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A B S T R A C T   

We used fully connected artificial neural networks (ANN) to localize and quantify, based on the monomer 
structure of several polymers, the specific features responsible for their observed glass transition temperatures 
(Tg). The use of ANNs allows us not only to successfully predict the Tg of the polymers but, even more important, 
to understand what parts of the monomer are mainly contributing to it. For this task, we used the weights of a 
trained ANN as obtained after fitting the input data (monomer structure) to the corresponding Tg value. The 
study was performed for a set of more than 200 atactic acrylates for which typical Tg defining features were 
identified. Thus, the ANN is able to recognize the relevance of the backbone stiffness, the length of pending 
groups or the presence of methyl groups on the value of the glass transition temperature. This approach can be 
easily extended to many other interesting properties of polymers and it is worth noting that only the monomer 
chemical structure is needed as input. This method is potentially useful for identifying orthogonal ways of tuning 
polymer properties during the design and development of new materials and it is expected that it will contribute 
to a better understanding of the polymer’s behavior.   

1. Introduction 

In the last decades, Quantitative Structure Property Relationship 
(QSPR) models have been successfully employed in the design and 
development of new materials with specific properties [1]. Their pre-
dictive power has been used for estimating the value of very different 
material properties like glass transition temperatures (Tg), boiling 
points, partition coefficients and toxicity, among many others [2–11]. 
The value of these approaches is even greater in the case of time 
consuming or expensive experiments, where every insight saves vast 
amounts of time and money to scientists and companies. 

Among the many available tools for QSPR models, it is particularly 
interesting the case of artificial neural networks (ANNs). Several works 
[7,10,12,13] have been conducted by constructing a dataset with the 
values of selected material properties from either experimental results or 
literature search, and using ANNs for learning and predicting other 
properties from them. In this pursuit, different ANNs architectures and 
codifications have been proposed [7,13]. In a previous work [14] we 
have shown that ANNs can be trained using only a representation of the 

monomer chemical structure (as input) and a given property (Tg) as 
output. That approach provides an accuracy for the Tg predictions in the 
range of 94%. However, a common issue with all these methods is, 
bluntly speaking, their lack of transparency i.e.: the ANNs act as black 
boxes where properly codified information is fed into the network and a 
given output value or classification is obtained. With some exceptions, 
no information on which elements of the input data is responsible of the 
output results can be obtained. 

For a given property, the ANN training process can be thought as a 
two-fold process: a) the mining of (related) critical information hidden 
in the multidimensional training data (features) and b) the correlation of 
these features to the real property value for constructing the prediction. 
It is therefore reasonable to think that these features, if accessible, might 
be employed for studying the physical mechanisms involved in the 
emergence of a given property. 

In this work we propose a novel approach to find and show the 
relationship between the features extracted by the ANN from the 
chemical structure and the observed polymer property. In this way, we 
are able to localize and quantify the intra-monomer contributions to the 
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glass transition temperature. In order to obtain a proof of concept, we 
used a dataset composed by more than 200 atactic acrylates. After 
training the ANN with this dataset, we can find, for new polymers (not 
included in the training dataset), not only the value of the glass transi-
tion temperature but also the contribution of each part of the monomer 
to the corresponding Tg. 

2. Method 

In this section we explain the origin and characteristics of the dataset 
employed. In addition, a short explanation on how the data are pro-
cessed before being fed to the ANN, and how ANN’s architecture is tuned 
is also provided. 

2.1. Dataset 

We used a dataset composed of more than 200 atactic polyacrylates 
and their corresponding Tg values [8,15–17] (see Table SI1). We have 
chosen to use the glass transition temperature as a suitable property to 
validate our approach due to the extensive amount of data and litera-
ture. In addition, it is a relevant property for polymers and it is related to 
other important properties like dynamics or viscosity among many 
others. For the purpose of the present work, the repeating units 
(monomer) of these acrylates were codified by using a Simplified Mo-
lecular Input Line Entry System (SMILES) [18,19] and converted into 
binary matrices (images), which are then compared to the obtained 
features after ANN training. 

