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c Institute of Materials Science and Technology (INTEMA), National Research Council (CONICET), Colón 10850, 7600 Mar del Plata, Buenos Aires, Argentina 
d Faculty of Materials Science and Engineering, Phenikaa University, Hanoi 12116, Viet Nam 
e Phenikaa Institute for Advanced Study (PIAS), Phenikaa University, Hanoi 12116, Viet Nam   

A R T I C L E  I N F O   

Keywords: 
QSPR 
Properties prediction 
Artificial neural networks 
ECNLE 

A B S T R A C T   

Glass transition temperature and related dynamics play an essential role in amorphous materials research since 
many of their properties and functionalities depend on molecular mobility. However, the temperature depen-
dence of the structural relaxation time for a given glass former is only experimentally accessible after synthe-
sizing it, implying a time-consuming and costly process. In this work, we propose combining artificial neural 
networks and disordered systems theory to estimate the glass transition temperature and the temperature 
dependence of the main relaxation time based on the knowledge of the molecule’s chemical structure. This 
approach provides a way to assess the dynamics of molecular glass formers, with reasonable accuracy, even 
before synthesizing them. We expect this methodology to boost industrial development, save time and resources, 
and accelerate the scientific understanding of structure-properties relationships.   

1. Introduction 

Quantitative structure-property relationships (QSPR) models can 
boost both materials design and scientific understanding of molecular 
glass formers. They can correlate the molecular structure with important 
properties like glass transition temperature and its related dynamics, 
which are among the most significant issues associated with the 
behaviour of glass formers. Many challenging problems, especially in 
the pharmaceutical industry, like the tendency to recrystallize, water 
solubility and dissolution rate, or the long-term stability [1–4], are 
related to the structural relaxation dynamics and the glass transition 
temperature. This molecular relaxation process is usually described by a 
characteristic relaxation time and its temperature dependence, which 
can be experimentally measured using broadband dielectric spectros-
copy (BDS), dynamic light scattering (DLS), or dynamic mechanical 
analysis (DMA), among other techniques. However, when designing new 
molecular glass formers, we do not know their dynamics before syn-
thesizing and characterizing them, which are costly and time-consuming 

processes. In this sense, QSPR models are able to estimate the desired 
properties based only on the chemical structure of the molecules. 

Some theoretical approaches can help in these challenging tasks. For 
instance, the elastically collective nonlinear Langevin equation (ECNLE) 
theory has been recently used to successfully describe the temperature 
dependence of the relaxation times of different amorphous materials 
[5]. However, this approach requires the knowledge of the glass tran-
sition temperature (Tg) to estimate the molecular dynamics. Although 
this information is not available for new glass formers until synthesized, 
recent developments based on artificial neural networks (ANN) allow 
estimating their glass transition temperature based only on their 
chemical structure [6–8], without involving any experimental mea-
surements or complex synthesis. 

This work proposes a joint theoretical and numerical approach to 
estimate the glass transition temperature and the temperature depen-
dence of the structural relaxation time for several molecular glass for-
mers (including amorphous drugs and biomolecules), based only on 
their chemical structure. A neural network approach is firstly used to 
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estimate the glass transition temperature of “new” compounds from 
their chemical structure codified into a Simplified Molecular Input Line 
Entry System (SMILES) representation; then, this information is used in 
ECNLE theory to estimate the temperature dependence of the relaxation 
time for the structural relaxation process. In this way, we can estimate 
the dynamics of molecular glass formers, even before synthesizing them, 
only knowing their chemical structure. 

2. Theoretical background 

ECNLE theory describes glass-forming liquids using a hard-sphere 
fluid [1,5,9–15]. Key characteristics of the fluid are the particle size, 
d, and the number of particles per volume, ρ, from where the volume 
fraction is estimated as Φ = ρπd3/6. Two main factors affecting the 
mobility of a tagged particle are 1) interactions with its nearest neigh-
bours and 2) cooperative motions of particles beyond the first shell. The 
local dynamics (or the motion of the tagged particle within a particle 
cage) is quantified by the dynamic free energy [1,5,9–15], Fdyn(r) =
Fideal(r) + Fcaging(r), where r is the displacement. Fideal(r) corresponds to 
the delocalized or ideal fluid state and Fcaging(r) characterizes the 
localized state of the particle via caging forces, which strongly depends 
on the density and structure of systems. 

