MPa/K. 
It is noticed that the linear regression is fairly good 
with a linear correlation coefficient of -0.991. With 
respect to the values published in Collins and Dan- 
iels: only the one measured at 293 K was obtained 
by stress-strain measurements a t  a strain rate of 
2.5 X s-’. The other values where obtained in 
creep at 0.2% strain. It is seen that our data are 
quite similar to those published, except a t  high tem- 
peratures where we believe ours are more reliable, 

T [KI 

Figure 1. Tensile modulus of PVC as a function of 
temperature: (0) this work; (0) data from ref. 8; (V, A) 
data from ref. 9 in tension and compression at  a strain 
rate of 3.4 X s-’; (0) data from the supplier of PVC. 
The linear regression is given by eq. (8). 

because our lower deformation levels guarantee no 
contribution from anelastic components. 

Time Dependence of the Stress Relaxation Curves 

Figure 2 shows the true stress-strain curves against 
the absolute temperature obtained at an initial strain 
rate, E = 6.6 X s-’. Figure 3 shows the stress 
against log(time) curves at different temperatures 
and strains up to 0.03 which, according to Figure 2, 
are clearly below the yield point. 

Stress relaxation tests above Tg could not be done 
with a tensile machine because the sample is de- 
formed even when no external stress is applied, only 
due to the weight of the supporting system. Nev- 
ertheless, previous stress relaxation tests above Tg 
reported in the literature” show that the relaxation 
is very fast (lasted less than an hour) and even at  
very low initial deformations the stresses are above 
the yield point. Therefore, these curves could not be 
included in the analysis presented in this article. 

Strictly, “in a stress relaxation experiment a con- 
stant strain co is imposed on the specimen at the 
time t = 0 and maintained for t 2 0 while the stress 
(r is observed as a function of time. Thus: c = 0, for 
t I 0; c = coy for t 2 0. By linearity requirements a(t) 
will be proportional to to.” Then, the stress relaxa- 
tion function M ( t )  = a(t)/co is given by” 

M ( t )  = Me + GMp(t) = Me[I + Ap(t)] t 2 0 (9) 

where M ( t )  is independent from co. Me is the equi- 
librium (relaxed) modulus and 
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Figure 2. True stress-strain curves for unplastized 
PVC, measured at different temperatures and at the strain 
rate of 6.6 X s-'. 

with Mg the glassy (unrelaxed or instantaneous) 
modulus. The relaxation strength, A, is defined by 

The quantities Mg, Me and, consequently, A should 
not depend on strain in the case of a linear visco- 
elastic material. p(t) is the stress relaxation function 
which goes from 1 at t = 0 to 0 at t + cx). In terms 
of the stress, eq. (9) can be written as 

with 

and 

Then, in order to show that the material behaves as 
linear viscoelastic below the yield point, it must be 
demonstrated that the relaxation curves of Figure 
3 obey eq. (12), independently from the strain level. 
The problem is that these curves were determined 
by interrupting a tensile test a t  a certain deforma- 
tion. In fact, the sample was elongated using a tensile 
machine whose crosshead was moving at a given ve- 
locity. In other words, the relaxation tests were not 

performed by imposing a given strain at t = 0. Then, 
the initial stresses in Figure 3 are not ug of eq. (15) 
but the stresses corresponding to the given strain 
in the tensile curve of Figure 2, where the stress 
relaxation started. These stresses will be named uo. 

The differential equation corresponding to the 
three-parameter standard anelastic element (SAE)" 
is 

where 7 is the relaxation time and the dot indicates 
the derivative with respect to the time. At the be- 
ginning of the tensile test 1. = constant, so that 

& = it (17) 

and, on integrating eq. (16), leads to 

where t, is the time elapsed from the beginning of 
the tensile test to the initiation of the stress relax- 
ation. Equation (18) is valid for the viscoelastic de- 
scription of the material with the single relaxation 
time. In the case of a distribution of relaxation times 

40 
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fog ( t [sl ) 
Figure 3. Stress relaxation curves at the true strain 
levels of 0.01, 0.02, and 0.03 for temperatures of 311,325, 
and 335 K. The measurements at 294 K were performed 
at the strains: 0.005, 0.015, and 0.03. 
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eq. (16) becomes more complicate. It has been 
shown12 that the time dependence of the relaxation 
modulus-usually written as an integral relationship 
of the relaxation spectrum-can be expressed by 

