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Resumen

Múltiples trabajos teóricos y experimentales resaltan la versatilidad de las estructuras híbridas
superconductoras. Ofrecen aplicaciones en diversos ámbitos, tales como la espintrónica, la
termoelectricidad y los sensores. La mayoría de estas aplicaciones se basan en las propiedades
de no-equilibrio de los superconductores, i.e., propiedades que surgen fuera del equilibrio
termodinámico. En esta tesis abordamos las propiedades de no-equilibrio de los superconductores
en presencia de campos dependientes del espín, es decir, campos que interactúan con el espín de las
cuasipartículas, tales como los campos de Zeeman y el acoplamiento espín-órbita. Específicamente,
investigamos el transporte de carga, termoeléctrico y espintrónico en varios dispositivos híbridos
superconductores y de espín.

Los efectos termoeléctricos son un tema de investigación popular debido a su potencial para
convertir calor en trabajo. Un factor fundamental que permite la termoelectricidad en conductores
electrónicos es la ruptura de la simetría entre portadores de carga con energía positiva (electrones) y
energía negativa (huecos). Esta asimetría de la densidad de estados se logra aplicando un campo de
desdoblamiento de espín. En consecuencia, el acoplamiento de un superconductor con un sistema
polarizado en espín se postula como un enfoque prometedor para inducir efectos termoeléctricos. Se
han propuesto detectores termoeléctricos en ámbitos como la astrofísica para la detección del fondo
cósmico de microondas, y para la detección de radiación de terahercios utilizada, por ejemplo,
en imágenes de seguridad. Destacablemente, el detector termoeléctrico superconductor utiliza
directamente la radiación absorbida para generar la señal de medición deseada, sin necesidad de
una fuente de energía externa.

La utilidad del transporte de carga y calor abarca diversas aplicaciones, incluyendo termometría
a baja temperatura, el desarrollo de termómetros de electrones altamente sensibles y la realización
de convertidores de temperatura-frecuencia. Notablemente, el transporte de calor tiene el potencial
de generar corrientes de espín gigantes debido a la presencia de pares de Cooper con un estado
triplete de espín. Además, las estructuras híbridas superconductoras con campos dependientes
del espín ofrecen una plataforma para crear válvulas de espín y calor altamente eficientes. Estas
estructuras híbridas también facilitan la refrigeración a escala nanométrica, y más recientemente,
la implementación de una batería de fase cuántica. Otra aplicación basada en la electrónica
superconductora incluye los diodos superconductores. En los superconductores habituales, la
simetría electrón-hueco da como resultado un transporte de carga recíproco. Esta simetría se rompe
en superconductores con desdoblamiento de espín y filtrado de espín, resultando en una ruptura de
la reciprocidad. La eficacia de estas aplicaciones se basa en superconductores caracterizados por
una densidad de estados desdoblada en espín bien definida y un gap de energía robusto.

Otro ingrediente clave en las estructuras superconductoras híbridas es el acoplamiento
espín-órbita (SOC, por sus siglas en inglés). A diferencia de los campos de Zeeman, el SOC induce
una interacción de espín dependiente del momento. El acoplamiento de los grados de libertad orbital
y de espín es esencial en la espintrónica. Por ejemplo, el efecto Hall de espín implica la generación
de una corriente de espín transversal en respuesta a una corriente de carga. En superconductores,
el efecto Hall de espín acopla la corriente de espín tanto a la corriente de cuasipartículas como
a la corriente (de equilibrio) superconductora. La superconductividad topológica puede surgir en
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dispositivos híbridos que involucran superconductores convencionales y semiconductores con fuerte
acoplamiento espín-órbita. La manifestación más llamativa de la superconductividad topológica son
los modos cero de Majorana, cuya existencia se ha predicho en los extremos de los nanohilos con
espín-órbita. Este tipo de plataformas híbridas superconductor-semiconductor se han propuesto en
esquemas de computación cuántica topológica.

El estudio de la interacción entre la superconductividad y los campos dependientes del espín en
sistemas híbridos se ha establecido como un campo de investigación prolífico y activo en las últimas
décadas. El propósito de esta Tesis de doctorado es estudiar teóricamente las propiedades de
no-equilibrio de estructuras superconductoras sujetas a diferentes tipos de campos dependientes
del espín. Los campos dependientes del espín pueden clasificarse como términos de SOC que
rompen la simetría de inversión, y términos magnéticos (tipo Zeeman) que rompen la simetría de
inversión temporal. Las estructuras híbridas reales muestran un desorden no controlable que debe
modelarse adecuadamente. Una posibilidad es implementar desorden en los modelos microscópicos,
por ejemplo, a través de modelos de tight-binding. Este enfoque es computacionalmente muy costoso.
Otro enfoque posible basado en el método de la función de Green (GF, por sus siglas en inglés)
es reducir las ecuaciones microscópicas a ecuaciones cinéticas. En este método, las interfaces entre
los diferentes materiales se describen mediante condiciones de frontera. Además, los materiales
estudiados son sistemas prácticamente metálicos donde la energía de Fermi es mucho mayor que las
otras escalas de energía en el sistema, por lo que se puede utilizar la aproximación cuasiclásica para
simplificar las ecuaciones.

Para la Tesis se han seleccionado cuatro publicaciones derivadas de la investigación llevada a
cabo durante mi doctorado. Dichas publicaciones se recopilan como Capítulos en esta tesis. En
la introducción, se presenta la teoría pertinente a los superconductores, que son el ingrediente
central que conforma las estructuras híbridas estudiadas. Se introduce el método de la función de
Green cuasiclásica, que es la principal herramienta teórica utilizada para analizar las estructuras
híbridas y se derivan las ecuaciones para la función de Green cuasiclásica. Este Capítulo tiene dos
objetivos: en primer lugar, sirve como base teórica para los sistemas estudiados en los Capítulos
posteriores. En segundo lugar, pretende servir como una guía para familiarizarse con el formalismo
GF cuasiclásico. En la introducción se incluye la derivación de las ecuaciones cuasiclásicas de
Eilenberger y Usadel, y se delimitan las condiciones de frontera y los observables relevantes
necesarios para estudiar fenómenos de no-equilibrio dependientes del tiempo. Posteriormente,
presentamos una explicación más detallada de los modelos y métodos utilizados para estudiar cada
uno de los cuatro sistemas abordados en esta Tesis: 1) un superconductor en proximidad con un
aislante ferromagnético con una pared de dominio, 2) una unión de Josephson anómala acoplada a
un dispositivo interferómetro de Andreev, 3) una unión túnel superconductora asimétrica irradiada
por microondas y 4) un superconductor bidimensional con un campo magnético o con SOC bajo
un campo eléctrico dinámico. A su vez, presentamos los principales resultados que conforman la
espina dorsal de esta tesis.

Primero, investigamos la densidad de estados de las cuasipartículas y las correlaciones tripletes
en un superconductor alrededor de una pared de dominio y estudiamos cómo se manifiestan las
correlaciones tripletes en una medición de corriente de túnel. Un superconductor (S) crecido sobre un
aislante ferromagnético (FI, por sus siglas en inglés) muestra una densidad de estados desdoblada en
espín debido al efecto de proximidad. Esta división del espín permite que las correlaciones de estado
singlete del condensado convivan con correlaciones de estado triplete. La interacción ferromagnética
puede describirse mediante un campo de canje interfacial en la interfaz FI/S que induce correlaciones
triplete en el superconductor. Si la capa superconductora es delgada en comparación con la longitud
de coherencia, se puede suponer que el desdoblamiento de espín es constante a lo largo del grosor de la
muestra. Esta suposición está justificada, incluso en una situación de multidominio, si el tamaño de
dominio característico de FI es mucho más grande que la longitud de coherencia superconductora.
Sin embargo, la no homogeneidad de la interacción de canje es relevante cuando el tamaño del
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dominio es del orden de la longitud de coherencia, o si el superconductor se encuentra en las
proximidades de una pared de dominio aguda, como se muestra en la Fig. 2.1. El efecto de las paredes
de dominio en magnetos y aislantes ferromagnéticos sobre superconductores adyacentes ha sido
estudiado tanto teóricamente como experimentalmente. Un trabajo reciente proporcionó evidencia
experimental de que el EuS, un aislante ferromagnético, está formado por múltiples dominios con
un tamaño del orden de la longitud de coherencia de una capa de Al (superconductora) adjunta.
Los autores de este último trabajo utilizaron un modelo teórico que asumía dominios antiparalelos
de diferentes tamaños para explicar las mediciones espectroscópicas.

En esta publicación, generalizamos esta configuración para considerar un FI/S difusivo donde el
FI está formado por dos dominios magnéticos con una magnetización arbitraria, como se muestra
en la Fig. 2.2. Casi todos los trabajos experimentales en sistemas FI/S se centran en estudiar su
espectro de cuasipartículas, pero hay un aspecto clave que no se cubre a menudo en estos trabajos:
un campo de canje interfacial lleva a la conversión de correlaciones superconductoras singletes a
tripletes. Además, en bicapas FI/S donde el FI tiene una magnetización no colineal, las correlaciones
tripletes con diferentes proyecciones de espín pueden coexistir con las correlaciones singletes. En esta
publicación, estudiamos las propiedades de equilibrio de una bicapa FI/S con una pared de dominio
aguda que separa dos dominios magnéticos con magnetizaciones arbitrarias. Proporcionamos
expresiones analíticas para la densidad de estados en diferentes casos límite. Además, estudiamos
la evolución espacial de las correlaciones triplete cerca de la pared de dominio y proponemos un
método para detectarlas cubriendo el superconductor con una capa ferromagnética y realizando
espectroscopia túnel sobre ella.

En el segundo trabajo, calculamos las propiedades (estáticas) de no-equilibrio de
superconductores con campos dependientes del espín. Específicamente, exploramos el efecto
Josephson anómalo en un interferómetro de Andreev. Si se colocan dos superconductores
en proximidad, puede fluir una supercorriente entre ellos además de la corriente usual de
cuasipartículas. Esta corriente depende de la fase relativa entre los dos superconductores. Tales
uniones se conocen como uniones Josephson, nombradas en honor a Brian Josephson, quien predijo
la relación entre la supercorriente y el voltaje a través de la unión en 1962. El efecto Josephson
de corriente continua establece que la supercorriente que fluye entre dos superconductores con una
diferencia de fase φ es IJ ∝ sinφ.

La relación corriente-fase adquiere una forma más general en sistemas donde la simetría de
inversión espacial y temporal están rotas: IS ∝ Ic sin (φ+ φ0). Tales uniones se conocen como
uniones-φ0, y el efecto correspondiente como el efecto Josephson anómalo (AJE, por sus siglas
en inglés). En general, esta relación corriente-fase puede descomponerse en una corriente usual
proporcional a sinφ, y una corriente anómala proporcional a cosφ. La corriente anómala solo puede
ser distinta de cero si las simetrías de inversión espacial y temporal están rotas simultáneamente,
lo que conduce a una supercorriente finita incluso con una diferencia de fase nula entre los
superconductores.

Los sistemas híbridos superconductores con campos dependientes del espín ofrecen una
plataforma para obtener el efecto AJE. En esta publicación, consideramos dos realizaciones de
una unión Josephson anómala: una unión Josephson con acoplamiento espín-órbita de tipo Rashba
[Fig. 2.4(a)] y estructuras ferromagnéticas multicapa [Fig. 2.4(b)]. En el primer ejemplo, un campo
de Zeeman y el acoplamiento espín-órbita proporcionan la ruptura de simetría temporal y de
inversión, respectivamente, lo que conduce al desplazamiento de fase anómala. En el segundo
ejemplo, una magnetización no coplanar combinada con interfaces de filtrado de espín proporciona
las rupturas de simetría requeridas.

Por lo tanto, el efecto AJE refleja la interacción entre los campos dependientes del espín y la
superconductividad. Esta interacción es la base de varios efectos y aplicaciones que están atrayendo
el interés de una gran comunidad, como la superconductividad topológica y no convencional, la
espintrónica superconductora, y los nuevos elementos electrónicos superconductores. Las propuestas
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más conocidas para el AJE involucran estructuras superconductoras en presencia de interacción
espín-órbita, algunas de las cuales han sido probadas con éxito en experimentos. Otros estudios
teóricos han propuesto numerosas realizaciones alternativas del AJE: uniones S/F/S con una textura
de magnetización no homogénea, uniones de superconductores no convencionales y entre cables
superconductores topológicamente no triviales. La relación corriente-fase anómala también se puede
obtener bajo una situación de no-equilibrio en estructuras multiterminales. Las uniones-φ0 podrían
ser un componente clave para la electrónica cuántica, ya que pueden proporcionar una diferencia de
fase estable a circuitos cuánticos, y por lo tanto podrían ser particularmente útiles en electrónica y
espintrónica superconductora coherente en fase.

En esta publicación, analizamos el efecto φ0 en un dispositivo conocido como interferómetro de
Andreev. Un interferómetro de Andreev consta de una unión Josephson acoplada a un conductor
mesoscópico, como se esquematiza en la Fig. 2.5. Las correlaciones superconductoras se inducen en
el conductor normal debido al efecto de proximidad. Dichas correlaciones dependen de la diferencia
de fase de la unión Josephson, por lo que la resistencia del lazo conductor se vuelve sensible a φ. En
otras palabras, una simple medición de resistencia realizada en el conductor podría potencialmente
revelar la relación corriente-fase a lo largo de la unión Josephson adyacente. Una ventaja
importante de esta geometría es que permite un desacoplamiento entre el lazo superconductor
con la unión-φ0 y el circuito normal donde se realiza la medición de resistencia, de modo que el
ruido asociado con el proceso de medición no perturba la unión-φ0. La interferometría de Andreev
estuvo particularmente activa durante los años 90, se propusieron teóricamente varios tipos de
interferómetros de Andreev que han sido implementados experimentalmente. Los interferómetros
de Andreev se han utilizado para estudiar las oscilaciones de la magnetorresistencia, el transporte
eléctrico, el poder termoeléctrico y el transporte térmico en estructuras S/N. En esta publicación,
investigamos cómo se modifica la relación corriente-fase en el conductor mesoscópico debido al
efecto φ0. Con este propósito, resolvemos la ecuación de Usadel en los bucles superconductor y
normal, y calculamos la supercorriente y la corriente de cuasipartícula que fluyen a través de ellos,
respectivamente.

En el tercer trabajo, investigamos las capacidades termoeléctricas y de enfriamiento promediadas
en el tiempo en uniones túnel superconductoras asimétricas. La termoelectricidad consiste en
la generación de energía eléctrica debido a una diferencia de temperatura. El efecto Seebeck,
que describe la fuerza electromotriz desarrollada entre dos puntos a diferentes temperaturas, fue
descubierto de manera independiente por A. Volta en 1794 y por T. J. Seebeck en 1821. Los
portadores de carga en el material tienen una mayor energía cinética a temperaturas más altas, por
lo que los gradientes de temperatura en el material causan la difusión de los portadores de carga
desde las regiones calientes hacia las frías. En la mayoría de los materiales, a temperatura ambiente,
la diferencia de potencial generada es proporcional a la diferencia de temperatura V ∝ ∆T , esta
relación lineal permite, por ejemplo, calibrar fácilmente dispositivos eléctricos como termopares
para construir sensores de temperatura.

En el estado normal, dentro del régimen lineal, la termoelectricidad escala linealmente con la
temperatura de operación, por lo que la sensibilidad de los sensores termoeléctricos disminuye
drásticamente a bajas temperaturas. Este problema se solventa en materiales superconductores, ya
que a estas temperaturas la termoelectricidad es muy fuerte debido a la no linealidad del efecto
en los superconductores. Se ha registrado experimentalmente que los efectos termoeléctricos en
las uniones superconductoras son órdenes de magnitud más grandes de lo esperado en metales no
superconductores a la misma temperatura de operación. Los efectos termoeléctricos en las uniones
superconductoras se han estudiado tanto teórica como experimentalmente en los últimos 10 años:
los sistemas superconductores híbridos con simetría explícitamente rota entre partículas y huecos
muestran termoelectricidad unipolar. La simetría entre partículas y huecos alrededor de la superficie
de Fermi de los superconductores de tipo Bardeen-Cooper-Schrieffer puede romperse, por ejemplo,
en estructuras híbridas S/F. El efecto de proximidad magnética en una bicapa delgada S/FI causa
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un desdoblamiento de espín casi homogéneo en la densidad de estados. Si el transporte electrónico
está polarizado en espín, por ejemplo, mediante un filtro de espín de tunelización, la contribución
a la densidad de estados (DoS, por sus siglas en inglés) de una componente del espín predomina
sobre la otra, lo que lleva a una ruptura efectiva de la simetría entre partículas y huecos.

Se han propuesto varias aplicaciones basadas en las propiedades termoeléctricas únicas de las
uniones S/I/S’ y FI/S/I/F: detectores de radiación termoeléctrica ultrasensibles que se pueden
utilizar en diversas aplicaciones que van desde observaciones astrofísicas hasta imágenes de seguridad
y caracterización de materiales, osciladores de alta frecuencia controlados por flujo alimentados con
un gradiente térmico y generadores controlados galvánicamente desconectados de circuitos externos.

Recientemente, se ha demostrado teóricamente y experimentalmente que las uniones de túnel
superconductoras, donde el acoplamiento Josephson está adecuadamente suprimido, desarrollan un
gran efecto termoeléctrico si el electrodo con el gap más grande tiene una temperatura más alta. A
diferencia de los sistemas con efecto de proximidad magnética, en estas uniones superconductoras la
simetría electrón-hueco se rompe por la combinación de un gradiente térmico suficientemente fuerte
y una DoS que disminuye monótonamente, lo que induce una polarización de voltaje espontánea.
La termoelectricidad resultante es bipolar y fuertemente no lineal.

En esta publicación, estudiamos el efecto termoeléctrico en uniones Josephson asimétricas
bajo la tunelización asistida por fotones (PAT, por sus siglas en inglés). El PAT ha sido
estudiado extensamente en el régimen disipativo. Sin embargo, la influencia del PAT en la
termoelectricidad bipolar recientemente descubierta no ha sido explorada todavía. Además,
estudiamos las propiedades de enfriamiento de la unión. Al aplicar un voltaje externo, para
condiciones de temperatura específicas, es posible extraer calor y reducir la temperatura electrónica
del superconductor con el gap más bajo.

Finalmente, estudiamos el efecto Hall de carga y espín dinámicos en superconductores difusivos.
El efecto Hall fue descubierto por E. Hall en el siglo XIX. La inyección de una corriente eléctrica en
un conductor con un campo magnético perpendicular produce una corriente de carga transversal.
En conductores de tamaño finito (abiertos), la carga transportada por la corriente transversal se
acumula en los lados del conductor, generando un voltaje Hall. El efecto Hall puede incorporarse
directamente en el modelo de Drude de conducción electrónica incluyendo la fuerza de Lorenz
debido al campo magnético. El efecto Hall de corriente alterna describe la corriente de carga
transversal bajo un campo eléctrico variable, en metales normales difusivos la conductividad
Hall es proporcional a la conductividad longitudinal y al campo magnético aplicado. En el
estado superconductor las corrientes longitudinal y Hall se vuelven dependientes de la frecuencia,
presentando contribuciones de corriente en fase y fuera de fase. Además, las conductividades
longitudinal y Hall tienen diferente dependencia en frecuencia, por lo que ya no son proporcionales.

El componente en fase de la respuesta longitudinal describe transiciones electrónicas en el
superconductor y presenta un gap superconductor a bajas temperaturas. La respuesta fuera de
fase surge debido a la supercorriente. A pesar de algunos intentos a lo largo de los años basados en
modelos fenomenológicos de dos fluidos y la teoría de Bardeen-Cooper-Schrieffer, no ha habido una
extensión microscópica del modelo de Drude para la respuesta Hall dinámica en superconductores
en el régimen difusivo. El formalismo cuasiclásico permite un tratamiento sencillo del efecto Hall
dinámico en superconductores. En esta publicación, extendemos la teoría de Mattis-Bardeen para
la respuesta dinámica de superconductores para incluir la respuesta Hall. Además, estudiamos el
efecto Hall de espín dinámico en superconductores. En presencia de la interacción espín-órbita, una
corriente de carga en un conductor genera una corriente de espín transversal, y viceversa. Hay dos
mecanismos principales para el efecto Hall de espín: en el mecanismo intrínseco surge debido a la
ruptura de la simetría de inversión ya sea debido a la red cristalina (acoplamiento espín-órbita de
Dresselhaus) o la estructura de la muestra (acoplamiento espín-órbita de Rashba), y el mecanismo
extrínseco resulta de una dispersión por impurezas dependiente del espín.
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Ǎµ Generalised four-potential

a Voltage amplitude

α Rashba spin-orbit coupling strength

B Magnetic field

COP Coefficient of performance

D Diffusion constant

∆ Superconducting order parameter

∆̌ Pair potential

∆0 Superconducting order parameter at T = 0 and h = 0



xiv Nomenclature

Ejν Generalised electric field

e Electron charge

ε Excitation energy

εF Fermi energy

η Thermoelectric efficiency

F̌ µν Generalised field strength tensor

f̂ Anomalous Green’s function in spin space

Φ Magnetic flux

Φ0 Flux quantum

φ Scalar potential or superconducting phase

φ0 Anomalous phase
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Chapter 1

Introduction
If God had consulted me before
embarking on the Creation,
I would have suggested something simpler.
— Alfonso X the Wise, on the Ptolemaic model

Extensive theoretical and experimental works highlight the versatility of hybrid superconducting
structures. They find applications in diverse domains such as spintronics, thermoelectricity,
and sensors [1–4]. Most of these applications are based on the non-equilibrium properties of
superconductors, i.e., properties that arise out of thermodynamic equilibrium. In this thesis we
study the non-equilibrium properties of superconductors in the presence of spin-dependent fields,
that is, fields that interact with the spin of quasiparticles, such as Zeeman fields and spin-orbit
coupling. Specifically, we study the charge, thermoelectric and spintronic transport in several
superconducting hybrid devices.

Thermoelectric effects are a popular research topic, due to their potential to convert heat into
work. A fundamental factor enabling thermoelectricity in electronic conductors is the breaking of
the symmetry between positive-energy (electrons) and negative-energy (holes) charge carriers. This
asymmetry of the density of states (DoS) is achieved by applying a spin-splitting field. Consequently,
coupling superconductors with a spin-polarized system emerges as a promising approach for inducing
thermoelectric effects [2, 3, 5–8]. Thermoelectric detectors [9] have been proposed in astrophysics
for the detection of the cosmic microwave background [10], and terahertz-radiation sensing used,
for example, in security imaging [11]. Remarkably, the superconducting thermoelectric detector
directly uses the absorbed radiation to generate the desired measurement signal, without the need
for an external energy source.

The utility of charge and thermoelectric transport extends to various applications, including
low-temperature thermometry, the development of highly sensitive electron thermometers, and the
realisation of temperature-to-frequency converters [12]. Notably, heat transport has the potential to
generate giant spin currents due to the presence of spin-triplet Cooper pairs [5, 13, 14]. Furthermore,
superconducting hybrid structures featuring spin-dependent fields offer a platform for creating
highly efficient spin and heat valves [15–18]. These hybrid structures also facilitate cooling in
the nanoscale [19, 20], and more recently, the implementation of a quantum phase battery [21].
Other applications based on superconducting electronics are the superconducting diodes [22]. In
usual superconductors, the electron-hole symmetry results in reciprocal charge transport. This
symmetry is broken in spin-split superconductor with spin filtering, allowing for non-reciprocity.
Notably, the efficacy of these applications relies on superconductors characterized by a well-defined
spin-split DoS and a distinct energy gap.

Another key ingredient in hybrid superconducting structures is spin-orbit coupling (SOC).
Unlike Zeeman fields, the SOC induces a momentum-dependent spin interaction. The coupling
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of the orbital and spin degrees of freedom is a key ingredient in spintronics. For instance,
the spin Hall effect involves the generation of a transverse spin current in response to a charge
current. In superconductors, the spin Hall effect couples the spin current to both the quasiparticle
current and the (equilibrium) supercurrent [23–27]. Topological superconductivity can emerge in
hybrid devices involving conventional superconductors and semiconductors with strong spin-orbit
coupling [28]. The most appealing manifestation of topological superconductivity is the Majorana
zero modes that are predicted to exist at the ends of the proximitised nanowires. This kind
of superconductor–semiconductor hybrid platforms have been proposed for topological quantum
computing schemes [29].

The exploration of the interaction between superconductivity and spin-dependent fields in hybrid
systems has emerged as a prolific and vibrant field of research over the past decades. The purpose
of this PhD thesis is to theoretically study the non-equilibrium properties of superconducting
structures subjected to different types of spin-dependent fields. Spin-dependent fields can be
classified as SOC terms that break the inversion symmetry, and magnetic (Zeeman-like) terms that
break the time-reversal symmetry. Real hybrid structures show non-controllable disorder that needs
to be appropriately modelled. One possibility is to implement disorder into the microscopic models,
for example through tight-binding models. This approach is computationally very expensive.
Another possible approach, based on the Green’s function (GF) method, is to reduce the microscopic
equations to kinetic-like equations. In this approach, interfaces between different materials are
described by boundary conditions. On top of this, the studied materials are practically metallic
systems where the Fermi energy is much larger than the other energy scales in the system, so one
may use the quasiclassical approximation to simplify the equations.

This thesis is organised according to the following structure. In Chap. 1, we introduce the
systems to be studied in the Thesis and outline the formalism used to study them. We devote
Sec. 1.1 to the theory of superconductors that conform the hybrid structures studied in the Thesis.
In Sec. 1.2 we define the GF method, which is the main theoretical tool used in this Thesis,
and introduce the Gor’kov equation for a superconductor. The Gor’kov equation contains much
information that is irrelevant for the transport properties of the studied systems. Therefore, in
Secs. 1.3 and 1.4, we get rid of the rapid oscillations on the Fermi wavelength scale and introduce
the quasiclassical approximation. We derive the kinetic (Eilenberger) equation for the quasiclassical
GF. In the diffusive limit, the impurity concentration is so high that a material can be taken to be
isotropic. In this case, the Eilenberger equation reduces to the Usadel equation. All the systems
studied in this Thesis are described by the Usadel equation, we use different extensions to account
for different types of spin-dependent fields. In Sec. 1.5 we theoretically describe the hybrid interfaces
between different types of materials, and introduce the corresponding boundary conditions.

In Chap. 2, we present a more in-depth explanation of the models and methods used to study each
of the four systems covered in this Thesis. In addition, we summarize the main results that conform
the backbone of this Thesis. We exhibit our main conclusions in Chap. 3. Selected publications
derived from the work done during this doctorate are compiled as Chapters 4-7. In Chap. 4, we
study the singlet and triplet correlations in the vicinity of a sharp domain wall and explain how
they manifest in the local density of states (DoS). Next, in Chap. 5, we study the anomalous
Josephson effect in an Andreev interferometer device. In Chap. 6, we investigate the interplay of
photon-assisted tunnelling and bipolar thermoelectric generation in asymmetric superconducting
tunnel junctions. Finally, in Chap. 7, we present a unified description of dynamical charge and spin
transport in diffusive superconductors.
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1.1 Theory of superconductivity

Many metals undergo a phase transition into a superconducting state at sufficiently low
temperatures. This state of matter is characterised by perfect, zero-resistance, conductivity.
This means that the current flows through a superconductor without any energy dissipation. H.
Kamerlingh Onnes discovered superconductivity in 1911 when he studied the low-temperature
resistivity of mercury [30]. This discovery was followed by the report of superconductivity in other
metals. The temperature at which a metal transitions from the normal state to the superconducting
state is referred to as the critical temperature Tc; in conventional superconductors the critical
temperature typically lies in the 1-10 K range. Georg Bednorz and K. Alex Müller discovered
superconductivity in ceramic materials in 1986 [31]. This kind of superconductors are known as
high-temperature superconductors, with a critical temperature above 77 K, which is the boiling
point of liquid nitrogen.

Another characteristic property of superconductors is the Meissner-Ochsenfeld effect: the
expulsion of magnetic fields of a bulk superconductor [32]. If a superconductor is subjected to
a constant magnetic field, the magnetic field will only penetrate into the superconductor over a
penetration depth of the order of 10−8 m. The perfect diamagnetism of superconductors enables
them to be used for magnetic levitation.

The Bardeen-Cooper-Schrieffer (BCS) theory [33] was the first theory to explain
superconductivity microscopically in 1957. In the ground state of a free electron gas, the electrons
fill all one-electron states below the Fermi energy εF. However, this ground state becomes unstable
in the presence of an attractive interaction between the electrons, regardless of the interaction
strength. Cooper showed in 1956 that a weak attraction between electrons can bind electron pairs
into bound states [34]. This result is a consequence of the Fermi statistics and the existence of
the background Fermi-sea. Since the formation of pairs is energetically favourable, the interaction
rebuilds the ground state of the system. This ground state is accompanied by an energy gap in the
excitation spectrum, equal to the energy of formation of a bound pair.

In conventional superconductors, the physical mechanism that leads to an attractive interaction
between electrons in a crystal is the electron-phonon interaction. This interaction usually occurs
for energies close to εF, and vanishes for energy transfers larger than a cutoff value, see Fig. 1.1.
This phonon-mediated interaction leads to an exchange of momentum between the electrons and
the vibrating crystal lattice. This pairing mechanism was first proposed by Fröhlich in 1950 [35].
Independently, the isotope effect, i.e., the proportionality Tc ∝ M−1/2 of the critical temperature
for isotopes of the same element, where M is the mass of the given isotope, was discovered the same
year [36, 37]. This clear dependence of superconductivity on the mass of the ions confirmed the
electron-phonon interaction hypothesis. The phonon interaction is effective when the exchange
of energy is smaller than the characteristic Debye energy ΩD. The electrons also experience
Coulomb repulsive forces; in general, the problem of treating both interactions into account is
very complicated, so superconductivity is typically described by a simple model where electrons
have a quadratic dispersion law, and the electrons that lie near the Fermi surface suffer an effective
attractive interaction. The so-called pairing Hamiltonian or BCS Hamiltonian is given by

H =
∑
k,σ

ξkc
†
k,σck,σ +

∑
k,k′

Vk,k′c†k,↑c
†
−k,↓c−k′,↓ck′,↑ , (1.1)

where c†k,σ and ck,σ are the creation and annihilation operators for state with momentum k and spin
σ, respectively. The BCS Hamiltonian (1.1) assumes that electrons group into pairs with opposite
momenta and spin.

For an s-wave superconductor, the interaction Vk,k′ is an isotropic attraction which is constant
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Figure 1.1: (a) Diagram illustrating the electron-electron interaction via the emission/absorption of
a phonon. (b) In the BCS theory, the attractive electron-electron interaction only occurs in a small
energy shell around the Fermi surface. The thickness of the shell is of the order of Debye energy.

in an energy band around the Fermi energy:

Vk,k′ =

{
−V, if ξk, ξk′ ≤ ΩD

0, otherwise
, (1.2)

where ξk = k2/(2m) − εF is the free-particle energy measured from the Fermi level, V > 0
and V L3N0 ≪ 1, with N0 the normal state DoS at the Fermi level and L3 the volume of the
crystal. If V is strong enough to overcome the repulsive Coulomb interaction between electrons,
superconductivity may arise.

The BCS interaction takes place at zero momentum, so it involves infinite-range interaction
between pairs. This long-range aspect makes the BCS model suitable for treating the interaction
as a mean-field. The mean-field pair potential is given by

∆ = −V

ˆ
dk

(2π/L)3
⟨c−k,↓ck,↑⟩ . (1.3)

∆ is known as the order parameter, whose magnitude |∆| sets the size of the gap in the excitation
spectrum.

In the thermodynamic limit, we may expand the BCS interaction in powers of the fluctuations
of −V c−k,↓ck,↑ and keep the leading order to write the BCS mean-field Hamiltonian [38]:

H =
∑
k,σ

ξkc
†
k,σck,σ +

∑
k

(
∆∗c−k,↓ck,↑ + c†k,↑c

†
−k,↓∆

)
+ V |∆|2 . (1.4)

The last term in the Hamiltonian may be absorbed into the chemical potential. ∆ needs to be
determined self-consistently by minimizing the free energy

∆ =
ΩD

sinh [2/(V L3N0)]
≈ 2ΩDe

−2/(V L3N0) . (1.5)

The last approximation is valid in the weak-coupling limit V L3N0 ≪ 1.
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The ∆∗c−k,↓ck,↑ term in the mean-field Hamiltonian describes the conversion of two particles into
a condensate pair. Alternatively, c−k,↓ may be interpreted as the creation of a hole with momentum
k and spin ↑. This process where an electron scatters into a condensate pair and a hole is known
as Andreev reflection.

In the absence of disorder, the BCS mean-field Hamiltonian (1.4) can be diagonalised by taking
a linear combination of creation and annihilation operators (Bogoliubov transformation)

ck,↑ = u∗
kγk,0 + vkγ

†
k,1

c†−k,↓ = −v∗kγk,0 + ukγ
†
k,1 ,

(1.6)

where γ† and γ are the new Fermi operators, and |uk|2 + |vk|2 = 1.
Choosing appropriate values for uk and vk, one obtains the Bogoliubov-de-Gennes Hamiltonian

H =
∑
k

(ξk − Ek) +
∑
k

Ek(γ
†
k,0γk,0 + γ†

k,1γk,1) . (1.7)

The first term is a constant that gives the energy of the BCS ground state. The second term
gives the energy increase Ek =

√
ξ2k + |∆|2 due to the creation of excitations, the so-called

Bogoliubons [39–41].
Hamiltonian (1.7) shows that the minimum excitation energy for the ground state is |∆|,

implying the existence of a gap [42]. The superconducting gap is related to the critical temperature
Tc0 by [43]

|∆| = π

eγ
Tc0 ≈ 1.764Tc0 , (1.8)

where γ ≈ 0.577 is the Euler–Mascheroni constant.
The Bogoliubov-de-Gennes equations are convenient to obtain results in clean superconductors.

However, real materials show impurities which need to be treated appropriately to describe the
materials realistically. In the following section, we introduce the Green’s function method first
introduced by Gor’kov, which allows to treat different scattering processes, hybrid structures and
time-dependent phenomena conveniently.

1.2 Green’s function method
The theoretical tool used in this Thesis to study superconductivity is the Green’s function (GF)

method. It is a very useful method in the microscopic theory of many-fermion systems. For instance,
the microscopic properties of the system can be extracted from the GF. Gor’kov [44] and Migdal [45]
developed this method for the case of superconducting systems.

The time-ordered one-particle GF for a many-fermion system is defined as

G(r, r′) = −i⟨TΨ(r)Ψ†(r′)⟩ , (1.9)

where Ψ†(r) and Ψ(r) are the quantum field operators in the Heisenberg representation Ψ(r) =
eiHtΨ(r)e−iHt, respectively, ⟨. . . ⟩ denotes the thermodynamic average, and T represents Wick-time
ordering operation for fermions. The physical interpretation of the GF is the propagation of
disturbances in which a single particle is added and removed from the many-particle equilibrium
system. For instance, for positive time (t > t′), Eq. (1.9) describes the propagation of a disturbance
of a particle added at r′ and removed at r, returning the system to the equilibrium state. For
negative time (t < t′), the disturbance is produced by the removal of a particle at r and added at
point r′, describing the propagation of holes.

In the following, we introduce the Keldysh GF technique [46], which allows us to describe
many-body systems outside of equilibrium. We assume that the system is at thermal equilibrium
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Figure 1.2: Schwinger-Keldysh contour, the direction of the arrows indicates the ordering of times
along the forward (C+) and backward (C−) branches. The branches have been shifted vertically for
clarity.

at t = −∞. The Keldysh contour consists of a forward and backward branch running from t =
−∞ to t = ∞ and back, as shown in Fig. 1.2. The GFs are defined on this Keldysh contour,
depending on whether they are defined on the forward or backward paths they reduce to different
analytic functions. These functions are grouped into a 2× 2 matrix in the so-called Keldysh space
(forward/backward branch space). However, only three of the terms are linearly independent, so it
is convenient to linear transform the GF into a triangular matrix representation [47]

Ǧ =

(
GR GK

0 GA

)
, (1.10)

where the ·̌ accent denotes a matrix in Keldysh space. This triangular matrix structure is very
convenient for calculations. The components of the matrix GF are the retarded, advanced and
Keldysh GFs GR/A/K ,

GR(r, r′) = −iθ(t− t′)[⟨Ψ(r)Ψ†(r′)⟩+ ⟨Ψ†(r′)Ψ(r)⟩] (1.11a)

GA(r, r′) = iθ(t′ − t)[⟨Ψ(r)Ψ†(r′)⟩+ ⟨Ψ†(r′)Ψ(r)⟩] (1.11b)

GK(r, r′) = i[⟨Ψ†(r′)Ψ(r)⟩ − ⟨Ψ(r)Ψ†(r′)⟩] . (1.11c)

The retarded and advanced GFs determine the equilibrium properties of the system, such as the
density of states (DoS). In contrast, the Keldysh GF GK determines the transport (non-equilibrium)
properties of the system, such as the charge, heat and spin currents.

1.2.1 Gor’kov equations

In the following, we extend the GFs defined in the previous section to account for the
superconducting pair potential introduced in Eq. (1.4). The GF in Nambu space, which combines
the particle and hole spaces [48], is given by

Ǧ(r, r′) = −i⟨TΨ̂(r)Ψ̂†(r′)⟩ =
(
G(r, r′) F (r, r′)
F †(r, r′) G†(r, r′)

)
, (1.12)

where G(r, r′) = −i⟨TΨ↑(r)Ψ
†
↑(r

′)⟩ is the normal component of the GF, and F (r, r′) =
−i⟨TΨ↑(r)Ψ↓(r

′)⟩ is the anomalous component of the GF, which describes the superconducting
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correlations. Ψ̂† = (Ψ†
↑,Ψ↓) is a pseudo-spinor; since the annihilation of an electron is equivalent to

the creation of a hole, Ψ̂† contains two creation operators, one for a spin up electron and one for a
hole with spin down. In order to account for spin-dependent fields, one should include the creation
(annihilation) operators for spin down (up) in Ψ̂† = (Ψ†

↑,Ψ
†
↓,−Ψ↓,Ψ↑), so that G(r, r′) and F (r, r′)

become 2× 2 matrices in spin space (usually denoted by a hat accent Ĝ)

Ǧ(r, r′) =

(
Ĝ(r, r′) F̂ (r, r′)

F̂ †(r, r′) Ĝ†(r, r′)

)
. (1.13)

Here, the ·̌ accent denotes a 4 × 4 matrix in Nambu-spin space and the ·̂ accent a 2 × 2 matrix in
spin space.

It is possible to define the retarded/advance/Keldysh GFs as in Eq. (1.11) in Nambu-spin space,
so the equivalent of Eq. (1.10) including all degrees of freedom is

Ǧ =

(
ǦR ǦK

0 ǦA

)
, (1.14)

where Ǧ is a 8× 8 matrix in Keldysh-Nambu-spin space.
The Green’s functions may be calculated using the diagram technique. If the particles making

up the system are subject to a weak interaction, we may write a perturbation series with respect
to the interaction:

Ȟ = Ȟ0 + V̌s , (1.15)

where V̌s is an arbitrary scattering potential. V̌s may describe the electron-electron interactions, for
example, but in this Thesis we only consider scattering by random elastic and magnetic potentials.
Ȟ0 is the BCS Hamiltonian in Keldysh-Nambu-spin space

Ȟ0(r) =
1

2m
(−i∇r + eA(r)τ3)

2 − µch − eφ(r) + h(r) · στ3 − i∆̌(r) , (1.16)

obtained from Eq. (1.4) as

H =

ˆ
drΨ̂†(r)Ȟ0(r)Ψ̂(r) . (1.17)

Hamiltonian (1.16) has been generalised to contain Zeeman fields h, electromagnetic potenatials

φ and A, and a spatially dependent superconducting order parameter ∆̌ =

(
0 ∆
∆∗ 0

)
.

The pair potential is related to the anomalous GF through the self-consistency equation

∆̌(r) = −i
λ

2
F̌ (r, r) , (1.18)

where λ is the strength of the attractive electron-electron interaction, related to the V introduced
in Eq. (1.2).

In most cases, it is not enough to consider the first few diagrams in the perturbation series.
Instead, one should sum an infinite series of terms containing the “principal diagrams”, that are
of the same order of magnitude. The addition of the terms can graphically be represented as a
summation of diagrams. This means that a diagram represents the sum of infinite terms, each of
which might also represent a summation.

Formally, the diagrams consist of lines (Green’s functions) and vertex operators, which are joined
through coordinate integration. The diagrams may be split into blocks, made up of unperturbed
Green’s functions Ǧ0 and elementary vertices. Any part of a diagram which can be joined to the
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rest of the diagram by Ǧ0 lines is called a self-energy part [49]. If the self-energy part cannot be
split into different parts by removing a single Ǧ0-line, it is called an irreducible self-energy part.

