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Abstract

In this work we investigated the temperature–pressure dependence of the relaxation time of the a-relaxation process of poly(vinyl
acetate) (PVAc). By means of dielectric spectroscopy technique the relaxation time of the a-process was measured over a broad
range of frequencies (10�1–107 Hz), pressures (0–300 MPa) and temperatures (320–460 K). Two different approaches were used
to analyze the temperature–pressure dependence of the relaxation time: the phenomenological Vogel–Fulcher–Tammann (VFT)
equation and the pressure extended Adam–Gibbs (PEAG) equation recently proposed. We compared both results and discussed
the validity of the VFT approach for PVAc at different pressures. We found an excellent agreement between the experimental data
and the PEAG equation, which only needs four parameters to describe the complete temperature–pressure dependence of the relax-
ation time of the a-process. Finally, we showed that the thermal and volumetric contributions to the configurational entropy are
clearly separated for PVAc.
� 2005 Elsevier B.V. All rights reserved.

PACS: 64.70.Pf; 77.22.Gm; 65.60.+a
1. Introduction

By cooling at sufficiently high rates many liquids do
not crystallize, becoming supercooled and finally enter
to the glassy state where the molecular motions of the
system are frozen in the time scale of the experiment.
Although the most common way to reach the glassy
state is by decreasing the temperature of the system,
the glass transition can also be approached by applying
high enough pressure to a supercooled liquid. Both
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the increase of pressure and the decrease of temperature
result in slower molecular motions. These two different
ways of approaching the glass transition allow to
separate thermal and volumetric effects and to reach a
better understanding of the glass transition process.

The temperature dependence of the relaxation time of
a supercooled liquid is usually described by the Vogel–
Fulcher–Tammann (VFT) [1–3] empirical equation
given by s(T) = s0exp(DT0/(T � T0)). Although the
VFT dependence of the relaxation time with tempera-
ture is, in general, in good agreement with the experi-
mental data, the lack of any clear physical
interpretation does not help in the understanding of
the nature of the glass transition. However, it has been
shown [4] that the temperature dependence of the
relaxation time expressed by the VFT equation can be
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derived, under certain assumptions, from the Adam–
Gibbs (AG) theory [5] which is based on the concept
of the configurational entropy and allows linking the
dynamic and thermodynamic behaviour of the glass
formers.

Additionally, the effect of pressure variation on the
dynamics of the a-relaxation process can be very useful
to investigate both thermal and density effects. Some of
the seminal works in this area were done in the sixties
[6–8] and a renewed interest has arisen during the last
years [9–13]. The improvement of the experimental tech-
niques has made possible to obtain a large amount of
accurate data over broader ranges of pressure, tempera-
ture and frequency and therefore contributes to the bet-
ter understanding of the involved processes. Thus, a new
equation describing the behaviour of the structural
relaxation time, s(T,P), as a function of both pressure
and temperature, has been recently proposed [10]. This
equation was derived from the Adam–Gibbs (AG) the-
ory by writing the configurational entropy, Sc, in terms
of the excess of both thermal heat capacity and thermal
expansion.

In this work the a-relaxation of poly(vinyl acetate)
(PVAc) was studied using dielectric spectroscopy
(10�1–107 Hz) over a temperature range between 320
and 460 K and pressures up to 300 MPa. The tempera-
ture–pressure dependence of the experimental a-relaxa-
tion times was found to be very well described using
an extended AG equation [10] with thermal and expan-
sion coefficients determined from calorimetric and PVT
data respectively.
2. Theory

The AG theory, which is based on the assumption of
cooperatively rearranging regions, gives an expression
that relates the relaxation time with the configurational
entropy (Sc) [5]

s ¼ s0 exp
C
TSc

� �
; ð1Þ

where C is a material constant and Sc is the configura-
tional entropy. However, since Sc is not. accessible
experimentally, it is usually identified with the excess en-
tropy (Sex = Smelt � Scrystal). Although there is still an
open debate about this point, some findings seem to sug-
gest a general validity of the proportionality between Sex

and Sc [14]; under this assumption we identify Sc with
Sex and therefore the proportionality constant between
them will only affect the value of C in Eq. (1). Thus Sc

can be estimated as [4]