M ( t )  = Me + 6Mexp - - [ rrt,] (19) 

where r ( t )  is the relaxation time of a modified ane- 
lastic element (MAE). Particularly, the quasistatic 
mechanical properties associated to a lognormal 
distribution-used subsequently in this article-can 
be very well approximated on considering 

with 0 < y I 1. It is noticed that y = 1 corresponds 
to the SAE. On using this time dependence of r ,  eq. 
(18) changes to 

where ro  is the average relaxation time and y is re- 
lated to the width of the distribution function for 
the MAE. Furthermore, ro and y are related to the 
parameters of the lognormal di~tributi0n.l~ 

An apparent relaxation strength, A,, can be de- 
fined as 

Then, on considering eqs. (11) and (21) it follows 

If t, 4 ro, which is the case for the experiments 
performed in this work, eq. (23) reduces to 

A, x A (24) 

that is, the apparent relaxation strength coincides 
with the true relaxation strength. In summary, if 
the relaxation curves of Figure 3 correspond to a 
linear viscoelastic material, then they should be de- 
scribed by 

with p ( t )  independent from the strain level. There- 
fore, on taking the logarithm of eq. (%), the strain 

dependence of the curves can be easily separated. 
In fact, eq. (25) can be written as 

in such a way that, at a fixed temperature a plot of 
log(ao - a) against log t should lead to a set of parallel 
curves when cp does not depend on strain. In other 
words, the curves of Figure 3 at each temperature 
should be superposed one to another by only a ver- 
tical translation. This is illustrated in Figure 4, 
where the relaxation curves at 325 K for strains of 
0.01 and 0.02 are translated vertically onto the curve 
for 0.03, leading to a single relaxation curve. Anal- 
ogous results were obtained for the other curves of 
Figure 3. The deviations at short times are magni- 
fications of the experimental error due to the loga- 
rithm dependence of eq. (26). In addition, small 
variations in the temperature of the represented 
curves affect a complete matching. 

In conclusion, PVC is linear viscoelastic below 
the yield point. Even when the parameters of the 
relaxation are independent from the strain level, 
smaller experimental errors are involved when 
higher deformations are considered. Consequently, 
the characteristic parameters of the relaxation be- 
havior were obtained from the experiments per- 
formed at a strain of 0.03 shown in Figure 5. These 
curves where analyzed using the formalism devel- 
oped previ0us1y.l~ In fact, if the material behaves as 
linear viscoelastic the stress relaxation curves are 
described by 

2 4 

1% ( t [sl ) 

Figure 4. Superposition of the log(u,, - u )  against log 
t curves corresponding to the ones at 325 K of Fig. 4. (A) 
E = 0.01; (0) E = 0.02; (17) E = 0.03. 
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Figure 5. 
temperatures and at  a true strain of 0.03. 

Stress relaxation curves for PVC, at different 

where ba = a,, - ae, a0 and ae are the initial stress 
and equilibrium stress reached at  long times, re- 
spectively, and ba = ae A. Particularly, for a lognor- 
mal distribution of relaxation times, eq. (27) changes 
to" 

where 

1 *  
p(y, 0) = - e ~ p [ - e ~ - ~ ~ ] e - ~ *  dw (29) fi -m 

/3 is the half width of the lognormal distribution, 
and 

50 

40 

- 
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D 

30 

20 

Table I. 
Relaxation Data of Fig. 5 to Eq. (28) 

Parameters Obtained by Fitting the Stress 

T g o  0, 

(K) (MPa) (MPa) A ln ( . rJs )  P 

273 56.34 34.37 0.64 12.11 9.0 
293 53.55 26.51 1.02 10.20 7.3 
313 44.40 21.30 1.09 7.63 5.7 
323 41.34 14.33 1.89 6.86 4.8 
333 34.46 5.80 4.94 6.21 4.1 
343 17.68 1.75 9.10 4.87 2.8 

with 7, the average relaxation time of the lognormal 
distribution. The derivative of eq. (28) with respect 
to log t is 

alogt  = 2.303 6~ P(Y, 0)- (31) 

Figure 6 shows, as an example, the good quality of 
the fitting of eq. (28) and eq. (31) to the experimental 
stress relaxation curve measured at T = 313 K and 
its derivative, respectively. The fitting of the rest of 
the curves is similar. Table I gives the values of the 
different parameters obtained from the data of Fig- 
ure 5 fitted by eq. (28). 

