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Abstract: The analysis of structural relaxation dynamics of polymers gives an insight into their
mechanical properties, whose characterization is used to qualify a given material for its practical
scope. The dynamics are usually expressed in terms of the temperature dependence of the relaxation
time, which is only available through time-consuming experimental processes following polymer
synthesis. However, it would be advantageous to estimate their dynamics before synthesizing
them when designing new materials. In this work, we propose a combined approach of artificial
neural networks and the elastically collective nonlinear Langevin equation (ECNLE) to estimate
the temperature dependence of the main structural relaxation time of polymers based only on the
knowledge of the chemical structure of the corresponding monomer.

Keywords: QSPR; dynamics prediction; polymers; artificial neural networks; smart design

1. Introduction

The mechanical behavior of polymeric materials is key to several industries such
as aerospace, transport, energy, and construction, among many others [1–7]. Since the
mechanical properties, together with the overall service life performance of these materials,
are directly related to their dynamics, the knowledge of the latter becomes highly relevant.
For instance, in transport and aerospace industries, some materials are expected to be
able to perform well through wide ranges in terms of frequency, presenting a low rolling
resistance and at the same time a large dissipation of energy during a braking period
(processes that correspond to approximately 10−2 Hz and 104–107 Hz, respectively) [8–11].
Therefore, for obtaining the required on-service behavior, adequate polymer selection is
combined with the fine-tuning of several other properties such as processability, durability,
and energetic efficiency. Molecular dynamics determines such mechanical properties of
the compound, and it is usually described in terms of a characteristic relaxation time
and its temperature dependence. The experimental window of these relaxations (that
can extend over several decades) imposes the necessity of a combination of techniques
(such as broadband dielectric spectroscopy (BDS), dynamic light scattering (DLS), or
dynamic mechanical analysis (DMA)), in turn converting this practice into a costly and
time-consuming process that could increase development costs.

Nevertheless, some theoretical approaches can help when designing and developing
new materials since there is no prior information about their dynamics before synthesizing
and characterizing them. Among these approaches, the elastically collective nonlinear
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Langevin equation (ECNLE) [12–14] theory was developed and successfully applied to
describe the molecular dynamics of various amorphous materials. This model solely relies
on the knowledge of the glass transition temperature (Tg), which requires a non-negligible
amount of time and resources to be determined when unknown. However, recent advances
in the field of artificial neural networks (ANN) [15–17] enable the estimation of the glass
transition temperature of polymers based only on the monomer’s chemical structure.

In this work, we combine theoretical and numerical approaches to estimate, from
a representation of the chemical structure of amorphous acrylates, their glass transition
temperature and the temperature dependence of the structural relaxation time. Firstly,
we codify the chemical structure of the compounds using the Simplified Molecular Input
Line Entry System (SMILES) [18,19] representation and employ it as an input for a neural
network algorithm that would output an estimation of the polymer’s Tg; then, we exploit
this information as an input for the ECNLE to theoretically compute the trajectory of the
molecular dynamics of the structural relaxation process, expressed as the temperature
dependence of its relaxation time. We propose this approach as a tool to speed up research
and development in the field of polymeric materials.

2. Methods and Theoretical Background

In this section, we explain the characteristics of the dataset, the process that the data
undergo, the ANN’s architecture, and how it is tuned. In addition, we include a description
of how ECNLE theory is applied to the estimation of the acrylates’ dynamics.

2.1. Dataset

We employed a cured dataset composed of about 200 atactic polyacrylates and their
corresponding Tg values above chain length saturation [20–23] (see Table S1). These acry-
lates’ monomer units were codified using a Simplified Molecular Input Line Entry System
(SMILES) [18,19] and converted into binary matrices, which are then fed to the ANN.

The external control set was composed of those polymers for which the experimental
dynamics was published. These data are essential since we want to compare the predicted
dynamics against the experimental dynamics. Table SI2 shows the parameters of the Vogel–
Fulcher–Tammann (VFT) equation that fits the corresponding observed dynamics together
with the references the data were taken from.

