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Resumen

En física, la separación del momento de un cuerpo entre sus componentes lineal y angular nos
ayuda a entender la dinámica del problema. Además, en el momento angular, tradicionalmente
distinguimos entre sus componentes orbital, como el movimiento de la Tierra alrededor del Sol,
e intrínseco o de espín, como una pelota de baloncesto girando sobre el dedo de un jugador.
Formalmente, podemos separar el momento angular (MA), por un lado, según sus propiedades de
transformación bajo rotación de un sistema de coordenadas externo (MAO) y, por el otro, según la
proyección de su MA intrínseco en una determinada dirección del espacio (MAE).

Esta separación no solo tiene sentido en el mundo macroscópico gobernado por la física clásica,
sino también en el mundo microscópico. Seguramente, de hecho, hablar de espín y órbita nos lleva
como físicos a pensar casi instantáneamente en el espín y el movimiento del electrón en un átomo.
Más aún, esta separación no solo es útil para el movimiento de partículas, sino que podemos
usarlo para describir ondas electromagnéticas, por ejemplo. En ese caso, podemos identificar de
forma intuitiva la componente de espín con su polarización, es decir, con la rotación del campo
eléctrico con respecto a la dirección de propagación. Si, además, tenemos en cuenta que la
energía transportada no tiene por qué seguir un movimiento paralelo a la dirección de propagación,
podremos identificar una componente orbital también. Aún así, los métodos de estudio de sistemas
electrónicos y fotónicos suelen ser muy diferentes, alejándonos de un entendimiento global de la
dinámica de estos sistemas.

Con esta tesis, nuestra intención es contribuir a esa visión global de la separación entre MAO
y MAE y las posibles interacciones entre ambas, i.e., interacciones de espín-órbita (IEO). En
concreto, analizamos dos de las ramas más prometedoras de la física de hoy en día, la espintrónica,
con la supervisión del Dr. F. Sebastián Bergeret, y la nanofotónica, de la mano del Prof. Juan José
Sáenz. En espintrónica, estas IEO aparecen al tener en cuenta la corrección relativista de acoplo
espín-órbita (AEO) en el Hamiltoniano. En nanofotónica, en cambio, el estudio de las IEO es más
reciente y aún se siguen estudiando sus orígenes. Por tanto, una introducción teórico-histórica de
las IEO en ambas ramas por separado podría ser útil para el lector, sea cual sea su especialidad,
como ofrecemos en el capítulo 1.

Hemos querido también incluir la motivación original de esta tesis en la Sección 1.3. Se
trata de la posible similitud entre dos conocidos conceptos, y aparentemente diferentes, en el
problema de dispersión de una sola impureza de un electrón y de una onda electromagnética. En el
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caso electrónico, Berger propuso en 1970 [19] como explicación del efecto Hall anómalo, i.e., el
efecto Hall que desvía electrones en direcciones opuestas dependiendo de su espín en materiales
ferromagnéticos, lo que llamó el “side-jump”. Este se trata de un salto lateral de la función
de onda del electrón tras su dispersión con un potencial central y aparece cuando se tiene en
cuenta el término relativista de acoplo espín-órbita en el Hamiltoniano. Aunque no es instantáneo,
en ese trabajo Berger obvia el origen de este desplazamiento. En el caso fotónico, también se
estudia un desplazamiento aparente en campo lejano que surge en la dispersión de onda plana
electromagnética con dipolo eléctrico, al que nos referiremos también como espejismo óptico.
Al contrario que Berger, Arnoldus et al. (2008) [10] usan su origen físico para demostrar que
realmente existen esos desplazamientos, a saber, la trayectoria en espiral del vector de transferencia
de energía, i.e., vector de Poynting, dispersada [9]. Nuestra contribución consiste en usar el método
de la Ref. [10] para demostrar que el origen de ambos desplazamientos, tanto en dispersión de
electrones como de luz, es el mismo: la trayectoria en espiral del vector de transferencia de energía,
es decir, la corriente de probabilidad de la función de onda en el caso electrónico y el vector de
Poynting en el caso fotónico. En ambos casos, esta estructura en espiral cerca de la impureza, pasa
a ser prácticamente rectilínea cuando lo vemos desde lejos, lo que se traduce en un desplazamiento
aparente como está representado en la Fig. 1.4.

Sin embargo, como suele ocurrir en la investigación fundamental, a medida que fuimos
profundizando en el estudio de las IEO tanto en sistemas electrónicos como en luz, aparecieron
dudas aún sin resolver. Más aún, el creciente interés de los últimos años en las IEO tanto en
espintrónica (ver, e.g., [42, 18, 157]) como en nanofotónica (ver, e.g., [8, 27, 16]) formó parte
de la motivación de esta tesis, como detallamos en la Sección 1.4. En este sentido, los objetivos
principales de la tesis pasaron a centrarse en investigar muchas de esas dudas y, algunas de ellas,
acabaron convirtiéndose en las publicaciones que están compiladas en esta tesis como capítulos
4–7. Pasamos ahora a resumir estos objetivos.

En espintrónica, los detalles del AEO relativista están bien establecidos en la literatura. Hoy en
día, por tanto, podemos estudiar las IEO en transporte electrónico, analizando las consecuencias
de los efectos de AEO acumulados, como por ejemplo el efecto acumulado de impurezas en
las que los electrones experimentan un “side-jump”. La consecuencia principal de las IEO en
transporte es que ofrecen la posibilidad de generar, controlar y medir corrientes de espín mediante
corrientes eléctricas. Uno de los problemas que aparecen es que los materiales que tienen un
AEO fuerte inevitablemente conllevan una relajación o pérdida del espín fuerte también (cf. Sec.
2.1). La solución hoy en día se basa en elaborar dispositivos espintrónicos híbridos, combinando
materiales con AEO, donde generar y manipular el espín, y sin AEO, donde transportarlo hasta un
detector. En esta tesis ofrecemos una descripción de este tipo de dispositivos híbridos, a partir de
las ecuaciones de difusión de la carga y el espín, definiendo las condiciones de frontera necesarias.
Por un lado, en el capítulo 4 ponemos el foco en dispositivos con un material con AEO de carácter
intrínseco, e.g., Rashba AEO, que aparece debido a la ausencia de simetría de inversión en el
material (cf. Sec. 1.1). Por otro, en el capítulo 5 nos centramos en la descripción de sistemas
híbridos de dos materiales sin AEO en cuya interfaz aparece AEO. Este acoplo se puede deber a
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la acción conjunta de la rotura de simetría espacial en la interfaz y de fuentes extrínsecas, como
impurezas. El modelo y métodos usados en ambos casos pueden encontrarse en el capítulo 2.

En nanofotónica, en cambio, todavía existe la necesidad de un estudio detallado de las IEO.
Esto, sumado a la accesibilidad experimental de dispersión en impurezas individuales, hace que
hoy en día sigan siendo objeto de intensa investigación [27]. Hasta ahora, los estudios teóricos
se centraban en dispersión de dipolos puramente eléctricos, con la aparición de los espejismo
ópticos que mencionábamos arriba. En esta tesis, ofrecemos una descripción de las IEO en
dispersión de luz en partículas que se comportan como un dipolo eléctrico y magnético. El modelo
y métodos usados están resumidos en el capítulo 2. Debido a la ausencia de materiales magnéticos a
frecuencias ópticas, las partículas de materiales dieléctricos con índice de refracción alto (IRE), en
los que la circulación de corrientes eléctricas internas es el origen de la respuesta magnética además
de eléctrica, son los candidatos preferenciales para este tipo de estudios en gran parte debido a su
baja absorción [15]. Dependiendo de la interacción entre esas dos respuestas, podemos conseguir
una marcada direccionalidad o asimetría en la dispersión debido a las llamadas condiciones de
Kerker [88, 115]. Esto, conlleva la aparición de desplazamientos aparentes que sobrepasan los
anteriormente estudiados, incluso llegando a desplazamiento divergentes como demostramos en
el capítulo 6. Basándonos en la direccionalidad que aparece en la dispersión, en el capítulo 7
ofrecemos un estudio de las IEO basándonos tan solo en simetría. En este sentido, la helicidad,
que en campo lejano coincide con el grado de polarización circular de las ondas, demuestra ser
clave para entender los problemas de dispersión [57, 175].

Como conclusión, para poder llegar a entender las posibles analogías y buscar un modelo
común entre ambos mundos, hemos tenido que comenzar con un estudio profundo de las IEO en
espintrónica y nanofotónica por separado. Gracias a ese estudio, hemos tenido la oportunidad
de contribuir con diferentes publicaciones, no solo las compiladas aquí como capítulos 4–7, sino
también las correspondientes a las Refs. [121, 120, 118, 119, 151, 69]. Realmente creemos que
con esta tesis ofrecemos una visión global de dos de las ramas más prometedoras de la nanofísica,
así como una base teórica sólida con la que seguir trabajando para alcanzar ese objetivo original de
ofrecer un lenguaje y modelo común para estudiar las IEO en ambas ramas.
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Chapter 1

Introduction

Linear and angular momenta are present in our day to day as macroscopic and tangible components
of any body’s motion. Probably, one of the best examples is a pool table. Complete control of
the almost ideal conservation of momentum, with the interaction between linear and possible
angular components when balls collide, is the only requirement to win any pool game. Generally
speaking, within the angular momentum (AM) of a pool ball, we can distinguish between the
so-called spin and swerve effects, i.e., the classical spin (SAM) and orbital (OAM) components.
The intrinsic AM or SAM of a body is the rotational motion about its own center of mass axis, such
as a basketball’s spinning motion on a player finger. In contrast, the OAM component measures
the rotational motion about a chosen external axis, such as the Earth in its orbit about the Sun.

However, as a physicist, maybe the first idea that comes to mind when talking about spins and
orbits is an atom and the quantum version of AM. In the microscopic world, the most relevant
example of spin and orbital AM distinction is the one describing the motion of an electron inside
the atom. As early as 1911, Rutherford had already proposed a (classic) atomic model in which the
light electrons orbit around the massic nucleus formed by protons and neutrons, a few years before
the arrival of the well-known (quantum) Bohr model. In 1925, the concept of an intrinsic AM of the
electron was proposed by two of the PhD students of Ehrenfest, Uhlenbeck and Goudsmit [161],
being later Pauli (1927) [126] who introduced the concept of spin into quantum mechanics via the
spin matrices modifying the Schrödinger equation.

Indeed, classical electrodynamics’ applicability fails when interpreting both the orbits as
classical paths or the spin as an actual spinning of the electron; we inevitably need to introduce
quantum mechanics. Nevertheless, as explained in the textbook by Landau and Lifshitz (2013) [96]:

“...However, with the preceding understanding of the concept of angular momentum, the
[quantum] origin of it becomes unimportant, and we naturally arrive at the concept of an “intrinsic”
angular momentum which must be ascribed to the particle regardless of whether it is “composite”
or “elementary”.

...The intrinsic angular momentum of a particle is called its spin, as distinct from the angular
momentum due to the motion of the particle in space, called the orbital angular momentum [...] For
particles having spin, the description of the state by means of the wave function must determine
the probability not only of its different positions in space but also of the possible orientations of
the spin.”

From this explanation, we can furthermore understand that the applicability of the concepts of
spin and orbital AM is entirely general, “the origin of it becomes unimportant”, allowing us to
analyze under this picture almost every physical phenomena involving the motion, transport, or
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dynamics of any particle. Indeed, as explained in the following sections, the distinction between
spin and orbital components of the AM can also be introduced for electromagnetic radiation, i.e.,
light. The common basis is the general classification of the states of the system according to, on
the one hand, their transformation properties under rotation of the coordinate system (OAM) and,
on the other, the projection of the internal AM on some chosen direction in space (SAM). Applied
to an electromagnetic wave, this distinction can be made between the deviation of the energy flow
vector (Poynting vector) with respect to the propagation direction and the wave’s polarization,
related respectively to the OAM and SAM of light.

The main research line of the present doctoral Thesis is the study of SAM and OAM and
their possible interactions, i.e., the spin-orbit interactions (SOI), in two different fields of Physics,
spintronics and nanophotonics. Through this binary research work, the fundamental aim is to
understand the concept and effects of SOI in a general and profound manner, understanding
both fields’ potential analogies. Whereas the concept of spin-orbit coupling (SOC) in quantum
mechanics and its consequences in the field of spintronics is well-established, for light, it is a more
recent research field and, consequently, still with open questions.

Indeed, the original plan of this Thesis was to find analogies between SOC in electrons and
light. The primary motivation was particularly the study of a single scattering problem of both a
free electron and a circularly polarized electromagnetic plane waves, further explained in Sec. 1.3.
These scattering problems involve two well-established SOI-related concepts in each of the two
fields, the side-jump and the displacement of the far-field image of a radiating dipole, which were
first introduced by Berger (1970) [19] and Arnoldus et al. (2008) [10], respectively. In particular,
applying the same framework, we show that the side-jump’s origin is the spiraling trajectory of the
energy flux near the scatterer, as analogous to the origin of the apparent displacement in the work
by Arnoldus et al..

However, as is often the case in fundamental research, by deepening the understanding of
the SOC in both electronic systems and light, we found novel effects that derived in several
publications that form the basis of this Thesis. Indeed, the first two published works derived
from this Thesis, “Enhanced spin-orbit optical mirages from dual nanospheres” and “Asymmetry
and spin-orbit coupling of light scattered from subwavelength particles”, compiled as Chapters 6
and 7, respectively, originate directly from going beyond the electric dipolar regime assumed in
the work of Arnoldus et al. [10]. In the case of electronics, experiments are based on transport
measurements. The systems are more complex, and we need to consider different effects for
their description, such as disorder, different sources of SOC, and the effect of hybrid interfaces
between different materials. All these concepts are necessary to understand electronic transport.
Our research studies in this field led to two other publications, “Nonlocal magnetoelectric effects
in diffusive conductors with spatially inhomogeneous spin-orbit coupling” and “Quantification of
interfacial spin-charge conversion in hybrid devices with a metal/insulator interface”, compiled as
Chapters 4 and 5. In short, this PhD Thesis’s research led, on the one hand, to several contributions
in these two fields and, on the other, to some hints toward an analogy between SOC in solid-state
physics and photonics.

In the rest of this chapter, we provide a theoretical introduction into the main concepts and
effects addressed in this Thesis, in both fields, Spintronics and Nanophotonics. This brief review
contains the needed physical background for understanding the concept of SOI in each field, and it
serves as a starting point for the works that originated from this Thesis. Each of these introductions
maybe thus useful for non-experts but elementary for expert readers. Based on these background
concepts, in Sec. 1.3 we discuss the original motivation of the Thesis. The final part of this chapter,
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Sec. 1.4, outlines the general motivations and specific objectives in each of the fields, spintronics
and nanophotonics.

Based on these objectives, we develop an in-depth theoretical study in the present Thesis.
For that purpose, we first need to establish the models and methods applied, as we summarize in
Chapter 2. The main conclusions of this theoretical work are presented in Chapter 3. Finally, the
publications derived from the work done during these four years are compiled as Chapters 4–7.

1.1 Spintronics
In the atomic case, SOC is related to the relativistic interaction between the intrinsic spin of
the electrons and the experienced magnetic field in the electron rest frame due to the Lorentz
transformation of the electric field from the positive nucleus. Since this interaction thus scales with
the atomic or proton number, it is especially notable in crystalline lattices with heavy atoms. In
the last decades, such coupling has given rise to a new and intensively studied branch of Physics,
spintronics. We further summarize the numerous manifestations and applications of this field in
Sec. 1.4.

At the electronic Hamiltonian, SOC removes the spin degeneracy without the action of an
external magnetic field. Namely, this coupling enters as an effective Zeeman interaction between
the electron SAM and OAM, i.e., between its spin and the orbital motion:

HSOC =−µµµs ·Beff . (1.1)

Here, µµµs =−gsµBS/ℏ is the spin magnetic moment of the electron, with gs ≈ 2 the dimensionless
electron’s spin moment or g-factor, µB = eℏ/(2m) the Bohr magneton, and S = ℏσσσ/2 the SAM
operator, with σσσ the Pauli matrices. The perceived magnetic field by the moving electron due to
the nucleus electric field, E =−e−1∇∇∇U , with U the electric potential energy, is:

Beff =
ℏ

emc2 k×∇∇∇U , (1.2)

with k the wave vector describing the motion of the electron. Therefore, the SOC term reads:

HSOC ∝
ℏ2

2m2c2 σσσ · (k×∇∇∇U) . (1.3)

Even though this naive derivation is qualitatively correct, we need to take what is known as Thomas
half, due to the correction to the energy shown by Thomas (1926) [154]. Finally, the relativistic
SOC term in the Hamiltonian has the following well-known form:

HSOC =
λ

2

4
σσσ · (k×∇∇∇U) , (1.4)

with λ = ℏ/(mc) the reduced Compton wavelength. Equation (1.4) can be seen as the starting
point for any effective Hamiltonian describing systems with SOC of any kind [166]. As can be
inferred from this generic term, the coupling between electron’s spin and momentum could not only
be generated by the nucleus potential, but by any effective magnetic field affecting the electronic
transport. In this regard, a distinction can be made based on the dominant influence of either
“extrinsic” or “intrinsic” SOC. The former refers to the asymmetric deflection after scattering from
SOC interaction with extrinsic potential impurities [19, 146, 145, 116]. Examples of extrinsic
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potentials are (non-magnetic) impurity scattering (analyzed in Sec. 1.3), phonons, surfaces or
interfaces, grain boundaries, etc.

On the other hand, the lack of inversion symmetry in a system can also lead to spin-split
degeneration of the electronic energy bands. This phenomenon is referred to as intrinsic SOC. In
this regard, Dresselhaus (1955) [44] was the first to introduce an intrinsic cubic-in-momentum SOC
Hamiltonian describing bulk zincblende semiconductors, which was later shown to be reduced to a
linear-in-momentum term for two-dimensional electronic transport [49]. Few decades later, Vas’ko
(1979) [164] and Bychkov and Rashba (1984) [34] applied this concept to non-centrosymmetric
quantum wells at which the two-dimensional transport is described by the well-known linear-in-
momentum Rashba SOC term. Generally speaking, any intrinsic SOC term can be included in the
electronic Hamiltonian as follows (see, e.g. [20]):

H = H0 +HSOC =
pk pk

2m
+ Ω̂(p) =

pk pk

2m
+

Ωa(p)σa

2
. (1.5)

Here, we introduce the Einstein summation notation, useful for the spintronics analysis of this
Thesis. Upper indices correspond to spin components, a = x,y,z, and lower indices to spatial ones,
k = x,y,z. Spin structure is denoted by hat symbol and σ x,y,z are the Pauli matrices. Similarly to
the Zeeman effect, moving electrons will precess around the direction of the momentum-dependent
effective magnetic field Ωa(p).

In the particular case of Rashba SOC, addressed in Chapter 4, a naive derivation of Ωa(p)
can be obtained. Let us assume a two-dimensional electron gas in the x–y plane, with a constant,
homogeneous electric field in the z direction, generated by the symmetry breaking. In Eq. (1.4),
we can thus substitute k = ℏ−1(px, py,0) and E = 4ℏ(eλ )−1α êz, with α the so-called Rashba
strength coefficient. Comparing with Eq. (1.5), we can see that the only finite components of the
Rashba linear-in-momentum effective field are Ωx = 2α py and Ωy =−2α px. This shall serve for
any system at which an effective electric field arises due to the absence of inversion symmetry
such as non-centrosymmetric bulk materials, interfaces, or surface states. Hence, the Rashba
Hamiltonian reads as follows:

H = H0 +HSOC =
pk pk

2m
+α(pxσ

y − pyσ
x) . (1.6)

Linear-in-momentum SOC and, specifically, Rashba SOC are reviewed in Sec. 2.

In practice, at systems with sufficiently strong SOC, either extrinsic or intrinsic, the opposite
coupling to the charged electrons depending on its spin direction, and vice versa, lead to the inter-
conversion between spin (or magnetic) and charge (or electric) degrees of freedom. Consequently,
SOC is related to a variety of magnetoelectric effects that appear in the absence of an external
magnetic field. For that reason, conductors with sizable SOC are used for the creation and control
of spin currents and spin densities by applying electric fields. Reciprocally, magnetoelectric effects
allow for detecting spin by measuring electric signals [177, 145].

It is customary to distinguish between two kinds of magnetoelectric effects mediated by SOC:
those relating spin and charge currents (spin Hall effect and its inverse) and those relating spin
polarization and charge current (spin-galvanic effect and its inverse). These two phenomena are
illustrated in Fig. 1.1. The spin Hall effect (SHE) is the generation of a spin current, transverse to
the applied charge current [73, 50, 166, 145]. The inverse effect, commonly known as the inverse
SHE (ISHE) [145], corresponds to the spin-to-charge counterpart and consists of a charge current,
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or a Hall voltage, induced by a given spin current. Both SHE and ISHE have been measured in
several experiments and different materials [86, 143, 162, 92, 140, 137].

Fig. 1.1 Left panel illustrates the spin Hall effect and its inverse, relating a charge current, jy, with
a spin current in the perpendicular direction and polarized perpendicular to both currents, jz

x. Right
panel illustrates the spin galvanic effect and its inverse, relating a charge current, jy, with a spin
density polarized perpendicular to it.

The spin-galvanic effect (SGE), also known as the inverse Edelstein effect (IEE), refers to
the generation of a charge current by creating a non-equilibrium spin polarization in the material.
Conversely, the inverse SGE (ISGE) corresponds to the spin polarization induced by applying an
electric field/current [48, 103, 11, 176, 17, 64, 102, 68] and is also known as the Edelstein effect
(EE) [53, 141]. In contrast to the SHE, the induced spin is homogeneous in space and, in principle,
in the stationary case, no spin currents are generated [112, 130, 78, 129, 122]. Observation of SGE
and ISGE has been reported in Refs. [143, 149, 60, 138, 85, 79].

In a symmetry framework, the SHE and ISHE are universally present in all conductors with non-
negligible SOC without any symmetry restriction, i.e., originates from either extrinsic or intrinsic
mechanisms. In contrast, the SGE and ISGE, require the absence of inversion symmetry and, more
precisely, gyrotropic systems [160, 30], i.e., originates only from intrinsic SOC. Consequently, two-
dimensional systems such as surfaces or interfaces represent ideal candidates for the theoretical and
experimental study of magnetoelectric effects, as they are always locally gyrotropic. Significantly,
SOC effects are greatly enhanced in such systems since the resultant electric field from the broken
inversion symmetry couples to the electron spin effectively via Eq. (1.4), affecting the electronic
transport even in conventional conductors such as Cu or Au.
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1.2 Nanophotonics
The fundamental particle in the field of photonics is the photon, which can only be described under
quantum considerations. Fortunately, light seen as electromagnetic radiation, only dealing with
the photon wave character, was accurately described by the classical theory of fields developed
by Maxwell in 1873 [109]. The use of Maxwell’s equations as the photon’s quantum motion
equations indeed yields the conclusion that photons’ wave properties coincide with those of the
electromagnetic fields.

However, since the wave picture may not be sufficient in all scenarios involving light-matter
interaction, it is necessary to clarify the scales this Thesis deals with. How light-matter interaction
is addressed fully depends on the relation between the incident wavelength and the object scales
considered. The description of the interaction ranges from geometrical optics, in which the
wavelength is much larger than the object dimensions, to Rayleigh optics, in which the opposite
limit is assumed. This Thesis is halfway between these two limits and is focused on the light-matter
interactions that arise when the incident wavelength and matter scales are of the same order of
magnitude. Specifically, the present work studies light-matter interactions at the nanometer scale,
a field commonly known as nanophotonics. The incident wavelength typically ranges from the
ultraviolet to the near-infrared, passing through the visible range. Nanophotonics thus studies the
interaction of light with nano-sized particles as biological cells or nanospheres made of silicon
within this band spectrum. At these scales, the physical effects studied require the description of
light as an electromagnetic wave, and the classical Maxwell’s equations are suitable to describe
the fields. Furthermore, we consider weak enough radiation to avoid possible thermodynamical
effects.

Maxwell’s equations encompass the major laws of electricity and magnetism, which is one of
the great unifications in physics until the date. Namely, they encode the four differential equations
describing electric and magnetic fields, the relations between them, and their relation with their
possible sources, i.e., charge densities and currents. These consist of the Gauss’s law for both
electric and magnetic fields, stating that only static electric fields can be related to a source, whereas
no magnetic monopoles exist. In addition, the third equation describes the possible generation of
an electric field from a time varying magnetic one, known as the Maxwell-Faraday’s law. Finally,
the Maxwell-Ampère’s law conclude the set of equations describing how a magnetic field can be
built from both an time-varying electric field or an electric current. Their differential form reads:

∇∇∇ ·D = ρ , (1.7)

∇∇∇ ·B = 0 , (1.8)

∇∇∇×E+
∂B
∂ t

= 0 , (1.9)

∇∇∇×H = J+
∂D
∂ t

, (1.10)

where, respectively, E and H are the electric and magnetic fields, and ρ and J are the charge
density and current associated with “free” charges. The electric displacement D and magnetic
strength or induction B are:

D = ε0E+P , B = µ0 (H+M) , (1.11)
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where P is the electric polarization, M the magnetization, and ε0 and µ0 are the vacuum permitivity
and permeability, respectively. Maxwell’s equations are not sufficient in themselves, but need to
be supplemented with the constitutive relations. Here, we assume the following relations [28]:

J = σE , P = ε0χeE , M = χmH , (1.12)

where σ is the conductivity and χe/m is the electric/magnetic susceptibility. These coefficients will
be assumed to be independent of the fields, position or direction, i.e., the materials studied here are
linear, homogeneous, and isotropic. In addition, we assume harmonic time-dependence of the fields,
i.e., e−iωt . In complex representation [81], E(r, t) = ℜ

{
E(r)e−iωt

}
and H(r, t) = ℜ

{
H(r)e−iωt

}
and, therefore, we can rewrite Maxwell’s equations as follows:

∇∇∇ · (εE(r)) = 0 , (1.13)

∇∇∇ ·H(r) = 0 , (1.14)

∇∇∇×E(r) = iωµH(r) , (1.15)

∇∇∇×H(r) =−iωεE(r) , (1.16)

with µ = µ0(1+χm) the medium permeability and ε = ε0(1+χe)+ iσ/ω the medium permittivity.
However, in most scenarios, Maxwell’s equations’ exact solution is tough to obtain, at least, in

an analytical form. Furthermore, given its vectorial nature, an unambiguous distinction between the
spin and orbital AM components of light, i.e., between SAM and OAM, and its formal definition
is not straightforward at all (see, e.g., [27, 25, 168, 108]).

Nevertheless, in many optical problems, the electromagnetic fields can be assumed to propagate
mostly along a particular straight direction, e.g., z direction as chosen in this Thesis. This limit is
known as paraxial approximation [117] and, when light is considered within this approximation,
the distinction between SAM and OAM becomes meaningful and convenient [172, 27, 4]. The first
quantification of SAM of a circularly polarized light paraxial beam was done by Beth (1936) [22]
following the seminal work of Poynting (1909) [128], observing transfer of light SAM to a
birefringent plate. The explicit value of the OAM, on the other hand, was firstly calculated
by Allen et al. (1992) [3] for a realizable paraxial light beam, namely, a Laguerre-Gaussian beam.

Let us assume a paraxial beam propagating along the z direction. In this framework, the
electromagnetic field’s SAM or “intrinsic” AM component can be related to the polarization of
light, depicted in Fig. 1.2(a). Light with well-defined SAM corresponds to electromagnetic waves
with right- or left-handed polarization, corresponding to sz =±1. In contrast, the OAM is the AM
contribution due to the motion of the wave in space, which in the paraxial case, reduces to the
possible revolution around the propagation direction of the energy transfer rate vector, as illustrated
in Fig. 1.2(b). This revolution traduces in a certain helical phase front with corresponding value
of the OAM lz, which can take infinite (discrete) values, lz = (−∞,∞). Since the energy orbits
around the propagation axis, this axis corresponds to a zero intensity direction. Hence, light
beams carrying this kind of OAM are also called optical vortices. However, if we assume that the
propagation direction is shifted with respect to the coordinate origin, another contribution to the
OAM arises. This corresponds to the so-called “extrinsic” OAM [27], depicted in Figure 1.3. Even
though this component can be neglected for incident beams, in scattering problems, where the
energy transfer vector may be non-radially scattered, this component of the OAM contributes (see
Sec. 1.3).
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Fig. 1.2 (a) The spin angular momentum (SAM) of light is connected to its polarization, i.e.,
the revolution of the electric field, E, around the propagation direction, z in this case. An
electromagnetic wave carries no SAM if the polarization is linear (left panel), whereas its extreme
values correspond to right or left circular polarization (right panel). (b) The orbital angular
momentum (OAM) corresponds to the revolution of the energy transfer rate vector, i.e., Poynting
vector S, around the propagation direction z. These figures are adapted from Ref. [172].

Fig. 1.3 Extrinsic orbital angular momentum (in red) of a paraxial beam. It arises when the
propagation direction (in yellow) is not aligned with the coordinate origin. Figure adapted from
Ref. [27].

In this Thesis, we analyze the scattering of circularly polarized plane waves. The distinction
between SAM and OAM is straightforward for the plane wave case. Since, by definition, the
energy transport in a plane wave is parallel to the propagation direction, its OAM is zero. In
contrast, its circular polarization leads to sz =±1, depending on the direction of rotation of the
electric field. However, SAM and OAM values need to be calculated for scattering waves and
depend on the scattering angle.

