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LABURPENA

Argiaren eta materiaren arteko elkarrekintza aspalditik izan da aztergai
zientzialarientzat. Esaterako, 1850eko hamarkadan, Michael Faraday-k aurkitu
zuen tamaina nanometrikoko urrezko partikulek eta bolumen handiko urrezko
egiturek propietate optiko oso desberdinak dituztela [1]. Propietate optiko berezi
horiek dira, adibidez, urre-errubi beiraren kolore gorri distiratsua sortzen dutenak
[2, 3]. Aurkikuntza haren azalpen fisikoa Gustav Mie-k eman zuen zenbait
urte geroago [4], 1908an, James Clerk Maxwell-en teoria elektromagnetikoa [5]
erabiliz urrezko nanopartikula txikien sakabanatze-propietateak aztertu zituenean
[6–8]. Nanopartikula metaliko txiki hauek argia maiztasun jakin batzuetan
(normalean espektro ikusgaian) modu eraginkorrean barreiatzen dutela aurkitu
zuen Mie-k; maiztasun hauek materialaren, partikularen tamainaren eta ingurune
dielektrikoaren propietateen araberakoak izanik [9]. Maiztasun jakin horiek
gainazaleko plasmoi lokalizatuei dagozkie [10–12], argiaren bidez kitzika daitezkeen
nanopartikula metalikoen gainazaleko karga-oszilazioen erresonantziei, alegia [13–
16].

Azken urteetan, nanopartikula metalikoen plasmoi erresonantziek interes handia
piztu dute Nanofotonika alorrean [17–19], uhin elektromagnetiko erasotzailearen
anplitudea areagotzeko eta argia uhin-luzera baino eskualde txikiagoetan
lokalizatzeko duten ahalmena dela-eta [20–22]. Adibidez, bi nanopartikula
metalikoren arteko eskualde nanometrikoan (nanobarrunbe plasmoniko deiturikoa,
nanogap edota nanocavity ingelesez), eremu elektromagnetikoaren anplitudea 100-
1000 aldiz handitu daiteke [23]. Ondorioz, gaur egun plasmoi erresonantziak
asko erabiltzen dira hainbat espektroskopia eta mikroskopia tekniketan, hala
nola gainazalak areagotutako Raman espektroskopian (surface-enhanced Raman
spectroscopy) [24], gainazalak areagotutako fluoreszentzian (surface-enhanced
fluorescence) [25–27], edota molekula bakarren detekzioan (single-molecule imaging)
[28, 29]. Gainera, plasmoi erresonantziek aplikazio itxaropentsuak dituzte, besteak
beste, biomedikuntzan [30–32], energiaren biltegiratzean [33–35], edota optika
ez-linealean [36, 37].

Efektu plasmonikoak elektromagnetismo klasikoaren teoriaren testuinguruan
aztertu izan dira batik bat [38–45], non argiaren eta materiaren arteko elkarrekintza
Maxwell-en ekuazioek deskribatzen duten eta sistemaren erantzun optikoa, oro
har, linealtzat jotzen den [6]. Hala ere, egungo konfigurazio esperimentaletan
(nanopartikula benetan txikiak, partikulen arteko distantziak azpi-nanometrikoak
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izanik), fenomeno kuantikoek sistemaren propietate optikoetan eragina dutela
behatu da [46–52]. Egoera horietan, deskribapen klasikoek ez dituzte erantzun
optikoaren aspektu guztiak ongi deskribatzen [53–55], eta beraz, hurbilketa teoriko
berrien beharra dago. Hurbilketa horiek sistemaren erantzun optikoaren ez-
lokaltasuna [56–60], elektroien gainazaleko isurpena (electron spill out) [61–63],
gainazalak ahalbidetutako Landau indargetzea (surface-enabled Landau damping)
[64–66], edota elektroien tunel efektua (electron tunneling) [67, 68] hartu behar
dituzte kontuan egitura plasmoniko txikien propietate optikoak behar bezala
deskribatzeko.

Tesi honetan, denboraren menpeko dentsitatearen funtzionalaren teoria (time-
dependent density functional theory, TDDFT, ingelesez) [69–72] izango da sistema
nanometrikoen erantzun optikoa aztertzeko aukeratuko dugun metodoa, teoria
honek elektroien dinamikaren izaera kuantikoa kontuan hartzen baitu nanopartikula
metalikoaren elektroi-dentsitatearen eboluzioa denboran aztertuz [73]. Gainera,
TDDFT kalkuluak ez dira soilik erantzun optiko lineala aztertzera mugatzen;
izan ere, sistema plasmonikoen erantzun ez-lineala zuzenean lortzeko aukera
ematen du TDDFT-k [74–78]. Beraz, TDDFT oso tresna erabilgarria da erantzun
optiko eta elektronikoan (hots, optoelektronikoan) azaltzen diren fenomeno
kuantikoak aztertzeko, eta tesi honen ardatz nagusia izango da. Bestalde,
konplexutasun konputazionala dela-eta, TDDFT bidez atomo gutxi batzuez (apurka
milaka atomoz) osatutako sistema txikiak baino ezin dira aztertu [79, 80], eta
horregatik, hainbat eredu semiklasiko ere garatu izan dira zenbait efektu kuantiko
deskribatzeko [81, 82]. Besteak beste, nanobarrunbe azpi-nanometrikoetan ematen
den elektroien tunel efektua kontuan hartzen duen Quantum-corrected model
eredua [83–87], nanoegitura metalikoen erantzun optikoaren ez-lokaltasuna barne
hartzen duten deskribapen hidrodinamikoak [88–94], eta surface-response formalism
(SRF) [95–97] aipa ditzakegu hemen. SRF eredu semiklasikoak metalaren eta
ingurune dielektrikoaren arteko gainazalean deskribapen kuantikoetan oinarritutako
zuzenketak ezartzen ditu [98] (Feibelman-en d⊥(ω) eta d∥(ω) parametroak), horrela
gainazalean induzitutako elektroi-dentsitatearen isurpena eta Landau indargetzea
kontuan hartuz. TDDFT-rekin batera, tesi honetan SRFean oinarritutako
simulazioak ere burutuko ditugu.

TDDFT eta aipatutako eredu semiklasikoak sarritan erabiltzen dira nanoegitura
plasmoniko isolatuen erantzun optikoa aztertzeko, baina nanoegitura plasmonikoen
eta igorle kuantikoen (quantum emitter ingelesez, hala nola atomoak, puntu
kuantikoak, edota molekula organikoak) arteko elkarrekintza optoelektronikoa
aztertzeko ere erabil daitezke. Nanoegitura plasmoniko eta igorle kuantiko
batez osatutako sistema akoplatua oso sistema garrantzitsua da Nanofotonikan,
eremu plasmonikoaren areagotze eta konfinamenduari esker igorle kuantikoak
argiarekin askoz modu eraginkorragoan akoplatzen baitira, fenomeno interesgarri
ugari sortuz [99, 100]. Efektu horietako batzuk kalkulu klasikoen bidez deskriba
daitezke, hala nola, igorle kuantikoaren igorpen-tasa espontaneoaren handitzea
(Purcell effect [101, 102]), edota erresonantzia-maiztasunaren aldaketa (Lamb shift,
[103, 104]). Bestalde, egitura plasmoniko baten eta igorle kuantiko baten arteko
elkarrekintzak egoera elektronikoen akoplamendu kuantikoa sor dezake, zeinak
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igorlearen propietate kimikoak alda ditzakeen [105], nanopartikulen eta igorlearen
arteko elektroi-transferentzia eragin dezakeen [106–109], edota sistema akoplatuaren
erantzun optiko ez-lineala alda dezakeen [110, 111].

Tesi honek nanoegitura plasmonikoen erantzun optoelektronikoan eta igorle
kuantikoekin duten interakzioan azaltzen diren fenomeno kuantiko berriak teorikoki
aztertzea du helburu. Hala, tamaina nanometriko edo txikiagokoak diren egitura
plasmonikoetan gertatzen diren efektu kuantikoei buruzko oinarrizko ezagutza
sakonagoa bilatuko dugu, non ez-lokaltasunak, ez-linealtasunak edo elektroi-
transferentzia efektuek zeresan handia izan dezaketen. Horretarako, TDDFT
simulazioak erabiliko ditugu batez ere, baina erantzun optiko lokalean oinarritutako
kalkulu klasikoak eta SRFean oinarritutako eredu semiklasikoak ere erabiliko ditugu
emaitzen analisia errazteko eta informazio osagarria erdiesteko.

1. kapituluan, argiaren eta materiaren arteko elkarrekintza klasikoaren
oinarriak berrikusiko ditugu, eta tesi honetan garrantzitsuak izango diren oinarrizko
kontzeptuak ikuspegi klasikotik deskribatuko ditugu. Nanopartikula metaliko
esferikoek eta haien dimeroek sostengatutako gainazaleko plasmoien deskribapen
klasikoan jarriko dugu arreta, eta baita nanoegitura plasmonikoen eta igorle
kuantikoen arteko elkarrekintza elektromagnetikoan ere. Beraz, 1. kapituluan
azaldutako kontzeptuek argiaren eta materiaren arteko elkarrekintza klasikoaren
oinarriak eskainiko dituzte, eta erreferentzia gisa balioko dute gerora deskribapen
klasikoetatik at dauden fenomeno kuantikoak aztertzeko.