All the terms in a diagram begin with a Ǧ0-line, followed by an irreducible self-energy part Σ̌.
If these two terms are removed from the parts of the diagrams, the resulting diagram begins with a
Ǧ0-line plus an arbitrary sum of self-energy parts, i.e. the exact Ǧ-line. This identity is described
by the Dyson equation

Ǧ = Ǧ0 − iǦ0 ◦ Σ̌ ◦ Ǧ , (1.19)

or equivalently,
(Ǧ−1

0 + iΣ̌) ◦ Ǧ = δ(r − r′) , (1.20)

where ◦ denotes convolution, i.e., integration over intermediate variables.
In a superconductor, the GF (1.14) is determined by the generalised Dyson equation for the

BCS model, also known as the Gor’kov equation [50]. The matrix operator Ǧ−1
0 is given by

Ǧ−1
0 (r, r′) =

(
iτ3

∂

∂t
− Ȟ0(r)

)
δ(r − r′) , (1.21)

and Σ̌ is the self-energy term which generates collision integrals for the different scattering processes
of the kinetic transport theory, including processes such as scattering with impurities, magnetic
impurities and electron-phonon interaction described by the V̌s potential. For instance, for a random
scattering potential V̌s is given by

V̌s(r) =

Nimp∑
i=1

v(r −Ri) , (1.22)

where Nimp is the number of impurity scatterers and Ri are the positions of scatterers that follow
a constant distribution function. In this case, the exact GF takes the form

Ǧ = Ǧ0 +
∑
i

Ǧ0 ◦ v(r −Ri)δ(r − r′) ◦ Ǧ0

+
∑
i,j

Ǧ0 ◦ v(r −Ri)δ(r − r′) ◦ Ǧ0 ◦ v(r −Rj)δ(r − r′) ◦ Ǧ0 + . . .
(1.23)

Since we are dealing with a random potential, we are not interested in the exact solution. The
physical characteristics of the system are determined by impurity averaging, i.e., an average over
the ensemble of all possible impurity configurations. This allows us to replace the sums with
integrations over impurity positions

∑
i → nimp

´
dri, with nimp = Nimp/L

3 the impurity density.
Equation (1.23) may be written as a Dyson equation (1.19), where the self-energy term in the

momentum representation is given by

Σ̌(p) = inimp

ˆ
dp1

(2π)3
|v(p− p1)|2Ǧ(p1) . (1.24)

We assume that the Born approximation is valid, which implies that the scattering potential is
small compared to the characteristic atomic potential, which is of the order of the Fermi energy. In
the Born approximation only the momenta close to the Fermi surface are relevant, so the scattering
potential depends only on the angle θ between p and p1. For isotropic scattering by impurities
v(θ) = v, the self-energy is independent of momentum direction, and it may be written as

Σ̌ =
i

πN(0)τ

ˆ
dp1

(2π)3
Ǧ(p1) , (1.25)
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where N(0) is the DoS at the Fermi level, and τ is the mean scattering time

τ−1 = πN(0)|v|2nimp. (1.26)

Finally, inserting Eq. (1.21) into Eq. (1.20) we obtain the Gor’kov equation for a superconductor(
iτ3

∂

∂t
δ(r − r′′)− Ȟ0(r)δ(r − r′′) + iΣ̌(r, r′′)

)
◦ Ǧ(r′′, r′) = δ(r − r′) . (1.27)

1.2.2 The Matsubara formalism

The Matsubara technique was developed to describe many-body systems in equilibrium at finite
temperature [51]. If the system is on thermal equilibrium, then there is no need to compute the
Keldysh GF; instead, one may use the Matsubara GF, which is related to the retarded/advanced
GFs, effectively reducing the matrix dimension of the GF (1.14). The key idea behind this formalism
is the relation between the time evolution of a quantum system, given by the unitary operator e−iHt,
and the Boltzmann weighting factor at a given temperature. In thermal equilibrium, the eigenvalues
of physical observables do not depend on real-time. The expectation values of the observables are
calculated in the grand canonical ensemble by taking traces of the operators multiplied by the
weighting factor e−H/T . Comparing both exponents, we find that temperature can be treated as an
imaginary time 1/T ≡ τ = it.

The imaginary-time Green’s function (also known as Matsubara Green’s function) for fermions
is defined as in Eq. (1.12) via analytical continuation for imaginary time 0 < |τ | < 1/T [49], where
τ = τ ′ − τ ′′ is the imaginary-time difference

Ǧ(τ ′ − τ ′′, r, r′) = −⟨Tτ Ψ̂(τ ′, r)Ψ̂†(τ ′′, r′)⟩ . (1.28)

The expressions of the GF at negative and positive imaginary times are related through the relation

Ǧ(τ < 0) = −Ǧ(τ + 1/T ) , (1.29)

where the expression of the GF for the r.h.s. of Eq. (1.29) corresponds to the positive imaginary-time
one.

Since the time τ is defined within a finite range, we can expand the GF in a Fourier series

Ǧ(τ) = T
∑
n

e−iωnτ Ǧ(ωn) , (1.30)

where the frequencies ωn = nπT , n ∈ Z, are discrete. These frequencies are called the Matsubara
frequencies. The Fourier coefficients are given by

Ǧ(ωn) =
1

2

ˆ 1/T

−1/T

dτeiωnτ Ǧ(τ) =
1

2
(1− e−iωn/T )

ˆ 1/T

0

dτeiωnτ Ǧ(τ) . (1.31)

As shown by Eq. (1.31), the Fourier coefficients for fermions are nonzero only for odd n. For this
reason, the Matsubara frequencies are usually labelled as ωn = 2πT (n+ 1/2), n ∈ Z, with

Ǧ(ωn) =

ˆ 1/T

0

dτeiωnτ Ǧ(τ) . (1.32)

The Matsubara GF is related to the (real-time) retarded ǦR(ε) and advanced ǦA(ε) GFs1

through the relations
Ǧ(ωn) = ǦR(iωn), ωn > 0

Ǧ(ωn) = ǦA(iωn), ωn < 0 .
(1.33)

1See Eq. (1.43) for the definition of the real-time Fourier transformed GFs.



10 Introduction

The Fourier transformed GF ǦR(ε) is an analytical function of ε in the upper half-plane of complex
ε. Similarly, the advanced GF ǦA(ε) is an analytical function of ε in the lower half-plane.

The Gor’kov equation (1.27) may be written in the Matsubara representation as(
iωnτ3δ(r − r′′)− Ȟ0(r)δ(r − r′′) + iΣ̌(r, r′′)

)
◦ Ǧ(r′′, r′) = δ(r − r′) . (1.34)

This equation is equivalent to Eq. (1.27) in the thermal equilibrium. In the following sections we
derive the method of quasiclassical Green’s functions in the time domain, but one may use the
Matsubara formalism to derive the quasiclassical equations provided that the equilibrium condition
is satisfied.

1.3 Method of quasiclassical Green’s functions
All presently known superconductors have the Fermi energy considerably larger than the

order parameter ∆. This condition is especially well satisfied for conventional, low-temperature
superconductors where the ratio εF/∆ can be as high as 103. In this case, the Fermi momentum
is much larger than the inverse coherent length ξ−1

0 ∼ ∆/vF. When all relevant energies involved
are smaller than the Fermi energy, it is convenient to work in the quasiclassical approximation.
The quasiclassical method makes the basis for the modern microscopic theory of nonstationary
phenomena in superconductors [47]. Its main advantage is that it can coherently incorporate
various relaxation mechanisms. For example, it can describe the interaction with impurities in
superconducting alloys.

Subtracting the Gor’kov equation (1.27) and its conjugate(
iτ3

∂

∂t
δ(r − r′′)− Ȟ0(r)δ(r − r′′) + iΣ̌(r, r′′)

)
◦ Ǧ(r′′, r′) = δ(r − r′) , (1.35a)

Ǧ(r, r′′) ◦
(
−iτ3

∂

∂t′
δ(r′′ − r′)− Ȟ0(r

′)δ(r′′ − r′) + iΣ̌(r′′, r′)

)
= δ(r − r′) , (1.35b)

we obtain an (anti)commutator equation2:{
iτ3

∂

∂t
δ(r − r′) ◦, Ǧ(r, r′)

}
+
[
−Ȟ0(r)δ(r − r′) + iΣ̌(r, r′) ◦, Ǧ(r, r′)

]
= 0 , (1.36)

where the commutator [A ◦, B] = A ◦ B − B ◦ A implies convolution. Equation (1.36) is an
inhomogeneous equation, so it has a broader set of solutions than the Gor’kov equation, specifically
for any solution Ǧ0, cǦ0 with c ∈ C will also be a solution of (1.36). Therefore, Eq. (1.36)
must be supplemented with an inhomogeneous condition, which is introduced in Sec. 1.3.1 for the
quasiclassical approximation.

In the following, we work in the centre-of-mass/relative spatial coordinates r = (r′ + r′′)/2 and
ρ = r′ − r′′, and introduce the Wigner transform in the spatial coordinates

Ǧ(r,p) =

ˆ
dρe−ip·ρǦ(r,ρ) , (1.37)

which separates the fast oscillating modes from the low modes. In this representation, the spatial
convolutions become Moyal products [52], which are expressed as [53]

(A ◦B)(r,p) = e
i
2
(∂A

r ∂B
p −∂A

p ∂B
r )A(r,p)B(r,p) . (1.38)

2Notice the additional minus sign in the time derivative term of Eq. (1.35b).
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In the systems considered, the involved fields change slowly in the centre-of-mass coordinate r
with respect to the Fermi wavelength. For instance, in superconducting systems the changes of
the order-parameter happen over the superconducting coherence length ξ0. The derivatives can
be approximated as ∂r∂p → 1/(ξ0pF ) ≪ 1, so we may neglect short-range oscillations and expand
Eq. (1.38) to leading order. Thus, the spatial convolutions are replaced with products of the Wigner
transforms. In the quasiclassical approximation, the characteristic energies of the system are small
compared to εF, so the electrons occupy a small region in momentum space around the Fermi
surface. The GF contains fast oscillations in the |ρ| coordinate, this produces a pronounced peak
of the GF at |p| = pF in the momentum representation [54]. Therefore, the GF depends weakly on
the magnitude of momentum. We remove this momentum magnitude dependence by defining the
quasiclassical GF [55]

ǧ(r, n̂) ≡ i

π

 
dξpǦ(r, ξp, n̂) , (1.39)

where ξp = p2/(2m) − µch, n̂ is the unit vector along the Fermi momentum, and the integration
takes the contribution from the poles close to the Fermi surface into account.

In Eq. (1.36), only Ǧ(r,p) has a sharp dependence on pF , so the equation can be integrated
with respect to ξp to obtain the quasiclassical equation (Eilenberger equation of motion) for ǧ.
Expanding the commutator equation (1.36) to linear order on the (spatial) gradients, we obtain the
Eilenberger equation [56]

ivF n̂ · ∇ǧ +

{
iτ3

∂

∂t
δ(t− t′) ◦, ǧ

}
+

[
(−h · στ3 + i∆̌)δ(t− t′) + iΣ̌s +

i

2τ
⟨ǧ⟩n̂ ◦, ǧ

]
= 0 , (1.40)

where vF is the Fermi velocity, and ⟨. . . ⟩n̂ denotes average over the Fermi surface. The first
(kinetic-like) term in Eq. (1.40) arises from the kinetic energy term in the Hamiltonian (1.16).
The last term in the commutator is the self-energy term accounting for elastic impurity scattering
within the Born approximation (1.25). Rewriting the momentum integral as dp

(2π)3
→ π2N(0)dΩ

4π

dξp
2π2

and applying the definition for the quasiclassical GF (1.39), we directly obtain that the self-energy
term accounting for elastic impurity scattering is Σ̌ = ⟨ǧ⟩n̂/(2τ). The Σ̌s term in Eq. (1.40) accounts
for all other self-energy terms, describing processes such as orbital depairing, spin-flip or spin-orbit
relaxation.

The Eilenberger equation (1.40) is much simpler than the Gor’kov equation (1.20). The former
gets rid of the rapid oscillations on the Fermi wavelength scale, which are irrelevant for transport
equations in most systems.

1.3.1 Normalization condition

As anticipated in Sec. 1.2.1, the Eilenberger equation needs to be supplemented with a
normalization condition that fixes the value of ǧ. Multiplying Eq. (1.40) with ǧ from the left/right,
adding both equations, and applying that ǧ is traceless, it follows that ǧ ◦ ǧ = cδ(t− t′) [57].

Direct calculation of the Gorkov equation (1.35) for a bulk superconductor in equilibrium, we
obtain that the proportionality constant is equal to c = 1, so the normalization condition reads:

ǧ ◦ ǧ = δ(t− t′) . (1.41)

The Keldysh GF can then be parametrised as [see Eq. (1.14)]

ǧK = ǧR ◦ ȟ− ȟ ◦ ǧA , (1.42)

where ȟ is known as the distribution function.
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In many systems it is convenient to Wigner transform the GF in the relative time coordinate
τ = t′ − t′′3 into the energy domain,

ǧ(t, ε) =

ˆ
dτeiετ ǧ(t, τ) . (1.43)

This transformation is particularly useful in systems with time translational symmetry, where the
GF does not depend on the centre-of-mass coordinate t = (t′ + t′′)/2. For the retarded (advanced)
GF one should add the convergence factor Γ → 0+ to the energy ε + (−)iΓ that guarantees that
ǧR = 0 (ǧA = 0) for τ < 0 (τ > 0) [see Eq. (1.11)]. A finite Γ may also describe inelastic scattering
effects present in real materials (assuming that they are frequency independent) [58]. In time
translationally invariant systems, the normalization condition reduces to

ǧ(ε)2 = 1 (1.44)

in the energy representation, and the Keldysh GF is given by ǧK(ε) = ǧR(ε)ȟ(ε) − ȟ(ε)ǧA(ε). In
thermal equilibrium, the distribution function is given by the Fermi-Dirac distribution:

ȟeq(ε) = tanh
ε

2T
. (1.45)

The retarded/advanced GFs are usually parametrised to account for the normalization condition.
In systems without spin-dependent interactions, one may use the θ-parametrisation

ǧR/A = cos θτ3 + sin θτ1 , (1.46)

which transforms the quasiclassical equations into trigonometric differential equations. The
generalised θ-parametrisation [59] allows to describe systems with arbitrary magnetisation, such
as the domain wall considered in Sec. 2.1

ǧR/A = (cos θV0 − sin θV · σ)τ3 + (sin θV0 + cos θV · σ)τ1 , (1.47)

where V0 and V are related to the singlet and triplet correlations4, respectively, and satisfy the
condition

V 2
0 + V 2 = 1 . (1.48)

In systems with a homogeneous Zeeman field h, V becomes parallel to h.
The generalised θ-parametrisation is useful to obtain analytical results, but it is troublesome

for numerical calculations due to the multivaluedness of the θ parameter. This issue is especially
significant when the thickness of the system is longer than the superconducting coherence length.
The Riccati parametrisation [60] solves this issue by considering parameters that are bounded

ǧR/A =

(
(1 + γ̂ ˆ̃γ)−1 0

0 (1 + ˆ̃γγ̂)−1

)(
(1− γ̂ ˆ̃γ) 2γ̂

2ˆ̃γ −(1− ˆ̃γγ̂)

)
. (1.49)

In addition, the Riccati parametrisation allows describing systems with phase-dependent order
parameters such as Josephson junctions.

1.3.2 Observables

Knowledge of the quasiclassical GF provides all observables of the system. For instance, the
spectral properties of the system are provided by the retarded and advanced GFs

N(t, r, ε) =
N0

8
Tr ⟨τ3( ǧR(t, r, ε, n̂)− ǧA(t, r, ε, n̂) )⟩n̂

=
N0

4
Re
{
Tr
〈
τ3ǧ

R(t, r, ε, n̂)
〉
n̂

}
,

(1.50)

3Not to be confused with the imaginary time τ defined in Sec. 1.2.2.
4see Sec. 2.1 for additional information.
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Figure 1.3: Energy integrating contours in real time C
(r)
+ (retarded) and C

(r)
− (advanced), and their

equivalent contours C(i)
+ and C

(i)
− , encircling the poles of the distribution function. The integral can

be replaced by a sum over the Matsubara frequencies ωn (dots on the imaginary axis).

while the out-of-equilibrium properties such as the local charge, spin and energy currents are
provided by the Keldysh GF. Specifically, the charge current is given by

j(t, r) = −eN0

4

ˆ
dεTr

〈
vF n̂τ3ǧ

K(t, r, ε, n̂)
〉
n̂
. (1.51)

Here, N0 is the DoS in the normal state at the Fermi level. If the system is in thermal equilibrium,
the energy integrals can conveniently be computed in the Matsubara representation

j(t, r) = −i2πT
eN0

4

∑
ωn

Tr ⟨vF n̂τ3ǧ(t, r, ωn, n̂)⟩n̂ . (1.52)

The energy integral contours of the retarded C
(r)
+ and advanced C

(r)
− GFs may be shifted to the

imaginary frequency axis, as shown in Fig. 1.3. The poles of the integrand in Eq. (1.51) are given
by the equilibrium distribution function (1.45). The poles are precisely the Matsubara frequencies,
which are located along the imaginary energy axis, and thus are encircled by the C(i)

+ and C
(i)
− paths.

Using the residue theorem, the integrals may be replaced with sums over the Matsubara frequencies
as shown by Eq. (1.52).

1.3.3 Self-consistency of the order parameter

The order parameter needs to be computed self-consistently from the anomalous GF as given
by Eq. (1.18). In the Matsubara representation, this condition is given by

∆̌(t, r) = λN0πT

ΩD∑
ωn

⟨f̌(t, r, ωn, n̂)⟩n̂ , (1.53)
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where f̌ is the anomalous part of the Matsubara GF. The summation over Matsubara frequencies is
divergent, so an effective cutoff must be introduced. As explained in Sec. 1.1, the electron-electron
interaction in superconductors is mediated by phonons, so the Debye frequency ΩD is an appropriate
cutoff.

1.4 Diffusive limit: the Usadel equation
The Eilenberger equation can be simplified considerably in the diffusive limit, that is, when the

impurity scattering rate is much larger than the critical temperature τ−1 ≫ Tc. This condition
is equivalent to the assumption that the mean free path ℓ is small compared to the other lengths
involved in the problem, except for the Fermi wavelength λF .

A strong scattering by impurities produces averaging over momentum directions. Therefore,
in the first approximation, the GFs do not depend on the momentum direction. The first-order
correction is linear in vF, so the GF can be written as

ǧ ≈ ǧ0 + n̂ · δǧ , (1.54)

where ǧ0 is n̂-independent and |δǧ| ≪ ǧ0. Averaging Eq. (1.40) over the momentum direction we
arrive at

i
vF
3
∇ · δǧ +

{
iτ3

∂

∂t
δ(t− t′) ◦, ǧ0

}
+
[
(−h · στ3 + i∆̌)δ(t− t′) + iΣ̌s

◦, ǧ0
]
= 0 , (1.55)

while averaging Eq. (1.40) after multiplication by n̂ yields

ivF∇ǧ0 +

{
iτ3

∂

∂t
δ(t− t′) ◦, δǧ

}
+
[
(−h · στ3 + i∆̌)δ(t− t′) + iΣ̌s

◦, δǧ
]
+

i

2τ
(ǧ0 ◦ δǧ − δǧ ◦ ǧ0) = 0 .

(1.56)
In the diffusive limit τ−1 ≫ ∂ǧ/∂t, h,∆, so the (anti)commutator in equation Eq. (1.56) can be

neglected. Multiplying this equation by ǧ0, and using the normalization condition (1.41) for ǧ0 and
δǧ, we obtain the following relation:

δǧ = −ℓǧ0 ◦ ∇ǧ0 , (1.57)

where ℓ = vFτ is the mean free path. As explained in Sec. 1.3, the GF changes over a characteristic
coherence length ξ0, so its spatial derivatives are of the order of ∇ ∼ ξ−1

0 . In the diffusive limit, the
mean free path is much shorter than the coherence length l/ξ0 ≪ 1, so the approximation (1.54) is
justified. The δǧ term is identified with the current matrix

J̌ = ǧ ◦ ∇ǧ . (1.58)

Here and below we omit the subscript for the isotropic GF ǧ0.
Using relation (1.57) in Eq. (1.55), we obtain the Usadel equation [61]

D∇ · (ǧ ◦ ∇ǧ)−
{
τ3

∂

∂t
δ(t− t′) ◦, ǧ

}
−
[(
ih · στ3 + ∆̌

)
δ(t− t′) + Σ̌s

◦, ǧ
]
= 0 , (1.59)

where D = vFl/3 is the diffusion constant. Essentially, for equal times t = t′, the Eilenberger and
Usadel quasiclassical equations correspond to the conservation of the current matrix.

In the energy domain, the Usadel equation reads

D∇ · (ǧ∇ǧ) + [iετ3 − ih · στ3 − ∆̌− Σ̌s, ǧ] = 0 , (1.60)

while the Matsubara representation is obtained by replacing ε±iΓ → iωn on the retarded/advanced
part of Eq. (1.60).
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1.4.1 Example: homogeneous BCS superconductor

In the following, we consider a simple example: a bulk BCS superconductor with no
spin-dependent fields. In this case, the spatial derivatives vanish, so the Usadel equation for the
retarded GF reads

[i(ε+ iΓ)τ3 − ∆̌, ǧR] = 0 , (1.61)

where ∆̌ = ∆τ1. The Green’s function is a linear combination of Pauli matrices in Nambu space
(not including the unit matrix), so it must be proportional to the l.h.s. of the commutator. Taking
the normalization condition (1.44) into account, the GF of a bulk superconductor is given by

ǧR(ε) =
−i(ε+ iΓ)τ3 +∆τ1√

∆2 − (ε+ iΓ)2
. (1.62)

There is still some freedom on the branch on the square root that needs to be taken in Eq. (1.62).
The GF needs to provide logical values for the observable quantities of the system. For instance,
the DoS needs to be positive for all energies. This property is satisfied by the principal branch of
the square root in Eq. (1.62).

Equation (1.62) can easily be generalised for a superconductor in a homogeneous Zeeman field
h:

ǧR(ε) =
−i(ε+ iΓ− h · σ)τ3 +∆τ1√

∆2 − (ε+ iΓ− h · σ)2
. (1.63)

Using the principal branch of the square root for each spin direction we obtain a positive DoS for
each spin species.

1.4.2 Observables

Observable quantities of the system are easily computed in the diffusive limit. For instance, the
DoS is given by

N(t, r, ε) =
N0

8
Tr τ3(ǧ

R(t, r, ε)− ǧA(t, r, ε)) =
N0

4
Re
{
Tr τ3ǧ

R(t, r, ε)
}
. (1.64)

For example, the DoS for a bulk superconductor considered in Sec. 1.4.1 is [see Eq. (1.62)]

N(ε) = N0Re

{
−i(ε+ iΓ)√
∆2 − (ε+ iΓ)2

}
. (1.65)

Ideally, the BCS theory predicts a divergent DoS at ε = ±∆, but this sharp behaviour is smoothed
by inelastic scattering processes, described by a finite Dynes parameter Γ [58], as shown in Fig. 1.4.
In the normal state, the superconducting gap vanishes ∆ = 0, so the DoS becomes constant N(ε) =
N0 (at energies small compared to the Fermi energy).

Plugging Eq. (1.57) into Eq. (1.51), one directly obtains the charge current in terms of the
matrix current (1.58)

j(t, r) = −πσN

8e
Tr τ3J̌(t, t, r)

K . (1.66)

In time translation-invariant systems, the current can easily be computed in the energy domain
as

j(r) = − σN

16e

ˆ
dεTr τ3J̌(r, ε)

K , (1.67)
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Figure 1.4: Density of states for a homogeneous superconductor. The dashed curve corresponds to
an ideal BCS superconductor (Γ → 0+), and the solid curve to a real superconductor with a finite
inelastic scattering rate (Γ = 0.02∆).

or, if the system is in thermal equilibrium, in the Matsubara representation:

j(r) = −i2πT
σN

16e

∑
ωn

Tr τ3J̌(r, ωn)
K , (1.68)

where σN is the Drude conductivity. The spin and heat currents can similarly be defined in terms
of the current matrix as

jis(r) =
σN

32e2

ˆ
dεTr σiJ̌(r, ε)

K , (1.69)

and

jQ(r) =
σN

16e2

ˆ
dεεTr J̌(r, ε)K , (1.70)

respectively.

1.4.3 Self-consistency of the order parameter

The self-consistency equation for the order parameter in the diffusive limit is directly obtained
from Eq. (1.53)

∆̌(t, r) = λN0πT

ΩD∑
ωn

f̌(t, r, ωn) . (1.71)

The value of the BCS coupling constant λ is generally not an easily accessible quantity. The
order parameter becomes 0 at the BCS critical temperature Tc0, which is a temperature that can
easily be extracted experimentally by measuring the resistance drop in the metal. Close to the
critical temperature, we can expand the anomalous part of the GF (1.62) to the lowest order in ∆,
f̌(ωn) ≈ ∆̌

ωn
. In this case, the summation over Matsubara frequencies can be calculated analytically.

Inserting the value of f̌ in Eq. (1.71), we may write the value of λ in terms of the critical temperature.
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The self-consistency equation can then be rewritten as

∆̌ ln
T

Tc0

= πT
∑
ωn

(
f̌(ωn)−

∆̌

ωn

)
, (1.72)

where it is no longer necessary to cutoff the summation due to the summand converging fast enough
at high frequencies.

1.4.4 Quasiclassical equations in systems with SOC

In this subsection, we present the Usadel equation (1.59) in the presence of spin-orbit coupling
(SOC) fields. The derivation of the equation is beyond the goal of this Thesis, so references are
provided for completeness. SOC is an essential ingredient of mesoscopic physics, leading to effects
such as weak antilocalisation, the spin Hall effect and the anomalous Josephson effect.

There are two types of spin-orbit coupling: the intrinsic SOC arises in systems with broken
inversion symmetry. Rashba and Dresselhaus SOCs belong to this type of SOC; in the former, the
inversion symmetry is broken by the sample structure, while in the latter it is broken due to the
lattice. The extrinsic SOC appears on systems with spin-dependent scattering. In the following,
we first present the Usadel equation for a system with intrinsic linear-in-momentum SOC. Next, we
show the Usadel equations for extrinsic SOC.

Linear-in-momentum spin-orbit coupling can be treated as an effective SU(2) potential [62]. The
Hamiltonian (1.16) for a system with linear SOC can be generalised as

Ȟ0 =
(p− Ǎ)2

2m
− µch + Vimp + τ3Ǎ

0 − i∆̌ . (1.73)

Vimp is a random impurity potential that consists of the usual elastic scattering and the spin-orbit
interaction [63–65]. Ǎµ is the generalised four-potential containing both U(1), and SU(2)
components [66–68] given by

Ǎ0 = −eφτ3 +
1

2
A0jσj (1.74a)

Ǎi = −eAiτ3 +
1

2
Aijσj . (1.74b)

φ and A are the usual U(1) scalar and vector electromagnetic potentials, while A0j and Aij are
SU(2) potentials describing the Zeeman or exchange field5 and the linear-in-momentum SOC,
respectively [69]. Here and below sum over repeated indices is assumed.

As in conventional electrodynamics, we can define the field strength associated with Ǎ:

F̌ µν = ∂µǍν − ∂νǍµ − i[Ǎµ, Ǎν ] . (1.75)

The last commutator appears because of the fact that the SU(2) components are non-abelian. Here
and below Greek indices range µ = 0, 1, 2, 3.

The SU(2) covariant version of the Usadel equation is obtained from a generalisation of the
nonlinear σ-model for diffusive superconductors. The Usadel equation is the saddle point equation
of the nonlinear σ-model in the presence of SOC. The covariant version of the Usadel equation [65,
70] allows describing the Hall and intrinsic spin Hall effects. For intrinsic SOC, the Usadel equation
reads [66–68]

D∇̃iJ̌
i − {τ3∂tδ(t− t′) ◦, ǧ} −

[
(iǍ0τ3 + ∆̌)δ(t− t′) ◦, ǧ

]
= 0 , (1.76)

5Note that the Zeeman field h in Eq. (1.16) is now replaced by the 1
2A

0j term, where the 1
2 factor is the “spin

charge”.
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where ∇̃iX̌ = ∂iX̌ − i/[Ǎi ◦, X̌] is the covariant derivative, and J̌ i is the matrix current given by

J̌ i = ǧ ◦ ∇̃iǧ +
τ

4m
({F̌ ijδ(t− t′) + ǧ ◦ F̌ ij ǧ ◦, ∇̃j ǧ} − i∇̃j(ǧ ◦ [∇̃iǧ ◦, ∇̃j ǧ])) (1.77)

for intrinsic SOC [70].
In systems where the SOC is introduced by impurities (extrinsic SOC), the Usadel equation is

given by [65]

D(∇iJ̌
i + Ť )− {τ3∂tδ(t− t′) ◦, ǧ} −

[
(iǍ0τ3 + ∆̌)δ(t− t′) +

σiǧσi

8τSO
◦, ǧ

]
= 0 , (1.78)

where τSO = 9τ/(8λ4p4F ) is the spin-orbit relaxation time, λ describes the SOC strength, and Ť is
an extrinsic SOC correction due to an effective torque originating from the spin Hall and the spin
swapping effects [63, 64]

Ť = iϵijk
κ
4
[∇̃iǧ ◦ ∇̃j ǧ ◦, σkδ(t− t′)] + ϵijk

θ

4
[σkδ(t− t′) ◦, ǧ ◦ ∇̃iǧ ◦ ∇̃j ǧ] . (1.79)

The current matrix is given by [65]

J̌ i = ǧ ◦ ∇̃iǧ − iϵijk
κ
4
[ǧ ◦ ∇̃j ǧ ◦, σkδ(t− t′) + ǧ ◦ σkǧ]− ϵijk

θ

4
{∇̃j ǧ ◦, σkδ(t− t′) + ǧ ◦ σkǧ} . (1.80)

Here, κ = 2p2Fλ
2/3 and θ = 2pFλ

2/ℓ are spin-swapping and spin Hall coefficients [71], respectively,
with ϵijk the Levi-Civita symbol, and ℓ the mean free path. The first term in Eqs. (1.77) and (1.80)
is the standard diffusive current, while the second term is the leading contribution from spin-charge
coupling describing the Hall effect.

1.5 Boundary conditions
The Usadel equation needs to be supplemented with boundary conditions that describe hybrid

interfaces between different materials. For example, at interfaces with vacuum or an insulator, the
spectral current should vanish. This translates in the language of GFs into a vanishing current
matrix (1.58) at the boundary (x = 0)

J̌(x = 0) = ǧ ◦ ∂xǧ|x=0 = 0 . (1.81)

In the following, we provide different boundary conditions that describe the interface of
superconductors with other materials typically used in mesoscopic physics.

1.5.1 Interface with a ferromagnetic insulator

A superconducting layer grown on top of a ferromagnetic insulator shows a spin-splitting of
the superconducting density of states, which is the basis for many applications in spintronics,
thermoelectricity, and sensors [1–4]. The ferromagnetic interaction is described by an interfacial
exchange field at the FI/S interface that induces triplet correlations in the superconductor.

The quasiclassical and isotropic approximations break down close to interfaces, so the boundary
conditions for the quasiclassical GF cannot be derived within the quasiclassical theory. The
boundary conditions for superconductors involving spin-active interfaces were derived in Refs. [72,
73]. These boundary conditions are valid as soon as the quasiclassical isotropic approximation can
be performed. The interfacial exchange field hint is introduced as an effective boundary condition at
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the FI/S interface [74–76]. Assuming that the exchange interaction occurs over an effective layer of
small thickness a ≪ ξ0, the boundary condition is obtained by integrating the Usadel equation (1.60)
around the interface [74, 77, 78]

ǧ ◦ ∂xǧ|x=0 =
1

D
[iahint · στ3δ(t− t′) ◦, ǧ]

∣∣∣∣
x=0

. (1.82)

1.5.2 Interface between conducting materials

The current needs to be conserved at the interface between two conducting materials. If the
interface transparency between the two conducting layers is low enough, the current flowing through
the interface is given by the Kupriyanov-Lukichev boundary condition [79],

σL ǧL ◦ ∂xǧL|x=0 = σR ǧR ◦ ∂xǧR|x=0 =
1

2R
□

[ǧL ◦, ǧR]|x=0 , (1.83)

where R
□

is the interface resistance per unit area, and σL/R are the conductivities of the left and
right materials. In the clean interface resistance limit R

□
→ 0, ǧL and ǧR need to commute so that

the current becomes finite. Therefore, for clean interfaces, the last equality in Eq. (1.83) is replaced
by the ǧL(0) = ǧR(0) condition.

In the tunnelling limit R
□
→ ∞, the two materials are not corrected by the proximity effect,

so the left and right GFs are given by their bulk value. In this limit, one may use the boundary
condition (1.83) to conveniently compute the current along the junction (1.66)

I(t) = − π

16eR
Tr τ3[ǧL(t, t

′) ◦, ǧR(t
′, t)]K . (1.84)

In a junction with a constant voltage bias, the quasiparticle contribution to the current is given by
the tunnelling current

Iqp =
1

eR

ˆ
dε

NL(ε)

N0

NR(ε− eV )

N0

(f(ε)− f(ε− eV )) , (1.85)

where f(ε) is the Fermi-Dirac distribution function.
The Kupriyanov-Lukichev boundary conditions can be generalised for spin-filtering barriers.

The generalized Kuprianov-Lukichev boundary condition [74, 80] reads

σL ǧL ◦ ∂xǧL|x=0 = σR ǧR ◦ ∂xǧR|x=0 =
1

2R
□

[Γ̌ǧLΓ̌
† ◦, ǧR]

∣∣
x=0

, (1.86)

where Γ̌ = t + um̂ · στ3 is the spin-polarized tunnelling matrix, with t =
√

(1 +
√
1− P 2)/2,

u =
√
(1−

√
1− P 2)/2, and P being the spin-filter efficiency of the barrier.

The Nazarov boundary condition [81] generalises the Kupriyanov-Luckichev boundary condition
to high transparency junctions [82]:

σL ǧL ◦ ∂xǧL|x=0 = σR ǧR ◦ ∂xǧR|x=0 =
1

2R
□

〈
4T̃ [ǧL ◦, ǧR]

(4− 2T̃ )δ(t− t′) + T̃{ǧL ◦, ǧR}

〉∣∣∣∣∣
x=0

, (1.87)

where the angular averaging ⟨·⟩ is taken over all modes that pass through the interface, the interface
transparency T̃ is given by

T̃ (φ) =
cos2 φ

cos2 φ+ z2
, (1.88)
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φ is the injection angle with respect to the direction normal to the interface and z is the BTK
parameter [83], characterizing the strength of the barrier. It is assumed that the Fermi surface
mismatch is negligible, that is, that the magnitude of the Fermi momentum is of similar magnitude
in both layers.

1.5.3 Unconventional superconductors

The Nazarov boundary condition assumes that the GF is isotropic, so it does not adequately
model unconventional superconductor junctions. This kind of interfaces are described by
the Tanaka-Nazarov boundary conditions [84, 85], which are an extension to unconventional
superconductor junctions of the Nazarov boundary conditions. The odd-parity correlations in the
superconductor induce odd-frequency even-parity correlations in adjacent material.

Here we show a form of the Tanaka-Nazarov boundary conditions suitable for mixed s+p-wave
superconductors [86]

ǧ ◦ ∂xǧ|x=0 =
1

2σR
□

⟨Š(φ)⟩ , (1.89)

where σ is the conductivity of the non-superconducting material in the absence of a proximity effect,
and

Š(φ) = T̃ ((1 + T 2
1 )δ(t− t′) + T1(Č ◦ ǧ + ǧ ◦ Č))−1 ◦ (Č ◦ ǧ − ǧ ◦ Č) , (1.90)

Č = Ȟ−1
+ ◦ (1− Ȟ−) , (1.91)

Ȟ+ =
1

2
(ǧS(φ) + ǧS(π − φ)) , (1.92)

Ȟ− =
1

2
(ǧS(φ)− ǧS(π − φ)) . (1.93)

Here, ǧS is the bulk superconductor GF, and T1 = T̃ /(2− T̃ + 2
√

1− T̃ ).

1.6 Summary
In this chapter, we laid out the theoretical formalism to analyse the non-equilibrium properties

of superconducting structures subjected to spin-dependent fields. Essentially, within quasiclassical
Green’s function formalism, systems are described by a quasiclassical equation of motion, which in
the diffusive limit is the Usadel equation (1.59). Solving the Usadel equation, together with the
boundary conditions which describe the hybrid interfaces between different materials, we obtain the
quasiclassical GF of the system, from which the spectral and transport properties of the material
may be extracted.

In the following chapter, we introduce different superconducting systems with Zeeman fields or
different kinds of spin-orbit coupling. We apply the formulas derived in this chapter to analyse the
charge, heat and spin transport properties of the systems.



Chapter 2

Models, methods, and results
HIC SVNT LEONES
— Latin inscription on
uncharted territory

In this chapter, we introduce the models and methods used to study the systems covered in
this Thesis. We also provide a summary of the main results obtained. In Sec. 2.1, we study
the DoS and triplet correlations in a superconductor across a domain wall and how the triplet
correlations manifest in a tunnelling current measurement. This section serves as an introductory
chapter to get acquainted with the GF formalism and understand the physical information contained
in each component of the GF. Next, in Sec. 2.2, we propose a way to detect the anomalous
Josephson effect in an Andreev interferometer device. In this section, we explain how to extract
the non-equilibrium properties of different systems with spin-dependent fields. Then, in Sec. 2.3,
we study the microwave-assisted thermoelectricity in asymmetric superconducting tunnel junctions.
Finally, in Sec. 2.4, we study the longitudinal and transverse (Hall) charge and spin currents in a 2D
superconductor under a microwave field, and compare the results to the corresponding normal-state
behaviour. The former two systems involve static fields that do not change in time, while the latter
two systems are subjected to dynamical electric or spin-fields. A detailed analysis of each of the four
systems is shown in the publications included in Chaps. 4-7. This chapter works as an introduction
to the publications included in the Thesis, so it is recommended to read each publication directly
after or alongside its corresponding section in this chapter to follow the thread of the discussion.

2.1 Quasiparticle density of states and triplet correlations
in superconductor/ferromagnetic-insulator structures
across a sharp domain wall

α
hl

hr

Figure 2.1: Top view of a ferromagnetic insulator with a sharp domain wall. The FI has two
domains with arbitrary in-plane magnetisation direction with a relative orientation angle α.
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Figure 2.2: Schematic view of the S/FI structure under consideration. The ferromagnetic insulator
has two domains with arbitrary in-plane magnetisation direction. The magnetisations of the two
domains lie on the xy-plane, and they form an angle α.

A superconductor (S) grown on top of a ferromagnetic insulator (FI) shows a spin split density of
states due to the proximity effect [87–90]. This spin splitting causes the singlet-state correlations of
the condensate to become odd-in-frequency triplet correlations. The ferromagnetic interaction may
be described by an interfacial exchange field at the FI/S interface that induces triplet correlations
in the superconductor. If the superconducting layer is thin compared to the coherence length,
the spin-splitting can be assumed to be constant along the thickness of the sample. Most works
additionally assume a homogeneous spin-splitting field along the length of the S layer [78, 91–93].
This assumption is justified, even in a multidomain situation, if the characteristic domain size of the
FI is much larger than the superconducting coherence length ξ0. However, the non-homogeneity of
the exchange interaction is relevant when the domain size is of the order of the coherence length, or
if the superconductor is grown in the vicinity of a sharp domain wall, as sketched in Fig. 2.1. The
effect of domain walls in magnetic and insulating ferromagnets on adjacent superconductors has
been studied both theoretically [94–98] and experimentally [90, 99]. Specifically, Ref. [100] studied
the influence of domain-wall dynamics on superconductivity, and Ref. [90] provided experimental
evidence that EuS, a ferromagnetic insulator, consists of multiple domains with a size of the order of
the coherence length of the (superconducting) Al layer attached to it. The authors of the latter work
used a theoretical model that assumed alternating up/down domains of different sizes to explain
the spectroscopic measurements.

In this section, we generalise this configuration to consider a diffusive FI/S bilayer where the FI
consists of two magnetic domains with an arbitrary magnetisation, as shown in Fig. 2.2. Almost all
experimental works on FI/S systems focus on studying its quasiparticle spectrum, but there is a key
aspect that is not often covered in these works: an interfacial exchange field leads to the conversion of
singlet superconducting correlations to triplet ones [76, 101–103]. Moreover, in FI/S bilayers where
the FI has a non-collinear magnetisation, triplet correlations with different spin-projections may
coexist with the singlet correlations. In the following, we study the equilibrium properties of an FI/S
bilayer with a sharp domain wall separating two magnetic domains with arbitrary magnetisations.
We provide analytical expressions for the DoS in different limiting cases. Additionally, we study
the spatial evolution of the triplet correlations near a domain wall and propose a method to detect
them by covering the superconductor with a ferromagnetic (F) layer and performing tunnelling
spectroscopy over it.

2.1.1 Model and methods

In order to study the spectral properties of the FI/S bilayer we use the quasiclassical GF
technique in the diffusive limit, as introduced in Sec. 1.4. The Usadel equation for this system
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reads
D∂x(ǧ∂xǧ) + [iετ3 − ih · στ3 − ∆̌, ǧ] = 0 , (2.1)

where D is the diffusion constant, ε is the energy, h is the effective exchange field stemming from
the interface, and ∆̌ = ∆τ1 is the order parameter. In Eq. (2.1) we are assuming that the thickness
of the S layer is smaller than the coherence length ξ0 =

√
D/∆, so that we can integrate the Usadel

equation over the thickness of the superconductor to reduce the dimensionality of the problem and
assume a homogeneous exchange field over the thickness of the S layer.

Since we are interested in the spectral properties of the system, it is only necessary to solve the
retarded part of the equation. We are dealing with superconductivity and spin-dependent fields, so
the GF ǧ is a 4× 4 matrix in Nambu-spin space. The general structure of ǧ is:

ǧ = ĝτ3 + f̂ τ1 , (2.2)

where ĝ and f̂ are the normal and anomalous GFs in spin-space, and σi (τi), i = 1, 2, 3 are the
Pauli matrices in the spin (Nambu) space. The normal (diagonal) part of the GF describes the
quasiparticle spectral properties of the system. For instance, the local DoS is related to the GF
through the expression [see Eq. (1.64)]

N(ε)

N0

=
1

2
Re{Tr ĝ(ε)} . (2.3)

Within our model, pair correlations are described by the anomalous component f̂ . In Eq. (2.2) we
only consider a τ1 off-diagonal component, whereas superconducting systems with a phase difference,
such as Josephson junctions, also show a finite τ2 component. The anomalous GF has the following
spin structure:

f̂ = f0 + f · σ , (2.4)

where f0 describes the singlet and fj, j = 1, 2, 3 the triplet correlations. Because we consider the
strict diffusive limit, all components of f̂ are isotropic in momentum (s-wave symmetry). From the
Fermi statistics for Fermion pairs, it follows that f0 is an even function of frequency, whereas fj are
odd [101, 104–106]. The following association between the different components of the condensate
and the spin state of electron pairs can be made [107]

(↑↓ − ↓↑) ↔ 2f0 (2.5a)
−(↑↑ − ↓↓) ↔ 2f1 (2.5b)
(↑↑ + ↓↓) ↔ 2if2 (2.5c)
(↑↓ + ↓↑) ↔ 2f3 . (2.5d)

In other words, each triplet component of the condensate is associated with maximally entangled
states. In a conventional BCS superconductor, only the singlet component f0 is finite. Triplet
components arise in the presence of spin-fields such as the exchange field introduced by the FI, as
can be seen by exploring Eq. (2.1).

