IOP PUBLISHING

NANOTECHNOLOGY

Nanotechnology 22 (2011) 285705 (6pp)

doi:10.1088/0957-4484/22/28/285705

Numerical study of the lateral resolution
in electrostatic force microscopy for

dielectric samples

C Riedel'>?, A Alegria'*, G A Schwartz*, J Colmenero'->* and

J J Saenz*?>

! Departamento de Fisica de Materiales UPV/EHU, Facultad de Quimica, Apartado 1072,

20080 San Sebastidn, Spain

2 Donostia International Physics Center, Paseo Manuel de Lardizabal 4, 20018 San Sebastidn,

Spain

3 Departamento de Fisica de la Materia Condensada and Instituto ‘Nicolds Cabrera’,
Universidad Auténoma de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain
4 Centro de Fisica de Materiales CSIC-UPV/EHU, Paseo Manuel de Lardizdbal 5, 20018 San

Sebastidn, Spain
E-mail: riedel @ies.univ-montp?2.fr

Received 24 February 2011, in final form 7 May 2011
Published 7 June 2011
Online at stacks.iop.org/Nano/22/285705

Abstract

We present a study of the lateral resolution in electrostatic force microscopy for dielectric
samples in both force and gradient modes. Whereas previous studies have reported expressions
for metallic surfaces having potential heterogeneities (Kelvin probe force microscopy), in this
work we take into account the presence of a dielectric medium. We introduce a definition of the
lateral resolution based on the force due to a test particle being either a point charge or a
polarizable particle on the dielectric surface. The behaviour has been studied over a wide range
of typical experimental parameters: tip—sample distance (1-20) nm, sample thickness (0-5) um
and dielectric constant (1-20), using the numerical simulation of the equivalent charge method.
For potential heterogeneities on metallic surfaces expressions are in agreement with the
bibliography. The lateral resolution of samples having a dielectric constant of more than 10
tends to metallic behaviour. We found a characteristic thickness of 100 nm, above which the
lateral resolution measured on the dielectric surface is close to that of an infinite medium. As
previously reported, the lateral resolution is better in the gradient mode than in the force mode.
Finally, we showed that for the same experimental conditions, the lateral resolution is better for
a polarizable particle than for a charge, i.e. dielectric heterogeneities should always look
‘sharper’ (better resolved) than inhomogeneous charge distributions. This fact should be taken

into account when interpreting images of heterogeneous samples.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Electrostatic force microscopy (EFM) permits one to study
the electrical properties of surfaces at the nanoscale by
applying a voltage between the tip of the microscope and the
sample. EFM has been largely used to study surface potential
and capacitance [1-6], charge or dopant distribution [7—11]
and polarization forces on dielectric surfaces [12, 13]. It
permits probing of the conducting properties of carbon

0957-4484/11/285705+06$33.00

nanotubes [14-16], study of liquid surfaces [17] or induction
of capillary condensation of water bridges between the tip
and sample [18]. EFM has thus become an important tool
to characterize the electrical and electrochemical properties of
metals, semiconductors, dielectrics and organic materials at the
nanoscale.

As in other scanning probe microscopy (SPM) techniques,
the interpretation of the EFM images is not always
evident [19]. The force mode (amplitude modulation, AM)
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is sensitive to long range electrostatic forces and involves the
contribution of the cone and cantilever (stray contribution) in
addition to the apex area [20]. This phenomenon can lead to
errors in the interpretation of images or even contrast inversion
in the measured potential [16, 21]. The effective surface
potential can be restored if the exact geometry of the probe
is known [22, 23]. A recent study has shown that such errors
can be lowered by working in the gradient mode (frequency
modulation, FM) for which the stray contribution effects and
lift height dependence are reduced [24]. Concerning the lateral
resolution for metallic surfaces, Belaidi et al [25] and Shen
et al [26] used the same definition: while recording the signal
(force or gradient) over a potential discontinuity a step is
observed between the two domains; these authors defined the
lateral resolution as the difference between the position x;
where the contribution to the signal is 75% of maximum and
the position x, where it is close to 25% of the maximum.
These authors used finite element simulation and boundary
element conditions, respectively, to simulate the electrostatic
signal. On the other hand, Gémez-Mofiivas et al [27] used
the generalized image charge method to calculate the response
function of the microscope (derivative of the modulus of the
square of the normal electric field at the surface towards the
tip—sample distance) and defined the lateral resolution as the
half width at half maximum of this function. Even if these
authors used different types of simulation and definitions, they
reached the same qualitative results: for a tip having a given
radius R, the lateral resolution Ax for both force and gradient
mode is proportional to (Rdp)'/?> (where dy is the tip—sample
distance) for small distances and varies linearly with dy when
do > R. Due to the short range characteristic of the force
gradient signal, the resolution in gradient mode (involving
mainly the apex region) is always better (Ax smaller) than
the one in force mode. Furthermore, in agreement with [28],
Shen et al [26] have shown that this square root dependence is
also valid as a function of the tip radius in the gradient mode
but that an optimal tip radius exists in the force mode. This
phenomenon is attributed to the less sensitive contribution of
the conical portion (non-negligible in the force mode) for small
tip radius.