2. kapituluan, tesi honetan erabilitako TDDFT metodologia eta surface-
response formalism (SRF) delako eredu semiklasikoa aurkeztuko ditugu, argiaren
eta materiaren arteko elkarrekintzan azaltzen diren efektu kuantikoak aztertzeko
erabilgarri izango direnak. Gainera, tesi honetan berebiziko garrantzia izango
duten efektu kuantikoak deskribatuko ditugu, hala nola, elektroien tunel efektua,
gainazalak ahalbidetutako Landau indargetzea, eta gainazalean induzitutako
elektroi-dentsitatearen isurpena. Horretarako, nanoegitura plasmoniko kanonikoen
erantzun optikoa aztertuko dugu. Beraz, 2. kapituluan azaldutako metodologiek eta
kontzeptuek argiaren eta materiaren arteko elkarrekintzaren ikuspegi kuantikoaren
oinarriak ezarriko dituzte, eta erreferentzia gisa balioko dute hurrengo kapituluetan
nanoegitura plasmonikoen eta igorle kuantikoen arteko akoplamendu optiko eta
elektronikoen ondorioz sortutako fenomeno kuantiko berriak aztertzeko.

3. kapituluan, nanopartikula esferikoen eta igorle kuantikoen arteko
akoplamendu elektromagnetikoa aztertuko dugu, igorlearen eta nanopartikularen
arteko akoplamendu elektronikoaren eragina baztertu daitekeen egoeretan. Igorle
kuantikoa, kasu honetan, dipolo puntual bat bezala deskribatuko dugu. TDDFT
erabiliko dugu (elektroi-askeko metalen jellium eredua baliatuz) nanopartikulen
eta igorleen arteko elkarrekintza elektromagnetikoan presente dauden gainazaleko
efektu kuantikoen eragina aztertzeko. Gainazaleko efektu kuantikoak direla-eta
elkarrekintza elektromagnetikoa deskribatzen duen auto-elkarrekintzako Green-en
funtzioan (self-interaction Green’s function) plasmoi erresonantziak asko aldatzen
direla erakutsiko dugu. Izan ere, gainazaleko Landau indargetzeak eta induzitutako
karga-dentsitatearen isurpenak kalkulu klasikoek deskriba ezin ditzaketen plasmoi
erresonantzien zabalketa eta gorriranzko lerrakuntza eragiten dituztela ikusiko dugu.
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Gainera, egoera gehienetan Feibelman-en d⊥(ω) parametroan oinarritutako SRF
eredu semiklasiko estandarra (gainazal metalikoarekiko paralelo den norabidean
erantzun optikoaren ez-lokaltasuna arbuiatzen duena) gainazaleko efektu kuantikoak
deskribatzeko metodologia zehatza dela erakutsiko dugu. Hala ere, igorlearen eta
nanopartikulen arteko distantzia oso txikietarako SRF eredu semiklasiko estandarra
guztiz zehatza ez dela erakutsiko dugu.

4. kapituluan, SRF eredu semiklasiko estandarraren gabeziak gainditzen dituen
SRF eredu dispertsiboa (dispersive SRF) proposatuko dugu, zeinak gainazal
metalikoan zehar norabide paraleloan erantzun optikoaren ez-lokaltasuna esplizituki
kontuan hartzen duen. Horretarako, Feibelman-en parametroak k∥ uhin-zenbaki
paraleloarengan daukan menpekotasuna hartuko dugu kontuan. Lehenik eta behin,
TDDFT simulazioak erabiliko ditugu nanohari metaliko (metallic nanowire) baten
erantzun optikoa lortzeko jellium eredua baliatuz. Emaitza horiek Feibelman-
en d⊥(ω, k∥) parametroa kalkulatzeko erabiliko ditugu, ω kanpo-kitzikapenaren
maiztasunaren eta gainazal metalikoarekiko paraleloa den k∥ uhin-zenbakiaren
menpekoa dena. Gainera, nanohari zilindriko baten zein nanopartikula esferikoen
erantzun optikoa aztertuko dugu d⊥(ω, k∥) erabiliz, eta erakutsiko dugu kapitulu
honetan proposatutako SRF eredu dispertsiboa gai dela eskualde oso txikietan
lokalizatutako eremu plasmonikoak induzitzen diren egoeretan sistemaren ez-
lokaltasuna deskribatzeko, betiere karga-transferentzia prozesuek eta efektu ez-
linealek parte hartzen ez badute.

5. kapituluan, bi maila elektronikoko igorle kuantiko baten eta bi nanopartikula
metaliko esferikoz osatutako dimero baten arteko akoplamendu elektronikoaren
eragina aztertuko dugu, elkarrekintza elektromagnetiko estandarraz gain. Igorlearen
eta nanopartikulen arteko akoplamendu elektronikoa deskribapen klasikoetan
arbuiatu ohi da, eta baita beste eredu semiklasikoetan ere, hala nola, 3. eta 4.
kapituluetan erabilitako SRFean (non igorlea dipolo puntual gisa deskribatzen den).
Sistema hibrido osorako TDDFT kalkuluak erabiliz, igorlearen eta nanoegituraren
egoera elektronikoen arteko hibridazioak sistema akoplatuaren erresonantzia
optikoen maiztasuna eta zabalera erabat aldatzen dituela erakutsiko dugu. Izan ere,
igorle kuantikoaren exzitoiaren kitzikapena ikaragarri ahultzen dela erakutsiko dugu
igorlearen eta nanoegitura metalikoen arteko gainazaletik-gainazalerako distantzia
0.5 nm baino txikiagoa denean. Hortaz, nanobarrunbe azpi-nanometrikoen erantzun
optoelektronikoa modu zehatzean aztertzeko igorlearen eta nanoegituraren arteko
elektroi-transferentzia prozesuak egoki deskribatzen dituen tratamendu kuantikoen
aplikazioa beharrezkoa dela ondorioztatuko dugu.

6. kapituluan, igorle kuantiko batez eta nanopartikula metaliko esferiko
batez osatutako sistemaren erantzun optiko ez-lineala aztertuko dugu, bigarren
harmonikoaren sorkuntzan (second-harmonic generation, SHG) arreta jarriz.
Igorlearen trantsizio elektronikoaren maiztasuna argi erasotzailearen maiztasunaren
bigarren harmonikoarekin erresonantzian dagoenean, igorleak SHG nabarmena
ahalbidetzen duela erakutsiko dugu. Nanopartikula esferikoaren inbertsio-simetria
dela-eta, igorlearen presentziarik gabe ezin daiteke SHG-ik lortu. TDDFT kalkuluen
bidez, efektu ez-lineal hori bultzatzen duen mekanismo nagusia identifikatuko dugu,
non igorleak gertu dagoen nanopartikula metalikoak sortutako eremu elektriko
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ez-linealak sentitzen dituen, horrela erresonadore optiko baten papera jokatuz.
Gainera, TDDFT eta kalkulu klasikoak konbinatuz, prozesu ez-lineal honen eragina
eta ekarpen nagusiak jasotzen dituen eredu semi-analitiko bat garatuko dugu,
konputazionalki TDDFT baino askoz sinpleago dena. Eredu semi-analitiko hau
erabiliz, igorlearen eta nanopartikularen posizioa eta propietate intrintsekoak
aldatuz sistema honetan SHG kontrolatu daitekeela erakutsiko dugu.

Beraz, tesi honetan nanoegitura plasmonikoen eta igorle kuantikoen erantzun
optikoaren inguruko azterketa mekaniko-kuantikoa aurkeztuko dugu, non elektroi-
transferenzia prozesuek, gainazaleko efektu kuantikoek, eta prozesu ez-linealek
garrantzia handia dutela erakutsiko dugun. Efektu horiek guztiek berebiziko
garrantzia dute gaur egungo Nanofotonikan. Espero dugu tesi honetan egindako
ikerketak igorleen eta egitura plasmonikoen arteko elkarrekintzaren oinarrizko
ezagutza sakonagoa lortzen laguntzea. Gainera, ziurrenik tesi honetan aurkeztutako
emaitzek galdera berriak ere sortuko dituzte, hemen erabili eta proposatuko ditugun
metodologiekin aztertu litezkeenak. Besteak beste, uste dugu uhin-paketeen
hedapenean (wave-packet propagation) oinarritutako TDDFT metodologia aplika
daitekeela, adibidez, dimentsio azpi-nanometrikoko plasmoi–exzitoi sistemetan
eman daitezkeen prozesu optoelektroniko ez-linealak aztertzeko, bai eta pultsu
ultra-bizkorrek (ultrafast pulse) kitzikaturiko nanobarrunbe plasmonikoetan karga-
transferentzia efektuak aztertzeko ere. Gainera, gure iragarpenen zehaztasun
kuantitatiboa hobetu liteke nanoegitura plasmonikoen eta igorle kuantikoen eskala
atomikoko bereizitasunak kontuan hartuko balira, tesi honetan erabilitako egitura
elektronikoaren jellium deskribapenetik haratago joaz.