2.2. Chemical Structure Encoding

As we proposed in recent works [15–17], to consider the structure and composition
of the monomeric units, we transformed the chemical structures into linear strings using
SMILES [18,19]. Then, we converted these strings into binary matrices using a one hot
encoding algorithm [24] and a dictionary (composed by the following list of symbols: ‘(’,
‘O’, ‘C’, ‘=‘, ‘c’, ‘S’, ‘F’, ‘N’, ‘X’, ‘2’, ‘d’, ‘1’, ‘#’, ‘]’, ‘/’, ‘)’). Section S3 in Supplementary
Materials provides a brief explanation of this encoding process.

2.3. ANN’s Architecture and Optimization

We used convolutional neural networks fed with the polyacrylates’ monomeric struc-
tures (codified into binary matrices) and the corresponding glass transition temperatures.
Figure 1 shows a schematic view of the ANN’s architecture: the monomer structure is
codified (through a one-hot encoding process applied on its SMILES string) into a 2D ma-
trix which is then fed to convolutional layers to extract relevant chemo-structural features;
the result is flattened into a 1D vector (X ∈ Rn) feeding two fully connected layers (FC0
and FC1) with LeakyReLU activations. Section S4 in Supplementary Materials provides
more details about the neural network architecture. We compared several combinations of
hyperparameters to achieve the best possible performance for the ANNs. Such comparison
among ANNs was based on the raw performance (minimum relative error) obtained on
the dataset. A dropout [25] algorithm was used, with dropping probabilities ranging from
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0 to 0.3. Finally, the last hidden layer (FC1) was connected to a single neuron with a linear
activation function responsible for providing the glass transition temperature value.

Polymers 2022, 14, x FOR PEER REVIEW 3 of 12 
 

 

comparison among ANNs was based on the raw performance (minimum relative error) 

obtained on the dataset. A dropout [25] algorithm was used, with dropping probabilities 

ranging from 0 to 0.3. Finally, the last hidden layer (FC1) was connected to a single neuron 

with a linear activation function responsible for providing the glass transition tempera-

ture value. 

As done in previous works [15–17], we implement the mean absolute relative error 

as a loss function in the training process to ensure equal weighting of low and high Tg data 

values. Given Ei (experimental Tg), Fi (forecasted Tg), and the number of acrylates in one 

mini-batch mx, we define the mean absolute percentage error as 

𝐿𝑜𝑠𝑠 =
100

𝑚𝑥

⋅ ∑ |
𝐸𝑖 − 𝐹𝑖

𝐸𝑖

|

𝑚𝑥

𝑖=1

 (1) 

We adopt a mini-batch gradient descent technique to minimize the loss function, us-

ing an Adam optimizer [26] with a learning rate (lr) of 0.0001 for speeding up the conver-

gence and mini-batches of 20 acrylates each. 

As usual, the data were randomly divided into test and train subsets during the train-

ing process, and no enforcement of any preference in the way the data are split was ap-

plied. In addition, an external control group (independent from the previous subsets) was 

formed for studying polymer dynamics through ECNLE theory. ANN details are summa-

rized in Table 1 and Figure 1 (more details are provided in Section S4 of the SI). 

Table 1. ANN hyperparameters 

Item Value 

Data split ratio (train/test) 80/20 

Dropout probability 0 to 0.3 

Mini batch size 20 

Learning rate 0.0001 

Beta1 (Beta2) 0.99 (0.999) 

# Hidden neurons (FC0–FC1) 30–20 

 

Figure 1. Schematic picture of the artificial neural network employed for predicting the glass tran-

sition temperatures of acrylates. 