In contrast with the relatively well-known metallic
samples, the resolution on dielectric samples has not been
analysed in detail. Early work [27], based on numerical
results, suggested that the EFM lateral resolution was almost
independent of the sample dielectric constant, &, at least for
the relatively large ¢, values (¢, > 10). In the last few
years, there has been a renewed interest in the experimental
study of insulators at the nanoscale and different groups
have presented several methods to probe dielectric properties
using EFM. First implemented to measure properties in one
point [29-31], these methods were soon extended to image
dielectric properties [32-34] reaching an experimental value
of the lateral resolution Ax ~ 40 nm. However, the lack
of theoretical background does not permit us to interpret this
value in terms of dielectric properties &, or thickness of the
sample /4. Our main goal here is to quantify the EFM lateral
resolution on dielectric samples as a function of the tip—
sample distance dj and both sample thickness, 4, and dielectric

constant, &;. We present a numerical study in the force and
gradient modes. In agreement with previous results [27],
we found that for ¢, > 10 the resolution approaches the
metallic sample values, being independent of the dielectric
constant. However, as ¢, decreases, there is a significant
increase of Ax which is a function of both the geometry and
dielectric properties of the sample. Interestingly, even for large
dielectric constants, the lateral resolution for inhomogeneous
surface potential or surface charge distributions [25, 26] differs
from that obtained for inhomogeneous dielectrics. As we
will show, while the former (proportional to the applied tip
bias voltage) can be obtained from an EFM response function
corresponding to a test point charge, the latter (proportional to
the squared bias) is given by the response to a test polarizable
particle. As a consequence, our results predict that dielectric
heterogeneities should always look ‘sharper’ (better resolved)
than inhomogeneous charge distributions.

The paper is structured as follows: we will first introduce
the numerical simulation of the equivalent charge method
before defining the lateral resolution from the force and
gradient on a test charge and a test polarizable particle. We will
then study the behaviour of the lateral resolution as a function
of the different parameters: tip—sample distance, dielectric
thickness and constant.

2. Numerical simulation and definition of the lateral
resolution

The principle of numerical simulation in the equivalent charge
method (ECM) is presented in [29, 35]. The ECM, in analogy
with other ‘image charge’ methods [36, 37], uses a discrete
distribution of image charges that permits us to calculate the
potential created by a difference in voltage between a tip and
a grounded dielectric. Figure 1(a) represents the potential
simulated by a probe having a radius of R = 30 nm and half
cone angle & = 15° at a tip—sample distance dy = 20 nm. The
thickness of the dielectric is # = 200 nm and its dielectric
constant &, = 4. The dielectric permittivity of the air is
assumed to be &g = 8.854 x 1072 F m~!. The ECM permits us
to compute the potential in the three dimensions of the space.
We select the potential in the vertical axis of symmetry of the
tip (y = 0). B

The electric field derives from the potential (E =
—gradV), therefore we are able to compute the electric field
from figure 1(a). Figure 1(b) exemplifies the calculation of
the normal component of the electric field at the surface, E_,
from the difference between the potential recorded one z-
step above the surface and at the surface. This geometric
construction shows that, due to the shape of the potential and
the definition of the electric field as a gradient, the half width at
half maximum of the electric field is smaller than the potential
one. Using a similar approach, we are also able to compute the
modulus of the electric field: |E| = \/E2 4+ E2.