Bestalde, tesi honetan proposatutako SRF eredu dispertsiboa Nanofotonikan
erabiltzen diren zenbakizko metodoetan modu nahiko errazean inplementa
daitekeela espero dugu, eta, beraz, tresna baliotsua bihur daitekeela efektu optiko
ez-lokalak nanoeskalako konfigurazio plasmoniko esperimentaletan aurreikusteko.
Esperimentuetan normalean erabiltzen diren sistemak kontuan hartzeko, Feibelman-
en d⊥(ω, k∥) parametro dispertsiboa k∥-ren funtzioan kalkulatu beharko litzateke.
Plasmonikan garrantzitsuak diren materialetan, hala nola zilarra edo urrea,
d elektroi-bandako trantsizioek eragin handia dute erantzun optikoan, non
induzituriko elektroi-dentsitatea gainazaletik kanpo isuri beharrean barrurantz
isurtzen den. Tesi honetan erabilitako jellium ereduak d-elektroien eragina
arbuiatzen du; beraz, eredu sofistikatuagoak edo egungo jellium ereduaren
hobekuntzak beharko lirateke Feibelman-en parametroak kalkulatzeko eta, horrela,
tesi honetan proposatutako SRF eredu dispertsiboa egungo egoera esperimentaletan
erabil ahal izateko. Oro har, espero dugu tesi honetan aurkeztutako TDDFT
metodologia kuantikoa eta SRF metodologia semiklasikoa etorkizunean erabil ahal
izango direla Nanofotonikan fenomeno kuantiko berriak ikertzeko eta, horrela,
aurrerapen teknologikoetan laguntzeko.
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INTRODUCTION

The interaction between light and matter has been at the focus of the scientific
community over the last centuries. For example, in the 1850s, Michael Faraday
discovered that nanoscopic gold colloids exhibit optical properties different to those
in bulk metals [1], giving rise, e.g., to the bright red color of gold-ruby glass [2, 3].
Some years later, in 1908, Gustav Mie provided the physical explanation to this
effect [4] when he applied the electromagnetic theory developed by James Clerk
Maxwell [5] to study the scattering properties of small gold nanoparticles [6–8].
Mie found that such small metallic nanoparticles efficiently scatter light at specific
frequencies (typically in the visible range) which depend upon the material and size
of the nanoparticle as well as upon the properties of the dielectric environment [9].
It would be later known that these specific frequencies correspond to the so-called
localized surface plasmons [10–12], the resonances of the surface charge oscillation
sustained by the collective oscillation of the free electrons in metallic nanoparticles
that can be excited by light [13–16].

In the last years, the excitation of plasmon resonances in metallic nanoparticles
has attracted great interest in Nanophotonics [17–19] due to their capability to
enhance and squeeze incident electromagnetic fields into subwavelength regions
[20–22]. For example, it is possible to obtain electromagnetic fields up to 100-
1000 times larger than the incident field in the nanometric region between two
metallic nanoparticles (referred to as a plasmonic gap or plasmonic nanocavity)
[23]. As a result, plasmon resonances are widely used in a variety of spectroscopy
and microscopy techniques such as surface-enhanced Raman spectroscopy [24],
surface-enhanced fluorescence [25–27], or single-molecule imaging [28, 29], and
enable promising applications in biomedicine [30–32], energy storage [33–35], and
nonlinear optics [36, 37], among others.

Theoretically, plasmonic effects have been usually studied within the context of
classical electromagnetism [38–45], where the interaction between light and matter is
described by Maxwell’s equations and the optical response of the system is generally
considered to be linear [6]. However, current experimental configurations involving
nanometer-sized metallic nanoparticles and interparticle distances push light–matter
interaction to the limit where quantum many-body phenomena influence optical
properties [46–52]. In these extreme situations, classical descriptions are no longer
valid [53–55], and alternative theoretical approaches allowing for incorporating
nonlocality [56–60], electronic spill in/out [61–63], surface-enabled Landau damping

1



Introduction

[64–66], and electron tunneling [67, 68] are required to describe the optical properties
of miniaturized plasmonic structures correctly.

In this context, time-dependent density functional theory (TDDFT) [69–72] is
the method of choice to address the optical response of nanoscale systems in this
thesis, since this theory accounts for the quantum nature of the electron dynamics
from first principles by addressing the time evolution of the electron density in
metallic nanoparticles subjected to external illumination [73]. In addition, the use of
TDDFT calculations is not restricted to obtaining only the linear optical response,
but it also enables to directly obtain the nonlinear response of plasmonic systems
[74–78]. TDDFT is thus a very powerful tool to capture quantum many-body
phenomena involved in the optical and electronic (i.e., optoelectronic) response,
and it sets up the cornerstone of this thesis. On the other hand, since TDDFT is
limited to addressing small systems that contain a few thousands of atoms due to its
computational complexity [79, 80], less-demanding semiclassical models have also
been developed to capture various quantum effects [81, 82]. Here we can mention,
for instance, the quantum-corrected model accounting for electron tunneling
in subnanometric metallic junctions [83–87], several hydrodynamic descriptions
incorporating nonlocality of the optical response of metallic nanostructures [88–
94], and the surface-response formalism (SRF) [95–97] based on the inclusion of
quantum surface-response corrections (the so-called Feibelman parameters) at the
metal–dielectric boundaries [98]. Together with TDDFT, in this thesis we also
perform simulations based on the SRF, which captures important quantum effects
such as the spill in/out of the induced charge density and surface-enabled Landau
damping, but cannot account e.g. for electron tunneling between two nanoparticles
in close proximity.

TDDFT and the aforementioned semiclassical models are often used to study
the optical response of isolated plasmonic nanostructures, but they can also
be used to analyze quantum effects in the optoelectronic interaction between
plasmonic nanostructures and quantum emitters such as atoms, quantum dots or
organic molecules. Indeed, the optical response of a coupled emitter–plasmonic
nanostructure system has been widely studied in Nanophotonics. The plasmonic
field enhancement and confinement allow quantum emitters to interact much more
efficiently with light, leading to a plethora of interesting phenomena [99, 100].
Some of these effects can be described by classical calculations, such as the
enhancement of the spontaneous emission rate (Purcell effect [101, 102]) and
the modification of the resonant frequency (Lamb shift [103, 104]) of a quantum
emitter located near a plasmonic nanostructure. On the other hand, the coupling
between a plasmonic cavity and a quantum emitter can also involve quantum-
mechanical interactions that can affect the chemical properties of the emitter [105],
induce electron transfer between the nanoparticles and the emitter [106–109], and
eventually modify drastically the nonlinear optical response of the coupled system
[110, 111].

This thesis aims at theoretically studying novel quantum many-body phenomena
in the optoelectronic response of plasmonic nanostructures and their interaction
with quantum emitters. In particular, we seek a deeper fundamental knowledge
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into quantum-mechanical effects that occur in plasmonic cavities of nanometric size
or smaller, where nonlocality, nonlinearity, or electron-transfer effects can all play
an important role. To this end, quantum TDDFT simulations are used primarily,
but classical calculations based on the local-response approximation within the
dielectric framework as well as semiclassical models based on the SRF are also
employed to complete the analysis and provide additional insights.

In Chapter 1, we review the fundamentals of classical light–matter interaction
and explain the key concepts of this thesis from a classical perspective, focusing
on the classical description of localized surface plasmon polaritons sustained by
spherical metallic nanoparticles and their dimers as well as on the electromagnetic
interaction between plasmonic nanostructures and quantum emitters. In Chapter 2,
we describe the quantum TDDFT methodology and the semiclassical SRF adopted
in this thesis to account for quantum many-body effects present in the light–matter
interaction, and introduce quantum-mechanical concepts such as electron tunneling,
surface-enabled Landau damping, and electron spill out with the examples of the
optical response of canonical plasmonic nanostructures. In Chapter 3, we use
TDDFT to study the influence of quantum surface effects in the electromagnetic
interaction between quantum emitters and metallic nanoparticles. We identify
the dominant effects when electron tunneling and the electronic coupling between
the quantum emitter and the metallic nanoparticle are negligible. We further
analyze the origin of the observed effects with semiclassical calculations based
on a SRF that neglects the optical nonlocality in the direction parallel to the
metallic surface, as usually implemented in the literature, and establish the validity
range of this standard implementation of the semiclassical SRF. In Chapter 4, we
show that the standard implementation of the SRF can be extended by explicitly
accounting for the nonlocality of the optical response in the parallel direction along
the metallic surface in the calculation of the Feibelman parameters. The inclusion
of this nonlocality has not been so far considered in the literature to the best of
our knowledge, and produces a broader range of validity of the SRF including
extreme subnanometric configurations. In Chapter 5, we analyze the effect of
electronic coupling between the electronic states of a quantum emitter and those of
a metallic nanoparticle dimer when the distance between the nanoparticles and the
emitter is subnanometric. This effect has been neglected in Chapters 3 and 4, which
focused on the electromagnetic interaction. We demonstrate that, in such situations,
the electronic interaction between the emitter and the nanoparticles drastically
modifies the optical resonances of the coupled system. Finally, in Chapter 6, we
study the nonlinear optical response of a system consisting of a quantum emitter
and a spherical metallic nanoparticle, and show that the electromagnetic emitter–
nanoparticle coupling can enable strong nonlinear second-harmonic generation,
otherwise forbidden due to symmetry constrains if an isolated spherical nanoparticle
were considered.