Fig. 1 shows an example for calculations of Fdyn(r) at Φ = 0.58 and 
indicates physical quantities of the local dynamics. In a sufficiently 
dense fluid, a reduction of the free volume dynamically restricts the 
motion of particles and forms a particle cage surrounding a tagged 
particle. The dynamical constraint is characterized by the emergence of 
a barrier in Fdyn(r). A particle cage radius, rcage, is roughly estimated by 
the first minimum of the radial distribution function, g(r). Other 
important length scales of the local dynamics are a localization length, 
rL, a barrier position, rB, a jump distance, Δr = rB − rL, and a local 

barrier, FB = Fdyn(rB) − Fdyn(rL). From these, we can calculate K0 =
∂2Fdyn(r)

∂r2 ⌉r=rL 
and KB = ∂2Fdyn(r)

∂r2 ⌉r=rB 
corresponding to harmonic curvatures 

at rL and rB, respectively. K0 can be interpreted as a spring constant at the 
localization length. 

Escaping of a particle from its cage requires reorganization of both 
the nearest neighbours and all particles outside the cage to generate the 
extra space. Thus, the collective motions are strongly coupled to the 
local dynamics within the cage. The cooperative rearrangement creates 
a displacement field, u(r), from the surface of the particle cage, that 
triggers particles beyond the first coordination shell to vibrate as oscil-
lators and radially propagates through the rest medium. By employing 
Lifshitz’s linear continuum mechanics [16], one can analytically 

calculate the displacement field for r ≥ rcage as u(r) = Δreff r2
cage

r2 , where Δreff 
is the amplitude of the field, whose mathematical expression was re-
ported elsewhere [14,15]. Since u(r) is small, the oscillation of each 
particle is approximately harmonic and, thus, the elastic energy of an 
oscillator is K0

u2(r)
2 . From this, we quantify collective motion effects on 

the relaxation process by summing the harmonic elastic energy of par-
ticles outside the cage to obtain the collective elastic barrier, which is 
Fe = 4πρ

∫∞
rcage

drr2g(r)K0
u2(r)

2 . 
Inserting the local and elastic components into Kramer’s theory gives 

us the structural relaxation time 

τα

τs
= 1+ 2π̅̅̅̅̅̅̅̅̅̅̅

K0KB
√ kBT

d2 exp
(

FB + Fe

kBT

)
(1)  

where τs is a short time scale and its analytical form was previously 
reported [1,5,9–15]. Note that the above calculations provide τα(Φ). 
Direct comparisons between theory and experiments need a density-to- 
temperature conversion. In prior works [1,9–12], based on a thermal 
expansion process, it was proposed a simple thermal mapping T = Tg +
(Φg − Φ)/βΦ0, where Tg is the dynamic glass transition temperature 
defined by τα(Tg) = 100s, Φg is the volume fraction when τα(Φg ≈
0.6157) = 100s, Φ0 ≈ 0.50 is a characteristic volume fraction, and β ≈
12 × 10−4K−1 is an effective thermal expansion coefficient considered 
constant for all amorphous materials [1,9–12]. 

Fig. 2 shows the theoretical and experimental temperature depen-
dence of structural relaxation time for griseofulvin, nordazepam, cele-
coxib, tetrazepam, and ibuprofen. Overall, theoretical results 
quantitatively agree with experimental data over a wide temperature 
range or timescale without any fitting parameter. 

