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A simple experimental technique for analyzing a broad range of two-dimensional percolation
problems is presented. The method is based on a combination of the use of a CAD program capable
of dealing with a variety of site-bond combinations and an electrical measurement of conductance.
The latter is achieved by printing the computer generated pattern using conducting ink. The
metal-insulator transition is measured on the print out of the lattice, and the conductivity critical
exponent and the percolation threshold are calculated from these measurements. ©2004 American

Association of Physics Teachers.
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I. INTRODUCTION

Percolation is involved in a broad range of physical ph
nomena including forest fires, propagation of epidemics,
fields, wafer-scale integration, ferromagnetism, and diffus
in disordered media.1–6 One of the easiest and most intere
ing percolation-related phenomena to study is the electr
behavior of a system of conducting particles dispersed in
insulating matrix. These disordered conductor-insulator co
posites show a variety of incompletely understood pheno
ena, some of which have important technologic
applications.7–9 The electrical behavior of these systems c
be described by percolation models in which the conduc
sites are distributed in a spatially random fashion in an in
lating medium. When the volume fraction of the conducti
material,p, is lower than a critical volume fractionpc , no
macroscopic conducting pathway exists, and the compo
remains in the insulating phase. When the volume fractio
greater than the critical volume fraction, the system becom
electrically conducting. Near the transition, the electri
conductivity s of these composites is described by t
relation1

s5H 0 if p,pc

s0~p2pc!
t if p>pc,

~1!

wherep is the volume fraction of the conductive phase,pc is
the percolation threshold, andt is the critical exponent. The
power law behavior in Eq.~1! is expected to hold in a narrow
range of concentrations above the percolation threshold.
two-dimensional systems the exponentt is universal meaning
that it depends only on the dimensionality of the system
not on its small-scale details. This universality means thatt is
the same for different lattice geometries and even for c
tinuum systems. However, for three-dimensional syste
experimental values of the exponentt for continuum systems
are often higher than those obtained from numerical sim
tion of lattice networks.10

Although the idea of percolative phase transitions is c
ceptually simple, few analytical solutions for the critical p
rameters have been found. Moreover, it is difficult to det
mine these parameters for real systems such as condu
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particles in an insulating matrix. The problems arise in p
from the difficulty of keeping the different variables und
control~due to, for example, a poorly known volume fractio
and particle size distribution and possible nonrandomnes!.

In previous works, the value of the conductivity expone
t was established by experimental measurements. Last
Thouless11 and later Mehret al.12 determined the bulk con
ductivity of a sheet of colloidal graphite paper with hol
randomly punched in it. Watson and Leath13 performed a
similar experiment cutting links in a metal wire mesh. T
valuest51.160.3 andt51.3860.12 were obtained in Refs
12 and 13, respectively. Later, Dubson and Garland10 used a
computer-controlled digitalx–y plotter to cut a percolating
pattern from sheets of aluminized plastic. As a pattern w
cut, a digital ohmmeter continuously monitored the res
tance of the sheet. From their experiment they estimatet
51.2960.03.

A wide variety of numerical simulations has establish
the value of the conductivity exponentt with increasing
precision.14–19The most efficient and accurate of the nume
cal simulations are based on the algorithm of Lobb a
Frank.20,21 The presently accepted value of the conductiv
exponent, derived from numerical simulations, ist51.30
60.01 in two dimensions.

We present an experimental technique to study percola
by a simple method that can be carried out by undergrad
physics students. In our case, the percolation pattern to
analyzed is generated with a computer program that allo
flexibility in particle shape, size, and location. In this way
is possible to compare computer calculations and experim
tal results. Because the patterns are computer generated
samples are well characterized with none of the ambigui
sometimes inherent in experimental studies. We will anal
only one case to show the reliability of the method, and lea
open further work.