Formally, we can calculate the SAM and OAM contributions from the corresponding operators.
We can identify these operators within the definition of the total AM. First, the energy transfer rate
vector, i.e., energy per unit area and unit second, is but the Poynting vector entering the Poynting
or energy conservation theorem [81] and it is defined as follows:

S = E(r, t)×H(r, t) . (1.17)
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The time-average of the Poynting vector assuming harmonic time-dependence reads [28]:

⟨S⟩= 1
2

ℜ{E(r)×H∗(r)} . (1.18)

From here on, ⟨S⟩ is directly represented by S and the fields E = E(r), and H = H(r) correspond to
the spatial part in complex representation. The definition of the (time-averaged) total AM (AM per
unit volume, J · s/m3) of the beam can be calculated from the Poynting vector as follows [81, 38]:

JAM =
r×S

c2 . (1.19)

From this equation, the formal separation of the AM of light into its OAM and SAM components
was firstly suggested by Humblet (1943) [77]. For a monochromatic time-harmonic wave in a
non-absorbing medium, the Poynting vector reads as S = (1/(2ωµ))ℜ{E× (−i∇∇∇×E∗)} (see
Eq. (1.15)). We can then split the latter into two different terms and identify each one with the
OAM and SAM parts in Eq. (1.19) as follows [38]:

JAM
i =

1
c2

1
2ωµ

ℜ{E∗
j [−i(r×∇∇∇)]iE j +E∗

j (−iεi jk)Ek} , (1.20)

where Einstein notation is assumed, Latin letters run over the spatial components, (x,y,z), and
εi jk is the Levi-Civita symbol. Within this equation, we can therefore identify the OAM operator,
L̂ = [(r× P̂)] with P̂ =−i∇∇∇ the linear momentum operator, and SAM operator, Ŝspin

jk =−iεi jk [57].

Accordingly, the total AM operator reads Ĵ = L̂+ Ŝspin
jk . Analogous to quantum mechanics, each

of the spatial components of the density per photon of these operators can be computed as
follows [38, 26]:

li =
ℜ{E∗

j [−i(r×∇∇∇)]iE j}
E∗

j ·E j
, (1.21)

si =
ℜ{E∗

j (−iεi jk)Ek}
E∗

j ·E j
=

−i(E∗×E)i

E∗
j ·E j

, (1.22)

and the components of the total AM density are thus ji = li + si.

In this Thesis, the SOC interaction that is analyzed relies on the conservation of the total AM
in the wave propagation direction, jz, in the scattering of light of azimuthally-symmetric particles,
which is introduced in Chapter 2. This conservation leads to the mutual transformation between
sz and lz in the scattering process. The scattering problem is particularized for spheres, which
constitutes one of the most studied electromagnetic systems with an exact solution of Maxwell’s
equations: the scattering of a homogeneous and isotropic sphere in a non-absorbing medium under
plane wave illumination. Thereupon, the history of the origin of this electromagnetic scattering
problem is below briefly introduced.

The electromagnetic scattering by a homogeneous and isotropic sphere embedded in a lossless
medium under plane wave illumination is commonly referred to as Mie scattering, although Mie
was not the first to address this problem 1908 [110]. Almost twenty years before Mie, Lorenz
solved this scattering problem independently [101]. Furthermore, Debye solved the related problem
of radiation pressure on a spherical particle [41]. Hence, the scattering by a homogeneous and
isotropic sphere embedded in a non-absorbing host medium under plane wave illumination has also
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been referred to as Lorenz-Mie theory, or even Lorenz-Mie-Debye theory. However, Mie’s name
has predominantly stuck in the literature [100]. Notably, this recognition did not arrive immediately
after publishing his work "Contributions to the optics of turbid media, particularly colloidal metal
suspensions" [110]. This paper aims for a fundamental theoretical explanation of the coloration of
metals in a colloidal state. At that time, Mie, and the scientific community, considered his treatise
to be a rather trivial application of Maxwell’s contribution. Moreover, the interest in colloidal
suspensions was clearly not comparable to the one nowadays. Due to this fact, Mie’s contribution
remained almost inconspicuous for over fifty years. Interestingly, this paper is sometimes referred
to as Dornröschen (Sleeping Beauty) because of its late recognition considering both the increasing
interest in the field and the actual number of citations. The recognition doubtless arrived after
the book of Stratton (1941) [152]. In the latter, the Mie theory was reformulated in terms of the
vector spherical harmonics making the so-called Mie theory more accessible and understandable
for a broad scientific audience. Besides Stratton’s book, a crucial role in the dissemination and
popularization of the Mie theory has been played by the monographs by Hulst and van de Hulst
(1981) [76], Born and Wolf (2013) [31], Kerker (1969) [87], and Bohren and Huffman (2008) [28].

1.3 Original motivation of this Thesis
Originally, this doctoral Thesis stemmed from the idea of deeply understanding the concept of
spin-orbit coupling and the possible connection between the branches of nanophotonics, with the
supervision of Prof. Juan José Sáenz, and spintronics, with Dr. F. Sebastián Bergeret. In particular,
the starting point was the scattering from a spherical impurity of electromagnetic and free-electron
plane waves, respectively, when taking into account the respective SOI. Firstly, in spintronics, the
well-known work by Berger (1970) [19] proposed an explanation for the anomalous Hall effect in
ferromagnets as an apparent discontinuous shift of the wave function of the electron after scattering
from a central potential. Berger called this apparent shift “side-jump”, which is nowadays accepted
as one of the extrinsic contributions, together with the skew scattering, of both the anomalous
and spin Hall effects (for a review see, e.g., Ref. [145]). In Berger’s work, this effect’s dynamical
origin is rather neglected, stated as follows “Of course, the side jump is not instantaneous, but the
details of electron motion inside the scattering potential are irrelevant for our purpose”. In sharp
contrast, the work by Arnoldus et al. (2008) [10] focuses on the geometrical origin of the apparent
shift found in the scattering of an electric dipole, shift already predicted by Darwin in 1932 [39]
and previously studied for other geometries (see, e.g., Ref. [123, 27]). In the spherical case, this
shift is indeed the far-field effect of the scattered Poynting vector’s spiraling spatial trajectory.

In order to find a possible analogy, we should thus use the same framework in solving both
scattering problems, e.g., the geometrical argument from which the origin of both effects could also
be analyzed. In the following, the work of Arnoldus et al. [10] is first summarized, then applied to
the electron scattering from a central potential, and finally compared to the result of Berger [19].

In the work of Arnoldus et al., the problem of a circularly polarized plane wave, E=E0eikz(êx+
iσ êy/

√
2) with σ =±1 for left-/right-handed incident circular polarization, scattered by a small

spherical particle, i.e., an electric dipole, is solved. In this case, the only finite component of the
SAM calculated using Eq. (1.22) is therefore sz =±σ . The resulting scattered Poynting vector
has the following form [9]:

S =
3P0

8πr2

[(
1− sin2

θ

2

)
êr +

σ

kr

(
1+

1
(kr)2

)
sinθ êϕ

]
, (1.23)
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where the chosen coordinate system is z = r cosθ , x+ iy = r sinθeiϕ , and P0 is the incident power.
Directly from this equation, it can be seen that the Poynting vector has an angular component
that traduces in a spiraling trajectory in the near/medium-field. In far-field, the Poynting vector
would practically follow a straight line, and, therefore, we can assume the paraxial approximation.
However, this straight line is slightly displaced from the external coordinate origin, i.e., the
particle’s center. This far-field displacement translates into an extrinsic contribution to the OAM
(see Fig. 1.3). As illustrated in Fig. 1.4, this leads at the far-field to an apparent shift of the particle,
an effect also referred to as optical mirage throughout this Thesis.

The value of this shift can be calculated from the sine of the angle between the scattered
Poynting vector and the radial vector. Using for example S1 in Fig. 1.4 and its angle with Sr in
the far-field, the sine is equal to both ∆∆∆1/r and −S⊥/|S · êr|, where S⊥ is the perpendicular to the
radial component of S. Therefore, the value of the apparent shift can be calculated as [70]:

∆∆∆ = lim
kr→∞

−r
S⊥

|S · êr|
=

σ

k
2sinθ

sin2
θ −2

êϕ . (1.24)

Fig. 1.4 Schematic representation of the optical mirage vector when considering a clockwise
circularly polarized incoming wave (thick green straight arrow lying on the z axis). The observer,
represented by an eye, perceives a non-radial scattered Poynting vector (S1, S2) that leads to an
apparent shift (∆∆∆1, ∆∆∆2) of the dipole localization, both lying on the x–y plane.

Secondly, in the work of Berger [19], the scattering of a free electron plane wave by a short-
range square-well potential in the presence of SOC is reviewed. The free electron is incident in the
x direction, with spin perpendicular to it and eigenstate of the Sz component [146]. The scattered
wave function reads as follows:

ψscatt = b0h0(kr)+σq1h1(kr)sinθ sinϕ . (1.25)
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Here, the chosen coordinate system is x = r cosθ , z+ iy = r sinθeiϕ , k is the incident wavenumber,
σ =±1 as the eigenvalues of the spin, b0 and q1 the scattering coefficients. The limit ka ≪ 1, with
a the scatterer radius, is assumed. Analogous to the Poynting vector in photonics, the probability
current, Je = ℏ

m {ψ∗
scatt∇∇∇ψscatt}, is the vector that describes the magnitude and direction of the

energy transfer rate of the wave function. Since this calculation intends to demonstrate that the
side-jump can be explained via the corresponding version of the geometrical argument illustrated
in Fig. 1.4, the short-range and Born approximations can be taken for simplicity. The probability
current in spherical coordinates for this case reads as follows:

Je ≈ ℏ
mkr2

[
|b0|2 êr −

σ

kr
ℜ{b∗0q1}

(
cosθ sinϕ êθ + cosϕ êϕ

)]
, (1.26)

revealing the near/medium-field angular components that provide a spiraling trajectory to the
probability current of the electron in the scattering process. This spiraling trajectory can be
understood as the geometrical origin of the so-called side-jump, illustrated as well in Fig. 1.4 if
substituting the incident circularly polarized plane wave, subwavelength particle, and Poynting
vector by an incident (spin-structured) free electron plane wave, central potential, and probability
current, respectively.

Applying the corresponding form of Eq. (1.24), using Je instead of S, yields the following
expression for the apparent shift:

∆∆∆ = lim
kr→∞

−r
Je
⊥

|Je · êr|
=

σ

k
ℜ
{

b∗0q1
}(

cosθ sinϕ êθ + cosϕ êϕ

)
|b0|2

. (1.27)

Finally, this expression in the forward direction, θ = 0, can be reduced to:

∆∆∆ =
σ

k
ℜ
{

b∗0q1
}

|b0|2
êy =

σ

6
kλ

2 êy , (1.28)

coinciding with the well-known result for the side-jump of Berger [19].
It is important to notice that in Berger’s paper, the incident plane wave is spin-polarized

perpendicular to the propagation direction, whereas in the work of Arnoldus et al. the incident
SAM is parallel to it. This is why in Eqs. (1.26) and (1.27) there is an additional angular component
êθ . Nevertheless, in both cases, the geometrical analysis demonstrates that the spiraling structure
of the energy flux near the scatterer is responsible for the possible apparent displacements after
scattering.

In conclusion, this first comparative analysis would appear to open the door to understanding
impurity (extrinsic) scattering SOC effects from the same point of view in both spintronics
and nanophotonics: a scattering angular-dependent apparent shift originated from the spiraling
trajectory of the energy flow after scattering. Furthermore, this effect depends on the particle’s
spin or the electromagnetic wave’s circular polarization, being opposite for spins up and down
or left- and right-handed polarization. That is why in both fields, this deflection SOC effect is
referred to as spin Hall effect: opposite deflection, and displacements, due to the SOI depending
on the spin of the incoming wave. However, although this may be a strong and beautiful common
starting point, it is only related to the extrinsic character of the origin of the spin Hall effect. As
explained below, scattering experiments are nowadays deeply investigated in nanophotonics, but in
spintronics, the accessible measurements are transport experiments, in which disorder and intrinsic
SOC need to be taken into account.
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In nanophotonics, the study of single impurity scattering involving SOI is still a matter of
intense research. It follows from the fact that it is experimentally accessible since the related effects
such as the optical mirage are of the order of the incident wavelength. The optical mirage effect
is particularly significant when greater accuracy in measurements is needed since any apparent
shift seen by the detector yields localization errors (see Sec. 1.4.2). In this Thesis, this problem is
further analyzed. Particularly, the consequences of going beyond the electric dipolar regime, with
the interaction between the electric and magnetic dipolar orders, are deeply investigated.

In contrast, the SOC’s relativistic character in spintronics translates into challenging to measure
effects, such as the side-jump of Eq. (1.28), which is much smaller than the Compton wavelength.
Consequently, SOC is studied from the point of view of electronic transport in mesoscopic
conducting systems. SOC links electron’s charge and spin degrees of freedom, which, in transport,
translates into mutual interconversion of charge and spin currents and, therefore, electric voltage
drop measurements are the usual SOC signature used in spintronics. Besides, experiments are
usually carried out in conductive systems such as ferromagnets or semiconductors, in which
disorder plays a role. The latter affects spin and charge transport, even in spin-independent
disorder, e.g., randomly distributed lattice defects, boundaries, or thermal fluctuations. In spin
transport, disorder can yield modification of the spin direction, i.e., spin relaxation. The comparison
between the mean free path of the electrons in the system, ℓ, with the spin relaxation length, λs, is
therefore used as a signature of the transport regime present in the system. In this regard, electronic
transport most frequently occurs in the diffusive regime, in which the mean free path is the smallest
length scale considered in the system, i.e., ℓ≪ λs.

Concerning SOC’s origin in mesoscopic transport, within the extrinsic potential scattering, in
addition to the side-jump briefly explained above, there also appears the so-called skew-scattering
contribution [145]. Furthermore, there is also an intrinsic contribution to the magnetoelectric
effects, to the SHE, and the SGE, as mentioned in Sec. 1.1. Consequently, this Thesis is developed
not only to the study of SOC in impurity scattering but also of the SOC intrinsic origin to acquire a
complete theoretical basis in SOC in spintronics. In particular, intrinsic SOC can be understood as
effective magnetic and electric fields within the SU(2) formalism, finding a useful analogy with
the Lorentz force in electromagnetism. This analogy is further presented in Chapter 2.

1.4 General objectives
Hitherto, a general theoretical, historical introduction to the main concepts studied in this doctoral
Thesis has been presented. Even though the beauty of the physical concepts studied and discussed is
in itself worth it, this Thesis’s usefulness is also linked with the actual or experimental applicability
of those concepts. Indeed, part of the motivation of this Thesis relies on the existing interest
and intense research on the topics addressed here, in both spintronics and nanophotonics fields.
The combination of the original motivation presented in Sec. 1.3, the possible applicability, and
research on the state-of-the-art published works allowed us to settle the main objectives of this
Thesis. In particular, the general objectives undertaken during these four years are outlined below
separately for the spintronics part, Sec. 1.4.1, and nanophotonics part, Sec. 1.4.2.

1.4.1 Spintronics
In addition to the charge, spintronics benefits from the additional electronic degree of freedom,
the spin. One of the main branches of spintronics is the use of spin-orbit coupling to control the
coupling between spin densities and currents by electric means, rather than external magnetic
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fields [177, 166]. The coupling between the spin and the electron’s momentum leads to the possible
use of a charge current as a source of spin polarization, i.e., magnetoelectric effects without external
magnetic fields. This all-electrical spin manipulation entails development possibilities in modern
computing technologies based on writing, storing, and recovering information encoded as magnetic
bits [42, 37, 177, 56, 170].

Two of the most studied magnetoelectric effects are those introduced in this chapter and
further studied in Chapters 4 and 5: the spin Hall (SHE) and spin galvanic (SGE) effects. Spin
generation at a given location and then spin transport between different locations are needed for
the corresponding spin detection. On the one hand, this requires materials with large SOC for
efficient charge-to-spin conversion and, on the other, with large enough spin diffusion lengths
to transport the spin information across the device. The problem is, however, that strong SOC
in a diffusive system will inevitably lead to a strong spin relaxation [48] as we further explain
in Chapter 2.1. From an experimental perspective, we can tackle this problem by using hybrid
structures combining different materials. For instance, we can combine one material with a strong
SOC, in which the spin generation and manipulation occur, adjacent to another region with a
weak SOC where the spin information can be transported over long distances. Another option
is to combine two materials with weak SOC at whose shared interface an interfacial SOC is
induced. Indeed, within state-of-the-art experimental research, hybrid devices for spin generation,
manipulation, and detection based on SHE and SGE constitute a promising base for developing
nonvolatile spin-orbit torque memories [111, 99, 135] and spin-based logic devices [127, 106, 107].

Consequently, a thorough theoretical description of these magnetoelectric effects is crucial
for the development of spintronics devices. This, in addition to the necessity of a complete
understanding of SOC effects, beyond single impurity scattering, in electronic transport, lead this
Thesis to deviate from its original motivation, Sec. 1.3. Indeed, given the intense research activity
in the field, the opportunity to contribute to understanding SOC in hybrid structures became one of
the key objectives of this Thesis.

A widely used spintronics device is the so-called non-local lateral spin valve (see, e.g.,
Refs. [116, 91, 153, 83, 82]). This device can be seen as a modern-day upgraded version of
the firstly proposed spintronic device for Rashba SOC measurements in a two-dimensional
electron gas, the Datta-Das spin transistor [40]. We focus on lateral spin valves that can be
described by diffusive electronic transport and with intrinsic linear-in-momentum SOC (see,
e.g., [162, 134, 136, 62, 98, 18, 74, 89, 13]). Figure 1.5 illustrates a typical device combining
a normal region, graphene in this case, and a central region with Rashba-like SOC, induced by
deposition of a non-magnetic insulator on top of graphene, Bi2O3 in this case. By applying external
electric currents, spin densities induced by magnetoelectric effects can be detected. In principle,
the spin and charge transport in each region can be described with the well-known drift-diffusion
model. However, sometimes it is not trivial to describe the spin-charge coupling within this
framework. One of this Thesis’s main objectives is the description of the boundary conditions right
at the interface between normal and SOC regions. These boundary conditions are straightforward
for the charge density and currents due to the principle of charge conservation: continuity at the
interface. However, since the spin is not a conserved physical quantity, the corresponding boundary
conditions have to be derived with care. This research line is followed in Chapter 4.

SOC can also be induced right at the interface between different non-magnetic materials. The
magnetoelectric generation of the spin densities occurs at the interface. Such spin can then diffuses
into the normal bulk conductors. In this case, different experimental devices are typically used for
the measurements (see e.g. [85, 157, 97]). In this Thesis, we mainly focus on lateral spin valves
(see e.g. [90, 80, 79, 158]) and multilayered Hall bars (see e.g. [138, 113]). Figure 1.6 illustrates
these two devices. In both cases, the SOC particularly occurs at the interface between copper
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Fig. 1.5 Non-local measurements in graphene/Bi2O3 lateral spin valve. By applying an electric
current in y direction, an out-of-plane polarized spin current is generated via SHE (a) and an
in-plane homogeneous polarization is induced via EE (b). Both can be non-locally detected at,
e.g., ferromagnetic detectors (black wires). Figure adapted from Ref. [136].

(Cu) and a non-magnetic insulator (BiOx). Further details of these experimental devices can be
found in Chapter 5. The other main objective of this Thesis is thus to give a complete and general
formalism for quantifying the magnetoelectric effects at these heterostructures. This objective is
also motivated by the possible description of the ISOC by effective boundary conditions at the
interface, based only on symmetry arguments, predicted in Refs. [30, 5–7]. This other objective of
the Thesis is addressed in Chapter 5.

Fig. 1.6 Typical spintronics devices with ISOC, in this case with a Cu/BiOx interface. (a) Lateral
spin valve for non-local measurements at ferromagnetic wires (blue wire). Figure adapted from
Ref. [80]. (b) Multilayered structure for spin Hall magnetoresistance measurements. Figure
adapted from Chapter 5.

1.4.2 Nanophotonics
Light beams carrying AM have been applied to different branches of optics since the first
observation of SAM transfer by Beth (1936) [22]. From this pioneer experiment, transfer of
both OAM and SAM have been used for micromanipulation of optically trapped particles (see,
e.g., [72, 144, 124, 104, 125]), new kinds of spectroscopy analysis, or information encoding for
optical communications (see, e.g., [139, 169, 63]).

Specifically, this Thesis focuses on SOI arising in scattering problems [70, 27]. In this regard,
a recent work has pointed out spin-orbit optical mirages as a possible source of optical localization
errors when imaging emitters or scatterers [8]. As revised in Sec. 1.3, these SOI lead to a spiraling
structure of the Poynting vector, which, in turn, traduces into apparent displacements of the order
of the incident wavelength for particles behaving as electric dipoles. These optical mirages have a
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direct consequence in the image of the scatterer at the detector’s screen, as depicted in Fig. 1.7.
Note that these localization errors can thus affect measurements of scatterers of any kind, such
as electron wave scattering as shown in Sec. 1.3 or astronomical objects emitting gravitational
waves [23].

Fig. 1.7 The spiraling structure of the Poynting vector traduces in localization errors, ⟨y⟩, in
far-field measurements at the screen of a hypothetical detector, with characteristic focal length, f
Figure taken from [8].

These varied possible implications encouraged us to get some insight into the understanding
of SAM and OAM and the possible interactions between them. Considering also the possible
analogies with spintronics suggested in Sec. 1.3, the general objective of this Thesis was established.
Namely, an in-depth analysis of SOC interactions in scattering problems when going beyond the
pure electric dipolar regime—in other words, exploring possible effects of the interplay between
electric and magnetic dipolar modes.

From the experimental perspective, we need thus scatterers with an electric and magnetic
response under incident electromagnetic radiation. The electric permittivity of materials is in
general different to that of the vacuum, ε ̸= ε0, and, therefore, materials have an effective electric
response to light. However, for naturally occurring materials, the magnetic permittivity is always
close to that of the vacuum, µ ≃ µ0. This inevitably traduces in a negligible magnetic response in
Nature at the wavelength range used in nanophotonics, i.e., on the nanometer scale, commonly
referred to as optical range [35, 96].

In this regard, the generation of magnetic moments induced from the internal electric fields may
be the solution. When a particle couples to an incident electric field, internal charge currents due to
conducting electrons are directly generated. In insulating (or semiconducting) dielectric materials,
an internal electric polarization may appear instead. In both cases, an effective magnetic moment
is induced in the material through Maxwell-Ampère’s law (1.10). In Chapter 2, we further explain
how different electric modes or distributions induce different electric and magnetic moments (see
Figure 2.5).

Within all the possible candidates, high refractive index (HRI) dielectric particles have received
increasing interest during the past decade (see, e.g., [61, 95, 65, 15, 174, 29]). In contrast to
metallic particles, dielectric particles do not present optical losses in the optical range. These losses
can be understood since, according to Drude theory, losses within a metallic system are related to
the scattering of moving electrons with impurities, phonons, etc. On the other hand, the unique
optical properties of HRI nanoparticles are also linked with the excitation of single dipolar modes,
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in contrast to low refractive index (LRI) dielectric particles. Figure 1.8 shows two examples of the
scattering response efficiency of LRI and HRI spheres under plane wave illumination (for further
details, see Chapter 2). The dipole and quadrupole modes barely have a structure for LRI particles.
In contrast, HRI particles have well-defined, thinner resonances for each mode, and, therefore,
we can work within a wide range of the spectra dominated by an electric and magnetic dipolar
response.
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Fig. 1.8 Scattering efficiency of two spheres of radius a = 230nm under plane wave illumination vs.
the so-called size parameter x = ka, with k = 2π/λ and λ the incident wavelength. Namely, we
show a LRI particle with refractive index m = 1.2 (a) and a HRI particle with m = 3.4 (b). Dipolar
and quadrupolar contributions to the total efficiency are also included, particularly well-defined in
panel (b).

Furthermore, due to the interplay between electric and magnetic responses, light’s strong
directionality may be achieved under certain circumstances. This effect was theoretically predicted
by Kerker et al. (1983) [88] for magnetodielectric spheres, i.e., spheres with µ ̸= µ0. The so-called
first, ε = µ , and second, ε = (4−µ)/(2µ +1), Kerker conditions correspond to suppression of
the scattered light in backward and forward directions, respectively. Kerker conditions, firstly
quoted as anomalous light-scattering conditions, remained largely overlooked due to the lack of a
fundamental explanation. The latter arrived roughly thirty years later by Fernandez-Corbaton et al.
(2012) [57], with the aid of a light non-geometrical symmetry, duality symmetry [36], generalized
for scattering problems. This work demonstrated that the first and second Kerker conditions
correspond, respectively, to dual and antidual scatterers for which the incident helicity is conserved
or completely reversed after scattering [57, 175] 1. As previously suggested, Kerker conditions and
duality restoration phenomena can be generalized for non-magnetic scatterers, namely, HRI spheres
in the dipolar regime. This generalization was firstly done by Nieto-Vesperinas et al. (2011) [115]
in their work entitled “Angle-suppressed scattering and optical forces on submicrometer dielectric
particles”. As a result of these theoretical analyses, different applications were studied. Particularly,
full control of the scattering directionality can be useful for multiple applications, such as light
trapping applications or improving solar cells’ performance (see, e.g., [15, 163, 142, 16]).

1The helicity arises from the projection of the SAM onto the linear momentum of the wave and, in far-field, the helicity
density correspond to the degree of circular polarization of the scattered waves, as further reviewed in Chapter 2.
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Based on all these previous research works and the possible applications, we further specified
the details of the main objective of the nanophotonics part of this Thesis. Namely, the study of
the spin-orbit optical mirages arising from the scattering of a HRI particle with an electric and
magnetic dipolar response. It is addressed in Chapter 6, whereas Chapter 7 arise as a natural
consequence of the previous work, focusing on the possibility of describing SOI in the dipolar
regime from scattering symmetry considerations.



Chapter 2

Models, methods, and results

The fundamental equations behind the two main topics of this Thesis are the Schrödinger and
Maxwell’s equations. The wave function describing the electron in spintronics and the electric and
magnetic fields in photonics can be obtained from them. Besides, charge conservation, implicit in
both theories, is described by the continuity equation:

∂ρ

∂ t
=−∂k jk , (2.1)

where jk is the k-th component of the charge current density J. Equation (2.1) illustrates the
physical fact that any variation of the charge density ρ at some small volume in a certain time
must correspond to a flow of charge or charge current density J in- or outgoing through the volume
surface.

There are different contributions to the current in Eq. (2.1). For example, in analyzing light-
matter interactions, the incident electric field generates a (drift) charge current inside the target
which, in turn, scatters light, i.e., J ∝ Eint, with Eint the electric field induced inside the volume.
Another example: when studying electron transport in metals additional contributions to the charge
current appears such as diffusive currents, as explained later in this chapter.

In electrodynamics problems, the charge and current densities are the electromagnetic fields’
sources, whereas, in electronics and spintronics, one usually assumes a given external electromag-
netic field and compute the densities. In both situations, it is convenient to introduce the vector,
A, and scalar, φ , potentials to describe the electromagnetic fields. Specifically, for the present
Thesis, the introduction of these potentials simplifies the relationship between sources and fields in
Maxwell’s equations. As a matter of fact, a direct relation can be obtained between the gauge fields
and sources, i.e., J as the source of A and ρ as the source of φ (see Eq. (2.3)). It is also customary
to introduce the electromagnetic fields in the Hamiltonian via the scalar and vector potentials in the
study of quantum transport. This results in a displacement in the linear momentum of the electron
and potential energy (see Eq. (2.6)). Interestingly, the linear-in-momentum SOC term in the
Hamiltonian of Eq. (2.7) can be written in the Hamiltonian as a non-abelian (or non-commutative)
vector potential, describing an effective background SU(2) electromagnetic field. As we discuss
in this chapter, this representation has several advantages and provides an interesting connection
between charge and spin-related phenomena.

Let us start reviewing the electromagnetic potentials in the U(1) case. From the Gauss’ law,
Eq. (1.8), the magnetic induction B can always be expressed as the rotational of a vector potential,
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namely, B = ∇∇∇×A. By combining this expression with Faraday’s law, Eq. (1.9), the electric field
can be expressed as E = −∇∇∇φ − ∂tA. It is useful to define a four-potential and four-derivative
as A0 = (A0

0,A
0
x ,A

0
y ,A

0
z ) = (φ/c,A) and ∂∂∂ = (∂0,∂x,∂y,∂z) = (−∂t/c,∇∇∇), respectively. From that,

we can construct a field tensor as F0 and each of the components of the electric and magnetic fields
can be calculated from the field tensor components as follows:

F0
µν = ∂µ A0

ν −∂ν A0
µ −→ Bi =

1
2

εi jkF0
jk , Ei = cF0

0i (2.2)

where Greek letters run over (0,x,y,z), Latin letters run over the cartesian components (x,y,z), fol-
lowing Einstein summation criteria. Including these expressions in the inhomogeneous Maxwell’s
equations, Eqs. (1.7) and (1.10), reduces the set of four equations to a second order equation for the
four-potential. Specifically using the Lorenz gauge 1, the following wave equation is obtained [81]:

□A0
ν =

(
∇∇∇

2 − 1
c2 ∂

2
t

)
A0

ν = J0
ν , (2.3)

where J0 =−(ρ/ε0,µ0J) is the four-current and □ is the d’Alembert operator. In Eq. (2.3), the
scalar potential depends only on static charge distributions, whereas the vector potential depends
only on currents. If harmonic time-dependence, e−iωt , is assumed, the previous equation simplifies
to a inhomogeneous Helmholtz equation, i.e., the d’Alembert operator reduces to □= ∂k∂k + k2,
with the dispersion relation ω = kc. The solution of Eq. (2.3) can be therefore expressed as
follows:

A0
ν =−

∫
V ′

GJ0
ν =−

∫
V ′

eik|r−r′|

|r− r′|
J0

ν(r
′) dV ′ , (2.4)

where G is the Green’s function for the Helmholtz operator and J0 the source function. In the
part on photonics of this Thesis, where single scattering processes are analyzed, the charge
distributions excited by the incident radiation are enclosed inside the particle’s volume. Therefore,
the scattered electromagnetic fields are calculated from Eq. (2.4) with V being the scatterer’s
volume. In Sec. 2.3, the advantage of performing a multipole expansion of the previous equation is
presented. In this Taylor expansion in cartesian coordinates, the scattered fields can be calculated
as those generated by the infinite sum of the multipolar expansion: electric and magnetic dipoles,
quadrupoles, octopoles, and so on.