The slight deviation observed for ibuprofen (solid line) is related to 
the fact that we assume that local and collective dynamics correlate to 
each other in a universal manner for all materials. FB and Fe in Eq. (1) are 
summed with the ratio of prefactor equal to 1. In prior works [12,17], 
ECNLE calculations were improved by multiplying the elastic barrier 
with an adjustable parameter a to change the relative importance of 
collective dynamics in the glass transition. The new adjusted elastic 
barrier is Fe → a2Fe and it modifies the structural relaxation time in Eq. 
(1) as 

τα

τs
= 1+ 2π̅̅̅̅̅̅̅̅̅̅̅

K0KB
√ kBT

d2 exp
(

FB + a2Fe

kBT

)
(2) 

The value of Φg and the thermal mapping are strongly dependent on 

Fig. 1. The free energy profile normalized by kBT for a hard-sphere fluid with 
Φ = 0.58, where kB is the Boltzmann constant and T is the temperature. 
Characteristic length and energy scales for the local dynamics are defined. 

Fig. 2. Temperature dependence of the structural relaxation time calculated 
using the ECNLE theory (solid lines) and the corresponding experimental values 
(dots) for several molecular glass formers. The dashed line represents the 
ECNLE prediction for ibuprofen with the adjustable parameter a = 2.5 taken 
from Fig. 3. 
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the parameter a, which accounts for the non-universal effects of bio-
logical, conformational, and chemical complexities on the collective 
motions of molecules. It was empirically observed that the scaling 
parameter (a) typically increases with increasing fragility and depends 
on the glass transition temperature, as shown in Fig. 3. Although the 
correlation is not strong, there is a clear trend indicating an increment of 
the parameter a upon decreasing glass transition temperature. The 
estimated value of the parameter a for ibuprofen is 2.5 (being the 
experimentally observed value 2.4). The dashed line in Fig. 2 shows the 
ECNLE prediction for ibuprofen using this value for the scaling 
parameter. 

3. Numerical background 

This section describes the dataset, the encoding of the chemical 
structures, and the corresponding Tg prediction using ANN. 

3.1. Dataset 

The dataset for this work is composed of 216 molecules, including 
pharmaceutical drugs (like benzocaine or ibuprofen), biological mole-
cules (like sucrose or ribose), and typical additives used in the phar-
maceutical industry (like benzophenone), with Tg in the range 200 K – 
400 K. We accounted for the chemical and spatial structure of the 
compounds by using the Simplified Molecular Input Line Entry System 
(SMILES) [18,19], which codifies the molecules into a string of char-
acters. Table 1 in the Supporting Information (SI) shows the name of the 
compounds, their corresponding SMILES code, and the experimental 
and estimated Tg values. 

3.2. Data treatment (encoding) 

Following the same approach reported in previous works [6–8], we 
used a one-hot encoding method and an appropriate dictionary with all 
the existing characters in the SMILES code to convert the SMILES strings 
(1D) into binary matrices (2D). Thus, row i-th of the matrix is filled with 
zeros except for the position of the dictionary that coincides with the 
same character on the i-th position in the SMILES code. A one is placed 
in this case. Therefore, the number of characters in the dictionary (nd) 
and the length of each SMILES code (npos) define the columns and the 
rows of the matrix (as shown in Fig. 1 in the SI). 

3.3. ANN’s architecture 

Based on previous results [6], we used a fully connected neural 
network for this work. We tried different architectures varying the 
number of hidden layers, the number of neurons, the dropout proba-
bility, and the activation functions to improve the performance of the 
ANN. Fig. 4 shows a scheme of the optimal network: the inputs to the 
ANN are the flattened versions of the 2D SMILES matrices; we then pass 
the input to two fully connected hidden layers, containing 40 neurons 
each, and a single output regression layer. We used the ELU activation 
function in the hidden layers, a variation of the most common ReLU 
activation function, characterized by an exponential contribution 
[20,21]. In addition, we imposed a 40% dropout probability on each 
hidden layer in the training phase, whereas the output regression acti-
vation function was linear, and its loss function was the mean average 
percentage error (MAPE), defined by: 

Loss = 1
mx

∑mx

i=1

⃒⃒
Ti − T ′

i

⃒⃒

Ti
(3) 

where mx represents the number of elements in the x-th mini-batch, 
Ti represents the experimental Tg value collected for the i-th compound 
in the mini-batch and Ti

′ the calculated value using the ANN for the same 
compound. 