Let us consider the tip—sample system sketched in figure 1
as a reference system. Changes in the electrostatic force due
to the presence of additional dielectric inhomogeneities on the
reference sample can be described as the convolution of the
EFM response function and the so-called surface equivalent
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Figure 1. (a) Potential created by a tip (R = 30 nm, 6 = 15°, dy = 20 nm) in front of a dielectric (4 = 200 nm, &, = 4) simulated by the
ECM. (b) Potential recorded over the surface of the sample (full line), one z-step above (dashed line) and normal electric field (*) at the

surface of the sample (difference between the two potentials).
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Figure 2. Ax(dy) calculated by the ECM for a metallic surface and an ideal insulator in the force mode for a charge (a) and a polarizable

particle (b).

profile [19]. The lateral resolution can be defined as the half
width of the ‘response function’ at the dielectric surface [27].
Physically, the response function corresponds to the additional
force due to a ‘test’ polarizable punctual particle:
F, 9 E? + E? 1

w0 (B3 + ED). (M)

Analogously, for a non-uniform free charge distribution

on the reference sample, the response function will

be proportional to the force on a ‘test’ point charge,
i.e. proportional to the reference electric field,

F, < Ez. 2

It is worth noting that the EFM response function and, as
a consequence, the EFM lateral resolution when measuring
dielectric inhomogeneities (polarization forces) can be very
different from that observed for charge or surface potential
inhomogeneities.

Similar arguments can be applied to force gradient
measurements, with a response function proportional to the
derivative of the force towards the tip—sample distance:

G, X 9 a(E2+E2) 3)
“ 7 0dy a7 " @
G 0 E %)
X — .
17 8dy -

From a numerical point of view, the derivative with
respect to dy is realized by subtracting the quantities obtained
for two different tip—sample distances. @ The shape of
F,(x), Fo(x),G,4(x) and G4(x), computed at the sample
surface, is qualitatively similar to the one observed for E. (x)
in figure 1(b). From the discussion above, we then define the
lateral resolution in the force, Axp, and gradient, Axg, modes
as the half width at half maximum of F (x) and G (x) recorded
at the sample surface, respectively.

3. Results and discussion

We are now going to present the results of the study of
the lateral resolution in the force and gradient modes for a
charge and a polarizable particle as a function of the tip—
sample distance dy, thickness & and dielectric constant &, of
the sample. We will first study the behaviour as a function of
the tip—sample distance for the two limiting cases of a metallic
surface and an ideal insulator having a dielectric constant of 1
and an ‘infinite’ thickness of 5 ©m. Then we will focus on the
influence of the thickness and dielectric constant for a given
value of the tip—sample distance.

3.1. Lateral resolution as a function of the tip—sample distance

Figure 2 represents the lateral resolution calculated by the
ECM in the force mode for a metallic surface and an ideal
insulator.
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Figure 3. Ax(dp) calculated by ECM for a metallic surface and an ideal insulator in the gradient mode for a charge (a) and a polarizable

particle (b).
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Figure 4. Ax(h) calculated by the ECM for an insulator (¢, = 1) in the force and gradient mode for a charge (a) and a polarizable particle

(b)at dy = 10 nm.

As the behaviour will later be studied at dy = 10 nm it is
interesting to note the value of the resolution at this reference
tip—sample distance: in the force mode, the lateral resolution
for a test charge simulated by the ECM gives Ax, = 25.3 nm
for a metallic surface and A)cjp = 33.2 nm for an ideal
insulator; for a polarizable particle we found Axy, = 11.4 nm
and Ax}a = 22.5 nm (figure 2).

Figure 3 represents the lateral resolution in the gradient
mode.

In the same experimental conditions, the resolution is
always better in the gradient mode than in the force mode.
This can be observed by comparing our results at the reference
tip—sample distance dy = 10 nm in the force mode (figure 2,
see above) with those obtained in the gradient mode (figure 3):
the lateral resolution for a test charge is now Axg, = 16.3
for a metallic surface and AxiG , = 18.6 nm for an ideal
insulator; for a polarizable particle we found Axg, = 9.7 nm
and AxiGa = 18.4 nm. As mentioned in section 1, the
gradient mode has a shorter range of interaction. This can
be understood knowing that the shapes of the profile of the
forces recorded at two d steps have a similar qualitative shape
to the potential ones recorded at two z steps in figure 1(b).
Using the same geometric argument as the one explained for
figure 1(b), it appears that the force gradient has a smaller half
width at half maximum than the force. One consequence of
this phenomenon is that the interaction is mainly concentrated

on the apex in the gradient mode whereas the cone has a more
important influence in the force mode, as has been shown for
metallic surfaces in [38, 39]. This fact is also confirmed by
the results presented in figure 5(b) of [26] where the authors
show that the lateral resolution increases with the cone angle
in the force mode whereas almost no dependence is observed
in the gradient mode. The force on a polarizable particle is
also defined with a derivative towards z and dominated by the
normal component of the electric field to the square (E; < E,
in equation (2)). Both square and derivative will lead to a
sharper profile (i.e. a better lateral resolution) for a polarizable
particle than for the charge.