The content of this thesis thus presents a quantum mechanical many-body
approach to the optical response of plasmonic cavities, which provides new
insights into coupling with emitters, electron transfer processes and nonlinear
effects. All these effects are of paramount importance in nowadays state-of-the-art
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Nanophotonics.
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1
CLASSICAL DESCRIPTION OF
LIGHT–MATTER INTERACTION

1.1 Maxwell’s equations
The interaction between light and matter is well addressed from a classical and
macroscopic point of view by the time-dependent Maxwell’s equations [6, 22],

∇ × E(r, t) = − ∂

∂t
B(r, t), (1.1a)

∇ × H(r, t) = ∂

∂t
D(r, t) + Jext(r, t), (1.1b)

∇ · D(r, t) = 4πρext(r, t), (1.1c)
∇ · B(r, t) = 0, (1.1d)

which represent a set of coupled partial differential equations where light is
described as an electromagnetic wave with electric E(r, t) and magnetic H(r, t) field
components.1 The time-dependent Maxwell’s equations in Eq. (1.1) determine the
dynamics of the electromagnetic wave (light) at a position r and instant of time t
through a given dielectric material in response to an external charge density ρext(r, t)
and current density Jext(r, t) that act as sources of electromagnetic radiation. For
the nonmagnetic materials that we consider in this thesis, the magnetic induction
B(r, t) is straightforwardly linked to H(r, t) by B(r, t) = 1

c2 H(r, t), with c the speed
of light in a vacuum. Finally, the displacement vector, D(r, t), is related to the
electric field E(r, t) within the linear-response regime by the following constitutive

1 Atomic units (au) are used throughout this manuscript unless otherwise stated (see Appendix
A).
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relationship

D(r, t) =
∫ ∞

−∞

∫ ∞

−∞
dr′ dt′ ε(r − r′, t− t′)E(r′, t′), (1.2)

where ε(r − r′, t− t′) is the dielectric function describing optical excitations in the
material. We assume in Eq. (1.2) that the medium is isotropic and homogeneous
by considering that the dielectric function ε is a scalar quantity that spatially
depends on r − r′. Moreover, the causality of the dielectric response is introduced
by imposing ε(r − r′, t− t′) = 0 for any t′ > t.

According to Eq. (1.2), the displacement vector D at a particular position r
and instant of time t depends on the value of the electric field E at all positions r′

and times t′ < t. Thus, the dielectric response of a material is, in general, nonlocal
both in space and time. To deal with the temporal nonlocality, it is convenient to
use the time-to-frequency Fourier transform2 and express Eq. (1.2) in the domain
of the angular frequency ω of the electromagnetic field,

D(r, ω) =
∫ +∞

−∞
dr′ ε(r − r′, ω)E(r′, ω). (1.4)

Consequently, by applying the same Fourier transform to Eq. (1.1), Maxwell’s
equations can be expressed in the frequency domain as:

∇ × E(r, ω) = iωB(r, ω), (1.5a)
∇ × H(r, ω) = −iωD(r, ω) + Jext(r, ω), (1.5b)
∇ · D(r, ω) = 4πρext(r, ω), (1.5c)
∇ · B(r, ω) = 0. (1.5d)

Equations (1.1) and (1.5) are, of course, equivalent, and can be solved by adopting
different techniques. Among numerical methods to solve Maxwell’s equations, we
can cite the Boundary Element Method [112], the Finite-Difference Time-Domain
method [113], the Discrete-Dipole Approximation [114] or the Finite-Element
Method [115].

On the other hand, the influence of the spatial nonlocality of the dielectric
function present in Eq. (1.4) on the optical response of different materials is
currently an active research topic by itself [81], and many efforts have been devoted

2 In this thesis, we use the following definitions for the time-to-frequency (F) and for the
frequency-to-time (F−1) Fourier transforms of a function f :

f(ω) = F [f(t)] =
∫ +∞

−∞
f(t)eiωt dt,

f(t) = F−1[f(ω)] =
1

2π

∫ +∞

−∞
f(ω)e−iωt dω,

(1.3)
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to the development of numerical methods that correctly account for such nonlocality
[59, 60, 88, 89, 91, 92, 94, 116–123]. Using these methods, it has been shown that
spatial nonlocality can play a significant role in defining the properties of the optical
response of metallic nanostructures with characteristic dimensions below ∼ 10 nm
[56, 86, 124], as it is the case of the systems studied in this thesis. Indeed, we discuss
in Chapters 2, 3, 4 and 5 the role that spatial nonlocality (and other quantum
phenomena) plays in different scenarios involving small metallic nanoparticles when
they interact with light and with quantum emitters. We account for such effects
by using quantum time-dependent density functional theory (TDDFT) simulations
(see Chapter 2), and, at a different level of approximation, by a semiclassical surface-
response formalism (SRF) incorporating the Feibelman parameters obtained ab
initio (Section 2.5). In contrast, the classical calculations performed within this
thesis are based on a local description of the optical response of metals, so that
nonlocal effects can only be partially introduced with the use of phenomenological
parameters [58, 125, 126], as we detail in the following Subsection 1.1.1.

1.1.1 The local-response approximation
The local-response approximation (LRA) neglects the spatial nonlocality of the
dielectric function ε(r−r′, ω) by assuming that the dielectric response of a material
at a position r is independent of the response at any other position r′ ̸= r. This
assumption can be expressed as

ε(r − r′, ω) = ε(r, ω)δ(r − r′), (1.6)

with δ(r − r′) the Dirac delta function. The displacement vector D(r, ω) thus
transforms from Eq. (1.4) to a much simpler constitutive relationship,

D(r, ω) =
∫ +∞

−∞
dr′ ε(r, ω)δ(r − r′)E(r′, ω)

= ε(r, ω)E(r, ω).
(1.7)

Despite its simplicity, the LRA has successfully described many physical phenomena
of interest in the context of light–matter interaction at the nanoscale, particularly
in situations where the characteristic length scale of the studied nanostructures is
substantially larger than the Fermi wavelength of electrons in metals.

The Drude response model of free-electron metals

The simplest way to estimate the (frequency-dependent) local dielectric function
ε(r, ω) of a metal is to adopt the Drude model [127, 128]. This model considers
that conduction electrons freely move within a homogeneous gas in response to
an external electric field E(t) while the heavy metal ions remain immobile. The
equation of motion of a conduction electron is then

ẍ(t) + γpẋ(t) = −E(t), (1.8)

7



Chapter 1. Classical description of light–matter interaction

where x is the displacement of the electron from its equilibrium position, γp is a
phenomenological damping parameter that accounts for elastic and inelastic events
of electrons moving in the crystal lattice, and the dot · denotes the time derivative.
In the frequency domain, the displacement x(ω) can be expressed as

x(ω) = E(ω)
ω2 + iγpω

. (1.9)

The macroscopic polarization density, P̃(ω), of a homogeneous gas with an
average electron density n is P̃(ω) = −nx(ω) = −n E(ω)

ω2+iγpω . Then, using the
relationship D(ω) = ε(ω)E(ω) = E(ω) + 4πP̃(ω), the dielectric function ε(ω)
within the Drude model can be expressed as:

ε(ω) = 1 − 4πn
ω2 + iγpω

,

= 1 −
ω2

p

ω2 + iγpω
,

(1.10)

where ωp =
√

4πn is the plasma frequency of the considered metal. Moreover, the
electron density n is typically expressed in terms of the Wigner–Seitz radius

rs =
(

3
4πn

)1/3
, (1.11)

which is defined as the radius of a sphere whose volume is equal to the average
volume per conduction electron. Thus, the plasma frequency ωp equals to

ωp =
√

3
r3

s

, (1.12)

and determines the maximum frequency at which a Drude metal displays a metallic
behavior (negative dielectric function). The plasma frequency ωp of typical metals
falls in the visible-ultraviolet range, ωp ∼ 4 − 15 eV. In Figure 1.1a, we show by
solid lines the real part (blue) and imaginary part (red) of the dielectric function
ε(ω) obtained from Eq. (1.10) for ωp = 5.89 eV (rs = 4 a0) and γp = 0.1 eV, typical
values used to characterize sodium within the LRA [124]. Here, a0 = 0.053 nm
stands for the Bohr radius.

However, as pointed out above, nonlocal effects (and other finite-size phenomena)
can significantly influence the optical response of small metallic nanostructures.
As a result, using a Drude dielectric function [Eq. (1.10)] parametrized according
to the plasma frequency ωp given by Eq. (1.12) shows limitations to describe
these extreme situations. Moreover, the losses in the metal expected from the
damping parameter γp can be increased because of nonlocal phenomena. In a first
correction, such effects can be partially captured within the classical LRA approach

8



1.1. Maxwell’s equations

Figure 1.1: (a) Imaginary part (red) and real part (blue) of the dielectric function ε(ω) obtained
from the Drude model [Eq. (1.10)]. Solid lines: ωp = 5.89 eV (rs = 4 a0) and γp = 0.1 eV.
Dashed lines: ωp = 5.43 eV (rs = 4.22 a0) and γp = 0.15 eV. These values are typically used to
characterize sodium, which is the material predominantly considered in this thesis. (b) Schematic
representation of a metal–dielectric interface with external surface charge and current densities
σs and Ks. A shallow blue pillbox of volume V crosses the interface along the normal direction
to the metal surface. The area of the top and bottom surface sections is ∆S. The normal unit
vector n̂′ is pointing outward from the surface of the pillbox, and n̂ is the normal vector pointing
from the interior side of the interface (“in”) to the outer side (“out”). (c) Same as in (b), but for
a rectangular closed contour C with its plane oriented normal to the metal surface. The unit
vector t̂ is normal to the surface enclosed by C, and thus parallel to the metal surface.

by effectively modifying the value of ωp (or, equivalently, rs) and γp [125]. We
adopt this strategy in Chapters 5 and 6. As an example, we show in Figure 1.1a
the real part (blue dashed line) and imaginary part (red dashed lines) of the Drude
dielectric function ε(ω) obtained for ωp = 5.43 eV (rs = 4.22 a0) and γp = 0.15 eV,
which are the values used within the classical calculations in Chapter 5 attempting
to account for nonlocal effects.