Temperature Dependence of A, T,, and /3 

Relaxation Strength 

The values of A, obtained by fitting the data of Fig- 
ure 5, are also indicated in Table I. On assuming 

Figure 6. 
derivative to eqs. (28) and (31). 

Fitting of the stress relaxation curve at T = 313 K of Figure 5 and of its 
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Figure 7. 
plotted according to eq. (33). 

Relaxation strength for the data of Figure 5, 

that A changes with temperature according to a 
Curie-Weiss law, that is, 

A = -  A0 

T, - T 

where T, is a critical temperature and A, is a con- 
stant which involves the employed experimental 
procedure, the type of specimen, and the material. 
Equation (32) can be rewritten as 

TA = T,A- A,. (33) 

Then, a plot of T A  against A should give a straight 
line of slope T, and intercept A,. This plot is given 
in Figure 7 showing that an excellent straight line 
is obtained with 

T, = 347.2 K A, = 49 K. (34) 

T, is very close to the glass transition temperature 
as determined by DSC, namely Tg = 349.1 K. A sim- 
ilar situation was encountered by using an equivalent 
analysis for the loss tangent measured in atactic 
p01ystyrene.l~ 

Mean Relaxation Time 

On assuming that the average relaxation time 
changes with temperature according to an Arrhenius 
law, that is, 

r,,, = r,,,,, exp[AH,,,/kT] (35) 

Such a plot, for the data indicated in Table I, is 
shown in Figure 8, leading to 

7% = 1.13 X lO-'Os AHm = 79.4 kJ/mol. (36) 

The value of 7% is reasonable when compared with 
the reciprocal of the Debye frequency (of the order 
of s). The value of AH,,, is lower than the ones 
obtained when the time-temperature superposition 
principle (TTSP) is used. A discussion of this dif- 
ference in the enthalpy as well as the applicability 
of the TTSP is presented in the following section. 

Half-Width of the Distribution 

The values of T,,,, and AH,,, given in eq. (36) are only 
average values. In fact, according to Table I, ,6 
changes with temperature, indicating how the shape 
of the distribution function changes with tempera- 
ture. Nowick and Berry" have shown that when the 
relaxation time changes with temperature as 

T = ro exp[AH/kT] (37) 

and r is distributed according to a lognormal dis- 
tribution with parameters ,6 and r,,,, the distribution 
can be in T,, in AH, or in both. Furthermore, if r is 
distributed in a lognormal way then ro  and A H  must 
be distributed in the same way. If the distribution 
is only in T ,  then 

P = Po (38) 

where Po is the half-width of the lognormal distri- 
bution in In T,, with an average value In T~ If there 
is only one value of ro and the distribution is in AH, 
then 

with rmn an average preexponential factor, AH,,, an 
average activation enthalpy, and k Boltzmann's 
constant, a plot of In 7, against 1/T should give a 
straight line of slope AH,,,/k and intercept In rmn. 

1/T [ l O - 3  K-11 

Figure 8. 
of the absolute temperature for the data of Figure 5.  

Average relaxation time against the reciprocal 
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where PAH is the half-width of the Gaussian distri- 
bution in AH with average value AHm. 

When there are distributions for both AH and In 
T~ and both do not vary independently but depend 
linearly on a single internal variable which is dis- 
tributed in a Gaussian manner, both AH and In T~ 

will have a Gaussian distribution and 

P = /Po f El PAH 

The plus sign occurs if the quantities In T~ and A H  
both increase and decrease together with a change 
in the internal variable, while the minus sign occurs 
when In 7o and AH vary oppositely from each other. 

If In T~ and AH are distributed independently of 
each other, each in a Gaussian manner, then 

2 

p2 = P; + [%I. 
The plot of /3 from Table I against the reciprocal of 
temperature does not give a straight line, as illus- 
trated in Figure 9, showing that eq. (40) is not 
obeyed. Nevertheless, the representation of P2 
against 1/T2 given in Figure 10 can be linearly cor- 
related. That is, eq. (41) is obeyed and, consequently, 
the distributions of In T~ and A H  are both Gaussian 
and independent of each other. Of course, this be- 
havior is valid in the glassy region, that is, for T 
< Tr Thus, it is more convenient to rewrite eq. (41) 
as 

4-0 k O 
2.0 ‘ 1 

2.9 3.1 3.3 3.5 3.7 
1/T [ l O - 3  K-11 

Figure 9. Half-width of the lognormal distribution 
against the reciprocal of the absolute temperature for the 
data of Figure 5. 