We parametrise the GF in the generalised θ-parametrisation [59] given by Eqs. (1.47-1.48).
Comparing the different components of the GF with Eq. (2.4), we see that V0 and V describe
the singlet and triplet correlations, respectively. If h is homogeneous, then V is parallel to the
exchange field, but in general, V is a spatially dependent quantity that needs not be parallel to the
local exchange field. In the θ-parametrisation, the Usadel equation reduces to the following set of
equations

D∇2θ + 2iε sin θV0 − 2i cos θh · V + 2∆cos θV0 = 0 (2.6a)

D(V0∇2V − V ∇2V0) + 2iε cos θV − 2i sin θhV0 − 2∆ sin θV = 0 . (2.6b)
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Equation (2.6) forms a set of 4 second-order differential equations for θ and V (V0 is related
to V through relation (1.48)). These equations are the Euler-Lagrange equations corresponding to
the following Lagrangian:

L =
D

2

∑
µ

(∇Vµ)
2 +

D

2
(∇θ)2 + 2iε cos θV0 + 2i sin θh · V − 2∆ sin θV0 , (2.7)

with µ = 0, 1, 2, 3. This Lagrangian coincides with the form of the non-linear σ-model from which
the Usadel equation can also be derived [108, 109].

The above equations (2.6) are valid for arbitrary magnetic textures. In the following, we focus
on the situation of two semi-infinite magnetic domains with constant magnetisation. The domains
are separated by a sharp domain wall at x = 0 with a length much smaller than the superconducting
coherence length. We assume that one of the domains (x < 0) is polarized along the y axis, whereas
the magnetisation of the other domain (x > 0) forms an angle α with the y axis, see Fig. 2.2. The
Usadel equation needs to be supplemented with boundary conditions that describe the boundaries
of the system. Since we are considering an infinite superconductor, at distances much larger than
the coherence length (|x| ≫ ξ0) the GF should take its bulk form.

On each domain, the Lagrangian (2.7) does not depend explicitly on the position r, so the
corresponding Hamiltonian is an integral of motion in each domain. The conserved quantity is
namely given by

E =
D

2

∑
µ

(∇Vµ)
2 +

D

2
(∇θ)2 − 2iε cos θV0 − 2i sin θh · V + 2∆ sin θV0 . (2.8)

The values of E can be easily obtained far away from the domain wall, where the GF is given by
the bulk solution and therefore is constant in space:

E = −2iε cos θ̄V̄0 − 2i sin θ̄h · V̄ + 2∆ sin θ̄V̄0 , (2.9)

where the bulk values θ̄ and V̄ of the GF are given by the inverse relations of Eq. (1.47)

tan θ =
f0
g0

(2.10a)

V = − g

sin θ
(2.10b)

V0 =
g0

cos θ
, (2.10c)

and the bulk GF is given by [see Eq. (1.63)]

ĝ =
−i(ε− h · σ)√
∆2 − (ε− h · σ)2

(2.11a)

f̂ =
∆√

∆2 − (ε− h · σ)2
. (2.11b)

with ĝ = g0 + g · σ, f̂ = f0 + f · σ.
If the magnetisation in both domains is collinear, the problem can be greatly simplified. Firstly,

only the component of the vector V parallel to the magnetisation is non-zero. Without any loss of
generality, we assume that the magnetisations lie in the z axis, such that V1 = V2 = 0. In this case,
Eq. (2.6) reads:

Dθ′′ + 2iε sin θ cos θ3 − 2ih cos θ sin θ3 + 2∆cos θ cos θ3 = 0 (2.12a)
Dθ′′3 + 2iε cos θ sin θ3 − 2ih sin θ cos θ3 − 2∆ sin θ sin θ3 = 0 , (2.12b)
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where V3 = sin θ3. One can combine these equations to obtain two decoupled equations for each
spin component:

Dθ′′± + 2iε sin θ± ∓ 2ih sin θ± + 2∆cos θ± = 0 , (2.13)

where θ± = θ ± θ3 respectively describe the spin up and down components of the GF.
Since the problem is decoupled in spin space, one can derive the equations in (2.13) from two

independent Lagrangians:

L± =
D

2
θ′±

2
+ 2iε cos θ± ∓ 2ih cos θ± − 2∆ sin θ± . (2.14)

Because L± do not depend explicitly on x, the following quantities are conserved in each domain:

E± =
D

2
θ′±

2 − 2iε cos θ± ± 2ih cos θ± + 2∆ sin θ± . (2.15)

These expressions can be evaluated at the bulk where the spatial derivative vanishes and the GF
is given by the bulk solution [see Eq. (2.11)]. cos θ± and sin θ± are given by the spin components ĝ
and f̂ respectively, where the ± sign corresponds to the up/down spin index

E± = 2
√

∆2 − (ε∓ h)2 =
2∆

sin θ̄±
. (2.16)

Here, θ̄± are the values of θ± at the bulk. Substituting equation (2.16) into (2.15) and applying
trigonometric identities, in Chap. 4 we obtain an analytical solution to the Usadel equation when
the two domains are collinear. In the general case where the domains have an arbitrary orientation,
the Usadel equation (2.6) needs to be solved numerically.

2.1.2 Summary of the results

Here we summarise the main results obtained in the publication of Chap. 4. In this work, we
study the quasiparticle DoS and the triplet correlation in an S/FI bilayer in the presence of a domain
wall separating two magnetic domains. All the studied properties are extracted from the GF of the
system, which is obtained by solving Eq. (2.1).

First, we focus on the quasiparticle spectrum and analyze how the density of states of the
superconductor is affected by the magnetic configuration. In the particular case where the two
domains are semi-infinite and collinear, using the analytical method derived in Sec. 2.1.1, it is
possible to write two integrals of motion (2.16) that allow for an analytical solution of the Usadel
equation. With the help of this solution, we determine the local DoS of the superconductor for
different values of the exchange field. If the domains have equal magnetisation strength and are
antiparallel, or if one of the domains has a negligibly small exchange field, the splitting of the DoS
peaks does not decrease smoothly as one would expect in a system where the exchange field is
suppressed gradually over a length much larger than ξ0. Instead, the DoS exhibits a “shark-fin”
shape at the domain wall, as we show in Figs. 2 and 3 of Chap. 4. This behaviour was already
predicted in Ref. [90].

We have also studied FI layers with non-collinear magnetisation direction. In this case, the
system does not have enough integrals of motion to reduce the number of coupled equations, so we
need to solve Eq. (2.6) numerically. We show that near the domain wall, the spin-splitting is quite
robust with respect to the relative angle α between the magnetisations (Fig. 4 of Chap. 4), but the
heights of the coherent peaks are significantly affected by it. All these predictions can be verified
by local tunnel spectroscopy experiments, which will reveal information about the local magnetic
configuration of the FI.
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Figure 2.3: Proposed geometry to detect the triplet correlations. An F layer is placed on top of an S
layer; if the F layer is thick enough, only the triplet correlations perpendicular to the magnetisation
of the F layer will propagate along the ferromagnet. The long-range triplet correlations manifest as
a zero-energy peak on the local DoS, probed through tunnel differential conductance measurements
with a normal metal electrode (N).

Secondly, we have analysed how the triplet correlations induced by the FI in the S affect the
spectral properties of the S layer [see Fig. 5 of Chap. 4]. In Fig. 2.3 we propose a FI/S/F junction
to detect the triplet correlations in the superconductor. The singlet and triplet correlation parallel
to the local magnetisation of the F layer are short-range correlations that decay over the magnetic
length ξF =

√
D/(2hF ), while the triplet correlations perpendicular to the local magnetisation

are long-range triplet superconducting correlations that decay over the length ξε =
√
D/(2ε). By

choosing an appropriate thickness t of the F layer ξF ≪ t ≪ ξε, the DoS of F at the tunnelling
barrier will only be corrected by the long-range triplet component. This situation can be realized
by using F layers with a strong exchange field, such as Co or Fe. The presence of the triplet
component manifests itself as a zero-bias maximum in the tunnelling differential conductance, as
shown in Figs. 6 and 7 of Chap. 4. The proposed setup can then be used as a source of spin-triplet
pairs, whose entanglement can be proved in experiments using quantum dots as pair splitters [110].

In this section, we showed how the quasiclassical GF formalism may be used to study the spectral
properties of a superconductor with an exchange field. In the following, we study the equilibrium
Josephson current and the non-equilibrium quasiparticle current in a Josephson junction coupled
to an Andreev interferometer in the presence of different types of spin-dependent fields.

2.2 Anomalous Andreev interferometer: Study of an
anomalous Josephson junction coupled to a normal wire

If two superconductors are placed in proximity, a supercurrent may flow between them in
addition to the usual quasiparticle current. This current depends on the relative phase between the
two superconductors. Such junctions are known as Josephson junctions (JJ), named after Brian
Josephson, who predicted the relation between the supercurrent and the voltage across the junction
in 1962 [111, 112]. The DC Josephson effect establishes that the supercurrent flowing between two
superconductors with a phase difference φ is

IJ = Ic sinφ , (2.17)

where Ic is the critical current of the junction. A constant phase difference may be applied to the
junction, for instance, by applying a magnetic flux Φ to the closed circuit. The Josephson phase is
related to Φ through the relation φ = 2πΦ/Φ0, where Φ0 = h/(2e) is the flux quantum. In such
junctions, the phase-difference of the ground state is φ = 0.

In a system where time-reversal symmetry is broken, such as
superconductor/ferromagnet/superconductor (S/F/S) structures, it was shown that the
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Figure 2.4: (a) S/F/S structure. Here, F is a wire with Rashba spin-orbit coupling, and a
spin-splitting field h. (b) S/FI/F/FI/S structure. FI layers act as spin-filtering barriers with
polarizations P r/l, and they induce spin-splitting fields hr/l in adjacent S layers. F is a ferromagnet
with an exchange field h.

current-phase relation can acquire a phase-shift of π,

IJ = Ic sin (φ+ π) . (2.18)

The ground state Josephson phase is φ = π [113], since the free energy of the junction is F ∝ cosφ,
so such junctions are called π-junctions [114–117]. A more general current-phase relation is possible
in systems with broken time-reversal and inversion symmetries [118]

IS = Ic sin (φ+ φ0) = IS0 sinφ+ ISan cosφ . (2.19)

Such JJs are known as φ0-junctions by analogy. This effect is referred to as the anomalous Josephson
effect (AJE). In general, the current-phase relation of a JJ given by Eq. (2.19) can be decomposed
into the usual current IS0 , proportional to sinφ, and an anomalous current ISan, proportional to
cosφ. ISan may only be non-zero if time-reversal and inversion symmetries are simultaneously broken,
leading to a finite supercurrent even at zero phase difference between the superconductors.

Hybrid superconducting systems with spin-dependent fields offer a platform to obtain the AJE.
In this section, we consider two realisations of an anomalous Josephson junction: a Josephson
junction with Rashba spin-orbit coupling (SOC) [Fig. 2.4(a)] and a multilayer ferromagnetic
structure [Fig. 2.4(b)]. In both cases the anomalous phase is related to the existence of a
Lifshiftz invariant in the free energy [119–121]. In the first example, such invariant stems from
an interplay between a Zeeman field and the SOC, whereas in the second example, it stems
from non-coplanar magnetisations of magnetic layers. In the first example, a Zeeman field and
the spin-orbit coupling provide time-reversal and inversion symmetry breaking, respectively, which
leads to the anomalous phase shift [67, 118]. In the second example, a non-coplanar magnetisation
combined with spin-filtering interfaces provides the required symmetry breakings [122–129].

Therefore, the AJE reflects the interplay between spin-dependent fields and superconductivity.
This interaction is the basis of several effects and applications that are attracting the interest of
a large community, such as topological [130–132] and unconventional [101, 106] superconductivity,
superconducting spintronics [133], and novel superconducting electronic elements [134]. The most
well-known proposals for AJE involve superconducting structures in the presence of spin-orbit
interaction [67, 118, 135–141], some of which have been successfully tested in experiment
[21, 142–144]. Other theoretical studies have proposed numerous alternative realisations of
AJE: in S/F/S junctions with a nonhomogeneous magnetisation texture [122–129], junctions of
unconventional superconductors [145–148], and between topologically nontrivial superconducting
leads [149]. An anomalous current-phase relation can also be obtained under a non-equilibrium
situation in multiterminal structures [150–152]. φ0-junctions could prove to be a key component
for quantum electronics, as they can provide a stable phase bias to quantum circuits, and could
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Figure 2.5: Schematic structure of the Andreev interferometer. An anomalous Josephson junction
is coupled to a mesoscopic conductor.

therefore be particularly useful in phase-coherent superconducting electronics and spintronics [21,
133].

In this section, we analyse the φ0 effect in a device known as Andreev interferometer [153–156].
An Andreev interferometer consists of a Josephson junction coupled to a mesoscopic conductor,
as sketched in Fig. 2.5. The superconducting correlations are induced in the normal conductor
due to the proximity effect. Said correlations depend on the phase difference of the Josephson
junction, so the conductance of the conducting loop becomes sensitive to φ. In other words, a
simple resistance measurement performed on the conductor may potentially reveal the current-phase
relation along the adjacent Josephson junction. An important advantage of this geometry is
that it allows for a decoupling between the superconducting loop with the φ0-junction and the
normal wire where the conductance measurement is done, such that the noise associated with the
measurement process does not perturb the φ0 junction. Andreev interferometry was particularly
active during the 90s: several types of Andreev interferometers were theoretically proposed [157–160]
and experimentally realized [161, 162]. Andreev interferometers have been used to study the
magnetoresistance oscillations [163], electric transport [155, 164–169], and thermopower and thermal
transport [170–173] in S/N structures.

In the following, we investigate how the φ0-effect modifies the current-phase relationship in
the mesoscopic conductor. For this purpose, we solve the Usadel equation in the superconducting
and normal loops, and compute the supercurrent and quasiparticle currents flowing through them,
respectively. In the case of the Josephson junction with SOC, we use the generalisation of the
Usadel equation introduced in Sec. 1.4.4. To simplify the calculations, we assume that the S/F
transmission coefficient is small, so that the proximity effect in the F wire is weak. In this case, the
Usadel equation can be linearized in the superconducting order parameter ∆.
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2.2.1 Model and methods

Josephson junction with Rashba SOC

We first study a Josephson junction consisting of a S/F/S structure, where the F wire has
Rashba spin-orbit coupling, as shown in Fig. 2.4(a). We assume that the coupling between the F
wire and the S reservoirs is weak, for example, due to a low S/F transmission coefficient, so that the
superconducting reservoirs are not corrected by the F wire, while the F wire is weakly proximitised
by the two superconductors. The GFs of the right and left superconductors are given by

Ǧ0,r/l =
−iε√
∆2 − ε2

τ3 +
∆√

∆2 − ε2

(
0 eηr/liφ/2

e−ηr/liφ/2 0

)
, (2.20)

where ηr/l = ±1 for the right and left superconductors, and φ is the phase difference of the Josephson
junction.

The Green’s function of a bulk normal metal or a ferromagnet has no anomalous component,
so it is diagonal in Nambu space ǧR = τ3. The superconducting correlations correct the anomalous
(off-diagonal) part GF so that it has the following structure in Nambu-spin space:

f̌R =

(
0 f̂(ε)

f̂(−ε) 0

)
, (2.21)

where f̌ is linear in ∆. The anomalous components of the GF are related through time reversal
transformation as ˆ̄f = T f̂T −1, where T = iσ2K is the time-reversal transformation, with K being
the complex conjugate operation. Moreover, we can relate f̌A to f̌R as

f̌A(ε,h, α) = f̌R(−ε,−h,−α) . (2.22)

For the considered configuration [Fig. 2.4(a)], the anomalous Josephson current is only affected
by the component of the exchange field perpendicular to the current direction x, so we consider a
field oriented along the y direction h = hûy in order to maximize the φ0 effect [67].

In the diffusive limit, the GFs are obtained as a solution of the Usadel equation. The SOC can
be included as a background SU(2) field as explained in Sec. 1.4.4 [62, 66, 68]. Superconducting
correlations are described by the condensate GF (2.21), f̂ , which is a 2×2 matrix in spin space that
consists of a singlet component f0, and in general, three triplet components, fjσj, where j = 1, 2, 3
and σj are the three Pauli matrices. For the situation under consideration, transport in x-direction
and h-field in y-direction, only the condensate components f0 and f2 are finite and satisfy:

±∂2
xxf

R/A
0 + iκ2

εf
R/A
0 − iκ2

Ff
R/A
2 − κα∂xf

R/A
2 =0 (2.23a)

±∂2
xxf

R/A
2 + iκ2

εf
R/A
2 − iκ2

Ff
R/A
0 − κα∂xf

R/A
0 =0 (2.23b)

where κ2
ε = 2ε/D, κ2

F = 2h/D and κα = 4α3τ/m. Here, ε is the energy, D is the diffusion
constant, h is the exchange field, and α is the Rashba coupling constant. The upper and lower sign
correspond to the retarded and advanced condensate GFs f̂R/A respectively. In the following, we
omit the superscript to simplify the notation. Moreover, to simplify the calculation, in Eq. (2.23)
we have neglected the renormalization of the exchange field by the SOC, and the relaxation of the
triplet component due to SOC [21].

The Usadel equation (2.23) is supplemented by boundary conditions describing the interfaces
between different materials. The S/F junctions are described by the generalized Kuprianov-Lukichev
conditions (1.83). Linearizing the boundary conditions we obtain

±∂nf0,r/l + ηr/lκαf2,r/l =∓ 1

γ
F0e

iηr/lφ/2 (2.24a)

∂nf2,r/l =0 . (2.24b)
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Here, F0 = ∆/
√
∆2 − ε2 is the anomalous part of the GF of the superconducting electrode,

Eq. (2.20), ∂n is the normal derivative at the surface, and γ = σFR□
is the parameter describing

the barrier strength, where R
□

is the normal-state tunnelling resistance per unit area, and σF is the
conductivity of the ferromagnet.

Solving the equation system formed by Eqs. (2.23) and (2.24), we obtain the GF in the F wire.
Having found the condensate function, we proceed to calculate the Josephson current in the F
wire in the Matsubara domain using Eq. (1.68). The only contribution to the current will be the
supercurrent mediated by the superconducting correlations induced in the F wire:

IS =
πσFT

e

∑
ωn

Im (f ∗
0 (∂xf0 − καf2)− f ∗

2∂xf2) . (2.25)

The Matsubara GF is obtained by analytic continuation of f̌ to the complex plane ε → iωn. We
can use the boundary conditions (2.24) to simplify the previous equation:

IS =
2πT

eR
□

∑
ωn>0

Imf ∗
0 (Lx/2)F0e

iφ/2 . (2.26)

S/FI/F/FI/S junction

Another configuration to obtain a φ0-junction is a S/FI/F/FI/S junction with non-coplanar
magnetisations [Fig. 2.4(b)]. This configuration has not yet been realized experimentally, but it has
theoretically been predicted to show AJE [122–129]. In these structures, the role of the FI layers
is two-fold: firstly, they induce an exchange field hr/l in the adjacent S layer, and secondly, they
act as spin-polarized tunnelling barriers with a polarization P r/l. The linearized Usadel equation
in the F layer reads

±∂2
xxf̂ + iκ2

εf̂ − i
κ2
F

2
{σ3, f̂} = 0 , (2.27)

where {., .} is an anticommutator. We have assumed, without loss of generality, that the exchange
field in the F-wire points along the z-direction.

The S/F junctions with spin-filtering barriers are described by the generalized
Kuprianov-Lukichev boundary condition [74, 80], introduced in Eq. (1.86). The exchange
fields hr/l induced via the magnetic proximity effect in the S-electrodes point in the same direction
as the polarization vectors P r/l. The linearized boundary conditions read

±γ∂nf̂r/l =
1

2
[Ĝr/lP r/l · σ, f̂r/l] +

1

2
{Ĝr/l, f̂r/l} ∓

√
1− P 2

r/lF̂r/le
iηr/lφ/2 . (2.28)

Here, Ĝr/l and F̂r/l are the normal and anomalous GFs of the spin-split superconducting electrode,
respectively. In the weak exchange field limit, they are given by

Ĝr/l = G0 − hr/l · σ
dG0

dε
(2.29a)

F̂r/l = F0 − hr/l · σ
dF0

dε
, (2.29b)

where G0 = −iε/
√
∆2 − ε2 and F0 = ∆/

√
∆2 − ε2 are the singlet bulk superconductor GFs (2.20).

Following a similar procedure as for the S/F/S junction with Rashba SOC, we solve the Usadel
equation (2.27) together with the boundary condition (2.28) to find the condensate function.
Linearising Eq. (1.68), we obtain the supercurrent along the ferromagnetic wire

IS = πσF
T

e

∑
ωn

Im{f ∗
0∂xf0 − f ∗ · ∂xf} , (2.30)
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where f̂(ωn) = f0 + f · σ is decomposed into the scalar singlet amplitude f0, and the vector of
triplet states f .

Normal wire

The condensate function in the y (normal) wire [see Fig. 2.5], f̂y, is induced by the proximity
effect with the x wire. To find f̂y, we start from the Kuprianov-Lukichev condition (1.83) describing
the interface between the two wires, and the Usadel equation in the normal wire. Provided that
the widths of the wires wx,y are much smaller than the superconducting coherence length, we can
integrate the Usadel equation over the cross-section of the wire. If the interface resistance is much
larger than the resistance of the wires, RB ≫ Lx,y/σF,N , we find the equation determining f̂y:

±∂2
yyf̂y + i κ′

ε
2
f̂y = −wx

γ2
0

f̂(0)δ(y) . (2.31)

Here, γ2
0 = RBσNwy and κ′

ε
2 = 2ε/Dy, where RB is the resistance per unit area between the

interface of the x and y wires, and σN is the normal-state conductance of the y wire. The Dirac
delta term describes the proximity effect, and is a source term. The contact of the y wire with the
normal reservoirs is assumed to be ideal so that the condensate functions vanish at the ends of the
wire f̂y(±Ly/2) = 0. Due to our assumption of a large RB we can neglect the inverse proximity
effect on the Josephson junction.

Unlike the Josephson junction, the normal circuit is subjected to a voltage bias V , so it is
out-of-equilibrium. In this case, we may not use the equilibrium Matsubara formalism, so we
compute the current using Eq. (1.67). The current along the N wire is mediated by quasi-particles,
so it is a dissipative current. The quasi-particle current component is given by the normal part of
the GFs ĝ, which to the lowest order is corrected as ĝR/A = ±(1 − f̂R/A 2

/2). To leading order in
the proximity effect, the phase-dependent correction to the current through the y-wire is given by
[174–176]

δIqp =
−σN

16eLy

ˆ
dεFT (ε, V/2)

〈
Tr(f̌R

y − f̌A
y )

2
〉
. (2.32)

Here ⟨...⟩ = 1/Ly

´ Ly/2

−Ly/2
dy (...) denotes average over the length, f̌R/A is the 4 × 4 matrix GF

in Nambu-spin space, and FT is the transversal distribution function FT (ε, V ) = 1
2
[tanh ε+eV

2T
−

tanh ε−eV
2T

] at the normal electrodes. Solving the boundary value problem, Eqs. (2.23) and (2.24)
for the S/F/S junction with Rashba, or Eqs. (2.27) and (2.28) for the S/FI/F/FI/S junction, we
first calculate the f̂ for the x-wire, and then f̂y for the y-wire from Eq. (2.31). Using Eq. (2.32) we
then obtain the usual and anomalous quasiparticle currents.

2.2.2 Summary of the results

In the following, we summarise the main results obtained in this section. A full discussion of
the analysed systems and the results can be found in Chap. 5. In this work, we have studied
the anomalous Josephson effect in two different realisations of a Josephson junction coupled to a
mesoscopic conductor. Both an S/F/S junction with Rashba SOC and an S/FI/F/FI/S junction
with non-coplanar magnetisation break the required symmetries to show an anomalous component
of the Josephson current. We establish how the anomalous phase shift φ0 manifests on the
quasi-particle transport through the Andreev interferometer shown in Fig. 2.5.

Our main result is that the current-phase relation of the dissipative (quasi-particle) current
through the normal arm of the interferometer, computed from (2.32), also shows an anomalous
current component:

δIqp(φ) = Iqpc cos(φ+ φqp
0 ) = Iqp0 cosφ+ Iqpan sinφ . (2.33)
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Here, Iqp0 is the quasi-particle current in a conventional Andreev interferometer, which is
proportional to cosφ. The term proportional to sinφ is the anomalous current component Iqpan ,
which only arises if time-reversal and inversion symmetries are broken in the Josephson junction.

Therefore, the quasi-particle current also exhibits an anomalous phase shift φqp
0 . In general,

the phase shifts in the currents φ0 and φqp
0 are not equal, but they have a similar magnitude and

can be directly related to each other (see Fig. 2 of Chap. 5). Moreover, we have found that, to the
lowest order in the fields, the usual and anomalous quasi-particle currents have the same dependence
on the spin-dependent fields as the corresponding Josephson current components. Namely, up to
the leading order terms in the exchange field and Rashba SOC, for the S/F/S configuration the
usual contribution to the quasiparticle current Iqp0 is independent of the fields, and the anomalous
contribution takes the following form:

Iqpan ∝ hκα . (2.34)

For the FI/S/F/S/FI configuration, the usual and anomalous quasiparticle currents are proportional
to

Iqp0 ∝ hl⊥ · hr⊥ (2.35a)
Iqpan ∝ nh · (nl × nr) , (2.35b)

where hr/l⊥ are the components of hr/l perpendicular to h, and nh and nr/l are the unit vectors
along the exchange field and polarization directions.

2.3 Microwave-Assisted Thermoelectricity in S-I-S’ Tunnel
Junctions

In this section, we focus on another relevant effect present in superconductors. Thermoelectricity
consists on the generation of electrical power due to a temperature difference. The Seebeck effect,
which describes the electromotive force developed between two points at a different temperature,
was independently discovered by A. Volta in 1794 [177] and T. J. Seebeck in 1821 [178]. The
charge carriers in the material have a higher kinetic energy at higher temperatures, so temperature
gradients in the material cause the diffusion of the charge carriers from hot to cold regions. In most
materials, at room-temperature the generated potential difference is proportional to the temperature
difference: V ∝ ∆T . This linear relation allows, for example, to easily calibrate electrical devices
such as thermocouples to build temperature sensors.

In the normal state, within the linear regime, thermoelectricity scales linearly with the operating
temperature, so the sensitivity of thermoelectric sensors drops drastically at low temperatures.
This issue is overcome in superconducting materials, at these temperatures thermoelectricity
is very strong due to the nonlinearity of the effect in superconductors. Thermoelectricity has
been experimentally reported to be orders of magnitude bigger than the result expected for
non-superconducting metals at the same operating temperature [179]. Thermoelectric effects
in superconducting junctions have been studied both theoretically and experimentally over the
past 10 years. Hybrid superconducting systems with explicit broken particle-hole symmetry
show unipolar thermoelectricity [76, 103, 180–186]. The particle-hole symmetry around the
Fermi surface of Bardeen-Cooper-Schrieffer (BCS) superconductors can be broken, for instance,
in superconductor/ferromagnet hybrid structures. The magnetic proximity effect in a thin
superconductor-ferromagnetic insulator bilayer causes an almost homogeneous spin splitting of
the density of states (DoS) [187]. If the electronic transport is spin-polarized, for example via a
tunnelling spin-filter [1, 188–190], the DoS contribution of one spin component becomes predominant
over the other one, leading to an effective particle-hole symmetry breaking [181].
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Several applications have been proposed based on the unique thermoelectric properties of S/I/S’
and FI/S/I/F junctions: ultrasensitive thermoelectric radiation detectors [9] which can be used
in various applications ranging from astrophysical observations [10, 191–193] to security imaging
and materials characterisation [194], flux controlled high-frequency oscillators fed with a thermal
gradient [195], and controlled generators galvanically disconnected from external circuits [196].

Recently, it has been theoretically [195–197] and experimentally [179, 198] shown that
superconducting tunnel junctions, where the Josephson coupling is properly suppressed, develop a
large thermoelectric effect if the electrode with the larger gap has a higher temperature. In contrast
to systems with magnetic proximity effect, in superconducting tunnel junctions the electron-hole
symmetry is broken by the combination of a sufficiently strong thermal gradient and a monotonously
decreasing DoS which induces spontaneous voltage polarization. The resulting thermoelectricity is
bipolar and strongly nonlinear.

In this section, we study the thermoelectric effect in asymmetric Josephson junctions
under photon-assisted tunnelling (PAT). PAT has been extensively studied in the dissipative
regime [199–209]. However, the influence of PAT on the recently observed bipolar thermoelectricity
is still unexplored. In addition, we study the cooling properties of the junction. By applying an
external bias, for specific temperature conditions [196], it is possible to extract heat and reduce
the electronic temperature of the lower gap superconductor [18, 196, 210]. Thermoelectricity and
refrigeration are complementary effects. However, the second law of thermodynamics prevents a
thermodynamical machine from operating as a heat engine and a cooler at the same time.

2.3.1 Model and methods

S1 S2

V
a cos(ωt)

I

T1 T2

Figure 2.6: Simple circuit scheme of the photon-assisted bipolar thermoelectricity. The two
superconductors have a different gap ∆1 > ∆2 and are subject to a temperature difference T1 > T2.
The S-I-S’ junction is powered by a DC and an AC voltage source.

In this section, we consider a S-I-S’ tunnel junction consisting of two bulk superconductors with
different superconducting gaps ∆1 > ∆2, where the left superconductor (S1) is fixed at a higher
temperature than the right superconductor (S2) T1 > T2, as shown in Fig. 2.6. The gap decreases
monotonously with the temperature, so it is not possible to use identical S electrodes in the junction.
There are several ways to obtain a gap asymmetry between the electrodes. The conceptually
simplest option is using different superconducting materials for each electrode, S2 having a smaller
gap than S1. A more suitable option for experiments is using the same superconducting material
in both electrodes and attaching a normal layer to the right superconductor. The inverse proximity
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effectively suppresses the gap of the right superconductor [179, 198, 211], obtaining the desired effect.
The advantage of this configuration is that a single S material is required for the implementation of
the device. Moreover, the thickness of the superconducting and normal layers can be chosen so as
to fine-tune the asymmetry between the junction gaps. On the negative side, the inverse proximity
will also affect the sharpness of the DoS, thus negatively impacting the thermoelectric generation, as
recent measurements seem to indicate [198]. The asymmetry between the two terminals is quantified
by the asymmetry parameter r = ∆0,2/∆0,1 < 1, where ∆0,α is the zero-temperature gap of electrode
α.

To simplify the calculation, we assume that the superconductors are spatially homogeneous, so
they are described by the bulk BCS GF derived in Sec. 1.4.1

ǧR(ε) =
−i(ε+ iΓ)τ3 +∆τ1√

∆2 − (ε+ iΓ)2
. (2.36)

For a detailed treatment of the SN bilayer as the smaller gap electrode, one can refer to Ref. [211],
where the inhomogeneity of the SN bilayer is analysed in order to optimise the thermoelectric effect.
In Eq. (2.36), we write the Dynes parameter Γ explicitly, the inelastic scattering effects have an
important effect on the broadening of the DoS peaks, so the Dynes parameter plays a crucial role
in the efficiency of the thermoelectric effects. Applying the formula for the DoS (1.64), the DoS of
a bulk superconductor is given by

N(ε) = N0Re

{
−i(ε+ iΓ)√
∆2 − (ε+ iΓ)2

}
. (2.37)

Each S electrode is kept in thermal equilibrium at different temperatures Tα, with α = 1, 2.
The superconducting gaps of each superconductor ∆α is determined self-consistently by the gap
equation [see Eq. (1.72)]

∆ ln

(
T

Tc0

)
= 2πT

∑
n=0

(
f(ωn)−

∆

ωn

)
, (2.38)

where f(ωn) is given by the anomalous part of the GF (2.36), obtained by analytic continuation of
the GF to the complex plane ε → iωn.

The tunnelling current between the two superconductors (1.84) has three contributions: the
quasiparticle current, the Cooper pair current, and the interference current which gives the
interference contribution associated with breaking and recombination processes of Cooper pairs in
different electrodes [111, 212–214]. The latter two contributions stem from the Josephson coupling,
and they depend on the phase difference between the superconductors. At finite bias, those terms
oscillate between positive and negative values and might be detrimental to a stable thermoelectric
effect [195]. Therefore, we assume that the Josephson coupling is sufficiently weak [19, 179, 215,
216], and neglect those terms such that we consider only the quasiparticle (qp) current which
is phase-independent. The Josephson coupling between the two sides of the junction may be
suppressed, for instance, by applying a suitable in-plane magnetic field to induce Fraunhofer
interference, or via a small out-of-plane magnetic field in a superconducting quantum interference
device (SQUID) [179, 198].

The DC tunnelling qp charge Iα and heat Q̇α currents flowing out from electrode α = 1, 2 are
given by (see Eq. (1.85))(

Iα
Q̇α

)
=

GT

e2

ˆ
dε

(
−e

ε− µα

)
Nα(ε− µα)

N0,α

Nᾱ(ε− µᾱ)

N0,ᾱ

(fα(ε− µα)− fᾱ(ε− µᾱ)) , (2.39)

with ᾱ the opposite side with respect to α. Here, −e is the electron charge, GT is the conductance of
the junction, and fα(E) = [exp{(E/kBTα)}+1]−1 is the α-lead Fermi-Dirac distribution. The shift
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Figure 2.7: Non-linear thermoelectricity (red) and cooling (blue) regions for a superconductor with
Tc,1 = 2Tc,2. The dashed line delimits the equal temperature contour T1 = T2. The solid horizontal
line shows the temperature T2 = Tc,2 above which S2 becomes a normal metal.

in the chemical potential of the electrodes is determined by the voltage source V : µ1−µ2 = −eV . For
non-equilibrium temperature T1 > T2, there is the possibility to develop the bipolar thermoelectric
effect, as shown in Fig. 2.7.

The reciprocity of the S-I-S’ electric device can be easily checked in Eq. (2.39) by inverting
the voltage bias V → −V . The DoS of the superconductors is electron-hole symmetric and the
distribution function is odd in energy, so the quasiparticle charge current in the junction is odd in
voltage I(−V ) = −I(V ). We can also check the first law of thermodynamics (energy conservation
relation) in Eq. (2.39)

Q̇1 + Q̇2 − Ẇ = 0 , (2.40)

where Ẇ = −V I describes the electric power generated (dissipated) for Ẇ > 0 (Ẇ < 0) by the
junction. Here we use the active sign convention by considering the electrical work done by the
junction over its surroundings as positive.

As shown in Fig. 2.8(a-b), the junction thermal equilibrium T1 = T2 shows only a dissipative
behaviour (IV ≥ 0). Panels (a) and (b) are the well-known tunnelling quasiparticle currents of an
S-N and an S-S junction. In the former, at T = 0 there is no tunnelling current until e|V | > ∆,
so the voltage bias provides enough energy to create an excitation in the superconductor. In the
latter, a bias of e|V | > ∆1 +∆2 is needed. At higher voltages, the characteristic curve I(V ) tends
to the Ohmic limit I = GTV . In a symmetric junction with a temperature difference [Fig. 2.8(c)],
the characteristic curve shows a dissipative matching-peak at eVp = ∆1 − ∆2. In asymmetric
junctions, if the temperature of the electrode with the bigger gap is high enough T1 ≳ T2/r,
bipolar thermoelectricity may arise in the junction [179, 197], with the current I flowing against
the bias (IV < 0), as shown in Fig. 2.8(d). The thermoelectric effect occurs at subgap voltages
e|V | ≲ ∆1 + ∆2 [195–197]: the current is 0 for no voltage-difference and grows in magnitude
to a maximum around the matching peak Vp. Further increasing the voltage bias decreases the
magnitude of the current until the current becomes dissipative for e|V | ≳ ∆1 +∆2.

If an AC source is included in addition to the DC voltage, V (t) = V + a cos (ωt), as shown in
Fig. 2.7, for instance, by placing the junction in a microwave field, the average current is not simply
given by Eq. (2.39). The time-averaged DC tunnel (charge|heat) currents Ī| ¯̇Q = (1/T )

´ T

0
dt I|Q̇(t)
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Figure 2.8: Tunnelling quasiparticle current for (a) S/N junction at T1 = T2 = 0, (b) S/S junction
at T1 = T2 = 0, (c) S/S junction at T1 > T2, and (d) S/S’ junction with ∆0,1 > ∆0,2 at T1 > T2.

take the form [199, 209, 217]

(
Ī
¯̇Q

)
=

∞∑
n=−∞

J2
n

(ea
ω

)( I (V − nω/e)

Q̇ (V − nω/e)

)
, (2.41)

where T = 2π/ω is the period of the AC voltage. This is the standard result for photon-assisted
tunnelling (PAT), where Jn(x) is the n-th Bessel function of the first kind. In Eq. (2.41), we assume
that the frequency of the AC voltage is small enough so that it modulates the potential energy of the
quasiparticles adiabatically [204, 218, 219]. In this approximation, the AC frequency is necessarily
bounded by the plasma frequency of the two electrodes, and the driving frequency needs to be
ω < 2∆ in order to neglect high-order processes in the current due to the direct breaking of Cooper
pairs because of photon absorption. At the same time, we mainly focus on quite small amplitudes
of the voltage oscillations ea ≪ ∆, as we explain in Chap. 6, since high amplitudes are detrimental
for the thermoelectric effect, restoring the usual dissipative behaviour at high energies. Finally, the
averaged current Ī is also reciprocal Ī(−V ) = −Ī(V ) due to the reciprocity of the junction I(V ).

In the following, we explain the main results obtained for the time-averaged thermoelectric and
cooling properties of the S-I-S’ junction under photon-assisted tunnelling, and compare them to
the DC case. Two figures of merit that quantify the thermoelectric effect are the generated electric
power Ẇ , and the thermoelectric Seebeck voltage VS, for which I(±VS) = 0. The Seebeck voltage
corresponds to the voltage provided by the junction in an open circuit configuration. The cooling
power is quantified by the coefficient of performance COP = −Q̇2/Ẇ , which describes the efficiency
of the extracted heat with respect to the applied work.
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2.3.2 Summary of the results

Here we summarise the main results of Chap. 6. An S-I-S’ tunnel junction shows a thermoelectric
matching peak at V = ±Vp = ±(∆1 −∆2)/e. The characteristic curve of the junction is modified
under the influence of photon-assisted tunnelling. The AC voltage source leads to a weighted
replication of the bipolar thermoelectric DC characteristic curve displaced in voltages, as shown by
Eq. (2.41). The matching peak is split into sidebands at V = ±Vp + nω/e, n ∈ Z, as determined
by Eq. (2.41). Thus, PAT redistributes power to other voltages. Generally, the PAT leads to
a reduction of the net thermopower output, but as shown in Fig. 1 of Chap. 6, it enhances the
thermoelectricity at the sidebands. This allows to enhance the thermoelectric power and efficiency at
the working point of the device by selecting an appropriate frequency. Moreover, the PAT broadens
the thermoelectric region potentially increasing even the obtainable Seebeck voltage (Fig. 2(b) of
Chap. 6). Therefore, changes in the operating point of the junction will have a less dramatic effect
over the thermoelectric performance.

Another advantage introduced by PAT is the appearance of additional stable working points
specified by the sidebands, as shown in Fig. 2(c) of Chap. 6. Therefore, PAT can be used to design
devices with an increased number of states at different voltages, potentially increasing the number
of logic states of a thermoelectric volatile memory [220–222].

Finally, PAT also influences the cooling performance of the junction. Similar to the
thermoelectric effect, the PAT redistributes the cooling capabilities into sidebands, allowing to
increase the COP at specific voltages determined by the frequency of the AC field (Fig. 3 of Chap. 6).

In summary, we have studied the thermoelectric properties of a superconducting junction under a
microwave field. A temperature difference may be used to generate electrical power, and conversely,
electrical power may be supplied to a system to transport heat. Another key property that may
arise in hybrid superconducting structures with SOC is spin transport, relevant for spintronic
applications.

2.4 Dynamical Hall responses of disordered superconductors

In this section, we study the Hall and spin Hall effects in superconductors. The Hall effect
was discovered by E. Hall in the 19th century [223]. The injection of an electric current into a
conductor with a perpendicular magnetic field leads to the presence of a transverse charge current.
In finite-sized (open) conductors, the charge carried by the transverse current is accumulated on the
sides of the conductor, generating a Hall voltage. The Hall effect can directly be incorporated into
the Drude model [224, 225] of electronic conduction once the Lorenz force due to the magnetic field
is included. The AC Hall effect describes the transverse charge current under a varying electric field.
In diffusive normal metals the Hall conductivity is proportional to the longitudinal conductivity,
where the proportionality constant is ωcτ [226], with ωc = eB0/m the cyclotron frequency. The
longitudinal and Hall currents become frequency-dependent in the superconducting state [227],
featuring both in-phase and out-of-phase current contributions. Moreover, the longitudinal and
Hall conductivities have different frequency-dependence, so they are no longer proportional.

The in-phase component of the longitudinal response describes electronic transitions in the
superconductor and features a superconducting gap at low temperatures. The out-of-phase response
arises due to the supercurrent. Despite some attempts over the years [228, 229] based on
phenomenological two-fluid models and Bardeen-Cooper-Schrieffer (BCS) theory, there has been
no microscopic extension of the Drude model for the dynamical Hall response in superconductors in
the diffusive regime. The quasiclassical formalism allows for an easy treatment of the dynamical Hall
effect in superconductors. In this section, we extend the Mattis-Bardeen theory for the dynamical
response of superconductors to include the Hall response. We introduce the theory necessary to
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compute the longitudinal and transverse currents in a superconductor within the quasiclassical
formalism.

Additionally, we study the dynamical spin Hall effect in superconductors. In the presence of
spin-orbit interaction, a charge current in a conductor generates a transverse spin current, and vice
versa [230]. There are two major mechanisms for the spin Hall effect: the intrinsic mechanism,
produced by the inversion symmetry breaking either due to the lattice (Dresselhaus spin-orbit
coupling (SOC) [231]) or the sample structure (Rashba spin-orbit coupling [232]), and the extrinsic
mechanism, resulting from the spin-dependence of the impurity scattering. Recent extensions of
the quasiclassical Usadel equation [65, 70] introduced in Sec. 1.4.4 allow to describe the charge and
spin Hall effects [65, 70] in a unified way. In the following, we utilize these extensions to study said
dynamic responses.

2.4.1 Model and methods

In this subsection, we introduce the specific scenarios studied in Chap. 7. Our study encompasses
a broad scope, focusing on superconductors subjected to time-dependent electromagnetic fields,
alongside exchange fields and linear-in-momentum spin-orbit coupling, which can be treated as
effective SU(2) potentials [62]. These systems are described by the Hamiltonian (1.73).

As introduced in Sec. 1.4.4, the electromagnetic U(1) and spin-related SU(2) potentials can
jointly be described by the generalized four-potential Ǎµ [66–68]1

Ǎ0 = −eφτ3 +
ℏ
2
A0jσj (2.42a)

Ǎi = −eAiτ3 +
ℏ
2
Aijσj . (2.42b)

φ and A are the usual U(1) scalar and vector electromagnetic potentials, while A0j and Aij

are SU(2) potentials describing the Zeeman or exchange field and the linear-in-momentum SOC,
respectively [69].

