An experimental method for studying two-dimensional percolation
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A simple experimental technique for analyzing a broad range of two-dimensional percolation
problems is presented. The method is based on a combination of the use of a CAD program capable
of dealing with a variety of site-bond combinations and an electrical measurement of conductance.
The latter is achieved by printing the computer generated pattern using conducting ink. The
metal-insulator transition is measured on the print out of the lattice, and the conductivity critical
exponent and the percolation threshold are calculated from these measurements4 Agerican
Association of Physics Teachers.
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[. INTRODUCTION particles in an insulating matrix. The problems arise in part
from the difficulty of keeping the different variables under
Percolation is involved in a broad range of physical phe-control(due to, for example, a poorly known volume fraction
nomena including forest fires, propagation of epidemics, oiland particle size distribution and possible nonrandomness
fields, wafer-scale integration, ferromagnetism, and diffusion In previous works, the value of the conductivity exponent
in disordered medi&:® One of the easiest and most interest-t was established by experimental measurements. Last and
ing percolation-related phenomena to study is the electricalhoulesé® and later Mehret al*? determined the bulk con-
behavior of a system of conducting particles dispersed in aductivity of a sheet of colloidal graphite paper with holes
insulating matrix. These disordered conductor-insulator comrandomly punched in it. Watson and Lehttperformed a
posites show a variety of incompletely understood phenomsimilar experiment cutting links in a metal wire mesh. The
ena, some of which have important technologicalyaluest=1.1+0.3 andt=1.38+0.12 were obtained in Refs.
applications’~® The electrical behavior of these systems cani2 and 13, respectively. Later, Dubson and Gart3nded a
be described by percolation models in which the CondUCting:omputer-controlled digitak—y plotter to cut a percolating
sites are distributed in a spatially random fashion in an insupattern from sheets of aluminized plastic. As a pattern was
lating medium. When the volume fraction of the conductingcyt, a digital ohmmeter continuously monitored the resis-
material,p, is lower than a critical volume fractiopc, N0 tance of the sheet. From their experiment they estimated
macroscopic conducting pathway exists, and the composite 1 59+ 3.
remains in the insulating phase. When the volume fractionis 5 wide variety of numerical simulations has established
greater than the critical volume fraction, the system becomeg, o yajue of the conductivity exponentwith increasing
electrically conducting. Near the transition, the eIecmCalprecisionl.“‘lgThe most efficient and accurate of the numeri-
conductivity o of these composites is described by theqq simylations are based on the algorithm of Lobb and

relatior? Frank?>2! The presently accepted value of the conductivity
0 if p<p. exponent, derived from numerical simulations, tis 1.30
= RN o= (1)  =0.01 in two dimensions.
To(P~Pc) T P=Pe, We present an experimental technique to study percolation

wherep is the volume fraction of the conductive phapgjs by @ simple method that can be carried out by undergraduate
the percolation threshold, arids the critical exponent. The Physics students. In our case, the percolation pattern to be
power law behavior in Eq(1) is expected to hold in a narrow analyzed is generated with a computer program that allows
range of concentrations above the percolation threshold. Fdlexibility in particle shape, size, and location. In this way it
two-dimensional systems the exponeist universal meaning 1S Possible to compare computer calculations and experimen-
that it depends only on the dimensionality of the system and@l results. Because the patterns are computer generated, the
not on its small-scale details. This universality meanstigt Samples are well characterized with none of the ambiguities
the same for different lattice geometries and even for consometimes inherent in experimental studies. We will analyze
tinuum Systems_ However, for three-dimensional Systemé,)nly one case to show the I’ellablllty of the method, and leave
experimental values of the exponérior continuum systems open further work.
are often higher than those obtained from numerical simula-
tion of lattice networks? , ____ll. EXPERIMENTAL TECHNIQUES