ScðT Þ ¼
DHmelt

Tmelt

�
Z Tmelt

T

DCPðT 0Þ
T 0 dT 0; ð2aÞ
where DCP ¼ Cmelt
P � Ccrystal

P would be the excess heat
capacity. In many polymers no melt is observed and a
different procedure has to be followed to calculate Sc.
Usually Ccrystal

P is identified with Cglass
P and in order to ac-

cess the excess entropy what is calculated is

ScðT Þ ¼
Z T

TK

DCPðT 0Þ
T 0 dT 0; ð2bÞ

where DCP ¼ Cmelt
P � Cglass

P and TK is the Kauzmann
temperature, which used to be of the order of Tg –
50 K, where the excess entropy would vanish. Generally,
an inverse temperature dependence is assumed for
DCP(DCP = K/T) and therefore, by integrating equation
(2b) and replacing Sc in Eq. (1), with T0 = TK, the VFT
expression for the temperature dependence of the relax-
ation time is recovered. However, as we will see in this
work, this temperature dependence for DCP is not al-
ways valid.

Recently, Casalini et al. [10] have proposed an exten-
sion of the Eq. (2) for the configurational entropy (Sc)
which also includes pressure as an independent variable
by adding a term related to the pressure change. Thus,
the temperature and pressure dependence of the Sc is
given by

ScðT ; P Þ ¼ gTðPÞ
Z T

TK

DCPðT 0Þ
T 0 dT 0 � gPðT Þ

�
Z P

0

D
oV
oT

� �
P 0
dP 0; ð3Þ

where

D
oV
oT

� �
P

¼ D
oV
oT

� �melt

P

� D
oV
oT

� �glass

P

ð4Þ

is the difference of the thermal expansivity of the melt
and the glass; gT and gP are factors which could eventu-
ally depend on pressure and temperature, respectively. If
they are constant then the thermal and volumetric con-
tributions to the configurational entropy are very well
separated and their relative weights can be estimated.
In addition, if DCP follows a K/T law and gP/gT does
not depend on temperature a VFT behaviour is recov-
ered at any arbitrary fixed pressure with unique set of
values for s0 and D. In this case we obtain the pressure
extended AG equation [11]

sðT ; P Þ ¼ s0 exp
DT �

0

T � T �
0

� �
; ð5Þ

T �
0ðP Þ ¼

TK

1� gP
gT

1
S1

R P
0
D oV

oT

� �
P 0dP 0

; ð6Þ

where s0, D and TK are the VFT parameters at atmo-
spheric pressure, and S1 is the excess entropy at very
high temperature and atmospheric pressure.
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3. Experimental

3.1. Samples

Poly(vinyl acetate) (PVAc) (Mw = 93080 g/mol) was
used for this study. The calorimetric glass transition
temperature, Tg, was determined by differential scanning
calorimetry (DSC). The inflection point of the CP versus
temperature curve was 34.8 ± 0.1 �C.

3.2. Dielectric measurements under pressure

Dielectric measurements were carried out in a pres-
sure cell (0–300 MPa) supplied by Novocontrol GmbH.
The range 10�1–105 Hz was measured with an EGG5302
lock-in amplifier in combination with a Chelsea dielec-
tric interface whereas for the range 103–107 Hz a
HP4192LF impedance analyzer was used. A full descrip-
tion of the experimental techniques can be found in ref-
erence [13]. The sample measurements were performed
by frequency sweeps at constant temperature, with sta-
bility better than ±0.1 K, and constant pressure, with
stability better than ±2 MPa.
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Fig. 1. (a) Dielectric loss (e00) at atmospheric pressure and different
temperatures (from left to right: 300.5, 313.5, 326.4, 339.4, 352.3,
365.3, 378.3 and 391.2 [K]). (b) Dielectric loss (e00) at 391.2 K and
different pressures (from left to right: 300, 250, 200, 150, 100, 50 and
ffi0 MPa).
4. Results and discussion

