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ABSTRACT

The ability of an Artificial Neural Network (ANN} to evaluate the variability of rheometric properties of rubber
compounds from their formulation is presented. Because of the complexity and non-linearity of mixing processes; an exact
mathematical treatment of the problem is extremely difficult, or even impossible. The use of artificial neural networks
(ANNSs) might be very useful to analyze these processes, since they have the ability to map nonlinear relationships without
prior information about process or system models. In this work a three-fayer ANN is used and the optimumn parameters are
determined. The results are compared with theoretical and experimental published data. The dependence of the rheometric
properties as a function of compound components is also analyzed. Finally, the sensibility matrix coneept is introduced.
The sensibility matrix allows us to calculate the minimuin expected variability, for a given compound, due to the weight
tolerances of its components,

INTRODUCTION

The theometric properties of a compound are affected by many factors, such as the variability
of the raw material, weighing errors, process variations, etc, It's very difficult to know exactly
how these factors affect the final properties-of a given compound.’? Due to the characteristics
of the compounds and the complexity of the elaboration process, it is virtually impossible to
predict the rheometric properties of the compound in terms of first principles. The use of artificial
neural networks (ANNs) can help us to find complicated dependencies among input variables
(formulation of the compound) and output ones (properties). The ANNs have the ability to map
nonlinear relationships among variables, without prior information about the process.** Recently,
ANNS have been used successfully to predict the copolymer composition as a function of reaction
conditions and conversion.?

We can consider the mixing process as a “grey box,” and train a neural network using the
available experimental data. The ANNSs are mathematical models that have the ability to learn the
correlation between input and output values. The training of the network consists of introducing
a set of correlated inputs and outputs, called examples. From these examples, the network goal is
modeling the relationship between the input and output variables, by adjusting the node connection
weights. When the system converges to a stable solution we can enter a new formulation and get
its theometric properties.

In this work, the implementation of a neural network is analyzed in order to predict the rheometric
properties of new compounds from their formulation. Network characteristics are analyzed in order
to guarantee the stability and convergence of the solutions, and some applications and possible
extensions of this kind of treatment are discussed.

IMPLEMENTATION
In this work, the analog version of a commercial ready-made ANN called NeuroShell was used.
In order to simplify the model, only a subset of components and a subset of properties were taken into
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TABLE I

COMPOSITION OF TﬁB SELECTED COMPOUNDS?
Code NR CB Oil  Sulfur Acc PA My, My 150

Comp0l  10.000 7.366 0946  10.000 6.061 6.667 5308 8.78% 5.162
Comp02  10.000 7.366 0.708 10000  6.061 6.667 6.812 8.426 4.824
Comp 03  10.000 6.273 1.138 7250 3.939 8.333 4773 5.024 4.868
Comp 04 6.000 7205  10.000 6.000  6.667 8.333 4222 4243 6.191
Comp 05 10.000 6.150 1.672 7300 3939  10.000 4.463 4.716 4.912
Comp 06  10.000 6.110 1.937 7300  3.939 1667 3414 4,486 4.191
Comp 07  10.000 7.666 1.302 5625 1212 6.667.  6.759 5.358 4.838
Comp 08 8.000 4,605 2.284 4350  6.061 6.667 3.264 3.037 6.743
Comp 09 3.500 7.268 3.0i1 5500 6970 10.000 6.841 7275 6.257
Comp 10 3.000 8.146 0.722 7.500 5455 0.000 7.657  10.000 5.808
Comp 11 0.000  10.000 4.244 7.500 4.000 10000 10.000 9.550  10.000

@ All values are normalized in the range 0-10 (see text).

account. Six relevant variables (components) of compounds formulations were considered in this
analysis: weight percentage of carbon black (CB) and oil, phr (weight per hundred rubber) of natural
rubber (NR), sulfur, accelerator (Acc) and process aid (PA). Others ingredients in the formulation
were considered not important. Three output variables were taken into account: low torque (M),
high torque (M) and time to 50% cure (¢ 50). Twenty-four compounds were selected. The values
were normalized in the range 0-10. Table I shows a partial list of the selected compounds. The values
of rheometric properties are the average of more than one-hundred samples of each compound.

NEURAL NETWORKS ARCHITECTURE

The ANNs have evolved from the intent of modeling the cerebral activity. The basic processing
element of a neural network is the artificial neuron or simply node. The basic artificial neuron can
be modeled as a non-lineal device of multiples inputs, each one with a weight w;;, and a nonlinear
! function f(x), usually sigmoid. This simple model of an artificial neuron sums up the n heavy
inputs and passes the result through the nonlinear function f(x} in accordance with the equation®

yi=f [Zw,-,-x,- +9;} (1)
i=1

where 0; is a threshold or external offset, x; is the input i, w;; the corresponding weights and y;
represent the output. Figure 1 shows a simplified outline of a basic artificial neuron.