2.2. Data treatment (encoding) 

As we have proposed in a recent work [14], in order to consider the 
structure and composition of the monomeric units, we transformed the 
chemical structures into linear strings by using SMILES. Then, we con-
verted these strings into binary matrices (images) by using a one hot 
encoding algorithm [20] and a dictionary (shown below) with all the 
characters in the SMILES code.  

Dictionary ¼ [’c’, ’n’, ’o’, ’C’, ’N’, ’O’, ’F’, ’P’, ’S’, ’Cl’, ’Br’, ’I’, ’00, ’10, ’20, 
’30, ’40, ’50, ’60, ’70, ’80, ’90, ’.’, ’-’, ’ ¼ ’, ’#’, ’$’, ’:’, ’/’, ’þ’, ’)’, ’(’, ’@’, ’{’, 
’}’, ’\’, ’ ’, ’[’, ’]’]                                                                                 

It is important to note that the order of the dictionary is arbitrary and 
could affect the performance and the efficiency of the network. Based on 
our previous work [14], where all these factors were systematically 

analyzed, the here proposed dictionary provides both low relative errors 
in Tg prediction and low dispersion. 

2.3. ANN’s architecture 

We used fully connected neural networks, fed with the previously 
constructed polyacrylates matrices (images) and the corresponding glass 
transition temperature (Tg). As mentioned, we call features to those 
parts of the molecule that strongly contribute to the structure-Tg rela-
tionship, being much more important for the ANN’s training process 
than the rest of the structure. Fig. 1 shows a schematic view of the ANN’s 
architecture: the monomer structure is codified (through SMILES) into a 
2D matrix which is then flattened into a 1D vector (X 2 Rn); this vector 
feeds two fully connected layers (FCA y FCB) with varying number of 
neurons, along with ReLU activations. Batch normalization [21] was 
employed before each activation function in order to reduce the 
covariance shift and to ensure a non-vanishing gradient. In addition, 
dropout [22] algorithm was used, with dropping probabilities ranging 
from 0 to 0,3. Despite error minimization, and in order to avoid any 
combinatory effects on the output, a dropout probability of 0 was 
preferred for the feature extraction process. Finally, the last hidden layer 
(FCB) was connected to a single neuron (layer C) with a linear activation 
function responsible of providing the glass transition temperature value. 

As done in our previous work [14], to ensure equal weighting of low 
and high Tg data values during training, the loss function was defined as 
the average relative error between the actual (Ai) and forecasted (Fi) 
glass transition temperatures. 

Loss¼
100
mx

⋅
Xmx

i¼1

�
Ai � Fi

Ai

�

An ADAM optimizer [23] with varying learning rates (lr) ranging 
from 0,0001 to 0,1 was employed for speeding up the convergence 
during training (beta 1 and beta 2 ranging from 0,1 to 0,99 and 0,1 to 0, 
999, respectively). The calculations were performed by using mini 
batches ranging from 1 to 256 images (given the total amount of data 
256 is equivalent to gradient descent). 

2.4. ANN’s optimization 

In order to achieve the best possible performance for the ANNs 
before extracting features, different values of the network hyper-
parameters were explored. In this way, several networks with varying 
parameter values were trained and compared. This comparison was 

Fig. 1. Schematic picture of the artificial neural network employed for extracting the features responsible of Tg.  
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based on the raw performance (minimum relative error) achieved on the 
dataset. 

As usual, the data were randomly divided into test and train subsets, 
and no enforcing of any preference in the way the data is divided was 
applied. Searching for the optimal performance of the ANNs, their 
hyperparameters were optimized in the following order (other impor-
tant characteristics of the network were also explored, as shown in 
Table 1):  

1. Learning rate  
2. Beta 1 and beta 2  
3. Mini batch size  
4. # Hidden neurons in FC layers 

From the above-mentioned exploration process, a confidence inter-
val for the optimized ANN (typically larger than just the individual mean 
relative error) was obtained. 