3.4. ANN’s optimization 

The network was trained using the Adam optimization algorithm 
[22] provided by MATLAB with the default parameters for beta_1, 
beta_2, and epsilon (0.9, 0.999 and 10−8, respectively) and applying the 
mini-batch strategy (mini-batch size = 16) to estimate the gradient of 
the loss function. In addition to the Adam algorithm, we imposed an 
external drop of the initial learning rate (lr), starting from lr = 0.01 and 
multiplying it by 0.25 every 500 epochs. We found that initializing the 
hidden layers and the output layers with a bias vector and a weight 
tensor whose elements are all ones, significantly improved the network’s 
performance, compared to other initialization methods [23], most likely 
due to the inclusion of the dropout layers during training, which 
randomize the data transfer from one layer to the next one [24]. 

Fig. 3. Glass transition temperature dependence of the model adjustable parameter a for several glass formers. The solid line represents the linear fit of the 
experimental data. Data were taken from reference 12. 
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3.5. ANN training 

The first step consists of training the neural network with known 
pairs of SMILES strings – glass transition temperatures. This data set is 
called the training set. The examples in the training set are fed into the 
network, which compares the predicted value with the corresponding 
experimental Tg. Then, the network adjusts its weights and bias values, 
using an appropriate learning algorithm, to minimize the average rela-
tive error between predicted and known Tg values. In parallel to the 
training process, the average relative error of the validation set is also 
calculated after each epoch (1 epoch = number of iterations over the 
mini-batches so that the whole training set is spanned). Since the mol-
ecules in the validation set do not participate in the training process, the 
prediction of their Tg values gives an estimation of the generalization 
power of the neural network. Once the network can generalize, it is fed 
with the molecules of the test set. This data set corresponds to molecules 
that were never fed to the network during the training phase, and it is in 
this sense that we say they are “unknown” (or “new”) compounds. Since 
these molecules do not belong to training or validation sets, we can say 
that the neural network predicts their glass transition temperature. 

We divided the data set into 90% training set, 6% validation set, and 
4% test set for two main reasons: on the one hand, due to the structural 
complexity and variability of the molecules in our data set, the network 
needs to learn many different features and therefore it needs to have as 
many examples (molecules) as possible in the training set; on the other 
hand, we selected for test set those molecules for which we could find 
published experimental measurements of the alpha-relaxation dy-
namics, in order to have physical feedback to compare our method with. 
In addition to this, we also wanted to ensure that the Tgs of the test set 
span over the whole temperature range (200 K–400 K). Once we 
extracted the test set molecules from the data set, we tried different 
partitions between training and validation sets, looking for a good 
representation of the chemical features (in the training set) that mini-
mizes the average percentage error (in the validation set). 

4. Results and discussion 

4.1. Estimation of the glass transition temperature 

Fig. 5 shows the predicted vs. measured glass transition temperature 
for all the molecules in the data set. The green, blue and red points 
correspond to training, validation, and test sets, respectively. In addi-
tion, the chemical structure of the test set compounds is also shown. We 
got average relative errors of 7.26% and 7.63% for validation and test 
sets, respectively. These errors are comparable to similar previous ANN 
published results [25–27] and are close to half the error obtained with 
linear regression models. Thus, the ANN does capture the relationship 
between the chemical structure and the glass transition temperature of 
molecular glass formers. The observed differences can be rationalized by 
analysing the chemical features in the training and the test sets. As 
shown in Table 1 in the SI, the training set contains several examples of 
molecules with strong intermolecular forces (with several hydrogen 
bond acceptors and donors in specific molecules), aliphatic cycles, and 
stereochemistry close to sucrose, lyxose, and trehalose. A somewhat 
similar situation is observed for sorbitol, where the structure and pres-
ence of OH groups are also well represented in the training set (espe-
cially in xylitol and meglumine). As a result, the ANN can correctly learn 
the structure-glass transition temperature relationship of these com-
pounds from sucrose benzoate, galactose, fructose, salicin, xylose, 
halothane, lactose, meglumine, and ribose (see Fig. 2 in SI). 