We now turn our attention to the other main topic of this Thesis: spin transport in systems with
SOC. In electronic systems, we study how the external electromagnetic fields affect the system via
the Lorentz force:

Fk = qEk +q
piB jεi jk

m
. (2.5)

The first term corresponds to the drift force, whereas the second term is the cause of the Hall effect
[71], illustrated in Fig. 2.1. In this figure, we show a two-dimensional conductor, e.g., in the x–y
plane, in an external magnetic field perpendicular to it, e.g., in the z direction. If a charge current
jc is applied in, e.g. y direction, the particles with charge q will be deflected to opposite directions
via the Lorentz force depending on the sign of the charge, Fx = qpyBz/m.

The response of the electrons described in Eq. (2.5) is usually included in the Hamiltonian
through the gauge fields A0 and φ using the minimal coupling. This well-known transformation is
done under U(1)-covariant formalism, which implies that all physical results must be invariant

1Considering a gauge-transformation is made to the potentials, A0
ν → A0

ν +∂ν f , the Lorenz gauge is the gauge in which
the four-potential satisfies the Lorenz condition, ∂µ A0

µ = 0, and ∂µ ∂µ f = 0.
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Fig. 2.1 Caption

under local U(1) transformations. In this formalism, the (gauge-invariant) kinetic momentum also
takes account of the effect of the external magnetic field and, therefore, the Hamiltonian reads:

H =
(pk − eA0

k)
2

2m
− eA0

0 , (2.6)

where the SOC term is not yet introduced. In this regard, as mentioned in Chapter 1, part of the
theoretical work presented in this Thesis is related to intrinsic SOC as it appears in Eq. (1.5). The
focus is on linear-in-momentum intrinsic SOC, related to two-dimensional transport, since an
interesting analogy with the four-vector notation can be found. In general, the effective magnetic
field of Eq. (1.5) can be expressed for linear-in-momentum SOC as Ωa(p) = A a

k pk/m, with ˆAk a
spin-structured vector potential. Equation (1.5) can be thus written as:

H =
pk pk

2m
+

A a
k pkσa

2m
, (2.7)

which up to a constant factor can be rewritten as:

H =
(pk − ˆAk)

2

2m
− ˆA0 , (2.8)

We have added a second term, which stands for the other possible linear coupling with the
electron’s spin, i.e., a Zeeman or exchange field with the generic form of Eq. (1.1). In Eq.
(2.8), the components of the scalar and vector potentials are expressed in terms of Pauli matrices,

ˆAk =
1
2A a

k σa and ˆA0 =
1
2A a

0 σa, and therefore are non-commutative. We recall that lower indices
correspond to spatial coordinates and upper indices to spin components in our notation. In analogy
with usual U(1) fields, the SU(2)-four-potential notation yields a field SU(2)-tensor from which
the electric and magnetic SU(2)-fields can be constructed (cf. Eq. (2.2)):

F a
µν = ∂̃µA a

ν − ∂̃νA a
µ −→ Ba

i =
1
2

εi jkF
a
jk , E a

i = cF a
0i , (2.9)

where the four-derivative becomes SU(2)-covariant, with ∂̃t = ∂t − iℏ−1[ ˆA0, ·] and ∂̃k = ∂k −
iℏ−1[ ˆAk, ·]. Within this formalism, the intrinsic SOC can be thus understood as an effective SU(2)
electromagnetic field affecting the charge and spin transport. Namely, the SU(2) analogous to the
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Lorentz force of Eq. (2.5) is defined as:

F̂k = Êk +
piB̂ jεi jk

m
. (2.10)

where the first term correspond to the SU(2) drift term and the second is the cause of the spin
Hall effect (SHE). Similarly to the charge-dependent deflection in the Hall effect, the SHE is
the asymmetric deflection of opposite spins, as shown in Fig. 2.1. In that figure, we assume
a particular example of the SHE for simplicity, namely, a two-dimensional system in the x–y
plane with Rashba SOC. By comparison between Eq. (1.6) and (2.7), Rashba SOC corresponds to
A x

y =−A y
x = 2mα . If α is spatially homogeneous, only the covariant terms contribute to F a

µν

and Ba
i . Namely, Rashba SOC induces an effective SU(2) magnetic field Bz

z . Consequently, if
a charge current jc is applied in y direction, the eigenstates of σ z will be deflected to opposite
directions via the SU(2) Lorentz force depending on the direction of the spin, Fz

x = pyBz
z/m. In

electronic transport, this asymmetry traduces in the generation of a transversal spin current.
Interestingly, the above SU(2) formulation allows writing a SU(2)-covariant continuity equation

for the spin [155]. In other words, within this formalism the spin is covariantly conserved when
only intrinsic linear-in-momentum SOC is considered. The corresponding spin continuity equation
reads:

∂̃t Ŝ+ ∂̃k ĵk = 0 , (2.11)

where Ŝ = Sa(σa/2) is the spin density and ĵk = ja
k(σ

a/2) is the spin current density flowing in
k-direction, defined as the average of the spin current operator, ja

k = (1/2){∂H/∂ pk,σ
a/2}. In

this formulation, the spin and charge continuity equations have the same form as Eq. (2.1), but
with the derivatives substituted by the covariant ones. Since the charge density and current have no
spin structure, ∂̃tρ = ∂tρ and ∂̃kρ = ∂kρ . The charge continuity equation, therefore, is identical to
Eq. (2.1). In contrast, the covariant term of the derivatives acts on the spin density and current,
describing the possible spin relaxation. In particular, as it can be read out from Eq. (2.11), the
relaxation in a system with intrinsic SOC is due to the SOC itself. We study this in more detail in
the next section.

In summary, by writing the electromagnetic and spin-dependent fields in terms of vector and
scalar potentials, an excellent analogy arises between two hitherto unconnected fields: spintronics
and photonics. In the next sections, we review details of the models and methods applied in the
two parts of this Thesis and a summary of the main results. This is done in Secs. 2.1 and 2.2 for
spintronics, and in in Secs. 2.3 and 2.4 for photonics.

2.1 Spintronics: models and methods
In this section, we review the main concepts in the field of spintronics which are behind the main
results presented in the two published works, Chapters 4 and 5. We begin with a general description
of the spin-charge transport phenomena in materials with SOC. In subsequent sections, we address
more specific scenarios and summarize the main results in Secs. 2.2.1 and 2.2.2. The complete
works are provided in Chapters 4 and 5.

Spintronics is the study of electronic transport associated with the electronic spin. In particular,
systems with SOC exhibit coupling between the charge and spin degrees of freedom. Whereas the
charge conservation principle is always fulfilled, spin relaxation may occur, i.e., the disappearance
of initial non-equilibrium spin polarization. Charge conservation and spin relaxation constitute the
physical bases for all the spintronics effects.
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Fig. 2.2 Dyakonov-Perel (a) and extrinsic (b) spin relaxation mechanisms. In both cases, after a
certain number of such steps, the initial spin direction is completely lost. This figure is taken from
Ref. [32].

There are different mechanisms responsible for the spin relaxation [50]: spin-orbital (Dyakonov-
Perel and Elliott-Yafet), magnetic impurities, electron-hole spin-exchange interaction (Bir-Aronov-
Pikus) [24], hyperfine interaction with nuclear spins, and spin relaxation of holes in the valance
band [47]. In this Thesis, specifically in Chapter 4, we focus on spin relaxation due to the
Dyakonov-Perel and Elliott-Yafet mechanisms and from extrinsic magnetic impurities.

The Dyakonov–Perel (DP) mechanism is an intrinsic mechanism of spin relaxation [48, 51, 52].
It arises when intrinsic SOC is present in the system, which is described by Eq. (1.5) or (2.8), and
it is related to the spin-orbit splitting of the conduction band in non-centrosymmetric systems.
The splitting acts on the electrons as if an effective momentum-dependent magnetic field would
be present at the whole system. Figure 2.2(a) illustrates the DP mechanism: the electron’s spin
precesses around the magnetic field vector, Ωa(p) in Eq. (1.5), which changes after each collision
due to the change in momentum direction. Accordingly, the spin polarization changes not during,
but between collisions. If the scattering rate is such that electrons scatter before they can complete a
single precession about the SU(2) effective magnetic field, the DP mechanism becomes inoperative.
Therefore, the DP mechanism influence is stronger in systems with lower impurity concentrations
[50].

In systems with an extrinsic SOC source (see Sec. 1.1), as SOC impurities, the so-called
Elliott–Yafet (EY) mechanism is the main spin relaxation mechanism[55, 171]. This effect can
be thus present in all conductors without any symmetry restriction. EY mechanism is illustrated
in Fig. 2.2(b): when the electron collides with some impurity, beside the change in momentum
direction, the spin polarization can change if there is SOC between the electrons spin and the
impurity. The accumulated effect traduces in spin relaxation, and the corresponding relaxation rate
is, in this case, proportional to the impurity concentration.

Similarly to the EY mechanism, scattering from extrinsic magnetic impurities leads to a change
in both momentum direction and spin polarization, see Fig. 2.2(b). We refer to both EY and
scattering from magnetic impurities as extrinsic spin relaxation (ESR). In isotropic systems, both
mechanisms can be described by an effective relaxation time τext.

The effect of the DP and ESR mechanisms in the spin transport must be included in the spin
continuity equations [132, 75, 141]. Equation (2.11) already includes the DP relaxation via the
covariant derivatives, and the spin is covariantly (but not actually!) conserved. In the presence of
any kind of ESR, Eq. (2.11) acquires an additional term:

∂̃t Ŝ+ ∂̃k ĵk =− 1
τext

Ŝ . (2.12)
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Here, we assume that the spin relaxation is isotropic in space and neglect the interference term
between extrinsic and intrinsic SOC [68]. The right-hand side of this equation clearly shows that
the ESR breaks the SU(2) symmetry and, hence, the spin is no longer covariantly conserved.

We now focus on the systems analyzed in detail in this Thesis. Measuring the SOC related ef-
fects in spintronics devices usually involves transporting electron spins between different locations
[177, 166, 105, 148]. However, strong SOC translates into strong spin relaxation via the DP and
ESR mechanisms. Consequently, it is customary to use hybrid spintronics devices, combining a
region with strong SOC in which the spin is manipulated and a normal region in which the spin is
transported. Figure 2.3 shows typical heterostructures. Panels (a, b) correspond to structures with
Rashba SOC studied in Chapter 4. Panel (c) shows a conductor/insulator system with SOC at the

Fig. 2.3 Schematical view of different setups considered in this Thesis. (a,b) Adjacent Rashba
(blue region) and normal (grey region) semi-infinite systems in which the ISGE (a) and the SGE
(b) are studied in Chapter 4. (c) Heterostructure with a localized SOC at the interface (blue region)
between a normal conductor (grey bottom region) and an insulator (transparent top region). This
system is addressed in Chapter 5.

interface, studied in Chapter 5 (c). At the interface between different materials, we need to supply
the charge and spin continuity equations, Eqs. (2.1) and (2.12), with boundary conditions (BC).
Specifically, we study two type of systems: Chapter 4 focuses in adjacent two-dimensional con-
ductors with different linear-in-momentum intrinsic SOC, whereas Chapter 5 deals with adjacent
bulk normal (i.e., without SOC) systems at which interfacial SOC (ISOC) is induced. As further
explained in Sec. 2.1.2, at interfaces between different materials, the strong inversion symmetry
breaking may lead to spin-splitting of the (possible) interfacial states. In addition, there exist the
possibility of a mixing region near the interface, leading to SOC impurity scattering. Independently
of the source of SOC, the BC at such interfaces can be written in terms of a set of interfacial
parameters obtained from symmetry considerations [30, 5–7].

In both, Chapters 4 and 5, we assume that the conductors are in the diffusive limit. In this
regime, the electrons’ mean free path is much smaller than any other characteristic length scale,
as the system’s spin diffusion length or dimensions. Therefore, charge and spin densities follow
the well-known drift-diffusion equations [50, 141, 67, 155, 156, 129]. The drift-diffusion model
for systems with intrinsic linear-in-momentum SOC is reviewed in Sec. 2.1.1 within the SU(2)
formalism, including the possible presence of ESR. Besides, we present the needed BC at the
interface between two-dimensional systems with different linear-in-momentum SOC, derived in
Chapter 4.



2.1 Spintronics: models and methods 25

On the other hand, in Chapter 5, we apply the drift-diffusion model at the normal bulks. Because
we consider interfacial SOC, different BC are needed [30]. The specific model is discussed in Sec.
2.1.2.

Finally, in Secs. 2.2.1 and 2.2.2, we summarize the main results of the works compiled as
Chapters 4 and 5, respectively.

2.1.1 Hybrid systems with linear-in-momentum SOC: drift-diffusion the-
ory within the SU(2) formalism

Electronic transport in conductors is usually studied within the free-electron model [147, 45, 46, 12].
Transport properties are characterized by the mean free path of the electrons, ℓ = vFτ , with vF
the Fermi velocity and τ the momentum relaxation time. Depending on the ratio between the
mean free path and the other characteristic lengths, such as the dimensions or the spin relaxation
lengths, one distinguishes between ballistic or diffusive electronic transport. Here, we focus on the
diffusive regime.

Derivation of drift-diffusion theory in systems with SOC is extensively analyzed in the literature
[67, 66, 156, 94, 141, 50]. Therefore, here we limit ourselves to provide a brief review.

In a diffusive system, the charge current is given by [66, 156, 141]:

jk =−D∂kρ −σDEk − γF a
ki ja

i , (2.13)

where σD the Drude conductivity and Ek the k-th component of the electric field. The first term is
the diffusion term, where D = v2

Fτ/d is the diffusion coefficient, and d the dimension of the system.
The third term, where γ = τ/(2m) and proportional to the spin current density ja

i , describes the
spin-to-charge conversion via the inverse SHE (ISHE), i.e., the inverse to the effect shown in Fig.
2.1. The proportionality factor contains the field strength tensor defined in Eq. (2.9). On the other
hand, the spin current density in the diffusive limit is given by [66, 156, 141]:

ĵk =−D∂̃kŜ− γF̂ki ji . (2.14)

The first term corresponds to the SU(2)-covariant spin counterpart of the first term of Eq. (2.13).
The second term is the reciprocal to the second term in Eq. (2.14). It describes the charge-to-spin
conversion under the action of the SU(2) field and, therefore, is related to the SHE, see Fig. 2.1.

Once we have the expressions for the currents, Eqs. (2.13) and (2.14), the charge and spin
continuity equations can be obtained. We focus here in the stationary case and assume the absence
of a Zeeman field, i.e., ∂̃tρ = ∂tρ = 0 and ∂̃t Ŝ = 0. Therefore, the charge and spin drift-diffusion
equations have, respectively, the following form:

∂̃k jk = ∂k jk = 0 −→ ∂kD∂kρ +∂k(σDEk)+ γ(∂̃kF̂ki)
a ja

i = 0 , (2.15)

(∂̃k ĵk)a =− Sa

τext
−→ ∂̃kD∂̃kSa + γ(∂̃kF̂ki)

a ji =
Sa

τext
. (2.16)

The second term in Eq. (2.15) vanishes for spatially homogeneous conductivity and electric field,
case that is considered in this Thesis. The covariant Laplace operator of Eq. (2.16) can be written
explicitly by expanding the covariant derivatives [20]:

(∂̃kD∂̃k)
ab = ∂kD∂kδ

ab +2Pab
k ∂k +∂kPab

k −Γ
ab , (2.17)
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where we define the following operators:

Γ
ab = D[ ˆAk, [ ˆAk, ·]] =−D−1Pac

k Pcb
k , (2.18)

Pab
k =−iD[ ˆAk, ·] = DA c

k ε
cba . (2.19)

Here, Γab is the general DP relaxation tensor that describes the DP spin relaxation reviewed in
the introduction of Sec. 2.1, whereas the term proportional to Pab

k in Eq. (2.16) describes the spin
precession [112, 20].

As explained in the introduction, Sec. 1.1, linear-in-momentum SOC arises in systems with a
gyrotropic symmetry, e.g., two-dimensional electron gases. In such systems, the asymmetry in one
of the directions, e.g., z direction, traduces in a SOC that affects the two-dimensional transport
in the perpendicular directions, e.g., x and y directions. In addition to the SHE shown in Fig.
2.1, this lack of symmetry allows for another type of magnetoelectric effects, namely, the spin
galvanic effects (SGE). As mentioned in Sec. 1.1, SGE and its inverse (ISGE) are related to the
interconversion between charge current and spin density, in contrast to SHE and ISHE, relating
charge current and spin current.

Accordingly, we can homogeneously polarize a system by applying an external charge current
via the ISGE. This effect can be easily derived from the drift-diffusion equation in an isotropic
system. Indeed, let us assume an infinite plane with generic linear-in-momentum SOC and without
ESR. If a charge current flows in i direction (induced by an applied electric field), according to Eq.
(2.16):

−Γ
abSb + γA b

k F c
kiε

bca ji = 0 . (2.20)

This equation predicts the appearance of a homogeneous spin density, proportional to the external
electric field. In the particular case of the widely studied Rashba SOC of Eq. (1.6), in which the
focus is on in Chapter 4, this effect is commonly known as Edelstein effect (EE). The latter is
illustrated in Fig. 2.3(a): a (in-plane) homogeneous spin polarization is induced perpendicular to
the (in-plane) external electric field. If we introduce this spatially homogeneous result into Eq.
(2.14), a compensation between covariant diffusive and the charge-to-spin conversion terms leads
to ĵk = 0, i.e., no spin Hall currents appear. However, as further explained in Chapter 4, if we take
into account ESR, the SU(2)-covariant spin conservation is broken, yielding finite spin currents.

Therefore, the ISGE can be used as a useful spin injection tool from SOC regions to normal
systems in spintronics devices, merely applying an external charge current. This possible injection
is deeply analyzed in Chapter 4, for which we develop the needed BC at the interface between
different regions.

Boundary conditions

Here, we briefly review the BC derived in Chapter 4 for two-dimensional spintronics hybrid
devices with an interface between two regions with different linear-in-momentum SOC. These
BC are obtained by integrating the drift-diffusion equations over an infinitesimal region across the
interface.

On the one hand, the spin current’s continuity across the interface is obtained by integration of
the spin continuity equation [33, 1, 159]. This result can be naively understood since we assume
that the interface is much smaller than the spin diffusion length of either of the adjacent systems.
Hence, the SOC “does not have enough space” to relax or change the spin.

On the other hand, the BC for the spin density is obtained integrating the spin current, Eq.
(2.14), across the interface, taking into account the continuity of the current. This integration leads
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to the continuity of the spin density when no external electric field is applied. However, a electric
field applied parallel to the interface yields a jump across the interface of the spin density induced
at the SOC region via the ISGE. The explicit form of this BC is:

Sa∣∣0+
0− =

1
2

(
γσD

D

∣∣
0++

γσD

D

∣∣
0−

)
(δi j −nin j)

(
A a

j |0+−A a
j |0−

)
Ei . (2.21)

This is one of the main results of Chapter 4, which generalizes previous results for any strength
and type of linear-in-momentum SOC at the adjacent regions.

This BC can be physically understood as follows. Let us assume that the heterostructure
consists of a normal and a Rashba adjacent two-dimensional regions, as in Fig. 2.3(a). We
can thus describe the system with A x

y = −A y
x ≈ 2mαΘ(x). If we apply an electric field in y

direction, an homogeneous spin density polarized in x direction will be induced at the Rashba
region via the ISGE (see Eq. (2.20)). At the interface, the Rashba coefficient α abruptly becomes
zero and, therefore, a SU(2) field tensor and corresponding magnetic field appear with form
F x

xy = −F x
yx = ∂xA x

y ≈ 2mαδ (x) and Bx
z = 2mαδ (x). Therefore, right at the interface, an

effective magnetic field in z direction deflects the x-polarized spins, that are moving parallel to the
electric field, via the SU(2) Lorentz force, Fx

x = pyBx
z/m (see Eq. (2.10)). This force in x direction

prevents the spin density from diffusing into the normal region [159].

2.1.2 Hybrid conductor/insulator systems with interfacial SOC: drift-diffusion
theory with generalized boundary conditions

Fig. 2.4 Caption

In this section, we review the model and methods used in Chapter 5. The non-magnetic hybrid
devices described here consist of two normal diffusive bulk materials: a conductor (N) and an
insulator (I). Figure 2.4 depicts this kind of system. The N bulk is located at z < 0, the insulator at
z > 0, and the ISOC is induced at z = 0.

In the N layer, the spin and charge densities follow the drift-diffusion equations (2.15) and
(2.16) for the normal case, i.e., when the SU(2) vector potential is zero. Since in Chapter 5, we
calculate voltage drops in different spintronics devices, it is convenient to use charge and spin
electrochemical potentials (ECP), in energy units, rather than spin and charge densities, in units of



28 Models, methods, and results

charge per unit volume. Substituting Dρ = e−1σDµ and DŜ = e−1σDµ̂ in Eqs. (2.15) and (2.16),
with µ and µ̂ the charge and spin ECP, yields:

∂k∂kµ = 0 , (2.22)

∂k∂k µ̂ =
µ̂

λ 2
N
. (2.23)

It is assumed that N has inversion symmetry with an isotropic ESR [167] described by the spin
diffusion length λN =

√
Dτext. The diffusive charge and spin currents, Eqs. (2.13) and (2.14), are

reduced to e ĵk =−σD∂k µ̂ and e jk =−σD∂kµ , respectively, with e =−|e|.
As explained in the previous section, Chapter 4 addresses heterostructures in which the SOC

is present at the adjacent diffusive systems. In contrast, the interfacial SOC (ISOC) studied in
Chapter 5 occurs right at the interface, i.e., at microscopic scales much smaller than the mean
free path of the electrons. Therefore, the inclusion of the interconversion between the (diffusive)
bulk and interfacial densities is kind of subtle within the drift-diffusion model. Some works
use an intuitive picture based on an idealized two-dimensional electron gas with Rashba SOC
at the interface [90, 113, 157]. Such description is valid for systems in which an evident two-
dimensional electronic transport is present, such as conductive surface states in (e.g. topological)
insulators [133, 93] or two-dimensional electron gases [97, 165]. However, it requires additional
microscopic parameters to model the coupling between interface states and the diffusive motion
of electrons in the metal in metallic systems. Moreover, the very fact that the SOC induced at
the interface has an intrinsic origin only may be senseless since realistic structures are frequently
polycrystalline and disordered. In this regard, one could also contemplate the possibility of an
extrinsic origin. For instance, the insulating material’s heavy atoms could have diffused into
the normal conductor in the region near the interface, acting on the electrons as extrinsic SOC
impurities. Indeed, each of these scenarios will invoke different sets of microscopic parameters to
be inferred from the experiments, i.e., macroscopic transport measurements.

Here, we present the solution proposed in Chapter 5 to this problem: inclusion of the ISOC
effects as effective BC at the interface between the adjacent systems without SOC. These BC
are derived [5–7] and generalized for non-magnetic hybrid normal systems with ISOC in Ref.
[30]. The latter reference approaches the ISOC from a phenomenological perspective since all
the SOC effects can be derived from pure symmetry considerations. In an isotropic bulk media
with inversion symmetry, the only building block is the unit antisymmetric tensor εi jk, describing
the SHE due to effective Lorentz forces acting on the spins [50]. For lower symmetries, as the
interfaces considered here, other tensors appear related to all possible SOC effects, e.g., the intrinsic
SHE or SGE. Figure summarizes the SOC effects that we take account of. Namely, we consider
interconversion between spin (charge) bulk and charge (spin) interfacial currents via an interfacial
ISHE (SHE), interconversion between interfacial spin polarization and charge current via ISGE
and SGE, and, implicitly, the possible spin relaxation or loss at the interface. This symmetry-based
formalism is useful to quantify ISOC effects from experimental measurements, avoiding a rather
troublesome microscopic analysis.

Namely, for the I/N system considered here (see Fig. 2.4), Eqs. (2.23) and (2.22) are comple-
mented by the following BCs for the spin and charge densities at the I/N interface with ISOC [30]:

−σD(∇ ·n)µ̂
∣∣
0 = G⊥ µ̂⊥

∣∣
0 +G∥ µ̂∥

∣∣
0 +σcs (n×∇)µ

∣∣
0 , (2.24)

−σD(∇ ·n)µ
∣∣
0 = σsc (n×∇) µ̂

∣∣
0 . (2.25)
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Here, n is the unitary vector normal to the interface, see Fig. 2.4a, and σD the conductivity of N.
The last term in the r.h.s. of Eq. (2.24), describes the charge-to-spin conversion quantified by the
conductivity σcs. As depicted in Fig. 2.4a, this term couples an effective electric field and the
(outgoing) spin current density at the interface [7, 6, 5, 30] and can be interpreted as an interfacial
SHE. Alternatively, it can be interpreted as if the electric field induces an homogeneous spin ECP
via an interfacial EE, which in turn diffuses into N. Both interpretations are fully compatible within
the present formalism. The second type of processes taking place at the interface are spin-losses
(first two terms in the r.h.s. of Eq. (2.24)), quantified by the spin-loss conductances per area G⊥/∥
for spins perpendicular/parallel (µ̂⊥/µ̂∥) to the interface.

The charge is obviously conserved and, therefore, the r.h.s. of Eq. (2.25) only contains the
spin-to-charge conversion term. The latter is the reciprocal of the last term in Eq. (2.24) 2 so it can
be interpreted as an interfacial inverse SHE. But again, an alternative interpretation is possible:
from the conservation of the charge current at the interface, we can relate the bulk charge current
to the divergence of an interfacial current as σD(∇ ·n)µ

∣∣
0 =−e∇ · jI. Comparing the latter with

Eq. (2.25), we define jI as: 3

ejI =−σsc (n× µ̂)
∣∣
0 . (2.26)

Written this way, BC (2.25) describes the conversion of a non-equilibrium spin into an interfacial
charge current, which corresponds to an interfacial IEE, see Fig. 2.4b.

On the one hand, the charge-to-spin conversion is experimentally detected via ferromagnetic
layers, at which a spin-dependent voltage drop appears when a spin current arrives from a con-
ductive layer [153]. On the other, the spin-to-charge conversion is directly measured from the
generated voltage drop from the induced charge current being confined in a finite system. In
general, the voltage drop between two points located at k =±Lk/2, with k = x,y,z, is related to
the spatial distribution of charge ECP in the k direction after averaging over the cross-sectional
area of the device AN:

V =−

∫∫∫ Lk
2

− Lk
2

∇µ · ek dk dS

e AN
. (2.27)

Therefore, integrating the charge diffusion equation (2.22), applying BC (2.25), and assuming
open circuit configuration in k direction, jk

∣∣
±Lk/2 = 0, it can be shown that the gradient of the

charge ECP is directly proportional to the spin ECP. Finally, the averaged voltage drop in the k
direction can be calculated as follows:

Vsc =

σsc
∫∫ Lk

2

− Lk
2

(
n× µ̂

∣∣
0

)
· ek dx dy

eσNAN
(2.28)

where we denote Vsc as the ISOC-related voltage drop.

2Symmetry arguments alone cannot fix the relation between σsc and σcs [30]. However, we will see by contrasting
theory with experiment, that reciprocity requires σsc = σcs.

3Notice that, in principle, an additional divergenceless term may appear in the r.h.s. of Eq. (2.26). Indeed, as
demonstrated in Ref. [30], symmetry allows for a term proportional to the out-of-plane component of the spin ECP.
In the present work, we only consider spin polarization parallel to the I/N interface and, hence, we neglect that term.
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2.2 Spintronics: summary of the results

2.2.1 Non-local magnetoelectric effects in diffusive conductors with spa-
tially inhomogeneous spin-orbit coupling

We summarize here the main results obtained in the published work compiled as Chapter 4. In this
work, we study the charge and spin spatial distribution in hybrid devices with different strength or
type of linear-in-momentum SOC. Importantly, we assume that the possible SOC arising right at
the interface is negligible.

Specifically, we apply the general drift-diffusion model within the SU(2) formalism presented
above, Eqs. (2.15) and (2.16), together with the derived BC shown in Sec. 2.1.1, to a system
combining a region with Rashba SOC and another one without SOC. We describe non-local
measurements of both the SGE and its inverse. The main phenomena can be explained from the
SU(2)-covariant conservation of the spin. Interestingly, this conservation prevents the appearance
of spin Hall currents in addition to the SGE or ISGE in homogeneous systems (see 2.1.1). As
shown in Eq. (2.12), the introduction of an external spin relaxation mechanism, such as magnetic
impurities and/or a random SOC at non-magnetic impurities, leads to a breaking in the spin
covariant conservation, and hence to finite spin Hall currents.