1/T2 [ l O - S  K-21 

Figure 10. Square of the half-width of the lognormal 
distribution against 1/T2, for the data of Figure 5 .  The 
linear regression corresponds to eq. (42). 

where pg is the half-width of the distribution at Tr 
In this way, the linear regression of the points rep- 
resented in Figure 10 gives 

Pg = 2.26 Pm = 32 kJ/mol. (43) 

DISCUSSION 

The stress relaxation curves measured at different 
temperatures were fitted using a lognormal distri- 
bution function, finding the temperature dependence 
of its parameters and of the relaxation strength. 
Other expressions used in previous works, such as 
eqs. ( 2 )  and ( 4 )  with G, = 0, did not provide a good 
description of our data. In fact, the stress relaxation 
curves reach an equilibrium value a,, as it is observed 
in Figure 5. Table I shows the temperature depen- 
dence of a, as well as that of P. Particularly the 
changes in P correspond to changes in the shape of 
the distribution function. That is, both the limiting 
stresses a. and a, as well as the shape of the spectrum 
of relaxation times vary with temperature. This dis- 
ables the matching of the individual segments to 
form a master curve.17 However, in several works 
assumptions such as ae = 0 or a slight temperature 
dependence of the parameters of the distribution 
were considered in order to build “pseudo-master 
curves.” l7 Because of this apparent but not true su- 
perposition, extremely high values of A and AH were 
found. For a complete discussion about these and 
other inconsistencies of the pseudo-master curves 
we refer the reader to ref. 17 and 18. 

Going back to the curve fits proposed in the lit- 
erature for the stress relaxation data, eq. (4) can be 
deduced from the MAE.12 This element provides a 
good approximation of statistical systems charac- 
terized by a Gaussian distribution of the micro- 
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mechanisms involved not only in stress relaxation 
but also in creep and dynamical tests. Even when 
the MAE is a useful tool to deal with known math- 
ematical expressions for the time or frequency de- 
pendence of the mechanical properties, the lognor- 
mal distribution is more suitable to interpret the 
physical mechanisms involved. Effectively, in what 
follows the parameters of the distribution will be 
related to the structure of glassy polymers by con- 
sidering the concept of ordered domains.lg 

When a stress is applied over a polymer chain, 
the free enthalpy increases and the molecular seg- 
ments reorient in order to relieve the stress. This 
reorientation is not instantaneous but depends on 
the “ability” of the segments to undergo configu- 
rational chances. Each segment is called conformer 
because its movements contribute to the confor- 
mation of the polymer chain. Then, on one hand, 
the reorientations are limited by the potential energy 
of internal rotation of each conformer. On the other 
hand, each conformer is connected to others so its 
rotational relaxation requires also the movement of 
its neighbors. The group of conformers which 
evolves cooperatively will be called domain. The size 
of the domain depends on the temperature in such 
a way that for T > Tg each conformer can relax 
independently of the others, only overcoming the 
barrier of intramolecular rotation. 

If c is the number of states a conformer can take, 
the entropy of N, domains, each with z conformers, 
is given by 

A S  = N,k In c. (44) 

Furthermore, the probability of simultaneous relax- 
ation of z conformers assumed to be independent is 
the zth power of the probability of the relaxation of 
only one conformer. Therefore, the activation energy 
will be z times the potential barrier of internal ro- 
tation of each segment, Ah, i.e., 

AH = zAh. (45) 

In the Mean Relaxation Time section it was estab- 
lished that the relaxation time follows the Arrhenius 
law, that is, 

AG 
7 = 7, exP[E] 

which can be rewritten as 

T = T~ exp - KI (47) 

with T~ = ~,exp[-AS/k]. Then, from eq. (44) it fol- 
lows 

T~ = 7, c exp[-N,]. (48) 

In the Half-Width of the Distribution section it was 
shown that In 7 is characterized by a Gaussian dis- 
tribution both in In T~ and AH. Then, according to 
eq. (48), the number of domains N, is distributed 
following a Gaussian law with a mean value N,, 
= 1n(cT,/T0) and a dispersion PN = Po. 