4.1. Dielectric relaxation spectra and relaxation times

Fig. 1a shows the dielectric loss (e00), as a function of
frequency, under atmospheric pressure, at different tem-
peratures as determined using the pressure cell. Isother-
mal spectra, at various pressures, are shown in Fig. 1b.
The central part of the main peak (i.e. the a-relaxation)
was described using the Alvarez–Alegrı́a–Colmenero
function [15], which is a particular case of the Havril-
iak–Negami (HN) function

e�ðxÞ � e1 ¼ De

½1þ ðixsHNÞa�b
; ð7Þ

where De is the relaxation strength, sHN is the relaxation
time and a and b are shape parameters with b ¼
1� 0.812ð1� aÞ0.387. This last constraint allows reduc-
ing the number of free parameters (without significant
decrease of the fitting quality) and also deducing from
this frequency domain fit the parameters of the corre-
sponding time domain Kohlrausch–Williams–Watts
(KWW) function [15].

Fig. 2 shows the Arhenius plot for the relaxation time
of maximal loss s ¼ smaxð¼ sHNðsinðap=ð2þ 2bÞÞÞ�1=b

ðsinðabp=ð2þ 2bÞÞÞ1=bÞ [16] at different pressures. Filled
and dashed lines represent the corresponding fits to the
phenomenological and theoretical predictions as ex-
plained below. The experimental data are in very good
agreement with those previously published by O�Reilly
[6] and by Heinrich and Stoll [17].
4.2. Phenomenological approach

Since the VFT equation has shown to be very useful
for an empirical description of the temperature depen-
dence of the relaxation times for several glass formers,
it is reasonable to use it as a first approximation. Actu-
ally, some expressions, which are �natural� extensions of
the VFT equation, have been recently proposed [9,
18–20] to describe the temperature–pressure dependence
of the relaxation times. Phenomenological expressions
like

sðT ; PÞ ¼ s0 exp
DðT 0 þ bP þ cP 2Þ

T � ðT 0 þ bP þ cP 2Þ

� �
; ð8Þ

which is a particular case of Eq. (5), were found very
useful to fit the temperature–pressure dependence of
the relaxation time of several glass formers [11,21].
However, by keeping s0 and D those determined from
atmospheric pressure, it is not possible to describe prop-
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Fig. 2. Relaxation time of the a-process of PVAc as a function of
inverse temperature at different pressures (from top to bottom: 300,
250, 200, 150, 100, 50 MPa, atmospheric pressure (ffi0 MPa)). Dashed
line corresponds to Eq. (8) with P = 300 MPa and s0 and D those
determined from atmospheric pressure; the experimental data at
P = 0 MPa were fitted with both Eq. (10) and the VFT function (both
curves are overlapped in the figure); filled lines represent the predicted
values (see text) according to Eq. (13) (note that for P = 0 MPa
Eq. (13) reduces to Eq. (10)).
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erly the experimental data for PVAc by means of Eq. (8)
as shown in Fig. 2 for P = 300 MPa (dashed line). If we
leave s0 as a free parameter, although the fitting is good,
s0 varies more than one order of magnitude between
atmospheric pressure and 300 MPa which seems to be
unrealistic to our understanding. A possible explanation
for this atypical behaviour of PVAc could be related
with the strong decrease of DCP with temperature as re-
ported in the literature [22] and shown in Fig. 3. As
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Fig. 3. Heat capacity (CP) for both melt and crystal (taken from Ref.
[22]), and excess heat capacity ðDCP ¼ Cmelt

P � Ccrystal
P Þ as a function of

temperature. The dashed line (with non-inverted triangles) represents
the extrapolated values of Ccrystal

P to temperatures above the glass
transition. The values of DCP (open circles) decrease linearly with
temperature as shown by the linear fit to the data. The thick line
represents the best fit of the DCP data to equation DCP = K/T.
aforementioned, what is generally assumed is that the
temperature dependence of DCP should be not far from
DCP = K/T which yield the VFT equation in the AG
framework. However, as shown in Fig. 3 the PVAc tem-
perature dependence of DCP is actually much stronger
than the K/T, which means that by using AG the VFT
equation is not recovered. As it was shown above, even
if the VFT is valid to fit the data at any fixed pressure, a
complete temperature–pressure description for the
relaxation time is not possible by using extensions of
the VFT equation like Eq. (8).

