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ABSTRACT: Artificial neural networks (ANNs) have been successfully used in the past to predict different properties of polymers
based on their chemical structure and to localize and quantify the intramonomer contributions to these properties. In this work, we
propose to move forward in order to use the mathematical framework of the ANN for embedding the chemical structure of
monomers into a high-dimensional abstract space. This approach allows us not only to accurately predict the glass transition
temperature (Tg) of polymers but, even more important, also to encode their chemical structure as m-dimensional vectors in a
mathematical space. For this aim, we employed a fully connected neural network trained with a set of more than 200 atactic acrylates
that provide the coordinates of the vectorized chemical structures into the m-dimensional space. These data points were then treated
with a hierarchical nonparametric clusterization method in order to automatically group similar chemical structures into clusters with
alike properties. These clusters were then projected into a human-readable three-dimensional space using principal component
analysis. This approach allows us to deal with chemical structures as if they were mathematical entities and therefore to perform
quantitative operations, so far hardly imaginable, being essential for both the design of new materials and the understanding of the
structure−property relationships.

■ INTRODUCTION

Quantitative structure−property relationship (QSPR) models
have been successfully used for understanding, designing, and
predicting material properties1−10 (glass transition temperature,
boiling point, or partition coefficients, among many others).
They are based on the premise that the chemical structure of
materials is largely related to their properties, and therefore,
materials with chemically similar structures will have similar
observed properties. Although this is a rather plausible premise,
the lack of quantitative methods for comparing chemical
structures becomes difficult to properly exploit these struc-
ture−property relationships. What do similar chemical
structures mean? How can we measure how close two polymers
are in terms of their chemical composition? Here, we propose to
combine different machine learning techniques for embedding
monomer’s chemical structures into high-dimensional spaces
where quantitative mathematical operations with chemical
structures are possible.

Among the many QSPR models, the case of artificial neural
networks (ANNs)5,8,11,12 is particularly interesting because they
can “learn to be sensitive to” the chemical structure of polymers,
therefore being able to predict related properties. Beyond their
success to accurately predict different polymer properties,7,12−14

in many cases, ANNs just act as black boxes where properly
codified information is fed into the network and a given output
value is obtained in return.15,16 In order to tackle the lack of
transparency of these methods, we have recently proposed to
find and explicitly show the relationship between the features
extracted by the ANN from the chemical structure and the
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observed polymer property. In this way, we were able to localize
and quantify the intramonomer contributions to the glass
transition temperature,14 based on the assumption that the
ANN is able to extract and codify specific features of the
chemical structure related to a given polymer property.
In this work, we propose to take a step further in the

description of the structure−property relationship “seen” by the
ANNs. We exploit the way in which the ANN codifies the
chemical structure in order to embed such information into a
high-dimensional space where each monomer is represented by
an m-dimensional vector. This embedding of the chemical
structure of the monomers into a mathematical vector space
allows us to perform quantitative operations among them, hardly
imaginable until now. For instance, this method allows us to
quantify the “distance” between two chemical structures in
relation to a given property or to find clusters of monomers with
similar properties. This procedure requires constructing
adequate visualizations of these m-dimensional vectors into
two-dimensional (2D) and three-dimensional (3D) spaces to
gain insight into the relationship between monomer structures
and the observed final material properties.
In order to obtain proof-of-concept results, we have employed

a data set composed of more than 200 atactic acrylates.14 We
have chosen to use the glass transition temperature as a suitable
property to validate our approach due to the extensive amount of
available data and literature. After training the ANN with this
data set, we can obtain Tg-based “coordinates” for each chemical
structure in an m-dimensional space. From this high-dimen-
sional representation, we will see how clusterization automati-
cally recognizes similar chemical structures and also how
properties of unexplored materials can be estimated.

■ METHODS
In this section, we explain the operations performed on the data in order
to accomplish the embedding of the chemical structures, the
clusterization process, and the corresponding 3D visualizations.