2.4. Nonlinear Langevin Equation 

ECNLE theory describes glass-forming liquids using a hard-sphere fluid [12–14] of 

volume fraction Φ = 𝜌𝜋𝑑3/6, where d is the particle size and 𝜌 is the number of particles 

per volume. The local dynamics takes account of a tagged particle considering: (1) inter-

actions with its nearest neighbors, and (2) cooperative motions of particles beyond the 

first shell. The dynamics is quantified by the dynamic free energy [12–14], 𝐹𝑑𝑦𝑛(𝑟) =

𝐹𝑖𝑑𝑒𝑎𝑙(𝑟) + 𝐹𝑐𝑎𝑔𝑖𝑛𝑔(𝑟), where r is the displacement, 𝐹𝑖𝑑𝑒𝑎𝑙(𝑟)represents the ideal fluid dy-

namics and 𝐹𝑐𝑎𝑔𝑖𝑛𝑔(𝑟) characterizes the local state of a particle subject to caging forces 

conditioned by the structural features of the system. When the fluid has a sufficiently large 

Figure 1. Schematic picture of the artificial neural network employed for predicting the glass
transition temperatures of acrylates.

As done in previous works [15–17], we implement the mean absolute relative error as
a loss function in the training process to ensure equal weighting of low and high Tg data
values. Given Ei (experimental Tg), Fi (forecasted Tg), and the number of acrylates in one
mini-batch mx, we define the mean absolute percentage error as

Loss =
100
mx
·

mx

∑
i=1

∣∣∣∣Ei − Fi
Ei

∣∣∣∣ (1)

We adopt a mini-batch gradient descent technique to minimize the loss function, using
an Adam optimizer [26] with a learning rate (lr) of 0.0001 for speeding up the convergence
and mini-batches of 20 acrylates each.

As usual, the data were randomly divided into test and train subsets during the
training process, and no enforcement of any preference in the way the data are split was
applied. In addition, an external control group (independent from the previous subsets)
was formed for studying polymer dynamics through ECNLE theory. ANN details are
summarized in Table 1 and Figure 1 (more details are provided in Section S4 of the SI).

Table 1. ANN hyperparameters.

Item Value

Data split ratio (train/test) 80/20
Dropout probability 0 to 0.3

Mini batch size 20
Learning rate 0.0001
Beta1 (Beta2) 0.99 (0.999)

# Hidden neurons (FC0–FC1) 30–20

2.4. Nonlinear Langevin Equation

ECNLE theory describes glass-forming liquids using a hard-sphere fluid [12–14] of
volume fraction Φ = ρπd3/6, where d is the particle size and ρ is the number of particles per
volume. The local dynamics takes account of a tagged particle considering: (1) interactions
with its nearest neighbors, and (2) cooperative motions of particles beyond the first shell.
The dynamics is quantified by the dynamic free energy [12–14], Fdyn(r) = Fideal(r) +
Fcaging(r), where r is the displacement, Fideal(r) represents the ideal fluid dynamics and
Fcaging(r) characterizes the local state of a particle subject to caging forces conditioned
by the structural features of the system. When the fluid has a sufficiently large density
(Φ ≥ 0.432) or is in a low enough temperature, the motion of particles is restricted within a
particle cage of radius rcage and a barrier in Fdyn(r) emerges with a barrier height given by
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FB = Fdyn(rB)− Fdyn(rL), where rL is the localization length of the particle and rB is the
barrier position. The escaping of a particle from its cage produces a collective elastic long-
range rearrangement of the molecules in the fluid, whose energy contribution is given by a
sum over harmonic oscillators which is described in Section S5 of the SI. Once the local and
elastic dynamics are defined and the harmonic curvatures at rB and rL (respectively K0 and
KB, see SI) is estimated, we calculate the structural relaxation time using Kramer’s theory

τ

τs
= 1 +

2π√
K0KB

kBT
d2 exp

(
FB + Fe

kBT

)
(2)

where τs is a short time scale [12–14]. As the above calculations provide τ(Φ), we use a
simple thermal mapping T = Tg +

(
Φg −Φ

)
/βΦ0, where Tg is the dynamic glass transition

temperature defined by τ
(
Tg

)
= 100 s, Φg is the volume fraction when τ

(
Φg ≈ 0.6157

)
=

100 s, Φ0 ≈ 0.5 is a characteristic volume fraction, and β ≈ 12× 10−4 K−1 is an effective
thermal expansion coefficient considered constant for all amorphous materials. Further
details to derive the theory are given in the Supplementary Materials and elsewhere [12–14].