The field strength associated with the four-potential Ǎ is

F̌ µν = ∂µǍν − ∂νǍµ − i

ℏ
[Ǎµ, Ǎν ] . (2.43)

We are interested in the charge and spin currents generated by an electric field, which is given by
the Ěj ≡ F̌ 0j = −eEjτ3 + (ℏ/2)Ejlσl components of the field strength tensor (2.43), where the
Latin indices range j = 1, 2, 3. In the linear response regime, the current and the field are related
via the response tensor:

jiµ(ω) = σiµ,jν(ω)Ejν(ω). (2.44)

Here, ji0 are the components of the charge current, whereas jij is the spin-current tensor. The
usual U(1) electric field is given by Ej ≡ Ej0, and Ejl denote the components of the SU(2) electric
field. The real part of σiµ,jν describes the in-phase response, whereas the imaginary part is the
out-of-phase response of the current to the field.

Our goal is to find the conductivity tensor σiµ,jν(ω) in diffusive superconducting systems showing
different types of Hall effects. For this purpose, we use the quasiclassical approach generalized
in Refs. [65, 70] to include SOC. The covariant version of the Usadel equation allows describing
the Hall and intrinsic spin Hall effects. For intrinsic SOC the Usadel equation takes the form of
Eq. (1.76), while for extrinsic SOC it is given by Eq. (1.78). The Usadel equation together with the

1In this section we restore the ℏ to explicitly show the dimensions of the spin current and conductivity.
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normalization condition specify the value of the GF. The charge and spin currents of the system
are given by the GF [see Eqs. (1.66-1.69)]

ji0(r, t) = −πℏσD

8e
Tr
{
τ3J̌

i(r, t, t)K
}

(2.45)

jij(r, t) =
ℏ
2

πℏσD

8e2
Tr
{
σjJ̌

i(r, t, t)K
}
, (2.46)

where the Drude conductivity is given by σD = νF e
2D, νF is the density of states at the Fermi

energy, and the K superscript denotes the Keldysh block of the matrix current J̌ , given by Eq. (1.77)
for intrinsic and Eq. (1.80) for extrinsic SOC.

We assume that the electric field is small enough so that it can be treated perturbatively.
We consider a single-frequency electric field along the x-direction E(t) = E0e

−iωtûx described via
the vector potential A(t) = −iE0/ωe

−iωtûx. Solving the GF from the Usadel equation, we may
compute the charge ji0(t) and spin jij(t) currents. Dividing the current by the electric field E0e

−iωt

we obtain the conductivity tensor σiµ,jν(ω). To study the inverse Hall effect, i.e., the conversion of
a spin current into a transversal charge current, we consider an SU(2) driving field Ejl(t) = E0e−iωt

which generates a l-polarized spin current in the j-direction. This electric field is described via the
SU(2) vector potential Ǎj(t) = −iℏE0/(2ω)e−iωtσl.

Conductivity tensor and Onsager symmetries

The conductivity tensor in Eq. (2.44) can be decomposed into four blocks,

σiµ,jν =

(
σi0,j0 σi0,jl

σik,j0 σik,jl

)
. (2.47)

The Onsager reciprocal relations relate the conductivities between different pairs of driving fields
and their conjugate currents. They demonstrate the reciprocity between inverse effects, such
as the Hall, the spin Hall or spin-galvanic effects and their corresponding inverse effects. The
elements of the conductivity tensor (2.47) are related through the Onsager reciprocal relations
σj0,i0(B) = σi0,j0(−B), σjl,ik(B) = σik,jl(−B) and σi0,jl(B) = −σjl,i0(−B), where B comprises
all TRS breaking fields [233]. The minus sign in the last relation appears due to the spin currents
having opposite T-parity to charge currents [234].

The charge block σij ≡ σi0,j0 is the usual 3×3 conductivity tensor describing the electric effects.
The diagonal elements are the longitudinal conductivities (Ohm’s law), while the off-diagonal
elements describe the Hall effect. The spin block σik,jl is a 9× 9 matrix relating the spin currents
to the spin SU(2) fields. For instance, some of the off-diagonal elements of the spin block describe
the spin-swapping effect. The spin-charge blocks σik,j0 and σi0,jl describe the spin Hall and inverse
spin Hall effects, respectively.

The susceptibility χ = iωσ is the response function to the vector potentials. From the
fluctuation-dissipation theorem for χ [235], it follows that the Hermitian part of the generalized
conductivity tensor σ′ = 1

2
(σ + σ†) is the dissipative contribution, while the anti-Hermitian part

σ′′ = 1
2i
(σ − σ†) is the reactive contribution.

Kerr and Faraday rotations

In normal metals, the Hall effect can easily be measured through the transverse Hall voltage
developed between the interfaces of the material. On superconductors, the supercurrent mediated
by the superconducting correlations is dissipationless, so it does not generate any voltage drop.
Another way to probe the Hall effect is through the Faraday or Kerr effect measurement as shown
in Fig. 2.9(a). Linearly polarized light is shone over a sample: part of the light is transmitted
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Figure 2.9: (a) Proposed setup for the measurement of the Hall effect. Materials subjected to
a magnetic field show circular birefringence, i.e. left and right polarized light waves propagate
with different velocities. The Kerr rotation angle is related to the longitudinal and transversal
conductivities of the material. (b) Proposed setup for the detection of the inverse spin Hall effect
in a superconductor using a lateral spin valve. Suppose a charge current IQ is injected from the
ferromagnet (F) to the normal metal (N). In that case, the non-equilibrium spin accumulation
generated at the interface generates a pure spin current IS to the right of F. The superconductor
absorbs the spin current owing to its strong SOC, generating a charge current I ′Q due to the inverse
spin Hall effect.

and the rest is reflected from the sample with an elliptical polarization [236, 237]. The rotation
of the polarization axis and the ellipticity of the transmitted and reflected lights are determined
by the boundary conditions of the electromagnetic field at the sample’s boundary. The rotation
angle is described by the Faraday and Kerr angles, which are in general complex quantities ϕK(F ) =
θK(F ) + iεK(F ): the rotation angle θK(F ) specifies the rotation of the major axis of the elliptically
polarized reflected light. The imaginary part εK(F ) specifies the ratio of the minor to the major axes
of the ellipsoid. The Faraday-Kerr rotation of the polarization state of light can experimentally be
measured by passing the reflected light through a polarizer. The polarization direction is obtained by
measuring the intensity of the reflected light with the polarizer oriented in parallel and perpendicular
to the incident light. ϕK and ϕF depend on the longitudinal and transversal conductivities of the
sample, so they can be straightforwardly calculated from our theory.

The applied magnetic field responsible for the Hall effect and the light shone over the sample
cannot penetrate into a thick superconductor due to the Meissner effect. The penetration of the
magnetic field is determined by the London penetration depth. However, the (Kerr) reflection is
also a surface effect because of the finite skin depth of the electromagnetic field, and the (Faraday)
transmission takes place only if the material is thinner than the corresponding skin depth. For
simplicity, we assume a constant magnetic field, which is a valid approximation if the London
penetration depth is larger than either the skin depth (for Kerr reflection) or the sample thickness
(for Faraday transmission).

In the specific case of a normally incident electromagnetic wave, the Faraday ϕF and Kerr
ϕK angles take a simple form. Using Maxwell equations and the boundary conditions for the
electromagnetic field, the angles are given by [236, 237]

ϕK = i
r+ − r−
r+ + r−

≃ σyx

σxx
√
1 + iσ

xx

ωϵ0

, (2.48)

ϕF =
ωd

c

r+ − r−
(1− r+)(1− r−)

≃ i
d

2cϵ0

σyx√
1 + iσ

xx

ωϵ0

, (2.49)
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where r± are the reflection coefficients for left- and right-handed (with respect to the applied field)
circularly polarized light, ϵ0 is the vacuum permittivity, and d is the sample thickness. Note that
the expression is obtained by assuming a small perturbation from the external magnetic field and
only considering linear terms in the Hall conductivity (σyx). This approximation is valid when
the Hall conductivity is much smaller than the longitudinal conductivity, a condition often met in
many materials. Noting σD as a natural scale of conductivity and defining the plasma frequency
ωp =

√
σD/(ϵ0τ), we notice that the second term inside the square root in Eqs. (2.48) and (2.49)

can also be written as σxx/(ωϵ0) = (σxx/σD)ω
2
pτ/ω, providing a direct way to compare dimensionful

quantities. For frequencies of interest here, ω ≲ ∆/ℏ, the typical range is ω ≪ ωp, 1/τ , and therefore
the first term inside the square root in Eqs. (2.48) and (2.49) can typically be disregarded. The order
of magnitude of the polarization rotation is hence proportional to the small factor ωcτ

√
ω/(ω2

pτ),
with ωc = eB0/m the cyclotron frequency.

Lateral spin valve

The spin Hall effect can be measured in a device known as lateral spin valve. A lateral spin
valve consists of a normal metal (N) bridging a ferromagnetic injector (F) and a detector, which in
our case is a superconductor (S) with SOC, as shown in Fig. 2.9(b). A charge current IQ is injected
from F into the left side of N. The non-equilibrium spin accumulation generated at the interface is
relaxed within the spin diffusion length, generating a pure spin current IS to the right of F. If the
distance between the F and the S is shorter than the spin diffusion length, a non-equilibrium spin
accumulation is generated at S [238]. The spin current is absorbed by the superconductor owing
to its strong SOC. The polarization of the spin current is tuned to lie out-of-plane by applying a
normal magnetic field. A perpendicular charge current I ′Q is generated at the S due to the inverse
spin Hall effect. This AC current can experimentally be measured by closing the S wire with a
superconducting loop coupled to a rf-SQUID.

Alternatively, the measurement can be realized with a dynamic version of the setup as used in
Ref. [239]. There, two heavy-metal (Pt) injectors are used to generate and detect a magnon current
in a ferromagnetic insulator. A heavy-metal superconductor placed in the middle absorbs part of
the magnon current and converts it into a charge current via the inverse spin Hall effect. Replacing
the DC injection with a finite-frequency injection then allows studying the AC spin Hall response
of the superconductor.

2.4.2 Summary of the results

Here, we summarize the main results obtained in Chap. 7. Using a recent extension of the
quasiclassical Usadel equation [65, 70], we provide a unified description of charge and spin transport
to study the dynamical response of dissipative superconductors to charge U(1) and spin SU(2) fields.
The model recovers known results in the appropriate limits, such as the Mattis-Bardeen response
(Fig. 1 of Chap. 7), the normal state Hall conductivity, and the spin Hall conductivity for normal
metals with Rashba spin-orbit coupling.

We have explicitly verified that the Onsager relations between the direct and inverse Hall
effects are satisfied, demonstrating the reciprocity between inverse effects. Superconductors show
out-of-phase Hall (Fig. 2 of Chap. 7) and spin Hall (Fig. 4 of Chap. 7) currents, described by a finite
imaginary part of the Hall conductivities. According to the fluctuation-dissipation theorem [235],
these out-of-phase Hall currents are dissipative. This is supported by the gap found on the imaginary
part of the Hall conductivities for ℏω < 2∆0: the dissipative current is mediated by quasiparticles,
so at T = 0 the processes that allow energy absorption are limited to the creation of electron-hole
pairs, which require frequencies greater than 2∆0 [43].
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Our findings can be verified through optical spectroscopy via the Faraday-Kerr rotation of the
polarization state of light in the case of the ordinary Hall effect, determined by Eqs. (2.48) and (2.49),
and in a lateral spin valve in the case of the spin Hall effect, where a superconductor with SOC is
used as a detector.



Chapter 3

Summary
The most incomprehensible
thing about the world
is that it is comprehensible.
— Albert Einstein

This Thesis presents a comprehensive study of several non-equilibrium properties of
superconductors with various types of spin-dependent fields. Superconductors with spin-dependent
fields may find diverse applications in spintronics, thermoelectricity, sensing, and topological
quantum computing. The theoretical framework employed to investigate this system is the
quasiclassical Green’s function method. This formalism offers a convenient means to describe
hybrid structures through appropriate boundary conditions, accounting for non-controllable disorder
inherent in real devices. Furthermore, the GF method deals with a reduced set of kinetic-like
equations, making it computationally efficient compared to microscopic models like tight-binding
approaches.

Chapter 1 introduces the Keldysh GF formalism, utilized for studying the non-equilibrium
properties of superconductors. The aim of this chapter is twofold: firstly, it serves as the theoretical
basis for the systems studied in subsequent chapters. Secondly, it pretends to serve as a guide
to become acquainted with the quasiclassical GF formalism. It encompasses the derivation of the
Eilenberger and Usadel quasiclassical equations and delineates the boundary conditions and relevant
observables necessary for studying time-dependent non-equilibrium phenomena.

In Chapter 2, we apply the theory outlined in Chapter 1 to specific systems, presenting
the primary results obtained. Detailed analyses of these systems are provided in Chapters 4-7,
comprising selected publications derived from the work undertaken during this doctoral research.
Chapter 4 (Ref. [240]) serves as a warm-up to extract the properties of a superconducting
system with spin-dependent fields. It investigates singlet and triplet superconducting correlations
in the vicinity of a sharp domain wall and explains how they manifest in the local DoS. In
Chap. 5 (Ref. [241]), we compute the non-equilibrium (static) properties of superconductors with
spin-dependent fields. Specifically, we explore the anomalous Josephson effect in an Andreev
interferometer device. Lastly, Chapters 6 and 7 introduce time-dependent electric and spin-fields.
In Chap. 6 (Ref. [242]), we investigate the time-averaged thermoelectric and cooling capabilities
of asymmetric superconducting tunnel junctions. In Chap. 7 (Ref. [243]), we study the dynamical
charge and spin transport in diffusive superconductors.

Additional topics explored during this doctoral research, albeit not included in this Thesis,
encompass the study of spectral properties and critical temperature of superconductors of arbitrary
thickness (Ref. [78]), charge transport properties of mixed-parity superconductors (Ref. [244]),
spin-valve effect in superconductors, superconducting fluctuations, weak localisation in systems
with generic spin-dependent fields (Ref. [245]), and the analysis of conductance and spin-textures in
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quantum networks with spin-orbit coupling (Ref. [246])1. The peer-reviewed publications resulting
from these studies are listed after Chapter 7. The quasiclassical GF formalism was employed in all
the aforementioned topics except for the latter one, where the ballistic conductance was computed
within the quantum network formalism [248–254]. This highlights the versatility of the quasiclassical
theory.

Future research on superconducting structures could include the study of the transport properties
of superconductors in the presence of exotic types of spin-dependent fields such as Weyl-type
SOC [255–257] and altermagnetism [258–260]. Moreover, the quasiclassical formalism may be
applied to systems with internal degrees of freedom other than spin (valleys, sublattice isospin,
etc.), and systems with anisotropic disorder, or disorder that depends on the internal degrees of
freedom. In this respect, it would be interesting to generalise the quasiclassical formalism to the
multiband superconductors, which may provide additional transport channels which possibly also
show up in Hall-like responses, such as the valley Hall effect. Finally, quasiclassics has successfully
been used to study fluctuation conductivity in disordered superconducting films [261], one of the
planned future research goals of the author of this Thesis is to expand upon these studies by
incorporating the effects of spin-dependent fields.

In the following we include the publications comprising this Thesis.

1Other publications related to the topics in the Thesis are Refs. [211] and [247].
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Quasiparticle density of states and triplet
correlations in
superconductor/ferromagnetic-insulator
structures across a sharp domain wall
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A ferromagnetic insulator (FI) in contact with a superconductor (S) is known to induce a spin splitting of
the BCS density of states at the FI/S interface. This spin splitting causes the Cooper pairs to reduce their
singlet-state correlations and acquire odd-in-frequency triplet correlations. We consider a diffusive FI/S bilayer
with a sharp magnetic domain wall in the FI, and we study the local quasiparticle density of states and triplet
superconducting correlations. In the case of collinear alignment of the domains, we obtain analytical results
by solving the Usadel equation. For a small enough exchange field or weak superconductivity, we also find an
analytical expressions for arbitrary magnetic textures, which reveals how the triplet component vector depends
on the local magnetization of the FI. For an arbitrary angle between the magnetizations and the strength of the
exchange field, we numerically solve the problem of a sharp domain wall. We finally propose two different setups
based on FI/S/F stacks, where F is a ferromagnetic layer, to filter out singlet pairs and detect the presence of
triplet correlations via tunneling differential conductance measurements.

DOI: 10.1103/PhysRevB.105.174507

I. INTRODUCTION

The exchange coupling at the interface between a ferro-
magnetic insulator (FI) and a thin superconducting layer (S)
can lead to a spin-splitting of the density of states (DOS) in
the S layer, as observed in numerous experiments [1–5]. Re-
cently, there has been a renewed interest in these systems due
to various proposed applications. These applications include
spin valves [6,7], spin batteries [8,9], magnetometers [10,11],
thermometers [12,13], caloritronic devices [14–16], thermo-
electric elements [17,18], and radiation detectors [19,20].
FI/S structures have also been explored in the context of
Majorana fermions in semiconducting wires [21–23].

Most of these applications require a robust superconduct-
ing gap with a sizable spin-splitting. This can be achieved,
for example, in EuS/Al systems [2,4,5,7,24], where the in-
terfacial exchange interaction leads to a sharp spin-splitting
in S layers with thicknesses smaller than the coherent length.
On the theoretical side, the effect of the interfacial exchange
field and the induced spin-splitting on the superconducting
state has been studied in numerous works [5,25–27]. Most of
these works assume a homogeneous spin-splitting field. This
assumption is justified, even in a multidomain situation, if the
characteristic domain size of EuS is much longer than the
superconducting coherence length ξ0.

*alberto.hijano@ehu.eus
†vitaly.golovach@ehu.eus
‡fs.bergeret@csic.es

There are, however, situations in which the domain size
may be of the order of the superconducting coherence
length. The effect of domain walls in magnetic and insu-
lating ferromagnets on adjacent superconductors has been
studied theoretically [28–32] and experimentally [4,33], while
Ref. [34] studied the influence of domain-wall dynamics on
superconductivity. In particular, Ref. [4] provided experimen-
tal evidence that EuS consists of multiple domains with a size
of the order of the coherence length of the Al layer attached
to it. The authors of that work contrast spectroscopic mea-
surements with a theoretical model that assumed alternating
up/down domains of different sizes. In the present work, we
generalize this approach and study a FI/S structure with two
noncollinear magnetic domains.

Despite the amount of experimental work on FI/S sys-
tems, almost all of it focuses on studying its quasiparticle
spectrum. There is, however, an interesting aspect that is not
often mentioned in these works. The mere existence of an
interfacial exchange field leads to conversion of singlet super-
conducting correlations to triplet ones [35–38]. The induced
triplet component has a total zero spin projection if the FI
consists of a single domain with homogeneous magnetization.
However, in FI/S systems with noncollinear magnetization,
triplet components with different spin-projections may coexist
with the singlet one.

In this work, we study the equilibrium properties of a
FI/S bilayer with a sharp domain wall separating two mag-
netic domains. We present an analytical solution for the
Usadel equation for a FI/S bilayer consisting of two semi-
infinite magnetic domains with collinear magnetization and
noncollinear magnetization in the weak exchange field limit,
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FIG. 1. Schematic view of the S/FI structure under considera-
tion. The ferromagnetic insulator has two domains with arbitrary
in-plane magnetization direction. The inset shows the top view of
the FI. The magnetizations of the two domains lie on the xy plane,
and they form an angle α.

and we use numerical methods to solve the noncollinear case
with arbitrary exchange field strength. Additionally, we study
the spatial evolution of the triplet correlations near a domain
wall, and we propose a method to detect them using tunneling
spectroscopy of an additional ferromagnetic layer. The work
is organized as follows: In Sec. II we present the main equa-
tions describing a diffusive superconductor attached to a FI
layer with multiple domains and a general Lagrangian from
which one can derive the Usadel equation. We identify con-
served quantities within each domain. In Sec. III we use these
integrals of motion to derive an analytical expression for the
DOS of a FI/S system with two collinear domains of arbitrary
magnitude. In Sec. IV we generalized these results to the case
of noncollinear magnetization. Finally, in Sec. V we study the
properties and spatial evolution of the triplet correlations, and
we suggest a way to detect them. We summarize the results in
Sec. VI.

II. THE MODEL

We consider a FI/S bilayer structure; see Fig. 1. A diffusive
superconducting film is placed on top of a FI film. A typical
example is Eu/Al studied in several papers [2,4,5,7,24]. In
these systems the EuS film is polycrystalline, and magnetic
domains with sharp boundaries are very common, particularly
before the first magnetization of the EuS [4].

To describe the system, we use the quasiclassical Green’s
function (GF) formalism extended to treat spin-dependent
fields [35]. In this case, the GF ǧ is a 4 × 4 matrix in Nambu-
spin space. In the diffusive limit, it does not depend on
momentum and is determined by the Usadel equation [39].
The interfacial exchange field is introduced as an effective
boundary condition at the FI/S interface [38,40,41]. As-
suming that the thickness of the S layer is smaller than
the coherence length, one can integrate the Usadel equa-
tion over the thickness to reduce the dimension of the
problem. The resulting Usadel equation for the retarded GF
reads

D∇ · (ǧ∇ǧ) + [iετ3 − ih · στ3 − �̌, ǧ] = 0, (1)

where ∇ = (∂x, ∂y), D is the diffusion constant, ε is the en-
ergy, h is the effective exchange field stemming from the
interface, and �̌ = �τ1 is the order parameter. The exchange
field is only finite at the FI/S interface, and we approximate
it as |hint| = hintaδ(z), where hint (x, y) is the exchange field
at the interface, and a is the thickness of an effective layer
over which the exchange interaction is finite [38,42]. After
integration over the z direction, the effective exchange field
is given by h = hinta/d [5]. It is worth noting that the critical
temperature of the S layer decreases with decreasing thick-
ness, such that at low temperatures superconductivity can be
fully suppressed when h > �/

√
2 [43,44]. In this work, we

consider values of the exchange field that are weak enough
such that superconducting ordering and the exchange field co-
exist. The matrices σi (τi), i = 1, 2, 3, in Eq. (1) are the Pauli
matrices in the spin (Nambu) space. The general structure of
ǧ is

ǧ = ĝτ3 + f̂ τ1, (2)

where ĝ and f̂ are the normal and anomalous GF in spin-
space.

The GF satisfies the normalization condition ǧ2 = 1, and
it can be parametrized with the help of the generalized θ -
parametrization [45],

ǧ = (cos θV0 − sin θV · σ)τ3 + (sin θV0 + cos θV · σ)τ1,

(3)
which is described by two scalars θ and V0 and the vector V .
V0 and V satisfy the condition

V 2
0 + V 2 = 1. (4)

V0 and V describe the singlet and triplet correlations, respec-
tively. If h is homogeneous, then V is parallel to it, but in
general, as we show on Sec. V, V is not parallel to the local
exchange field.

In the above parametrization, the Usadel equation reduces
to the following set of equations:

D∇2θ + 2iε sin θV0 − 2i cos θh · V + 2� cos θV0 = 0, (5a)

D(V0∇2V − V∇2V0) + 2iε cos θV − 2i sin θhV0

−2� sin θV = 0. (5b)

It is useful for finding analytical solutions to write a
Lagrangian that leads to Eqs. (5) as the Euler-Lagrange equa-
tions:

L = D

2

∑
μ

(∇Vμ)2 + D

2
(∇θ )2 + 2iε cos θV0

+ 2i sin θh · V − 2� sin θV0, (6)

with μ = 0, 1, 2, 3. This Lagrangian coincides with the form
of the nonlinear σ -model from which the Usadel equation can
also be derived [46,47].

The above equations are valid for arbitrary magnetic tex-
tures. In the following, we focus on the situation of two
semi-infinite magnetic domains with constant magnetization.
The domains are separated by a sharp domain wall at x = 0
with a length much smaller than the superconducting coher-
ence length. We assume that one of the domains (x < 0) is
polarized along the y axis, whereas the magnetization of the
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other domain (x > 0) forms an angle α with the y axis; see
Fig. 1. At distances much larger than the coherence length, the
GF takes its bulk form. The system has translational symmetry
along the y and z directions, so the parameters only depend on
the x coordinate.

On each domain, the Lagrangian (6) does not depend ex-
plicitly on the position r, so the corresponding Hamiltonian is
an integral of motion in each domain. The conserved quantity
is namely given by

E = D

2

∑
μ

(∇Vμ)2 + D

2
(∇θ )2 − 2iε cos θV0

− 2i sin θh · V + 2� sin θV0. (7)

The values of E far away from the domain wall, where the GF
is given by the bulk solution and therefore is constant in space,
can be easily obtained:

E = −2iε cos θ̄V̄0 − 2i sin θ̄h · V̄ + 2� sin θ̄V̄0, (8)

where the bulk values θ̄ and V̄ of the GF are given by the
inverse relations of Eq. (2),

tan θ = f0

g0
, (9a)

V = − g
sin θ

, (9b)

V0 = g0

cos θ
, (9c)

and the bulk GF is given by

ĝ = −i(ε − h · σ )√
�2 − (ε − h · σ)2

, (10a)

f̂ = �√
�2 − (ε − h · σ)2

, (10b)

with ĝ = g0 + g · σ, f̂ = f0 + f · σ. In the following section,
we use these expressions to define integrals of motion that
allow for an analytical solution when the magnetic domains
are collinear.

III. DOMAINS WITH COLLINEAR
MAGNETIZATION

If the magnetization of the two domains is collinear, the
problem can be greatly simplified. First, only the component
of the vector V parallel to the magnetization is nonzero. With-
out any loss of generality, we assume that the magnetizations

lie in the z axis, such that V1 = V2 = 0. In this case, Eq. (5)
reads

Dθ ′′+2iε sin θ cos θ3−2ih cos θ sin θ3+2� cos θ cos θ3 = 0,

(11a)

Dθ ′′
3 +2iε cos θ sin θ3−2ih sin θ cos θ3−2� sin θ sin θ3 = 0,

(11b)
where V3 = sin θ3. One can combine these equations to obtain
two decoupled equations for each spin component:

Dθ ′′
± + 2iε sin θ± ∓ 2ih sin θ± + 2� cos θ± = 0, (12)

where θ± = θ ± θ3, respectively, describe the spin-up and -
down components of the GF.

Since the problem is decoupled in spin space, one can
derive equations in (12) from two independent Lagrangians:

L± = D

2
θ ′
±

2 + 2iε cos θ± ∓ 2ih cos θ± − 2� sin θ±. (13)

Because L± do not depend explicitly on x, the following
quantities are conserved in space:

E± = D

2
θ ′
±

2 − 2iε cos θ± ± 2ih cos θ± + 2� sin θ±. (14)

These expressions can be evaluated at the bulk where the
spatial derivative vanishes and the GF is given by the bulk
solution [see Eq. (10)]. cos θ± and sin θ± are given by the
spin components ĝ and f̂ , respectively, where the ± sign
corresponds to the up/down spin index,

E± = 2
√

�2 − (ε ∓ h)2 = 2�

sin θ̄±
. (15)

Here θ̄± are the values of θ± at the bulk. In the following, we
omit the spin subscript to simplify the notation. Substituting
Eq. (14) into (15) and applying trigonometric identities, we
arrive at

sin θ̄
D

8�
θ ′ 2 = sin2 θ − θ̄

2
. (16)

Equation (16) does not explicitly contain the independent vari-
able x. Taking the square root on both sides of the equation, we
obtain a first-order differential equation that can be integrated
to obtain

tan
θ − θ̄l/r

4
=

{
clex/λl , x � 0,

cre−x/λr , x � 0,
(17)

where λ2
±,l/r = D/[2

√
�2 − (ε ∓ hl/r )2] is chosen such that

Re{λl/r} > 0, and that the exponential functions decay away
from the domain wall. hl/r is the value of the exchange field
in the left (x < 0) and right (x > 0) domains.

From Eq. (17) one can obtain the spatial dependence of
θ (x) by determining the constants cl,r . For this we use the fact
that the GF and its derivative are continuous at the domain
wall. Applying this condition, we obtain the values of the
constants in Eq. (17),
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FIG. 2. Local DOS (for spin-up) of the superconductor film for domains with opposite magnetization strength and effective exchange field
h = 0.2�. The line traces of the right panel are taken at x = −ξ0 (blue), x = 0 (red), and x = ξ0 (green). The dashed lines show the BCS
spin-splitting of the DOS deep inside of the domains x → −∞ (blue) and x → ∞ (green).

cl/r = ∓
λl/r

λr/l

(
1 − tan2 �θ

4

) + 1 + tan2 �θ
4 −

√[ λl/r

λr/l

(
1 − tan2 �θ

4

) + 1 + tan2 �θ
4

]2 + 4λ2
l/r

λ2
r/l

tan2 �θ
4

2 λl/r

λr/l
tan �θ

4

, (18)

where �θ = θr − θl , and the upper and lower signs corre-
spond to the left and right domains, respectively. The sign of
the square root on Eq. (18) is chosen such that the DOS is
positive and the solution is physically meaningful. Setting the
order parameter to zero in the right domain and the exchange
fields to zero, we recover the results by Altland et al. [48]
for a singlet S/N junction. Golubov et al. [49] also followed
a similar procedure to study the DOS at ferromagnetic and
normal layers on S(FN) and S(FF) structures.

Equation (17) together with Eq. (18) determine the analyt-
ical solution for the two semi-infinite collinear domains. The
local DOS is related to the GF through the expression

N (ε)

N0
= 1

2
Re{Tr ĝ(ε)}

= 1

2
Re{cos θ+ + cos θ−}. (19)

As a first example, we assume that the magnetizations of the
two domains are opposite in direction but equal in amplitude
(hl = −hr = h). In this case, the DOS at the domain wall (x =
0) has a simple form

N (ε)

N0
= Re

{√
�2 − (ε − h)2 −

√
�2 − (ε + h)2

2ih

}
, (20)

which leads to the red curves in Fig. 2. This analytical result
coincides with the numerical result obtained in Refs. [4,32]
for a narrow domain wall between two collinear domains. In
Fig. 2, we show the spatial dependence of the DOS for spin-up
electrons in the antiparallel magnetization configuration. Far
from the domain wall, the coherent peaks of the DOS are
well-defined (dashed lines). The presence of the domain wall
smears the peak. In Fig. 3(a) we show the spatial dependence
of the full DOS. Specifically, Fig. 3(b) shows the DOS at
the values of x indicated by the colored lines in panel (a).

The magnitude of the exchange field is the same on both
domains so the total DOS is symmetric with respect to x = 0.
For large enough distances away from the domain wall, the
BCS peak is shifted by the exchange field to ε = � ± h. Near
the domain wall, there is a crossover between the position of
the spin-up/spin-down peaks over a length scale of the order
of the superconducting coherence length ξ0 = √

D/�. Notice
that around the domain wall, the inner peak is broader and
lower than the outer peak [see Fig. 3(b)], but the gap edge
remains, as expected, at ε < � − h.

A second interesting example is when the exchange field is
only finite in one of the regions (x < 0). This corresponds to
an S layer only partly covered by the the FI layer. In Fig. 3(c),
we show the local DOS in this case. The spin-split DOS at
x � −ξ0 evolves into the usual BCS DOS at x 	 ξ0, over the
length ξ0 around the domain wall. The splitting of the DOS
peaks does not decrease smoothly, as one would expect in a
system in which the exchange field is suppressed gradually
over a length much larger than ξ0. Namely, the inner peak
is smeared in a similar way to the antiparallel magnetization
case [Fig. 3(b)], such that the DOS has the same “shark-fin”
shape right at x = 0 [red curve in Fig. 3(d)]. All of the above
predictions could be proven by performing local tunneling
spectroscopy measurements.

IV. NONCOLLINEAR MAGNETIZATION

In the previous section, we focused on the collinear mag-
netization case in which it was possible to decouple the
components of the Usadel equation. In that case, we can find
conserved quantities, Eq. (15), and we obtain analytically
expressions for the GF. If the magnetizations are noncollinear,
the system lacks enough symmetries to reduce the number
of coupled equations. Nonetheless, it is possible to solve the
Usadel equation (5) analytically in the weak superconducting
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FIG. 3. Local DOS of the S layer for (a,b) hl = 0.2� and hr = −0.2�, and (c,d) hl = 0.2� and hr = 0. The color lines in the right panels
are taken at x = −ξ0 (blue), x = 0 (red), and x = ξ0 (green).

or weak exchange field limits, as discussed in the next subsec-
tions. Later below, we study the two-domain situation for an
arbitrarily large exchange field numerically [50].

A. Weak superconductivity

If the superconductor is close to the critical temperature
Tc, the Usadel equation (5) can be linearized for a small
order parameter (� � T, h). This limit is very illustrative to
understand the lengthscales involved in the system.

Near Tc the GF can be approximated by ǧ = τ3 + f̂ τ1. The
linearized Usadel equation determines the anomalous GF f̂ ,

D

2
f ′′
0 + iε f0 − ih · f + � = 0, (21a)

D

2
f ′′ + iε f − ih f0 = 0, (21b)

where the spin structure is

f̂ = f0 +
∑
j=1,3

f jσ j, (22)

where f0 is the singlet, and f j , j = 1, 2, 3, are the triplet
components. For the two semi-infinite domain structures con-
sidered in this work, the solution to Eq. (21) is given by

f0 = f 0 + c+e−q+|x| + c−e−q−|x|, (23a)

f = f + ih
∑
j=±

c j

q2
j D/2 + iε

e−q j |x| + de−q|x|, (23b)

where f 0 and f are the asymptotic values at x = ±∞ of
the singlet and triplet components, respectively, and q2

± =
−2i(ε ∓ h)/D, q2 = −2iε/D. The triplet can be written as

the sum of the component parallel to the local exchange field
[second term in Eq. (23b)], and the component orthogonal to
it proportional to the vector d, with h · d = 0. The component
perpendicular to the local exchange field decays away from
the domain wall over the length ξε = Re{q}−1, whereas the
correction to the bulk (parallel) solution is significant at dis-
tances less than ξh = Re{q+}−1 = Re{q−}−1.

B. Weak exchange field

Another analytical limiting case is the case of a weak
exchange field (|h| � �). In this case, one can linearize the
Usadel equation (5) and solve the system for an arbitrary
magnetization texture. In zeroth order in h, only the singlet
component of the GF is finite and it is given by Eqs. (9) and
(10) setting h = 0,

tan θ = �

−iε
, (24a)

V0 = 1. (24b)

To first order in h, both θ and V0 are not corrected, whereas
the triplet vector V is determined by

V ′′ − λ−2V = 2i�

D
√

�2 − ε2
h(x′), (25)

where λ2 = D/(2
√

�2 − ε2) (Re{λ} > 0) is the energy-
dependent coherence length. The solution of this equation can
be written as

V =
∫

dx′G(x, x′)
2i�

D
√

�2 − ε2
h, (26)
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where G(x, x′) is the Green’s function of the differential equa-
tion (25) determined by(

∂2
x − λ−2)G(x, x′) = δ(x − x′). (27)

Solving Eq. (27), we arrive at

V (x) = −i�√
2D(�2 − ε2)3/4

∫
dx′e−|x−x′|/λh(x′). (28)

This result shows explicitly the spatial dependence of the
triplet vector. It is determined by the exchange field averaged
over the length λ. For example, if the spatial variation of the
exchange field h(x) is slower than the length λ, then the vector
V is locally parallel to the exchange field. In particular, in the
case of two magnetic domains separated by a smooth (with
respect to the length λ) domain wall, the vector V is always
aligned with the local field h.

In this work, we are mainly interested in sharp domain
walls, i.e., domain walls with sizes much smaller than λ. If
we model such a situation by a steplike exchange field with
h = hlθ (−x) + hrθ (x), then the triplet vector at the left and
right sides of the domain wall can be obtained from Eq. (28):

V l/r = −i�

2(�2 − ε2)
[2hl/r + (hr/l − hl/r )e−|x|/λ]. (29)

As expected, at distances much larger than λ from the domain
wall, V is parallel to the local exchange field. In contrast, the
transverse component to the field is maximized at the domain
wall and decays over λ away from it. The above analytical
results are obtained for weak exchange fields. In the next
section, we consider an arbitrarily strong exchange field.

C. Arbitrary exchange field

In this section, we consider two domains with an arbitrar-
ily large exchange field and an arbitrary angle between the
domain magnetizations, and we solve numerically the Usadel
equation. For this it is convenient to differentiate twice Eq. (4)
and substitute the result into Eq. (5). We thus arrive at [32,51]

Dθ ′′ + 2iε sin θV0 − 2i cos θh · V + 2� cos θV0 = 0,

(30a)

DV ′′ + DV
(
V ′

0
2 + V ′ 2) + 2i sin θ ((h · V )V − h)

−2(−iε cos θ + � sin θ )V0V = 0,

(30b)

DV ′′
0 + DV0

(
V ′

0
2 + V ′ 2) + 2i sin θh · VV0

+2(−iε cos θ + � sin θ )
(
1 − V 2

0

) = 0.

(30c)

We solve the above equations numerically for an S layer of
finite length L. The domain wall is located at x = 0. The
spectral current vanishes at the boundaries with vacuum. In
the generalized θ -parametrization, this translates into the fol-
lowing boundary conditions for Eq. (30):

θ ′|x=±L/2 = 0, (31a)

V ′|x=±L/2 = 0, (31b)

V ′
0 |x=±L/2 = 0. (31c)

FIG. 4. Density of states at the domain wall for different values
of the angle α between the domains’ magnetizations.

In Fig. 4 we show the computed total DOS at the domain
wall for domains with the same exchange field magnitude
h = 0.1� and different orientations (see Fig. 1). In the α = 0
case, the exchange field is uniform along the sample, so the
DOS is the homogeneous spin-split BCS. Both peaks are
broadened and lowered by increasing α, and the DOS exhibits
the “shark-fin” when the magnetizations are antiparallel. The
spin-splitting is still visible up to values of α ≈ 7π/8.

V. TRIPLET PAIR CORRELATIONS IN FI/S STRUCTURES
AND THEIR DETECTION

In the previous sections, we analyzed the quasiparticle
spectrum. Here we focus on another aspect of the FI/S
structures: the superconducting triplet pair-correlations. These
appear due to the finite interfacial exchange field that converts
a conventional singlet into triplet pairs [35,52].

Within our model, pair correlations are described by the
anomalous component f̂ introduced in Eq. (2), which in the
spin-space has the general structure given by Eq. (22). Be-
cause we consider the strict diffusive limit, all components
of f̂ are isotropic in momentum (s-wave symmetry). From
the Fermi statistics for fermion pairs, it follows that f0 is an
even function of frequency whereas f j are odd [35,53–55].
The following association between the different components
of the condensate and the spin state of electron pairs can be
made [56]:

(↑↓ − ↓↑) ↔ 2 f0, (32)

−(↑↑ − ↓↓) ↔ 2 f1, (33)

(↑↑ + ↓↓) ↔ 2i f2, (34)

(↑↓ + ↓↑) ↔ 2 f3. (35)

In other words, each triplet component of the condensate is
associated with maximally entangled states. In a conventional
BCS superconductor, only the singlet component f0 is finite.
Triplet components are finite in the presence of an exchange
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FIG. 5. The spectral weight of the singlet and triplet components of f̂ at different points in the superconductor: (a) x = −5ξ0, (b) x = 0,
and (c) x = 5ξ0. We have chosen α = π/2, L = 10ξ0, and hl/r = 0.1�.

field. In a homogeneous case, we choose the spin quantization
axis along the magnetization direction, e.g., the z axis. The
only finite components of the condensates are, in this case, f0

and f3. All triplet components may appear in a multidomain
situation with arbitrary magnetization directions.

Here we study the singlet and triplet correlations in a FI/S
bilayer with two noncollinear domains; see Fig. 1. We assume
that α = π/2 such that two components f1, f2 are finite. The
length of S is L = 10ξ0. In Fig. 5 we show the spatial de-
pendence of the singlet and triplet components of f̂ for all
energies, calculated numerically. All condensate components
show peaks at |ε| = � ± h and decay to zero at energies much
larger than the gap. Inside the gap, the amplitude of the singlet
is of the order of 1. In contrast, at ε = 0 the triplet components
are of the order of 
/�, where 
 is the Dynes parameter
[57] describing inelastic scattering. They increase linearly at
small energies and become comparable to the singlet com-
ponent within the range |ε| ∈ [� − h,� + h]. Far away from
the domain wall, only the triplet component parallel to the
local exchange field is finite. Both components, f1 and f2,

have the same magnitude at the domain wall, as anticipated
from our analytical result, Eq. (28). In Fig. 6(a), we show the
spatial dependence of the triplet correlations at ε = � − h.
The length over which the triplet components change is of the
order of the coherence length.

A natural question is how to detect the triplet components
in this type of system. This can be achieved, for example,
through spin-polarized spectroscopy [58]. Another way to
detect the triplet components is to place a ferromagnetic layer
(F) on top of a superconductor. The DOS of the F layer is
modified by the superconducting correlations induced via the
proximity effect. Such a modification can be measured by a
normal tunneling probe. In the case of a weak proximity ef-
fect, we can linearize the Usadel equation in the F region. The
DOS in the ferromagnet is then given by (see the Appendix for
details)

N (ε, x, z)

N0
= 1 − 1

4
Re{Tr f̂ 2(ε, x, z)}. (36)

FIG. 6. (a) Spatial dependence of triplet correlations for energy ε = � − h. We show the proposed geometry to detect the triplet
correlations in the inset. An F layer is placed on top of an S layer; if the F layer is thick enough, only the triplet correlations perpendicular to
the magnetization of the F layer will propagate along the ferromagnet. The long-range triplet correlations manifest as a zero-energy peak on
the local DOS, measured through tunnel differential conductance measurements with a normal metal probe (N). (b) The correction to the DOS
of the ferromagnet at the F/I interface, see panel (a), far to the right of the domain wall (solid line). The deviation from the normal DOS is
due to the penetration of the long-range component of the triplet condensate. For comparison, we show the DOS of an N layer in contact with
a conventional singlet superconductor (dashed line). At zero energy, the singlet (triplet) component induced in the N (F) layer is real (purely
imaginary), resulting in a negative (positive) correction to the DOS. The parameters used in the plot are h = 0.3�, γ = 5ξ0, and t = 3ξ0. The
DOS of the F case is normalized by (�/
)2 for comparison.
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FIG. 7. Correction to the DOS of the ferromagnet at the F/I interface at different distances from the domain wall. In this setup, the
ferromagnet magnetization is aligned with respect to the magnetization of the FI. The parameters used are h = 0.3�, γ = 5ξ0, and t = 3ξ0.