4.2. Estimation of the temperature dependence of the relaxation times 

Figs. 6 and 7 show the temperature dependence of the relaxation 
times for sucrose, lyxose, salol, trehalose, and sorbitol. Dots represent 
the experimental values, as measured by BDS and reported elsewhere 
[28–31], while shaded bands represent the range of relaxation times 
obtained by ECNLE theory (from ANN’s predicted Tg values, including 
error bands for Tg ± 8% corresponding to the average percentage error 
on the validation set). As shown, the experimental observations are in 
these cases inside (or very close to) the predicted relaxation region 
having an excellent agreement for sucrose, lyxose, salol, sorbitol, and 
trehalose. It is worth reminding here that the only input to the joint 

Fig. 4. Schematic picture of the artificial neural network used to predict the glass transition temperature.  
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numerical-theoretical approach we propose in this work is the chemical 
structure represented as a SMILES code. Even if the molecule has not 
been synthesized yet, we can still have a good estimation of its glass 
transition temperature and the temperature dependence of its main 
relaxation time. 

For specific compounds, like hexanetriol (see Fig. 3 in SI) or 
benzophenone, some deviations between estimated and experimental 
dynamics are observed. These differences may arise from two sources. 
On the one hand, due to the complexity and the variability of the mo-
lecular structures of the data set, it becomes difficult to obtain an 
excellent generalization from the ANN: we have to consider that map-
ping the chemical features during the ANN training determines the 

chemical structure-glass transition temperature relationship for each 
compound. Intuitively, we can see that chemical features better repre-
sented in the training set are more likely to be accurately mapped (see 
Fig. 2 in SI), and therefore, the corresponding Tg is better predicted. On 
the contrary, molecules with non-common features will be underrep-
resented, so their estimated glass transition temperature will likely 
present higher uncertainties. Therefore, it is expected that the ANN 
precision will further improve when more examples (that appropriately 
represent the chemical features observed in the test set) are added to the 
training set. 

On the other hand, in some cases (see salol in Fig. 6), the glass 
transition temperature is well predicted by the ANN, but the estimated 

Fig. 5. Predicted vs. measured glass transition temperature for all the molecules in the data set. The green, blue and red points correspond to training, validation, and 
test sets, respectively. Experimental (in red) and predicted (in brackets) glass transition temperatures are indicated (in kelvin) for all the molecular glass formers in 
the test set. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 6. Relaxation map for sucrose, lyxose and salol. Dots represent experi-
mental values measured by BDS taken from references 28–30. Dashed lines 
represent the ECNLE prediction for the temperature dependence of the relax-
ation times based on the glass transition temperature estimated from the ANN. 
Shaded bands indicate the range of relaxation times as predicted by ECNLE 
theory based on the prediction error of the ANN (Tg ± 8%). 

Fig. 7. Relaxation map for sorbitol and trehalose. Dots represent experimental 
values measured by BDS taken from references 31 and 29. Dashed lines 
represent the ECNLE prediction for the temperature dependence of the relax-
ation times based on the glass transition temperature estimated from the ANN. 
Shaded bands indicate the range of relaxation times as predicted by ECNLE 
theory based on the prediction error of the ANN (Tg ± 8%). 
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dynamics (the temperature dependence of the relaxation time) deviates 
from the experimental values. This behaviour is most likely related to 
the assumption that local and collective dynamics (in the ECNLE model) 
correlate to each other in the same way for all materials. As shown in 
Fig. 3, the coupling between the two dynamics (parameter a) depends on 
Tg, and therefore, predicting the dynamics for those compounds with 
lower values of Tg is less accurate. These deviations can be corrected by 
considering non-universal effects of chemical and biological complex-
ities (as previously discussed). 