Data set and Encoding. We used a data set composed of nearly
200 atactic polyacrylates, each of them with their corresponding Tg
value14 (see Table S1) above the molecular weight saturation. The
chemical structure of the monomers was transformed into linear strings
using SMILES. Then, we converted these strings into binary matrices
using a one-hot encoding algorithm17 and an appropriated dictionary.
This encoding was successfully used in previous studies, and the details
of this process were published elsewhere.13,14

ANN’s Architecture.We used fully connected neural networks, fed
with the polyacrylate chemical structure codified into binary matrices
and the corresponding glass transition temperature (Tg) value. Figure 1
shows a schematic view of the ANN’s architecture: after codifying the
monomer structure into a 2D matrix, it is then flattened into a one-
dimensional vector (X ∈ Rn); this vector is fed to two fully connected
layers (FCA and FCB) with a varying number of neurons, along with
sigmoid activations. Finally, the last hidden layer (FCB) is connected to
a single neuron (layer C) with a linear activation function which
provides the predicted glass transition temperature value. The most
efficient architecture for the here-studied case consists of 20 neurons on
FCA and FCB.

ANN’s Optimization. As carried out in previous studies,13,14 to
ensure equal weighting of low and high Tg data values during training,
the loss function was defined as the average relative error between the
actual (Ai) and forecasted (Fi) glass transition temperatures.
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From the observed relative difference, the network then recalculates
all the weight coefficients through backpropagation.18 The entire
process is repeated several times, until the error achieves a stationary
minimum value. In order to achieve the best possible performance for
the ANNs before extracting the embedded chemical structures,
different values of the network hyperparameters were explored. In
this way, several networks with varying parameter values were trained
and compared. This comparison was based on the raw performance
(minimum relative error) achieved on the data set. Details about the
optimization process were given in previous studies.13,14 For the
optimal hyperparameters, Figure 2 shows the excellent agreement

Figure 1. Schematic picture of the ANN employed for embedding the chemical structures.
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between measured and predicted values of the Tg for the whole dataset
(including the control group).
Embedding. As shown in Figure 1, a vectorized output (where each

component of the vector is given by the corresponding neuron
activation value) can be extracted from the last hidden layer of the ANN
for every monomer structure. Thism-dimensional vector represents the
embedding of each chemical structure into a high-dimensional vector

space. These values are the result of the gradient descent performed
during training and are also the input fromwhich the linear activation in
the last neuron estimates the Tg value. It is therefore reasonable to
assume that they enclose relevant information about the structure
learned during weight optimization14 and can, in turn, be employed as
coordinates that define the location of the monomers in this m-
dimensional space, where chemically similar monomers tend to be
closer to each other.

Clustering. It is possible to automatically organize a set of data into
groups in such a way that a given property is more similar among the
elements of a given group than it is to the elements in other groups. This
process is commonly called clustering (or clusterization) and assumes
that there are features in the data that would allow distinguishing
between these different groups. There are many clustering
techniques,19−25 although there is no universally appropriated one
and the best option depends on the nature of the data set under study.
Given our aim of capturing the chemical structure−properties related
features in our data set and that some structures can deviate from the
general behavior trend, we decided to use a hierarchical nonparametric
clusterization method called hierarchical density-based spatial cluster-
ing of applications with noise (HDBSCAN).25 This method allows
detecting clusters with arbitrary shape and size, different densities, and
with the presence of noise or outliers. In addition, no previous
assumptions about the number of clusters need to be carried out (which
is especially important, given the high dimensionality of our data). In
summary, we are therefore defining the clusters as highly dense regions
separated by sparse regions in an m-dimensional chemical structure−
property space.

Visualization. Although we can perform mathematical operations
with the vectorized materials in an m-dimensional space (such as
clusterization), the corresponding visualization becomes impossible for
humans in such high-dimensional spaces. In order to gain insight into
the learned features, we need to visualize the high-level representations
(m-dimensional space coordinates) by projecting them into a human-
readable 2D or 3D space. In such a way, it is possible to construct

Figure 2. Real vs predicted Tg values obtained from the trained ANN.
Blue and red dots stand for train and control values, respectively.