1.1.2 Boundary conditions
When the system under study involves more than one medium, the electromagnetic
problem can be solved by obtaining the solution of Maxwell’s equation [Eq. (1.5)]
separately at each medium and applying appropriate boundary conditions at
the corresponding interfaces. The classical electromagnetic theory employed in
this thesis thus adopts the piecewise-constant approximation [81, 129], which
assumes that the dielectric function ε(r, ω) experiences an abrupt change at the
interface between different media. Therefore, in contrast with the TDDFT and the
semiclassical SRF employed in this thesis (see Chapter 2), the classical calculations
neglect any surface effect related to the smooth variation of the induced electron

9



Chapter 1. Classical description of light–matter interaction

density.
In the case of the metal–dielectric interfaces studied here, the abrupt change

of ε(r, ω) at the metal boundary can be expressed with the following spatially-
dependent dielectric function,

ε(r, ω) =
{
ε(ω) inside the metal
εd outside the metal , (1.13)

where ε(ω) is the Drude dielectric function given by Eq. (1.10), and εd is the
dielectric constant characterizing the environment. In this thesis, we consider that
the metallic nanoparticles are surrounded by vacuum, so that εd = 1.

The boundary conditions that the electromagnetic fields must satisfy at the
metal–dielectric interface are obtained by applying the divergence theorem and
Stokes’s theorem [6]. On the one hand, by applying the divergence theorem to
Eqs. (1.5c) and (1.5d) one obtains∮

S

dS D(r, ω) · n̂′ = 4π
∫

V

dV ρext(r, ω), (1.14a)∮
S

dS B(r, ω) · n̂′ = 0, (1.14b)

where V is an arbitrary finite volume in space, S is the enclosing surface, dS is
the infinitesimal element of area on S, and n̂′ is the unit vector normal to the
surface pointing outward from the enclosed volume. In order to obtain the first two
boundary conditions, we evaluate the integrals of Eq. (1.14) within a shallow pillbox
crossing the metal–dielectric interface along the normal direction, as sketched in
Figure 1.1b. We focus on the dielectric response of the interface, and thus the
height of the pillbox tends to zero. Therefore, the side surface does not contribute
to the left-hand integral of Eqs. (1.14a) and (1.14b), and only the top and bottom
surfaces of area ∆S contribute,∮

S

dS D(r, ω) · n̂′ = ∆S n̂ · (Dout − Din) , (1.15a)∮
S

dS B(r, ω) · n̂′ = ∆S n̂ · (Bout − Bin) . (1.15b)

In Eq. (1.15), the subscript “in” defines the fields within the region inside the
metal while the subscript “out” those in the surrounding dielectric medium, and n̂
is the normal unit vector pointing outwards from the metal boundary, as shown
in Figure 1.1b. Moreover, the right-hand integral of Eq. (1.14a) is simply σs∆S,
where σs is the surface charge density associated with external charges. Then, the
first two boundary conditions are given by

n̂ · (Dout − Din) = 4πσs, (1.16a)
n̂ · (Bout − Bin) = 0. (1.16b)

10



1.1. Maxwell’s equations

On the other hand, by applying Stokes’s theorem to Eqs. (1.5a) and (1.5b) one
obtains ∮

C

E(r, ω) · dl = iω

∫
S′
dS′B(r, ω) · t̂, (1.17a)∮

C

H(r, ω) · dl =
∫

S′
dS′ [−iωD(r, ω) + Jext(r, ω)] · t̂, (1.17b)

where C is an arbitrary closed contour in space with its plane oriented normal
to the metal surface, S′ is the surface enclosed within this contour, dS′ is the
infinitesimal element of area on S′, dl is the infinitesimal line element on C, and t̂
is the unit vector normal to the surface S′. Using similar arguments as those used
in the derivation of Eq. (1.16), one can obtain the last two boundary conditions by
evaluating the integrals of Eq. (1.17) within a closed contour C as the one depicted
in Figure 1.1c [6]. These conditions are given by:

n̂ × (Eout − Ein) = 0, (1.18a)
n̂ × (Hout − Hin) = Ks, (1.18b)

where Eout (Hout) and Ein (Hin) are the electric (magnetic) fields at the outer and
inner sides of the metal–dielectric interface, respectively, and Ks is the external
surface current density. In all the situations addressed in this thesis, there is
no charge and current densities associated with external charges, σs = Ks = 0.
Therefore, the boundary conditions given by Eqs. (1.16) and (1.18) indicate that the
normal component of D(r, ω) and B(r, ω) along the metal–dielectric interface as well
as the tangential components of E(r, ω) and H(r, ω) are continuous. Importantly,
since the dielectric function ε(r, ω) experiences an abrupt change in the metal
boundary within the piecewise-constant approximation [Eq. (1.13)], the normal
component of E(r, ω) is discontinuous at the metal–dielectric interface.

1.1.3 The nonretarded approximation
In the limit of very small structures, as compared to the wavelength of the
incident light, the electromagnetic interaction between different spatial points of the
structure is almost instantaneous, and therefore the speed of light can be considered
as infinite. In this situation, Eq. (1.5a) becomes (with B(r, ω) = 1

c2 H(r, ω))

∇ × E(r, ω) = ∇ ×
(

Eext(r, ω) + Eind(r, ω)
)

= 0, (1.19)

where E(r, ω) has been decomposed into a sum of the electric field of the external
excitation, Eext(r, ω), and the field induced by the nanostructure, Eind(r, ω). From
Eq. (1.19), the total electric field E(r, ω) within the nonretarded approximation can
be expressed as the gradient of a scalar function, ϕ(r, ω) = ϕext(r, ω) + ϕind(r, ω),

11



Chapter 1. Classical description of light–matter interaction

known as the electrostatic potential:

E(r, ω) = −∇ϕ(r, ω) = −∇
(
ϕext(r, ω) + ϕind(r, ω)

)
, (1.20)

with ϕext(r, ω) and ϕind(r, ω) the external and induced potentials, respectively. The
minus (-) sign in Eq. (1.20) is introduced by convention. Finally, from Eq. (1.5c),
ϕext(r, ω) satisfies Poisson’s equation,

∇2ϕext(r, ω) = −4πρext, (1.21)

while ϕind(r, ω) satisfies Laplace’s equation,

∇2ϕind(r, ω) = 0. (1.22)

Moreover, the boundary conditions at the metal–dielectric interface given by
Eqs. (1.16a) and (1.18a) can be expressed within the nonretarded approximation
in terms of ϕ(r, ω) as:

ϕout = ϕin, (1.23a)
εd n̂ · ∇ϕout = ε(ω) n̂ · ∇ϕin, (1.23b)

where ϕout and ϕin expresses the electrostatic potential ϕ(r, ω) at the outer and
inner sides of the metal–dielectric interface, respectively. Therefore, under the
nonretarded limit, the application of the complex (vector) Maxwell’s equations
[Eq. (1.5)] and the associated boundary conditions [Eqs. (1.16) and (1.18)] to obtain
the optical response of a nanostructure reduces to finding the solution of Laplace’s
(scalar) equation [Eq. (1.22)] with the boundary conditions at the interfaces given
by Eq. (1.23).

Depending on the geometry of the nanostructure and the illumination field,
Eq. (1.22) can be solved either analytically or by using numerical methods. In
this thesis, we place special attention to individual spherical nanoparticles and
to spherical dimers composed by two nanoparticles (see Chapters 3, 5, and 6),
and thus we explain below how to obtain the classical optical response of such
nanostructures within the nonretarded limit. We note that, due to the small size
of the studied systems, all the calculations in this thesis are performed under the
nonretarded approximation.