The neurons usually operate in parallel and they are configured in regular arrangements. They -
are usually organized in layers and two types of feedback connections are allowed: within the layer
and toward adjacent layers. Figure 2 shows the general structure of a three-layer network as the
one used in this work. The network is feedforward propagation and consists of an input layer, a
hidden layer and an output layer. The number of nodes of the input layer is generally similar to the
number of input variables (6 in this case), and the same happens with the output layer (3 nodes).
The number of nodes of the hidden layer is one of the most important considerations to take into
account when solving problems using multilayer networks of direct propagation. In general, more
variables and more examples make necessary more nodes; however, an excessive number of nodes
could generate an over-trained network that adjusts all the examples perfectly but it doesn’t supply
accurate results.
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Fi16. 1. — Simplified functional model of an artificial basic nevron cell.

. Training the network to learn consists of presenting it with a set of correlated inputs and outputs,
called examples. The system learns by adjusting the weights w;; of the node connections, in such a
way to minimize the difference between the calculated (yx) and the given (dx) output. This means
minimizing the mean square error given by Ecuiation (2):

r m
E=Y"3"[d— T @)
I-1 k=1
The most extended method of minimizing the error function is the back-propagation algorithm,
which is a generalization of the steepest method. The adjustment of each individual weight is as
follows?
) 8E
Awij = —5—- 3
i} n 3wij (3)
where 7 is the learning constant which influences the convergence speed and the effectiveness of
the learning process. In general, the optimum value of 7 depends on the problem that is being
analyzed, and only small values of 5 guarantee stable solutions.

NETWORK OPTIMIZATION

The learning parameter 1 should be chosen small to provide minimization of the total error
function E. However, for a small 7 the learning process becomes very slow. On the other hand,

Inpat Hiddan Cutput
Layer Layer Layer

F16. 2, — The general structure of a three-layer back-propagation network.
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TaBLE II
PARAMETERS FOR ANNS OPTIMUM PERFORMANCE

o n : n g

.9 i2 035 .0015

large values of n correspond to fast learning, but lead to parasitic oscillations which prevent the
algorithm from converging to the desired solution. Moreover, if the error function contains many
local minima, the network might get trapped in some local minimum, or get stuck on a very flat
plateau, One simple way to improve the standard back-propagation learning algorithm is to smooth
the weight changes by over-relaxation,’ i.e., by adding the momentum term (c) that increase the
rate learning without magnifying the parasitic oscillations.

The network training finishes when all the errors Ej are below a previously established error, 2.
Like happens with the quantity of hidden nodes, too small of errors can fit the data but could give
a wrong generalization.

Regrettably there’s no way to know previously which are the parameters that optimize the
network for a given problem, and these should be determined by trial and ervor. Also, since the
initial weights are assigned at random, the solutions are not always the same. A right selection
of the parameters will minimize the difference among the successive runs. These approaches and
a prediction error smaller than 10%, were the boundary conditions imposed to the parameters. A
systematic trial and error test was carried out and the optimum parameters were determined. Table
il shows the results.

RESULTS AND DISCUSSION

PROPERTIES OF NEW COMPOUNDS

Once the optimum parameters were determined the network is ready to be used. In order to
ensure that the network predicts correctly the rheometric properties of the new compounds, the
24 compounds were divided into two subsets. One for training (training set) and the other for test
(test set). The network training was carried out with the data of the first subset. During the training
process, the nevrons learn the relationship between the output variables and the input ones by
adjusting the connection weights. After the ANN has been trained, it can be used to predict the
compounds properties of the test set. Table III shows the results obtained from 19 elements for the
training set and 5 for the test set.

TabLE 1L
CALCULATED Vs REAL VALUES FOR FIVE COMPOUNbs OF THE TEST SET
Real values Calculated values Relative errors, %

M, My 50 My My t 50 My, My 130 Averages
7788 9.616 6563 6168 9.618 6.584 20.804 ° 0.010 0365  7.060
5103 5383 6.687 4278 4806 7.595 16.140 10.720 13.696 13.519
3732 3466 9175 3.234  3.544 8.746 13.364 2.246 4,732 6,781
7.821 8303 8514 5904 5.880 10.593 24.517 29.176 24.421 26.038
6516 S5.698 798 6810 5752 7.617 4501 0939 4.590 3.344

Averages  15.863 8.618 9.561 11.348
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F16.3, — Average relative error as a function of the number of data in the training group,

The greater and more representative the training set, the smaller will be the error for the new
compounds properties calculation. This fact can be verified by passing clements from the test group
to the training one, re-training the network and re-calculating the values for the new test group.
Figure 3 shows the dependence of the average relative error as a function of the number of data in
the training group.