Figure 3. 3D visualization from PCA of the embedded monomers. The arrow and the labeled dashed circles are just a guide for the eyes and show the
direction of increasing Tg values and selected regions of the glass transition space, respectively.
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Table 1. Summary of the Chemical Structure Clusterization
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adequate visualizations of the embedded monomer’s structure and to
study the characteristics of the observed features.
This process was performed using principal component analysis

(PCA). PCA is an orthogonal linear transformation that projects the
higher dimensional data into a new coordinate system (in a lower
dimensional space) in such a way that the first component follows the
direction of greatest variance, while the second and third components
follow the direction of the second and third greatest variance. Despite
the inherent simplicity of the method, it allows a view of the relative
position of each chemical structure in a lower dimensional space,
generally keeping most of the data variance. In our case, nearly 90% of
all variance is kept within the first three components, thus indicating
that a 3D representation of the chemical structure−Tg space holds most
of the information that the ANN has learned.
Numerical Calculations. After determining the best set of

hyperparameters for the ANN, we trained the network obtaining
average relative errors for the prediction of the Tg in the range of 3% for
both the training and the test sets. No overfitting or relevant systematic
differences between train and test errors were observed. It is worth to
emphasize here that we are feeding the network only with the chemical
structure of the monomer without any other physical or chemical data
(either measured or calculated) except the value of the glass transition
temperature as output data. Figure 2 shows real versus predicted values
for the train (blue dots) and control (labeled red dots) sets obtained
after training our fully connected ANN. As shown, the trained ANN
predicts the external control group glass transition temperatures quite
well, even for a wide range of chemical structures. The corresponding
control group chemical structures are presented in Figure S1.
Despite the so-obtained low errors, our aim is not only to predict the

Tg but also to have a method for embedding the molecular structure of
the monomers into an m-dimensional space (m = 20) where we can
quantitatively describe the chemical structure and compare it to other
structures. Similar chemical structures are expected to form clusters well
separated from other groups with different chemical characteristics.

After clustering the embedded chemical structures, we projected the
data into a 3D representation for easier visualization.

■ DISCUSSION
Figure 3 shows the PCA projection of the m-dimensional space
into a 3D representation. Each dot represents a monomer
structure where different dot colors account for the different
clusters as obtained after applying theHDBSCANmethod. Gray
dots indicate “noise”, that is, monomer structures which were
not included in any cluster. Interestingly, data points in Figure 3
can be seen as approximately located on an imaginary “path”
which starts in the upper-right corner (labeled region A), goes
down and left (through region B), and ends in the upper-left
corner (region C). This path also indicates increasing values of
Tg. While the embedding process carried out by the ANN allows
a representation of each monomer as a dot in an m-dimensional
space and, in turn, the PCA allows a visualization of these dots
into a human-readable 3D space, clusterization is responsible for
labeling these monomers as a part (or not) of each group. Thus,
polymers within each cluster have both a similar chemical
structure and similar values of Tg.
Table 1 shows the clusters belonging to each of the regions

highlighted in Figure 3 (A, B, and C), as obtained using the
HDBSCAN method, together with some typical chemical
structures observed in each group. These results show that the
ANN can efficiently learn and quantitatively locate in space the
chemically meaningful features associated with the glass
transition temperature. In this way, since each monomer
location is related to the chemical structure−Tg relationship,
we can take a step forward and build a scheme where each
structure is shown at different locations in the projected 3D