Taking all these features into account we have
checked whether the extended Adam–Gibbs frame,
namely Eq. (3) in combination with Eq. (1), can provide
a full description of the temperature–pressure depen-
dence of the relaxation time.

Heat capacity and thermal effects. Fig. 3 shows the
heat capacity (CP) and the excess heat capacity (DCP)
for the PVAc in the temperature range of interest. It is
clear from this figure that DCP decreases in a nearly
linear fashion with temperature according to the empir-
ical equation DCP = b � mT, where b = (103.96 ± 0.02)
JK�1 mol�1 and m = (0.21 ± 0.01) JK�2 mol�1. Accor-
ding with this, the thermal contribution to the
configurational entropy would be

ScðT ; P ffi 0Þ ¼ gT

Z T

TK

DCPðT 0Þ
T 0 dT 0

¼ gTðb lnðT=TKÞ � mðT � TKÞÞ. ð9Þ

Thus, by introducing this result in Eq. (1), the tempera-
ture dependence of the relaxation time at atmospheric
pressure would be given by

sðT ; P ffi 0Þ ¼ s0 exp
C=gT

T ðb lnðT=TKÞ � mðT � TKÞÞ

� �
.

ð10Þ
By using Eq. (10) to fit the experimental data we got

log(s0[s]) = �14.1 ± 0.1, C/gT = (99041 ± 540) Jmol�1

and TK = 255.5 ± 0.2 K.
It is interesting to note that even when the VFT equa-

tion is not recovered from the AG theory, it is still valid
as a phenomenological description of the experimental
data. Fig. 2 shows the best fit to the experimental data
(at atmospheric pressure) by using both Eq. (10) and
VFT equation with log(s0[s]) = �12.8 ± 0.1, D = 6.6 ±
0.1 and T0 = 259.8 ± 0.1 K. The difference between both
curves is less than the width of the line and therefore
they are superimposed in the figure.

Thermal expansion and volumetric effects. In order to
calculate the volumetric contribution to the configura-
tional entropy we need to estimate DðoV =oT ÞP. The tem-
perature dependence of the volume was estimated by
plotting the specific volume for PVAc, as given in refer-
ence [23], versus temperature and taking the slopes
below and above Tg. For the different pressures the Tait
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equation [23] was used with the parameters reported in
[24] for the glassy state. Fig. 4 shows the pressure depen-
dence of DðoV =oT ÞP so obtained and the best fit to an
empirical exponential decay according to

DðoV =oT ÞP ¼ DðoV =oT ÞP¼0 � A½1� expð�P=P 0Þ� ð11Þ
with A = (2.15 ± 0.03)10�2 cm3 K�1mol�1, P0 = (129 ±
5) MPa and D(oV/oT)P = 0 = (3.35 ± 0.03)10�2 cm3K�1

mol�1. Therefore the pressure contribution to the con-
figurational entropy is

gP

Z P

0

DðoV =oT ÞP 0dP 0 ¼ gPP 0 DðoV =oT ÞP¼0

P
P 0

�

�A
P
P 0

þ expð�P=P 0Þ � 1

� ��
.