In figures 2 and 3 it appears that for a charge on a
metallic surface, in agreement with the literature [2-5], the
lateral resolution is proportional to (Rdy)'/? for dy < R/3
and then varies linearly with the tip—sample distance for both
force and gradient modes. The same behaviour is observed
for a polarizable particle. However, we note that the lateral
resolution of an ideal insulator has a linear dependence over
the whole range of tip—sample distance leading to a non-null
value of the lateral resolution in contact (dy = 0 nm).

3.2. Lateral resolution as a function of the sample parameters
(h, &)

Figure 4 represents the lateral resolution in both force and
gradient modes as a function of the thickness for an insulator
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Figure 5. Ax(¢;) calculated by the ECM for an insulator (2 = 5 pm) in the force and gradient mode for a charge (a) and a polarizable

particle (b) at dy = 10 nm.

(6; = 1) recorded at a tip—sample distance of 10 nm. The
lateral resolution simulated by the ECM quickly increases from
the value of a metallic surface at 7 = 0 nm (Axy, =25.3 nm
and Axg‘q = 16.3 nm for a charge, see figure 4(a), and
AxE, = 11.4 nm and Axj, = 9.7 nm for a polarizable
particle, figure 4(b)) to the one of an ‘infinite’ dielectric
(Axipq = 33.2 nm and Axqu = 18.6 nm for a charge, see
figure 4(a), and AxiFa = 22.5 nm and Ax};a = 18.4 nm for
a polarizable particle, figure 5(b)). Therefore, we can define a
limit thickness of about 100 nm above which the value of the
lateral resolution is close that of an infinite medium.

Figure 5 represents the lateral resolution in the force and
gradient modes as a function of the dielectric constant for both
a charge and a polarizable particle. The dielectric medium
has been simulated with a thickness of 5 um. The lateral
resolution is decreasing from the value of an ideal insulator
(Ax}q = 33.2 nm and Axqu = 18.6 nm for a charge,
figure 5(a), and AxiFa = 22.5 nm and Ax};a = 18.4 nm for
a polarizable particle, figure 5(b)) and tends to the value of a
metallic surface (Axy, = 25.3 nm and Axg, = 16.3 nm for a
charge, figure 5(a), and Axy, = 11.4 nm and Axj, = 9.7 nm
for a polarizable particle, figure 5(b)). For ¢, = 10, the values
of the lateral resolution simulated by the ECM for a charge
in the force and gradient mode approach the metallic limit at
4% and 1%, respectively. For a polarizable particle, the lateral
resolution tends more slowly to the limit value: for the same
value of &, = 10 the discrepancy with the metallic limit is still
24% for the force and 20% for the gradient.

4. Conclusion

We have introduced a definition of the lateral resolution Ax
in electrostatic force microscopy from the force response to a
‘test’ point charge or a ‘test’ polarizable particle at the surface
of dielectric samples. We have shown that the lateral resolution
measured on inhomogeneous dielectrics should be better than
that obtained when measuring inhomogeneous surface charges
and potentials. We used the numerical simulation of the
equivalent charge method to study the behaviour of Ax in
the force and gradient modes as a function of the tip—sample
distance dy, thickness /& and dielectric constant &, of the
sample. Due to its short range interaction, the lateral resolution

is better in the gradient mode than in the force mode. In
agreement with the literature [25-27], we showed that for a
metallic surface, Ax(dy) has a square root dependence for
small tip—sample distances (Ax(dp) < R/3) and then behaves
linearly. However, for an insulator, the lateral resolution
exhibits a linear dependence over the whole range of tip—
sample distances leading to a non-null value in contact. For a
given value of the dielectric constant, Ax (%) quickly increases
from the limit value of the metallic surface (h = 0) to that
of an ‘infinite’ sample (h = 5 um). We can therefore
define a thickness of 100 nm above which the lateral resolution
can be considered as that of an infinite medium in typical
experimental conditions. For a given value of the thickness,
Ax(g;) decreases from the limit value of an ideal insulator
(e; = 1) to that of a metallic surface (&, tends to infinity). For
a charge, the lateral resolution of sample having a dielectric
constant of 10 has a value very close to the infinite limit (less
than 4% difference) whereas we observe a slower variation for
the polarizable particle: a discrepancy of about 25% is still
observed for ¢, = 10. Finally we showed that for the same
experimental conditions the lateral resolution is better for a
polarizable particle than for a charge. This fact should be taken
into account in the interpretation of heterogeneous samples in
EFM images.
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