Although the idea of percolative phase transitions is con-
ceptually simple, few analytical solutions for the critical pa- We developed a computer program to draw small black
rameters have been found. Moreover, it is difficult to deterparticles over a white background. The particles are placed,
mine these parameters for real systems such as conductimgth probability p, on a 64<64 lattice. The program has a
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Fig. 1. Some particle shapes used by the progi@nOnly nearest neigh- :’_' -
bors on a square latticéh) Only nearest neighbors on a triangular lattice. ™ * 4 & &
(c) First and second neighbors on a square lattice. 1
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e
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graphical interface in which the user selects the lattice geom7 '_ R

etry, the particle shape, and the volume fraction of the con-§*g*
ductive filler. Figure 1 shows different particle shapes and * ***
their near-neighbor connections on different lattice geomeig 2. A picture of the layout with conducting particles for concentration
etries. When the layout is ready, it is printed on a Hewletty=0.35. Some clusters begin to appear. The two lines on the right side are
Packard 692C ink jet printer. Then two lines, the upper andised to normalize the value of the resistance.

lower “electrodes,” are painted with silver paint. Because

the ink is conducting, we can measure the electrical resis-

tance directly from the printed layout with a Hewlett Packard

34401A muitimeter. To avoid the problems arising from and obtaineg,=0.592 746 0.000 001. Lobb and FraAk®!
variations of the ink level or the paper type, the programfound by numerical simulation a value bf 1.30+0.01. Fig-
draws two continuous lines near the laygsee Fig. 2 The  ure 3 shows the experimental values with the best fit to Eq.
resistance of the two lines is measured and averaged. THe). It is important to observe that the whole range of con-
resistance of the layout is then normalized by dividing bycentrations has been fitted by a power law. Although such a
this mean. Although the resistance value of these contrdit may apply for some particular systems due to their finite
lines (as well as that of the layouts itsgtlepends on the ink  size, it does not hold in general.

level, paper type, and room conditions, the normalized resis- One of the advantages of this method over previous ones
tance value for each layout is almost constant, with an errois that the percolation pattern to be analyzed is generated and
smaller than 3%, independent of the above-mentioned corprinted by a computer program. The program lets us detect
ditions. The contact resistance between the silver paint anghe percolating cluster, analyze its backbone structure, and
the ink is negligible compared to the resistance of the layoutadd or remove selected particles to explore different effects.

and it was not taken into account in the analysis. The high resolution of the printer lets us work with arbitrary
particle shapes and modify the number of neighbors, that is,
lll. RESULTS AND DISCUSSION the connectivity or coordination number. Also, we can

. o o change the latticéor particle size to analyze finite size ef-
To introduce the method and determine its reliability, wefgcts.

will analyze the case of a square lattice with nearest neigh- There are several papers related to the problem described

bors. The experiment was performed by plotting cross shapgere, Schmelzeet al”* have analyzed finite-size effects in

particles|see Fig. 1a)] on a square lattice. Figure 2 shows athe conductivity of atomic clusters deposited between litho-

typical layout atp=0.35. Note how some clustefsets of  graphically defined contacts with nanometer scale separa-

particles that are in electrical contastart to appear, but no tions. Martin and Heanéy studied the unusually rapid in-

percolating cluster exists at this stage. Also we note that eacfrease in the resistivity of composites of carbon black

particle has no more than four neighbors. Twenty-four lay-particles in polyethylene, making this material commercially

outs were printed and measured frpm 0.58 top=0.95. To  useful as current-limiting thermistors; and Hanal?® gen-

get an estimate fop. and the critical exponertf we fitted  erated a random pattern of the Swiss cheese percolating sys-

the normalized conductivity data fgy>p, to Eqg. (1) by tem on a thin aluminum film, and analyzed the percolation

varyingp, in the interval from 0.53 to 0.60 in steps of 0.005. threshold as well as the critical exponent.

For each value op,, the value ot was determined from the

slope of the normalized conductivity versus<{p.) on a

log—log plot. The lowest value of the root mean square errofy; syMMARY

(for the critical exponentwas found forp.=0.585+0.005

with a value oft=1.28+0.07 for the critical exponent. We have described an experimental method for the dem-
These values are in close agreement with those calculateghstration of percolation. The method is simple and elegant

by numerical simulation as well as with previous experimen-and lets us control the shape and position of the conducting

tal work (see Sec.)| showing the reliability of the method. particles, the lattice geometry, and the connectivity between

Stauffef? and Jaf® have calculated the most accurate valueparticles. The method is simple enough to be carried out in

of p. for site percolation with nearest-neighbors’ connectionsan undergraduate student laboratory.
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