3. Discussion

Figure 2 shows predicted vs. experimental values of the glass transition temperature
for the external control set of polyacrylates, as obtained with our trained ANN (see also
Figure S2 for the training and internal test sets). We obtained mean absolute percentage
errors of 4.3% (training set), 8.5% (validation set), and 4.5% (control set). In comparison with
other neural network approaches that we have used in the past [15], the relative number of
parameters (and, therefore, calculations) is reduced thanks to a convolutional approach
(due to the stride convolution operation that tosses out parts of the input image). It is worth
remembering here that we are feeding the ANN only with the monomer chemical structure
without any other physical or chemical input data (neither measured nor calculated).

As shown, the ANN does capture the relationship between the chemical structure
and the glass transition temperature of the polyacrylates all along the 200–400 K range
(see also Figure S2). The individual relative deviations in the external control group are
within (or close to) a 10% margin (see Table S1), in agreement with the observed values for
the internal test. More details on the obtained relative deviation for the different chemical
structures are depicted in Figure S3. Aside from the obtained low errors, our aim is not
only to predict the Tg, but also to obtain some insight into the dynamics of the polymers
under study. For this purpose, the predicted glass transition temperatures are used as input
for ECNLE theory, thus creating a hybrid ANN-theory approach for yielding a possible
relaxation area (in terms of log (τ) vs. 1000/T).

Hence, Figure 3 shows the temperature dependence of the alpha relaxation times for
(a) Poly (propyl methacrylate), (b) Poly (phenyl methacrylate), (c) Poly (butyl methacry-
late), and (d) Poly (isopropyl methacrylate). Blue lines represent the experimental values,
reported elsewhere [27–31], while dashed lines represent the range of relaxation times
obtained by ECNLE theory (from ANN’s predicted Tg values), including error bands for
Tg ± 10% (corresponding to the maximum relative error on the external control set). As
shown, the predicted relaxation region is very close to the experimental observations,
having, therefore, an acceptable agreement (especially considering that only the chemical
structure of the monomer is used as input).
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Figure 2. Predicted vs. experimental glass transition values obtained from the trained ANN on the
external control group of acrylates. Relative deviations are shown below with the corresponding
monomeric chemical structures.

In some cases, as for poly (phenyl methacrylate) or poly (isopropyl methacrylate) (see
Figure 3b,d), the glass transition temperature is well predicted, but the curvature of the
estimated dynamics deviates from the experimental values. In some other cases, as in
Figure 3a,c, the deviations are even more pronounced. Therefore, despite being inside the
proposed confidence interval, the curvature obtained from ECNLE theory does not follow
the experimental dynamics. This behavior is most likely related to the assumption that local
and collective dynamics correlate to each other for all materials in the same way (which is
an excellent approach in terms of not needing any other inputs to obtain an approximated
relaxation map but tends to oversimplify the behavior of the materials). In particular, local
and collective dynamics in Equation (2) are summed with equal weights (i.e., the ratio of
prefactor equal to 1). It has been shown [32,33] that ECNLE calculations gain accuracy by
weighting the collective elastic contribution with a parameter a 6= 1, to change its relative
importance in the glass transition process. The new adjusted elastic barrier is Fe → a2Fe
and it modifies the structural relaxation time in Equation (2) as

τ

τs
= 1 +

2π√
K0KB

kBT
d2 exp

(
FB + a2Fe

kBT

)
(3)

The parameter a strongly influences the structural features of the model (value of Φg
and the thermal mapping), as it accounts for the non-universal effects on the collective
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motions of molecules due to conformational and chemical complexities. It was empirically
observed that the Tg is typically inversely proportional to the scaling parameter a [13].
Figure S4 shows the glass transition temperature dependence of the model adjustable
parameter a for several polymers and glass formers. Although the correlation is not strong,
there is a clear trend indicating an increment of the parameter a upon decreasing glass
transition temperature. Thus, we can estimate the scaling parameter a based on the Tg.
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Figure 3. Experimental (blue) and predicted (red) relaxation times (obtained from ECNLE theory)
vs. 1000/T. Dashed lines stand for the confidence interval corresponding to the typical deviation
in the ANN prediction (10% relative error): (a) Poly (propyl methacrylate) [28], (b) poly (phenyl
methacrylate) [30], (c) poly (hexyl methacrylate) [27], and (d) poly (isopropyl methacrylate) [30].