On the other hand, from eq. (45) it follows that 
the Gaussian distribution in AH corresponds to a 
distribution in the number of conformers integrating 
each domain. Furthermore, on considering that each 
conformer is one of the monomers of the polymeric 
chain ( - CH, - HClC - ) whose barrier of internal 
rotation is,,’ 

A h  = 14.9 kJ/mol 

it results in a mean number of conformers z, = 5.3 
for each domain, with a dispersion P, = 2.1. These 
values were not previously obtained in the liter- 
ature. However, a comparison can be done with 
the number of conformers determined for a co- 
operative model in PMMA below its Tg,,l z = 6.65. 
Similar values in other glassy polymers can be 
calculated from the mechanical model proposed 
by Argon and Bessonov.22 

Finally, the dependence of the relaxation modulus 
on time and temperature is related to the changes 
in the domains according to 

where a, is a constant and vf( t )  is the free volume 
of the system at the time t. As the conformers reori- 
ent to its equilibrium state, the free volume reduces 
until an equilibrium value v y  is reached. It is noticed 
that a t  T = 0 K all the mechanisms are “frozen” 
and no relaxation is possible, that is, vf( t )  = v:). 
Moreover, the thermal expansion coefficient of the 
free volume, that is, the relative change of the free 
volume with temperature, is typically of the order 
of K-’.’’ Because this change can be neglected 
when compared with the linear dependence of E on 
T given in eq. (49), only the dependence of vf on 
time will be considered. This assumption agrees with 
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the linear dependence of E(T), given in eq. (8), de- 
termined from our measurements. 

Once the equilibrium is reached, eq. (49) reduces 
to 

which was previously employed by Gilbert et al.23 in 
their work about modulus maps for amorphous 
polymers in the glassy regime. This equation is a 
first-order approximation of a more complex 
expression for Ee( T )  derived by Yannas and Lukez4 
when the intra- and intermolecular potentials in the 
chains of amorphous polymers are considered. a, is 
related to the potential barriers and to the dimen- 
sions of the conformers-named strophons in Yan- 
nas and L ~ i s e . ' ~  On considering the experimental 
data given in ref. 24 a, = 0.8 results. 

On comparing eqs. (8) and (50) it is found a, 
= 0.9 k 0.1, which is similar to the value calculated 
from ref. 24. Because there are no measurements of 
the tensile modulus at  0 K, a, and Eo are replaced 
in eq. (50) in order to calculate the modulus at 77 
K, obtaining: E(77 K) = 9.3 GPa. The reported 
modulus at that temperature: E(77 K) = 7.6 GPa, 
shows the good agreement of our results. 

Because in a stress relaxation test the deforma- 
tion, E ,  remains constant, eq. (49) can be rewritten 
in terms of the stress as 

Then the initial and equilibrium stresses at the 
temperature T are 

and 

ue(T) = EE, 1 - a,- [ ;I 
respectively, leading to 

where A, = (uf(0) - u ~ ' ) / u ~ '  is the relative change 
in the free volume of the system. This equation has 

the same temperature dependence as the empirical 
relationship determined from our data in eq. (32), 
with A, = AuTg/a, and T, = Tg/a,. Replacing the 
values of A, and T,, given in eq. (34), it results A, 
= 0.14 and a, = 1.005. This value of a, agrees with 
the one determined from eq. (50). 

Finally, on comparing eqs. (27) and (51) it follows 
that 

that is, the time evolution of the free volume during 
the stress relaxation test. The discussion of changes 
in the activation volume with time and also with 
frequency in the case of dynamical tests as well as 
the stress relaxation data measured above the yield 
pointz5 at  the different temperatures are beyond the 
scope of this work and will be presented in foith- 
coming papers. 

CONCLUSIONS 

In this work tensile stress relaxation data in PVC 
below the glass transition temperature were pre- 
sented. These curves, measured below the yield 
point, could be fitted by considering a lognormal 
distribution function of relaxation times. Moreover, 
the temperature dependence of the tensile elastic 
modulus was calculated from stress-strain data a t  
very low deformation levels. 

The temperature dependence of the relaxation 
strength as well as of the parameters of the distri- 
bution function were determined and explained in 
terms of a cooperative model of the micromecha- 
nisms involved in the relaxation process. These mi- 
cromechanisms or conformers are the monomers of 
the polymeric chain. The reorientation of each con- 
former implies the movement of other neighbors, 
that is, the relaxation of a domain. It was demon- 
strated that the distribution in the size of the do- 
main, z ,  determines a distribution in the activation 
energy while the number of domains in the structure, 
N,, is related to the mean relaxation time. Finally, 
the relationship between the free volume and the 
tensile modulus proposed in this article explains the 
empirical dependence of the relaxation strength on 
temperature for PVC. Similar experiments on other 
linear polymers are under way in order to determine 
the applicability of the results shown in this work. 
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