The second term is the correction to the DOS due to the
proximity effect. Because of the trace over spin, this term has
two contributions: one proportional to the square of the singlet
component, and one to the sum of the squares of the triplet
components. The singlet component is real at low energies, so
its correction to the DOS is negative. This explains that if S is
a singlet superconductor and F is a normal layer (no exchange
and hence no triplet), the DOS is suppressed at ε = 0; see the
dashed line in Fig. 6(b). On the other hand, in the presence of
an exchange field, the triplet component at ε = 0 is purely
imaginary [see Eq. (A3)] and hence its contribution to the
DOS, according to Eq. (36), is positive. Thus, the sign of
the correction of the DOS at ε = 0 is determined by the
competition between singlet and triplet amplitudes [59].

To separate the triplet from the singlet component, we
propose a setup like the one sketched in Fig. 6. Due to
the presence of the FI, triplet pairs are induced in the su-
perconductor, as described above. To filter out the singlet
correlations, an F layer with a magnetization noncollinear to
the FI is placed; see the inset of Fig. 6(a). The singlet com-
ponent and triplet parallel to the F magnetization (short-range
triplet) decay over the magnetic length ∼κ−1

F . In contrast, the
triplet component orthogonal to the magnetization of F (long-
range triplet) decays over the length ∼κ−1

ε (see Appendix).
Thus, by choosing the thickness t of the F layer such that
κ−1

F � t � κ−1
ε , the DOS of F at the tunneling barrier will

only be corrected by the long-range triplet component. This
situation can be realized by using F layers with a strong
exchange field, such as Co or Fe.

In Appendix, we compute the correction to the density of
states in the ferromagnet. In the two-domain situation studied
above, when the F layer is placed above the right domain far
from the domain wall [see Fig. 6(a)], the triplet component in
F at zero energy is purely imaginary [Eq. (A3)], so according
to Eq. (A4) there is a positive correction to the DOS,

N (0,∞, t )

N0
= 1 + ε2

bh2�2

2(�2 − h2)3
, (37)

where εb = D/(2γ t ) is an energy scale related to the interface
transparency, and γ is a parameter describing the interface
resistance. The solid line in Fig. 6(b) shows the DOS of the
F layer at the tunneling barrier computed for all energies.

One sees a local maximum at ε = 0, and also maxima at
|ε| = � ± h related to the triplet peaks shown in Fig. 5. In
this way, the existence of triplets generated in the spin-split
superconductor can be demonstrated by performing tunneling
spectroscopy, with the normal electrode probe; see Fig. 6(a).

Finally, we consider an F layer consisting of two domains
that are collinear to the adjacent FI domains (see Fig. 7). This
situation may correspond to the case in which the magnetic
coupling of the F and FI leads to local collinear magnetiza-
tions. According to our previous analysis, triplet correlations
of both kinds are present in the S near the domain wall. In
other words, long-range triplet correlations will be present in
certain positions of the F/I interface and affect the local DOS.
In Fig. 7, we show the correction to the DOS at different points
of the F/I interface. The zero-energy peak appears at regions
close to the domain wall. The peak vanishes when moving
away from the domain wall. Such measurements could be
done with the help of the STM technique and may reveal
the magnetic texture of the system. Another possible setup to
isolate the odd-frequency correlations at zero energy are S/N
bilayers with a spin-active interface [60,61].

VI. CONCLUSION

In this work, we have studied the spectral properties of
superconductor-ferromagnetic insulator bilayers in the pres-
ence of a domain wall separating two magnetic domains. In
the first part, we focus on the quasiparticle spectrum, and
we analyze how the density of states of the superconduc-
tor is affected by the magnetic configuration. In the case of
two semi-infinite domains with collinear magnetization and
a sharp domain wall between them, it is possible to find two
integrals of motion that allow for an analytical solution of the
Usadel equation. With the help of this solution, we determine
the local DOS of the superconductor for different magnitudes
of the exchange field. At the domain wall, the DOS exhibits
a “shark-fin” shape. This feature appears when the domain
magnetizations are antiparallel or when one of the domains
has a negligible small exchange field. We have also studied
FI layers with noncollinear magnetization direction. We show
that near the domain wall, the spin-splitting is quite robust
with respect to the relative angle α between the magnetiza-
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tions, but the heights of the coherent peaks are significantly
affected by it. All these predictions can be verified by local
tunnel spectroscopy experiments, which will reveal informa-
tion about the local magnetic configuration of the FI.

In the second part, we have analyzed the spectral properties
of the singlet and triplet components of the superconducting
condensate in the S layer. We have found an analytical expres-
sion for the quasiclassical Green’s function in the presence of
an arbitrary magnetic texture in the FI in the case of a weak
exchange field. Our expression reveals how the local exchange
field spatially determines the triplet components induced in
the superconductor. For arbitrary strength of the exchange
interaction, we have determined the singlet and triplet com-
ponents numerically in the presence of a sharp domain wall.
We propose different ways of detecting the triplet correlations
using a FI/S/F junction, where F is a ferromagnetic metal
and a tunneling probe at the outer F interface. The presence of
the triplet component manifests itself as a zero bias maximum
in the tunneling differential conductance. The proposed setup
can then be used as a source of spin-triplet pairs, whose
entanglement can be proven in experiments using quantum
dots as pair splitters [62].
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APPENDIX: CORRECTION TO THE TUNNELING
DIFFERENTIAL CONDUCTANCE IN THE

FERROMAGNET

In this Appendix, we show how the tunneling differential
conductance measured on top of the F layer [see Fig. 6(a)]
is affected by the leakage of the superconducting condensate
into the ferromagnet.

The GF on a diffusive ferromagnet satisfies the Usadel
equation (1) with � = 0. If the transmission coefficient of the
S/F interface is very low, the proximity effect in the F layer is
weak and the Usadel equation can be linearized as

∂2
zz f0 + iκ2

ε f0 − iκ2
F f2 = 0, (A1a)

∂2
zz f + iκ2

ε f − iκ2
F f0ŷ = 0, (A1b)

where κ2
ε = 2ε/D, κ2

F = 2hF /D, and hF is the field of the
ferromagnet. Here we have assumed that the magnetization
direction of the F layer lies on the y axis.

The S/F interface is described by the linearized Kuprianov-
Lukichev condition [63],

γ ∂z f0|z=0 = − fS,0, (A2a)

γ ∂z f |z=0 = − f S. (A2b)

Here, γ = σFRb is the parameter describing the barrier
strength, where Rb is the normal-state tunneling resistance per
unit area, and σF is the conductivity of the ferromagnet. The
anomalous GF on the S layer is given by f̂S = fS,0 + f S · σ.

We assume that the thickness t of the F layer is much longer
than the coherence length in the ferromagnetic layer κFt 	 1.
In the long-junction regime, the condensate function is me-
diated primarily by the long-range triplet superconducting
correlations [35,64,65], whereas the singlet and short-range
triplet correlations decay over the length κ−1

F . At the outer
interface of the F layer, the condensate function is given by
the only long-range component f1. Solving the Usadel equa-
tion (A1b), we obtain

f1(ε, x, t ) = fS,1(ε, x)
1−i√

2
κεγ sinh

(
1−i√

2
κεt

) . (A3)

In the case of the weak proximity effect, the DOS of the
ferromagnet is given by Eq. (36). Using Eq. (A3), we arrive at

N (ε, x, t )

N0
= 1 − 1

2
Re

{
i fS,1(ε, x)2

γ 2κ2
ε sinh2

(
1−i√

2
κεt

)
}

, (A4)

where the anomalous GF of the superconductor fS,1(ε, x) is
obtained by solving Eqs. (30) and (31). If the S layer is a
homogeneous superconductor with an exchange field along
the x direction, the DOS is given by Eq. (37).
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Josephson junctions (JJs), where both time-reversal and inversion symmetry are broken, exhibit a phase shift
ϕ0 in their current-phase relation. This allows for an anomalous supercurrent to flow in the junction even in the
absence of a phase bias between the superconductors. We show that a finite phase shift also manifests in the
so-called Andreev interferometers—a device that consists of a mesoscopic conductor coupled to the ϕ0 junction.
Due to the proximity effect, the resistance of this conductor is phase sensitive—it oscillates by varying the phase
of the JJ. As a result, the quasiparticle current Iqp flowing through the conductor has an anomalous component,
which exists only at finite ϕ0. Thus, the Andreev interferometry could be used to probe the ϕ0 effect. We consider
two realizations of the ϕ0 junction and calculate Iqp in the interferometer: a superconducting structure with
spin-orbit coupling and a system of spin-split superconductors with spin-polarized tunneling barriers.

DOI: 10.1103/PhysRevB.104.214515

I. INTRODUCTION

The dc Josephson effect establishes that the current
flowing between two superconductors with a phase differ-
ence ϕ, obtained for instance by applying a magnetic flux
to the closed circuit, is given as IJ = Ic sin ϕ. Here Ic is
the critical current of the junction. In such junctions the
phase difference of the ground state is ϕ = 0. In a sys-
tem where (only) time-reversal symmetry is broken, such as
superconductor/ferromagnet/superconductor (S/F/S) struc-
tures, it was shown that the current-phase relation can acquire
a phase shift of π , and therefore such junctions are called π

junctions [1–4].
In junctions where both time-reversal and inversion sym-

metries are broken the current-phase relation takes a more
general form [5]

IS = Ic sin (ϕ + ϕ0) = IS
0 sin ϕ + IS

an cos ϕ. (1)

Such JJs are known as ϕ0 junctions by analogy. This effect
is referred to as the anomalous Josephson effect (AJE). In
general, the current-phase relation of a JJ given by Eq. (1)
can be decomposed into the usual current IS

0 and anomalous
current IS

an. IS
an is nonzero only if the appropriate symmetries

are broken, leading to a finite supercurrent even at zero phase
difference between the superconductors.

AJE reflects the interplay between spin-dependent fields
and superconductivity. This interaction is the basis of several
effects and applications that are attracting the interest of a
large community, such as topological [6–8] and unconven-
tional [9,10] superconductivity, superconducting spintronics

*alberto.hijano@ehu.eus
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‡fs.bergeret@csic.es

[11], and novel superconducting electronic elements [12]. The
most well-known proposals for AJE involve superconduct-
ing structures with spin-orbit interaction [5,13–20], some of
which have been successfully tested in experiment [21–24].
Other theoretical studies have proposed numerous alternative
realizations of AJE: in S/F/S junctions with a nonhomoge-
neous magnetization texture [25–32], junctions of unconven-
tional superconductors [33–36], and between topologically
nontrivial superconducting leads [37]. An anomalous current-
phase relation can also be obtained under non-equilibrium
situation in multiterminal structures [38–40]. ϕ0 junctions
could prove to be a key component for quantum electronics,
as they can provide a stable phase bias to quantum circuits,
and could therefore be particularly useful in phase-coherent
superconducting electronics and spintronics [11,23].

In this paper, we consider a ϕ0 junction coupled to a
mesoscopic conductor, in a device known as Andreev interfer-
ometer [41–44]. The basic physical idea behind such devices
is the following: Superconducting correlations are induced in
the conductor by the proximity effect, and as a consequence,
its resistance becomes sensitive to the phase of the Josephson
junction. This means that a simple resistance measurement
performed on the conductor can reveal details about the phase
dynamics of the adjacent superconducting structure. In the 90s
this topic was particularly active, and several types of Andreev
interferometers were theoretically proposed [45–48] and ex-
perimentally realized [49,50]. Andreev interferometers have
been used to study the magnetoresistance oscillations [51],
electric transport [43,52–57], and thermopower and thermal
transport [58–61] in S/N structures.

Our goal is to establish how the anomalous phase shift
ϕ0 manifests on the quasi-particle transport through the
Andreev interferometer shown in Fig. 1(a). An important ad-
vantage of this geometry is that it allows for a decoupling
of the superconducting loop with the ϕ0 junction, and the
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FIG. 1. (a) Schematic structure of the Andreev interferometer.
(b) S/F/S structure. Here, F is a wire with Rashba spin-orbit cou-
pling, and a spin-splitting field h. (c) S/FI/F/FI/S structure. FI
layers act as spin-filtering barriers with polarizations Pr/l , and they
induce spin-splitting fields hr/l in adjacent S layers. F is a ferromag-
net with an exchange field h.

normal wire where the conductance measurement is done,
such that the noise associated with the measurement process
does not perturb the ϕ0 junction. Our main result is that the
phase-dependent contribution to the dissipative (quasiparticle)
current through the vertical arm of the interferometer can be
written as

δIqp(ϕ) = Iqp
c cos

(
ϕ + ϕ

qp
0

) = Iqp
0 cos ϕ + Iqp

an sin ϕ. (2)

Therefore, this current also exhibits an anomalous phase shift
ϕ

qp
0 . Here Iqp

0 is the usual component, which exists in An-
dreev interferometers with conventional junctions. Iqp

an is the
anomalous component, which can only exist in the presence
of a ϕ0 junction. Note that the phase shift in the Josephson
current ϕ0 and in the quasiparticle current ϕ

qp
0 are in general

not equal, but they have similar magnitude and can be directly
related to each other (see the Fig. 2). Our result suggests a
way to experimentally obtain the value of of ϕ0 from ϕ

qp
0 by

performing conductance measurements.
We study the two main realizations of ϕ0 junctions.

Namely, Josephson junctions with Rashba spin-orbit coupling

(SOC) and multilayer ferromagnetic structures [Figs. 1(b) and
1(c)]. In both cases the anomalous phase is related to the exis-
tence of a Lifshiftz invariant in the free energy [62–64]. In the
first example such invariant stems from an interplay between
a Zeeman field and the SOC, whereas in the second example it
stems from non-coplanar magnetizations of magnetic layers.

II. THE SETUP

We consider the geometry shown in Fig. 1(a). The ϕ0 junc-
tion lies along the x direction, and consists of a ferromagnetic
wire placed between two superconducting reservoirs. These
superconductors are connected in a loop (not shown), so that
when a magnetic field is applied through the loop, the result-
ing flux creates a phase difference between them and leads to
a Josephson current flowing along the x wire. An additional
normal wire (N) is placed perpendicularly to the F wire (on
the y direction). N is connected to two normal reservoirs. We
assume that the F and N wires intersect at their midpoints.
A voltage difference between the normal electrodes leads
to a quasiparticle current Iqp in the y wire, which can be
decomposed in two contributions: Iqp = I� + δIqp(ϕ), where
I� is the usual Ohmic contribution, whereas δIqp(ϕ) is the
phase-dependent part given in Eq. (2). The latter is affected
by the proximity effect with the x wire.

In the rest of this paper we determine the usual and anoma-
lous components of δIqp(ϕ) for two different realizations of a
ϕ0 junction: a S/F/S junction with Rashba SOC [Fig. 1(b),
Sec. III] and a S/FI/F/FI/S junction, where FI stands for
a ferromagnetic insulator [Fig. 1(c), Sec. IV]. In the first
example, a magnetic field and a spin-orbit coupling provide
time-reversal and inversion symmetry breaking, respectively,
which leads to the anomalous phase shift [5,17]. Here the
anomalous Josephson current is IS

an ∝ hκα , with κα being a
parameter associated with singlet-triplet conversion due to the
SOC, and h is a weak exchange or Zeeman field [see Eq. (3)].
In the second example, the ϕ0 effect occurs if the FI tunneling
barriers are spin-polarized, so that the barrier polarizations
Pr/l and the magnetization direction in the F layer h are

FIG. 2. (a) Component of the quasiparticle current odd in flux, which corresponds to Iqp
an , for the configuration shown in Fig 1(b). θ is

an angle between the in-plane exchange field in the F layer and the x axis. The Josephson phase is given by ϕ = 2π	/	0, where 	 is the
applied flux and 	0 is the flux quantum. (b) Quasiparticle current along the y wire for different magnetization directions for the configuration
shown in Fig 1(c). The exchange fields on the S electrodes hr/l are taken to be perpendicular to the exchange field on the F wire in order
to maximize the current, while they form an angle β. (c) Relation between the anomalous phase shifts in the Josephon current ϕ0 and in
the quasiparticle current ϕ

qp
0 for the junction with Rashba SOC (solid) and S/FI/F/FI/S junction (dashed), calculated from the expressions

provided in Appendices A and B, respectively. In the first case, the value of the exchange field is h = 0.1� and the Rashba coupling constant
ranges from καξ0 ∈ [−0.5, 0.5]. In the second case, the exchange field is h = 0.1� and the splitting of the superconducting electrodes are
hr/l = 0.1�, where they form an angle β ∈ [−π/2, π/2]. The temperature is T = 0.01Tc0 in both cases.
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noncoplanar, and therefore the magnetization inversion sym-
metry is broken [25–32]. The anomalous Josephson current
is IS

an ∝ χ , where χ = nh · (nl × nr ) is the so-called chirality
of the junction (see Fig. 1). Here, nh and nr/l are the unit
vectors along the exchange field and polarization directions.
We will show that in both examples, the interferometer quasi-
particle anomalous current Iqp

an has the same dependence on
the spin-dependent fields as the anomalous Josephson current
IS
an; namely, Iqp

an ∝ hκα in the first example, and Iqp
an ∝ χ in the

second example.

III. JOSEPHSON JUNCTION WITH RASHBA SOC

We first study a S/F/S structure, shown in Fig. 1(b). Here,
F is a wire with Rashba spin-orbit coupling (SOC), and an
exchange field h, which comes either from intrinsic magne-
tization (F is a ferromagnet) or from an externally applied
magnetic field. For this configuration, the anomalous Joseph-
son current is only affected by the component of the exchange
field perpendicular to the current direction x, so we consider
a field oriented along the y direction h = hy in order to maxi-
mize the ϕ0 effect [17].

We describe the system using the quasiclassical Green’s
function (GF) formalism [65]. In the diffusive limit, GFs are
obtained as a solution of the Usadel equation [66]. SOC can
be included as a background SU(2) field [67–69]. Supercon-
ducting correlations are described by the condensate GF, f̂ ,
which is a 2 × 2 matrix in spin space that consists of a singlet
component, f0 and, in general, three triplet components, f jσ j ,
where j = 1, 2, 3 and σ j are the three Pauli matrices. We
assume that the proximity effect in the F wire is weak due,
for example, to low S/F transmission coefficient. In this case,
the Usadel equation can be linearized [17]. For the situation
under consideration, transport in x direction and h field in y
direction, only the condensate components f0 and f2 are finite
and satisfy:

±∂2
xx f R/A

0 + iκ2
ε f R/A

0 − iκ2
F f R/A

2 − κα∂x f R/A
2 = 0 (3a)

±∂2
xx f R/A

2 + iκ2
ε f R/A

2 − iκ2
F f R/A

0 − κα∂x f R/A
0 = 0 (3b)

where κ2
ε = 2ε/D, κ2

F = 2h/D and κα = 4α3τ/m. Here, ε is
the energy, D is the diffusion constant, h is the exchange field,
and α is the Rashba coupling constant. The upper and lower
sign correspond to the retarded and advanced condensate GFs
f̂ R/A respectively. In the following we omit the superscript to
simplify the notation. Moreover, to simplify the calculation, in
Eq. (3) we have neglected the renormalization of the exchange
field by the SOC, and the relaxation of the triplet component
due to SOC [23].

The Usadel equation (3) is supplemented by boundary
conditions describing the interfaces between different ma-
terials. The S/F junctions are described by the generalized
Kuprianov-Lukichev conditions [70]

±∂n f0,r/l + ηr/lκα f2,r/l = ∓ 1

γ
F0eiηr/l ϕ/2 (4a)

∂n f2,r/l = 0. (4b)

Here, F0 = �/
√

�2 − ε2 is the anomalous GF of the su-
perconducting electrode, ∂n is the normal derivative at the
surface and γ = σF Rb is the parameter describing the barrier

strength, where Rb is the normal-state tunneling resistance per
unit area and σF is the conductivity of the ferromagnet. ηr/l =
±1 for the right (x = Lx/2) and left boundaries (x = −Lx/2).

The condensate function in the y wire f̂y is induced by the
proximity effect with the x wire. To find f̂y, we start from
the Kuprianov-Lukichev condition describing the interface
between the two wires, and the Usadel equation in the y wire.
Provided that the widths of the wires wx,y are much smaller
than the superconducting coherence length, we can integrate
the Usadel equation over the cross-section of the wire. If the
interface resistance is much larger than the resistance of the
wires, RB � Lx,y/σF,N , we find the equation determining f̂y:

±∂2
yy f̂y + iκ ′ 2

ε f̂y = −wx

γ 2
0

f̂ (0)δ(y). (5)

Here, γ 2
0 = RBσNwy and κ ′ 2

ε = 2ε/Dy, with RB being the re-
sistance per unit area of the interface of the x and y wires
and σN is the normal-state conductance of the y wire. The
Dirac delta term describes the proximity effect, and is a source
term. The contact of the y wire with the normal reservoirs is
assumed to be ideal so that the condensate functions vanish at
the ends of the wire is f̂y(±Ly/2) = 0.

A voltage bias V is applied between the normal electrodes.
Due to our assumption of large RB we can neglect the inverse
proximity effect. Thus, in leading order the phase-dependent
correction to the quasiparticle current is given by [71–73]

δIqp = −σN

16eLy

∫
dεFT (ε,V/2)

〈
Tr

(
f̌ R
y − f̌ A

y

)2〉
. (6)

Here 〈...〉 = 1/Ly
∫ Ly/2
−Ly/2 dy (...) denotes average over the

length, f̌ R/A is the 4 × 4 matrix GF in Nambu-spin space [see
Eq. (A1) in the Appendix] and FT is defined as FT (ε,V ) =
1
2 [tanh ε+eV

2T − tanh ε−eV
2T ]. Solving the boundary value prob-

lem, Eqs. (3) and (4), we first calculate the f̂ for the x-wire,
and then f̂y for the y-wire from Eq. (5). Using Eq. (6) we then
obtain the usual and anomalous quasiparticle currents entering
Eq. (2).

Up to the leading order terms in exchange field and Rashba
SOC, the quasiparticle current takes the following form:

Iqp
0 = c1, (7)

Iqp
an = c2hκα. (8)

The factors c1 and c2 depend on T and Lx,y, and their exact
form is given by Eqs. (A14) and (A15) in the Appendix.
Both components of the quasiparticle current depend on the
spin-dependent fields in the same way as the components
of Josephson current [17]: IS

0 and Iqp
0 are independent of

these fields, whereas IS
an, Iqp

an ∼ hκα . Note that the result for
the anomalous current, Eq. (8), also holds in the case when
exchange field in the F layer is not fully aligned with the
y-direction, by taking h = htot sin θ . Here htot is an arbitrarily
oriented in-plane field, and θ is an angle between the field
and the x direction. To illustrate this, in Fig. 2(a) we plot
the odd component of the anomalous quasiparticle current,
Iqp
an sin ϕ = 1

2 [Iqp(ϕ) − Iqp(−ϕ)], for different values of θ . The
current is normalized with respect to its maximum value for
clarity. For θ = 0, the exchange field is parallel to the wire,
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so there is no anomalous phase shift and Iqp
an vanishes. The ϕ0

effect is maximized for θ = π/2, where the exchange field
is perpendicular to the wire. In Fig. 2(c) we plot the rela-
tion between the ϕ0 phase-shift in the Josephson current, and
the phase-shift measured in the quasiparticle current ϕ

qp
0 . All

expressions presented in this paper are valid for arbitrary tem-
perature. For the numerical computations however, we only
focus on low temperatures, T = 0.01Tc0, where the magnitude
of the quasiparticle current is maximized.

IV. S/FI/F/FI/S JUNCTION

Another configuration to obtain a ϕ0 junction is a
S/FI/F/FI/S junction with noncoplanar magnetizations
[Fig. 1(c)]. This configuration has not yet been realized in
experiment, but has been theoretically predicted to show AJE
[25–32]. In these structures, the role of the FI layers is two-
fold: firstly, they induce an exchange field hr/l in the adjacent
S layer, and secondly, they act as spin-polarized tunneling bar-
riers with a polarization Pr/l . The linearized Usadel equation
in the F layer reads

±∂2
xx f̂ + iκ2

ε f̂ − i
κ2

F

2
{σ3, f̂ } = 0, (9)

where {., .} is an anticommutator. We have assumed, without
loss of generality, that the exchange field in the F-wire points
on the z direction.

The S/F junctions with spin-filtering barriers are described
by the generalized Kuprianov-Lukichev boundary condition
[74,75]. The exchange fields hr/l induced via the magnetic
proximity effect in the S electrodes point in the same direc-
tion as the polarization vectors Pr/l . The linearized boundary
conditions read

±γ ∂n f̂r/l = 1

2
[Ĝr/l Pr/l · σ, f̂r/l ]

+ 1

2
{Ĝr/l , f̂r/l} ∓

√
1 − P2

r/lF̂r/l e
iηr/l ϕ/2. (10)

Here, Ĝr/l and F̂r/l are the normal and anomalous GFs of the
spin-split superconducting electrode, respectively. In the weak
exchange field limit, they are given by

Ĝr/l = G0 − hr/l · σ
dG0

dε
(11a)

F̂r/l = F0 − hr/l · σ
dF0

dε
(11b)

with G0 = −iε/
√

�2 − ε2.
Generally, the coherence length in the ferromagnetic layer

is much shorter than in a normal metal κ−1
F � κ−1

N , where
κN = √

2T/D. We assume the long-junction regime, so that
κ−1

F � Lx � κ−1
N . In this regime the length of the x wire Lx is

much longer than the penetration length of the Cooper pairs
κ−1

F in the F layer, so that the condensate functions f̂ and f̂y

are mediated primarily by the long-range triplet superconduct-
ing correlations [9,76,77], whereas the singlet and short-range
triplet correlations decay over the length κ−1

F .
To calculate the interferometer current, we proceed sim-

ilarly as in the previous example. First, from Eqs. (9) and
(10), we find f̂ in the x wire, and then calculate the current

in the y wire from Eqs. (5) and (6). The usual and anomalous
quasiparticle currents are given by [32]

Iqp
0 = c3

√
1 − P2

r

√
1 − P2

l γ −2hl⊥ · hr⊥ (12)

Iqp
an = c4

√
1 − P2

r

√
1 − P2

l γ −3(Plhr + Prhl )z · (nl × nr ),

(13)

where hr/l⊥ = hr/l − (hr/l · h)h/h2 are the components of
hr/l perpendicular to h [see Eqs. (B12) and (B13) in the
Appendix for the exact form of the coefficients c3 and c4].

From Eq. (13), we see that the anomalous quasiparticle
current is proportional to the scalar triple product of the
magnetizations Iqp

an ∝ χ = z · (nl × nr ) [32]. Here, χ is the
junction chirality, and it is nonzero only if the barrier po-
larizations and the magnetization direction are noncoplanar.
As in the previous example, the quasiparticle current and the
Josephson current have the same dependence on the spin-
dependent fields: for the usual components IS

0 , Iqp
0 ∝ hl⊥ ·

hr⊥, and for the anomalous components IS
an, Iqp

an ∝ χ .
Usually, Iqp

0 is the dominant contribution to the interferom-
eter current, as it is of the lower order in the small barrier
parameter γ −1, namely Iqp

an /Iqp
0 , IS

an/IS
0 ∼ γ −1 � 1. However,

if hl⊥ · hr⊥ = 0 the usual component vanishes and only the
anomalous current contributes. In other words, the measured
quasiparticle current is directly linked to the ϕ0 effect. To
illustrate this point further, in Fig. 2(b) we use the analytical
formulas (B12) and (B13) to plot the normalized quasiparticle
current for different magnetic configurations. Here, β is the
angle formed by the exchange fields on the S electrodes hr/l ,
which are taken to be perpendicular to h. Unlike in panel (a),
here we plot the total anomalous quasiparticle current Iqp

an to
stress the shift from an even-in-phase to odd-in-phase behav-
ior when the angle between the electrode magnetizations in-
creases. For β = 0, there is no ϕ0 effect, so the current is even
in the phase. Iqp

0 decreases with increasing β and vanishes for
β = π/2. In this case, the oscillation of δIqp are given by the
anomalous quasiparticle current, so that δIqp becomes odd in
ϕ. In Fig. 2(c) we plot the relation between the ϕ0 and ϕ

qp
0 .

It is worth mentioning, that to simplify equations and
obtain analytical solutions, we have assumed a low barrier
transmission at the S/F interfaces and between the x and y
wires. Consequently, the obtained quasiparticle current, be-
ing proportional to powers of a small interface parameter, is
also small. However, the findings of our work should still
hold qualitatively in setups with smaller interface resistances,
where the quasiparticle currents should be significantly larger.
In other words, our results give a lower bound of the current
amplitude. Moreover, the expressions for the quasiparticle
current, Eqs. (7), (8), (12), and (13) are valid for all tem-
peratures. Indeed, the temperature dependence enters the
coefficients ci, (i = 1, 2, 3, 4), given in Eqs. (A14), (A15),
(B12), and (B13). From these expressions one can show that
the quasiparticle current amplitudes are maximized at low
temperatures, and they decrease monotonically towards zero
at the superconducting critical temperature. This behavior of
δIqp is in contrast with the temperature behavior of the critical
Josephson current, whose sign may be reversed by changing
the temperature [2] (i.e., when a 0-π transition occurs).
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V. CONCLUSION

In summary, we have studied the current-phase relation
of an Andreev interferometer with an anomalous Joseph-
son junction. We have shown how the quasiparticle current
through the normal arm of the interferometer is affected by
the appearance of an anomalous phase ϕ0. Specifically, we
have studied the AJE in S/F/S structures with spin-splitting
field and Rashba SOC or spin-filtering barriers. Our results
show that there is also an anomalous contribution to the
phase-dependent part of the quasiparticle current proportional
to sin ϕ when ϕ0 is different from 0 and π . Moreover, the
usual and anomalous quasiparticle currents have the same
dependence on the spin-dependent fields as the anomalous
Josephson current. Suitable materials for the realization of
the anomalous Andreev interferometer are InSb [21], Bi wires
[78], Bi2Se3 [22], and InAs [24,79] due to the large spin-orbit
coupling, in combination with conventional superconductors
and normal metals. In particular, in systems with InAs a large

phase shift ϕ0 ≈ π/2 was experimentally observed [23] in
the Josephson current, and based on our findings, we expect
equally strong effect in the Andreev interferometer geometry.
For the ferromagnetic interferometers we propose EuS/Al
structures to engineer a ϕ0 junction in a S/FI/F/FI/S junction
due to the well-defined splitting and strong barrier polariza-
tion [80], while the F layer can consist of a Co wire [81,82].
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APPENDIX A: JOSEPHSON JUNCTION WITH RASHBA SOC

In this Appendix we present a detailed derivation of the expressions used in the main text for the currents in the presence of
Rashba SOC. In Sec. A 1 we first present the derivation of the Josephson current in the x wire, followed by the derivation of the
quasiparticle current in the y wire in Sec. A 2.

1. Current along the x wire

We start by solving the linearized Usadel equation, Eq. (3), with the appropriate boundary conditions—Eq. (4). First, let us
note that the retarded and advanced anomalous Green’s functions (GFs) in Nambu-spin space have the following structure

f̌ =
(

0 f̂ (ε)

f̂ (−ε) 0

)
, (A1)

where ˆ̄X = T X̂T −1, and T = iσ2K is the time-reversal transformation, with K being the complex conjugate operation.
Moreover, we can relate f̌ A to f̌ R as

f̌ A(ε, h, α) = f̌ R(−ε,−h,−α). (A2)

In the following we only write the retarded GF and omit the superscript to simplify the notation.
We find the condensate function f̂ perturbatively in κα , keeping terms up to the first order in this parameter. The solution is

f0 =
[((

1 + καx

2

)
A1,+ + B1,+

)
eiϕ/2 +

((
1 + καx

2

)
A2,+ + B2,+

)
e−iϕ/2

]
eκ+x

+
[((

1 + καx

2

)
A2,+ − B2,+

)
eiϕ/2 +

((
1 + καx

2

)
A1,+ − B1,+

)
e−iϕ/2

]
e−κ+x

+
[((

1 − καx

2

)
A1,− − B1,−

)
eiϕ/2 +

((
1 − καx

2

)
A2,− − B2,−

)
e−iϕ/2

]
eκ−x

+
[((

1 − καx

2

)
A2,− + B2,−

)
eiϕ/2 +

((
1 − καx

2

)
A1,− + B1,−

)
e−iϕ/2

]
e−κ−x, (A3)

f2 =
[((

1 + καx

2

)
A1,+ + B1,+

)
eiϕ/2 +

((
1 + καx

2

)
A2,+ + B2,+

)
e−iϕ/2

]
eκ+x

+
[((

1 + καx

2

)
A2,+ − B2,+

)
eiϕ/2 +

((
1 + καx

2

)
A1,+ − B1,+

)
e−iϕ/2

]
e−κ+x

−
[((

1 − καx

2

)
A1,− − B1,−

)
eiϕ/2 +

((
1 − καx

2

)
A2,− − B2,−

)
e−iϕ/2

]
eκ−x

−
[((

1 − καx

2

)
A2,− + B2,−

)
eiϕ/2 +

((
1 − καx

2

)
A1,− + B1,−

)
e−iϕ/2

]
e−κ−x, (A4)

where κ± =
√

−iκ2
ε ± iκ2

F , and the coefficients are given by

A1,± = F0

4γ κ±

eκ±Lx/2

sinh κ±Lx
, (A5a)
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A2,± = F0

4γ κ±

e−κ±Lx/2

sinh κ±Lx
, (A5b)

B1,± = καF0

8γ κ±

1

sinh κ±Lx

(
1

κ∓ sinh κ∓Lx
(e−κ±Lx/2 − eκ±Lx/2 cosh κ∓Lx ) − Lx

2
eκ±Lx/2

)
, (A5c)

B2,± = καF0

8γ κ±

1

sinh κ±Lx

(
1

κ∓ sinh κ∓Lx
(−eκ±Lx/2 + e−κ±Lx/2 cosh κ∓Lx ) + Lx

2
e−κ±Lx/2

)
. (A5d)

Having found the condensate function, we proceed to calculate the Josephson current in the F wire, which is given as

IS = πσF T

e

∑
ω

Im( f ∗
0 (∂x f0 − κα f2) − f ∗

2 ∂x f2). (A6)

Note that in Eq. (A6) we introduce the Matsubara frequencies ω = 2π (n + 1/2)T . The Matsubara GF is obtained by analytic
continuation of f̌ to the complex plane ε → iω. We can use the boundary conditions (4) to simplify the previous equation:

IS = 2πT

eRb

∑
ω>0

Im f ∗
0 (Lx/2)F0eiϕ/2. (A7)

After substitution the Eqs. (A3) and (A4) in Eq. (A7), we find the Josephson current:

IS = 2πσST

eγ 2

∑
ω>0

F2
0

[
Re

1

κ+ sinh (κ+Lx )
sin ϕ + καIm

( −Lx/2

κ+ sinh (κ+Lx )
+ cosh (κ+Lx )

|κ+|2| sinh (κ+Lx )|2
)

cos ϕ

]
. (A8)

Here we identify the usual I0 and anomalous Ian components of the Josephson current as the terms proportional to sin ϕ and
cos ϕ, respectively. The usual component is independent of the SOC strength, while the anomalous current is proportional to κα

and is nonvanishing if the exchange field h is finite.

2. Current along the y wire

Starting from Eq. (5), and imposing f̌y(±Ly/2) = 0, we find the condensate function in the y wire

f̌y = wx

2γ 2
0

√−iκ ′
ε cosh (

√−iκ ′
εLy/2)

f̌ (0) sinh (
√−iκ ′

ε(Ly/2 − |y|)), (A9)

where f̌ (0) is the condensate function for the x wire (found in Sec. A 1), evaluated at the intersection of x and y wires. Next, we
use f̌y to calculate the quasiparticle current δIqp from Eq. (6). We decompose this current as δIqp = δI1 + δI2, where

δI1 = − σN

eLy

∫
dεFT (ε,V/2)

1

16
〈Tr(( f̌ R)2 + ( f̌ A)2)〉 = πT σN

2eLy
Im

∑
ω>0

〈Tr f̌ (ω + ieV/2)2〉, (A10)

δI2 = 4σN

eLy

∫ ∞

0
dεFT (ε,V/2)

1

16
〈Tr( f̌ R f̌ A)〉. (A11)

Using solution (A9), the summands in Eq. (A10) can be written as

〈Tr f̌ (ω + ieV/2)2〉 = w2
x

γ 4
0 κ ′

ω
2 cosh2 (κ ′

ωLy/2)

(
sinh (κ ′

ωLy)

2κ ′
ωLy

− 1

2

)
(| f0(0)|2 − | f (0)|2)

∣∣∣∣
ω=2π (n+1/2)T +ieV/2

, (A12)

where f0(0) and f (0) are the singlet and triplet component of the GF of the x wire at the crossing point. Similarly, the integrand
in Eq. (A11) can be written as

〈Tr( f̌ R f̌ A)〉 =
w2

x

(
sinh (

√
2κ ′

εLy/2)√
2κ ′

εLy
− sinh (

√
2iκ ′

εLy/2)√
2iκ ′

εLy

)
2γ 4

0 |κ ′
ε|2| cosh (

√−iκ ′
εLy/2)|2 ( f0(ε, h, α) f0(ε,−h,−α)∗

+ f0(−ε, h, α)∗ f0(−ε,−h,−α) − f (ε, h, α) · f (ε,−h,−α)∗ − f (−ε, h, α)∗ · f (−ε,−h,−α)). (A13)

Finally, the usual (Iqp
0 ) and anomalous (Iqp

an ) quasiparticle currents are

Iqp
0 = πσN T

2eLy
Im

∑
n�0

w2
x

(
sinh (κ ′

ωLy )
2κ ′

ωLy
− 1

2

)
γ 4

0 κ ′
ω

2 cosh2 (κ ′
ωLy/2)

F2
0

4γ 2

(
1

κ2+ sinh2 (κ+Lx/2)
+ 1

κ2− sinh2 (κ−Lx/2)

)∣∣∣∣
ω=2π (n+1/2)T +ieV/2

+ σN

4eLy

∫ ∞

0
dεFT (ε,V/2)

w2
x

(
sinh (

√
2κ ′

εLy/2)√
2κ ′

εLy
− sinh (

√
2iκ ′

εLy/2)√
2iκ ′

εLy

)
γ 4

0 |κ ′
ε|2| cosh (

√−iκ ′
εLy/2)|2

|F0|2
4γ 2
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×
(

1

|κ+|2| sinh (κ+Lx/2)|2 + 1

|κ−|2| sinh (κ−Lx/2)|2
)

, (A14)

Iqp
an = κα

πσN T

2eLy
Im

∑
n�0

w2
x

(
sinh (κ ′

ωLy )
2κ ′

ωLy
− 1

2

)
γ 4

0 κ ′
ω

2 cosh2 (κ ′
ωLy/2)

F2
0

4γ 2

(
Lx

2κ2+ sinh2 (κ+Lx/2)
− Lx

2κ2− sinh2 (κ−Lx/2)

+ tanh (κ−Lx/2)

κ2+κ− sinh2 (κ+Lx/2)
− tanh (κ+Lx/2)

κ2−κ+ sinh2 (κ−Lx/2)

)∣∣∣∣
ω=2π (n+1/2)T +ieV/2

+ κα

σN

4eLy

∫ ∞

0
dεFT (ε,V/2)

w2
x

(
sinh (

√
2κ ′

εLy/2)√
2κ ′

εLy
− sinh (

√
2iκ ′

εLy/2)√
2iκ ′

εLy

)
γ 4

0 |κ ′
ε|2| cosh (

√−iκ ′
εLy/2)|2

|F0|2
4γ 2

× Im

{
tanh (κ−Lx/2)

|κ+|2κ−| sinh (κ+Lx/2)|2 − tanh (κ+Lx/2)

|κ−|2κ+| sinh (κ−Lx/2)|2
}
. (A15)

The factors c1 and c2 defined in Eqs. (7) and (8) of the main text can be extracted from Eqs. (A14) and (A15) by assuming the
limit of weak exchange field h.

APPENDIX B: S/FI/F/FI/S JUNCTION

In this Appendix we present a detailed derivation of the expressions used in the main text for the currents in the S/FI/F/FI/S
geometry. In Sec. B 1 we first present the derivation of the Josephson current in the x wire, followed by the derivation of the
quasiparticle current in the y-wire in Sec. B 2.

1. Current along the x wire

The general solution of Eq. (9) for the condensate function in the x wire reads

f̂ = (A + Aσ3)eκ+x + (B + Bσ3)e−κ+x + (C − Cσ3)eκ−x + (D − Dσ3)e−κ−x + Eσ1eiκεx + Fσ1e−iκεx + Gσ2eiκεx + Hσ2e−iκεx.

(B1)
Coefficients in Eq. (B1) can be found by applying the boundary conditions [Eq. (10)]. In the ferromagnetic wire, the supercurrent
is given as

IS = πσF
T

e

∑
ω

Im{ f ∗
0 ∂x f0 − f ∗ · ∂x f }, (B2)

where f̂ω = f0 + f · σ is decomposed into the scalar singlet amplitude f0 and the vector of triplet states f . Assuming κ−1
F �

Lx � κ−1
ω , we can substitute the long range components f1 and f2 by their average values, given by

〈 f1/2〉 = ∂x f1/2|x=−Lx/2 − ∂x f1/2|x=Lx/2

κ2
ωLx

. (B3)

Then, using the boundary conditions [Eq. (10)], the long range triplet components are given by

〈 f1/2〉 = 1

κ2
ωLxγ

(
iGl,0(Pl,2/3 f3/1(−Lx/2) − Pl,3/1 f2/3(−Lx/2)) −

√
1 − P2

l Fl,1/2e−iϕ/2

+ iGr,0(Pr,2/3 f3/1(Lx/2) − Pr,3/1 f2/3(Lx/2)) −
√

1 − P2
r Fr,1/2eiϕ/2

)
, (B4)

where Ĝr/l and F̂r/l are given by Eq. (11). Using solution (B1), we can calculate the f0 and f3 near each boundary independently
without overlapping. To first order in γ −1, we obtain:

f (1)
0,r/l =

√
1 − P2

r/l

2γ

(Fr/l,0 + Fr/l,3

κ+
e−κ+(Lx/2∓x) + Fr/l,0 − Fr/l,3

κ−
e−κ−(Lx/2∓x)

)
eiηr/l ϕ/2 (B5)

f (1)
3,r/l =

√
1 − P2

r/l

2γ

(Fr/l,0 + Fr/l,3

κ+
e−κ+(Lx/2∓x) − Fr/l,0 − Fr/l,3

κ−
e−κ−(Lx/2∓x)

)
eiηr/l ϕ/2. (B6)

The second-order terms in γ −1 are also important to obtain the anomalous Josephson effect:

f (2)
0,r/l = −iGr/l,0

2γ
(Pr/l,1〈 f2〉 − Pr/l,2〈 f1〉)

(
e−κ+(Lx/2∓x)

κ+
− e−κ−(Lx/2∓x)

κ−

)
(B7)
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f (2)
3,r/l = −iGr/l,0

2γ
(Pr/l,1〈 f2〉 − Pr/l,2〈 f1〉)

(
e−κ+(Lx/2∓x)

κ+
+ e−κ−(Lx/2∓x)

κ−

)
. (B8)

To lowest order in γ −1, the current (B2) can be written as

IS = πσF T

eγ

∑
ω

Im ±
√

1 − P2
r/l ( f ∗

0 Fr/l,0 − f ∗ · F r/l )e
iηr/l ϕ/2|x=±Lx/2. (B9)

Finally, we find the usual and anomalous Josephson currents:

IS
0 = − 2π

eRb
(hl⊥ · hr⊥)

√
1 − P2

r

√
1 − P2

l√
2Lxγ 2

∑
ω>0

T F ′2
0

κ2
N

(B10)

IS
an = − 2π

eRb
(χl − χr )

√
1 − P2

r

√
1 − P2

l

κF hLxγ 3

∑
ω>0

T G0F0F ′
0

κ2
ω

. (B11)

For simplicity we have assumed the same amplitude of the order parameter in the two electrodes. The chiralities are defined as
χr/l = h · (Pr/l × hl/r), and hr/l⊥ = hr/l − (hr/l · h)h/h2 are the components of hr/l perpendicular to h.