Figure 4 shows the temperature dependence of alpha relaxation times for the same
polymers as Figure 3 after introducing the scaling parameter (a). The predicted relaxation
times change their curvature, displaying a better agreement (for cases b and d) with
the experimental observations. In the case of poly (propyl methacrylate), no further
improvement is perceived. It is also observed that, in the case of polymers with linear
alkane tails, the experimental-predicted agreement appears to decrease as the length of
the tail increases. As shown in Figure 5 (b) poly (propyl methacrylate) and (c) poly (butyl
methacrylate) already reflect this trend, which intensifies for (d) poly (pentyl methacrylate)
and (e) poly (hexyl methacrylate), while it is much smaller for (a) poly (ethyl acrylate).

Fragilities and dynamics data of members of the polyacrylates family have been
obtained from mechanical and dielectric data by several authors [33–42]. From this experi-
mental point of view, the increase in the length of the alkyl chain causes a strengthening
effect. The variation of fragility (m) with the length of the alkyl chain appears to have three
ranges: for less than three atoms, m is nearly constant; between three and five atoms, it
drastically decreases; and, for more than five atoms, m slowly decreases. Moreover, Balabin
studied the enthalpy difference between conformations of normal alkanes and showed that
n-alkyl chains are more and more flexible as the chain length increases [43]. In addition,
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some local order structure gradually develops as the carbon number in the side chain
increases due to a self-assembly process that forms supramolecular systems such as “hairy
rods” [44,45].
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Figure 4. Experimental (blue) and predicted (red) relaxation times (obtained from ECNLE theory)
vs. 1000/T after introducing the scaling parameter (a). Dashed lines stand for the confidence
interval corresponding to the typical deviation in the ANN prediction (10% relative error). (a) Poly
(propyl methacrylate), (b) poly (phenyl methacrylate), (c) poly (hexyl methacrylate) and (d) poly
(isopropyl methacrylate).

Finally, it has also been reported that nanophase separation of incompatible main
and side-chain parts occurs in amorphous side-chain polymers with long alkyl groups
(for polymers with 4 or more C atoms in the side chain) [46–49]. Considering that the
cooperative dynamics changes if the confinement size becomes comparable to the size
of cooperatively rearranging regions (CRRs), these crystalline regions could affect the
relaxation, thus creating a hindered glass transition [48]. Published results indicate that the
CRR size for alkyl sequences is in the range of one nanometer [50–52].

A more detailed view of this effect on the prediction differences with the experimental
data can be observed in Figure 5, where the relaxation maps of a series of alkyl-acrylates are
presented. As shown, the predictions progressively deviate from the experimental curves
as the side-chain length increases. Deviations in polymers with two or three atoms in the
tail are almost exclusively related to deviations in the Tg predicted by the ANN, while
for longer chains, a difference in the predicted curvature is additionally noticed. It can be
argued that the proposed approach yields acceptable predictions up to four or five atoms
in the linear chain.

These predicted and experimental results can be reconciled by considering the ECNLE
theory assumptions, which predicts the material dynamics in terms of a fluid composed
of hard spheres and does not consider other processes (such as packing density, induced
crystallization or nanophase separation). Therefore some deviations are expected from the
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experimental observations in these polymers where other processes occur. These deviations
are related to the typical relaxation length of the alpha relaxation, which is in the nanometer
range for these materials.
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Figure 5. Experimental (blue) and predicted (red) relaxation times (obtained from ECNLE theory)
vs. 1000/T (n-alkyl acrylates, with n ranging from 2 to 6). The corresponding monomeric chemical
structures are also shown. (a) Poly (ethyl acrylate) [27], (b) poly (propyl methacrylate), (c) poly (butyl
methacrylate), (d) poly (pentyl methacrylate) [27], and (e) poly (hexyl methacrylate) [27]. The plots
correspond to predictions after introducing the scaling parameter (a) for linear tailed polymers.