Optical response of a spherical nanoparticle

We derive next the optical response of an individual spherical nanoparticle
of radius a characterized by a dielectric function ε(ω) and surrounded by a
material of dielectric function εd. The position vector r is written in spherical
coordinates (r, θ, ϕ) with the origin at the center of the nanoparticle, r ≡
(r sin θ cosφ, r sin θ sinφ, r cos θ), as we show in Figure 1.2a. An arbitrary external
potential ϕext(r, ω) excites the system.
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1.1. Maxwell’s equations

The Laplace operator in spherical coordinate system (r, θ, φ) is given by

∇2 ≡ 1
r2

∂

∂r

(
r2 ∂

∂r

)
+ 1
r2 sin2 θ

∂2

∂φ2 + 1
r2 sin θ

∂

∂θ

(
sin θ ∂

∂θ

)
, (1.24)

and the solution of Laplace’s equation [Eq. (1.22)] can be written in a spherical
harmonic basis set Y m

ℓ (θ, φ) as [6]

ϕind(r, ω) =
∞∑

ℓ=0

ℓ∑
m=−ℓ

(
Aℓr

ℓ +Bℓr
−(ℓ+1)

)
Y m

ℓ (θ, φ). (1.25)

By imposing ϕind(r, ω) to be finite at r = 0 and r → ∞, and by applying the
boundary conditions given by Eq. (1.23) (here n̂ = r̂), the potential ϕind(r, ω)
induced inside (r < a) and outside (r > a) the spherical nanoparticle is fully
determined:

ϕind(r, ω) =
∞∑

ℓ=0

ℓ∑
m=−ℓ

bℓm(ω)Y m
ℓ (θ, φ)

 rℓ/aℓ r ≤ a

aℓ+1/rℓ+1 r ≥ a
, (1.26)

where

bℓm(ω) = −a(ε(ω) − εd)
εd(ℓ+ 1) + ℓε(ω)

∫
dΩ̃ [Y m

ℓ (θ, φ)]∗ ∂
∂r
ϕext(r, ω)

∣∣∣∣
r=a

. (1.27)

The integral in Eq. (1.27) extends over the solid angle Ω̃ = {θ, φ}, and, in practice,
the summation in Eq. (1.26) has to be truncated at an integer number, ℓmax, large
enough to achieve convergence of the solution. For certain external potentials,
ϕext(r, ω), such as the potential corresponding to a point dipole or to plane-wave
illumination, the integral in Eq. (1.27) (and therefore ϕind(r, ω)) possesses an
analytical solution, as we show in Subsections 1.2.3 and 1.4.2. For arbitrary
external potential ϕext(r, ω), the integration has to be calculated numerically. In
this thesis, we use the Gauss–Legendre quadrature method [130].

Once the coefficients bℓm(ω) are obtained from Eq. (1.27) and thus the induced
potential ϕind(r, ω) is determined [Eq. (1.26)], we can calculate other physical
quantities of interest. For example, the electric field induced by the spherical
nanoparticle at position r is directly related to the induced potential as

Eind(r, ω) = −∇ϕind(r, ω). (1.28)

The analytical expression of the electric field Eind(r, ω) induced by a spherical
nanoparticle in response to arbitrary external illumination is shown in Appendix
B.

On the other hand, the dipole moment p(ω) (ℓ = 1) induced at a spherical
nanoparticle can also be calculated using the coefficients bℓm(ω) given by Eq. (1.27).
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Chapter 1. Classical description of light–matter interaction

Figure 1.2: (a) Spherical coordinate system (r, θ, φ) with the origin at the center of a spherical
nanoparticle of radius a characterized by a dielectric function ε(ω). (b) Coordinate system
employed to address the optical response of a spherical dimer formed by two nanoparticles of
radius a1 and a2 separated by a gap of size D. The nanoparticles are characterized with a
dielectric function ε1(ω) and ε1(ω). The coordinates are expressed in spherical coordinates
(r1, θ1, φ1) and (r2, θ2, φ2) with the origin at the center of each nanoparticle. In both individual
nanoparticle and dimer structures, the system is surrounded by a dielectric material characterized
with ϵd.

Since a point dipole of amplitude p(ω) located at the center of the coordinate
system creates an electrostatic potential at a position r given by ϕind(r, ω) = r·p(ω)

|r|3 ,
p(ω) can be obtained as

p(ω) =
m=1∑

m=−1
b1m(ω) a2

(
Y m

1 (π2 , 0) x̂ + Y m
1 (π2 ,

π

2 ) ŷ + Y m
1 (0, 0) ẑ

)
, (1.29)

where {x̂, ŷ, ẑ} are the unit vectors along the {x, y, z}-axes.

Optical response of a spherical dimer

We now consider the case of a dimer consisting of two spherical nanoparticles
of radius a1 and a2 separated by a gap of size D (see Figure 1.2b). Each
nanoparticle is characterized by a dielectric function ε1(ω) and ε2(ω), and the
entire system is surrounded by a dielectric material characterized by εd. The
numerical implementation described in this section to obtain the optical response
of this system is based on a coupled-multipole method [131, 132], which uses the
solution of the individual spherical nanoparticle explained above.

The potential ϕind
dimer(r, ω) induced by the dimer in response to an external

potential ϕext(r, ω) is given by the sum of the potential induced by each nanoparticle
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1.1. Maxwell’s equations

(1 and 2),
ϕind

dimer(r, ω) = ϕind
1 (r1, ω) + ϕind

2 (r2, ω), (1.30)

where the vectors r1 ≡ (r1 sin θ1 cosφ1, r1 sin θ1 sinφ1, r1 cos θ1) and r2 ≡
(r2 sin θ2 cosφ2, r2 sin θ2 sinφ2, r2 cos θ2) are written in spherical coordinates with
the origins at the center of the corresponding nanoparticle, as shown in Figure 1.2b.
We define the coordinates such that the centers of the nanoparticles are located at
the z-axis separated by a distance δ = a1 + a2 +D. Thus, r1 and r2 are related by

r2 =
√
r2

1 + δ2 − 2δr1 cos θ1,

cos θ2 = (r1 cos θ1 − δ)/r2,

φ2 = φ1.

(1.31)

The electrostatic potential ϕind
i (ri, ω) induced by the nanoparticle i (with

i = 1, 2) follows identical expression as that of the individual nanoparticle explained
above [Eq. (1.26)],

ϕind
1 (r1, ω) =

ℓmax∑
ℓ=0

ℓ∑
m=−ℓ

bℓm
1 (ω) Y m

ℓ (θ1, φ1)
{
rℓ

1/a
ℓ
1 r1 < a1

aℓ+1
1 /rℓ+1

1 r1 > a1,
,

ϕind
2 (r2, ω) =

ℓmax∑
ℓ=0

ℓ∑
m=−ℓ

bℓm
2 (ω) Y m

ℓ (θ2, φ2)
{
rℓ

2/a
ℓ
2 r2 < a2

aℓ+1
2 /rℓ+1

2 r2 > a2,
,

(1.32)

with, in this case,

bℓm
1 (ω) = ξ1(ω, ℓ)

∫
dΩ̃1 [Y m

ℓ (θ1, φ1)]∗ ∂

∂r1

(
ϕext(r1, ω) + ϕind

2 (r2, ω)
)∣∣∣∣

r1=a1

,

bℓm
2 (ω) = ξ2(ω, ℓ)

∫
dΩ̃2 [Y m

ℓ (θ2, φ2)]∗ ∂

∂r2

(
ϕext(r2, ω) + ϕind

1 (r1, ω)
)∣∣∣∣

r2=a2

,

(1.33)
where

ξ1(ω, ℓ) = −a1(ε1 − εd)
εd(ℓ+ 1) + ε1ℓ

,

ξ2(ω, ℓ) = −a2(ε2 − εd)
εd(ℓ+ 1) + ε2ℓ

.

(1.34)

The integrals in Eq. (1.33) take into account that the potential induced by one
nanoparticle acts as external potential for the other one. From Eq. (1.32), the
coefficients bℓm

1 (ω) and bℓm
2 (ω) in Eq. (1.33) can be found from the following

expression given in matrix form:

bℓm
1 (ω) =

(
I − T2→1T1→2

)−1(
bℓm,ext

1 (ω) + T2→1bℓm,ext
2 (ω)

)
,

bℓm
2 (ω) =

(
I − T1→2T2→1

)−1(
bℓm,ext

2 (ω) + T1→2bℓm,ext
1 (ω)

)
.

(1.35)
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Here, bℓm
1 (ω) and bℓm

2 (ω) represent column vectors containing the coefficients bℓm
1 (ω)

and bℓm
2 (ω), I is the identity matrix, and bℓm,ext

1 and bℓm,ext
2 are column vectors

with the following elements:

bℓm,ext
1 (ω) = ξ1(ω, ℓ)

∫
dΩ̃1 [Y m

ℓ (θ1, φ1)]∗ ∂

∂r1
ϕext(r1, ω)

∣∣∣∣
r1=a1

,

bℓm,ext
2 (ω) = ξ2(ω, ℓ)

∫
dΩ̃2 [Y m

ℓ (θ2, φ2)]∗ ∂

∂r2
ϕext(r2, ω)

∣∣∣∣
r2=a2

.

(1.36)

Finally, the elements (ℓm, ℓ′m′) of matrices T2→1 and T1→2 are given by

T2→1
ℓm,ℓ′m′ = ξ1(ω, ℓ)

∫
dΩ̃1[Y m

ℓ (θ1, φ1)]∗ ∂

∂r1

(
Y m′

ℓ′ (θ2, φ2)a
ℓ′+1
2

rℓ′+1
2

)∣∣∣∣
r1=a1

,

T1→2
ℓm,ℓ′m′ = ξ2(ω, ℓ)

∫
dΩ̃2[Y m

ℓ (θ2, φ2)]∗ ∂

∂r2

(
Y m′

ℓ′ (θ1, φ1)a
ℓ′+1
1

rℓ′+1
1

)∣∣∣∣
r2=a2

.

(1.37)

Once the coefficients bℓm
1 (ω) and bℓm

2 (ω) are obtained by solving Eq. (1.35), the
physical quantities of interest such as the induced electric field Eind(r, ω) or the
dipole moment p(ω) of the dimer structure can be determined as the sum of the
corresponding contributions of each nanoparticle [Eqs. (1.28) and (1.29)].