2. Current along the y wire

We obtain the quasiparticle current in the y-wire by following the same procedure as in Sec. A 2. The coefficients c3 and c4

in Eqs. (12) and (13) are

c3 = −πT σN

2eLy
Im

∑
n�0

w2
x

(
sinh (κ ′

ωLy )
2κ ′

ωLy
− 1

2

)
γ 4

0 κ ′
ω

2 cosh2 (κ ′
ωLy/2)

2(F ′
0)2

κ4
ωL2

x

∣∣∣∣
ω=2π (n+1/2)T +ieV/2

+ σN

4eLy

∫ ∞

0
dεFT (ε,V/2)

w2
x

(
sinh (

√
2κ ′

εLy/2)√
2κ ′

εLy
− sinh (

√
2iκ ′

εLy/2)√
2iκ ′

εLy

)
γ 4

0 |κ ′
ε|2| cosh (

√−iκ ′
εLy/2)|2

2|F ′
0|2

|κε|4L2
x

, (B12)

c4 = πT σN

2eLy
Im

∑
n�0

w2
x

(
sinh (κ ′

ωLy )
2κ ′

ωLy
− 1

2

)
γ 4

0 κ ′
ω

2 cosh2 (κ ′
ωLy/2)

√
2G0F0F ′

0

κF κ4
ωL2

x

∣∣∣∣
ω=2π (n+1/2)T +ieV/2

+ σN

4eLy

∫ ∞

0
dεFT (ε,V/2)

w2
x

(
sinh (

√
2κ ′

εLy/2)√
2κ ′

εLy
− sinh (

√
2iκ ′

εLy/2)√
2iκ ′

εLy

)
γ 4

0 |κ ′
ε|2| cosh (

√−iκ ′
εLy/2)|2

−√
2Re{G∗

0F∗
0 F ′

0}
κF |κε|4L2

x

. (B13)
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Asymmetric superconducting tunnel junctions with gaps �1 > �2 have been proven to show a peculiar
nonlinear bipolar thermoelectric effect. This arises due to the spontaneous breaking of electron-hole sym-
metry in the system, and it is maximized at the matching-peak bias |V| = Vp = (�1 − �2)/e. In this paper,
we investigate the interplay of photon-assisted tunneling (PAT) and bipolar thermoelectric generation. In
particular, we show how thermoelectricity, at the matching peak, is supported by photon absorption and
emission processes at the frequency-shifted sidebands V = ±Vp + n�ω, n ∈ Z. This represents a sort of
microwave-assisted thermoelectricity. We show the existence of multiple stable solutions, being associ-
ated with different photon sidebands, when a load is connected to the junction. Finally, we discuss how the
nonlinear cooling effects are modified by the PAT. The proposed device can detect millimeter-wavelength
signals by converting a temperature gradient into a thermoelectric current or voltage.

DOI: 10.1103/PhysRevApplied.19.044024

I. INTRODUCTION

Hybrid superconducting systems with explicit broken
particle-hole symmetry show unipolar thermoelectricity
[1–9]. The particle-hole symmetry around the Fermi sur-
face of Bardeen-Cooper-Schrieffer (BCS) superconductors
can be broken, for instance, in superconductor/ferromagnet
hybrid structures. The magnetic proximity effect in a thin
superconductor-ferromagnetic insulator bilayer causes an
almost homogeneous spin splitting of the density of states
(DOS) [10]. If the electronic transport is spin-polarized,
for example via a tunneling spin filter [11–14], the DOS
contribution of one spin component becomes predominant
over the other one, leading to an effective particle-hole
symmetry breaking [4].

It has recently been theoretically [15–17] and exper-
imentally [18,19] shown that superconducting tunnel
junctions, where the Josephson coupling is properly sup-
pressed, develop a large thermoelectric effect if the
electrode with the larger gap has a higher temperature.
In contrast to systems with magnetic proximity effect, in
superconducting tunnel junctions the electron-hole sym-
metry is broken by the combination of a sufficiently

*alberto.hijano@ehu.eus
†fs.bergeret@csic.es
‡francesco.giazotto@sns.it
§alessandro.braggio@nano.cnr.it

strong thermal gradient and a monotonically decreasing
DOS, which induces spontaneous voltage polarization.
The resulting thermoelectricity is bipolar and strongly
nonlinear.

We focus here on photon-assisted tunneling (PAT),
which has been extensively studied in the dissipative
regime [20–30]. However, the influence of PAT on the
recently observed bipolar thermoelectricity is still unex-
plored. In this work, we address microwave-assisted
thermoelectricity by investigating the interplay between
PAT and bipolar thermoelectricity in a superconductor-
insulator-superconductor (S-I -S′) tunnel junction. This
kind of tunnel junction normally works at very low
temperatures in order to preserve the superconductivity.
It is worth noting that thermoelectricity at these tem-
peratures is very strong [18] due to the nonlinearity
of the effect. The obtained results show intriguing per-
spectives for application as millimeter-wavelength sig-
nal detectors [7], flux-controlled high-frequency oscil-
lators [17], controlled generators [16], superconducting
qubits [31–35], quantum sensors [36,37], and, more
broadly, in the emergent field of superconducting quantum
technologies.

This paper is organized as follows: In Sec. II we present
the basic equations describing the dc and ac tunneling
charge and heat currents through a tunnel junction. In
Sec. III we numerically obtain the I(V) characteristic
curves and study the thermoelectric power output. Finally,
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we study the impact of the ac voltage source on the cooling
power of the junction. We summarize the results in Sec. IV.

II. THE MODEL

We consider an S-I -S′ tunnel junction where each super-
conducting electrode is kept in thermal equilibrium; see
Fig. 1(a). The gap of the left superconductor (S1) is consid-
ered to be higher than that of the right superconductor (S2),
�1 > �2. This can be done by using different supercon-
ducting materials for each electrode or by taking advantage
of the inverse proximity effect by attaching a normal layer
to the right superconductor, which effectively suppresses
the gap [18]. The asymmetry parameter r = �0,2/�0,1 <

1 quantifies the asymmetry between the two terminals,
where �0,α is the zero-temperature gap of electrode α. If
the electrodes are powered by a constant voltage source
V, the chemical potential of the electrodes are shifted by
μ1 − μ2 = −eV.

The tunneling current between the two superconduc-
tors has three contributions: the quasiparticle current, the
Cooper-pair current, and the interference current, which
gives the interference contribution associated with break-
ing and recombination processes of Cooper pairs in differ-
ent electrodes [38–41]. The latter two contributions stem
from the Josephson coupling, and they depend on the phase
difference between the superconductors. At finite bias,
those terms oscillate between positive and negative values,
and might be detrimental to a stable thermoelectric effect
[17]. Therefore, we assume that the Josephson coupling
is sufficiently weak [18,42–44], and neglect those terms,
such that we consider only the quasiparticle current, which
is phase-independent. The Josephson current can also be
suppressed by applying a suitable in-plane magnetic field
or by applying a small out-of-plane magnetic field in a
superconducting quantum interference device (SQUID) as
in [18,19].

The dc tunneling quasiparticle charge Iα and heat
Q̇α currents flowing out from electrode α = 1, 2 are

(a) (b)

(c) (d)

FIG. 1. (a) Simple circuit scheme of the photon-assisted bipolar thermoelectricity. The two superconductors have a different gap
�1 > �2 and are subject to a temperature difference T1 > T2. The S-I -S′ junction is powered by a dc and an ac voltage source.
(b) Equilibrium Ī(V) curves for a finite ac voltage with �ω = 0.1�0,1 and different amplitudes a. (c,d) Time-averaged quasiparticle
current Ī(V) dependence on the amplitude (c) and angular frequency (d) of the ac field. The inset in panel (c) shows the integrated
thermoelectric power as a function of a (solid line) and the behavior predicted in the small-signal limit (dashed line). The temperatures
are T1 = T2 = 0.4Tc,1 in panel (b), and T1 = 0.7Tc,1 and T2 = 0 for panels (c) and (d).
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given by
(

Iα
Q̇α

)
= GT

e2

∫
dE

( −e
E − μα

)
Nα(E − μα)Nᾱ(E − μᾱ)

× (fα(E − μα) − fᾱ(E − μᾱ)), (1)

with ᾱ the opposite side with respect to α. Here, −e is
the electron charge, GT is the conductance of the junction,
and fα(E) = [exp(E/kBTα) + 1]−1 is the α-lead Fermi-
Dirac distribution. The BCS DOS is given by Nα(E) =
Re{−i(E + i�α)/

√
�2

α − (E + i�α)2}, where �α is the
Dynes parameter [45], describing inelastic processes. The
Dynes parameter accounts for the broadening of the BCS
coherent peaks at E = ±� in the DOS. In the calculations
below, we set �1 = �2 = 10−4�0,1, which is a reason-
able value typically found in experiments with high-quality
tunnel junctions [46–49].

From Eq. (1), one can easily check that the S-I -S′ is a
reciprocal electric device. Indeed, the DOS of the super-
conducting electrodes is electron-hole symmetric, so that
the quasiparticle charge current in the junction is odd in
voltage I(−V) = −I(V), where we focus here on the cur-
rent flowing out of the left electrode, I ≡ I1. Moreover, due
to energy conservation, Q̇1 + Q̇2 − Ẇ = 0, where Ẇ =
−VI describes the electric power generated (dissipated) for
Ẇ > 0 (Ẇ < 0) by the junction. Here we use the active
sign convention by considering the electrical work done
by the junction over its surroundings as positive. At the
equilibrium T1 = T2, the junction is dissipative (IV > 0).
When the temperature of the left electrode, with a bigger
gap, is higher than that on the right electrode, T1 � T2/r,
it is possible to generate bipolar thermoelectricity [15,18]
with the current I flowing against the bias (IV < 0). This
occurs at subgap voltages e|V| � �1 + �2 [15–17]. Fur-
thermore, from the negative differential conductance at
V ≈ 0, the thermocurrent grows to a maximum around the
matching peak eVp = �1 − �2, and for e|V| � �1 + �2
it again becomes dissipative. In an open-circuit configura-
tion, a thermoelectric Seebeck voltage ±VS is induced, for
which I(±VS) = 0. The double sign of the Seebeck voltage
reflects the bipolarity of the thermoelectric effect, which is
a consequence of the reciprocity of the device.

If an ac source is included in addition to the dc voltage,
V(t) = V + a cos (ωt), for instance by placing the junc-
tion in a microwave field, the average current is no longer
simply given by Eq. (1). The time-averaged dc tunnel
(charge and heat) currents Ī = (1/T)

∫ T
0 dt I(t) and ¯̇Q =

(1/T)
∫ T

0 dt Q̇(t) take the form [20,30,50]

(
Ī
¯̇Q
)

=
∞∑

n=−∞
J 2

n

( ea
�ω

)(
I (V − n�ω/e)
Q̇ (V − n�ω/e)

)
, (2)

where T = 2π/ω is the period of the ac voltage. This
is the standard result for PAT, where Jn(x) is the nth

Bessel function of the first kind. In Eq. (2) we assume
that the frequency of the ac voltage is small enough so
that it modulates the potential energy of the quasiparticles
adiabatically [25,51,52]. In this approximation, the ac fre-
quency is necessarily bounded by the plasma frequency
of the two electrodes and the driving frequency needs to
be �ω < 2�, in order to neglect high-order processes in
the current due to the direct breaking of Cooper pairs due
to photon absorption. At the same time, we will mainly
focus on quite small amplitudes of the voltage oscillations,
ea � �, as we will explain in Sec. III, since high ampli-
tudes are detrimental for the thermoelectric effect restoring
the usual dissipative behavior at high energies. Finally, the
averaged current Ī is also reciprocal, Ī(−V) = −Ī(V), due
to the reciprocity of the junction I(V). For this reason, in
the following, we show only results for positive biases.

III. RESULTS

In Fig. 1(b) we show the Ī(V) characteristic curve for the
equilibrium case T1 = T2 = 0.4Tc,1 in the presence of PAT
with �ω = 0.1�0,1 for different amplitudes. As expected
for equilibrium temperatures, the junction has only a dissi-
pative behavior and the PAT introduces different sidebands
near the matching peak Vp . Indeed, if the frequency �ω/e
of the ac voltage is larger than the width of the matching
peak and the amplitude a is not too high (see later), we
expect to see a weighted replication of the dc character-
istics displaced in voltage in the sidebands. According to
Eq. (2), one easily finds the position of the matching peak
sidebands at eV = eVp + n�ω, n ∈ Z.

In Figs. 1(c) and 1(d) we show the Ī(V) characteristics
when the junction is subject to a temperature difference
T1 = 0.7Tc,1 and T2 = 0, with Tc,α the critical tempera-
tures of the electrodes. The temperature difference of the
electrodes has been chosen in order to maximize the ther-
moelectric effect, as previously stated [15]. Figures 1(c)
and 1(d) show the effect of a and ω on Ī(V), respectively.
For a = 0 or ω = 0 (blue line), the voltage source has no
ac component, so the electric current displays the conven-
tional behavior for a single thermoelectric peak centered at
eVp = �1 − �2. The sharpness of the thermoelectric peak
depends on the phenomenological Dynes parameter, with
lower � favoring sharper peaks.

As expected from Eq. (2), for a finite ac voltage source,
the quasiparticle current presents multiple thermoelectric
peaks which are separated periodically in voltage. As the
value of a increases, the height of the main thermoelec-
tric peak decreases in absolute value while the sidebands
increase in size. Clearly, at fixed ω, by changing the
amplitude a, the weights given by the Bessel functions
change such that the height of the sideband peaks change
correspondingly. Physically, for V > 0, the sideband ther-
moelectric peaks in the averaged current correspond to
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processes where photons are absorbed (emitted), respec-
tively, for n < 0 (n > 0) to support thermoelectricity at
the sideband voltages. Note that the signature of the ther-
moelectric peak corresponding to the sidebands can also
be found in the dissipative regime as a dip of the Ī(V)

characteristics [see the dip at eV/�0,1 ≈ 0.45 of the green
line in Fig. 1(c)]. All sidebands do not necessarily become
thermoelectric, being weighted by a different Bessel func-
tion and mixing different channels in the thermoelectric
and dissipative regimes. In general, the I(V) characteris-
tic at sufficiently high voltages remains in the dissipative
regime.

In other words, the ac source seems to redistribute the
thermoelectric power to different sidebands. This can be
better quantified by looking at the integrated thermoelec-
tric power, defined as

Pint = −
∫ VS

0
dV Ī(V), (3)

which decreases with increasing a [see inset of Fig. 1(c)],
and remains almost constant under variations of ω (not
shown). The dashed line in the inset corresponds to the
power given in the small-signal limit. Indeed, when x =
(ea/�ω) � 1, the variation of the averaged current may
be obtained by expanding the Bessel functions to the low-
est order J0(x) ≈ 1 − x2/4 and J±n(x) ≈ (±x/2)n/n! in
Eq. (2), and retaining only x2 terms; one finds the cur-
rent variation �Ī = (ea/(2�ω))2[I(V + �ω/e) − 2I(V) +
I(V − �ω/e)]. This is physically equivalent to retaining
only the contribution of the first two sidebands with n =
±1 [25]. This simple approximation already shows that
Pint is indeed reduced by increasing the amplitude a. Fur-
thermore, when the amplitude becomes comparable to the
matching peak voltage Vp , the ac signal starts to explore
points of the I(V) characteristic curve with positive cur-
rent (I > 0) and the averaged thermocurrent needs to be
correspondingly suppressed.

The previous discussion shows that the PAT in
general just redistributes the thermoelectric power but
does not increase, on average, the intrinsic thermo-
electric capabilities of the junction. This is not unex-
pected, since also for the cooling properties of normal-
metal–insulator–superconductor tunnel junctions a similar
result is observed for the cooling capabilities in the pres-
ence of PAT [53–56]. However, the redistribution due to
PAT determines new values of voltages (sidebands) where
the system is strongly thermoelectric for biases where
the thermoelectric performance was originally smaller.
For such particular values of the bias, one observes a
microwave enhanced bipolar thermoelectricity. Further-
more, in the absence of an ac source, the thermoelectric
peaks can be very narrow in voltage range, so a change
in the operating point (dc voltage) could result in a drastic
reduction of the thermoelectric power. This may happen,

for example, with a change in the load resistance when
the junction operates as a thermoelectric generator. The
ac source widening the Ī(V) characteristic thermoelectric
curve reduces the issue of a precise biasing. At the same
time, it allows one to tune the voltages where the thermo-
electric effect is maximized by varying ω, and in this way
it increases the tunability of the device. In other words,
there are regimes in the biases where the thermoelectricity
is literally microwave-assisted, showing a unique inter-
play between thermoelectricity and coherent absorption
and emission of photons. This increased tunability and bet-
ter performance at specific biases may be relevant for some
specific applications. Furthermore, we expect that the pho-
ton detection in S-I -S′ junctions can be quantum-limited
[36,37], analogously to what has been reported for tunnel
junctions in the equilibrium (dissipative) case [24,25].

In Fig. 2 we analyze the power generated by the ther-
moelectric effect. Figure 2(a) shows the maximum power
for a given a and ω, i.e., the point of the Ī characteris-
tic curve which maximizes the thermoelectric power P =
maxV(−Ī(V)V). For low values of a, the maximum power
still coincides with the central peak. But increasing the
amplitude of the ac source decreases the depth of the
central peak, reducing the maximum power accordingly.
Above a certain amplitude, roughly delimited by the lower
dashed line in Fig. 2(a), the maximum power shows an
oscillatory behavior. This dashed line represents the points
where the weight of the first terms in the series given by
Eq. (2) becomes greater than the zeroth term with increas-
ing amplitude, i.e., J1(ea/�ω) = J0(ea/�ω) for ea/�ω =
1.43. Therefore, above this line, the maximum power can
also be found in one of the sidebands. In the presence
of PAT, the power of the sidebands varies significantly
with ω, generating this complex oscillatory behavior pre-
sented in Fig. 2(a). The middle (ea/�ω = 2.63) and upper
(ea/�ω = 3.77) dashed lines correspond to the bound-
aries where the second (|n| = 2) and third (|n| = 3) terms,
respectively, become predominant in Eq. (2). As shown in
Fig. 2(a), there is a shift of the oscillating pattern delim-
ited by the middle dashed line, and the oscillating behavior
almost vanishes above the upper line.

In Fig. 2(b) we show the Seebeck voltage VS depen-
dence on the amplitude a taken at different frequencies ω.
It can be seen that VS increases in steps by increasing the
amplitude. As discussed above, the influence of a on the
thermoelectric effect is to redistribute the power to other
voltages by increasing the number of thermoelectric side-
band peaks. Each step is associated with the contribution
of additional sidebands which, once they cross the Ī = 0
line, shift the Seebeck voltage sharply. However, beyond
a certain value of a, as discussed above, the suppression
of the thermoelectric effect leads to a drop of the Seebeck
voltage, as shown by the �ω = 0.06�0,1 (blue) line.

The S-I -S′ junction can be used as a thermoelectric
power source by replacing the external dc voltage source
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(a) (b)

(c) (d)

FIG. 2. (a) Maximum power and (b) Seebeck voltage as functions of the amplitude and angular frequency of the ac field. (c) Power
(solid) and voltage (dashed) of the stable points of the Ī(V) characteristic curve for a fixed load R = 6G−1

T . (d) Efficiency η of the
thermoelectric effect. In panels (c) and (d), the frequency is set to �ω = 0.1�0,1. The temperatures of the superconducting electrodes
are T1 = 0.7Tc,1 and T2 = 0 for panels (a), (c), and (d), and T1 = 0.6Tc,1 and T2 = 0 for panel (b).

with a resistive load R. Ohm’s law constrains the val-
ues that the current and the voltage can take, so that the
current can only flow when the junction operates as a ther-
moelectric generator. The operating points are determined
by the intersection of the Ī(V) characteristic curve with
a line of slope −1/R. Similarly to the purely dc case,
only the solutions with a positive dĪ/dV are stable in the
presence of PAT [15,16,18]. As shown in Fig. 2(c), the
inclusion of an ac voltage source allows also for multiple
stable working points which appear at different voltages
(dashed lines) and consequently different powers (solid
lines). In the example, we consider a load value of R =
6G−1

T . For certain ac amplitudes we get multiple stable
points labeled with different n. The n = 0 (blue) line corre-
sponds to the solution associated with the matching peak,
while the n = 1, 2, 3 lines correspond to sidebands with a
lower voltage. It is possible to find stable points with a
higher voltage by choosing a higher load resistance (not
shown). For 0.06 < ea/�0,1 < 0.15, one can find two sta-
ble working points for n = 0 (blue), due to the main peak,
and n = 1 (yellow), corresponding to the first sideband.
The system can be driven to the stable working points by
applying current pulses similarly to what has been realized

in Ref. [18] in the absence of any ac signal. Therefore, PAT
can be used to design devices with an increased number
of states occurring at different voltages. This, for example,
would increase the number of logic states of the proposed
thermoelectric volatile memory [57–59].

Figure 2(d) shows the thermal efficiency η = Ẇ/Q̇1,
which describes the ratio of the net work output to the
heat input, for different values of a. As in the case of the
power, the inclusion of an ac source does not offer a way
to increase globally the maximum efficiency. However, the
widening of the curves is beneficial to avoid efficiency
drops stemming from changes in the voltage operating
point. The dashed vertical lines in Fig. 2(d) show the area
where the system is thermoelectric V < VS, and where it is
dissipative in the absence of the ac signal. We see that PAT
widens the voltage values where the system is thermoelec-
tric. The ac signal leads to a moderate efficiency reduction
at the matching peak, but it increases its efficiency for
certain values of V.

Finally, in Fig. 3 we investigate the cooling power of
the S-I -S′ junction. By applying an external bias, for spe-
cific temperature conditions [16], it is possible to extract
heat and reduce the electronic temperature of the lower-gap
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(a) (b)

FIG. 3. (a) Heat current (cooling power) extracted from the right (cold) superconducting electrode in the cooling regime and (b)
coefficient of performance (COP) for different frequencies. The amplitude of the ac voltage is set to ea = 0.15�0,1. The temperatures
of the superconducting electrodes are T1 = 0.5Tc,1 and T2 = 0.4Tc,1.

superconductor [16,43,54]. In Fig. 3(a) we show the heat
extracted from the lower-gap superconductor for temper-
atures T1 = 0.5Tc,1 and T2 = 0.4Tc,1. The voltage range
where there is no cooling is represented by dashed lines.
If the applied voltage is small, the system does not reach
the cooling regime and the heat flows from the hot to the
cold terminal. The cooling shares some similarities with
the thermoelectric effect; it requires the hot superconduc-
tor to possess a larger gap than the cold superconductor
and the cooling power is maximized at voltage bias eV =
�1 − �2. With PAT, the ac voltage source creates addi-
tional sidebands to the cooler, widening the window where
the cooling is possible [53]. Figure 3(b) shows the coeffi-
cient of performance COP = −Q̇2/Ẇ, which describes the
efficiency of the extracted heat with respect to the applied
work. Similarly to the thermoelectric efficiency, the max-
imum COP is slightly suppressed by the presence of PAT
since also in this case the PAT will not increase globally
the efficiency of the system but will redistribute the cooling
capabilities over different cooling sidebands. Analogously
to the thermoelectricity, there are specific values of the bias
where the cooling is microwave-enhanced.

IV. CONCLUSIONS

In this work, we have discussed the influence of photon-
assisted tunneling on the bipolar thermoelectric effect
occurring in an S-I -S′ tunnel junction. The ac voltage
source leads to a weighted replication of the bipolar ther-
moelectric dc characteristic curve displaced in voltages.
This leads to the appearance of sidebands whose posi-
tion is determined by the frequency of the ac field. The
redistribution of the power to other voltages leads glob-
ally to a reduction of the net thermopower output of the
matching peak, but it broadens the thermoelectric region,
potentially increasing even the obtainable Seebeck voltage.
Therefore, changes in the operating point of the junction
will have a less dramatic effect over the thermoelectric
performance. We have specifically investigated how this
redistribution mechanism of the bipolar thermoelectricity

is influenced by the ac signal amplitude. The photon emis-
sion and absorption sidebands for the bipolar thermoelec-
tricity constitute, in a certain sense, microwave-assisted
thermoelectricity. The thermoelectric power and the effi-
ciency for some specific values of the voltages is even
enhanced.

Furthermore, the system can be driven to the additional
stable working points selected by the sidebands, so PAT
can be used to design devices with an increased number
of states at different voltages, potentially increasing the
number of logic states of a thermoelectric volatile memory
[57–59].

Finally, we have studied the influence of PAT on the
cooling performance of the junction. Similar to the ther-
moelectric effect, the cooling power is also influenced by
the presence of PAT, and the redistribution of the cooling
capabilities into sidebands also allows one to increase the
COP at specific voltages.

From the fundamental point of view, this application
shows the intriguing interplay between thermoelectricity
and coherent photon absorption and emission in an exper-
imentally accessible setup. We think that the obtained
results could be relevant for quantum-limited microwave
detection [18,19], quantum sensing, and microwave-
superconducting technologies.
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We extend the Mattis-Bardeen theory for the dynamical response of superconductors to include different types
of Hall responses. This is possible thanks to a recent modification of the quasiclassical Usadel equation, which
allows for analyzing Hall effects in disordered superconductors and including the precise frequency dependence
of such effects. Our results form a basis for analyzing dynamical experiments especially on novel thin-film
superconductors, where ordinary Hall and spin Hall effects can both show up.

DOI: 10.1103/PhysRevB.108.104506

I. INTRODUCTION

Simultaneous application of electric and magnetic fields
on a conductor leads to the presence of a charge current
with a transverse component perpendicular to both fields, in
addition to the ordinary longitudinal current in the direction
of the electric field. This ordinary Hall effect has been known
since the 19th century [1] and it can be directly incorporated
into the Drude model [2,3] of electronic conduction once the
Lorenz force due to the magnetic field is included. Varying
the electric field in time leads to similarly varying longitudinal
and transverse charge currents [4]. This dynamical Hall effect
can be observed for example in optical spectroscopy via the
Faraday-Kerr rotation of the polarization state of light [5,6].
For frequencies low compared to the scattering rate and for
materials in their normal state, both longitudinal and Hall
currents are in phase with the electric field. This is in contrast
with the superconducting state [7], featuring both in-phase
and out-of-phase contributions. For the longitudinal response,
the former describes electronic transitions and features a su-
perconducting gap at low temperatures, whereas the latter
results from the supercurrent. Despite some attempts over the
years [8,9] based on phenomenological two-fluid models and
Bardeen-Cooper-Schrieffer (BCS) theory, to our knowledge
the microscopic extension of the Drude model for the dynam-
ical Hall response in superconductors in the dirty limit has
not been presented before. We fill this gap by deriving the
frequency dependent linear conductivity of dirty superconduc-
tors in the presence of the Hall effect and discuss how the
in- and out-of-phase parts of the transverse response show up

*alberto.hijano@ehu.eus
†sakineh.vosooghi@gmail.com
‡tero.t.heikkila@jyu.fi

in the amplitude and phase of the frequency dependent Kerr
response of such materials.

In type II superconductors, motion of vortices and the flux
they carry gives additional contributions to the Hall effect
[10–13]. By now, especially in the steady state, these effects
are well studied. Here we consider situations below the critical
field in which no vortices are present, concentrating on the
time-dependent response in the uniform gapped state.

In the presence of spin-orbit interaction, another type of
Hall effect called the spin Hall effect occurs [14]. It involves
the generation of a transverse spin current in response to
a charge current. There are two major mechanisms for this
spin Hall effect: in the intrinsic mechanism, it is produced
by the inversion symmetry breaking either due to the lattice
(Dresselhaus spin-orbit coupling (SOC) [15]) or the sample
structure (Rashba spin-orbit coupling [16]), and in the ex-
trinsic mechanism it results from the spin dependence of the
scattering.

In superconductors, the spin Hall effect couples (equi-
librium) supercurrents and spin [17–21]. In addition, super-
conductors show also a quasiparticle spin Hall effect, which
behaves otherwise similar to the normal-state version but
depends strongly on temperature. Vortex motion can also gen-
erate it [22]. In this paper, we examine the dynamical spin Hall
response in superconductors and show how it also contains
in- and out-of-phase contributions similar to the longitudinal
current response. In the normal state, our frequency dependent
results are consistent with the literature predictions [23,24],
where the intrinsic spin Hall current is maximal at frequen-
cies comparable with the spin-relaxation rate, whereas the
extrinsic mechanism produces spin Hall response also at low
frequencies. Superconductivity actually provides a tool for
probing these different mechanisms as in the intrinsic case it
leads to strongly temperature dependent spin Hall responses.
Hence, whereas the frequency dependence may be difficult to
probe on a wide scale of the order of the spin-relaxation rate,
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in the superconducting case one may fix the frequency and
rather vary the temperature. Such studies may then provide
information about the nature of the relevant mechanisms for
the spin Hall effect.

Our paper is based on the recent extensions of the quasi-
classical Usadel equation to govern ordinary and spin Hall
effects [25,26], both in the extrinsic and intrinsic cases.
We utilize these extensions here to study those dynamic
responses. The dynamical Hall effect can be studied on con-
ventional spin singlet superconductors in the presence of the
time-independent magnetic field. Because of Meissner screen-
ing, it shows up as a surface effect, but the same is true
for the normal state because of the finite skin depth. On the
other hand, the spin Hall effects require strong spin-orbit
interaction and are especially interesting in thin-film systems
involving either heavy-metal superconductors or the presence
of a nearby heavy metal in which case the spin-orbit coupling
would enter as a proximity effect. On the other hand, our
paper provides a baseline to compare the results of dynamical
experiments on frequency dependent electromagnetic suscep-
tibility of two-dimensional superconductors where possible
spin ordering or orbital degrees of freedom may complicate
the dynamic response.

Our paper is organized as follows. In Sec. II we out-
line the theory for describing the various Hall effects in
superconductors by introducing ordinary and SU(2) vector
potentials and the accompanying field strength tensor terms
into the Usadel equation. In Sec. III we analyze the sym-
metry properties of the resulting dynamical response matrix.
This section uses dynamical SU(2) fields as a formal tool
for uncovering those symmetries. Section IV shows how the
ordinary Mattis-Bardeen response [7] naturally comes from
our formalism. Then Sec. V discusses the dynamical Hall re-
sponse, and Secs. VI and VII discuss the dynamical spin Hall
and inverse spin Hall responses in superconductors. Finally,
Sec. VIII discusses the results and possible extensions of the
theory to new materials.

II. THEORY OF HALL EFFECTS IN DISORDERED
SUPERCONDUCTORS

In this section, we introduce the specific scenarios and
main equations used in this paper. Our paper encompasses
a broad scope, focusing on superconductors subjected to
electromagnetic fields, alongside exchange fields and linear-
in-momentum spin-orbit coupling, which can be treated as
effective SU(2) potentials [27]. These can be described by the
following Hamiltonian:

H = (p − Ǎ)2

2m
− μch + Vimp + τ3Ǎ0 − i�̌, (1)

where p is the momentum, m is the electron mass, μch is
the chemical potential, �̌ = �τ1 is the superconducting order
parameter for s-wave superconductors, and σ j and τ j are the
Pauli matrices in spin and Nambu spaces, respectively. Vimp is
a random impurity potential that consists of the usual elastic
scattering and the spin-orbit interaction [25,28,29]. Ǎμ is the
generalized four-potential containing both U(1) and SU(2)

components [30–32] given by

Ǎ0 = −eφτ3 + h̄

2
A0 jσ j, (2a)

Ǎi = −eAiτ3 + h̄

2
Ai jσ j . (2b)

φ and A are the usual U(1) scalar and vector electromagnetic
potentials, while A0 j and Ai j are SU(2) potentials describing
the Zeeman or exchange field and the linear-in-momentum
SOC, respectively [24]. Here and below a sum over repeated
indices is assumed.

As in conventional electrodynamics we can define the field
strength associated with Ǎ:

F̌μν = ∂μǍν − ∂νǍμ − i

h̄
[Ǎμ, Ǎν]. (3)

The last commutator appears because of the fact that the
SU(2) components are non-Abelian. Here and below Greek
indices range μ = 0, 1, 2, 3.

In what follows, we are interested in the currents (charge
and spin) generated by the electric field, which is given by the
Ě j ≡ F̌ 0 j = −eE jτ3 + (h̄/2)E jlσl components of the field
strength tensor (3), where the Latin indices range j = 1, 2, 3.
In the linear response regime the current and the field are
related via the response tensor:

jiμ(ω) = σ iμ, jν (ω)E jν (ω). (4)

Here ji0 are the components of the charge current whereas ji j

is the spin-current tensor. The usual U(1) electric field is given
by E j ≡ E j0, and E jl denote the components of the SU(2)
electric field. The real part of σ iμ, jν describes the in-phase
response, and the imaginary part is the out-of-phase response
of the current to the field.

Our goal is to find the conductivity tensor σ iμ, jν (ω) in
diffusive superconducting systems showing different types
of Hall effects. For this we use the quasiclassical approach
generalized in Refs. [25,26] to include SOC.

To describe the transport properties of the system we
use the gauge covariant quasiclassical Green’s function (GF)
formalism. The GF ǧ(t, t ′) is an 8 × 8 matrix in Keldysh-
Nambu-spin space [33–35], ǧ = (ǧR ǧK

0 ǧA ), where the Keldysh

GF ǧK = ǧR · ȟ − ȟ · ǧA describes the nonequilibrium proper-
ties of the system. Here, ȟ is the distribution function and
the center dot is used to denote a convolution in time, i.e.,
integration in the intermediate time variable. The caron sym-
bol, e.g., in ǧ, denotes matrices in Keldysh ⊗ Nambu ⊗ spin
or Nambu ⊗ spin space. The quasiclassical GF satisfies the
normalization condition ǧ · ǧ = δ(t − t ′).

In systems with time translational symmetry, the Green’s
function can be Fourier transformed in the τ = t − t ′ variable
into the energy domain as

ǧ(ε) =
∫

dτeiετ/h̄ǧ(τ ). (5)

For a bulk superconductor the retarded and advanced GFs in
the energy domain are given by

ǧR/A
0 (ε) = g0(ε)τ3 + f0(ε)τ1, (6)

104506-2



DYNAMICAL HALL RESPONSES OF DISORDERED … PHYSICAL REVIEW B 108, 104506 (2023)

where g0 and f0 are the normal and anomalous parts of the
bulk GF,

g0(ε) = −i(ε ± i�)√
�2 − (ε ± i�)2

, (7a)

f0(ε) = �√
�2 − (ε ± i�)2

, (7b)

and the equilibrium distribution function is given by ȟ(ε) =
tanh ε

2kBT . The upper and lower signs correspond to the re-
tarded and advanced GFs respectively. The convergence factor
� → 0+ guarantees that the retarded (advanced) GF is zero
for negative (positive) time t − t ′. Nonetheless, a finite �

may also describe inelastic scattering effects present in real
materials [36]. Such inelastic processes are responsible for
the smoothing of the density of states peaks at the supercon-
ducting gap. The order parameter �(T ) needs to be computed
self-consistently [12] with the gap equation

� ln

(
T

Tc0

)
= 2πkBT

∑
n=0

(
f0(ωn) − �

ωn

)
, (8)

where ωn = 2πkBT (n + 1/2), with n ∈ Z, are the Matsub-
ara frequencies, Tc0 is the zero-field critical temperature, and
f0(ωn) is the Matsubara anomalous GF (7b), obtained by an-
alytic continuation of the GF to the complex plane ε + i� →
iωn.

In diffusive systems where the scattering rate τ−1 is much
higher than the other energy scales in the system, excluding
the Fermi energy, the GF is determined from the well-known
Usadel equation [37]. The covariant version of the Usadel
equation [25,26] allows describing the Hall and intrinsic spin
Hall effects. For intrinsic SOC the Usadel equation reads
[30–32]

h̄D∇̃iJ̌
i − {τ3h̄∂t , ǧ} − [iǍ0τ3 + �̌, ǧ] = 0, (9)

and for extrinsic SOC [25]

h̄D(∇̃iJ̌
i + Ť ) − {τ3h̄∂t , ǧ} −

[
iǍ0τ3 + �̌ + σiǧσi

8τSO
, ǧ

]
= 0,

(10)

where D is the diffusion coefficient, τSO = 9τ/(8λ4 p4
F ) is

the spin-orbit relaxation time, λ describes the SOC strength,
pF is the Fermi momentum, ∇̃iX̌ = ∂iX̌ − i/h̄[Ǎi, X̌ ] is the
covariant derivative, Ť is an extrinsic SOC correction due to
an effective torque originating from the spin Hall and the spin
swapping effects [28,29]

Ť = iεi jk
κ
4

[∇̃iǧ · ∇̃ j ǧ, σk] + εi jk
θ

4
[σk, ǧ · ∇̃iǧ · ∇̃ j ǧ], (11)

and J̌ i is the matrix current given by

J̌ i = ǧ · ∇̃iǧ + τ

4m
({F̌ i j + ǧ · F̌ i j · ǧ, ∇̃ j ǧ}

− ih̄∇̃ j (ǧ · [∇̃iǧ, ∇̃ j ǧ])) (12)

for intrinsic SOC [26] and

J̌ i = ǧ · ∇̃iǧ − iεi jk
κ
4

[ǧ · ∇̃ j ǧ, σk + ǧ · σkǧ]

− εi jk
θ

4
{∇̃ j ǧ, σk + ǧ · σkǧ} (13)

for extrinsic SOC [25]. Here κ = 2p2
F λ2/3 and θ =

2h̄pF λ2/� are spin-swapping and spin Hall coefficients [38],
respectively, with εi jk the Levi-Civita symbol and � the mean-
free path. The first term in Eqs. (12) and (13) is the standard
diffusive current, while the second term is the leading contri-
bution from spin-charge coupling describing the Hall effect.

The Usadel equation together with the normalization con-
dition specifies the value of the GF. The observable quantities
of the system are given by the GF, for example, the charge and
spin currents are given by

ji0(r, t ) = −π h̄σD

8e
Tr{τ3J̌ i(r, t, t )K }, (14)

ji j (r, t ) = h̄

2

π h̄σD

8e2
Tr{σ j J̌

i(r, t, t )K }, (15)

where the Drude conductivity is given by σD = νF e2D, νF is
the density of states at the Fermi energy, and the K superscript
denotes the Keldysh block of the matrix current.

III. ONSAGER SYMMETRIES

The Onsager reciprocal relations relate the conductivities
between different pairs of driving fields and their conjugate
currents. They demonstrate the reciprocity between inverse
effects, such as the Hall, the spin Hall, or spin-galvanic effects
and their corresponding inverse effects.

The conductivity tensor in Eq. (4) can be decomposed into
four blocks:

σ iμ, jν =
(

σ i0, j0 σ i0, jl

σ ik, j0 σ ik, jl

)
. (16)

The elements of the conductivity tensor are related through
the Onsager reciprocal relations σ j0,i0(B) = σ i0, j0(−B),
σ jl,ik (B) = σ ik, jl (−B), and σ i0, jl (B) = −σ jl,i0(−B), where
B denotes all time-reversal symmetry (TRS) breaking fields
[39]. The minus sign in the last relation appears due to the
spin currents having opposite T parity to charge currents [40].
The charge block σ i j ≡ σ i0, j0 is the usual 3 × 3 conductivity
tensor describing the electric effects. The diagonal elements
are the longitudinal conductivities (Ohm’s law), while the
off-diagonal elements describe the Hall effect. For instance,
the system considered in Sec. V consists of a superconductor
pierced by a magnetic field in the z direction. The magnetic
field breaks the TRS, allowing for nonzero transverse conduc-
tivities in the xy plane. Due to rotational invariance around the
z axis, the transverse (Hall) conductivities are related through
the relation σ xy = −σ yx.

The spin block σ ik, jl is a 9 × 9 matrix relating the spin
currents to the spin SU(2) fields. For instance, some of the
off-diagonal elements of the spin block describe the spin-
swapping effect. The spin-charge blocks σ ik, j0 and σ i0, jl

describe the spin Hall and inverse spin Hall effects, re-
spectively. In Sec. VI we study the spin Hall effect in a
superconductor due to intrinsic and extrinsic SOC. In the
intrinsic case the SOC is of the Rashba type, while in the
extrinsic case the SOC is introduced by impurities. Since there
are no TRS breaking fields, the spin Hall conductivities satisfy
σ i0, jl = −σ jl,i0. In the intrinsic case, inversion symmetry in
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the z direction is broken by the Rashba SOC, so the spin Hall
effect is restricted to the xy plane. In the extrinsic case, the
isotropy of the impurities results in spin currents in the plane
perpendicular to the charge current direction i, so that the spin
Hall conductivities are related through σ l j,i0 = −σ jl,i0.

The susceptibility χ = iωσ is the response function to the
vector potentials. From the fluctuation-dissipation theorem for
χ [41], it follows that the Hermitian part of the generalized
conductivity tensor σ ′ = 1

2 (σ + σ †) is the dissipative contri-
bution, while the anti-Hermitian part σ ′′ = 1

2i (σ − σ †) is the
reactive contribution.