We first explore the ISGE, i.e., applying an electric field to the system, spin polarization
is induced in the Rashba region, which may diffuse into the normal conductor. Our results
demonstrate that this diffusion depends on both the electric field’s direction and the strength of
the ESR rate. The dependence in the direction of the electric field is directly shown in Eq. (2.21),
which is the BC that we derive in Chapter 4 for the spin density. We also study the spin-to-charge
conversion and compute the charge current and the distribution of electrochemical potential in the
whole system when a spin current is injected into the normal region.

In addition, we present a general derivation of the reciprocity between the non-local SGE
and ISGE results obtained. This relation explains the reciprocity found between the spin density
injected (measured) at a given point in the normal region and the spatially integrated charge current
measured (applied) in the adjacent Rashba region.

Finally, we compute the local currents and redistribution of the electrochemical potential
induced by the SGE in a system of finite lateral dimensions without ESR.

2.2.2 Quantification of interfacial spin-charge conversion in hybrid devices
with a metal/insulator interface

Here, we sum up the main results of the published work compiled as Chapter 5. In this work, we
consider a hybrid system combining non-magnetic metal/insulator bulk structures without SOC,
at which interface ISOC is induced. Applying the drift-diffusion equations (2.22) and (2.23) at
the conductive layer and the effective BC (2.24) and (2.25) at the interface with the insulator, we
compute the spin and charge spatial distribution at the system.

Indeed, based on symmetry arguments, we provide a universal theoretical description of spin-
charge interconversion in I/N heterostructures with ISOC. Within this model, the interface is
described by two type of processes: spin-losses, parameterized by the interfacial conductances
G∥/⊥, and spin-charge interconversion, quantified by σsc and σcs. These parameters are material
specific. We furthermore demonstrate that the conversion efficiency depends solely on these
interfacial parameters.

We apply this formalism to two typical spintronic devices that exploit ISOC: a lateral spin
valve and a multilayer Hall bar, for which we calculate the non-local resistance and the spin
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Hall magnetoresistance, respectively. The SOC is assumed to be present only at the interface
between a copper and a bismuth oxide layers in both devices. In particular, we are able to explain
the experimental non-local measurements in a Py/Cu lateral spin valve with a middle BiOx/Cu
wire and the spin magnetoresistance measurements in a multilayered BiOx/Cu/YIG device (see
Chapter 5 for further details), carried out by the group of Dr. Fèlix Casanova at CIC nanoGUNE
(Donostia-San Sebastián, Gipuzkoa, Spain). It follows from the application of the theory to the
experimental results that the Onsager reciprocity between the spin-charge interconversions is
directly captured by σsc = σcs. Furthermore, we verify that the same set of interfacial parameters
quantifies transport properties related to the ISOC even in different devices if the interface is made
of the same materials.

2.3 Nanophotonics: models and methods
We shall now move to the review of the model and methods applied in the other two published
works of this Thesis, compiled as Chapters 6 and 7. We focus on studying the spin-orbit interactions
arising in light scattering problems, which can be approached from different perspectives. This
section reviews two of the most studied models in nanophotonics, namely, the multipole expansion
and the Mie theory.

When an electromagnetic wave impinges on a particle, it induces a local electronic disruption,
i.e., a certain current density J(r). The later is the source of scattered electromagnetic radiation via
Maxwell’s equations (1.7) and (1.10) or, equivalently, via Eq. (2.4). Therefore, we can compute
the scattered fields from the internal electric currents. For this, it is useful to expand the Green’s
function in Eq. (2.4), in multipoles [81, 114]. Every multipole moment is related to a charge
current distribution or, equivalently, to a certain charge density distribution inside the particle. The
exact multipole expansion in spherical waves for, e.g. the vector potential 4 in Eq. (2.4) is given by
[81]:

A = ikµ0

∞

∑
l=0

l

∑
m=−l

h(1)l (kr)Y m
l (θ ,φ)

∫
V ′

J(r′) jl(kr′)Y ∗m
l (θ ′,φ ′) dV ′ , (2.29)

where µ0 is the vacuum permeability, h(1)l (kr) is the spherical Hankel function of the first kind,
jl(kr) is the spherical Bessel function, and Y m

l (θ ,φ) are the scalar spherical harmonics. The
internal spherical coordinates are denoted by (r′,θ ′,φ ′) and the scattered ones as (r,θ ,φ). As
an illustrative example, we show in Fig. 2.5 the dipolar moments of the expansion, addressed in
Chapters 6 and 7. Namely, we consider a sufficiently small spherical scatterer compared with
the incident wavelength that can be described only with the first multipolar order (l = 0), i.e.,
with the electric p and magnetic m dipole moments. The different distributions of the internal
currents (a) and (b) traduce in electric (c) and magnetic (d) dipole moments. For this case, it can
be demonstrated [117, 81, 114, 2, 173] that the magnitude of the dipolar moments for materials
with linear response (see Eq. (1.12)) can be written as:

p ≈ i
ω

∫
V ′

J(r′) dV ′ = ε0αEE(0)|0 , m ≈ 1
2

∫
V ′
(J(r′)× r′) dV ′ = αMH(0)|0 , (2.30)

4This expansion can also be done for the scalar potential, obtaining the multipole moments of the charge density ρ .
Through the charge continuity equation (2.1), the multipole moments obtained from the expansion of the vector and scalar
potentials are equivalent [81].
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where E(0)|0,H(0)|0 are the incident fields evaluated at the particle’s center, and αE,αM denote,
respectively, the electric and magnetic characteristic polarizabilities of the particle. The value
of the polarizabilities depends on the scattering fundamental parameters: incident wavelength,
particle’s shape and dimensions, and refractive indices of host medium and particle. In other words,
we need to calculate the internal electric currents to determine the value of the polarizabilities.
This implies solving the complete scattering problem.

Fig. 2.5 (a, b) Distribution of the internal electric currents for the two first multipolar moments,
from Ref. [28], which traduce in the electric (c) and magnetic (d) dipole moments, from Ref.
[114].

This is where the second model, the Lorenz-Mie-Debye theory, commonly referred to as Mie
theory in the literature, comes into play [152, 76, 28]. In a nutshell, Mie theory is the exact
analytical solution of Maxwell’s equations for the plane wave scattering problem of an isotropic,
homogeneous sphere embedded in an isotropic, homogeneous non-absorbing host medium, using
spherical expansions of the incident, E(0), internal, Eint, and scattering, Escat, electromagnetic
fields 5. In this three-dimensional problem, the vector spherical harmonics constitute a highly
convenient basis for the expansions, though different spherical basis can be used [81, 57, 110].
Mie theory has been revised in several works (see, e.g. [152, 76]). Here, I follow the textbook
written by Bohren and Huffman (2008) [28]. In the latter, the scattering problem solved is related
to an incident linearly polarized plane wave, whose results for the expansion of the fields are here
presented as an illustrative example of how Mie theory can be used. The incident wave can be
decomposed as:

E(0) =
∞

∑
l

El

(
M(1)

o1l − iN(1)
e1l

)
, (2.31)

where El = E0i
l(2l+1)/(l(l+1)), Mo1l = Mo1l(r,θ ,φ) and Ne1l = Ne1l(r,θ ,φ) are the “electric”

and “magnetic” vector spherical harmonics, respectively, and the superscript (1) denote vector
spherical harmonics for which the radial dependence of the generating functions is specified by
jl(kr) [28]. If the internal and scattered fields are also expanded, different coefficients arise. In
Ref. [28] notation, al and bl are the electric and magnetic scattering Mie coefficients, and cl and dl
the internal Mie coefficients. The expansion of the fields can thus be written as:

Escat =
∞

∑
l

El

(
ialN

(3)
o1l −blM

(3)
e1l

)
, (2.32)

5Further development and applications of the Mie theory to absorbing host media [59], [FALTAN]. Here, we focus on
the original problem of Mie scattering.
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Eint =
∞

∑
l

El

(
clM

(1)
o1l − idlN

(1)
e1l

)
, (2.33)

where the superscript (3) in the vector spherical harmonics is now related to h(1)l (kr) [28]. By
imposing BC for the fields transverse components at the surface of the particle,

êr ×
(

E(0)+Esca −Eint
)
= 0, (2.34)

êr ×
(

H(0)+Hsca −Hint
)
= 0. (2.35)

these coefficients can be calculated:

al =
mSl(y)S′l(x)−Sl(x)S′l(y)
mSl(y)C′

l(x)−Cl(x)S′l(y)
, (2.36)

bl =
Sl(y)S′l(x)−mSl(x)S′l(y)
Sl(y)C′

l(x)−mCl(x)S′l(y)
, (2.37)

cl =
Sl(x)C′

l(x)−S′l(x)Cl(x)
mSl(y)C′

l(x)−Cl(x)S′l(y)
, (2.38)

dl =
Sl(x)C′

l(x)−S′l(x)Cl(x)
Sl(y)C′

l(x)−mCl(x)S′l(y)
. (2.39)

Here, the scatterer (and the host medium) is assumed to be non-magnetic, so the permeability
contrast is µ = µp/µh = µ0/µ0 = 1, where the subindices p and h refer to particle and host medium.
The refractive index contrast is denoted by m = mp/mh. Sl(z) = z jl(z) and Cl(z) = zh(1)l (z) are
the Riccati-Bessel functions, and the arguments x = ka and y = mx are the size parameters. Mie
coefficients constitute the main result of the Mie theory, which are valid regardless of the spherical
basis used for the expansion. Besides, though the scattering problem in Ref. [28] is in particular
solved for an incident linearly polarized plane wave, Mie coefficients do not depend on the
incoming polarization. As a result, the same results would have been obtained upon circularly or
elliptically polarized plane wave illumination. It is also important to mention that in this basis,
the lowest order, i.e., the dipolar order, corresponds to l = 1, instead of l = 0 as in the multipole
expansion of Eq. (2.29).

Although Mie theory is the exact, elegant mathematical solution of plane wave scattering from
spheres, the inscrutably concise form of the Mie coefficients, Eqs. (2.36)–(2.39), defies physical
interpretation [43]. In this regard, it is useful to compare Mie theory with the multipole expansion,
specially in the dipolar regime. Namely, we can compare the electric field radiated by the electric
and magnetic point dipoles of Eq. (2.30), which can be found in many textbooks, e.g. [81], with
Eq. (2.32). If we do the same with the scattered magnetic fields, we obtain the following relations
[117, 43, 2]:

αE = ia1
6π

k3 , αM = ib1
6π

k3 . (2.40)

From here we can extract the following physical insight: if a sphere under plane wave illumination
can be described only by the dipolar Mie coefficients, a1 and b1, the sphere scatters exactly the
same as the combination of point electric and magnetic dipoles located at the particle’s center.

It is important to stress that Mie theory can be formulated in different bases, provided it is a
complete, orthonormal spherical basis such as the one used above. In Sec. 2.3.1, we introduce
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the so-called helicity basis, which will be used in Chapters 6 and 7. Nevertheless, the change
of basis would not imply a change in the Mie coefficients, which depend only on the refractive
index contrast m and the size parameter x of the sphere. Then, in Sec. 2.3.2, we review and define
within Mie theory different scattering parameters: the extinct, absorbed, and scattered powers,
cross sections, and efficiencies. Besides, we introduce the asymmetry parameter. In Sec. 2.3.3,
Mie theory is applied within the helicity basis to the scattering problem analyzed in the work of
Arnoldus et al. (2008) [10], summarized in Sec. 1.3, restricted to the electric dipolar regime, i.e.,
only a1 contributes to the scattering of the sphere. In this scenario, the spin-orbit interaction is
described as the possible AM transfer between the OAM and SAM densities during the scattering
process. Finally, in Secs. 2.4.1 and 2.4.2 we go beyond the electric dipolar regime, taking into
account both a1 and b1, studying the effects of the interaction between the dipolar electric and
magnetic modes. These two last sections correspond to a brief summary of the results of the two
published works belonging to the Nanophotonics part of the present Thesis, compiled as Chapters
6 and 7.

2.3.1 Helicity basis and duality symmetry
As mentioned above, the vector spherical harmonics are suitable for the spherical expansion of
the fields. Different conventions can be used to define a complete orthonormal basis with the
vector spherical harmonics [28, 76, 152] compatible with the application of Mie theory. Namely,
the chosen particular combination of vector spherical harmonics in the present Thesis are those
that are simultaneous eigenfunctions of the total (in the propagation direction) and the square of
the AM, Ĵz and Ĵ2, and the helicity operator Λ̂. This basis is especially suitable for the scattering
problem of a circularly polarized plane wave, addressed in Chapters 6 and 7. It is also important to
mention that Ref. [57] shows that this basis can be used as a complete, practical framework for
studying light-matter interactions based only on the helicity and total AM. However, we introduce
the separation of the total AM into the SAM and OAM components for this Thesis, giving a more
customary physical insight.

The helicity operator originates from the projection of the total AM operator onto the nor-
malized linear momentum operator, i.e., Λ̂ = Ĵ · P̂/|P̂|= (L̂+ Ŝspin

i j ) · P̂/|P̂| [57]. Directly from the

definition of the OAM, L̂ = r× P̂, and SAM, Ŝspin
i j =−iεi jk, operators (see Eq. (1.20)), it can be

seen that the helicity is actually Λ̂ = Ŝspin · P̂/|P̂|. We focus on monochromatic fields, for which |P̂|
is directly k and, thus, the helicity operator reads as Λ̂ = (1/k)∇∇∇× [58]. Remarkably, the helicity
only can take the eigenvalues Λ =±1.

A simple example illustrating the concept of helicity is a circularly polarized plane wave. We
assume a plane wave along the z direction, that can be written as:

E(0)
σ = E0

êx + iσ êy√
2

eikz , (2.41)

where σ = ±1 determines the handedness of the wave (here, σ = +1 is associated with a left
polarized wave) and the corresponding magnetic field is kZH(0)

σ =−i∇∇∇×E(0)
σ , with Z =

√
µ/ε .

Applying the helicity operator, one obtains:

Λ̂E(0)
σ =

∇∇∇×E(0)
σ

k
= σE(0)

σ . (2.42)
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Therefore, a circularly polarized plane wave is an eigenstate of the helicity operator with eigenval-
ues Λ = σ =±1.

In this Thesis, the following complete eigenbasis, combination of the vector spherical harmon-
ics Xlm, is chosen:

Λ̂ΨΨΨ
σ
lm = σΨΨΨ

σ
lm , (2.43)

with, following Jackson’s notation [81],

ΨΨΨ
σ
lm =

1√
2

[
∇∇∇×gl(kr)Xlm

k
+σgl(kr)Xlm

]
, (2.44)

and
Xlm =

1√
l(l +1)

L̂Y m
l (θ ,φ) . (2.45)

Here, the radial functions gl(kr) are linear combinations of the spherical Hankel functions. For the
incident and internal fields, gl(kr) = jl(kr) since jl(kr) are finite at kr = 0, whereas for scattered
fields, gl(kr) = h(1)l (kr) since h(1)l (kr) describe outgoing spherical waves. Furthermore, it can
be demonstrated that ΨΨΨ

σ
lm are simultaneous eigenvectors of the square of the total AM, j2, the

component of the total AM parallel to the propagation direction, jz [54] (the propagation direction
is chosen to be the z direction), and the helicity operator for monochromatic waves [58], with
eigenvalues l(l +1), m, and σ , respectively.

Within this basis, one can expand any field in a multipolar sum of two different terms with
opposite helicity:

E = E++E− =
∞

∑
l=1

m=+l

∑
m=−l

(
A+

lmΨΨΨ
+
lm +A−

lmΨΨΨ
−
lm

)
, (2.46)

where A+/−
lm are expansion coefficients. This helicity decomposition is therefore suitable for the

description of the scattering problems addressed here in which the incident field is an eigenstate of
the helicity operator, namely, a circularly polarized plane wave. It is important to notice that only if
either A+

lm = 0 or A−
lm = 0, Eq. (2.46) is an eigenvector of the helicity operator with eigenvalue −1

or +1, respectively. This can easily be understood in the schematic illustration shown in Fig. 2.6.

Fig. 2.6 A field composed by the superposition of different eigenfunctions of the helicity operator,
e.g. ΨΨΨ

σ
lm, has definite helicity equal to +1 if all the eigenfunctions have left handedness (left panel),

−1 if they all have right handedness (central panel). If the field is composed by eigenfunctions
with different handedness, the helicity is undetermined (right panel). This figure is taken from Ref.
[57].
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For fields that are not eigenvectors of the helicity operator, we can calculate the state or degree
of circular polarization (DoCP). The DoCP is directly defined as the helicity density, that can be
calculated as follows [38]:

DoCP = Λθ =
E∗ · (Λ̂E)

E∗ ·E
=

|E+|2 −|E−|2

|E+|2 + |E−|2
. (2.47)

In general, the polarization state of electromagnetic radiation is described by the Stokes parameters
(I,Q,U,V ) [150, 28, 76], corresponding to the intensity, I, and the polarization ellipse parameters
whose parametrization corresponds to the Poincaré sphere, Q,U,V . The usefulness of these four
parameters is that they are easily measurable. Interestingly, following Ref. [38], it can be shown
that the DoCP is also a measurable quantity, since it is related to two of the Stokes parameters as
follows (see Chapter 7):

DoCP =
V
I
. (2.48)

The introduction of the helicity basis has another advantage, related to the conservation of
the helicity under a certain symmetry, the duality symmetry. In 1965, Calkin [36] demonstrated
that in the absence of charges and currents, Maxwell’s equations (1.7)–(1.10), are invariant under
electromagnetic duality transformations, namely, E→Ecosθ −Hsinθ and H→Esinθ +Hcosθ ,
with θ an arbitrary constant. Using Noether’s theorem, he linked this symmetry of the Maxwell’s
equations to the conservation in time of the degree of circular polarization of the field. Recently,
Ref. [58] applied this concept to light-matter interactions in which the duality symmetry is in
general broken due to the scattering. Namely, they demonstrated that the restoration of the duality
symmetry is possible for materials without free sources, characterized by scalar permittivity and
permeability. Furthermore, as shown in Sec. 2.4.1, the restoration of the duality symmetry is
intimately related to the enhancement of the optical mirage (see Sec. 1.3) in the backscattering
direction.

2.3.2 Mie theory: scattering parameters
When light propagates through a medium and a particle is present, the electromagnetic waves can
be either absorbed or scattered. This traduces in an attenuation of the incident illumination, which
is called extinction [76]. More specifically, to calculate the absorbed, scattered, and extinct energy,
it is convenient to separate the electric and magnetic fields outside of the particle in two terms, the
incident and scattered fields: Eout = E(0)+Escat and Hout = H(0)+Hscat. From this, the Poynting
vector (energy per unit time and unit surface) of Eq. (1.18) can be calculated as:

S =
1
2

ℜ

{
E(0)×H(0)∗+Escat ×Hscat∗+

(
E(0)×Hscat∗+Escat ×H(0)∗

)}
= S(0)+Sscat +Sext ,

(2.49)

where it can be seen that the extinction Poynting vector arises from the interference between the
incident and scattered fields. Then, the total power crossing an arbitrarily large spherical surface
centered on the scatterer, A, i.e., the total energy that the particle absorbs (or possibly creates) is:

Wabs =−
∫

A
êr ·S dA . (2.50)
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which can be analogously separated as:

Wabs =W(0)−Wscat +Wext =−
∫

A
êr ·S(0)dA−

∫
A

êr ·SscatdA−
∫

A
êr ·SextdA . (2.51)

Since all the incident power is both incoming and outgoing from the surface for a non-absorbing
host medium, W(0) = 0. Hence, the energy conservation in scattering problems, known as optical
theorem [28, 81, 117], can be formulated as:

Wext =Wabs +Wscat . (2.52)

Usually, the extincted, absorbed, and scattered powers are normalized by the incident irradiance,
which is the energy flow per unit time and unit area, i.e., Poynting vector, incident to the particle,
|S(0)|. These normalized powers have units of area and are calculated as follows:

σext =
Wext

|S(0)|
, σabs =

Wabs

|S(0)|
, σscat =

Wscat

|S(0)|
, (2.53)

corresponding, respectively to the extinction, absorption, and scattering cross sections.
Using the expanded incident and scattered fields within Mie theory, the Poynting vector and,

thus, the cross sections can be calculated as a function of the Mie coefficients. Namely, they
take the following form for spheres under plane wave illumination, regardless of the incident
polarization [28, 76, 152]:

σext =
2π

k2

∞

∑
l=1

(2l +1)ℜ{al +bl} , (2.54)

σscat =
2π

k2

∞

∑
l=1

(2l +1)(|al |2 + |bl |2) , (2.55)

σabs = σext −σscat , (2.56)

where total energy conservation is used for the last expression.
Another cross section can be defined, which corresponds with the particle’s actual geometrical

area. Since here we consider spherical scatterers, the geometrical cross section is σgeom = πa2, with
a the radius of the particle. As a consequence, extinction, Qext, absorption, Qabs, and scattering,
Qscat, efficiencies for spheres under plane wave illumination can be calculated as the ratio between
each of the cross sections and the geometrical area as follows:

Qext =
σext

πa2 , Qabs =
σabs

πa2 , Qscat =
σscat

πa2 . (2.57)

In addition to the cross sections and the efficiencies, there is another scattering parameter
that can be useful to analyze scattering problems: the widely used asymmetry parameter [28].
Asymmetry parameter, or g-parameter, is defined as the mean cosine of scattering angle, ⟨cosθ⟩,
and characterizes the degree of anisotropy of a scattering process:

g = ⟨cosθ⟩=
∫

Ω
(Sscat · êr)cosθdΩ∫
Ω
(Sscat · êr)dΩ

, (2.58)

If the particle scatters light isotropically, the g-parameter is equal to zero; if the particle scatters
more light in the forward direction, g > 0; and if light is more scattered in the backward direction,
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g < 0. Using Mie notation, the g-parameter can be calculated as follows [28]:

g =
4

x2Qscat

[
∞

∑
l=1

l(l +2)
l +1

ℜ{ala∗l+1 +blb∗l+1}+∑
l

2l +1
l(l +1)

ℜ{alb∗l }

]
. (2.59)

In particular, the two works compiled in this Thesis, Chapters 6 and 7, are restricted to the dipolar
regime. The g-parameter in this regime can be calculated by setting l = 1 in the previous equation,
yielding:

g =
ℜ{a1b∗1}

|a1|2 + |b1|2
, (2.60)

where a1 and b1 are the first, dipolar, scattering Mie coefficients.

2.3.3 Spin-orbit interactions: transfer between SAM and OAM
Hitherto, Mie theory and the helicity basis have been briefly introduced in rather general terms. In
this section, Mie theory is applied using the helicity basis to the scattering problem addressed in
two of the works compiled in this Thesis (see Chapters 6 and 7): a circularly polarized plane wave
incident on a non-absorbing dielectric nanosphere. The nanosphere, with radius a and refractive
index mp, is embedded in an otherwise non-absorbing homogeneous medium with refractive index
mh. The incident beam is therefore Eq. (2.41), with well-defined helicity, Λ = σ , expanded in the
helicity basis:

E(0)
σ

E0
=

∞

∑
l=0

+l

∑
m=−l

+1

∑
σ ′=−1

Cσσ ′
lm ΨΨΨ

σ ′
lm , (2.61)

where gl(kr) = jl(kr) in Eq. (2.44), k = mhk0 = mh2π/λ0, with λ0 the wavelength in vacuum, and

Cσσ ′
lm = σ il

√
4π(2l +1)δmσ δσσ ′ . (2.62)

The OAM and SAM densities per photon can be calculated using Eq. (1.21) and (1.22). Since
the plane wave is parallel to the z direction, the z component of the OAM and SAM densities is the
only finite one, with values:

lz =
E(0)∗

σ [−i(x∂y − y∂x)]E
(0)
σ

E(0)∗
σ ·E(0)

σ

= 0 , (2.63)

sz =
E(0)∗

σ ×E(0)
σ

E(0)∗
σ ·E(0)

σ

= σ , (2.64)

and, thus, jz = lz + sz = m = σ = Λ.
On the other hand, the scattered fields can be written as follows applying Mie theory in the

same helicity basis:
Escat

σ

E0
=

∞

∑
l=0

+l

∑
m=−l

+1

∑
σ ′=−1

Dσσ ′
lm ΨΨΨ

σ ′
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where gl(kr) = h(1)l (kr) in Eq. (2.44), and

Dσσ ′
lm =−il

√
4π(2l +1)δmσ

σal +σ ′bl

2
, (2.66)
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with al and bl the Mie coefficients defined in Eqs. (2.36) and (2.37).
As mentioned above, the helicity in general is not a conserved quantity, but only when the

duality symmetry is restored in the system. In contrast, since the scatterer is spherical, it presents
azimuthal symmetry, and jz of the incoming wave is preserved. After scattering, this yields
to an effective AM transfer from the spin to the orbital components, keeping the value of jz
constant. This transformation between SAM and OAM components is the particular spin-orbit
interaction that this Thesis focuses on. Namely, the scattered fields also have constant eigenvalue
jz = lz + sz = m = σ , with

lz =
Escat∗

σ [−i(r×∇∇∇) · êz]Escat
σ

Escat∗
σ ·Escat

σ

, (2.67)

sz =
(Escat∗

σ ×Escat
σ ) · êz

Escat∗
σ ·Escat

σ

. (2.68)

Depending on the scattering point and the size parameters x and y, these densities per photon can
take different values. For instance, Ref. [10] assumes that the particle is sufficiently small, x ≪ 1,
that the scattering can be described only with the first electric dipolar term of the expansion. In
that case, only a1 is assumed to be finite and, thus:

Escat
σ

E0
=−i

√
3πσa1

(
ΨΨΨ

+
1σ

+ΨΨΨ
−
1σ

)
. (2.69)

Substituting this equation in Eqs. (2.67), (2.68), and (2.47) yields:

lz = σ
sin2

θ

1+ cos2 θ
, (2.70)

sz = σ
2cos2 θ

1+ cos2 θ
, (2.71)

Λθ = σ
2cosθ

1+ cos2 θ
, (2.72)

where we notice the relation between SAM and helicity densities, sz = Λθ cosθ .
As explained in Sec. 1.3, the apparent shift, which we refer to as optical mirage, can be

calculated via Eq. (1.24). In the pure electric dipolar regime considered in Ref. [10], Eq. (1.24)
shows that the maximum value is of subwaelength order, ∆ = λ/π , at the perpendicular to the
incident direction plane, i.e., x–y plane.

2.4 Nanophotonics: summary of the results

2.4.1 Enhanced spin-orbit optical mirages from dual nanospheres
In this section, we outline the main results of Chapter 6. In the latter, we specifically analyze
the circularly polarized plane wave scattering problem of a subwavelength silicon particle in the
dipolar electric and magnetic regime. We thus go beyond the result of Ref. [10]. Using Mie theory
within the helicity basis, we compute the scattered Poynting vector and the corresponding optical
mirage via Eq. (1.24). In this case, we obtain the following result:

∆

(λ/π)
=− lz(θ)

sinθ
êϕ =

sz(θ)−σ

sinθ
êϕ =−σ

sinθ(1+2gcosθ)

1+ cos2 θ +4gcosθ
êϕ . (2.73)
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This equation summarizes all the results obtained in Chapter 6. First of all, we find a relation
between the optical mirage and the OAM density, that is useful for the understanding of the optical
mirage as a consequence of the conversion between OAM and SAM densities. This conversion
follows from the conservation of the total AM density component parallel to the incident radiation,
i.e., z direction, as explained in the previous section, with jz = σ = lz + sz. Finally, when the
Si nanosphere is dual, a1 = b1, leading to g = 0.5 in Eq. (2.60), the optical mirage diverges in
the backscattering direction, θ → π . We analyze this result for the optical mirage, from two
frameworks: spin-orbit interactions of light and helicity conservation.

2.4.2 Asymmetry and spin-orbit coupling of light scattered from subwave-
length particles

Here, we summarize the main results presented in Chapter 7. The analytical work developed in
Chapter 6 revealed different relations between the optical mirage, the g-parameter, and the duality
symmetry. In Chapter 6, we further analyze the problem and demonstrate that the remarkable
angular dependence of these optical mirages and those of the intensity, DoCP or helicity, and SAM
and OAM of scattered photons are all linked and fully determined by the g-parameter. This traduces
in results that are independent of the specific optical properties of the scatterer. Furthermore, we
show that the g-parameter can be entirely determined by measuring the scattered helicity at the
perpendicular direction to the incoming plane wave. This simple relation between the helicity
and the asymmetry parameter opens the possibility to infer the scattered fields’ whole angular
properties by a single far-field polarization measurement.

Moreover, each of the values of the g-parameter, describe different scattering responses in the
electric and magnetic dipolar regime. For instance, at g = 0, we recover the results of Ref. [10].
Accordingly, particles with different optical properties, but which share an identical g-parameter
value, lead to the same angular dependence of intensity, DoCP, SAM to OAM exchanges and
optical mirage.

Finally, we demonstrate that the maximum optical mirage does not correspond to the zeros of
the SAM, in contrast to what occurs when only considering a pure electric dipole.