We can move further by analyzing the experimental-predicted dynamics relationship
for polymers where the side-chain length effects are not present. In that sense, Figure 6
shows experimental (blue) and predicted (red) relaxation times obtained from ECNLE after
introducing the scaling parameter a for nonlinear tailed polymers. Poly (2, 2, 2 trifluoroethyl
acrylate) (a), poly (isopropyl methacrylate) (b), poly (phenyl methacrylate) (c), and poly
(secbutyl methacrylate) (d) present a much better agreement than the long linear tailed
polymers (such as pentyl or hexyl methacrylates).

For this joint theoretical/numerical approach, we have two sources of uncertainty:
on the one hand, the prediction of the Tg by the ANN; on the other hand, the accuracy
of the ECNLE model to follow the temperature dependence of the relaxation times (i.e.,
fragility). Although the errors in both cases are not significant, there is still some room for
improvement. The accuracy of the ANN can be improved by increasing the size of the
training set; especially if we include polymers with chemical features similar to those we
want to predict. In the case of the ECNLE model, a better understanding of the dependence
of the parameter ‘a’ with the chemical structure or the glass transition temperature would
improve the predicted fragility.

In summary, and from a chemical structure point of view, many different factors have
been reported to affect the glass transition and the polymer dynamics, thus increasing
the difficulties in obtaining simple but realistic model approximations. The presence of
bulky groups (as phenyl) can be ‘diluted’ by the presence of long alkyl chains in the same
structure, whereas the lubricating effect of long alkyl chains can be hidden by very stiff
backbones or by nanophase separations. The hybrid approach proposed can recognize these
chemical features and quantify their relevance for estimating an alpha relaxation map area.
It is important to highlight here that this knowledge is self-learned by the network, based
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only on the monomer chemical structure and the corresponding Tg value, and that ECNLE
theory converts this output into a relaxation map. This approach could substantially help
gain both qualitative and quantitative insights into the behavior of polymeric materials,
especially for properties that are difficult and/or expensive to measure.
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corresponding monomeric chemical structure are also shown. (a) Poly (2, 2, 2 trifluoroethyl acry-
late) [31], (b) poly (isopropyl methacrylate) [29], (c) poly (phenyl methacrylate), and (d) poly (secbutyl
methacrylate) [30].

4. Conclusions

The feasibility of joining artificial neural networks and theory into a hybrid system
to provide an estimation of the temperature dependence of the polymer alpha relaxation,
based only on the knowledge of the chemical structure of the monomer, has been demon-
strated. The proposed method has been tested on a set of polyacrylates providing, for
short side-chain polymers, an excellent agreement between the predicted and experimental
temperature dependence of the relaxation times. This approach relies only on the knowl-
edge of the monomeric chemical formula and does not require any kind of experimental
measurements or calculations as input, and constitutes a valuable tool for boosting the
scientific understanding of structure–property relationships.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/polym14081573/s1, Table S1. The list of polyacrylates used in this work; Table S2. Parameters
of the Vogel-Fulcher-Tammann (VFT) equation for the external control group; Figure S1. Schematic
picture of the encoding process; Table S3. The number of filters and window sizes in the convolutional
layers and the number of neurons in the fully connected layers; Figure S2. Shows the predicted vs ex-
perimental Tg values for the internal subset of polyacrylates after finishing the training process; Table
S4. ECNLE caltulations; Figure S3. Relative deviations (Experimental – Predicted) / Experimental (in
%) histogram for the training and internal test sets (a). The chemical structures for those molecules
with more significant relative deviations are shown in (b). Figure S4. Glass transition temperature
dependence of the model adjustable parameter a for several polymers and glass formers.
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