IV. MATTIS-BARDEEN THEORY WITHIN
QUASICLASSICS

In this section we apply the quasiclassical GF formalism
introduced in Sec. II to the linear response theory to compute
the longitudinal (charge) conductivity of a diffusive supercon-
ductor subjected to a time-dependent electric field E(t ). In
particular, we consider a superconductor in a microwave field
which has extensively been experimentally realized [42–46].

In diffusive normal metals the Drude model predicts a
purely dissipative response [4], that is to say, the current is in
phase with the electric field. Superconductors however show
a reactive current which is most relevant at small frequencies
compared to the superconducting gap. The frequency de-
pendent microwave response of an s-wave superconductor is
described within the Mattis-Bardeen theory [7]. These results
can be rederived in the present approach as follows.

We assume that the electric field is small enough so that
it can be treated perturbatively. The bulk GF (6) is corrected
by the driving field, but the leading current contribution is
given by the bulk GF. We start from a single-frequency elec-
tric field along the x direction E(t ) = E0e−iωt ûx described
via the vector potential A(t ) = −iE0/ωe−iωt ûx. Therefore,
the only nonzero term of the potential (2) is Ǎx = −eAxτ3.
Using Eq. (14) we compute the longitudinal current jx(t ),
and dividing by the electric field E0e−iωt we obtain the lon-
gitudinal conductivity σ xx(ω). The convolutions in Eq. (12)
can conveniently be computed after a Fourier transformation
into the energy domain. From (14), we get (see Supplemental
Material [47])

σ xx(ω) = σD

2h̄ω

∫
dε[Reg0(ε+)Reg0(ε) + Im f0(ε+)Im f0(ε)][h(ε+) − h(ε)] + i{2[Reg0(ε)Img0(ε) + Re f0(ε)Im f0(ε)]h(ε)

+ [−Reg0(ε+)Img0(ε) + Im f0(ε+)Re f0(ε)]h(ε+) + [−Img0(ε+)Reg0(ε) + Re f0(ε+)Im f0(ε)]h(ε)}, (17)

where ε+ = ε + h̄ω. The expression is lengthy, but we can
identify the different parts. The first term on the first line is
the dissipative contribution. It yields the normal-state result
σ xx = σD when f0(ε) = 0 and g0(ε) = 1. The rest of the terms
are out of phase and describe the supercurrent effects. The
prefactors of the distribution function terms are nonzero only
when ε is of the order of � and decay at large energies, ensur-
ing the convergence of the integrals. In general, the integral
needs to be evaluated numerically.

In Fig. 1 we show the frequency dependence of the lon-
gitudinal conductivity σ xx(ω) for different temperatures [47].
The conductivity is in agreement with the BCS theory and the
experimental measurements [42,43]. At T = 0 the real part of

FIG. 1. Mattis-Bardeen response of a superconductor for differ-
ent temperatures. The solid and dashed lines correspond to the real
and imaginary parts of the conductivity, respectively.

the conductivity is zero for h̄ω < 2�0, where �0 = 1.76kBTc0

is the zero-temperature gap, and it increases monotonously
with a finite slope for h̄ω > 2�0 so that it approaches the
Drude conductivity in the ω → ∞ limit. At T = 0 there
are no thermally excited quasiparticles, so the processes that
allow energy absorption are limited to the creation of electron-
hole pairs, which require frequencies greater than 2�0 [48].
The effect of temperature in the conductivity is twofold; on
the one hand, the superconducting gap �(T ) is reduced with
increasing temperature, so the the absorption edge is reduced
to lower frequencies. On the other hand, at finite temperatures
quasiparticles are thermally excited, allowing energy absorp-
tion processes at lower frequencies.

Regarding the imaginary part of the conductivity, at T = 0
it diverges as 1/ω for h̄ω 	 2�0. In superconductors where
the electromagnetic field varies slowly in space on the scale
of the coherence length the charge current is determined by
the London equation [49]. For diffusive superconductors at
T = 0, the London equation is given by j = −(π�0σD/h̄)A,
where the vector potential is given in the London gauge
[48]. The London equation describes the free-acceleration
aspect of the supercurrent response. For the plane wave vector
potential considered here [see above Eq. (17)] the electric
current is given by j = iπ�0σD/(h̄ω)E, so at low frequen-
cies the conductivity is purely imaginary and proportional
to 1/ω.

At the critical temperature the gap is completely sup-
pressed �(Tc0) = 0 and the metal transitions into the normal
state, so the conductivity is given by the AC Drude model
[4]. In diffusive normal metals the Drude conductivity is
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FIG. 2. (a) Hall response of a superconductor for different temperatures. The solid and dashed lines correspond to the real and imaginary
parts of the conductivity, respectively. (b) Kerr and (c) Faraday rotation angles of linearly polarized incident light for different temperatures.
The parameters used in panels (b) and (c) are τ = 5 × 10−2 h̄/�0, ωc = 0.2�0/h̄, ωp = 3 × 104�0/h̄, and d = 0.2λ, where λ is the London
penetration length.

frequency independent at frequencies much smaller than
the elastic scattering rate and equal to the DC Drude
conductivity σD.

V. ORDINARY HALL EFFECT AND KERR ROTATION

In this section we study the Hall response of a su-
perconductor in a microwave field subjected to a constant
magnetic field B = B0ûz. In the Landau gauge, the vector
potential is given by Ǎx = −e(−iE0/ωe−iωt − B0y)τ3. The

only nonzero elements of the field strength tensor (3) are
F̌ xy = −F̌ yx = −eB0τ3. We assume that both the electric and
magnetic fields are small and compute the electric currents
to leading order in both fields. In addition to the longi-
tudinal conductivity given by the Mattis-Bardeen response
(17), the system shows a transverse conductivity σ yx due to
the interaction between the magnetic field and the electric
current. The leading term of the Hall current is propor-
tional to E0B0 and it is given by the second current term in
Eq. (12). The Hall conductivity is given by the y component of
Eq. (14) [47]:

σ yx(ω) = 3σDωcτ

4
+ σDωcτ

16h̄ω

∫
dε {g0(ε+)K (ε)∗ + g0(ε)∗K (ε+) + 2 f0(ε)∗ f0(ε+)[g0(ε+) + g0(ε)∗]}[h(ε+) − h(ε)]

+ {g0(ε+)K (ε) − g0(ε)K (ε+) + 2 f0(ε) f0(ε+)[g0(ε+) − g0(ε)]}h(ε)

+ {g0(ε+)∗K (ε)∗ − g0(ε)∗K (ε+)∗ + 2 f0(ε)∗ f0(ε+)∗[g0(ε+)∗ − g0(ε)∗]}h(ε+), (18)

where ωc = eB0/m is the cyclotron frequency and K (ε) =
g0(ε)2 − f0(ε)2. In the normal state g0(ε) = 1 and f0(ε) = 0,
the first line in the integrand tends to 2[h(ε+) − h(ε)] and
integrates to 4ω, whereas the two other lines tend to zero. To-
gether, these terms provide the normal-state Hall conductivity
σ yx = σDωcτ , valid to the first order in ωc.

In Fig. 2(a) we show the Hall conductivity as a function
of frequency at different temperatures. At T = 0 the real part
of the conductivity shows a sharp minimum at h̄ω = 2�0 and
asymptotically approaches the normal-state Hall conductivity
σ yx = σDωcτ at high frequencies. The real part of the con-
ductivity is finite at T = 0, while the imaginary part remains
equal to zero until a threshold frequency is achieved. This is
consistent with the experimental measurements of the Hall
conductivity in superconducting YBa2Cu3O7−δ samples by
Spielman et al. [9]. As argued in Sec. III, the dissipative
contribution to the current is described by the Hermitian part
of the conductivity tensor Eq. (16). Due to the σ xy = −σ yx

symmetry relation, the dissipative part of the Hall current
is given by the imaginary part of σ yx, i.e., the out-of-phase
component, while the reactive part is given by Reσ yx. This is
the reason why at T = 0 the imaginary part of the conductivity
is nonzero only for h̄ω > 2�0, so that the signal may be
absorbed to create the electron-hole pairs. The temperature

dependence of the Hall conductivity is very similar to that
of the longitudinal conductivity discussed in Sec. IV. The
superconducting gap decreases with increasing temperature,
so the absorption edge and the minimum of Reσ yx are shifted
to lower frequencies. For T = Tc0, we recover the normal-
state Hall conductivity. The normal-state Hall response is
nondissipative, in the leading order in ωcτ , whereas in the
superconducting state the response has a dissipative quasipar-
ticle component.

Note that although the off-diagonal elements of σ remain
nonzero in the static limit ω → 0 in the superconducting
state, all elements of the resistivity tensor ρ = σ−1 vanish
for ω → 0. Hence, the relation j = σE, or E = ρ j, does not
imply here that uniform static supercurrent generates electric
fields or a Hall effect. Such equilibrium electric fields are
expected to exist when the superflow is nonuniform, [50] but
such configuration is not considered in the model here.

A. Kerr and Faraday rotations

The Hall conductivity can be probed optically through the
Faraday or Kerr effect measurement as shown in Fig. 3(a),
where linearly polarized light transmitting or reflecting
from the sample becomes elliptically polarized [5,6]. The
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FIG. 3. (a) Proposed setup for the measurement of the Hall
effect. Materials subjected to a magnetic field show circular bire-
fringence, i.e., left and right polarized light waves propagate with
different velocities. The Kerr rotation angle is related to the longi-
tudinal and transversal conductivities of the material. (b) Proposed
setup for the detection of the inverse spin Hall effect in a supercon-
ductor using a lateral spin valve. If a charge current IQ is injected
from the ferromagnet (F) to the normal metal (N), the nonequilibrium
spin accumulation generated at the interface generates a pure spin
current IS to the right of F. The superconductor absorbs the spin
current owing to its strong SOC, generating a charge current I ′

Q due
to the inverse spin Hall effect.

polarization rotation is described by the Faraday and Kerr
angles which are in general complex quantities: their real
part describes the amplitude of polarization rotation, and their
imaginary part describes the ellipticity of the reflected po-
larization. These angles can be straightforwardly calculated
from our theory. However, for simplicity the theory assumes
a constant magnetic field, a situation that cannot be realized
in the case of thick superconductors because of the Meiss-
ner effect expelling the field from inside the superconductor.
However, the (Kerr) reflection is also a surface effect because
of the finite skin depth of the electromagnetic field, and the
transmission takes place only if the material is thinner than
the corresponding skin depth. In other words, our estimates
are accurate in the case where the London penetration depth
is larger than either the skin depth (for Kerr reflection) or the
sample thickness (for Faraday transmission).

The skin depth can be obtained by solving the Maxwell
equations inside the material. Disregarding the small correc-
tion from the Hall effect, it is obtained from

�skin = c

ωIm
√

1 + iσ xx/(ωε0)
. (19)

On the other hand, the London penetration depth λ is the zero-
frequency limit of this skin depth. At T = 0, σ xx ≈ iχ0/ω,
where χ0 = π�0σD/h̄, and hence λ ≈ c/

√
χ0/ε0.

For the simplest geometry, i.e., normal incidence of a lin-
early polarized electromagnetic wave onto the sample, using
Maxwell equations and the boundary conditions, one can ob-
tain the Kerr φK and Faraday φF angles as [5,6]

φK = i
r+ − r−
r+ + r−


 σ yx

σ xx
√

1 + i σ xx

ωε0

, (20)

φF = ωd

c

r+ − r−
(1 − r+)(1 − r−)


 i
d

2cε0

σ yx√
1 + i σ xx

ωε0

, (21)

where r± are the reflection coefficients for left- and right-
handed (with respect to the applied field) circularly polarized
light, ε0 is the vacuum permittivity, and d is the sample
thickness. Note that the expression is obtained by assuming

a small perturbation from the external magnetic field and only
considering linear terms in the Hall conductivity (σ yx). This
approximation is valid when the Hall conductivity is much
smaller than the longitudinal conductivity, a condition often
met in many materials. Noting σD as a natural scale of conduc-
tivity and defining the plasma frequency ωp = √

σD/(ε0τ ), we
notice that the latter term inside the square root can also be
written as σ xx/(ωε0) = (σ xx/σD)ω2

pτ/ω, providing a direct
way to compare dimensionful quantities. For frequencies of
interest here, ω � �/h̄, the typical range is ω 	 ωp, 1/τ ,
and therefore the first term inside the square root in Eq. (20)
can typically be disregarded. The order of magnitude of the
polarization rotation is hence proportional to the small factor
ωcτ

√
ω/(ω2

pτ ).
The Faraday-Kerr rotation of the polarization state of light

can experimentally be measured by passing the reflected light
through a polarizer. The polarization direction is obtained by
measuring the intensity of the reflected light with the polarizer
oriented in parallel and perpendicular to the incident light. The
Kerr (Faraday) rotation angle θK (F ) specifies the rotation of
the major axis of the elliptically polarized reflected light. It
is given by the real part of φK (F ) = θK (F ) + iεK (F ), plotted in
Figs. 2(b) and 2(c). The imaginary part εK (F ) specifies the ratio
of the minor to the major axes of the ellipsoid.

In Fig. 2(b) we show the Kerr rotation angle (20) for normal
incident light. The parameters used are τ = 5 × 10−2 h̄/�0,
ωc = 0.2�0/h̄, and ωp = 3 × 104�0/h̄; these values are ac-
cessible in experiments. σ xx and σ yx are computed evaluating
Eqs. (17) and (18). The Kerr rotation angle is of the order of
μrad, which is an experimentally measurable rotation [51].
In the normal state σ xx and σ yx are positive numbers, so θK

is always positive. In the superconducting state both conduc-
tivities acquire an imaginary part, allowing for positive and
negative values of θK . In Fig. 2(c) we show the Faraday rota-
tion angle (21). θF has a weaker dependence on temperature,
but it is three orders of magnitude grater than θK , so it is easier
to measure than θK .

Besides coupling to free-space light, the dynamical Hall
effect can be accessed by studying the scattering parameters
of microwaves in a multiterminal geometry. In particular, the
matrix S of scattering parameters depends on the admittance
matrix Y (ω) of the studied sample [52]:

S (ω) = 1 − Z1/2Y (ω)Z1/2

1 + Z1/2Y (ω)Z1/2
, (22)

where Z = diag(Z1, . . . , ZN ) is a diagonal matrix containing
the characteristic impedances of transmission lines connected
to each terminal i. This way, in case the bulk supercon-
ductor response gives the dominating contribution to the
admittance matrix—in other words, interface effects can be
disregarded—the Hall response can be related with the off-
diagonal components of S .

VI. DYNAMICAL SPIN HALL RESPONSE AND ITS
DETECTION WITH MAGNETIC RESONANCE

In this section we study the spin Hall effect in a super-
conductor with SOC subjected to a microwave field. Several
methods have been proposed and realized to measure the spin
Hall and its inverse effects including electrical measurements
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[53–56] and Kerr rotation microscopy [51]. In Fig. 3(b) we
propose a measurement setup based on a lateral spin valve. A
lateral spin valve consists of a normal metal (N) bridging a
ferromagnetic injector (F) and a detector, which in our case
is a superconductor (S) with SOC. A charge current IQ is
injected from F into the left side of N . The nonequilibrium
spin accumulation generated at the interface is relaxed within
the spin diffusion length, generating a pure spin current IS

to the right of F. If the distance between the F and the S
is shorter than the spin diffusion length, a nonequilibrium
spin accumulation is generated at S [55]. The spin current is
absorbed by the superconductor owing to its strong SOC. The
polarization of the spin current is tuned to lie out of plane
by applying a normal magnetic field. A perpendicular charge
current I ′

Q is generated at the S due to the inverse spin Hall
effect. This AC current can experimentally be measured by
closing the S wire with a superconducting loop coupled to a rf
superconducting quantum interference device.

Alternatively, the measurement can be realized with a dy-
namic version of the setup used in Ref. [57]. There, two
heavy-metal (Pt) injectors are used to generate and detect
a magnon current in a ferromagnetic insulator. A heavy-
metal superconductor placed in the middle absorbs part of
the magnon current and converts it into a charge current via
the inverse spin Hall effect. Replacing the DC injection by
a finite-frequency injection then allows studying the AC spin
Hall response of the superconductor. It also becomes interest-
ing to separate the in- and out-of-phase oscillating parts of the
detected signal, in comparison with the injected current.

A. Intrinsic spin Hall response

First, we study the spin Hall effect in a superconductor with
Rashba SOC subjected to a microwave field. The Rashba SOC
interaction is linear in momentum

HR = α(p × ûz ) · σ (23)

so it can be described through the SU(2) four-potential Ǎx =
mασy, Ǎy = −mασx. The term −eAxτ3 should be added to Ǎx

to account for the time-dependent electric field. For Rashba
SOC the nonzero elements of the field strength tensor are
F̌ xy = −F̌ yx = 2m2α2σz/h̄.

The terms contributing to the spin Hall current in Eq. (12)
depend on the first-order correction of the GF due to the
time-dependent electric field. We expand the GF to the first
order in the electric field ǧ = ǧ0 + δǧ + O(E2

0 ), where δǧ is
the correction to the bulk GF. The Rashba SOC does not
modify the bulk GF of a superconductor ǧ0, so it is given
by Eqs. (6) and (7). Unlike the bulk GF, ǧ0(t, t ′) = ǧ0(t − t ′),
the first-order correction is not time-translation invariant due
to the time-dependent electric field. Based on the time de-
pendence of the electric field, we use the ansatz δǧ(t, t ′) =
e−iωtδǧ(t − t ′) for the correction of the GF. The normalization
condition for δǧ reads ǧ0(ε+)δǧ(ε) + δǧ(ε)ǧ0(ε) = 0, and the
Usadel equation (9) to first order in E0 is given by

− εα ([σy, ǧ0(ε+)[σy, δǧ(ε)]] + [σx, ǧ0(ε+)[σx, δǧ(ε)]])

+ ih̄ωτ3δǧ(ε) + [iετ3 − �̌, δǧ(ε)]

= iεE [σx, {σz, τ3ǧ0(ε) − ǧ0(ε+)τ3}], (24)

FIG. 4. Spin Hall response of a superconductor for different tem-
peratures. The solid and dashed lines correspond to the real and
imaginary parts of the conductivity, respectively. The value of the
Dyakonov-Perel energy used is εα = 0.25�0.

where δǧ(ε) is the Fourier transform (5) of δǧ(t − t ′), εα =
Dm2α2/h̄ is the Dyakonov-Perel energy (scattering rate), and
εE = Dτm2α3eE0/(h̄2ω). The spin structure of δǧ(ε) can be
inferred from the Rashba Hamiltonian (23). As shown in
Sec. IV, the microwave field generates a longitudinal current
along the x direction. The Rashba SOC gives rise to intrinsic
zero-field spin splitting [58]. The motion of an electron in a
two-dimensional electron gas through a perpendicular electric
field results in a magnetic field in the rest frame of the elec-
tron that couples to the spin as given by Eq. (23), where the
momentum-dependent magnetic field is μBBeff = α(p × ûz ).
Therefore, a vector potential in the x direction spin splits
the GF in the spin-y direction as δǧ = δgyσyτ3 + δ fyσyτ1.
In Appendix A we solve Eq. (24) analytically and obtain
closed form solutions for the retarded/advanced GFs δǧR/A and
the distribution function δȟ, where δǧK (ε) = δǧR(ε)h(ε) −
h(ε+)δǧA(ε) + ǧR

0 (ε+)δȟ(ε) − δȟ(ε)ǧA
0 (ε).

Plugging the solution into Eq. (15) we obtain the spin Hall
conductivity [47]:

σ yz,x0(ω) = σDτmα2

e
− σDmα

4e2E0

∫
dεg0(ε+)δgK

y (ε)

+ f0(ε+)δ f K
y (ε) + 2

[
Reg0(ε+)δgA

y (ε)

+ iIm f0(ε+)δ f A
y (ε)

]
h(ε+). (25)

In Fig. 4 we show the spin Hall conductivity for a supercon-
ductor with intrinsic SOC. The value of the Dyakonov-Perel
energy used is εα = 0.25�0. In Appendix B we obtain a
closed form expression for the spin Hall conductivity in
the normal state, which agrees with literature predictions
[23,24]. The spin conductivity depends on two characteristic
frequency scales related to εα and �(T ). In homogeneous
metals, the DC spin current is covariantly conserved unless
extrinsic sources of spin relaxation such as magnetic impuri-
ties are included [59], or nonlinear in p SOC is considered,
such as cubic Dresselhaus interaction [60]. This shows up as
a vanishing spin Hall conductivity at ω = 0. The real part of
the conductivity increases monotonically with an increasing
frequency, reaching the asymptotic value σ yz,x0 = σDτmα2/e
for h̄ω � εα , while the imaginary part reaches an extremum
at h̄ω = 4εα and decays to zero at high frequencies.

In the superconducting state, the temperature dependence
of the spin Hall conductivity is most relevant at frequencies
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lower than 2�. The absolute values of the real and imagi-
nary parts of the spin Hall conductivity have a minimum at
h̄ω = 2�. Due to the σ i0, jl = −σ jl,i0 Onsager relation, the
dissipative component of the spin Hall conductivity is given
by the imaginary part of σ yz,x0. Similar to the ordinary Hall
response, at T = 0 the out-of-phase spin current vanishes
below the absorption edge 2�0.

B. Extrinsic spin Hall response

We consider the response of the system with SOC due to
extrinsic impurity scattering. In this case, the matrix current
takes the form (13). Due to the isotropy of the impurity scat-
tering, we have spin Hall currents in both y and z directions. In
this case the spin currents (15) can be computed analytically.
The conductivities are given by

σ zy,x0 = −σ yz,x0 = h̄σDθ

2e
, (26)

which do not depend on the frequency or temperature. This is
a consequence of the diffusive regime considered in this paper.
For extrinsic SOC, the spin Hall conductivity is real, i.e., it is
nondissipative. In the following section we study the inverse
Hall effect in systems with intrinsic and extrinsic SOC and
explicitly show that the Onsager relations are satisfied.

VII. INVERSE SPIN HALL RESPONSE

In this section we compute the charge current generated in
systems with intrinsic and extrinsic SOC due to the inverse
Hall effect. The charge current and the U(1) electric field
are conjugate variables, in the same way the spin current
has a conjugate force field E jl which generates l-polarized
spin currents along the j direction. This force field can be
generated by the gradient of a Zeeman field, a time-dependent
SOC, or a spin dependent chemical potential [61,62].

A. Intrinsic SOC

We consider an SU(2) driving field Eyz(t ) = E0e−iωt which
generates a z-polarized spin current in the y direction. This
electric field is described via the SU(2) vector potential
Ǎy(t ) = −ih̄E0/(2ω)e−iωtσz. Taking the Rashba SOC into ac-
count, the vector potentials are given by Ǎx = mασy, Ǎy =
−mασx − ih̄E0/(2ω)e−iωtσz, so that the nonzero elements
of the field strength tensor are F̌ xy = −F̌ yx = 2m2α2σz/h̄ −
i(mαE0/ω)e−iωtσx. Following a similar procedure to the one
used in Sec. VI A, we obtain the correction to the bulk GF due
to the driving field (see Appendix A) and compute the charge
current along the x direction using Eq. (14). The inverse spin
Hall conductivity is

σ x0,yz(ω) = −σDτmα2

e
+ σDτm2α3

eh̄2E0

∫
dεδgK

y (ε). (27)

Evaluating Eqs. (25) and (27) numerically we have checked
that the spin Hall and inverse spin Hall conductivities satisfy
the Onsager relation introduced in Sec. III σ x0,yz = −σ yz,x0.

B. Extrinsic SOC

As it has been argued in Sec. VI B, systems with extrinsic
SOC subjected to an electric field generate spin currents in
both directions perpendicular to the electric field. For this
reason, we consider two driving fields Eyz(t ) = E0e−iωt and
Ezy(t ) = E0e−iωt and compute the charge current generated in
the x direction in each case. Following an equivalent proce-
dure to Sec. VI B, it is possible to obtain the inverse spin Hall
conductivities analytically. They are

σ x0,zy = −σ x0,yz = − h̄σDθ

2e
. (28)

In this case we may evaluate the Onsager symmetry analyt-
ically by comparing Eqs. (26) and (28) to obtain σ i0, jl =
−σ jl,i0. The proportionality between the conductivities shows
that the spin Hall and inverse spin Hall effects are reciprocal
effects.

VIII. CONCLUSIONS

In this paper, we have used a unified description of charge
and spin transport to study the dynamical response of dissi-
pative superconductors to U(1) and SU(2) electric fields. We
have used the gauge covariant quasiclassical GF formalism to
obtain the charge and spin conductivities of superconductors
in the presence of magnetic fields and spin-orbit interaction.
Our model recovers known results in the appropriate limits,
such as the normal-state Hall conductivity and the spin Hall
conductivity for normal metals with Rashba spin-orbit cou-
pling. While diffusive normal metals show a purely dissipative
response, superconductors show a reactive current that decays
in frequency as ω−1, as described by the Mattis-Bardeen
theory. We have analyzed the Onsager reciprocal relations
between the direct and inverse Hall effects and have explicitly
shown that they are satisfied.

Our findings show that both the ordinary and spin Hall
conductivities show a dissipative component related to the
out-of-phase current. In the case of the ordinary Hall effect,
the dissipative current contribution only arises in the super-
conducting state. For intrinsic spin Hall effect, the imaginary
(dissipative) part of the Hall conductivity is always weaker
in the superconducting state than in the normal state. At low
frequencies, the spin Hall conductivity of a superconductor
with Rashba SOC is dominated by the in-phase component,
while in the normal state it is of the same order as the
out-of-phase component. For extrinsic SOC, the spin Hall
response is frequency and temperature independent and pro-
portional to the spin Hall angle. In other words, there is no
correction from superconductivity on the extrinsic spin Hall
conductivity.

The dynamical Hall effect can be observed in optical spec-
troscopy via the Faraday-Kerr rotation of the polarization state
of light in conventional superconductors. Suitable materials
for the measurement of the spin Hall effect due to intrinsic
SOC are Bi2Se3/monolayer NbSe2 heterostructures [63], or
LaAlO3/SrTiO3 interfaces [64,65], where the Rashba SOC
can be tuned by applying a gate voltage. For the extrinsic spin
Hall effect we propose Nb [66], NbN [56], and V [67], as they
are superconductors with sizable impurity-induced SOC. For
the detection of the spin Hall effect we propose a lateral spin
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valve, where a superconductor with SOC is used as a detector
[see Fig. 3(b)].

Our paper focuses on investigating the dynamic charge and
spin responses in conventional singlet single-band supercon-
ductors. It is worth noting that spin ordering, as for example
on iron based superconductors [68,69], would be interesting
to study. Our results can be readily generalized to include the
effects of such spin ordering for example via the presence of
an exchange field. Moreover, orbital degrees of freedom in
multiband superconductors may provide additional dynamical
channels, which possibly also show up in dynamic Hall-like
responses, such as the valley Hall effect. Such effects may
become visible in the dynamic responses of superconducting
twisted multilayer graphene or field-biased bilayer graphene.
Describing such effects would require generalizing our quasi-
classical approach to the multiband case.
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APPENDIX A: CLOSED FORM SOLUTION
FOR THE CORRECTED GF

Unlike for extrinsic SOC, the spin conductivity for intrinsic
SOC depends on the correction of the GF due to the electric
field δǧ. In this Appendix we solve Eq. (24) analytically and
provide a closed form solution for δǧ. As argued in Sec. VI A,
δǧ has the following spin structure: δǧ = δǧyσy. The retarded
and advanced parts of the Usadel equation (24) are simplified
to

− 4εα ǧ0(ε+)δǧy(ε) + ih̄ωτ3δǧy(ε) + [iετ3 − �̌, δǧy(ε)]

= 4εE [τ3ǧ0(ε) − ǧ0(ε+)τ3]. (A1)

The left-hand side of the commutator in Eq. (A1) is pro-
portional to the bulk GF ǧ0(ε) [see Eqs. (6) and (7)]. Using
the normalization condition ǧ0(ε+)δǧy(ε) + δǧy(ε)ǧ0(ε) = 0,
Eq. (A1) becomes a matrix equation of the form Ǎδǧy = B̌,
such that δǧy is given by

δǧy(ε) = 4εE [−4εα ǧ0(ε+) + ih̄ωτ3 + iετ3 − �̌

−
√

�2 − ε2ǧ0(ε+)]−1[τ3ǧ0(ε) − ǧ0(ε+)τ3]. (A2)

The Keldysh equation for the distribution function δȟ =
δhyσy reads[−4εα ǧR

0 (ε+) + ih̄ωτ3
][

ǧR
0 (ε+) − ǧA

0 (ε)
]
δhy(ε)

+ [
iετ3 − �̌, ǧR

0 (ε+) − ǧA
0 (ε)

]
δhy(ε)

= 4εE
[
ǧR

0 (ε+)τ3 − τ3ǧA
0 (ε)

]
[h(ε) − h(ε+)], (A3)

so δhy is given by

δhy(ε) = 4εE
{[−4εα ǧR

0 (ε+) + ih̄ωτ3
][

ǧR
0 (ε+) − ǧA

0 (ε)
]

+ [
iετ3 − �̌, ǧR

0 (ε+) − ǧA
0 (ε)

]}−1[
ǧR

0 (ε+)τ3

− τ3ǧA
0 (ε)

]
[h(ε) − h(ε+)]. (A4)

Following a similar procedure for the inverse spin Hall
effect, the correction of the retarded and advanced GFs due
to the SU(2) electric field considered in Sec. VII A is given by

δǧy(ε) = εE [−4εα ǧ0(ε+) + ih̄ωτ3 + iετ3 − �̌

−
√

�2 − ε2ǧ0(ε+)]−1[ǧ0(ε+)ǧ0(ε) − 1], (A5)

where εE = DmαE0/ω and the correction to the distribution
function is

δhy(ε) = εE
{[−4εα ǧR

0 (ε+) + ih̄ωτ3
][

ǧR
0 (ε+) − ǧA

0 (ε)
]

+ [
iετ3 − �̌, ǧR

0 (ε+) − ǧA
0 (ε)

]}−1
[ǧR

0 (ε+)ǧA
0 (ε) − 1]

× [h(ε+) − h(ε)]. (A6)

APPENDIX B: SPIN HALL CONDUCTIVITY
IN THE NORMAL STATE

In the normal state (T � Tc0) the bulk GF is given by

ǧR
0 (ε) = τ3, ǧA

0 (ε) = −τ3, ǧK
0 (ε) = 2τ3h(ε). (B1)

The right-hand sides of the retarded and advanced parts of
Eq. (24) vanish, so the solution to the homogeneous equa-
tions is δǧR = δǧA = 0, i.e., ǧR/A are not corrected by the
electric field. Solving the Keldysh part of Eq. (24), we obtain
the correction to the distribution function:

δȟ = 4εE

ih̄ω − 4εα

[h(ε) − h(ε+)]σy. (B2)

Finally, we perform the integral in Eq. (25) analytically and
obtain the spin Hall conductivity in the normal state:

σ yz,x0(ω) = σDτmα2 h̄ω

e(h̄ω + 4iεα )
. (B3)

Following the same procedure for the inverse spin Hall
effect, the correction to the GF is δǧR = δǧA = 0 and

δȟ = εE
ih̄ω − 4εα

[h(ε) − h(ε+)]σy. (B4)

The inverse spin Hall conductance Eq. (27) in the normal state
is simplified to

σ x0,yz(ω) = − σDτmα2h̄ω

e(h̄ω + 4iεα )
, (B5)

satisfying the Onsager relation σ x0,yz = −σ yz,x0.

104506-9



ALBERTO HIJANO et al. PHYSICAL REVIEW B 108, 104506 (2023)

[1] E. H. Hall, On a new action of the magnet on electric currents,
Am. J. Math. 2, 287 (1879).

[2] P. Drude, Zur elektronentheorie der metalle, Ann. Phys.
(Leipzig) 306, 566 (1900).

[3] P. Drude, Zur elektronentheorie der metalle; II. Teil. Gal-
vanomagnetische und thermomagnetische effecte, Ann. Phys.
(Leipzig) 308, 369 (1900).

[4] N. W. Ashcroft and N. D. Mermin, Solid State Physics
(Saunders, New York, 1976), Chap. 1.

[5] K. Shinagawa, Faraday and Kerr effects in ferromagnets, in
Magneto-Optics, edited by S. Sugano and N. Kojima (Springer,
New York, 2000), pp. 137–177.

[6] H. Ebert, Magneto-optical effects in transition metal systems,
Rep. Prog. Phys. 59, 1665 (1996).

[7] D. C. Mattis and J. Bardeen, Theory of the anomalous skin
effect in normal and superconducting metals, Phys. Rev. 111,
412 (1958).

[8] P. B. Miller, Frequency-dependent Hall effect in normal and
superconducting metals, Phys. Rev. 121, 435 (1961).

[9] S. Spielman, B. Parks, J. Orenstein, D. T. Nemeth, F. Ludwig, J.
Clarke, P. Merchant, and D. J. Lew, Observation of the Quasi-
particle Hall Effect in Superconducting YBa2Cu3O7−δ , Phys.
Rev. Lett. 73, 1537 (1994).

[10] J. Bardeen and M. J. Stephen, Theory of the motion of vortices
in superconductors, Phys. Rev. 140, A1197 (1965).

[11] G. Blatter, M. V. Feigel’man, V. B. Geshkenbein, A. I. Larkin,
and V. M. Vinokur, Vortices in high-temperature superconduc-
tors, Rev. Mod. Phys. 66, 1125 (1994).

[12] N. B. Kopnin, Theory of Nonequilibrium Superconductivity
(Oxford, New York, 2001).

[13] N. B. Kopnin, Vortex dynamics and mutual friction in super-
conductors and Fermi superfluids, Rep. Prog. Phys. 65, 1633
(2002).

[14] J. Sinova, S. O. Valenzuela, J. Wunderlich, C. H. Back, and
T. Jungwirth, Spin Hall effects, Rev. Mod. Phys. 87, 1213
(2015).

[15] G. Dresselhaus, Spin-orbit coupling effects in zinc blende struc-
tures, Phys. Rev. 100, 580 (1955).

[16] Y. A. Bychkov and E. I. Rashba, Properties of a 2D electron gas
with lifted spectral degeneracy, JETP Lett. 39, 78 (1984).

[17] V. M. Edelstein, Magnetoelectric Effect in Polar Superconduc-
tors, Phys. Rev. Lett. 75, 2004 (1995).

[18] S. K. Yip, Two-dimensional superconductivity with strong spin-
orbit interaction, Phys. Rev. B 65, 144508 (2002).

[19] O. Dimitrova and M. V. Feigel’man, Theory of a two-
dimensional superconductor with broken inversion symmetry,
Phys. Rev. B 76, 014522 (2007).

[20] D. F. Agterberg, Magnetoelectric effects, helical phases, and
FFLO phases, in Non-Centrosymmetric Superconductors, Lec-
ture Notes in Physics Vol. 847 (Springer, New York, 2012),
pp. 155–170.

[21] F. Konschelle, I. V. Tokatly, and F. S. Bergeret, Theory of the
spin-galvanic effect and the anomalous phase shift ϕ0 in su-
perconductors and Josephson junctions with intrinsic spin-orbit
coupling, Phys. Rev. B 92, 125443 (2015).

[22] A. Vargunin and M. Silaev, Flux flow spin Hall effect in type-
II superconductors with spin-splitting field, Sci. Rep. 9, 5914
(2019).

[23] E. G. Mishchenko, A. V. Shytov, and B. I. Halperin, Spin
Current and Polarization in Impure Two-Dimensional Electron

Systems with Spin-Orbit Coupling, Phys. Rev. Lett. 93, 226602
(2004).

[24] C. Gorini, R. Raimondi, and P. Schwab, Onsager Relations in
a Two-Dimensional Electron Gas with Spin-Orbit Coupling,
Phys. Rev. Lett. 109, 246604 (2012).

[25] P. Virtanen, F. S. Bergeret, and I. V. Tokatly, Magnetoelectric
effects in superconductors due to spin-orbit scattering: Nonlin-
ear σ -model description, Phys. Rev. B 104, 064515 (2021).

[26] P. Virtanen, F. S. Bergeret, and I. V. Tokatly, Nonlinear σ model
for disordered systems with intrinsic spin-orbit coupling, Phys.
Rev. B 105, 224517 (2022).

[27] F. S. Bergeret and I. V. Tokatly, Singlet-Triplet Conversion
and the Long-Range Proximity Effect in Superconductor-
Ferromagnet Structures with Generic Spin Dependent Fields,
Phys. Rev. Lett. 110, 117003 (2013).

[28] F. S. Bergeret and I. V. Tokatly, Manifestation of extrinsic
spin Hall effect in superconducting structures: Nondissipa-
tive magnetoelectric effects, Phys. Rev. B 94, 180502(R)
(2016).

[29] C. Huang, I. V. Tokatly, and F. S. Bergeret, Extrinsic spin-
charge coupling in diffusive superconducting systems, Phys.
Rev. B 98, 144515 (2018).

[30] F. S. Bergeret and I. V. Tokatly, Spin-orbit coupling as a
source of long-range triplet proximity effect in superconductor-
ferromagnet hybrid structures, Phys. Rev. B 89, 134517 (2014).

[31] F. S. Bergeret and I. V. Tokatly, Theory of diffusive ϕ0 joseph-
son junctions in the presence of spin-orbit coupling, Europhys.
Lett. 110, 57005 (2015).

[32] I. V. Tokatly, Usadel equation in the presence of intrinsic
spin-orbit coupling: A unified theory of magnetoelectric ef-
fects in normal and superconducting systems, Phys. Rev. B 96,
060502(R) (2017).

[33] W. Belzig, F. K. Wilhelm, C. Bruder, G. Schön, and A. D.
Zaikin, Quasiclassical Green’s function approach to mesoscopic
superconductivity, Superlattices Microstruct. 25, 1251 (1999).

[34] M. V. Feigel’man, A. I. Larkin, and M. A. Skvortsov, Keldysh
action for disordered superconductors, Phys. Rev. B 61, 12361
(2000).

[35] A. Kamenev and A. Levchenko, Keldysh technique and non-
linear σ -model: Basic principles and applications, Adv. Phys.
58, 197 (2009).

[36] R. C. Dynes, V. Narayanamurti, and J. P. Garno, Direct Mea-
surement of Quasiparticle-Lifetime Broadening in a Strong-
Coupled Superconductor, Phys. Rev. Lett. 41, 1509 (1978).

[37] K. D. Usadel, Generalized Diffusion Equation for Supercon-
ducting Alloys, Phys. Rev. Lett. 25, 507 (1970).

[38] M. B. Lifshits and M. I. Dyakonov, Swapping Spin Currents:
Interchanging Spin and Flow Directions, Phys. Rev. Lett. 103,
186601 (2009).

[39] P. Jacquod, R. S. Whitney, J. Meair, and M. Büttiker, Onsager
relations in coupled electric, thermoelectric, and spin transport:
The tenfold way, Phys. Rev. B 86, 155118 (2012).

[40] J. Shi, P. Zhang, D. Xiao, and Q. Niu, Proper Definition of Spin
Current in Spin-Orbit Coupled Systems, Phys. Rev. Lett. 96,
076604 (2006).

[41] L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics
(Pergamon, New York, 1969), Vol. 5.

[42] R. E. Glover and M. Tinkham, Transmission of superconduct-
ing films at millimeter-microwave and far infrared frequencies,
Phys. Rev. 104, 844 (1956).

104506-10

https://doi.org/10.2307/2369245
https://doi.org/10.1002/andp.19003060312
https://doi.org/10.1002/andp.19003081102
https://doi.org/10.1088/0034-4885/59/12/003
https://doi.org/10.1103/PhysRev.111.412
https://doi.org/10.1103/PhysRev.121.435
https://doi.org/10.1103/PhysRevLett.73.1537
https://doi.org/10.1103/PhysRev.140.A1197
https://doi.org/10.1103/RevModPhys.66.1125
https://doi.org/10.1088/0034-4885/65/11/202
https://doi.org/10.1103/RevModPhys.87.1213
https://doi.org/10.1103/PhysRev.100.580
https://doi.org/10.1103/PhysRevLett.75.2004
https://doi.org/10.1103/PhysRevB.65.144508
https://doi.org/10.1103/PhysRevB.76.014522
https://doi.org/10.1103/PhysRevB.92.125443
https://doi.org/10.1038/s41598-019-42034-y
https://doi.org/10.1103/PhysRevLett.93.226602
https://doi.org/10.1103/PhysRevLett.109.246604
https://doi.org/10.1103/PhysRevB.104.064515
https://doi.org/10.1103/PhysRevB.105.224517
https://doi.org/10.1103/PhysRevLett.110.117003
https://doi.org/10.1103/PhysRevB.94.180502
https://doi.org/10.1103/PhysRevB.98.144515
https://doi.org/10.1103/PhysRevB.89.134517
https://doi.org/10.1209/0295-5075/110/57005
https://doi.org/10.1103/PhysRevB.96.060502
https://doi.org/10.1006/spmi.1999.0710
https://doi.org/10.1103/PhysRevB.61.12361
https://doi.org/10.1080/00018730902850504
https://doi.org/10.1103/PhysRevLett.41.1509
https://doi.org/10.1103/PhysRevLett.25.507
https://doi.org/10.1103/PhysRevLett.103.186601
https://doi.org/10.1103/PhysRevB.86.155118
https://doi.org/10.1103/PhysRevLett.96.076604
https://doi.org/10.1103/PhysRev.104.844


DYNAMICAL HALL RESPONSES OF DISORDERED … PHYSICAL REVIEW B 108, 104506 (2023)

[43] R. E. Glover and M. Tinkham, Conductivity of superconducting
films for photon energies between 0.3 and 40kTc, Phys. Rev.
108, 243 (1957).

[44] S. Sridhar, Microwave response of thin-film superconductors,
J. Appl. Phys. 63, 159 (1988).

[45] C. Song, T. W. Heitmann, M. P. DeFeo, K. Yu, R. McDermott,
M. Neeley, J. M. Martinis, and B. L. T. Plourde, Microwave
response of vortices in superconducting thin films of Re and Al,
Phys. Rev. B 79, 174512 (2009).

[46] G. Catto, W. Liu, S. Kundu, V. Lahtinen, V. Vesterinen, and M.
Möttönen, Microwave response of a metallic superconductor
subject to a high-voltage gate electrode, Sci. Rep. 12, 6822
(2022).

[47] See Supplemental Material at http://link.aps.org/supplemental/
10.1103/PhysRevB.108.104506 for the full derivation of the
calculation provided in the MATHEMATICA file. The full code
to generate the plots in the paper is also included in the MATHE-
MATICA file.