Chapter 3

Conclusions

This Thesis has been motivated by the ambitious goal of unifying the theory of spin-orbit inter-
actions in two research fields: spintronics and nanophotonics. The work was triggered by our
original approach to the single impurity scattering problem for both electron and electromagnetic
radiation, presented in Sec. 1.3. In Refs. [19, 10], respectively, it was predicted that an apparent
shift appeared in both scenarios after scattering. Based on the model applied in Ref. [10], our first
analysis yields a common fundamental understanding of these apparent shifts. Namely, the spiral-
ing structure of the energy transfer rate vector in the near-field leads to an apparent displacement
of the sphere’s actual position when viewed far from it. After this work, we realized that several
properties related to the spin-orbit in electronic and light systems were unexplored. These findings
are the basis of the various papers presented in this Thesis with an in-depth study of spin-orbit
interactions in both fields.

Chapters 4 and 5, correspond to my works on spintronics, i.e. electronic systems. In such
structures, SOC offers the possibility of controlling spin densities and currents by electric means,
relating charge and spin currents, via direct and inverse SHE, or charge current and spin density,
via direct and inverse SGE. Since strong SOC is related to strong spin relaxation, most of the
spintronics devices combine regions with strong SOC to generate and manipulate spins and another
one with negligible SOC to transport the spins. From a general perspective, we address the
problem of describing these magnetoelectric effects in hybrid diffusive devices through well-
known spin and charge drift-diffusion equations combined with effective boundary conditions
(BC). Our descriptions are based on charge conservation, the consequences of the spin relaxation,
and symmetry considerations, key to understanding the appearance of SHE and/or SGE. We focus
on hybrid devices with both intrinsic and extrinsic sources of SOC, where the latter is either a bulk
or interface property.

Specifically, in Chapter 4, we describe hybrid systems combining regions with different kind or
strength of intrinsic linear-in-momentum SOC, including possible extrinsic impurities. Importantly,
we assume that no SOC is induced at the interface between different regions. In this case, both
intrinsic and extrinsic SOC can be included in the drift-diffusion equations within the SU(2)
formalism (see, e.g., Refs. [132, 131, 67]). Our main contribution is to obtain the needed BC for
the spin density integrating these equations right at the interface, generalized for any linear-in-
momentum SOC and direction of the external applied electric field. We apply our model to adjacent
Rashba and normal (without SOC) regions, analyzing the non-local spin galvanic effect (SGE)
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and inverse SGE (ISGE) and the reciprocity between them, which could be measured in a lateral
spin valve device. Non-local ISGE describes the possible diffusion of the spin density induced at
the SOC region when applying an external electric field. In contrast, non-local SGE describes the
possible generation of charge currents at the SOC region due to spin injection at the normal region.
The main conclusion is that these magnetoelectric effects depend entirely on the electric field’s
direction or the injected spin density and the possible breaking of the SU(2)-covariant conservation
of the spin.

Chapter 5 addresses hybrid devices combining two diffusive regions without SOC at whose
interface SOC is induced, i.e., at microscopic scales much smaller than the mean free path of
the electrons. Consequently, we can describe both regions within the drift-diffusion model, but
the interfacial SOC (ISOC) cannot be included. Our solution consists of using the method of
Refs. [30, 5–7], effectively including all the possible ISOC magnetoelectric effects as different
phenomenological terms for the spin and charge BC, describing spin Hall effects (SHE), SGE, and
spin relaxation at the interface. This method is based only on symmetry considerations, following
the general principle also applied in the well-known textbook “Spin Physics in Semiconductors”
[50]: everything, that is not forbidden by symmetry or conservation laws, will happen. This way,
we offer a complete, universal description of metal/insulator hybrid systems with ISOC with
interfacial parameters within the BC. As a demonstration of our model’s usefulness, we apply
the drift-diffusion model and the symmetry-based BC to two different devices, both with the
same interface with ISOC, namely, a BiOx/Cu interface. In particular, we quantify the interfacial
parameters of our effective model by experimental reciprocal measurements in a lateral spin valve
and a multilayered device with the same ISOC, carried out by the group of Dr. Fèlix Casanova
at CIC nanoGUNE (Donostia-San Sebastián, Gipuzkoa, Spain). Since the same value of the
interfacial parameters describe both experiments, our findings confirm that the effect of spin-charge
interconversion is an inherent property of the interface.

It is worth mentioning another work related to SOC that we published in collaboration with the
group of Dr. Francesco Giazotto from NEST Laboratory (Escuola Normale Superiore, Pisa, Italy):
the realization of a Josephson phase battery [151]. The Josephson effect arises in superconducting
junctions, i.e., junctions between two superconductors separated by a non-superconducting link. It
consists of a dissipation-less current that can be controlled by the phase difference between the
superconducting electrodes [84, 14]. In conventional Josephson junctions, such supercurrent can
flow when the phase difference is finite. However, if the junction is made of a material with sizable
SOC, Ref. [21] shows from symmetry arguments the possibility of inducing a controllable, non-
vanishing phase difference if an external magnetic or intrinsic exchange field is present. In such a
case, a spontaneous current may flow even in the absence of a phase difference. Such a device has
been fabricated by the Pisa group using a nanowire with strong SOC and a superconducting loop.
This device can be seen as a phase-battery generating a superconducting phase difference, similar
to a battery generating a voltage difference. Our contribution was to interpret the experimental
results in terms of the spin-galvanic effect in the superconducting state. The agreement between
theory and experiment is excellent. For details, the reader is referred to our publication, Ref. [151].

As a consequence of the previous work, we also had the opportunity to collaborate with Dr.
Claudio Guarcello to study in detail the hysteretical behavior observed in a superconducting
quantum interference device (SQUID) with an anomalous junction. Our work in Ref. [69] provides
a full theoretical description of the influence of a varying external magnetic field on the transport
properties of superconducting loops.
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In the other part of this Thesis, we focus on nanophotonics. The main works in this topic are
presented in Chapters 6 and 7. Both works consider the scattering problem of a dipolar dielectric
sphere under the illumination of a circularly polarized plane wave. The main point of these two
works is to consider that the sphere sustains both an electric and a magnetic dipolar response and,
thus, the interplay between these two may lead to intriguing effects. In this regard, depending
on the strength of the two optical responses, described by the electric, αE, and magnetic, αM,
polarizabilities, strong directionality can be obtained at the Kerker conditions. Combining the
first Kerker condition, a1 = b1, when the sphere is dual, with the scattered Poynting vector’s
spiraling structure after scattering, we demonstrate that the resulting optical mirage diverges at
the backscattering direction. Strikingly, the optical mirage’s enhancement can be understood as
well from a spin-orbit picture: since the scatterer is azimuthally symmetric, the total incident
AM parallel to the propagation direction, which can be split into orbital and spin components,
jz = lz+sz, is preserved after scattering. In our case, the incident plane wave has jz = sz = σ =±1.
Consequently, the orbital, spiraling trajectory of the Poynting vector arises as a transfer between
SAM and OAM, which varies at each scattering angle and the specific optical response. Within
this perspective, the backscattering divergence of the optical mirage when the system is dual is
explained due to an optical vortex’s emergence with charge lz = 2 (see Fig. 1.2).

Furthermore, we realized that the asymmetry of the scattering pattern could be used to describe
the spin-orbit interactions, as we specifically analyze in Chapter 7. The asymmetry in the scattering
is generally described by the asymmetry parameter which, in the dipolar regime, reads as g =
ℜ{a1b∗1}/(|a1|2 + |b1|2). From this expression, it is noticeable that spheres with different optical
properties, i.e., different values of a1 and b1, but sharing an identical g-parameter value, will lead
to the same angular dependencies of intensity, SAM to OAM exchanges, and optical mirages.
Moreover, in these works, we take another symmetry into account, the duality symmetry, and its
associated conserved quantity when the system is dual, the helicity density. In this sense, a full
link between the optical vortex appearance, the asymmetry parameter, and the conservation of
the helicity density or degree of circular polarization arises in the far-field. Finally, we also find a
direct relation between the helicity density, measured at the perpendicular to the incident radiation
direction, and the asymmetry parameter value. Therefore, this relation can be used to infer all the
angular dependencies from a single far-field polarization measurement.

As a consequence of these investigations in light scattering, other research works were de-
veloped, which are briefly commented here. Reference [121] includes the role of absorption
in dielectric spheres, which translates into enduring spin-orbit interactions but suppresses the
divergent optical mirage. The latter is fundamentally explained in Ref. [120] based on our in-depth
study of the mathematical description of scattering of dielectric spheres under plane wave illumi-
nation, i.e., Mie theory. Namely, we study Kerker conditions upon lossless, absorption, and optical
gain regimes, i.e., adding external energy to the system. In the same vein, we mathematically
demonstrate in Ref. [119] that going beyond the dipolar regime and, more specifically, the pres-
ence of multiple multipolar orders such as the quadrupole or octopole in the scattering response
of an object, inhibits any possible dual behavior and, hence, helicity conservation. As a direct
consequence, we demonstrate that the helicity conservation can be used as a signature of dipolar
regimes in the whole optical spectrum under plane wave illumination. Finally, focusing on the
so-called second Kerker condition, we find the specific conditions needed for an optimal backward
light scattering in the dipolar regime. Importantly, we clarify the frequent misunderstanding that
links the optimal backscattering light with a nearly zero forward scattering. The latter appears if
and only if the scattering cross section is smaller than a pure electric (or magnetic) resonant sphere.
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In conclusion, for further analogies and a common model to be completed, we needed an
in-depth study of the SOI in both spintronics and nanophotonics, presented throughout this Thesis
separately. As a consequence of that study, we had the opportunity to contribute to different
publications, not only to those compiled here as chapters 4–7, but also those corresponding to Refs.
[121, 120, 118, 119, 151, 69]. We firmly believe that this Thesis opens the door to achieve our
original objective of a global view of the SOI problems in two of the most promising branches of
Physics nowadays, spintronics and nanophotonics.

As Rutherford said: “All of Physics is either impossible or trivial. It is impossible until
you understand it, and then it becomes trivial”. This Thesis hopefully is somewhere between
impossible and trivial.
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We present a theoretical study of nonlocal magnetoelectric effects in diffusive hybrid structures with an
intrinsic linear-in-momentum spin-orbit coupling (SOC) which is assumed to be spatially inhomogeneous. Our
analysis is based on the SU(2)-covariant drift-diffusion equations from which we derive boundary conditions at
hybrid interfaces for SOC of any kind. Within this formulation, the spin current is covariantly conserved when the
spin relaxation is only due to the intrinsic SOC. This conservation leads to the absence of spin Hall (SH) currents
in homogeneous systems. If, however, extrinsic sources of spin relaxation (ESR), such as magnetic impurities
and/or a random SOC at nonmagnetic impurities, are present the spin is no longer covariantly conserved, and
SH currents appear. We apply our model to describe nonlocal transport in a two-dimensional system with an
interface separating two regions: one normal region without intrinsic SOC and one with a Rashba SOC. We first
explore the inverse spin-galvanic effect, i.e., a spin polarization induced by an electric field. We demonstrate how
the spatial behavior of such spin density depends on both the direction of the electric field and the strength of the
ESR rate. We also study the spin-to-charge conversion, and compute the charge current and the distribution of
electrochemical potential in the whole system when a spin current is injected into the normal region. In systems
with an inhomogeneous SOC varying in one spatial direction, we find an interesting nonlocal reciprocity between
the spin density induced by a charge current at a given point in space, and the spatially integrated current induced
by a spin density injected at the same point.

DOI: 10.1103/PhysRevB.100.195406

I. INTRODUCTION

Spin-orbit coupling (SOC) in metals and semiconductors
couples the charge and spin degrees of freedom of the elec-
trons and leads to a variety of magnetoelectric effects. For that
reason, conductors with sizable SOC are used for the creation
and control of spin currents and spin densities by applying
electric fields. Reciprocally, magnetoelectric effects allow for
detecting spin by measuring electric signals [1,2].

It is customary to distinguish between two kinds of mag-
netoelectric effects mediated by SOC: those relating spin and
charge currents (spin Hall effect and its inverse), and those
relating spin polarization and charge current (spin-galvanic
effect and its inverse). The spin Hall effect (SHE) is the
generation of a spin current, transverse to the applied charge
current [2–5]. The inverse effect, commonly known as the in-
verse SHE [2], corresponds to the spin-to-charge counterpart
and consists of a charge current, or a Hall voltage, induced
by a given spin current. Both direct and inverse SHE have
been measured in several experiments and different materials
[6–11].

*cristina_sanz001@ehu.eus
†sebastian_bergeret@ehu.eus

Here, we focus on the charge-to-spin conversion due to the
spin-galvanic effect (SGE), which refers to the generation of a
charge current by creating a nonequilibrium spin polarization
in the material. It takes place, for example, in materials with
a linear-in-momentum intrinsic SOC, such as the Rashba or
linear Dresselhaus SOC [12–14]. Conversely, the inverse SGE
corresponds to the spin polarization induced by applying an
electric field/current [15–22], which in the particular case of
Rashba SOC, is also known as the Edelstein effect [23,24].
In contrast to the SHE, the induced spin is homogeneous in
space and, in principle, in the stationary case, no spin currents
are generated [25–29]. Observation of the SGE and its inverse
has been reported in Refs. [7,30–34].

From the experimental point of view, hybrid structures
combining different materials play an important role in the
detection of magnetoelectric effects. This requires, on the one
hand, materials with large SOC for an efficient charge-to-spin
conversion and, on the other hand, large enough spin diffusion
lengths in order to transport the spin information across the
device. At first glance, it seems difficult to find systems satis-
fying these two conditions because a strong SOC in a diffusive
system will inevitably lead to a strong spin relaxation [15].
This problem can be overcome by using hybrid structures
combining, for example, two different materials, one with a
strong SOC, in which the charge-to-spin conversion occurs,

2469-9950/2019/100(19)/195406(12) 195406-1 ©2019 American Physical Society
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FIG. 1. Schematical view of different setups considered in this
work. (a) Heterostructure with a localized SOC at the interface (blue
region) between two different materials, in this case a normal con-
ductor (gray bottom region) and an insulator (transparent top region).
(b) Hybrid lateral structure for nonlocal transport measurements. The
gray region is a normal conductor without SOC connected to two
electrodes. At the contact with the blue electrode it is assumed a
sizable SOC, whereas the orange electrode is a ferromagnet which
may serve as a spin injector or detector. (c) The system under
consideration to study the nonlocal inverse SGE. An electric field is
applied parallel or perpendicular to the interface, between a normal
conductor without SOC (gray region) and a conductor with intrinsic
SOC (blue region). A spin density is induced in the latter. We are
interested in the spin density at a distance L away from the interface
in the normal conductor. (d) Same setup as panel (c) but now a spin is
injected into the normal conductor at a distance L from the interface.
We are interested in the charge current induced in the blue region as
a consequence of the SGE.

adjacent to a second material with a weak SOC where the
spin information can be transported over long distances. This
conversion can also take place at the interface between a metal
and an insulator with a sizable SOC [Fig. 1(a)] [35].

An efficient way of injecting and detecting the spin accu-
mulation is by using nonlocal spin valves, as the one sketeched
in Fig. 1(b) [34,36–43]. In this setup, the source signal, either
a spin or a charge current, is injected from one of the elec-
trodes (orange/blue), whereas the response signal, a charge or
spin voltage, is measured nonlocally at the detector electrode
(blue/orange). Similar valves combining ferromagnetic elec-
trodes and metallic wires have also been used to measure the
SHE [8], as well as to study the reciprocity between the SHE
and the inverse SHE [44].

In this work, we present a theoretical study of nonlocal
electronic transport in hybrid diffusive systems with linear-
in-momentum intrinsic SOC of any type. We focus on the
reciprocity between the nonlocal SGE and its inverse. Our
analysis is based on the drift-diffusion equations [4] for-
mulated in the language of SU(2) gauge fields, where the
intrinsic SOC and the Zeeman field enter as the space and time
components of an effective SU(2) 4-potential [45–47]. Within
this formalism, the spin obeys a covariant continuity equation
which explains the absence of spin Hall (SH) currents in a
homogeneous system with intrinsic SOC. This covariant con-
servation of the spin is broken in the presence of any extrinsic
source of spin relaxation (ESR), as for example magnetic
impurities or a random SOC originated from scattering of

electrons at nonmagnetic impurities. Such symmetry breaking
leads to a finite spin current that may flow into a material
without SOC.

In order to describe the transport in such hybrid systems,
we derive effective boundary conditions (BC) valid for sys-
tems of any dimension. These BC describe the transport
between diffusive conductors with different (not only in the
strength) linear-in-momentum SOC and mean-free path, and
they are valid for any direction of the applied field.1 They
generalize the BC obtained in Refs. [28,48–51], for a specific
case of two-dimensional (2D) Rashba systems.

We apply the diffusion equation and BC to study nonlocal
measurement of the SGE and its inverse in a two-dimensional
hybrid system consisting of a diffusive conductor without
intrinsic SOC, labeled as normal conductor, adjacent to a
Rashba conductor, i.e., a conductor with an intrinsic Rashba
SOC [see Figs. 1(c) and 1(d)] [39–43]. First, we address the
nonlocal inverse SGE [Fig. 1(c)], and calculate the value of
the spin density induced at the normal conductor at a finite
distance from the interface with the Rashba region, when an
electric field is applied. If the field is parallel to the interface,
and due to its covariant conservation, the spin generated at
the Rashba conductor cannot diffuse into the normal region,
leading to a zero signal [28,48–50]. However, inclusion of
ESR breaks the covariant conservation of the spin, and a finite
SH current is generated. This leads to a diffusion of the spin
into the normal region. We emphasize that this, previously
unnoticed, mechanism of the spin injection is different from
the one appearing at the boundary between materials with dif-
ferent intrinsic SOC and different elastic mean-free paths [50].
If the electric field is applied perpendicular to the interface,
the situation is rather different. In this case, the BC impose
the conservation of both the spin density and spin (diffusive)
currents at the interface. This leads to a diffusion of the spin
density induced via the inverse SGE into the normal conductor
even in the absence of ESR mechanisms. For the specific
case of a Rashba SOC, this result coincides with the one of
Ref. [50].

Second, we address the inverse effect, i.e., the nonlocal
SGE [see Fig. 1(d)]. In this case, a spin density is injected into
the normal conductor at a certain distance from the interface.
This spin diffuses over the normal region, and the corre-
sponding spin diffusion current reaches the Rashba conductor,
where it is transformed into a charge current. We demonstrate
that depending on the polarization of the injected spin density,
charge currents parallel or perpendicular to the interface can
be generated. In the absence of ESR, the spatially integrated
current parallel to the interface vanishes, leading to zero
global SGE, whereas a finite ESR leads to a finite total charge
current. These two situations are the reciprocal to the nonlocal
inverse SGE described above. Indeed, we find a hitherto
unknown general nonlocal reciprocity relation between the

1Our analysis is done within the diffusive limit and hence it is
assumed that the spatial variation of the SOC occurs over a length
scale larger than the momentum relaxation length. In this regard,
we do not take into account so-called, interfacial SOC, i.e., SOC
that only exists over atomic lengths right at the interface (see, for
example, Refs. [61,63,64]).
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global charge current induced by the spin injected locally at
some point x0, and the spin at the same point x0 induced by
applying a uniform electric field.

Finally, we consider the nonlocal SGE when the lateral
dimensions are finite. In this case, no current flows at the
lateral boundaries. We solve this boundary problem and find
a redistribution of the electrochemical potential and the local
charge currents flowing in the whole structure.

The paper is organized as follows. In Sec. II we review the
SU(2)-covariant drift-diffusion equations for the charge and
the spin densities, and derive the general BC. In Sec. III we
first review the inverse SGE in bulk homogeneous systems
with linear-in-momentum SOC. In Sec. III B we explore the
nonlocal inverse SGE in the normal/Rashba conductor struc-
ture shown in Fig. 1(c). In Sec. IV we analyze at a general
level the reciprocity between this effect and the nonlocal
SGE, and show that the spin density at x0, induced via the
nonlocal inverse SGE, is proportional to the integrated charge
current, generated via the nonlocal SGE, by injection of a
spin current density at x0. In Sec. V we study the nonlocal
SGE shown in Fig. 1(d) and compute the spatial dependence
of the charge current density. In Sec. VI we analyze the
SGE in the same structure but with finite lateral dimensions,
and determine the redistribution of charge currents and the
electrochemical potential induced by the SGE. Finally, we
present our conclusions in Sec. VII.

II. THEORETICAL DESCRIPTION OF DIFFUSIVE
HYBRID STRUCTURES

In this section we review the diffusion equations for the
charge and spin densities in homogeneous systems in the
SU(2)-covariant formalism. We derive BC for these equations
at hybrid interfaces. These conditions describe interfaces be-
tween materials with different kinds and strengths of linear-
in-momentum SOC.

We focus on materials with linear-in-momentum SOC. The
latter can be described with the help of a SU(2) vector po-
tential ˆAk = 1

2A a
k σ a. Specifically, we consider the following

Hamiltonian [47,52]:

H = (pk − ˆAk )2

2m
− ˆA0 + Vimp. (1)

A particular case of SOC is the widely studied two-
dimensional Rashba SOC, for which A x

y = −A y
x = 2mα =

λ−1
α , being α the Rashba parameter. The second term in

Eq. (1), ˆA0 = 1
2A a

0 σ a, describes a Zeeman or ferromagnetic
exchange field. The last term is the potential of randomly
distributed impurities. We consider both nonmagnetic and
magnetic impurities, such that Vimp = Vnm + Vm, where Vnm

contains the SOC generated by the random potential of the
impurities [1]. In our notation, lower indices correspond to
spatial coordinates and upper indices to spin components, and
throughout the paper the summation over repeated indices is
implied.

The advantage of introducing the SOC as a SU(2) gauge
field is that one can derive a SU(2)-covariant continuity equa-
tion for the spin [46]. In other words, within this formalism
the spin is covariantly conserved when only intrinsic linear-in-
momentum SOC is considered, and it satisfies the following

continuity equation:

∂̃t Ŝ + ∂̃k ĵk = 0, (2)

where Ŝ = Sa(σ a/2) is the spin density and ĵk = ja
k (σ a/2)

is the spin current density flowing in the k direction, de-
fined as the average of the spin current operator ja

k =
(1/2){∂H/∂ pk, σ

a/2}. The spin continuity equation has the
same form as the charge continuity equation, but with the
derivatives substituted by the covariant ones ∂̃t = ∂t − i[ ˆA0, ·]
and ∂̃k = ∂k − i[ ˆAk, ·], respectively.

In the presence of any kind of ESR, as for example
magnetic impurities, or SOC due to the impurity scattering
[24,52,53], Eq. (2) acquires an additional term:

∂̃t Ŝ + ∂̃k ĵk = − 1

τext
Ŝ. (3)

Here, we assume that the spin relaxation is isotropic in space
and neglect the interference term between extrinsic and intrin-
sic SOC [22]. Clearly, the ESR breaks the SU(2) symmetry
and hence the spin is no longer covariantly conserved.

We now consider a hybrid interface between two materials
with different mean-free path and SOC. In real systems, all
potentials appearing in the Hamiltonian of Eq. (1) must be
finite and, therefore, both the spin currents and spin densities
must also be finite at any point in space. Therefore, one
can integrate Eq. (3) over an infinitesimal interval across the
interface and obtain the conservation of the spin current:

nk ja
k |0+ = nk ja

k |0− , (4)

where n̂ = (nx, ny, nz ) is a unit vector perpendicular to the
interface. This is the first BC.

In order to describe the spatial distribution of the spin and
charge densities, we focus here on diffusive systems in which
the elastic scattering rate at nonmagnetic impurities dominates
over all other rates. Specifically, the inverse of the momentum
relaxation time τ−1 is assumed to be larger than all other
energies, such as SOC, Zeeman field, or the inverse of any
ESR time τ−1

ext . In this limiting case, the spin current is given
by [47,54,55]

ĵk = −D∂̃kŜ − γ F̂ki ji. (5)

The first term corresponds to the SU(2)-covariant diffusion
current, where D = v2

Fτ/d is the diffusion coefficient, and d
the dimension of the system. The second term, proportional
to the charge current density ji, describes the charge-to-spin
conversion, where γ = τ/(2m). It is, therefore, the term re-
sponsible for the SHE. The proportionality factor contains
the field strength tensor defined in terms of the SU(2) vector
potential as

F a
i j = ∂iA

a
j − ∂ jA

a
i + A b

i A c
j εabc. (6)

In analogy to the ordinary Hall effect, where electrons are
deflected by an external magnetic field, the second term in
the right-hand side of Eq. (5) describes the spin-dependent
deflection in the presence of an effective SU(2) magnetic field,
Eq. (6), generated by SOC.

The charge current density in the diffusive limit is given by
[47,54]

jk = −D∂kn − σDEk − γ F̂ki ĵi, (7)

195406-3



CRISTINA SANZ-FERNÁNDEZ et al. PHYSICAL REVIEW B 100, 195406 (2019)

where n is the out-of-equilibrium electron density, σD the
Drude conductivity, and Ek the kth component of the electric
field. The third term is the reciprocal to the second term in
Eq. (5). It describes the spin-to-charge conversion under the
action of the SU(2) field and, therefore, is related to the inverse
SHE.

The spin and charge diffusion equations are obtained by
substituting expressions Eqs. (5) and (7) into Eq. (3) and
the charge continuity equation, respectively. Specifically, the
SU(2)-covariant spin diffusion equation in a stationary case
and in the absence of a Zeeman field has the following
compact form:

∂̃kD∂̃kŜ + γ ∂̃kF̂ki ji = 1

τext
Ŝ. (8)

The covariant Laplace operator in the first term can be written
explicitly by expanding the covariant derivatives [56]:

(∂̃kD∂̃k )ab = ∂kD∂kδ
ab + 2Pab

k ∂k + ∂kPab
k − 
ab, (9)

where we define the following operators [56]:

Pab
k = −iD[ ˆAk, ·] = DA c

k εcba, (10)


ab = D[ ˆAk, [ ˆAk, ·]] = −D−1Pac
k Pcb

k . (11)

Here, 
ab is the general Dyakonov-Perel relaxation tensor that
describes spin relaxation due to the randomization of the spin
precession caused by the scattering at nonmagnetic impurities,
whereas Pab

k describes the precession of an inhomogeneous
spin density [25,56].

The spin diffusion equation (8) is solved in the next
sections for different geometries and situations. To describe
hybrid interfaces between different materials, one needs an
additional BC to Eq. (4), which can be obtained by integrating
Eq. (5) over a small interval around the interface. In the
absence of charge current sources, this integration leads to
the continuity of the spin density across the interface. If a
finite charge current density is induced by an electric field
ji = −σDEi, we divide Eq. (5) by D and integrate it over a
small interval across the junctions and obtain

Sa
∣∣0+

0− = 1
2

(
γ σD

D

∣∣
0+ + γ σD

D

∣∣
0−
)
(δi j − nin j )

(
A a

j |0+ − A a
j |0−

)
Ei.

(12)
In this equation we allow for different values of the momen-
tum scattering time τ and SOC at both sides of the junction,
and different directions of the electric field with respect to the
interface. Equation (12) generalizes the result for 2D Rashba
systems [28,48–51], for any kind of linear-in-momentum SOC
and any dimension [see Figs. 1(a) and 1(b)].

In the next sections we study nonlocal transport in the
diffusive hybrid structure sketched in Figs. 1(c) and 1(d). It
consists of a normal conductor without intrinsic SOC (gray
area) adjacent to a conductor with Rashba SOC (blue area),
from here on referred to as a Rashba conductor. As mentioned
above, the Rashba SOC is described by the SU(2) vector po-
tential with nonzero components A x

y = −A y
x = 2mα = λ−1

α .
In what follows, we assume that the momentum scattering
time τ is constant in the whole system, and focus on the effect
of ESR. Furthermore, we assume that the system is invariant
in the y direction, such that the spin density only depends
on x.

In the normal conductor region the spin current has only a
diffusion contribution [first term of Eq. (5)], and the spin dif-
fusion equation (8) has the same form for all spin components:

∂2
x Sa = Sa

λ2
s

, (13)

where λs is the spin diffusion length in the normal conductor.
In the Rahsba conductor, the three components of the spin

current ĵx are obtained from Eq. (5):

jx
x = −D∂xSx + λ−1

α Sz, (14)

jz
x = −D∂xSz − λ−1

α Sx + γ σDλ−2
α Ey, (15)

jy
x = −D∂xSy. (16)

The components of the spin density are determined by the
following set of coupled diffusion equations:

∂2
x Sx = 2λ−1

α ∂xSz + (
λ−2

α + λ−2
ext

)
Sx − γ σD

D
λ−3

α Ey, (17)

∂2
x Sz = −2λ−1

α ∂xSx + (
2λ−2

α + λ−2
ext

)
Sz, (18)

∂2
x Sy = (

λ−2
α + λ−2

ext

)
Sy + γ σD

D
λ−3

α Ex. (19)

Notice that for generality we assume different ESR lengths
in the Rashba and in the normal conductor, λext and λs,
respectively.

We solve Eqs. (13) and (17)–(19) in two different situa-
tions. We first consider the inverse SGE [Fig. 1(c)]: a finite
spin density is induced in the Rashba conductor due to the
applied electric field. We explore whether such spin density
can diffuse into the normal region. We then focus on the
reciprocal situation [Fig. 1(d)] in which we assume that a
spin density is created (e.g., by injection) at some point at the
normal conductor and determine the charge current induced at
the Rashba conductor via the SGE.