ð12Þ

By using Eqs. (9) and (12) in Eq. (3) and then by
replacing in Eq. (1) we have the following expression
for the temperature–pressure dependence of the relaxa-
tion time
sðT ; P Þ ¼ s0 exp
C=gT

T b ln T
TK

� �
� mðT � TKÞ

h i
� gP

gT
P 0 D oV

oT

� �
P¼0

P
P0
� A P

P 0
þ expð�P=P 0Þ � 1

� �h in o
2
4

3
5. ð13Þ
Since we already know the values of log(s0), C/gT and
TK, (determined from the fitting at atmospheric pres-
sure) we can use the experimental values of the relaxa-
tion time to estimate gP/gT for different temperatures
and pressures. Fig. 5 shows gP/gT values versus temper-
ature for different pressures; no clear temperature or
pressure dependence is observed besides the experimen-
tal uncertainties. Given that the effect of pressure is
more significant at high pressures, we estimated an aver-
age value by weighting the data with the corresponding
pressure values. The solid line in Fig. 5 represents this
weighted average for all values. This is an important
result which shows that the temperature and pressure
contributions to the configurational entropy come exclu-
sively from the respective integrals in Eq. (3).

Once the value of gP/gT is known we can use Eq. (13),
with the parameters previously estimated at atmospheric
pressure (log(s0),C/gT and TK), to calculate the relaxa-
tion time at any temperature and pressure. Fig. 2 shows
the excellent agreement among experimental data and
the predicted values (filled lines) for the relaxation time
using Eq. (13).
5. Conclusions

We have shown that even if the phenomenological
VFT equation gives an excellent description of the tem-
perature dependence of the relaxation time at any given
fixed pressure, the complete description of the tempera-
ture–pressure dependence is not possible by keeping s0
constant. By leaving s0 as a free parameter we got an
unreasonable change of s0 with pressure.

The fit of experimental data with Eq. (13) shows not
only the validity of the AG frame but also that it is a
more general theory which includes the VFT behaviour
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as a particular case. It is important to note that in
addition to the thermodynamic data taken from the
literature, only four parameters are needed to fit s
(T, P): log(s0), C/gT and TK (from P = 0 MPa data)
and gP/gT.

The fact that the value of gP/gT is constant is an indi-
cation that thermal and volumetric contributions to the
configurational entropy for PVAc are well separated
and their values are given by the integrals expressions
in Eq. (3).
Acknowledgements

This work has been supported in part by the Spanish
Ministry of Science and Technology (MICyT) (Project
MAT 2001/0070) and by the Government of the Basque
Country (Project 9/UPV 00206.215-13568/2001).
References

[1] H. Vogel, Phys. Z 22 (1921) 645.
[2] G.S. Fulcher, J. Am. Ceram. Soc. 8 (1923) 339.
[3] G. Tammann, W. Hesse, Z. Anorg. Allg. Chem. 156 (1926) 245.
[4] R. Richert, C.A. Angell, J. Chem. Phys. 108 (1998) 9016.
[5] G. Adam, J.H. Gibbs, J. Chem. Phys. 28 (1965) 139.
[6] J.M. O�Reilly, J. Polym. Sci. 57 (1962) 429.
[7] G. Williams, Trans. Faraday Soc. 62 (1966) 1321.
[8] G. Williams, Trans. Faraday Soc. 62 (1966) 2091.
[9] S. Corezzi, P.A. Rolla, M. Paluch, J. Ziolo, D. Fioretto, Phys.

Rev. E 60 (1999) 4444.
[10] R. Casalani, S. Capaccioli, M. Lucchesi, P.A. Rolla, Phys. Rev. E

63 (2001) 031207.
[11] D. Prevosto, M. Lucchesi, S. Capaccioli, R. Casalini, P.A. Rolla,

Phys. Rev. B 67 (2003) 174202.
[12] C.M. Roland, R. Casalini, Macromolecules 36 (2003) 1361.
[13] A. Alegria, D. Gomez, J. Colmenero, Macromolecules 35 (2002)

2030.
[14] C.A. Angell, S. Borick, J. Non-Cryst. Solids 307–310 (2002) 393,

and references therein.
[15] F. Alvarez, A. Alegria, J. Colmenero, Phys. Rev. B 44 (1991)

7306;
A. Hofmann, A. Alegria, J. Colmenero, L. Willner, E. Buscaglia,
N. Hadjichristidis, Macromolecules 29 (1996) 129.
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