1.2 Plasmonics
Plasmons are collective oscillations of the free-electron gas inside a metal [22, 133].
From a classical electromagnetic point of view, plasmons manifest themselves as
absorption and scattering resonances obtained from the solutions of Maxwell’s
equations and the associated boundary conditions discussed in Section 1.1. On
the other hand, within quantum electrodynamics, the word plasmon refers to the
quantum of the metallic electron plasma oscillation [134, 135].

Depending on the geometry of the system, plasmons can be excited in the
bulk or at the metal–dielectric boundary, and, in the latter situation, they can
be either propagating or localized electron-density oscillations. In the following,
we describe some canonical examples of plasmonic excitations within the classical
electromagnetic theory. In addition to providing the fundamental concepts of
plasmonics, this classical description establishes a reference point to compare with
the results obtained within a quantum many-body approach, thus allowing us to
identify the origin of the effects of interest in this thesis.

1.2.1 Bulk plasmons
Bulk or volume plasmons are longitudinal excitations consisting in the coherent
oscillation of the electron gas propagating in an infinitely extended metal, where
the excited electrons move collectively oscillating at the same frequency. These
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longitudinal electromagnetic waves (∇ · E(r, ω) ̸= 0) can be described within the
local-response approximation (see Subsection 1.1.1), and can only exist if ε(ω) = 0
[54, 57]. Thus, assuming a lossless Drude dielectric function [Eq. (1.10), with
γp = 0], the bulk plasmon frequency is equal to the plasma frequency, ωbulk = ωp

[Eq. (1.12)].

1.2.2 Surface plasmons and surface plasmon polaritons
When we consider a semi-infinite planar metal slab (ε(r, ω) = ε(ω), z < 0) in
contact with vacuum (ε(r, ω) = εd = 1, z > 0), the translational invariance of the
bulk material along the z-direction is broken. As a consequence, a new type of
plasmon emerges associated with an oscillating charge density propagating along
the metal–dielectric interface. These density oscillations are referred to as surface
plasmons. The resonance condition of a surface plasmon can be derived within
the nonretarded approximation from the self-sustained induced potential ϕind(r, ω)
[Eq. (1.22), with ϕext(r, ω) = 0]. ϕind(r, ω) is given in this case by [10]

ϕind(r, ω) =

 ϕ<(ω) eik∥·r∥e|k∥|z z < 0

ϕ>(ω) eik∥·r∥e−|k∥|z z > 0
, (1.38)

where r∥ and k∥ are the two-dimensional position and momentum vectors in the
plane of the metal surface, respectively, and ϕ<(ω) and ϕ>(ω) are frequency-
dependent coefficients to be determined from the boundary conditions given by
Eq. (1.23). From the continuity of the potential at z = 0 [Eq. (1.23a)] it is obtained
that ϕ<(ω) = ϕ>(ω). Further, from the continuity of the normal component of
D(r, ω) = −ε(r, ω)∇ϕ(r, ω) at z = 0 [Eq. (1.23b)], the resonance condition of the
nonretarded surface plasmon is given by ε(ω) = −1. Thus, assuming a lossless
Drude dielectric function [Eq. (1.10), with γp = 0], the long-wavelength limit of
the surface plasmon frequency is equal to

ωsp = ωp/
√

2. (1.39)

On the other hand, a surface plasmon polariton (SPP) is a hybrid mode that
propagates at the metal–dielectric boundary and that results from the coupling of a
surface plasmon and an electromagnetic wave [136]. These SPPs are characterized
by electromagnetic fields that are evanescent in the direction normal to the surface,
thus exponentially decaying with increasing distance from the interface (see sketch
in Figure 1.3a). Considering an electromagnetic wave that satisfies Maxwell’s
equations in this system [Eq. (1.5)], and applying the boundary conditions given
by Eqs. (1.16) and (1.18) as well as the conservation of momentum vector k∥ along
the propagation direction [22], the following dispersion relationship of SPPs is
obtained (for a lossless Drude dielectric function),

ω2
spp(k∥) = ω2

p/2 + c2k2
∥ −

√
ω4

p/4 + c4k4
∥, (1.40)
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+ + +− − −

Figure 1.3: (a) Schematic representation of a SPP with a wavenumber kspp propagating along the
metal–vacuum interface located at z = 0. The electromagnetic field E associated with the SPP
is represented by brown lines. (b) Frequency of a SPP obtained in this system from Eq. (1.40)
(ωspp, blue line), of light in free space (ωc, red line), and of a long-wavelength nonretarded surface
plasmon (ωsp, green line) as a function of the wavenumber k∥ parallel to the metal–vacuum
interface. The frequency ω in the vertical axis is measured in units of ωp, and k∥ in the horizontal
axis in units of ωp/c, with c the speed of light in vacuum.

with c the speed of light in a vacuum. The amplitude of the momentum vector
k∥ in Eq. (1.40) corresponds to the wavenumber kspp of a SPP, kspp = k∥, as
schematically depicted in Figure 1.3a.

As shown in Figure 1.3b, for small k∥, the SPP frequency ωspp (blue line)
approaches the dispersion line of light in free space, ωc = ck∥ (red line). In
contrast, for large k∥, ωspp yields the nondispersive (k∥-independent) frequency of
the nonretarded surface-plasmon frequency in the long-wavelength limit [Eq. (1.39)],
ωsp = ωp/

√
2 (green line) [10]. Importantly, for a given frequency ω, the momentum

k∥ of light in free space is always smaller than the momentum kspp of SPPs, and
therefore, a laser beam incident on an ideal surface cannot excite SPPs because
momentum and energy cannot be simultaneously preserved. For this reason, several
mechanisms have been adopted to provide the extra momentum needed to excite
SPPs with light, such as the use of surface roughness or gratings [137], evanescent
fields [138, 139], or sharp metallic tips placed on top of the metal–dielectric surfaces
[140].

1.2.3 Localized surface plasmon polaritons (LSPPs)
When metallic nanoparticles (MNPs) of finite size are considered, a new type of
plasmon resonances emerges, so-called localized surface plasmon polaritons (LSPPs)
[11, 141]. The word localized is used because, unlike the SPP previously discussed,
in this case the surface-charge oscillations are not propagating in space. Indeed, the
transnational invariance of the system is broken, and plasmons are confined in the
three dimensions of space. Thus, LSPPs can often be understood as confined SPPs
with a quantized wavenumber kspp. Importantly, contrary to SPPs in semi-infinite
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metal slabs, LSPPs in small MNPs can be excited by an incident laser beam,
because the finite geometry of the MNP provides the extra momentum needed
to overcome the mismatch between the momentum of light and plasmons. For
simplicity, in this thesis we refer to LSPPs as “localized surface plasmons (LSPs)”,
or simply “plasmon resonances” or “plasmons”.

In this thesis, we focus on quantum effects associated with the excitation of
LSPPs in small MNPs, where special attention is paid to spherical nanoparticles
and nanoparticle dimers. In the following, we describe the basic properties of
LSPPs sustained in such geometries using a classical electromagnetic theory.

LSPPs in spherical nanoparticles

We first derive the resonance conditions fulfilled by LSPPs in a spherical MNP of
radius a surrounded by vacuum (dielectric function εd = 1). These conditions are
again determined from the self-sustained induced potential ϕind(r, ω) that satisfies
Laplace’s equation [Eq. (1.22)], which for the spherical MNP is given by Eq. (1.26).
Under no external excitation, ϕext(r, ω) = 0, the coefficients bℓm(ω) are non-null
only at the poles of Eq. (1.27), so that the resonance conditions of the nonretarded
LSPPs sustained in a spherical MNP are given by

ℓε(ω) + (ℓ+ 1) = 0, (1.41)

where ℓ is the multipole order of the LSPP resonance. Therefore, assuming a
lossless Drude dielectric function [Eq. (1.10), with γp = 0], the frequencies ωℓ of
LSPPs in a spherical MNP are given by:

ωℓ = ωp

√
ℓ

2ℓ+ 1 , (1.42)

which are independent of the size of the nanoparticle. However, this expression
is rigorous only within the validity range of the nonretarded and local-response
approximations. Indeed, it is known that the scale invariance of Eq. (1.42) is
lifted when retardation effects are considered in large MNPs (a ≳ 15 nm) [7, 142],
as well as when quantum-size effects are considered in very small nanostructures
(a ≲ 5 nm) [61, 95, 96]. We return in Chapters 2, 3, and 4 to the impact of
quantum-size effects on the resonant frequencies of LSPPs, ωℓ.