III. CHARGE-TO-SPIN CONVERSION: THE INVERSE
SPIN-GALVANIC EFFECT

In this section we explore the charge-to-spin conversion in
homogeneous and hybrid systems with intrinsic SOC. This
conversion leads to the inverse SGE, which in the particular
case of Rashba SOC is also called the Edelstein effect [23].

We start our discussion by analyzing this effect in a bulk
material with intrinsic SOC. Even though this example has
been widely studied in the literature [25,26,57], its discussion
here will serve as good starting point to introduce the main
physical parameters used in the subsequent analysis of a more
complicated hybrid setup.

A. Homogeneous material with intrinsic SOC

The question under which conditions a charge current
through a conductor with intrinsic linear-in-momentum SOC
can create a transverse SH current was addressed in several
works (see, e.g., Refs. [25,26,57]). Here, we show how the
answer to this question can be found straightforwardly from
the SU(2)-covariant spin diffusion equation.
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In a bulk homogeneous system the spin density has no spa-
tial dependence and, therefore, the diffusion equation reduces
to an algebraic equation after setting the spatial derivatives in
Eq. (8) to zero. In the presence of an external electric field,
this equation reduces to

−
abSb = γ σDA b
k F c

kiε
abcEi + 1

τext
Sa. (20)

We first assume that τ−1
ext = 0, and obtain

Sa
int = γ σD

D
A a

i Ei. (21)

The SH current, i.e., the spin current transverse to the applied
electric field, is obtained from Eq. (5) and reads as

ja
k = −DA c

k εcba
(
Sb − Sb

int

)
. (22)

In the absence of ESR, Ŝ = Ŝint , and hence no transverse
current is generated. The spin current induced by the SU(2)
magnetic field is fully compensated by the spin diffusive
current. This also means that in a homogeneous finite system
with intrinsic SOC, no spin accumulation at the boundary is
expected. This can be seen as a direct consequence of the
SU(2)-covariant conservation of the current, Eq. (2), which
has to be zero at the sample boundaries.

The situation is quite different in the presence of a finite
ESR. For the Rashba SOC the solution of Eq. (20) can be
explicitly written:

Sa = Sa
EE

1 + r2
ext

, (23)

where the parameter rext = λα/λext, with λext = √
τextD, char-

acterizes the relative strength of ESR, and

Sa
EE = γ σD

Dλα

εzaiEi (24)

is the well-known Edelstein result [16,23] for the current-
induced spin in a Rashba conductor.2

Substitution of Eq. (24) into Eq. (22) leads to a finite SH
current [52,58,59]:

jz
k = D

λα

r2
ext

1 + r2
ext

Sk
EE. (25)

The above results are used in the next sections to contrast them
with those obtained for hybrid systems.

B. Hybrid structure with inhomogeneous SOC

We now focus on the hybrid diffusive structure sketched in
Fig. 1(c). The structure can be viewed as a building block of
a lateral spin valve [Fig. 1(b)], commonly used for nonlocal
detection of magnetoelectric effects [8,60]. The charge-to-
spin conversion can be detected by passing a charge current at
the Rashba conductor [blue region in Fig. 1(b)]. This current
generates a spin accumulation which can diffuse into the

2Notice that we distinguish between Sint and SEE to emphasize
that the latter is valid specifically for Rashba SOC. In contrast,
Sint denotes the spin density induced by the electric field for any
linear-in-momentum SOC.

normal conductor (gray region) and can be detected as a
spin voltage measured by a ferromagnetic electrode (orange
region) [36].

In our model of Fig. 1(c), the normal conductor occupies
the half-plane x < 0 and the Rashba conductor is at x > 0.
We solve the diffusion equations in both regions [Eqs. (13)
and (17)–(19)] together with the BC at x = 0 [Eqs. (4) and
(12)].

In the normal conductor region x < 0, the solution of
Eq. (13) is an exponential function decaying away from the
interface over the spin diffusion length λs. Whereas, the
solution at the Rashba conductor depends on the direction
of the applied electric field. We distinguish between two
different situations: when the electric field is applied parallel
or perpendicular to the interface.

1. Electric field parallel to the interface: E = Eyêy

If the electric field is applied parallel to the interface
between the normal and Rashba conductors then, according
to Eq. (24), the induced spin density in the bulk of the Rashba
conductor is polarized perpendicular to E, which in our case
corresponds to the direction Sx. From Eqs. (17) and (18) we
see that the diffusion of this component is coupled to Sz,
whereas the spin polarization in the y direction is not induced.
Thus, one needs to solve two coupled linear second-order
differential equations with BC at the interface between the
normal and the Rashba conductors obtained from Eqs. (4) and
(12):

ja
x |0+ = ja

x |0− , Sa|0+ − Sa|0− = Sx
EEδax. (26)

The explicit form of the spatial dependence of Sx and Sz is
given in Eq. (A1) of Appendix A and it is shown in Figs. 2(a)
and 2(b), respectively, for λext = λs. The obtained behavior
can be easily understood from the bulk solution. When the
ESR is negligibly small, rext → 0, the SH current is zero
and the Edelstein spin density cannot diffuse into the normal
conductor [solid blue line in Fig. 2(a)]. This is a consequence
of the SU(2)-covariant conservation of the spin. Such conser-
vation does not hold for a finite rext. Indeed, ESR leads to
a finite spin current in the Rashba conductor [Eq. (25)] and,
consequently, the continuity of the spin current at the interface
leads to a diffusive spin current in the normal conductor. This
mechanism of spin injection into the normal conductor is
different from the one discussed in Ref. [50], in which the spin
injection takes place due to different momentum relaxation
time at both sides of the interface.

As mentioned above, the precession terms in Eqs. (17) and
(18) couple the Sx and Sz components and, therefore, both are
induced in the whole system, as shown in Fig. 2(b). Far away
from the interface inside the Rashba conductor, x/λα � 1, the
spin density reaches its bulk value given by Eq. (23).

One can obtain simple expressions for the spatial depen-
dence of the spin density in limiting cases. For example, if the
ESR is very small, rext � 1, we obtain from Eq. (A1)

Sx(x)

Sx
EE

≈ �(x) − �(−x)r2
exte

x
λs ,

Sz(x)

Sx
EE

≈ −r2
ext

(
�(x) Im

{
κ∗2

0

2
√

2
e− κ0x

λα

}
+ �(−x)e

x
λs

)
, (27)
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FIG. 2. Spatial dependence of the spin density induced by ap-
plying an electric field [see Fig. 1(c)] for different values of rext .
We distinguish two possible directions of the electric field: (a),
(b) parallel, and (c) perpendicular to the interface. In all figures it is
assumed that λs = λext , and the calculated spin density is normalized
by the corresponding bulk value Sa

EE of Eq. (24).

where κ2
0 = (−1 + i

√
7)/2, and corresponds to the definition

of κ in Eq. (A2) with rext = 0. This means that, to leading
order in rext, the Edelstein spin given by Eq. (23) is induced
homogeneously in the Rashba conductor, whereas the ampli-
tude of the spin density that diffuses into the normal region
is proportional to r2

ext [cf. Figs. 2(a) and 2(b)]. When rext = 0,
we recover the results obtained in Refs. [28,48].

In the opposite limit, i.e., when rext � 1, we obtain from
Eq. (A1)

Sx(x)

Sx
EE

≈ λs

λs + λext

(
�(x)

λext

λs
e− x

λext − �(−x)e
x
λs

)
,

Sz(x)

Sx
EE

≈ −1

rext

1 + λext
λs

λ2
ext
λ2

s
+ 2 λext

λs
+ 1

(
�(x)e− x

λext + �(−x)e
x
λs
)
. (28)

In this case, the induced Sx is localized at the interface and
decays exponentially into both conductors [cf. Fig. 2(a)]. The
sign of the spin at both sides of the interface is opposite.

FIG. 3. (a) Spin density induced at x = −L by an electric field
[see Fig. 1(c)] as a function of rext . We distinguish between an electric
field applied parallel and perpendicular to the interface. (b) Integrated
charge current induced by a spin density injection at x = −L [see
Fig. 1(d)] as a function of rext . The charge current flows in different
directions depending on the polarization of the injected spin density.
All curves are calculated in units of γ /(Dλα ), for L/λs = 0.01, λs =
λext , and normalized according to Eq. (43).

If λext = λs, as in Fig. 2, the value of the spin at each side
of the interface is ±Sx

EE/2. Due to the Rashba coupling, a
small contribution polarized in z also appears as shown in
Fig. 2(b). If λext �= λs, we distinguish two cases: If λs � λext,
then the spin relaxes strongly in the normal conductor next
to the interface. On the Rashba side, Sz practically disappears
whereas there is an x-polarized spin accumulation at the edge
of the order of Sx

EE, which decays toward the bulk.
In the opposite limit λs � λext, the spin density in

the Rashba conductor is strongly suppressed by the ESR.
Whereas, at the interface in the normal conductor side a
spin density Sx

EE appears and decays over λs into the normal
conductor.

The spin density induced in the normal conductor can be
measured by detecting a spin voltage with a local ferromag-
netic probe. We assume that such a contact is located at a
distance L from the interface [see Figs. 1(b) and 1(c)]. In
Fig. 3(a), we show the dependence on rext of both spin com-
ponents (solid blue and dashed-dotted orange lines) induced
in the normal conductor [Eq. (A1)] at the detector. We chose
λs = λext and L � λs. As explained above, in the absence of
ESR, rext = 0, the spin density induced by the charge current
in the Rashba conductor does not diffuse into the normal part
and hence both components are zero. For finite ESR, both
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Sx and Sz become finite at x = −L, but their dependence
on rext is quite different. The absolute value of Sx increases
monotonically with rext and asymptotically approaches Sx

EE/2,
while Sz reaches a maximum at rext ≈ 1 and decays toward
zero by further increase of rext.

It is worth noticing that the situation of a parallel electric
field explored in this section also corresponds to the exper-
imental situation of Ref. [35]: a normal metal film Cu is in
contact with an insulator Bi2O3 forming what the authors of
that work called a Rashba interface. This setup is sketched
in Fig. 1(a). If one assumes that the SOC is confined to
the blue layer, and the electric field is applied along the
films, then, in the absence of ESR, no spin current may flow
from the interface into the Cu layer. Therefore, the observed
magnetoresistance associated to a finite spin current cannot
be only due to the Edelstein effect at the interface, but can
be attributed to other extrinsic spin relaxation sources, as
predicted from our previous analysis.

2. Electric field perpendicular to the interface: E = Exêx

Now, we focus on the situation in which the electric field is
applied perpendicular to the interface. According to Eq. (24),
the induced spin density is polarized in the direction of ˆAx,
which for Rashba SOC corresponds to Sy. This component
is decoupled from the other two [see Eqs. (17)–(19)] and
therefore in this case Sx,z = 0.

For the perpendicular orientation of the electric field, the
BC correspond to the continuity of both the spin current and
the spin density [Eqs. (4) and (12)]:

jy
x |0+ = jy

x |0− , Sy|0+ = Sy|0− . (29)

This means that the spin generated at the Rashba conductor
via the Edelstein effect diffuses into the normal conductor,
even in the absence of any ESR mechanism. From Eqs. (13),
(19), and (29), one can determine explicitly the spatial depen-
dence of Sy. In the normal conductor it reads as (x < 0)

Sy(x) = Sy
EE√

1 + r2
ext

λs

λα + λs

√
1 + r2

ext

e
x
λs , (30)

and in the Rashba region (x > 0)

Sy(x) = Sy
EE

1 + r2
ext

(
1 − λα

λα + λs

√
1 + r2

ext

e− x
λα

√
1+r2

ext

)
. (31)

This result has to be contrasted to the one obtained when the
field is applied parallel to the interface. Namely, in the latter
case when rext = 0 no spin diffuses into the normal conductor.
Here, however, even if rext = 0, the diffusion occurs as a con-
sequence of the broken translation symmetry in the direction
of the electric field.

In Fig. 2(c) we show the spatial dependence of Sy, assum-
ing that the ESR in the normal and Rashba conductors are
equal, λs = λext. As in Figs. 2(a) and 2(b), deep in the Rashba
conductor x

λα
� 1, one obtains the bulk value for the spin

density, determined by Eq. (23). Because of the continuity
of the spin density, the increase of ESR leads to an overall
homogeneous decrease of the spin density.

We compute the measurable spin density at a distance
L from the interface [see Figs. 1(b) and 1(c)]. It is shown

in Fig. 3(a) (dashed green line) for the particular case of
λs = λext and L � λs. Due to the latter condition, for rext = 0
the spin density at x = −L is approximately equal to Sy

EE.
When the ESR is switched on, the current-induced spin in the
bulk Rashba conductor decreases monotonically according to
Eq. (23), and so does the spin density value at x = −L.

The spin generated in the normal conductor is associated
to a diffusive spin current jy

x , parallel to the electric field as a
consequence of the spatial variation of Sy [Eqs. (30) and (31)].
But, more interesting is the appearance of a SH current jz

y , in
the Rashba conductor as a consequence of both the covariant
diffusion and the SU(2) magnetic field. This is a transverse to
the electric field current and it can be calculated from Eq. (5):

jz
y (x) = − D

λα

(
Sy(x) − Sy

EE

)
, (32)

which after substitution of Sy(x) from Eq. (31) gives

jz
y (x) = DSy

EE

⎛
⎝ r2

ext

λα

(
1 + r2

ext

) + e− x
λα

√
1+r2

ext

λα + λs

√
1 + r2

ext

⎞
⎠. (33)

The first term is the bulk solution of Eq. (25), whereas the
second term is a correction due to the broken translation
symmetry in the direction of the field. Interestingly, even in
the absence of ESR, rext = 0, there is a finite contribution to
the SH current which is maximized at the interface and decays
exponentially into the bulk. Such a localized SH current
resembles the one obtained in Ref. [25] in a different geometry
and for rext = 0.

IV. RECIPROCITY BETWEEN THE NONLOCAL
SPIN-GALVANIC EFFECT AND ITS INVERSE

In the previous section we discuss the nonlocal inverse
SGE: a finite spin density, detectable in the normal conductor
at a distance L from the interface [Figs. 1(b) and 1(c)] is
induced as a response to an electric field applied both parallel
and perpendicular to the interface. In the next section, we
explore the reciprocal nonlocal effect, i.e., the charge current
induced by a spin injection into the normal conductor [gray
region in Figs. 1(b) and 1(d)]. Before analyzing this effect
for this specific geometry, we examine the diffusion equation
and identify a general nonlocal reciprocity between the spin
induced by a charge current and the spatially integrated charge
current induced by spin injection. We interpret this reciprocity
as the nonlocal version of the reciprocity between the SGE
and its inverse.

Our starting point is the general spin diffusion equation (8)
that we rewrite as follows:(

D∂̃k ∂̃k − τ−1
ext

)
Ŝ = γ σD∂̃iF̂ikEk . (34)

We assume, as before, that the SOC is inhomogeneous with a
spatial variation over lengths larger than the mean-free path.
As shown in Sec. II, the BC for hybrid interfaces can be
obtained by integration of this equation. Here, instead, we
keep the spatial dependence in the SU(2) fields and work
with the general Eq. (34). We assume that the fields only
vary in one direction, which we define as x. This is our only
assumption. Thus, the diffusion equation reduces to a 1D
linear differential equation. The solution can be written as
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follows:

Ŝ(x) = γ σDEk

∫ ∞

−∞
Ĝ(x, x′)∂̃iF̂ik (x′) dx′, (35)

where the Green’s function Ĝ satisfies(
D∂̃k ∂̃k − τ−1

ext

)
Ĝ(x, x′) = δ(x − x′). (36)

Equation (35) describes the nonlocal inverse SGE, i.e., the
spin density created at x by a homogeneous electric field in
the k direction.

We now consider the spin-to-charge conversion described
by Eq. (7), which can be rewritten as

jk = −σD∂kμ + j1k, (37)

where μ is the electrochemical potential defined by

σD∂kμ = D∂kn + σDEk, (38)

and

j1k = −γ F̂ik ĵi (39)

is the charge current density generated via the SOC. Here, ja
i

is the spin current originated from the covariant diffusion of
Sa in the i direction and described by the first term in Eq. (5).
We now integrate Eq. (39) over x and obtain

J1k = γ D
∫ ∞

−∞
F̂ki∂̃iŜ dx = γ D

∫ ∞

−∞
Ŝ∂̃iF̂ik dx, (40)

where the last equality follows from integration by parts.
Equation (40) describes the charge current density generated
by a spin density Ŝ and integrated over the direction of the
spatial inhomogeneity. The spin density has to be calculated
from the diffusion equation. Here, we assume that no electric
field is applied, but instead a spin current ĵ0 is injected locally
at x = x0. The diffusion equation (34) corresponding to this
situation reads as(

D∂̃k ∂̃k − τ−1
ext

)
Ŝ = ĵ0δ(x − x0). (41)

The solution to this equation can be written again in terms of
the Green’s function (36) as follows:

Ŝ(x) = ĵ0Ĝ(x0, x). (42)

Substituting this result into Eq. (40), and comparing it with
Eq. (35), leads to the following relation between the k compo-
nent of the induced charge current and the a component of the
induced spin density

J1k

D ja
0

= Sa(x0)

σDEk
. (43)

That is a remarkable result that connects the integrated charge
current induced by a spin current injected at x = x0, with the
spin density at x0 induced by an applied electric field. This
nonlocal reciprocity is a general property for any diffusive
system with a 1D spatial inhomogeneity. It explains the iden-
tical curves shown in both panels of Fig. 3. Specifically, the
result of Fig. 3(b) is discussed in the next section.

V. SPIN-TO-CHARGE CONVERSION:
THE SPIN-GALVANIC EFFECT

We now verify the reciprocity demonstrated in the previous
section by computing explicitly the nonlocal SGE in the setup
sketched in Fig. 1(d). We assume that a spin current ĵ0 is
injected into the normal conductor at x = −L. Experimentally
this can be done, for example, by injecting a current from a
ferromagnetic lead [36,37]. We first solve the spin diffusion
equations (13) and (17)–(19) together with the BC of Eqs. (4)
and (12). Since E = 0, the latter imply the conservation of the
spin current and the spin density at the interface located at
x = 0:

ja
x |0+ = ja

x |0− , Sa|0+ = Sa|0− . (44)

This continuity leads to the spin diffusion into the Rashba con-
ductor for any polarization of the injected spin and strength of
the ESR. At the injection point x = −L, the continuity of the
spin density is assumed and, from Eq. (41),

ja
x |−L+ − ja

x |−L− = ja
0 , (45)

where ja
0 is the injected spin current. Again, in Eqs. (17)–(19)

we see that the components Sx and Sz are coupled through
the SOC whereas the Sy component is not. Therefore, in the
next two subsections we distinguish between the injected spin
current polarized in the x and z directions, and the injected
current polarized in the y direction. As shown in Sec. IV, these
two cases should be reciprocal to the results of Sec. III when
the electric field was applied parallel or perpendicular to the
interface, respectively.

A. Spin current polarized in the x or z direction

Let us assume that the spin current injected at x = −L
is polarized in the x or z direction and compute the charge
current density induced in the Rashba conductor (39). Since
the Rashba SOC is only finite at x > 0, this current flows in
the y direction and consists of two contributions:

j1y(x) = jint
y + jbulk

y = γ

λα

(
δ(x) jx

x (x) + �(x)λ−1
α jz

x (x)
)
,

(46)
with

jx
x (x) = −D

(
∂xSx − Sz

λα

)
and jz

x (x) = −D

(
∂xSz + Sx

λα

)
(47)

from Eqs. (14) and (15). The explicit spatial dependence of
Sx and Sz is given in Eq. (B1) of Appendix B. One of the
contributions, jint

y , is localized at the interface, whereas the
other one, jbulk

y , is finite at the Rashba conductor. In Fig. 4(a)
we show the spatial dependence of the latter in the absence
of ESR, rext = 0. In view of the result of Sec. III B 1, at
a first glance it might seem strange that, even though rext =
0, a finite charge current density is induced in the system.
However, as we have understood in the previous section
with Eq. (43), the reciprocity involves the integrated current.
Indeed, by substituting Eq. (B1) into (46), and performing
the integration, one can demonstrate indeed that J1y = 0 if
rext = 0.
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FIG. 4. (a) Spatial dependence of the charge current density
j1y induced by the Rashba SOC when the spin density injected at
x = −L is x polarized. The interfacial and bulk contributions can
be distinguished. (b) Redistribution of the electrochemical poten-
tial μ due to the insulating boundaries placed at y = ±W/2. The
vector field lines correspond to the total charge current densities
j = −σD∇μ + j1yêy. Both plots are shown for pure Rashba SOC,
rext = 0, with λα/λs = 0.1, and L/λs = 0.1.

In contrast, in the case of a finite rext one obtains a finite
total current (see Appendix C)

J1y = γ λ−1
α

∫ ∞

0

Sx

τext
dx. (48)

This result is in accordance with the reciprocity relation (43)
and the results of Sec. III B 1. In Fig. 3(b) we show the
behavior of J1y (solid blue and dashed-dotted orange lines)
as a function of rext. With the proper normalization imposed
by Eq. (43), these curves are identical to those in Fig. 3(a).

B. Spin current polarized in the y direction

If the spin current injected at x = −L is y polarized, only
the Sy component is induced. This implies that only the
longitudinal charge current density with k = x in Eq. (39) is
nonzero:

j1x = −�(x)γ λ−2
α jz

y = �(x)Dγ λ−3
α Sy, (49)

where we have used Eq. (5) for the spin current density. In the
present geometry, only the commutator part of the covariant
derivative contributes, such that the current jz

y is proportional
to Sy. The analytic expression for Sy(x) is given in Eq. (B2) of
Appendix B. In the region x > 0 it reads as

Sy(x) = λα jy
0

D

e
−
(√

1+r2
ext

x
λα

+ L
λs

)

rs +
√

1 + r2
ext

. (50)

According to Eq. (37), the charge current density is given by
the contribution j1x and the diffusive term

jx = −σD∂xμ(x) + j1x(x). (51)

Because of the charge conservation, ∂x jx = 0 and the total
charge current should be constant in space, jx = const. The
value of this constant is determined by the BC imposed on
the outer boundaries of the system. For example, in a large,
but finite, sample with floating edges, jx = 0. This condition,
together with Eq. (51), determines the distribution of the
electrochemical potential μ(x) in the system:

∂xμ(x) = 1

σD
j1x(x), (52)

and eventually relates the voltage drop �μ across the sample
to the space-integrated induced current:

�μ = 1

σD

∫
j1xdx ≡ 1

σD
J1x. (53)

Notice that the integrated current J1x is exactly the object
entering the reciprocity relation of Eq. (43). In the present
case, by using Eq. (49), and performing the integration, we
find (see Appendix C)

J1x = − γ jy
0e− L

λs

λα

√
1 + r2

ext (rs +
√

1 + r2
ext )

. (54)

As in the charge-to-spin conversion case, Sec. III B 2, even
if τ−1

ext → 0, the magnetoelectric effect does not vanish. In
Fig. 3(b) we show J1x (dashed green line) as a function of
rext. In agreement with Eq. (43), this curve coincides with the
corresponding curve in Fig. 3(a).

VI. LOCAL CHARGE CURRENTS DUE TO THE
SPIN-GALVANIC EFFECT IN A FINITE LATERAL

GEOMETRY

In Sec. V A we have shown that the nonlocal spin injection
in a system without ESR, rext = 0, generates a distribution of
local transverse charge currents which integrate to zero [see
Fig. 4(a)]. Since the system was infinite in the y direction, such
local currents flow in the y direction but do not depend on y.
In contrast, if the system is finite in the lateral y direction, then
the component jy of the charge current density has to vanish at
the lateral edges, and one expects a more complicated current
pattern.

Here, we compute the local distribution of the charge
current density and the electrochemical potential in a system
of finite width W . We assume that the system has sharp
boundaries at y = ±W/2, and consider a particular case in
which the injected spin current is polarized in the x direction,
ja
0 = δax jx

0 in Eq. (45).
In order to find the redistribution of the electrochemical

potential, we need to solve the charge continuity equation
∂k jk = 0, with jk of Eq. (37). This reduces to solving the
Laplace equation for μ(r) with the BC of zero jy at the
boundaries y = ±W/2. The corresponding boundary problem
takes the following form:

∂2
x μ(x, y) + ∂2

y μ(x, y) = 0,

σD∂yμ(x, y)|y=± W
2

= j1y(x), (55)

where the second equation corresponds to zero charge current
at the boundary, with j1y(x) from Eq. (46) and plotted in
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Fig. 4(a). Notice that the latter has two different contributions:
the interfacial jint

y and the bulk one jbulk
y .

The boundary problem of Eq. (55) can be solved following
the same procedure used in Ref. [61]. Here, we present the
result in Fig. 4(b). The color plot shows the electrochemical
potential, whereas the streamlines are the corresponding local
charge current densities of Eq. (37). Interestingly, near the
interface, where the term jint

y of Eq. (46) is finite, the currents
on both sides of the barrier tend to cancel it. In the Rashba
conductor, the spatial distribution is more complicated and
follows the jbulk

y spatial behavior.
We explore here only the case rext = 0. However, in the

case of finite rext one expects a qualitatively similar behavior
of the current patterns. The only difference is that, in that case,
the integrated charge current would be finite in accordance
with Eq. (48).

VII. CONCLUSIONS

In summary, we present an exhaustive analysis of nonlocal
magnetoelectric effects in a system with an inhomogeneous
linear-in-momentum SOC. Our study is based on the SU(2)-
covariant drift-diffusion equations with an additional term
describing the spin relaxation due to extrinsic processes. From
the spin diffusion equation we obtain BC describing diffusive
systems of any dimension with interfaces between conductors
with different SOC and mean-free paths. One of these BC
imposes the conservation of the spin current at the interface,
whereas the second BC describes the jump of the spin density
when an electric field is applied in the direction parallel to the
interface. In contrast, for fields perpendicular to the interface,
the second BC imposes the continuity of the spin density.

With the help of these BC we explore the nonlocal SGE and
its inverse in a two-dimensional hybrid structure consisting of
a conductor without SOC adjacent to Rashba conductor. First,
we analyze the inverse SGE, i.e., the conversion of a charge
current into a spin density. When the field is applied parallel to
the interface between the two conductors and in the absence
of ESR, the spin induced in the Rashba conductor does not
diffuse into the normal conductor. However, for a finite rext, a
finite SH current appears and leads to a spin density diffusing
into the normal conductor. In the case in which the field is

applied perpendicular to the interface, the situation is rather
different. In this case, the spin generated via the local inverse
SGE always diffuses into the normal conductor.

We also study the reciprocal effect, ti.e., the SGE which
is based on the spin-to-charge conversion. For a system
with a 1D spatial inhomogeneity, we obtain from the spin
diffusion equation a direct proportionality between the local
spin induced by the inverse SGE and the spatially integrated
charge current induced by the direct SGE [Eq. (43)]. This
relation leads to a complete reciprocity between these two
observables, and we use it to study the nonlocal SGE in
the same setup. Finally, we compute the local currents and
redistribution of the electrochemical potential, induced by the
SGE in a system of finite lateral dimensions without ESR.

Our results are relevant for experiments on nonlocal mag-
netoelectric effects in hybrid structures which combine re-
gions with different strengths of SOC, such as semiconducting
[21], metal-insulator [35], and van der Waals heterostructures
[62]. In the latter case, it is possible to build stacks of 2D
materials, as for example graphene, such that the regions
adjacent to a different material, for instance transition metal
dichalcogenides, may exhibit sizable SOC [39–43]. In such
structures, the SOC field is inhomogeneous in space and the
electronic transport is governed by the effects discussed in this
work.
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APPENDIX A: INVERSE SPIN-GALVANIC EFFECT:
SPATIAL DEPENDENCE OF THE SPIN DENSITY

Here, we present the explicit form of the solution of the
boundary problem solved in Sec. III. For an electric field
applied parallel to the interface (Sec. III B 1), one needs to
solve Eq. (13) in the normal conductor and Eqs. (17) and (18)
in the Rashba region together with the BC (26). The solution
for the spin densities is

Sx(x)

Sx
EE

= �(x)

1 + r2
ext

− r2
ext

1 + r2
ext

�(x) Im
{[

κ∗ + a∗(1 + r2
s + κ∗rs

)]
e− κx

λα

} + �(−x) Im{rsκ
∗a + a|κ|2 + κ|a|2}e x

λs

Im {[a(κ + rs) − 1](a∗ + κ∗ + rs)} ,

Sz(x)

Sx
EE

= r2
ext

1 + r2
ext

Im
{(

rsκ|a|2 + κa∗)(�(x)e− κx
λα + �(−x)e

x
λs
)}

Im {[a(κ + rs) − 1](a∗ + κ∗ + rs)} , (A1)

with rs = λα/λs, and

a = 2κ

κ2−(2+r2
ext )

, κ2 = −(
1
2 − r2

ext

) + i
2

√
7 + 16r2

ext. (A2)

In the main text, for Eq. (27) we use the value of κ0 which
equals to the κ defined above when rext = 0.