2.5. Features extraction 

During the training process of the ANN, the input data (the codified 
monomer structure matrices) are flattened into a 1D vector (X 2 Rn). 
This vector is then multiplied by the weights of the hidden layer A, 
codified in the matrix WA (2 Rnxm). Each neuron then passes the 
resulting value through an activation function, which outputs a single 
number (per neuron), resulting in an activations vector (2 Rm). The 
whole process is repeated for these activations in the second hidden 
layer B, through the matrix WB (2 Rmxm). The output of the last hidden 
layer is finally multiplied by the weights of the layer C (WC 2 Rm) and 
passed through a linear activation to obtain the predicted Tg value, 
which is then compared with the known value. From the observed dif-
ference the network then re-calculates all the weight coefficients 
through backpropagation [24]. The entire process is repeated several 
times, until the error achieves a stationary minimum value. 

According to this training process, it is reasonable to think that the 
achieved “knowledge” of the trained ANN is largely related to the 
adjusted weights. Therefore, in order to know which parts of the 
monomers (input data) are the most relevant for determining the Tg 
(output data) of each polymer, we propose to “weight” the input data 
(monomer structure) by using the learnt coefficients (WA;WB and WC). 
In this way, for each neuron i in layer A we can write: 

yA
i;j ¼ xj:wA

j;iðj2 ½1; n�Þ

Without applying any activation function, we then pass this vector 
through layers B and C obtaining: 

yB
i;j ¼

Xm

k¼1
yA

k;j:w
B
k;iðj2 ½1; n�Þ

yC
j ¼

Xm

k¼1
yB

k;j:w
C
k ðj2 ½1; n�Þ

Each one of these vectors (yA; yB and yC) has the same dimensions as 
the input data, since it is just a weighted sum of each pixel in the original 

data. Therefore, it is possible to reconstruct an image of these weighted 
inputs after each neuron in the layer, by reshaping back the vector y into 
its corresponding structure matrix. In particular, we will focus here on yC 

at the final layer C. Thus, it can be assumed that this “weighted mono-
mer structure”, which is related to the predicted Tg value, contains the 
learnt knowledge about the structure-Tg relationship. A simplified 
scheme of this procedure is presented in Fig. SI1 (see supplementary 
information). In the next section we will discuss how to extract this 
knowledge from the weighted structure. 

3. Discussion 

After determining the best set of hyperparameters for the ANN, we 
trained the network obtaining average relative errors for the prediction 
of the Tg as low as about 3% for both the training and the test sets. Some 
representative results of the relative error as a function of the number of 
epochs are presented in Fig. 2. No overfitting or relevant systematic 
difference between train and test errors was observed. It is worth to 
remind here that we are feeding the ANN only with the monomer 
chemical structure without any other physical or chemical input data 
(neither measured nor calculated) except, of course, the value of the 
glass transition temperature as output data. 

Fig. 3 shows real vs predicted values for the train (blue dots) and test 
(red dots) sets obtained with our trained fully connected ANN. In com-
parison with other purely convolutional neural network approaches that 
we have used in the past [14], the number of parameters (and calcula-
tions) is larger; however, this method does not discard any information 
throughout calculations (in contrast with the poolings [25] and strided 
convolution operations that toss out parts of the input image in typical 
convolutional neural network approaches). Thus, the here proposed 
approach allows to keep unaltered the shape (or structure) of the input 
data (monomer structure) through all the process across the different 
layers. 

In spite of the so obtained low errors, our aim is not only to predict 
the Tg but to use the implicit “knowledge” of the trained network to get 
some insight about the portions of the molecular structure that are more 
directly involved in determining the value of the glass transition 
temperature. 

Once the ANN is trained to minimize the relative error for predicting 

Table 1 
Hyperparameters employed during the training of the different neural 
networks.  

Item Values 

Data split ratio (train/test) 75/25; 80/20 
Dropout probability 0; 0,2; 0,3 
Mini batch size 32, 64, 128, 256 
Learning rate 0,0001 to 0,01 
Beta1 (Beta2) 0,1 to 0,99 (0,1 to 0,999) 
# Hidden neurons 5 to 1000  

Fig. 2. Average relative error for the prediction of the glass transition tem-
perature as a function of the epoch number. 
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the Tg, the feature extraction method described in the previous section 
allows to “see” how the network weights each part of the monomer 
structure. The matrix yC at the output of the ANN represents the 
monomer structure weighted by the implicit “knowledge” learnt by the 
trained network. 