[48] M. Tinkham, Introduction to Superconductivity, 2nd ed.
(McGraw-Hill, New York, 1996), Chap. 3.

[49] P. G. de Gennes, Superconductivity of Metals and Alloys (CRC,
Boca Raton, FL, 2018), Chap. 2.

[50] J. Bok and J. Klein, “Electric Fields” in Superconductors, Phys.
Rev. Lett. 20, 660 (1968).

[51] Y. K. Kato, R. C. Myers, A. C. Gossard, and D. D. Awschalom,
Observation of the spin Hall effect in semiconductors, Science
306, 1910 (2004).

[52] R. E. Collin, Foundations for Microwave Engineering (Wiley,
New York, 2001).

[53] S. O. Valenzuela and M. Tinkham, Direct electronic measure-
ment of the spin Hall effect, Nature (London) 442, 176 (2006).

[54] S. Takahashi and S. Maekawa, Spin Hall effect in superconduc-
tors, Jpn. J. Appl. Phys. 51, 010110 (2012).

[55] Y. Niimi, H. Suzuki, Y. Kawanishi, Y. Omori, T. Valet, A. Fert,
and Y. Otani, Extrinsic spin Hall effects measured with lateral
spin valve structures, Phys. Rev. B 89, 054401 (2014).

[56] T. Wakamura, H. Akaike, Y. Omori, Y. Niimi, S. Takahashi, A.
Fujimaki, S. Maekawa, and Y. Otani, Quasiparticle-mediated
spin Hall effect in a superconductor, Nat. Mater. 14, 675 (2015).

[57] K.-R. Jeon, J.-C. Jeon, X. Zhou, A. Migliorini, J. Yoon, and
S. S. P. Parkin, Giant transition-state quasiparticle spin-Hall
effect in an exchange-spin-split superconductor detected by
nonlocal magnon spin transport, ACS Nano 14, 15874 (2020).

[58] G. Bihlmayer, Y. Koroteev, P. Echenique, E. Chulkov, and S.
Blügel, The Rashba-effect at metallic surfaces, Surf. Sci. 600,
3888 (2006).

[59] C. Sanz-Fernández, J. Borge, I. V. Tokatly, and F. S. Bergeret,
Nonlocal magnetoelectric effects in diffusive conductors with
spatially inhomogeneous spin-orbit coupling, Phys. Rev. B 100,
195406 (2019).

[60] A. G. Mal’shukov and K. A. Chao, Spin hall conductivity
of a disordered two-dimensional electron gas with Dres-
selhaus spin-orbit interaction, Phys. Rev. B 71, 121308(R)
(2005).
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[62] J. Fabian, I. Žutić, and S. Das Sarma, Theory of spin-polarized
bipolar transport in magnetic p-n junctions, Phys. Rev. B 66,
165301 (2002).

[63] H. Yi, L.-H. Hu, Y. Wang, R. Xiao, J. Cai, D. R. Hickey, C.
Dong, Y.-F. Zhao, L.-J. Zhou, R. Zhang, A. R. Richardella, N.
Alem, J. A. Robinson, M. H. W. Chan, X. Xu, N. Samarth,
C.-X. Liu, and C.-Z. Chang, Crossover from Ising- to Rashba-
type superconductivity in epitaxial Bi2Se3/monolayer NbSe2

heterostructures, Nat. Mater. 21, 1366 (2022).
[64] A. D. Caviglia, M. Gabay, S. Gariglio, N. Reyren, C.

Cancellieri, and J.-M. Triscone, Tunable Rashba Spin-Orbit
Interaction at Oxide Interfaces, Phys. Rev. Lett. 104, 126803
(2010).

[65] M. Ben Shalom, M. Sachs, D. Rakhmilevitch, A. Palevski, and
Y. Dagan, Tuning Spin-Orbit Coupling and Superconductivity
at the SrTiO3/LaAlO3 Interface: A Magnetotransport Study,
Phys. Rev. Lett. 104, 126802 (2010).

[66] K.-R. Jeon, C. Ciccarelli, H. Kurebayashi, J. Wunderlich, L. F.
Cohen, S. Komori, J. W. A. Robinson, and M. G. Blamire,
Spin-Pumping-Induced Inverse Spin Hall Effect in Nb/Ni80Fe20

Bilayers and Its Strong Decay Across the Superconduct-
ing Transition Temperature, Phys. Rev. Appl. 10, 014029
(2018).

[67] T. Wang, W. Wang, Y. Xie, M. A. Warsi, J. Wu, Y. Chen,
V. O. Lorenz, X. Fan, and J. Q. Xiao, Large spin Hall angle
in vanadium film, Sci. Rep. 7, 1306 (2017).

[68] Y. Kamihara, H. Hiramatsu, M. Hirano, R. Kawamura, H.
Yanagi, T. Kamiya, and H. Hosono, Iron-based layered su-
perconductor: LaOFeP, J. Am. Chem. Soc. 128, 10012
(2006).

[69] Y. Kamihara, T. Watanabe, M. Hirano, and H. Hosono,
Iron-based layered superconductor La[O1−xFx]FeAs (x =
0.05–0.12) with Tc = 26 K, J. Am. Chem. Soc. 130, 3296
(2008).

104506-11

https://doi.org/10.1103/PhysRev.108.243
https://doi.org/10.1063/1.340483
https://doi.org/10.1103/PhysRevB.79.174512
https://doi.org/10.1038/s41598-022-10833-5
http://link.aps.org/supplemental/10.1103/PhysRevB.108.104506
https://doi.org/10.1103/PhysRevLett.20.660
https://doi.org/10.1126/science.1105514
https://doi.org/10.1038/nature04937
https://doi.org/10.1143/JJAP.51.010110
https://doi.org/10.1103/PhysRevB.89.054401
https://doi.org/10.1038/nmat4276
https://doi.org/10.1021/acsnano.0c07187
https://doi.org/10.1016/j.susc.2006.01.098
https://doi.org/10.1103/PhysRevB.100.195406
https://doi.org/10.1103/PhysRevB.71.121308
https://doi.org/10.1103/PhysRevLett.88.066603
https://doi.org/10.1103/PhysRevB.66.165301
https://doi.org/10.1038/s41563-022-01386-z
https://doi.org/10.1103/PhysRevLett.104.126803
https://doi.org/10.1103/PhysRevLett.104.126802
https://doi.org/10.1103/PhysRevApplied.10.014029
https://doi.org/10.1038/s41598-017-01112-9
https://doi.org/10.1021/ja063355c
https://doi.org/10.1021/ja800073m


Full list of publications
Experience is the teacher of all things.

— Julius Caesar, Commentarii de Bello Civili

This Thesis has resulted in the following peer-reviewed publications and preprints. Below we
list them in chronological order:

1. A. Hijano, S. Ilić, M. Rouco, C. González-Orellana, M. Ilyn, C. Rogero, P. Virtanen, T. T.
Heikkilä, S. Khorshidian, M. Spies, N. Ligato, F. Giazotto, E. Strambini, and F. S. Bergeret,
Coexistence of superconductivity and spin-splitting fields in superconductor/ferromagnetic
insulator bilayers of arbitrary thickness, [arXiv:2012.15549] Phys. Rev. Research 3, 023131
(2021)

2. A. Hijano, S. Ilić, and F. S. Bergeret, Anomalous Andreev interferometer: Study of an
anomalous Josephson junction coupled to a normal wire, [arXiv:2106.14021] Phys. Rev. B
104, 214515 (2021)

3. A. Hijano, V. N. Golovach, and F. S. Bergeret, Quasiparticle density of states and triplet
correlations in superconductor/ferromagnetic-insulator structures across a sharp domain wall,
[arXiv:2202.09098] Phys. Rev. B 105, 174507 (2022)

4. T. Kokkeler, A. Hijano, and F. S. Bergeret, Anisotropic differential conductance of a
mixed-parity superconductor/ferromagnet structure, [arXiv:2212.00346] Phys. Rev. B 107,
104506 (2023)

5. A. Hijano, F. S. Bergeret, F. Giazotto, and A. Braggio, Microwave-Assisted Thermoelectricity
in S-I-S’ Tunnel Junctions, [arXiv:2211.04288] Phys. Rev. Applied 19, 044024 (2023)

6. A. Hijano, F. S. Bergeret, F. Giazotto, and A. Braggio, Bipolar thermoelectricity in S/I/NS
and S/I/SN superconducting tunnel junctions, [arXiv:2303.18212] Appl. Phys. Lett. 122,
242603 (2023)

7. A. Hijano, E. J. Rodríguez, D. Bercioux, and D. Frustaglia, Spin-texture topology in curved
circuits driven by spin-orbit interactions, [arXiv:2209.11653] Comm. Phys. 6, 186 (2023)

8. A. Hijano, S. Vosoughi-nia, F. S. Bergeret, P. Virtanen, and T. T. Heikkilä, Dynamical Hall
responses of disordered superconductors, [arXiv:2306.17785] Phys. Rev. B 108, 104506 (2023)

9. Z. Geng, A. Hijano, S. Ilić, M. Ilyn, I. Maasilta, A. Monfardini, M. Spies, E. Strambini,
P. Virtanen, M. Calvo, C. González-Orellána, A. P. Helenius, S. Khorshidian, C. I.
Levartoski de Araujo, F. Levy-Bertrand, C. Rogero, F. Giazotto, F. S. Bergeret and T. T.
Heikkilä, Superconductor-ferromagnet hybrids for non-reciprocal electronics and detectors,
[arXiv:2302.12732] Supercond. Sci. Technol. 36, 123001 (2023)

https://arxiv.org/abs/2012.15549
https://journals.aps.org/prresearch/abstract/10.1103/PhysRevResearch.3.023131
https://journals.aps.org/prresearch/abstract/10.1103/PhysRevResearch.3.023131
https://arxiv.org/abs/2106.14021
https://journals.aps.org/prb/abstract/10.1103/PhysRevB.104.214515
https://journals.aps.org/prb/abstract/10.1103/PhysRevB.104.214515
https://arxiv.org/abs/2202.09098
https://journals.aps.org/prb/abstract/10.1103/PhysRevB.105.174507
https://arxiv.org/abs/2212.00346
https://journals.aps.org/prb/abstract/10.1103/PhysRevB.107.104506
https://journals.aps.org/prb/abstract/10.1103/PhysRevB.107.104506
https://arxiv.org/abs/2211.04288
https://journals.aps.org/prapplied/abstract/10.1103/PhysRevApplied.19.044024
https://arxiv.org/abs/2303.18212
https://pubs.aip.org/aip/apl/article/122/24/242603/2896132/Bipolar-thermoelectricity-in-S-I-NS-and-S-I-SN
https://pubs.aip.org/aip/apl/article/122/24/242603/2896132/Bipolar-thermoelectricity-in-S-I-NS-and-S-I-SN
https://arxiv.org/abs/2209.11653
https://www.nature.com/articles/s42005-023-01308-8
https://arxiv.org/abs/2306.17785
https://journals.aps.org/prb/abstract/10.1103/PhysRevB.108.104506
https://arxiv.org/abs/2302.12732
https://iopscience.iop.org/article/10.1088/1361-6668/ad01e9


90 Full list of publications

10. A. Hijano, S. Ilić and F. S. Bergeret, Weak localization at arbitrary disorder in systems with
generic spin-dependent fields, [arXiv:2311.01148]

11. H. Matsuki, A. Hijano, F. S. Bergeret, J. W. A. Robinson, Absolute superconducting spin
switch with spin-orbit coupling, in preparation

https://arxiv.org/abs/2311.01148


References
If I have seen further,
it is by standing on the
shoulders of giants.
— Isaac Newton

[1] G. D. Simoni, E. Strambini, J. S. Moodera, F. S. Bergeret, and F. Giazotto, “Toward the
absolute spin-valve effect in superconducting tunnel junctions”, Nano Lett. 18, 6369 (2018).

[2] P. Machon, M. Eschrig, and W. Belzig, “Nonlocal Thermoelectric Effects and Nonlocal
Onsager relations in a Three-Terminal Proximity-Coupled Superconductor-Ferromagnet
Device”, Phys. Rev. Lett. 110, 047002 (2013).

[3] F. Giazotto, T. T. Heikkilä, and F. S. Bergeret, “Very Large Thermophase in Ferromagnetic
Josephson Junctions”, Phys. Rev. Lett. 114, 067001 (2015).

[4] F. Hübler, M. J. Wolf, D. Beckmann, and H. v. Löhneysen, “Long-range spin-polarized
quasiparticle transport in mesoscopic al superconductors with a zeeman splitting”, Phys.
Rev. Lett. 109, 207001 (2012).

[5] A. Ozaeta, P. Virtanen, F. S. Bergeret, and T. T. Heikkilä, “Predicted very large
thermoelectric effect in ferromagnet-superconductor junctions in the presence of a
spin-splitting magnetic field”, Phys. Rev. Lett. 112, 057001 (2014).

[6] S. Kolenda, M. J. Wolf, and D. Beckmann, “Observation of thermoelectric currents in
high-field superconductor-ferromagnet tunnel junctions”, Phys. Rev. Lett. 116, 097001
(2016).

[7] S. Kolenda, P. Machon, D. Beckmann, and W. Belzig, “Nonlinear thermoelectric effects in
high-field superconductor-ferromagnet tunnel junctions”, Beilstein Journal of Nanotechnology
7, 1579–1585 (2016).

[8] F. Giazotto, J. W. A. Robinson, J. S. Moodera, and F. S. Bergeret, “Proposal for a
phase-coherent thermoelectric transistor”, Appl. Phys. Lett. 105, 062602 (2014).

[9] T. T. Heikkilä, R. Ojajärvi, I. J. Maasilta, E. Strambini, F. Giazotto, and F. S. Bergeret,
“Thermoelectric radiation detector based on superconductor-ferromagnet systems”, Phys.
Rev. Appl. 10, 034053 (2018).

[10] D. Hanson, S. Hoover, A. Crites, P. A. R. Ade, K. A. Aird, J. E. Austermann, J. A. Beall, A. N.
Bender, B. A. Benson, L. E. Bleem, J. J. Bock, J. E. Carlstrom, C. L. Chang, H. C. Chiang,
H.-M. Cho, A. Conley, T. M. Crawford, T. de Haan, M. A. Dobbs, W. Everett, J. Gallicchio,
J. Gao, E. M. George, N. W. Halverson, N. Harrington, J. W. Henning, G. C. Hilton, G. P.
Holder, W. L. Holzapfel, J. D. Hrubes, N. Huang, J. Hubmayr, K. D. Irwin, R. Keisler, L.
Knox, A. T. Lee, E. Leitch, D. Li, C. Liang, D. Luong-Van, G. Marsden, J. J. McMahon,
J. Mehl, S. S. Meyer, L. Mocanu, T. E. Montroy, T. Natoli, J. P. Nibarger, V. Novosad, S.
Padin, C. Pryke, C. L. Reichardt, J. E. Ruhl, B. R. Saliwanchik, J. T. Sayre, K. K. Schaffer,

https://doi.org/10.1021/acs.nanolett.8b02723
https://doi.org/10.1103/PhysRevLett.110.047002
https://doi.org/10.1103/PhysRevLett.114.067001
https://doi.org/10.1103/PhysRevLett.109.207001
https://doi.org/10.1103/PhysRevLett.109.207001
https://doi.org/10.1103/PhysRevLett.112.057001
https://doi.org/10.1103/PhysRevLett.116.097001
https://doi.org/10.1103/PhysRevLett.116.097001
https://doi.org/10.3762/bjnano.7.152
https://doi.org/10.3762/bjnano.7.152
https://doi.org/10.1063/1.4893443
https://doi.org/10.1103/PhysRevApplied.10.034053
https://doi.org/10.1103/PhysRevApplied.10.034053


92 REFERENCES

B. Schulz, G. Smecher, A. A. Stark, K. T. Story, C. Tucker, K. Vanderlinde, J. D. Vieira,
M. P. Viero, G. Wang, V. Yefremenko, O. Zahn, and M. Zemcov (SPTpol Collaboration),
“Detection of B-mode polarization in the cosmic microwave background with data from the
south pole telescope”, Phys. Rev. Lett. 111, 141301 (2013).

[11] A. Luukanen, R. Appleby, M. Kemp, and N. Salmon, Terahertz Spectroscopy and Imaging
(Springer, 2013) Chap. 19.

[12] F. Giazotto, P. Solinas, A. Braggio, and F. S. Bergeret, “Ferromagnetic-insulator-based
superconducting junctions as sensitive electron thermometers”, Phys. Rev. Appl. 4, 044016
(2015).

[13] I. V. Bobkova and A. M. Bobkov, “Thermospin effects in superconducting heterostructures”,
Phys. Rev. B 96, 104515 (2017).

[14] J. Linder and M. E. Bathen, “Spin caloritronics with superconductors: Enhanced
thermoelectric effects, generalized Onsager response-matrix, and thermal spin currents”,
Phys. Rev. B 93, 224509 (2016).

[15] D. Huertas-Hernando, Y. V. Nazarov, and W. Belzig, “Absolute spin-valve effect with
superconducting proximity structures”, Phys. Rev. Lett. 88, 047003 (2002).

[16] F. Giazotto and F. S. Bergeret, “Quantum interference hybrid spin-current injector”, Appl.
Phys. Lett. 102, 162406 (2013).

[17] F. Giazotto and F. S. Bergeret, “Phase-tunable colossal magnetothermal resistance in
ferromagnetic Josephson valves”, Appl. Phys. Lett. 102, 132603 (2013).

[18] F. Giazotto, F. Taddei, R. Fazio, and F. Beltram, “Huge nonequilibrium magnetoresistance
in hybrid superconducting spin valves”, Appl. Phys. Lett. 89, 022505 (2006).

[19] F. Giazotto, T. T. Heikkilä, A. Luukanen, A. M. Savin, and J. P. Pekola, “Opportunities for
mesoscopics in thermometry and refrigeration: physics and applications”, Rev. Mod. Phys.
78, 217–274 (2006).

[20] S. Kawabata, A. Ozaeta, A. S. Vasenko, F. W. J. Hekking, and F. S. Bergeret, “Efficient
electron refrigeration using superconductor/spin-filter devices”, Appl. Phys. Lett. 103, 032602
(2013).

[21] E. Strambini, A. Iorio, O. Durante, R. Citro, C. Sanz-Fernández, C. Guarcello, I. V. Tokatly,
A. Braggio, M. Rocci, N. Ligato, V. Zannier, L. Sorba, F. S. Bergeret, and F. Giazotto, “A
Josephson phase battery”, Nature Nanotechnology 15, 656–660 (2020).

[22] E. Strambini, M. Spies, N. Ligato, S. Ilić, M. Rouco, C. González-Orellana, M. Ilyn, C.
Rogero, F. S. Bergeret, J. S. Moodera, P. Virtanen, T. T. Heikkilä, and F. Giazotto,
“Superconducting spintronic tunnel diode”, Nature Communications 13, 2431 (2022).

[23] V. M. Edelstein, “Magnetoelectric effect in polar superconductors”, Phys. Rev. Lett. 75, 2004
(1995).

[24] S. K. Yip, “Two-dimensional superconductivity with strong spin-orbit interaction”, Phys.
Rev. B 65, 144508 (2002).

[25] O. Dimitrova and M. V. Feigel’man, “Theory of a two-dimensional superconductor with
broken inversion symmetry”, Phys. Rev. B 76, 014522 (2007).

[26] D. F. Agterberg, “Magnetoelectric effects, helical phases, and FFLO phases”, in
Non-centrosymmetric superconductors , Vol. 847, Lecture notes in physics (Springer, 2012),
pp. 155–170.

https://doi.org/10.1103/PhysRevLett.111.141301
https://doi.org/10.1103/PhysRevApplied.4.044016
https://doi.org/10.1103/PhysRevApplied.4.044016
https://doi.org/10.1103/PhysRevB.96.104515
https://doi.org/10.1103/PhysRevB.93.224509
https://doi.org/10.1103/PhysRevLett.88.047003
https://doi.org/10.1063/1.4802953
https://doi.org/10.1063/1.4802953
https://doi.org/10.1063/1.4800578
https://doi.org/10.1063/1.2220001
https://doi.org/10.1103/RevModPhys.78.217
https://doi.org/10.1103/RevModPhys.78.217
https://doi.org/10.1063/1.4813599
https://doi.org/10.1063/1.4813599
https://doi.org/10.1038/s41565-020-0712-7
https://doi.org/10.1038/s41467-022-29990-2
https://doi.org/10.1103/PhysRevLett.75.2004
https://doi.org/10.1103/PhysRevLett.75.2004
https://doi.org/10.1103/PhysRevB.65.144508
https://doi.org/10.1103/PhysRevB.65.144508
https://doi.org/10.1103/PhysRevB.76.014522
https://doi.org/10.1007/978-3-642-24624-1_5


REFERENCES 93

[27] F. Konschelle, I. V. Tokatly, and F. S. Bergeret, “Theory of the spin-galvanic effect and the
anomalous phase shift ϕ0 in superconductors and Josephson junctions with intrinsic spin-orbit
coupling”, Phys. Rev. B 92, 125443 (2015).

[28] S. M. Frolov, M. J. Manfra, and J. D. Sau, “Topological superconductivity in hybrid devices”,
Nature Physics 16, 718–724 (2020).

[29] T. Karzig, C. Knapp, R. M. Lutchyn, P. Bonderson, M. B. Hastings, C. Nayak, J. Alicea,
K. Flensberg, S. Plugge, Y. Oreg, C. M. Marcus, and M. H. Freedman, “Scalable designs
for quasiparticle-poisoning-protected topological quantum computation with Majorana zero
modes”, Phys. Rev. B 95, 235305 (2017).

[30] H. Kamerlingh Onnes, “Further experiments with liquid helium. C. On the change of electric
resistance of pure metals at very low temperatures etc. IV. The resistance of pure mercury
at helium temperatures”, Proceedings 13, 1274–1276 (1911).

[31] J. G. Bednorz and K. A. Müller, “Possible high Tc superconductivity in the Ba-La-Cu-O
system”, Zeitschrift für Physik B Condensed Matter 64, 189–193 (1986).

[32] W. Meissner and R. Ochsenfeld, “Ein neuer effekt bei eintritt der supraleitfähigkeit”,
Naturwissenschaften 21, 787–788 (1933).

[33] J. Bardeen, L. N. Cooper, and J. R. Schrieffer, “Microscopic theory of superconductivity”,
Phys. Rev. 106, 162–164 (1957).

[34] L. N. Cooper, “Bound Electron Pairs in a Degenerate Fermi Gas”, Phys. Rev. 104, 1189–1190
(1956).

[35] H. Fröhlich, “Theory of the Superconducting State. I. The Ground State at the Absolute
Zero of Temperature”, Phys. Rev. 79, 845–856 (1950).

[36] E. Maxwell, “Isotope effect in the superconductivity of mercury”, Phys. Rev. 78, 477–477
(1950).

[37] C. A. Reynolds, B. Serin, W. H. Wright, and L. B. Nesbitt, “Superconductivity of isotopes
of mercury”, Phys. Rev. 78, 487–487 (1950).

[38] P. Coleman, Introduction to Many-Body Physics (Cambridge University Press, 2015)
Chap. 14.

[39] N. N. Bogoliubov, “A New Method in the Theory of Superconductivity. I”, J. Exptl. Theoret.
Phys. 34, 41 (1958).

[40] V. V. Tolmachev and S. V. Tiablikov, “A New Method in the Theory of Superconductivity.
II”, J. Exptl. Theoret. Phys. 34, 46 (1958).

[41] N. N. Bogoliubov, “A New Method in the Theory of Superconductivity. III”, J. Exptl. Theoret.
Phys. 34, 51 (1958).

[42] J. Bardeen, L. N. Cooper, and J. R. Schrieffer, “Theory of superconductivity”, Phys. Rev.
108, 1175–1204 (1957).

[43] M. Tinkham, Introduction to Superconductivity, 2nd ed. (Dover publications, 2004) Chap. 3.

[44] L. P. Gor’kov, Zhur. Exptl. i. Teoret. Fiz. 34, 735 (1958).

[45] A. Migdal, “Superfluidity and the moments of inertia of nuclei”, Nuclear Physics 13, 655–674
(1959).

[46] L. V. Keldysh, “Diagram technique for nonequilibrium processes”, J. Exptl. Theoret. Phys
20, 1018 (1964).

https://doi.org/10.1103/PhysRevB.92.125443
https://doi.org/10.1038/s41567-020-0925-6
https://doi.org/10.1103/PhysRevB.95.235305
https://doi.org/10.1007/BF01303701
https://doi.org/10.1007/BF01504252
https://doi.org/10.1103/PhysRev.106.162
https://doi.org/10.1103/PhysRev.104.1189
https://doi.org/10.1103/PhysRev.104.1189
https://doi.org/10.1103/PhysRev.79.845
https://doi.org/10.1103/PhysRev.78.477
https://doi.org/10.1103/PhysRev.78.477
https://doi.org/10.1103/PhysRev.78.487
http://jetp.ras.ru/cgi-bin/e/index/e/7/1/p41?a=list
http://jetp.ras.ru/cgi-bin/e/index/e/7/1/p41?a=list
http://jetp.ras.ru/cgi-bin/e/index/e/7/1/p46?a=list
http://jetp.ras.ru/cgi-bin/e/index/e/7/1/p51?a=list
http://jetp.ras.ru/cgi-bin/e/index/e/7/1/p51?a=list
https://doi.org/10.1103/PhysRev.108.1175
https://doi.org/10.1103/PhysRev.108.1175
https://doi.org/https://doi.org/10.1016/0029-5582(59)90264-0
https://doi.org/https://doi.org/10.1016/0029-5582(59)90264-0
http://jetp.ras.ru/cgi-bin/e/index/e/20/4/p1018?a=list
http://jetp.ras.ru/cgi-bin/e/index/e/20/4/p1018?a=list


94 REFERENCES

[47] N. Kopnin, Theory of Nonequilibrium Superconductivity (Oxford University Press, 2001)
Chap. 8.

[48] Y. Nambu, “Quasi-particles and gauge invariance in the theory of superconductivity”, Phys.
Rev. 117, 648–663 (1960).

[49] A. A. Abrikosov, L. P. Gorkov, and I. E. Dzyaloshinski, Methods of Quantum Field Theory
in Statistical Physics (Prentice-Hall, Inc., 1963) Chap. 11.

[50] A. A. Abrikosov, L. P. Gorkov, and I. E. Dzyaloshinski, Methods of Quantum Field Theory
in Statistical Physics (Prentice-Hall, Inc., 1963) Chap. 7.

[51] T. Matsubara, “A New Approach to Quantum-Statistical Mechanics”, Progress of Theoretical
Physics 14, 351–378 (1955).

[52] J. E. Moyal, “Quantum mechanics as a statistical theory”, Mathematical Proceedings of the
Cambridge Philosophical Society 45, 99–124 (1949).

[53] D. Langenberg and A. Larkin, Nonequilibrium superconductivity, Modern problems in
condensed matter sciences (North-Holland, 1986) Chap. 11.

[54] W. Belzig, F. K. Wilhelm, C. Bruder, G. Schön, and A. D. Zaikin, “Quasiclassical Green’s
function approach to mesoscopic superconductivity”, Superlattices and Microstructures 25,
1251–1288 (1999).

[55] A. Schmid, Nonequilibrium Superconductivity, Phonons, and Kapitza Boundaries (Plenum
Press, 1981) Chap. 14.

[56] G. Eilenberger, “Transformation of Gorkov’s equation for type II superconductors into
transport-like equations”, Zeitschrift für Physik A Hadrons and nuclei 214, 195–213 (1968).

[57] U. Eckern and A. Schmid, “Quasiclassical Green’s function in the BCS pairing theory”,
Journal of Low Temperature Physics 45, 137–166 (1981).

[58] R. C. Dynes, V. Narayanamurti, and J. P. Garno, “Direct measurement of
quasiparticle-lifetime broadening in a strong-coupled superconductor”, Phys. Rev. Lett. 41,
1509–1512 (1978).

[59] D. A. Ivanov and Y. V. Fominov, “Minigap in superconductor-ferromagnet junctions with
inhomogeneous magnetization”, Phys. Rev. B 73, 214524 (2006).

[60] N. Schopohl and K. Maki, “Quasiparticle spectrum around a vortex line in a d-wave
superconductor”, Phys. Rev. B 52, 490 (1995).

[61] K. D. Usadel, “Generalized diffusion equation for superconducting alloys”, Phys. Rev. Lett.
25, 507–509 (1970).

[62] F. S. Bergeret and I. V. Tokatly, “Singlet-triplet conversion and the long-range proximity
effect in superconductor-ferromagnet structures with generic spin dependent fields”, Phys.
Rev. Lett. 110, 117003 (2013).

[63] F. S. Bergeret and I. V. Tokatly, “Manifestation of extrinsic spin Hall effect in
superconducting structures: nondissipative magnetoelectric effects”, Phys. Rev. B 94, 180502
(2016).

[64] C. Huang, I. V. Tokatly, and F. S. Bergeret, “Extrinsic spin-charge coupling in diffusive
superconducting systems”, Phys. Rev. B 98, 144515 (2018).

[65] P. Virtanen, F. S. Bergeret, and I. V. Tokatly, “Magnetoelectric effects in superconductors due
to spin-orbit scattering: nonlinear σ-model description”, Phys. Rev. B 104, 064515 (2021).

https://doi.org/10.1103/PhysRev.117.648
https://doi.org/10.1103/PhysRev.117.648
https://doi.org/10.1143/PTP.14.351
https://doi.org/10.1143/PTP.14.351
https://doi.org/10.1017/S0305004100000487
https://doi.org/10.1017/S0305004100000487
https://doi.org/https://doi.org/10.1006/spmi.1999.0710
https://doi.org/https://doi.org/10.1006/spmi.1999.0710
https://doi.org/10.1007/BF01379803
https://doi.org/10.1007/BF00661147
https://doi.org/10.1103/PhysRevLett.41.1509
https://doi.org/10.1103/PhysRevLett.41.1509
https://doi.org/10.1103/PhysRevB.73.214524
https://doi.org/10.1103/PhysRevB.52.490
https://doi.org/10.1103/PhysRevLett.25.507
https://doi.org/10.1103/PhysRevLett.25.507
https://doi.org/10.1103/PhysRevLett.110.117003
https://doi.org/10.1103/PhysRevLett.110.117003
https://doi.org/10.1103/PhysRevB.94.180502
https://doi.org/10.1103/PhysRevB.94.180502
https://doi.org/10.1103/PhysRevB.98.144515
https://doi.org/10.1103/PhysRevB.104.064515


REFERENCES 95

[66] F. S. Bergeret and I. V. Tokatly, “Spin-orbit coupling as a source of long-range triplet
proximity effect in superconductor-ferromagnet hybrid structures”, Phys. Rev. B 89, 134517
(2014).

[67] F. S. Bergeret and I. V. Tokatly, “Theory of diffusive ϕ0 Josephson junctions in the presence
of spin-orbit coupling”, EPL 110, 57005 (2015).

[68] I. V. Tokatly, “Usadel equation in the presence of intrinsic spin-orbit coupling: a unified
theory of magnetoelectric effects in normal and superconducting systems”, Phys. Rev. B 96,
060502 (2017).

[69] C. Gorini, R. Raimondi, and P. Schwab, “Onsager Relations in a Two-Dimensional Electron
Gas with Spin-Orbit Coupling”, Phys. Rev. Lett. 109, 246604 (2012).

[70] P. Virtanen, F. S. Bergeret, and I. V. Tokatly, “Nonlinear σ model for disordered systems
with intrinsic spin-orbit coupling”, Phys. Rev. B 105, 224517 (2022).

[71] M. B. Lifshits and M. I. Dyakonov, “Swapping spin currents: interchanging spin and flow
directions”, Phys. Rev. Lett. 103, 186601 (2009).

[72] A. Cottet, D. Huertas-Hernando, W. Belzig, and Y. V. Nazarov, “Spin-dependent boundary
conditions for isotropic superconducting Green’s functions”, Phys. Rev. B 80, 184511 (2009).

[73] J. Linder, T. Yokoyama, A. Sudbø, and M. Eschrig, “Pairing symmetry conversion by
spin-active interfaces in magnetic normal-metal–superconductor junctions”, Phys. Rev. Lett.
102, 107008 (2009).

[74] F. S. Bergeret, A. Verso, and A. F. Volkov, “Electronic transport through ferromagnetic
and superconducting junctions with spin-filter tunneling barriers”, Phys. Rev. B 86, 214516
(2012).

[75] M. Eschrig, A. Cottet, W. Belzig, and J. Linder, “General boundary conditions for
quasiclassical theory of superconductivity in the diffusive limit: application to strongly
spin-polarized systems”, New Journal of Physics 17, 083037 (2015).

[76] T. T. Heikkilä, M. Silaev, P. Virtanen, and F. S. Bergeret, “Thermal, electric and spin
transport in superconductor/ferromagnetic-insulator structures”, Progress in Surface Science
94, 100540 (2019).

[77] A. Hijano, Proximity effects in superconductor-ferromagnetic insulator bilayers of arbitrary
thickness, Master’s thesis, University of the Basque Country, 2020.

[78] A. Hijano, S. Ilić, M. Rouco, C. González-Orellana, M. Ilyn, C. Rogero, P. Virtanen, T. T.
Heikkilä, S. Khorshidian, M. Spies, N. Ligato, F. Giazotto, E. Strambini, and F. S. Bergeret,
“Coexistence of superconductivity and spin-splitting fields in superconductor/ferromagnetic
insulator bilayers of arbitrary thickness”, Phys. Rev. Res. 3, 023131 (2021).

[79] M. Y. Kuprianov and V. F. Lukichev, Zh. Eksp. Teor. Fiz. 94, 139, [Sov. Phys. JETP 67,
1163 (1988)], 1988.

[80] M. Eschrig, A. Cottet, W. Belzig, and J. Linder, “General boundary conditions for
quasiclassical theory of superconductivity in the diffusive limit: application to strongly
spin-polarized systems”, New Journal of Physics 17, 083037 (2015).

[81] Y. V. Nazarov, “Novel circuit theory of Andreev reflection”, Superlattices and microstructures
25, 1221–1231 (1999).

[82] Y. Tanaka, A. A. Golubov, and S. Kashiwaya, “Theory of charge transport in diffusive normal
metal/conventional superconductor point contacts”, Phys. Rev. B 68, 054513 (2003).

https://doi.org/10.1103/PhysRevB.89.134517
https://doi.org/10.1103/PhysRevB.89.134517
https://doi.org/10.1209/0295-5075/110/57005
https://doi.org/10.1103/PhysRevB.96.060502
https://doi.org/10.1103/PhysRevB.96.060502
https://doi.org/10.1103/PhysRevLett.109.246604
https://doi.org/10.1103/PhysRevB.105.224517
https://doi.org/10.1103/PhysRevLett.103.186601
https://doi.org/10.1103/PhysRevB.80.184511
https://doi.org/10.1103/PhysRevLett.102.107008
https://doi.org/10.1103/PhysRevLett.102.107008
https://doi.org/10.1103/PhysRevB.86.214516
https://doi.org/10.1103/PhysRevB.86.214516
https://doi.org/10.1088/1367-2630/17/8/083037
https://doi.org/10.1103/PhysRevResearch.3.023131
https://doi.org/10.1088/1367-2630/17/8/083037
https://doi.org/https://doi.org/10.1006/spmi.1999.0738
https://doi.org/https://doi.org/10.1006/spmi.1999.0738
https://doi.org/10.1103/PhysRevB.68.054513


96 REFERENCES

[83] G. Blonder, M. Tinkham, and T. Klapwijk, “Transition from metallic to tunneling regimes
in superconducting microconstrictions: excess current, charge imbalance, and supercurrent
conversion”, Phys. Rev. B 25, 4515 (1982).

[84] Y. Tanaka, Y. Nazarov, and S. Kashiwaya, “Circuit theory of unconventional superconductor
junctions”, Phys. Rev. Lett. 90, 167003 (2003).

[85] Y. Tanaka, Y. V. Nazarov, A. Golubov, and S. Kashiwaya, “Theory of charge transport in
diffusive normal metal/unconventional singlet superconductor contacts”, Phys. Rev. B 69,
144519 (2004).

[86] Y. Tanaka, T. Kokkeler, and A. Golubov, “Theory of proximity effect in s + p-wave
superconductor junctions”, Phys. Rev. B 105, 214512 (2022).

[87] J. S. Moodera, X. Hao, G. A. Gibson, and R. Meservey, “Electron-Spin Polarization in
Tunnel Junctions in Zero Applied Field with Ferromagnetic EuS Barriers”, Phys. Rev. Lett.
61, 637–640 (1988).

[88] X. Hao, J. S. Moodera, and R. Meservey, “Spin-filter effect of ferromagnetic europium sulfide
tunnel barriers”, Phys. Rev. B 42, 8235–8243 (1990).

[89] R. Meservey and P. Tedrow, “Spin-polarized electron tunneling”, Phys. Rep. 238, 173–243
(1994).

[90] E. Strambini, V. N. Golovach, G. De Simoni, J. S. Moodera, F. S. Bergeret, and F. Giazotto,
“Revealing the magnetic proximity effect in EuS/Al bilayers through superconducting
tunneling spectroscopy”, Phys. Rev. Materials 1, 054402 (2017).

[91] T. Tokuyasu, J. A. Sauls, and D. Rainer, “Proximity effect of a ferromagnetic insulator in
contact with a superconductor”, Phys. Rev. B 38, 8823–8833 (1988).

[92] P. Virtanen, A. Vargunin, and M. Silaev, “Quasiclassical free energy of superconductors:
disorder-driven first-order phase transition in superconductor/ferromagnetic-insulator
bilayers”, Phys. Rev. B 101, 094507 (2020).

[93] M. Rouco, S. Chakraborty, F. Aikebaier, V. N. Golovach, E. Strambini, J. S. Moodera, F.
Giazotto, T. T. Heikkilä, and F. S. Bergeret, “Charge transport through spin-polarized tunnel
junction between two spin-split superconductors”, Phys. Rev. B 100, 184501 (2019).

[94] A. Y. Aladyshkin, A. I. Buzdin, A. A. Fraerman, A. S. Mel’nikov, D. A. Ryzhov, and A. V.
Sokolov, “Domain-wall superconductivity in hybrid superconductor-ferromagnet structures”,
Phys. Rev. B 68, 184508 (2003).

[95] M. Houzet and A. I. Buzdin, “Theory of domain-wall superconductivity in
superconductor/ferromagnet bilayers”, Phys. Rev. B 74, 214507 (2006).

[96] I. V. Bobkova and A. M. Bobkov, “Reconstruction of the Density of States at the End of an
S/F Bilayer”, JETP Lett. 109, 57 (2019).

[97] D. S. Rabinovich, I. V. Bobkova, A. M. Bobkov, and M. A. Silaev, “Magnetoelectric effects
in superconductor/ferromagnet bilayers”, Phys. Rev. B 99, 214501 (2019).

[98] F. Aikebaier, P. Virtanen, and T. Heikkilä, “Superconductivity near a magnetic domain wall”,
Phys. Rev. B 99, 104504 (2019).

[99] Z. Yang, M. Lange, A. Volodin, R. Szymczak, and V. V. Moshchalkov, “Domain-wall
superconductivity in superconductor–ferromagnet hybrids”, Nat. Mater. 3, 793–798 (2004).

[100] J. Linder and K. Halterman, “Superconducting spintronics with magnetic domain walls”,
Phys. Rev. B 90, 104502 (2014).

https://doi.org/10.1103/PhysRevB.25.4515
https://doi.org/10.1103/PhysRevLett.90.167003
https://doi.org/10.1103/PhysRevB.69.144519
https://doi.org/10.1103/PhysRevB.69.144519
https://doi.org/10.1103/PhysRevB.105.214512
https://doi.org/10.1103/PhysRevLett.61.637
https://doi.org/10.1103/PhysRevLett.61.637
https://doi.org/10.1103/PhysRevB.42.8235
https://doi.org/10.1103/PhysRevMaterials.1.054402
https://doi.org/10.1103/PhysRevB.38.8823
https://doi.org/10.1103/PhysRevB.101.094507
https://doi.org/10.1103/PhysRevB.68.184508
https://doi.org/10.1103/PhysRevB.74.214507
https://doi.org/10.1134/S0021364019010016
https://doi.org/10.1103/PhysRevB.99.214501
https://doi.org/10.1103/PhysRevB.99.104504
https://doi.org/10.1038/nmat1222
https://doi.org/10.1103/PhysRevB.90.104502


REFERENCES 97

[101] F. S. Bergeret, A. F. Volkov, and K. B. Efetov, “Odd triplet superconductivity and related
phenomena in superconductor-ferromagnet structures”, Rev. Mod. Phys. 77, 1321–1373
(2005).

[102] A. Cottet, “Inducing odd-frequency triplet superconducting correlations in a normal metal”,
Phys. Rev. Lett. 107, 177001 (2011).

[103] F. S. Bergeret, M. Silaev, P. Virtanen, and T. T. Heikkilä, “Colloquium: nonequilibrium
effects in superconductors with a spin-splitting field”, Reviews of Modern Physics 90, 041001
(2018).

[104] V. L. Berezinskii, “New model of the anisotropic phase of superfluid He3”, Sov. J. Exp. Theor.
Phys. Lett. 20, 628 (1974).

[105] Y. Tanaka, M. Sato, and N. Nagaosa, “Symmetry and topology in superconductors
–odd-frequency pairing and edge states–”, Journal of the Physical Society of Japan 81, 011013
(2012).

[106] J. Linder and A. V. Balatsky, “Odd-frequency superconductivity”, Reviews of Modern Physics
91, 045005 (2019).

[107] M. Eschrig, “Spin-polarized supercurrents for spintronics”, Phys. Today 64, 43 (2011).

[108] A. Kamenev, Field theory of non-equilibrium systems (Cambridge University Press, 2011)
Chap. 14.

[109] A. Altland and B. Simons, Condensed matter field theory, 2nd ed. (Cambridge University
Press, 2010) Chap. 1.

[110] L. Hofstetter, S. Csonka, J. Nygård, and C. Schönenberger, “Cooper pair splitter realized in
a two-quantum-dot Y-junction”, Nature 461, 960–963 (2009).

[111] B. Josephson, “Possible new effects in superconductive tunnelling”, Physics Letters 1, 251–253
(1962).

[112] B. D. Josephson, “The discovery of tunnelling supercurrents”, Rev. Mod. Phys. 46, 251–254
(1974).
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Farewell, dear city.
Farewell, my country, where my children lived.
There below, the Greek ships wait.
— Euripides, The Trojan Women
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