APPENDIX B: SPIN-GALVANIC EFFECT: SPATIAL
DEPENDENCE OF THE SPIN DENSITY

Here, we present the explicit form of the solution of the
boundary problem solved in Sec. V. Specifically, one needs to
solve Eqs. (13) in the normal conductor and Eqs. (17)–(19) in
the Rashba region when E = 0. At the boundary between the
two regions, x = 0, we impose the continuity of the spin
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currents and spin densities, and at x = −L the condition (45). When the injected current ja
0 is polarized in a = x or z directions,

Sec. V A, the solution reads as

Sx(x) = λα

D

{
Im

{[(
jx
0a − jz

0

)
(rs + κ ) − (

jx
0 + jz

0a
)]

e−( κ∗x
λα

+ L
λs

)}
Im {[a(κ + rs) − 1](a∗ + κ∗ + rs)} �(x)

+
[

Im
{

jx
0a(rs + κ ) − jz

0(κ + a)
}

Im {[a(κ + rs) − 1](a∗ + κ∗ + rs)}e
x−L
λs + jx

0

2rs

(
e− |x+L|

λs − e
x−L
λs
)]

�(−x)

}
,

Sz(x) = λα

D

{
Im

{[(
jx
0 |a|2 − jz

0a∗)(rs + κ ) − (
jx
0a∗ + jz

0|a|2)]e−( κ∗x
λα

+ L
λs

)}
Im {[a(κ + rs) − 1](a∗ + κ∗ + rs)} �(x)

+
[

Im
{
a
[

jz
0

(
rs + κ∗) − jx

0 (κ∗a∗ − 1)
]}

Im {[a(κ + rs) − 1](a∗ + κ∗ + rs)} e
x−L
λs + jz

0

2rs

(
e− |x+L|

λs − e
x−L
λs
)]

�(−x)

}
, (B1)

with rs = λα/λs, and a, κ from Eq. (A2). On the other hand, when the injected spin current is polarized in the y direction
(Sec. V A), one obtains

Sy(x) = jy
0λα

D

⎡
⎣e−

(√
1+r2

ext
x

λα
+ L

λs

)
rs +

√
1 + r2

ext

�(x) +
(

rs −
√

1 + r2
ext

2rs
(
rs +

√
1 + r2

ext

)e
x−L
λs + 1

2rs
e− |x+L|

λs

)
�(−x)

⎤
⎦. (B2)

APPENDIX C: INTEGRATED CHARGE
CURRENT DENSITY

Here, we derive the expressions for the spatially integrated
charge current density used in Sec. V [Eqs. (48) and (54)],
but for linear-in-momentum SOC of any kind. The spatial
variation of the SOC is a steplike function, and therefore
the SU(2) field of Eq. (6) has a component localized right
at the interface, x = 0, and another one homogeneous inside
the Rashba conductor. Correspondingly, the charge current
density j1k in Eq. (37) has also an interfacial and a bulk
contribution:

j1k = −γ
[
δ(x)

(
A a

i δkx − A a
k δix

) + �(x)A c
k A b

i εcba
]

ja
i .

(C1)

Integrating this equation over x gives

J1k = −γ

[(
A a

i δkx − A a
k δix

)
ja
i |0 +

∫ ∞

0
A c

k A b
i εcba ja

i dx

]
.

(C2)

On the other hand, we can also integrate the continuity equa-
tion (3) over the semi-infinite Rashba conductor

∫ ∞

0
∂x ja

x dx +
∫ ∞

0
A c

k jb
k ε

cbadx = −
∫ ∞

0

Sa

τext
dx,

↓

ja
x |∞0 +

∫ ∞

0
A c

k jb
k ε

cbadx = −
∫ ∞

0

Sa

τext
dx, (C3)

where in the second line we have used the fact that ja
x |∞ = 0.

Substitution of Eq. (C3) into (C2) gives

J1k = −γ

(
A a

i δkx ja
i |0 − A a

k

∫ ∞

0

Sa

τext
dx

)
. (C4)

This expression is a general result for the integrated current
in any hybrid structure composed of a normal and a linear-in-
momentum SOC conductor with an interface at x = 0.
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ABSTRACT

We present and experimentally verify a universal theoretical framework for the description of spin-charge interconversion in non-magnetic
metal/insulator structures with interfacial spin–orbit coupling (ISOC). Our formulation is based on drift-diffusion equations supplemented
with generalized boundary conditions. The latter encode the effects of ISOC and relate the electronic transport in such systems to spin loss
and spin-charge interconversion at the interface. We demonstrate that the conversion efficiency depends solely on these interfacial parame-
ters. We apply our formalism to two typical spintronic devices that exploit ISOC: a lateral spin valve and a multilayer Hall bar, for which we
calculate the non-local resistance and the spin Hall magnetoresistance, respectively. Finally, we perform measurements on these two devices
with a BiOx/Cu interface and verify that transport properties related to the ISOC are quantified by the same set of interfacial parameters.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0023992

A thorough understanding of charge and spin transport in sys-
tems with spin–orbit coupling (SOC) is crucial for the electric control
of spin currents.1,2 The latter leads to the widely studied spin Hall
effect (SHE)3–5 and Edelstein (EE) effect,6–9 which are at the basis of
spin–orbit torque memories10–12 and spin-based logic devices.13,14

Of particular interest are systems with spin-charge interconver-
sion (SCI) at the interface between an insulator (I) with a heavy ele-
ment and a normal metal (N) with negligible SOC and long spin
relaxation length as, for example, BiOx/Cu bilayers. In these systems,
the SCI occurs at the hybrid interface via an interfacial spin–orbit cou-
pling (ISOC).15,16 Whereas the electronic transport in N is well
described by customary drift-diffusion equations, the interfacial effects
occur at atomic scales near the interface and, hence, their inclusion is
more subtle. Some works use an intuitive picture based on an idealized
2DEG with Rashba SOC at the interface,16–18 in which the intercon-
version takes place via the EE and its inverse (IEE). Such a description

is clearly valid for conductive surface states in (e.g., topological) insula-
tors19,20 or 2DEGs.21,22 However, in metallic systems, it requires addi-
tional microscopic parameters to model the coupling between interface
states and the diffusive motion of electrons in the metal. Moreover, the
very existence of a well-defined two-dimensional interface band and its
relevance for the electronic transport in systems such as BiOx/Cu is not
obvious as realistic structures are frequently polycrystalline and disor-
dered. Moreover, one can contemplate other microscopic scenarios to
describe the SCI. For example, at the BiOx/Cu interface, Bi atoms could
diffuse into Cu inducing an effective extrinsic SHE in a thin layer near
the interface.23 Alternatively, a SCI can be generated via an interfacial
spin-dependent scattering of the bulk Bloch states.24–26 Each of these
scenarios will invoke different sets of microscopic parameters to be
inferred frommacroscopic transport measurements.

In this Letter, we approach the problem from a different angle
and propose a universal theoretical framework, which is independent
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of microscopic details. We combine the drift-diffusion theory with
effective boundary conditions (BCs)27 to account for ISOC. Such BCs
describe two types of interfacial processes: SCI and spin-losses, quanti-
fied, respectively, by the interfacial spin-to-charge/charge-to-spin con-
ductivities, rsc=cs, and the spin-loss conductances Gk=? for spins
polarized parallel/perpendicular to the interface. The SCI efficiency is
determined by the ratio between the strengths of these two processes.
This ratio coincides with the widely used conversion efficiency and the
inverse Edelstein length kIEE such that kIEE ¼ rsc=Gk. Furthermore, we
apply our theory to describe two typical experimental setups: non-local
resistance measurement in a Permalloy/copper (Py/Cu) lateral spin
valve (LSV) with a middle BiOx/Cu wire, Fig. 2(a), and measurement
of the spin Hall magnetoresistance (SMR) in a BiOx/Cu/YIG trilayer
Hall bar, Fig. 4(a). From the fitting of our theory to the experimental
results, we show that both experiments are described by similar values
of the ISOC parameters. This confirms that the SCI only depends on
the intrinsic properties of the BiOx/Cu interface. Moreover, we demon-
strate that rsc ¼ rcs, in accordance with Onsager reciprocity.

We start considering the I/N structure depicted in Fig. 1. In the
N layer, spin and charge transport is described by the diffusion
equations,

r2l̂ ¼ l̂

k2N
; (1)

r2l ¼ 0: (2)

Here, l̂ ¼ ðlx;ly; lzÞ and l are the spin and charge electrochemical
potentials (ECP), where the symbol :̂ indicates spin pseudovector. It is

assumed that N has inversion symmetry with an isotropic spin relaxa-
tion described by the spin diffusion length kN.

28 The diffusive charge
and spin currents are defined as êj ¼ �rNrl̂ and ej ¼ �rNrl,
respectively, with e ¼ �jej and rN the conductivity of N.

Equations (1) and (2) are complemented by BCs at the interfaces.
At the interface with vacuum, one imposes a zero current condition,
whereas at the I/N interface with ISOC, the BCs for the spin and
charge densities read:27

�rNðr � nÞl̂j0 ¼ G? l̂?j0 þ Gk l̂kj0 þ rcs n�rð Þlj0; (3)

�rNðr � nÞlj0 ¼ rsc n�rð Þl̂j0: (4)

Here, n is the unitary vector normal to the interface, see Fig. 1(a).
The last term in the rhs of Eq. (3) describes the charge-to-spin con-
version quantified by the conductivity rcs. This term couples an
effective electric field and the (outgoing) spin current density at
the interface27,29–31 and can be interpreted as an interfacial SHE.
Alternatively, it can be interpreted as if the electric field induces a
homogeneous spin ECP via an interfacial EE, which in turn dif-
fuses into N. Both interpretations are fully compatible within the
present formalism. The second type of process taking place at the
interface are spin-losses [first two terms in the rhs of Eq. (3)],
quantified by the spin-loss conductances per area G?=k for spins
perpendicular/parallel (l̂?/l̂k) to the interface.

The charge is obviously conserved and, therefore, the rhs of
Eq. (4) only contains the spin-to-charge conversion term. The latter is
the reciprocal of the last term in Eq. (3)32 and can be interpreted as an
interfacial inverse SHE but, again, an alternative interpretation is pos-
sible: from the conservation of the charge current at the interface, we
can relate the bulk charge current to the divergence of an interfacial
current jI as rNðr � nÞlj0 ¼ �er � jI. Comparing the latter with
Eq. (4), we define jI as

33

ejI ¼ �rsc n� l̂ð Þj0: (5)

Written in this way, Eq. (4) describes the conversion of a non-
equilibrium spin into an interfacial charge current, which corresponds
to an interfacial IEE, see Fig. 1(b). This interpretation allows us to
introduce the commonly used conversion length kIEE, defined as the
ratio between the amplitude of the induced interfacial charge current
density, jI, and the amplitude of the spin current injected from the
bulk, rNðr � nÞl̂j0. According to Eq. (5), the effect is finite only if the
spin current is polarized in a direction parallel to the interface. Using
Eqs. (3) and (5), we obtain

kIEE ¼ rsc
Gk

: (6)

This is a remarkable result that follows straightforwardly from our
description of hybrid systems with ISOC and for which the spin-
charge interconversion occurs only at the interface. kIEE is purely
determined by interfacial parameters and it is indeed a quantification
of the conversion efficiency: it is the ratio between the spin-to-charge
conversion and the spin-loss at the interface. Both parameters, rsc and
Gk, depend on the microscopic properties of the interface, which are
intrinsic for each material combination, and may depend on
temperature.

From an experimental perspective, the spin-to-charge conversion
is usually detected electrically, by measuring a voltage drop [see

FIG. 1. Sketch of the non-magnetic insulator (z> 0)/metal (z< 0) system under
study. ISOC is finite at the interface with normal vector n. (a) Charge-to-spin con-
version: a charge current Ic induces at the interface an out-of-plane spin current
density ĵdiff perpendicularly polarized. (b) Spin-to-charge conversion: a n injected
spin current density ĵdiff induces at the interface a voltage drop perpendicular to the
polarization of ĵdiff .

Applied Physics Letters ARTICLE scitation.org/journal/apl

Appl. Phys. Lett. 117, 142405 (2020); doi: 10.1063/5.0023992 117, 142405-2

Published under license by AIP Publishing



Figs. 2(a) and 4(a)]. For concreteness, we consider the generic setup of
Fig. 1(b): a spin current polarized in the x direction flows towards the
interface, and a voltage difference is generated in the transverse y
direction according to Eq. (5). The averaged voltage drop between the
points y ¼ 6Ly=2 is given by (see supplementary material Note S1)

Vsc ¼
rsc

erNAN

ð ðLy
2

�Ly
2

n� l̂j0
� �

� ey dxdy; (7)

where ey is a unitary vector in the y direction and AN ¼ tNwN is the
wire cross section, with tN and wN being its thickness and width, over
which the voltage drop is averaged. According to Eq. (7), the voltage
drop between two points is proportional to the spin accumulation
between them created via the ISOC. Next, we calculate the voltage
drop associated with SCI in two different devices with an I/N
interface.

We start analyzing the double Py/Cu LSV shown in Fig. 2(a)
(see supplementary material Note S2 for experimental details). A
charge current Ic is injected from the ferromagnetic injector F2 into
the Cu wire. F2 forms a LSV either with the detector F1 or F3. We use
the F1–F2 LSV as a reference device. In the F2–F3 LSV, there is an
additional middle Cu wire covered by a BiOx layer, resulting in an I/N
interface with ISOC, in which part of the spin current is absorbed and
converted to a transverse charge current.

Quantitative description of electronic transport in LSVs has been
widely studied in the literature.34,35 In our Cu wires, kN � tN;wN,
allowing us to simplify the ECPs diffusion to a one-dimensional prob-
lem,34–36 see Fig. 2(b) and supplementary material Note S3. At the
BiOx/Cu wire, the z-integration using Eq. (3) leads to a renormaliza-
tion of kN,

kNk ¼
kNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ
Gkk

2
N

rNtN

s : (8)

At the node, x¼ 0 in Fig. 2(b), we use Kirchhoff’s law for the
spin currents (see supplementary material Note S3),

�ANrN@xl̂kj0
þ

0� ¼ �GNkl̂kjx¼0 � Aeff
n rcs

ejc
rN

êx: (9)

Here, GNk ¼ tNrNAeff
n

k2Nk
is the effective spin (bulk) conductance of the

BiOx/Cu wire, with Aeff
n ¼ wNðwN þ 2kNkÞ. The latter is the effective

area of the BiOx/Cu interface that absorbs (injects) spin current.
Indeed, the rhs of this equation corresponds to Eq. (3) with an effective
spin-loss conductance counting for both the interfacial and bulk spin-
losses at the middle wire. The last term in Eq. (9) corresponds to the
last term in Eq. (3) and it is proportional to the total injected charge
current Ic along the middle wire oriented in the y direction. If we
assume an homogeneously distribution of the current, then jc ¼ jc êy ,
with jc ¼ Ic

AN
.

The Cu/Py interfaces are described by the following BC:34,37,38

�ANrN@xl̂k

���x¼�L�x
2

x¼�Lþx
2

¼ �AF r�F@yl̂kF2jy¼0 þ pFejc
� �

;

�ANrN@xl̂k

���x¼L�x
2

x¼Lþx
2

¼ �AFr
�
F@yl̂kF3jy¼0; (10)

where l̂kF2=F3 is the spin ECP at F2/F3, pF the spin polarization, and
r�F ¼ rFð1� p2FÞ the effective conductivity of Py. Lx is the distance

FIG. 2. (a) SEM image of the two Py/Cu LSVs, the reference one between ferromagnets F1–F2 and the one with a middle BiOx/Cu wire (light red covering) between F2–F3.
Non-local voltages V ref

nl (blue circuit) and Vabs
nl (red circuit) are measured applying an external magnetic field (B) along the y axis. The spin-to-charge conversion voltage Vsc

(red circuit) is detected applying B along the x axis. (b) Effective one-dimensional model of the device. (c) Geometry and mesh of the 3D finite element method model. The
BiOx/Cu interface is simulated as a thin layer (yellow) on top of the transverse Cu wire (purple).
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between consecutive ferromagnetic wires and AF the Py/Cu junction
area.34 For the reference LSV, we substitute F3 by F1 in Eq. (10).
Because the Py/Cu interfaces are electrically transparent, we assume
the continuity of l̂k. This condition, together with the one-
dimensional version of Eq. (1) and the BCs (9) and (10), determines
the full spatial dependence of l̂k.

Specifically, we need l̂k at the detector F1/F3 to determine the
non-local voltage Vnl ¼ e�1pFl̂kF1=F3jy¼0

34,39 [see Fig. 2(b)] and

the corresponding non-local resistance, Rnl ¼ Vnl=Ic, where Ic is
the current injected from F2. Rnl changes sign when the magnetic
configuration of the ferromagnetic injector and detector changes
from parallel, RP

nl, to antiparallel, RAP
nl . This allows us to remove

any baseline resistance coming from non-spin related effects by
taking DRnl ¼ RP

nl � RAP
nl [see Fig. 3(a)]. Comparing the resistance

measured at F3, DRabs
nl , with the one measured at F1, DRref

nl , we
determine the magnitude of the spin absorption and, therefore, the
value of the spin-loss conductance, Gk. For this, we compute the

ratio DRabs
nl =DR

ref
nl ¼ l̂kF3=l̂kF1jy¼0 by solving the full boundary

problem,

DRabs
nl

DRref
nl

¼ 1þ
GNk
2GN

ðGF þ 2GNÞ � GF e
�Lx

kN

ðGF þ 2GNÞ þ GF e
�Lx

kN

2
4

3
5
�1

: (11)

Here, Gi ¼ riAi
ki

are the bare Cu (i ¼ N) and Py (i¼ F) wires spin con-
ductances. The form of Eq. (11) agrees with the one obtained in previ-
ous works.35,38,40 However, our expression is more general since it
distinguishes via GNk between interfacial and bulk losses at the BiOx/
Cu wire. Consequently, we can ensure that our calculation of Gk and,
therefore, kIEE, is only related to interfacial effects [see Eqs. (6), (8),
and (9)].

Figure 3(b) shows a weak temperature dependence of the absorp-
tion ratio, DRabs

nl =DR
ref
nl � 0:5, revealing that about half of the spin cur-

rent is absorbed at the BiOx/Cu middle wire. The temperature
dependence of rN is measured (supplementary material Note S4),
with tN ¼ wN ¼ 80 nm and Lx ¼ 570 nm. The specific properties of
the Py and Cu wires (qF and pF temperature dependencies and con-
stant spin resistivities kF=rF ¼ 0:91 fXm2 and kN=rN ¼ 18:3 fXm2)
are well characterized from our previous work.41 Thereupon, by insert-
ing these experimental values into Eq. (11) for different temperatures,
we obtain the Gk dependence shown in Fig. 3(b). A slight decrease in
Gk can be observed with increasing temperature, which seems to arise
from the Cu conductivity. A linear relation between Gk and rN (see
supplementary material Note S5A) suggests a Dyakonov–Perel mecha-
nism of the spin-loss, expected for a Rashba interface and in agree-
ment with Ref. 42.

We can also determine rsc=cs in the same device. By injecting a
charge current Ic from F2, an x-polarized spin current is created and
reaches the BiOx/Cu wire, where a conversion to a transverse charge
current occurs via Eq. (5). This is detected as a non-local voltage Vsc

along the BiOx/Cu wire, determining the non-local resistance RLSV
sc

¼ Vsc=Ic as a function of an in-plane magnetic field Bx. By reversing
the orientation of the magnetic field, the opposite RLSV

sc is obtained.
The difference of the opposite values of RLSV

sc ; 2DRLSV
sc in Fig. 3(c),

allows us to remove any baseline resistance. By swapping the voltage

FIG. 3. (a) Non-local resistances as a function of By (trace and retrace) measured
at Ic ¼ 70 lA and 10 K for the reference LSV (blue squares) and the BiOx/Cu LSV
(red circles). DRref

nl and DRabs
nl are tagged. (b) Temperature dependence of the spin

absorption ratio (upper panel) and the corresponding spin-loss conductance (lower
panel). (c) and (d) Reciprocal SCI non-local resistances as a function of Bx (trace in
red and retrace in black), from which we extract the spin-to-charge (2DRLSV

sc ) from
an average of seven sweeps and charge-to-spin (2DRLSV

cs ) signals from an average
of four sweeps, respectively. Measurements are performed at 10 K and Ic ¼ 70 lA
(c) and Ic ¼ 150 lA (d).

FIG. 4. (a) Measurement configuration of the TADMR in the BiOx/Cu Hall-cross device on YIG. An in-plane B-field (100mT) is rotated an angle (a) with respect to the applied
current (Ic ¼ 5 mA) direction. (b) Double SCI at the BiOx/Cu interface. (c) Transverse resistance measured as a function of a (black squares). The solid red curve corresponds
to a fit to Eq. (14).
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and current probes, the reciprocal charge-to-spin conversion signal,
RLSV
cs ¼ Vcs=Ic, can be determined.

Theoretically, from the full spatial dependence of l̂k, we compute
Vsc from Eq. (7) andVcs from Vcs ¼ e�1pFlxkF2jy¼0, yielding

DRLSV
sc=cs ¼ 6

rsc=cs
rN

Aeff
n

AN

pF e
Lx
2kN

GF 1�
GNk
2GN

� 	
þ e

Lx
kNðGF þ 2GNÞ 1þ

GNk
2GN

� 	 :

(12)

Experimentally, Figs. 3(c) and 3(d) confirm the reciprocity between
both measurements, DRLSV

cs ¼ DRLSV
sc . The broken time reversal sym-

metry, due to the magnetic contacts, leads to the opposite sign for
reciprocal measurements. Contrasting this with the result of Eq. (12),
one confirms that rsc ¼ rcs.

43 The experimental value, 2DRLSV
sc

� 156 3lX at 10 K, yields rsc=cs � 446 9X�1cm�1 and kIEE
� 0:166 0:03 nm. The latter value is of the same order of magnitude
but somewhat smaller than the previously reported results obtained by
spin pumping experiments, kIEE � 0:2� 0:7 nm,15,18,42 and LSV
experiments, kIEE � 0:5� 1 nm.36 This discrepancy might be due to a
different quality of the BiOx/Cu interface: ex situ deposition in our
experiment and in situ deposition in other works. The temperature
dependence of the different parameters is presented in Note S5B in the
supplementary material. One observes a decreasing trend of rsc by
increasing the temperature, which translates in a decrease of kIEE, in
agreement with the previous literature.42

The accuracy of our 1D model is checked by performing a 3D
finite element method simulation detailed in supplementary material
Note S6. Figure 2(c) shows the geometry of the simulated device and
the mesh of the finite elements. The ISOC is simulated as a thin
layer of finite thickness tint, spin diffusion length kint, and a spin Hall
angle heffint. From the definition kIEE ¼ 1

2 h
eff
inttint,

44 we obtain
kIEE ¼ 0:106 0:02 nm, in good agreement with our 1D model.

To verify that both ISOC parameters, Gk and rsc, are interface
specific, we carry out another experiment involving a BiOx/Cu inter-
face. Namely, we measure the SMR in a Cu layer sandwiched between
BiOx (at z¼ 0) and Y3Fe5O12 (YIG) insulating layers (at z ¼ �tN),
shaped as a Hall bar, see Fig. 4(a) and supplementary material Note S2
for the experimental details. In this setup, a double SCI takes place as
sketched in Fig. 4(b). A charge current Ic in the x direction induces an
out-of-plane y-polarized spin current density via Eq. (3). This spin
current propagates towards the Cu/YIG interface where it is partly
reflected with mixed x and y polarizations.45–47 The reflected spin cur-
rent diffuses back to the BiOx/Cu interface, where its x-polarized con-
tribution is reciprocally converted to an interfacial charge current. The
overall effect is then proportional to rcsrsc ¼ r2sc.

The electron spin reflection at the Cu/YIG interface depends on
the direction of magnetization m of ferrimagnetic YIG. The effective
BC describing this interface is known and reads48,49

�rNðr � nÞl̂j�tN ¼ Gs l̂j�tN þ Gr m� l̂ �mð Þj�tN

þ Gi m� l̂ð Þj�tN : (13)

Here, Gs is the so-called spin-sink conductance and Gr;i are the real
and imaginary parts of the spin-mixing conductance (per area),
G"# ¼ Gr þ iGi. In YIG, Gi � Gr and, hence, Gi is neglected.

47,50–52

We measure the transverse angular dependent magnetoresistance
(TADMR) in the BiOx/Cu/YIG Hall bar of Fig. 4(a). The transverse

voltage, VT, depends on the direction of the in-plane applied magnetic
field, parameterized by the angle a. The TADMR measurements are
shown in Fig. 4(c).

Theoretically, we calculate the spatial dependence of l̂ by solving
the boundary problem of Eqs. (1), (3), and (13) by assuming transla-
tional invariance in the x–y plane. We then determine VT from Eq. (7)
and obtain for RT ¼ VT=Ic,

RT � r2sc
2r2Nt

2
N

Gr

ðGk þ GsÞðGk þ Gs þ GrÞ
sin ð2aÞ ¼ DRT sin ð2aÞ:

(14)

Here, DRT is the amplitude of the modulation and we assume that
kN � tN (see supplementary material Note S7). The parameters of the
Cu/YIG interface, Gr;s, add to the spin-loss at the BiOx/Cu interface
Gk. We identify by comparison of Eqs. (3) and (13) two effective spin-
loss conductances, Gx ¼ ðGk þ GsÞ and Gy ¼ ðGk þ Gs þ GrÞ, for
spins polarized in the x and y directions, respectively. The amplitude
of the SMR signal, Eq. (14), is then proportional to Gx � Gy .

From Fig. 4(c), we estimate DRT � 0:03mX at T ¼ 130K. At
this temperature, from the LSV measurements, we obtain Gk � 1:5
�1013 X�1m�2 and rsc=cs � 11:3X�1cm�1, as shown in Figs. 3(b)
and S3b, respectively. The spin conductances Gs and Gr in light metal/
YIG interfaces have been estimated in evaporated Cu53 and Al.54

Whereas Gs ¼ 3:6� 1012 X�1m�2 for Cu/YIG53 is a consistent value
in the literature,54,55 the reported Gr is very low,53 as generally
observed in evaporated metals on YIG.54,56 By substituting Gk; Gs,
and rsc=cs values in Eq. (14), we obtain Gr � 6:1� 1013 X�1m�2. This
value for sputtered Cu on YIG is much larger than that estimated in
evaporated Cu on YIG, in agreement with the reported difference
between sputtered and evaporated Pt.56 Importantly, the obtained Gr

satisfies the required condition Gs < Gr,
47,55 which confirms the valid-

ity of our estimation.
In summary, we present a complete theoretical framework based

on the drift-diffusion equations to accurately describe electronic trans-
port in systems with ISOC at non-magnetic metal/insulator interfaces.
Within our model, the interface is described by two types of processes:
spin-losses, parameterized by the interfacial conductances Gk=?, and
SCI, quantified by rsc and rcs. These parameters are material specific.
The efficiency of the spin-to-charge conversion is quantified by the
ratio rsc=Gk, which coincides with the commonly used Edelstein
length kIEE. The Onsager reciprocity57–59 is directly captured by
rsc ¼ rcs, as demonstrated by comparing our theoretical and experi-
mental results. Our theory is an effective tool for an accurate quantifi-
cation of SCI phenomena at interfaces, which is of paramount
importance in many spintronic devices. It is important to emphasize
that the present formulation of our theory is valid for interfaces
between non-magnetic materials. In principle, one could go beyond
our theory and address the problem of magnetic moment transfer at a
metal/magnetic insulator interface by including interfacial exchange
interaction and magnon dynamics into the model.47

See the supplementary material for additional details on the deri-
vation of the spin-to-charge averaged voltage, Eq. (7), and the renor-
malized spin diffusion length and node boundary condition for the
LSV, Eqs. (8) and (9), respectively; measured temperature dependence
of the Cu resistivity and analysis on the temperature dependence of
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the ISOC parameters in the LSV; a brief explanation of the 3D simula-
tion and the relation between the simulation and ISOC parameters;
theoretical result for the transverse resistance measured in the multi-
layer Hall bar, i.e., which leads to Eq. (14); and the experimental details
of the nanofabrication and measurements of the LSV and multilayer
Hall bar devices.
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Spin-orbit interaction of light can lead to the so-called optical mirages, i.e., a perceived displacement in the
position of a particle due to the spiraling structure of the scattered light. In electric dipoles, the maximum
displacement is subwavelength and does not depend on the optical properties of the scatterer. Here we will show
that the optical mirage in high refractive index dielectric nanoparticles depends strongly on the ratio between
electric and magnetic dipolar responses. When the dual symmetry is satisfied (at the first Kerker condition),
there is a considerable enhancement (far above the wavelength) of the spin-orbit optical mirage which can be
related to the emergence of an optical vortex in the backscattering direction.

DOI: 10.1103/PhysRevA.99.013852

I. INTRODUCTION

It is customary to separate the angular momentum (AM) of
light [1] into two contributions, the spin angular momentum
(SAM) and the orbital angular momentum (OAM), that can
be coupled by light propagation and scattering. The study of
this spin-orbit interaction (SOI) has attracted a great deal of
interest in recent years [2–5].

An interesting analogy between the SOI in light and the
spin Hall effect (SHE) in electronic systems can be drawn
[6,7]. In the latter, electrons with different spins are deflected
differently by scattering off impurities due to the SOI. This
leads to a transversal spin current that in turn induces a
measurable spin accumulation at the sample edges. One of
the microscopic origins of the SHE is the so-called side-jump
mechanism [8], in which a spin-dependent displacement of the
center of mass of the electronic wave packet takes place due
to the SOI (for more details, we refer to the reviews [9,10]).