Fig. 4 shows input images for selected control monomers (as ob-
tained after the SMILE encoding); by definition, all the points (matrix 
elements) are one (full red according to the color bar scale). After 
multiplying this matrix by the corresponding weights (WA;WB and WC) 
we obtain the output structure as shown on the right column in Fig. 4. In 
this case, each dot (matrix element) has a continuous value represented 
in Fig. 4 by a certain color: redder for those parts of the monomer that 
are more relevant for increasing the Tg, and bluer when the effect is the 
opposite. In order to facilitate the interpretation of the data, the chem-
ical structure of the monomers is also shown (see insets in Fig. 4). On the 
right column a color map has been overlapped to the chemical structure 
to highlight the role of the different parts of the monomer on the Tg 
value. The color map is created from the output “weighted” structure, 
considering that each element in the structure matrix represents a part of 
the monomer and the corresponding value is codified into a color scale. 
Other monomers from the control group are shown in Fig. SI2 (see 
supplementary information). 

For the employed acrylates dataset, three general trends that closely 
follow polymer science reported behaviors [26–30] can be observed:  

a) The presence of certain species adjacent to the monomer’s functional 
group is positively weighted (e.g. as shown in Fig. 4a and b the 
presence of a methyl group in methacrylates increases Tg). This 
behavior has been largely reported, and it is related to the change in 
the backbone stiffness of the polymer [26,31–33]. In this sense, the 
ANN is able to capture this effect, which can cause Tg differences of 
about 100 K between PMMA and PMA. Chain stiffness is known to 
play a major role in determining the Tg of a polymer: Flory [31] has 
described this chain stiffening by energy parameter ε which appears 
when two consecutive bonds along a chain are not collinear (while 
no energy is present if they are). 

Fig. 3. Real vs predicted Tg values obtained from the trained ANN. Blue and 
red dots stand for train and control values, respectively. (For interpretation of 
the references to color in this figure legend, the reader is referred to the Web 
version of this article.) 

Fig. 4. Input data and chemical structure (left), and degree of activation pro-
duced by the ANN (right), for selected control monomers: a) Poly(isobutyl 
methacrylate), b) Poly(octyl methacrylate), c) Poly(benzyl acrylate) and d) Poly 
(1H,1H-heptafluorobutyl acrylate). Axes represent the position of each char-
acter in the dictionary (x axes) and the position of each character on the cor-
responding SMILES code for the given polymer (y axes). 
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Therefore, the presence/absence of adjacent species heavily modifies 
this parameter and in turn the observed chain stiffness. The chain 
stiffness, however, it’s not the only property affecting glass transition; 
even polymers with no chain stiffness present glass transition tempera-
tures (e.g. polydimethylsiloxane [34]). In addition, chain stiffness it’s 
not relevant for very low molecular weight organic glasses (which in 
turn generally behave as polymeric glasses). Finally, it is important to 
note that the effect of the main polymer chain is diluted as the monomer 
tail becomes larger (an effect also detected by our ANN, as shown in 
Fig. 4b).  

b) Size, shape and stiffness of the side groups (or “tail”). Generally 
speaking, with everything else kept constant, the bigger the volume 
occupied by a rigid tail, the larger the observed glass transition 
temperature. As an example, the presence of a t-butyl group in p- 
position tends to increase the detected Tg, while a N-butyl group 
tends to decrease it. In the same way, the presence of alkyl chains can 
also cause changes [35–37] (the longer the alkyl chain the lower the 
observed glass transition temperature). Fig. 4a–c also show that the 
effect of the presence/absence and composition of this side chain is 
detected by the ANN. Thinking the energy barrier to chain move-
ments as composed by two contributions [35]: 1) actual rotation 
energy around bonds and 2) resistance of the surrounding medium, it 
is noteworthy that a linear tail decreases the last one. Furthermore, 
this “lubricating” effect produced by the linear chain can be also 
analyzed in terms of length and substitutions: hydrocarbonated 
chains produce a different (quantitatively) lubricating effect than a 
fluorinated one [34,38–40]. As a result, fluorinated chains are 
weighted differently during training (as shown in the heatmap of 
Fig. 4d), and Tgs are larger. As expected, the same kind of effect is 
observed when the bulkier phenyl groups are incorporated, as shown 
in Fig. 4c.  