In this sense, it is noteworthy that trehalose, with a relatively high Tg 
(380 K), shows excellent agreement between the experimental and 
predicted values for the temperature dependence of the relaxation times. 
For intermediate Tg values, like lyxose (277 K), the predicted tempera-
ture dependence of the relaxation times slightly deviates from the 
experimental values (provided the Tg is well predicted). On the low Tg 
side, we have the case of salol (219 K), for which the Tg is correctly 
estimated, but the dynamics departs from the experimental points upon 
increasing temperature. These differences in the temperature depen-
dence of the relaxation times are expected due to different molecular 
structures, glass transition temperature, and the different number of H 
bond donors (OHs in the structure) and acceptors (oxygen atoms in the 
structure) in the studied compounds [32]. 

Fig. 8 shows some corrected dynamics calculated, including non- 
universal effects (a ∕= 1) of chemical and biological complexities in 
molecules like sucrose, lyxose, and salol. According to Fig. 3, we took a 
= 1.37, 1.96, and 2.5 for sucrose, lyxose, and salol, respectively. 
Theoretical curves (with the corresponding values of the adjustable 
parameter) are now closer to the experimental data. We expect that a 
better understanding of the dependence of this parameter on chemical 
structure or glass transition temperature further improves the theoret-
ical predictions of the temperature dependence of the relaxation times. 

It is important to discuss here some limitations of the proposed 
approach. For new materials or those without experimental data of 
τα(T), the parameter a cannot be determined. To zeroth-order approxi-
mation, we use a linear function to empirically describe the a-Tg relation 
as shown in Fig. 3. Thus, combining the Tg value predicted from the 
chemical structure and ANN network with the empirical a-Tg relation 
allows us to determine (through ECNLE) τα(T) without any adjustable/fit 
parameter. However, the linear a-Tg fit means that a given Tg leads to 
one value of a or dynamic fragility. As a result, our approach deduces 
that glass-forming materials having the same Tg have the same fragility, 
and this is not necessarily the case as shown in previous publications 
[33,34]. A good option to overcome this limitation is to use the ANN not 
only to predict the Tg, but also the fragility. We tried this approach, but 
unfortunately, there is a lack of data for the fragility in the literature, 
that makes it highly inaccurate. We expect that the available amount of 
data will increase in the next years, allowing the use of ANNs for pre-
dicting fragility. 

Besides estimating the glass transition temperature, the ANN can also 
provide a new understanding of molecular glass formers. For instance, 
Fig. 9 shows the predicted Tg for isomers of lyxose and galactose (except 
for these two, we could not find the corresponding experimental Tg 
values for the rest of the molecules in the scientific literature). It is 
interesting to note that for L-Arabinose and beta-L-Arabinose, which 
only differ on the position of the upper right OH group, the Tg only 
changes three degrees. However, the same structural change between 
galactose and alpha-D-Galactose gives a Tg difference of 33 K. In this 
case, the presence of the upper left group induces a higher sensitivity of 
the dynamics to minor structural changes. It is worth mentioning that 
although the average relative error of the ANN’s prediction is about 8%, 
in the case of lyxose and galactose, the corresponding errors are below 
1% (see Table 1 in SI), making sense of the observed differences in Fig. 9. 
The same analysis can be performed on molecules not even synthesized, 
boosting the development of new materials with tuned properties. 

5. Conclusions 

We have presented in this work a new approach that combines nu-
merical methods with theory to estimate the temperature dependence of 
the structural relaxation time for molecular glass formers. Firstly, we 
built, optimized and trained an artificial neural network to assess the 
glass transition temperature of molecular glass formers only based on 
their chemical structure. Then, we used a theoretical approach based on 
the elastically collective nonlinear Langevin equation to estimate the full 
relaxation map. Although there is still some room to improve accuracy 
and overcome limitations, this first joint theoretical and numerical 
approach constitutes a suitable tool for giving a reasonable estimation of 
the dynamics of unknown molecular glass formers based on their 
chemical structure. This approach will boost materials and drug devel-
opment by designing molecular glass formers with desired properties 
and will also increase the understanding of the physical mechanisms 
related to molecular dynamics. 
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