Similarly, an apparent transversal displacement of a target
particle induced by light scattering can be explained by an
AM exchange. Hereafter, this effect is referred to as an optical
mirage. It has been observed in several situations, for example
in beams impinging on a dielectric surface [11–13] or when
considering a spherical target described by a single electric
polarizability [14,15]. In the latter case, the apparent shift
of the dipole localization does not depend on the optical
properties but rather on the scattering angle, with opposite
displacements for incident left and right circularly polarized
photons (spins). The apparent shift (�) is maximized at the
plane perpendicular to the direction of the incoming wave
taking a value of � = λ/π [15], and thus, for circularly polar-
ized light [16,17], it is always subwavelength. In contrast, for
larger multipolar spheres, and certain combinations of radius
and refractive index, resonant apparent shifts, reaching tens
of wavelengths in magnitude, were found at some specific

*juanjo.saenz@dipc.org

angles [18]. These results were interpreted [18] as a result of
full transfer from SAM to OAM at those directions at which
the scattered light is linearly polarized (where the SAM of
scattered photons is identically zero).

In this paper, we demonstrate that by taking into account
both the electric and magnetic dipoles sustained by a high
refractive index (HRI) spherical particle, the subwavelength
maximum limit can be drastically surpassed when the particle
is excited by circularly polarized light. In other words, a
large macroscopic apparent shift (� � λ), even larger than
those reported previously [18], is induced in the backscatter-
ing region. Specifically, we show that this optical mirage is
related to the generation of a spiraling power flow and can be
explained in terms of an angular momentum redistribution per
photon between the SAM and OAM contributions.

In contrast with earlier work [18], we show that, for HRI
dipolar spheres, the optical mirage is maximum at angles
where the spin of the photons is sign-reversed, i.e. at direc-
tions at which the light is not linearly polarized.

Based on helicity conservation, we predict an intriguing
enhancement of the momentum transfer when the system is
dual, i.e., when the electric and magnetic dipolar moments
are equal. At this so-called “first Kerker condition” [19–21],
the scattered light is circularly polarized in all directions with
a vanishing intensity in the backscattering direction. As we
show, this leads to a huge apparent shift near backscattering
associated with the appearance of a (2σ charge) topological
optical vortex.

II. SYSTEM AND THEORETICAL METHODS

We consider a nonabsorbing dielectric sphere of radius
a and refractive index np embedded in an otherwise homo-
geneous medium with constant and real refractive index nh.
The geometry of the scattering problem is sketched in Fig. 1,
where we consider a circularly polarized plane wave with
wave number k = nhk0 = nh2π/λ0 (where λ0 is the light
wavelength in vacuum) and helicity σ = ±1 (we associate

2469-9926/2019/99(1)/013852(5) 013852-1 ©2019 American Physical Society
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FIG. 1. Schematic representation of the optical mirage vector
when considering a clockwise circularly polarized incoming wave
(thick green straight arrow lying on the z-axis). The observer,
represented by an eye, perceives a nonradial scattered Poynting
vector (S1, S2) that leads to an apparent shift (�1, �2) of the dipole
localization, both lying on the xy plane.

left polarized light with a positive helicity σ = +1) incident
along the z-axis. Instead of using the traditional multipole
Mie expansion to describe the light scattered by the sphere
[22,23], we shall find it useful to work in a basis of multipoles,
eigenfunctions, �σ

lm, of the helicity operator � [24,25],

��σ
lm = (1/k)∇ × �σ

lm = σ�σ
lm,

with

�σ
lm = 1√

2

[∇ × gl (kr )Xlm

k
+ σgl (kr )Xlm

]
, (1)

gl (kr ) = A
(1)
l h

(1)
l (kr ) + A

(2)
l h

(2)
l (kr ), (2)

Xlm = 1√
l(l + 1)

LYm
l (θ, ϕ), (3)

where, following Jackson’s notation [22], Xlm denote the
vector spherical harmonic, where X00 = 0, gl (kr ) is a linear
combination of the spherical Hankel functions, Ym

l (θ, ϕ) are
the spherical harmonics, and L is the orbital angular mo-
mentum operator, L = −i (r × ∇). In this helicity basis, the
incident field can be written as

E(0)
σ

E0
= x̂ + σ i ŷ√

2
eikz =

∞∑
l=0

+l∑
m=−l

∑
σ ′=±1

Cσσ ′
lm �σ ′

lm, (4)

kZH(0)
σ = −i∇ × E(0)

σ , (5)

Cσσ ′
lm = σ il

√
4π (2l + 1)δmσ δσσ ′ , (6)

where 1/Z = ε0cnh (where ε0 and c are the vacuum permit-
tivity and the speed of light, respectively) and �σ ′

lm is given
by Eq. (1) with gl (kr ) = jl (kr ). Such a circularly polarized
wave, with helicity σ , carries a jz = m = σ unit of total
angular momentum per photon parallel to the propagation
direction [22].

In the same basis, the scattered fields are given by

Escat
σ

E0
=

∞∑
l=0

+l∑
m=−l

∑
σ ′=±1

Dσσ ′
lm �σ ′

lm, (7)

Dσσ ′
lm = −il

√
4π (2l + 1)

σal + σ ′bl

2
δmσ , (8)

where now, since they are outgoing waves at infinity, gl (kr ) =
h

(1)
l (kr ). Notice that al and bl are the standard Mie electric and

magnetic scattering coefficients [23]. Since a sphere presents
axial symmetry around the z-axis, the jz of the incident beam
is preserved and the scattered wave can only involve m = σ .
Consequently, Escat

σ is an eigenfunction of the z-component
of the total (dimensionless) angular momentum operator, J =
L + Sspin (as well as of J2) [26], with eigenvalue jz = m = σ ,

σ = Escat
σ

∗ · (
Lz + Sspin

z

)
Escat

σ∣∣Escat
σ

∣∣2 = 	z(r) + sz(r), (9)

sz(r) = −i
{
Escat

σ
∗ × Escat

σ

} · êz∣∣Escat
σ

∣∣2 , (10)

	z(r) = Escat
σ

∗ · LzEscat
σ∣∣Escat

σ

∣∣2 = −i∣∣Escat
σ

∣∣2

{
Escat

σ

∗ · ∂Escat
σ

∂ϕ

}
. (11)

Equation (9) shows that the sum of the (dimensionless) OAM,
	z(r), and SAM, sz(r), per photon is constant and equal to the
helicity of the incoming plane wave. Notice that this is valid
even in the near-field region, and it would be valid even in the
presence of absorption. However, in general, the helicity is not
preserved in the scattering process.

III. RESULTS AND DISCUSSION

Let us now consider the scattering from a HRI subwave-
length sphere in a spectral range such that the optical response
can be described by its first dipolar Mie coefficients a1 and
b1, i.e., by its electric and magnetic polarizabilities αE =
ia1(6π/k3) and αM = ib1(6π/k3). The scattered field can be
written as the sum of two components with opposite helicity,

Escat
σ

E0
= − k3

√
12π

{(σαE + αM)�+
1σ + (σαE − αM)�−

1σ }

= Eσ+ + Eσ−, (12)

which in the far-field limit become

Eσσ ′ ∼ Eσσ ′eiσϕ

(
êσ ′ + iσ

√
2

kr

σ cos θ − σ ′

sin θ
êr + · · ·

)
, (13)
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where the last identity corresponds to the medium–far-field
expansion with

Eσσ ′

E0
= eikr

4πkr
k3

(
σαE + σ ′αM

2

)
(σ cos θ + σ ′), (14)

êσ ′ = 1√
2

(êθ + iσ ′ êϕ ). (15)

The scattered fields by HRI dielectric nanoparticles present
a number of peculiar properties arising from the interference
between the electric and magnetic dipolar radiation, and they
have been largely discussed both theoretically and experimen-
tally [27–33]. Most of these properties are encoded in the
far-field radiation pattern, i.e., in the differential scattering
cross section given by [20]

dσscat(θ )

d�
= lim

r→∞ r2 Sscat · êr

|S(0)| = r2 |Eσ+|2 + |Eσ−|2
|E0|2

= k4|αsum|2
(4π )2

(
1 + cos2 θ

2
+ 2g cos θ

)
, (16)

where Sscat = (1/2)Re{Escat∗ × Hscat} is the time-averaged
Poynting vector, |αsum|2 ≡ |αE|2 + |αM|2, and

g = Re{αEα∗
M}

|αsum|2 (17)

is the so-called asymmetry factor [23] for dipolar electric and
magnetic scatterers [20,34].

Although in the strict far-field limit the flow lines of Sscat

lie along the spherical radial direction, tracing them to their
source they do indeed spiral toward the origin in analogy with
the light scattered by an electric dipole excited by circularly
polarized light [15,18,35–37]. Consequently, as sketched in
Fig. 1, the full Poynting vector Sscat makes an angle with the
line of sight, which determines an apparent shift � in the
perceived position of the particle, with

� = lim
kr→∞

−r

(
Sscat − êr (êr · Sscat )

|Sr |
)

(18)

= lim
kr→∞

(
êr × (r × Sscat )

|Sr |
)

(19)

= lim
kr→∞

(
2i

k
∣∣Escat

σ

∣∣2

Escat
σ

∗

sin θ
· ∂Escat

σ

∂ϕ

)
êϕ, (20)

where Escat
σ is given by Eqs. (12) and (13). Taking into account

Eq. (11), the apparent shift can be written as
�

(λ/π )
= −	z(θ )

sin θ
êϕ = sz(θ ) − σ

sin θ
êϕ (21)

= −σ

[
sin θ (1 + 2g cos θ )

1 + cos2 θ + 4g cos θ

]
êϕ. (22)

This is the first important result of this paper: the shift is
always along êϕ , perpendicular to the incidence plane and
proportional to the z-component of the OAM per photon.
Importantly, the sign of the displacement is purely determined
by the incoming helicity.

In the absence of magnetic dipolar response, setting g = 0
in Eq. (22), one recovers the previously reported results for
electric dipoles [15,18], which were interpreted as a result
of transfer from SAM to OAM [18,38]. According to those

FIG. 2. Poynting vector streamlines with counterclockwise
(clockwise) rotation for σ = 1 (σ = −1) when viewed from the
perpendicular direction, θ = π/2. The streamlines lie on the x-y
plane (kx and ky are dimensionless variables, where k = 2π/λ is the
light wave number). This figure is valid for any dipolar response, i.e.,
arbitrary αE and αM. The small central circle represents the dipolar
particle.

previous works, this transfer is expected to be maximum
at those directions at which the scattered light is linearly
polarized (where the SAM of scattered photons is identically
zero). For an electric dipole excited by circularly polarized
light, the maximum transfer would take place in the plane
perpendicular to the incoming light (θ = π/2), where the
maximum displacement is equal to � = λ/π .

The fields scattered by electric and magnetic dipoles
present a very different polarization structure [39,40]. Con-
trary to the purely electric (or magnetic) case, when excited
with a circularly polarized field, the scattered radiation on
the plane perpendicular to the incoming light (θ = π/2) is
no longer linearly polarized. Interestingly, this change does
not affect the streamlines of the Poynting vector on this
particular plane (as shown in Fig. 2), leading to the same
subwavelength optical mirage. However, out of this plane
the apparent displacement presents a peculiar behavior that
depends strongly on both θ and the wavelength.

Figures 3 and 4 summarize the anomalous behavior of the
apparent displacement �(λ, θ ) for silicon nanospheres in the
infrared (similar behavior is obtained in other spectral ranges
as long as the scattering cross section can be described by
only the first two dipolar multipoles [see Fig. 3(a)]). As can
be seen in Fig. 4, for θ = π/2 the displacement is always
λ/π for all wavelengths. When the asymmetry factor g is
negative (λg1 < λ < λg2), the maximum displacement occurs
for θ < π/2 and it is always subwavelength but slightly larger
than the one for θ = π/2. However, for g > 0 the apparent
displacement can be much larger than λ/π , and when the
electric and magnetic polarizabilities are identical (λ = λK1),
i.e., at the so-called first Kerker condition, it diverges as
θ → π . Notice that the singularity is resolved naturally since
at the first Kerker condition there is exactly zero backscattered
intensity.
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FIG. 3. (a) Scattering cross sections σs for a 230 nm Si
nanosphere vs the wavelength. The special wavelengths λK1 =
1825 nm and λK2 = 1520 nm correspond to first and second Kerker
conditions, respectively. (b) Asymmetry factor vs the wavelength.
This is identical to zero at λg1 = 1326 nm and λg2 = 1612 nm
(and negative in between). The maximum value is localized at the
first Kerker condition, namely λK1 . (c) Colormap of the normalized
optical mirage, �/(λ/π ), vs the scattering angle and the wavelength.
The maximum enhancement for λK1 at backscattering (θ = π ) is
clearly observed.

We can now examine the peculiar behavior of � near the
first Kerker condition in terms of the angular momentum flow.
When the electric and magnetic responses are identical, i.e.,
αE = αM, the system is “dual” and the scattering preserves he-
licity [41,42]. In this case, the asymmetry factor is maximum,
g = 1/2 [see Fig. 3(b)], which leads to sz(θ ) = σ cos θ and

�π

λK1

= −σ tan

(
θ

2

)
êϕ. (23)

From this equation, two interesting limiting cases can be
identified: First, in the forward direction the optical mirage
and lz go to zero since Sϕ = 0. This can alternatively be
understood by means of the symmetries of the system: due
to the duality of the scatterer, the system must conserve
the helicity of the incoming field, which in the forward
direction corresponds to the spin density. Thus, the incident
circular polarization is preserved in the forward direction
and must carry all the angular momentum density (leaving
	z = 0). Second, in the direction perpendicular to the incident
wave vector (θ = π/2), the interference term vanishes. As a
consequence, sz = 0 and 	z = σ , and, in analogy with electric

FIG. 4. Optical mirage colormap (Fig. 3) cuts vs the scattering
angle for different values of the wavelength, belonging to regions
with g < 0 (λK2 ), g = 0 (λg1 , λg2 ), and g > 0 (λ1, λ2, and λ3,
respectively decreased 5, 10, and 15 nm with respect to λK1 , and λK1

itself). At θ = π/2, � = λ/π is observed to be a universal value.
Both subplots show examples of trajectories of the Poynting vector
at forward and backscattering, being similar for λg1 and λg2 (a) and
considerably different for λK1 (b).

dipoles, we obtain � = σλ/π , although in that case light in
this direction is fully circularly polarized (see Fig. 2).

The most striking effect arises at an observation angle near
backscattering θ � π where, as discussed above, the apparent
displacement diverges. This divergence is solved because
the Poynting vector becomes strictly zero at backscattering,
which suggests the appearance of an optical vortex in that
direction. As a matter of fact, near backscattering 	z(� θ ) →
2σ , while the spin reverses sign sz(θ � π ) → −σ (but still
maintaining constant helicity), which confirms the existence
of a vortex with l = 2σ emerging from a nanoparticle as a
nanoscale analog of the light backscattered from a perfect
reflecting cone [43].

IV. CONCLUDING REMARKS

In conclusion, we have shown that light scattering from
dipolar electric and magnetic nanoparticles, excited by cir-
cular polarized light, can lead to macroscopic apparent dis-
placements of the particle position (“optical mirages”) much
larger than the incident wavelength. We derived an explicit
relationship between the apparent shift and the z-component
of the OAM per photon, 	z. As a result of the interference
between the fields scattered by the electric and magnetic
dipoles, we found that 	z presents a nontrivial dependence on
the scattering angle, which, in contrast with previous work
[18], leads to optical mirage maxima at angles where the spin
of the photons is sign-reversed, i.e., at directions at which the
light is not linearly polarized. Interestingly, for dual spheres,
i.e., at the so-called first Kerker condition, we predict a huge
enhancement of the apparent shift related to the emergence of
an optical vortex in the backscattering direction. We believe
that our results open new perspectives in the study of optical
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spin-orbit phenomena, including new possible applications of
HRI particles as building blocks in photonic devices.
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Light scattering and spin-orbit angular momentum cou-
pling phenomena from subwavelength objects, with electric
and magnetic dipolar responses, are receiving an increasing
interest. Under illumination by circularly polarized light,
spin-orbit coupling effects have been shown to lead to sig-
nificant shifts between the measured and actual position
of particles. Here we show that the remarkable angular
dependence of these “optical mirages” and those of the in-
tensity, degree of circular polarization (DoCP), and spin
and orbital angular momentum of scattered photons are all
linked, and fully determined, by the dimensionless “asym-
metry parameter” g , being independent of the specific op-
tical properties of the scatterer. Interestingly, for g ≠ 0, the
maxima of the optical mirage and angular momentum ex-
change take place at different scattering angles. We further
show that the g parameter is exactly half of the DoCP
at a right-angle scattering, which opens the possibility to
infer the whole angular properties of the scattered fields
by a single far-field polarization measurement. © 2019
Optical Society of America

https://doi.org/10.1364/OL.44.001762

The interference between electric and magnetic dipolar fields
scattered from high refractive index (HRI) subwavelength par-
ticles is known to lead to strong asymmetric intensity distribu-
tions [1], electric-magnetic radiation pressure effects [2], and
other interesting phenomena with novel physical effects and
applications [3]. In addition to energy and linear momentum,
a light wave carries angular momentum (AM) [4] that can be
split into spin (SAM) and orbital angular momentum (OAM)
[5–7]. Light scattering may couple these two components of
the AM, via the spin-orbit interaction (SOI) and modify the
contributions of SAM and OAM [8,9]. This phenomena has
attracted a great deal of attention in recent years [10–12].

Among all of the intriguing effects originated by the SOI,
perhaps the most interesting is the appearance of the optical
mirage, i.e., an apparent transversal displacement of a target
after scattering [13,14]. This apparent shift, induced by the

AM exchange per photon, has been predicted and experi-
mentally proved in very different situations. These include cir-
cularly polarized light impinging a dielectric surface [15,16] or
a single electric dipolar particle [17,18], where the absolute
values of the optical mirage are limited to subwalengths scales.
It has been recently demonstrated that this dipolar limit can
be surpassed by illumination with elliptically polarized light
[15,19,20]. Analogously, enhanced optical mirage values
(reaching tens of wavelengths) were obtained for resonant
Mie scatters, where higher multipoles are needed [21]. In par-
ticular, it has been shown that a high refractive index (HRI)
Si-sphere with electric and magnetic dipolar response [22,23],
can lead to a diverging optical mirage at backscattering
[24–26], when the helicity is preserved [27]. These findings
may give ground for the conjecture that any optical property
related to the electric and magnetic polarizabilities, such as
absorption, particle size, or refractive index, may modify the
helicity pattern and hence the optical mirage.

In this Letter, we demonstrate that the degree of circular
polarization (DoCP) or, equivalently, the helicity density, Λθ
[28], depends indeed on the optical properties only through
the asymmetry parameter g in the dipolar regime [29]. We
demonstrate that from the DoCP measurement in the far field
limit (FF), at a single scattering angle, one get full information
about other optical parameters, such as g , the re-distribution of
AM and the optical mirage. Interestingly, it follows from our
study that for non-zero g , the maximum exchange of AM and
the maximum optical mirage value do not occur at the same
scattering angle. At these two different maxima, the polariza-
tion of light is not lineal but elliptical with a z-component of
the OAM larger than the total AM, in striking contrast with the
pure electric (or magnetic) case g � 0 [17,18].

We consider a dielectric sphere of radius a with an arbitrary
permittivity ϵp and refractive index m2

p � ϵp, which is em-
bedded in an otherwise homogeneous medium with constant
and real relative dielectric permittivity ϵh and refractive index
m2

h � ϵh. The geometry of the scattering is sketched in Fig. 1,
where a circularly polarized plane wave, with wavenumber k
(k � mh2π∕λ0, being λ0 the wavelength in vacuum) and
well-defined helicity σ � �1, is incoming along the z-axis.
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The electric field scattered by the nanosphere can be expanded
in the helicity basis, allowing us to separate it into two com-
ponents with well-defined helicity, Escat

σ � Eσ� � Eσ−.
For subwavelength spheres, characterized by their first a1

and b1 Mie coefficients [28] or by their electric and magnetic
polarizabilities, αE � ia1�6π∕k3� and αM � ib1�6π∕k3�, the
(FF) scattered fields are given by [26]

Eσσ 0 ∼
1ffiffiffi
2

p Eσσ 0eiσφ�êθ � iσ 0êφ�, (1)

Eσσ 0

E0

� eikr

4πkr
k3
�
σαE � σ 0αM

2

�
�σ cos θ� σ 0�, (2)

where E0 is the amplitude of the incident wave. The (FF)
radiation pattern, given by the differential scattering cross
section, is given by

dσscatt
dΩ

� k4�jαEj2 � jαMj2�
32π2

�1� cos2 θ� 4g cos θ�, (3)

where

g � hcos θi � RefαEα�Mg
jαEj2 � jαMj2

(4)

is the asymmetry parameter in the dipolar approximation [29].
Notice that −1∕2 < g ≤ 1∕2 where the limits correspond to
the so-called first (g � 1∕2) and second (g � −1∕2) Kerker
conditions [30], and g � −1∕2 is an unreachable value in the
absence of gain [31,32].

Applying the definition of the helicity operator [33],
Λ ≡ �1∕k�∇×, the helicity density or DoCP can be expressed
in terms of the V and I Stokes parameters

DoCP � Λθ �
Escat�
σ · �ΛEscat

σ �
Escat�
σ · Escat

σ
� jEσ�j2 − jEσ−j2

jEσ�j2 � jEσ−j2
� V

I
(5)

� 2σ��1� cos2 θ�g � cos θ�
1� cos2 θ� 4g cos θ

, (6)

while the DoCP mean value hΛi [17]

hΛi ≡
R fjEσ�j2 − jEσ−j2gdΩR fjEσ�j2 � jEσ−j2gdΩ

� 2σg: (7)

The angular dependence of the DoCP just depends on the
g-parameter. In Fig. 2 we show the DoCP pattern versus both
scattering angle θ and g-parameter for an incoming light with
helicity σ � �1. As it can be inferred, the DoCP values are
restricted to −1 < Λ ≤ 1, which is maximized when the sys-
tem is dual, i.e., at the first Kerker condition when helicity
is preserved. In addition, we find that the polarization of
the scattered light is linear (Λθ0 � 0) when the condition g �
− cos θ0∕�1� cos2 θ0� is fulfilled, corresponding to the dashed
line in Fig. 2. As it can be seen, it matches with θ0 � π∕2 only
for g � 0, which corresponds with the pure electric (or mag-
netic) dipolar case. The relatively simple measurement of the
polarization degree at a right-angle scattering configuration
provides a useful insight on the scattering properties of small
particles. In particular, the spectral evolution of the degree of
linear polarization was shown to be a simple and accurate
way to identify electric and magnetic behaviors of the scat-
tered fields [1,34,35]. Interestingly, we find that the degree
of circular polarization, measured at right scattering angles,
θ � π∕2, follows a biunivocal relation with the g-parameter

Λπ
2
� hΛi � 2σg: (8)

This is an important result of this work. This means that by
measuring the degree of circular polarization at 90°, we can
directly extract the g-parameter.

Fig. 1. Sketch of the system: plane wave with well-defined helicity,
preserved in forward scattering, σ � 1, impinging on an example
sphere with g � −0.4. The scattered light is shown via the conical tra-
jectories of the Poynting vector. At θ � π∕2, the single measurement
of the DoCP gives the value of the scatterer’s g-parameter. Red and
blue lines illustrate both the counterclockwise and clockwise polariza-
tions, while the linear polarization (LP) is illustrated in green.

Fig. 2. Color map of the DoCP versus the scattering angle θ and
the g-parameter. The white vertical line indicates that this set of DoCP
values is forbidden due to causality, i.e., g > −1∕2. The first Kerker
condition, satisfied for g � 1∕2, gives rise to the conservation of the
DoCP, independently of the scattering angle (intense red color). The
dashed line illustrates the curve where the scattered light is linearly
polarized, Λ � 0.
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Once we have a complete description of the angular
dependence of the helicity density in the dipolar regime, it
is interesting to analyze its relation with the angular momen-
tum exchanges and the spin-orbit optical mirage. Following
Crichton and Marston [7], we notice that the z-component
of the SAM per scattered photon, sz�θ�, is a measurable quan-
tity simply related to the DoCP of the scattered light

sz � Λθ cos θ, (9)

where Λθ is given by Eq. (6). Additionally, due to the axial
symmetry of the scatterer, the z-component of the total angular
momentum of the incoming photons jz � σ is preserved after
scattering. Then the z-component of the OAM per scatterd
photon, lz�θ�, can also be related to the DoCP

lz�θ� ≡ jz − sz�θ� � σ − Λθ cos θ, (10)

which allows us to link the optical mirage’s apparent shift [26],
Δ, with Λθ as

Δπ
λ

� l�θ�
sin θ

� σ − Λθ cos θ

sin θ
: (11)

Equations (3), (6), (9), (10), and (11) reflect the remarkable
result that intensity, degree of circular polarization (DoCP),
spin and orbital angular momentum of scattered photons, and
the optical mirage (dσscatt∕dΩ, Λθ, sz , lz and Δ) are all linked,
and fully determined, by the dimensionless “asymmetry param-
eter” g , which is independent of the specific optical properties
of the scatterer. This is an important result of the present work:
as a direct consequence of Eq. (8), within a single measurement
of the DoCP at 90° via polarization filters in the FF, we can
extract the g-parameter and infer the angular dependence of all
the relevant scattering quantities.

Figure 3 illustrates the angular momentum exchange and
the optical mirage dependence with the (FF) observation angle
θ for an incoming plane wave with helicity σ � �1 and total
z-component of the total angular momentum per photon
jz � σ. Figures 3(a) and 3(b) summarize the results for g �
−0.4 and g � 0.4, respectively. In contrast to pure electric
(or pure magnetic) dipolar particles with symmetric scattering
[g � 0, Fig. 3(c)], the maximum angular momentum exchange
(corresponding to the minimum of sz ) and the maximum ap-
parent shift of the optical mirage, Δ̃ � Δ∕Δmax, take place at

Fig. 3. Normalized optical mirage Δ̃ � Δ∕Δ̃max, spin density (sz ), and DoCP (Λ) versus the scattering angle θ for an incoming circularly polarized
plane wave of helicity σ � �1. The green vertical dashed–dotted lines represent the angles corresponding to the maximum of optical mirage, Δ̃max.
Blue dotted lines correspond to the angles at which spin-to-orbit angular momentum transfer is maximum (or minimum value of the z-component
of SAM per scattered photon, smin

z ). The black squares indicate Λθ � 0, namely, the (FF) observation angles at which light is linearly polarized (LP).
(a) and (b) correspond to Λπ∕2 � −0.8 and Λπ∕2 � �0.8 (i.e., g � −0.4 and g � �0.4), respectively. As it can be seen, g ≠ 0, Δ̃max, smin

z , and LP
are localized in three different scattering angles in contrast to the g � 0 case (c) where they all collapse at right scattering angles θ � π∕2. (d) and
(e) show the different angular dependences as the asymmetry parameter approaches the second (Λπ∕2 � −0.98 ≳ −1) and first (Λπ∕2 � 0.98 ≲ 1)
Kerker conditions, respectively. (f ) Reproduces the asymmetry parameter for isotropic spheres as a function of their refractive index m and size
parameter y � mka in the dipolar regime (after Ref. [29]). The black vertical line indicates the first Kerker condition, where αE � αM. The solid
white point highlights g � −0.4, which corresponds to both a high refractive index (HRI) dielectric sphere or to a small perfectly conducting sphere
[36]. Both subwavelength particles will give rise to exactly the same spin-orbit coupling effects.
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different scattering angles but in an angular region in which the
z-component of the SAM is negative (i.e., where the photons
are not linearly polarized) while the z-component of the OAM
is larger than that of the total AM (lz � jz − sz > jz � 1). The
equivalent effect happens for σ � −1.

The angular gaps between the minimum of the z-component
of the SAM (maximum AM exchange), the maximum of the
optical mirage effect, and the angle at which light is linearly
polarized first increase when the asymmetry parameter tends to
the second or first Kerker conditions, jgj ≈ 0.5, as it can be seen
in Figs. 3(d) and 3(e). However, in the limit of dual scatterers
(g � �0.5), sz → cos θ, Λθ → �1, and the extrema collapse
again at the singular backscattering angle θ � π. At this condi-
tion, there is a divergent optical mirage at backscattering asso-
ciated to the appearance of an optical vortex with sz � −1
and lz � 2 [26]. In contrast, in absence of gain, the Optical
Theorem imposes that the limit of g � −0.5 is unreachable
[31,32], which inhibits the complete (flipping) transformation
from sz � σ to sz � −σ, although a huge enhancement of the
optical mirage is predictably getting close to this condition.
Based on the aforementioned, in analogy with dual spheres, we
can predict that an anti-dual sphere that could be made with a
material with gain [27], with g � −0.5, would generate a perfect
optical vortex in the forward direction with a divergent apparent
displacement.

In conclusion, we have shown that the asymmetry and spin-
orbit coupling effects of light scattered from subwavelength
spheres with electric and magnetic dipolar responses are fully
determined by the dimensionless “asymmetry parameter” g .
As a consequence, particles with different optical properties,
but which share an identical g parameter value [see Fig. 3(f )],
will lead to the same angular dependences of intensity, DoCP,
SAM to OAM exchanges and optical mirage apparent shifts.
The g-factor can be obtained from a single far-field measure-
ment of the DoCP at 90° and, as a consequence, it is possible
to infer all the angular dependences from a single far-field
polarization measurement.

We believe that our results open new perspectives in differ-
ent areas of Optics and Photonics, including science and en-
gineering of antennas, metamaterials, nanophotonics, and
optical imaging.
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