c) The combination of any of the formers defines several Tg groups: 1) a 
very large predicted Tg value when phenyl groups are introduced in 
the monomer’s tail and methyl groups are present as adjacent spe-
cies; 2) a very small predicted Tg value when fluorinated linear 
chains are present in the monomer’s tail and no adjacent species are 
introduced; and 3) intermediate combinations. 

Fig. 5 shows the control group monomers structures and an over- 
imposed ANN’s “attention” heat map. In addition to the structures, 
real and predicted glass transition temperatures are presented next to 
each monomer (in black and grey, respectively). Generally speaking, we 
could divide the control group into three main branches starting from 
poly(methylmethacrylate): a) increasing the number of atoms in the 

pending chain [A1 poly(ethyl methacrylate) and B1 poly(octyl meth-
acrylate)]; b) other geometries in the pending chain [D1 poly(isobutyl 
methacrylate) and D2 poly(terbutyl methacrylate)]; and c) substitution 
of methyl by other species (C1), no methyl (C2), introduction of phenyl 
groups (C3 and C4) and fluorination (E1). 

The results point to the previously mentioned sub structures within 
the monomers, which in turn show that the ANN tends to identify 
chemically meaningful features responsible for determining the Tg 
value. Thus, linear side chains are strongly weighted, as illustrated by 
the heatmaps that go through A1-B1-C1-E1, along with their “lubri-
cating” effect and composition. Geometry is also highlighted, as shown 
though D1 and D2. Regarding this effect, it is also noteworthy the effect 
of bulkier phenyl groups (as shown in C3), the addition of a single atom 
to the side chain effect (C4), and how in all cases the ANN focus the 
attention in these features. 

It is worth mentioning here that we didn’t make any assumption 
about the role of free volume and the inter-chain interaction on the glass 
transition temperature. In principle, any inter-molecular contribution is 
implicitly related to the chemical structure of the monomer and there-
fore it should be “seen” by the ANN. Moreover, we can use this 
approach, in combination with experiments where the pressure- 
temperature dependence of the Tg is measured, to quantify and 
decouple the contributions from intra- (intrinsic rotational barriers) and 
inter-molecular (free volume/local packing) interactions [41]. Some 
work in this sense is currently being done and will be published soon. 

In summary, from the chemical point of view many different factors 
have been reported to affect the Tg values of polymers, being intermo-
lecular forces, chain stiffness and geometry the most important ones. 
The presence of bulky groups (as phenyl rings) can be diluted by long 
alkyl chains, while the lubricating effect of long alkyl chains can be 
hidden by very stiff backbones. The ANN based approach proposed in 
this work has shown to be able to recognize these features and to 
quantify its relevance in the glass transition temperature value. It is 
important to highlight here that this knowledge is self-learnt by the 
network based only on the monomer chemical structure and the corre-
sponding Tg value. This approach could substantially help to gain both 
qualitative and quantitative insights of the behavior of the polymeric 
materials, especially for those properties which are difficult and/or 
expensive to measure. It is also expected that unknown features can be 
unveiled by this approach. 

4. Conclusions 

The feasibility of using a fully connected neural network architecture 
for extracting features related to the glass transition temperature of 

Fig. 5. Control group monomer structures with their corresponding attention heatmap as obtained from the trained ANN (the real (black) and predicted (grey) Tg 
values are indicated next to each monomer). 
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polymers has been demonstrated. We have shown that the implicit 
knowledge acquired by the ANN while trained to predict the Tg value, 
can be used to localize and quantify the intra-monomer contributions to 
the glass transition temperature. This approach relies only on the 
knowledge of the repeating unit chemical formula and does not require 
any kind of experimental measurements or calculations as input, 
therefore becoming a powerful designing tool for material scientists and 
engineers. 
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