BXPERIMENTAL DESIGN

There are several works in the literature about the compound optimization using experimental
design.5=? This kind of method, although it has been used with relative success, has shown some
important limitations. (a) It is expensive and not always possible to implement all conditions that
experimental design requires. (b} The number of experiences to carry out increases as d ..Where

20 30 40 ’ 30
Carbon Black {phr]

F16. 4(a). — Low torque as a function of carbon black load for different amounts of sulfur
(100% NR, o0il 20, Ace 1, PA 0.2).
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F16. 4(b). — High torque as a function of carbon black load for different amounts of sulfur
(100% NR, oil 20, Acc 1, PA 0.2).

N is the number of variables and d the quantity of values that each variable can take. And (c), for
o designs with a reasonable quantity of experiences, only lineal or quadratic effects can be seen.
‘ The use of neural networks can attenuate many of these limitations. It is possible to use a well-
trained network to generate, by numerical simulation, any experimental design independently of
the required number of experiences. Moreover, it doesn’t matter if a given point of the experiment
design was measured or not, the network will predict the value from the available information.

In this way, for instance, we can analyze the dependence of My, as a function of carbon black
Ioad, for different quantities of suifur. Figure 4(a) shows the obtained results.

The dependence of the low torque (Mj,) with carbon black load obeys to the generalization
made by Smallwood!? and other authors from the Einstein viscosity equation!!; in this way we

0.9

0-3 i L L i. ]
20 30 40 ' 50
Carbon Black [phr]

FIG. 4(c). — Time to 50%-cure (£50) as a function of a carbon black load for different amounts of sulfur
(100% NR, oil 20, Acc 1, PA0.2).
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have that

My, = ML, Rubber(l + arc + azc® + -+ ) (4)

where ¢ is the filler volume fraction. Note that My decreases as sulfur increases, this fact probably
responds to the effect of “hide variables” that were not included in the model.

Figure 4(b) shows the known dependence of the My as function of CB load. It can be seen
that, for a given CB load, My increases with the sulfur content. This is a consequence of cross-
links density increment. Finally, Figure 4(c) shows how the cure time to 50% {t 50) diminishes
appreciably with CB load independently of sulfur quantity (at least for small quantities) in good
agreement with well known theoretical results.12:13

SENSIBILITY TO INPUT VARIATIONS .

One interesting and useful analysis we can do with the ANN is to calculate the sensibility of a
given compound to the weight variation of some of its components. We define this sensibility as

s Wy
i 3xj

6))

xy=cte(ks£])

where y; is the desired output variable and x j 1s the input one, &; is then specialized in the x; of
the compound that is being analyzed. :

Multiplying by x; and dividing by y;, we normalize & j obtaining in this way a relative quantity
that can be compared with any other, independently of the x; and y; values.

Xx; 0y
&'j=—“'—2"-

% %, (6)

xpmscre(ks )

Generalizing, we can calculate a matrix & whose elements correspond to the sensibility of each
output variable to each input one. Specializing £ in the x; of a given compound, the sensibility
matrix that characterizes that compound will be obtained. In this way, weight tolerances could be
defined taking into account the most sensitive variables.

Each one of the &; can be calculated taking small variations around x ; and entering these data
to the network, As a result we will obtain the corresponding y; values. From these values it is easy
to calculate the &;. Table IV shows the sensibility matrix for a typical compound.

Multiplying the matrix elements by the relative weight tolerance of each component and adding
each line, we obtain the expected variability, due to weight etrors, for each compound rheometric
property. Table V shows the comparison of the values obtained in this way with the variability
observed experimentally. The calculated values are slightly inferior because they don’t take into
account variability of either the process or the raw material. These values set an inferior limit to
the expected variability for this compound.

TABLE IV
SENSIBILITY MATRIX FOR A TYPICAL COMPOUND
& ; NR CB Qil Sulfur Acc PA
My, 0.03 2.14 —0.2 ~(.08 0.12 0.02
My —0.27 1.46 —0.25 0.40 0.15 —0.02

£ 50 —0.25 —0.83 0.03 0.05 0.01 0.04
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TABLE V
CALCULATED VS REAL VALUES FOR THE VARIABILITY OF A TYPICAL COMPOUND

A, % Calculated? Real?
ML 474 723
- My 4.01 4.98
t50 . 2.04 2.63

2 Values are normalized in the range 0-10.

CONCLUSIONS

The implementation of an artificial neural network to predict the rheometric properties of a
compound from their formulation was developed in this work, The calculated values are in very
good agreement with those obtained experimentally. It was shown that besides the prediction of
the rtheometric properties, the network can be used to analyze the dependence and sensibility of the
different properties with the parameters of the formulation,

Even with the limitations imposed in this first approach to the problem, the obtained results are
encouraging. The network may be still improved, optimizing the learning algorithms and developing
a validation algorithm of the input data, The natural extension of this treatment will be to predict
the physical properties from the formulation of the compound. Finally, it is necessary to do a more
in depth analysis that includes information about the mixing process and allows separating the
different types of rubbers, carbon blacks, etc. that have been treated here without distinction.
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