II. EXPERIMENTAL TECHNIQUES

We developed a computer program to draw small bla
particles over a white background. The particles are plac
with probability p, on a 64364 lattice. The program has
364p © 2004 American Association of Physics Teachers
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graphical interface in which the user selects the lattice ge
etry, the particle shape, and the volume fraction of the c
ductive filler. Figure 1 shows different particle shapes a
their near-neighbor connections on different lattice geo
etries. When the layout is ready, it is printed on a Hew
Packard 692C ink jet printer. Then two lines, the upper a
lower ‘‘electrodes,’’ are painted with silver paint. Becau
the ink is conducting, we can measure the electrical re
tance directly from the printed layout with a Hewlett Packa
34401A multimeter. To avoid the problems arising fro
variations of the ink level or the paper type, the progra
draws two continuous lines near the layout~see Fig. 2!. The
resistance of the two lines is measured and averaged.
resistance of the layout is then normalized by dividing
this mean. Although the resistance value of these con
lines ~as well as that of the layouts itself! depends on the ink
level, paper type, and room conditions, the normalized re
tance value for each layout is almost constant, with an e
smaller than 3%, independent of the above-mentioned c
ditions. The contact resistance between the silver paint
the ink is negligible compared to the resistance of the layo
and it was not taken into account in the analysis.

III. RESULTS AND DISCUSSION

To introduce the method and determine its reliability, w
will analyze the case of a square lattice with nearest ne
bors. The experiment was performed by plotting cross sh
particles@see Fig. 1~a!# on a square lattice. Figure 2 shows
typical layout atp50.35. Note how some clusters~sets of
particles that are in electrical contact! start to appear, but no
percolating cluster exists at this stage. Also we note that e
particle has no more than four neighbors. Twenty-four la
outs were printed and measured fromp50.58 top50.95. To
get an estimate forpc and the critical exponentt, we fitted
the normalized conductivity data forp.pc to Eq. ~1! by
varyingpc in the interval from 0.53 to 0.60 in steps of 0.00
For each value ofpc , the value oft was determined from the
slope of the normalized conductivity versus (p2pc) on a
log–log plot. The lowest value of the root mean square e
~for the critical exponent! was found forpc50.58560.005
with a value oft51.2860.07 for the critical exponent.

These values are in close agreement with those calcul
by numerical simulation as well as with previous experime
tal work ~see Sec. I!, showing the reliability of the method
Stauffer22 and Jan23 have calculated the most accurate va
of pc for site percolation with nearest-neighbors’ connectio

Fig. 1. Some particle shapes used by the program.~a! Only nearest neigh-
bors on a square lattice.~b! Only nearest neighbors on a triangular lattic
~c! First and second neighbors on a square lattice.
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and obtainedpc50.592 74660.000 001. Lobb and Frank20,21

found by numerical simulation a value oft51.3060.01. Fig-
ure 3 shows the experimental values with the best fit to
~1!. It is important to observe that the whole range of co
centrations has been fitted by a power law. Although suc
fit may apply for some particular systems due to their fin
size, it does not hold in general.

One of the advantages of this method over previous o
is that the percolation pattern to be analyzed is generated
printed by a computer program. The program lets us de
the percolating cluster, analyze its backbone structure,
add or remove selected particles to explore different effe
The high resolution of the printer lets us work with arbitra
particle shapes and modify the number of neighbors, tha
the connectivity or coordination number. Also, we c
change the lattice~or particle! size to analyze finite size ef
fects.

There are several papers related to the problem descr
here. Schmelzeret al.24 have analyzed finite-size effects i
the conductivity of atomic clusters deposited between lith
graphically defined contacts with nanometer scale sep
tions. Martin and Heaney25 studied the unusually rapid in
crease in the resistivity of composites of carbon bla
particles in polyethylene, making this material commercia
useful as current-limiting thermistors; and Hanet al.26 gen-
erated a random pattern of the Swiss cheese percolating
tem on a thin aluminum film, and analyzed the percolat
threshold as well as the critical exponent.

IV. SUMMARY

We have described an experimental method for the d
onstration of percolation. The method is simple and eleg
and lets us control the shape and position of the conduc
particles, the lattice geometry, and the connectivity betw
particles. The method is simple enough to be carried ou
an undergraduate student laboratory.

Fig. 2. A picture of the layout with conducting particles for concentrati
p50.35. Some clusters begin to appear. The two lines on the right side
used to normalize the value of the resistance.
365G. A. Schwartz and S. J. Luduen˜a
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