Figure 4. Scheme of the position of selected monomers in the projected 3D space. The arrow is just a guide for the eyes and shows the direction of
increasing Tg.
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space, as the one presented in Figure 4. As shown, long linear
chains mainly occupy the upper-right side of the figure (region
labeled A in Figure 3, which also corresponds to the clusters 1
and 2). As the chains get stiffer or a methyl group is present next
to the reactive group (i.e., methacrylate), the monomers
progressively move down and to the center of the space (i.e.,
the region labeled B in Figure 3 and corresponding to clusters 3,
4, and 5 in the same figure). In this region, several feature
combinations can be observed, such as very stiff backbones with
no side groups (like phenyl or short linear tail acrylates). In the
upper-left side of the projected space, that is, the place where the
chemical structures with higher glass transition temperatures are
located, the observed structures present very stiff backbones and
side groups. A complete list of the monomers contained in each
of the clusters is presented in the Supporting Information (see
Table S2). It is also noteworthy that manymonomers are labeled
as noise during the clusterization process which means that they
cannot be assigned to any cluster with certainty. Although there
are monomers that present similar chemical features to some of
the clustered ones, such a similarity seems to be compensated by
the presence of other chemical features that drive the overall
chemical structure and glass transition temperature value in a
different direction. Therefore, the similarities are not enough to
fit into the corresponding cluster. Representative chemical
structures in the noise are also presented in the Supporting
Information (see Figure S2), along with the employed clustering
parameters. The clusterization process is therefore automating
the recognition process of both the noise and the different
groups of polymers (linked to each other by chemical similarities
and observed glass transition temperatures).
From a chemical point of view, the clusterization process can

be rationalized by analyzing the chemically relevant features for
the here-studiedmonomers as follows: on the one hand, we have
units with species adjacent to the monomer’s functional group
(e.g., the methyl group in methacrylates increases Tg). These
species produce changes in the backbone stiffness of the
polymer.26−28 This effect is diluted as the monomer’s tail
increases in size, as observed for poly(pentyl methacrylate) and
poly(hexyl methacrylate) in cluster 3 and poly(butyl meth-
acrylate), poly(sec butyl methacrylate), and poly(neo pentyl
methacrylate) in cluster 4. On the other hand, we have to take
into account size, shape, and stiffness of the side groups (or
“tail”): the larger the volume occupied by a rigid tail, the higher
the observed glass transition temperature (see also the tail-
adjacent scheme in Figure S1). Therefore, short and ramified
groups tend to increase Tg, while long and linear ones tend to
decrease it (lubricating effect).29,30 In particular, the glass
transition temperature decreases with the number of carbons in
the ester group because of the increased bulk of the side chain as
observed for poly(1H,1H-pentafluoropropyl acrylate), poly-
(1H,1H,3H-hexafluorobutyl acrylate), poly(1H,1H,5H-octa-
fluoropentyl acrylate), poly(1H,1H-undecafluorohexyl acryl-
ate), and poly(2,2,3,3,5,5,5-heptafluoro-4-oxapentyl acrylate)
in cluster 1 and poly(n-pentyl acrylate), poly(hexyl acrylate),
poly(heptyl acrylate), and poly(octyl acrylate) in cluster 2.
However, after observing a minimum, the Tg effect is masked by
entanglements,31 and the Tg starts increasing again. Polymers
with fluorinated ester groups have higher glass transition
temperatures than polymers with nonfluorinated alkyl groups
of the same carbon chain length.31,32

It is worth mentioning here that no a priori assumptions about
the role of the interchain interactions on the Tg were made. In
principle, intermolecular contributions are implicitly related to

the monomer chemical structure (i.e., the repeating unit that
constitutes the polymer chains), and therefore, it is indirectly
“seen” by the ANN. In summary, we have shown the ANN
capability of detecting and embedding the chemical structure of
the monomers and the power of the automatic clusterization of
the embedded monomer structures which locate similar
monomers close to each other in order to separate similar
contributions to the glass transition temperature.

■ CONCLUSIONS

In this work, we have trained an ANN for embedding the
chemical structure of monomers into a high-dimensional space.
We have shown that the vectorized chemical structures so
obtained can be mathematically manipulated. In particular, we
have also demonstrated that the vectorized representation of the
monomers can be automatically separated into different sets
using a hierarchical density-based clustering technique in order
to group them by their chemical affinity. In addition, this
clusterization can also be visualized into a human-readable 3D
space by applying a linear projection (PCA). This mathematical
representation of the monomer’s chemical structure can be of
valuable help for understanding the properties of polymers and
for designing new materials. Finally, it is worth to remind here
that this approach relies only on the knowledge of the chemical
formula of the repeating unit and does not require any kind of
experimental data or calculations as the input.
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