Figure 1.4a shows the values of the LSPP frequencies ωℓ as a function of the
multipole order ℓ [Eq. (1.42)]. For small values of ℓ, the resonance frequencies ωℓ

of different order ℓ can be well differentiated. For example, the dipolar plasmon
(DP) frequency (ℓ = 1) is given by ωDP = ωℓ=1 = ωp/

√
3, the quadrupolar plasmon

(QP) frequency (ℓ = 2) by ωQP = ωℓ=2 = ωp

√
2
5 , and the octupolar plasmon (OP)

frequency (ℓ = 3) by ωOP = ωℓ=3 = ωp

√
3
7 . In contrast, different LSPPs with

large ℓ have very similar resonant frequencies, and thus, due to the broadening
of each resonance given by the losses (γp in a Drude metal), they pile up in a
single broad resonance, the so-called pseudomode [143, 144] (see Chapter 3). The
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Figure 1.4: (a) Frequencies ωℓ of the nonretarded LSPP resonances sustained in a spherical
MNP as a function of the multipole order ℓ, considering a lossless Drude dielectric function
[Eq. (1.10)]. The frequencies ωℓ in the vertical axis are given in units of ωp. The green dashed line
represents the frequency of the surface plasmon, ωsp/ωp = 1/

√
2. (b) Sketch of the surface charge

density induced in a spherical MNP by an external electromagnetic field Eext corresponding to
plane-wave illumination. The green arrow represents the oscillating dipole moment p induced at
the MNP. (c) Absolute value of the electric field Eind induced by a spherical MNP in response
to an external plane wave Eext, calculated within the nonretarded approximation. The MNP
has a radius a = 5 nm, and it is characterized by a Drude dielectric function with ωp = 5.89 eV
and γp = 0.21 eV. The color map is shown at the DP resonance, ωDP = 3.4 eV. (d) Extinction
(blue) and scattering (red, multiplied by 10) cross-section spectra of the same MNP as in panel
(c). Due to the small size of the MNP, the extinction and absorption cross sections are almost
equivalent, σext(ω) ≈ σabs(ω).

frequency of this pseudomode approaches the frequency of the surface plasmon,
ωℓ→∞ ∼ ωp/

√
2 = ωsp [Eq. (1.39)], since for large ℓ the local curvature of the

spherical MNP is very large (approximately flat interface) as compared to the
wavelength of the excited LSPPs, λLSPP ∼ 2πa/ℓ.

We next show that a plane wave illuminating a spherical MNP can excite
LSPPs. We consider a plane wave linearly polarized along the z-direction, which is
expressed within the nonretarded approximation as Eext(r, ω) = E0 ẑ. Intuitively,
Eext(r, ω) polarizes the MNP along the z-direction, producing a displacement of
the free-electron gas with respect to the positively charged background (see sketch
in Figure 1.4b). Then, seeking to restore the equilibrium, the Coulomb interaction
between the positive and negative charge densities produces a collective oscillation
of the free-electron gas. The LSPP corresponds to the resonant excitation of this
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1.2. Plasmonics

collective oscillation.
A quantitative study of the excitation of LSPPs under plane-wave illumination

can be done by calculating the optical response of the MNP following the procedure
explained in Subsection 1.1.3. The external potential ϕext(r, ω) in this case is given
in spherical coordinates by:

ϕext(r, ω) = −E0 r cos θ, (1.43)

and the integral in Eq. (1.27) providing the coefficients bℓm(ω) has an analytical
solution [145], which is non-null only for ℓ = 1. This means that, in contrast with
SPPs, the DP resonance can be excited by plane-wave illumination. The electric
field Eind(r, ω) induced in the proximity of the MNP is given by:

Eind(r, ω) = −∇ϕind(r, ω) =


−E0

ε(ω)−1
ε(ω)+2 (cos θ r̂ − sin θ θ̂)︸ ︷︷ ︸

ẑ

r < a

E0
ε(ω)−1
ε(ω)+2a

3/r3(2 cos θ r̂ + sin θ θ̂) r > a

,

(1.44)
with r̂ and θ̂ the unit vectors along the radial and tangential directions, respectively.
Note that, as expected, Eind(r, ω) possesses a resonance at the DP frequency,
ωDP = ωp/

√
3.

We show in Figure 1.4c the absolute value of the electric field Eind(r, ω) induced
at the DP frequency, ωDP = 3.4 eV, in the proximity of a MNP of radius a = 5 nm.
The MNP is characterized by a Drude dielectric function [Eq. (1.10)] using the
parameters ωp = 5.89 eV and γp = 0.21 eV to describe sodium. Results are
normalized to the amplitude of the incoming field, E0. Crucially, the induced field
is much stronger than the incident field, and it is localized in a space region much
smaller (∼ 1 − 5 nm) than the wavelength of the incident field (∼ 400 nm). Thus,
this electromagnetic-field localization surpasses the diffraction limit.

Moreover, we note that the electric field Eind(r, ω) induced outside the MNP
boundary (r > a) corresponds to the electrostatic field created by a point dipole
placed at the center of the MNP [6, 22]. Indeed, the external field Eext induces
a dipole moment p(ω) = α(ω)Eext at the spherical MNP that depends on the
quasi-static polarizability [22]

α(ω) = a3 ε(ω) − 1
ε(ω) + 2 . (1.45)

This induced dipole p(ω) emits light into the far field. The MNP thus acts
as an optical nanoantenna that can extremely localize incident electromagnetic
radiation in the near field and radiate it into the far field [146]. The power Psca
scattered into the far field is related to p(ω) by [6]

Psca = ω4

3c3 |p(ω)|2. (1.46)
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Typically, the scattered power Psca = σscaI0 is normalized to the intensity
I0 = c|Eext|2/(8π) of the incident plane wave, leading to the scattering cross
section [7],

σsca(ω) = 8π
3

(ω
c

)4
|α(ω)|2. (1.47)

Moreover, the total power provided by the incoming light to a MNP, Pext, is
given by the extinction cross section σext through the relationship Pext = σextI0.
σext(ω) is defined as [7]

σext(ω) = 4πω
c

Im{α(ω)} = σabs(ω) + σsca(ω), (1.48)

and corresponds to the sum of both scattering σsca and absorption σabs cross
sections, the latter determining the power of light absorbed by the MNP,
Pabs = σabsI0.

Figure 1.4d displays the extinction σext(ω) (blue line) and scattering σsca(ω)
(red line) cross-section spectra of the same spherical sodium MNP considered in
Figure 1.4c (a = 5 nm). For such small MNP, σsca(ω) ∝ a6 (ω

c

)4 (with ωa
c << 1) is

about two orders of magnitude smaller than σext(ω) ∝ a3 (ω
c

)
. As a consequence,

the extinction of the MNP is completely governed in this case by its absorption.
Thus, for the small size of the MNPs considered in this thesis, σabs(ω) and σext(ω)
are almost equivalent. We therefore use the following expression to compute the
absorption cross section in all the thesis [see Eq. (1.48)]:

σabs(ω) = 4πω
c

Im{α(ω)}. (1.49)

LSPPs in nanoparticle dimers

When two spherical MNPs are placed in close proximity, they form a dimer
sustaining coupled LSPPs that can be excited by plane-wave illumination [23].
The study of LSPPs in nanoparticle dimers is particularly interesting because
they induce much stronger field enhancements than individual MNPs [147, 148].
Moreover, the analysis of the optical properties of a spherical dimer can help to
understand the physics behind the optical response of more complex plasmonic
nanostructures.

The resonant LSPP frequencies in a metallic dimer differ from those of the
individual MNPs because the electromagnetic coupling between the two MNPs
modifies the resulting plasmonic resonances [149]. The LSPP frequencies in this
dimer configuration depend on the material and size of the MNPs forming the
dimer, as well as on the surface-to-surface gap separation D. As an example, we
show in Figure 1.5a the waterfall spectra of the absorption cross section, σabs(ω)
[Eq. (1.49)], of a MNP dimer with gap separation ranging from D = 1.05 nm
(bottom) to D = 3.6 nm (top). We consider the same sodium MNPs as in Figures
1.4c,d, and the external illumination is polarized along the dimer axis. Results are
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Figure 1.5: (a) Waterfall spectra of the absorption cross section σabs(ω) of a dimer composed
by two spherical sodium MNPs of radius a = 5 nm characterized by a Drude dielectric function
with ωp = 5.89 eV and γp = 0.21 eV (same as in Figures 1.4c,d). The gap separation is varied
from D = 1.05 nm (bottom) to D = 3.6 nm (top) in steps of ∼ 0.21 nm. (b) Sketch of the
optical hybridization between LSPPs of individual MNPs leading to the bonding dipolar plasmon
(BDP) and the bonding quadrupolar plasmon (BQP). (c) Color map of the induced electric-field
enhancement |E|ind/E0 in the middle of the gap formed by two MNPs with radius a = 5 nm as a
function of the frequency of the external plane-wave illumination, ω, and the surface-to-surface
gap distance, D. Results are obtained under the nonretarded approximation considering an
external electromagnetic field, Eext = E0ẑ, polarized along the dimer axis (z-axis).

obtained within the nonretarded approximation following the procedure explained
in Subsection 1.1.3.

Two distinct resonances can be observed in the absorption spectra of Figure
1.5a for the whole range of gap separation D considered: an intense bonding dipolar
plasmon (BDP) shifting from ωBDP ∼ 3.2 eV to ∼ 2.8 eV as D is reduced, and a
weaker bonding quadrupolar plasmon (BQP) at ωBQP ∼ 3.5 eV, more pronounced
for narrow gaps. The BQP also redshifts with decreasing D. The origin of these
plasmon resonances can be understood using a hybridization picture that considers
the coupling between the multipole modes ℓ of the two individual MNPs [Eq. (1.42)]
similarly to the hybridization between atomic orbitals in diatomic molecules [150].
According to this hybridization picture (see sketch in Figure 1.5b), the BDP is
mainly created due to the electromagnetic coupling between the DP resonances
(ℓ = 1) of the individual MNPs, while the BQP is mainly a consequence of the
mixture between the DP mode of one MNP and the quadrupolar mode (ℓ = 2) of
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the other one [151] (note that, strictly speaking, all the modes with ℓ > 1 contribute
to both the BDP and BQP).

Figure 1.5c shows the induced electric-field enhancement |E|ind/E0 in the middle
of the gap as a function of the frequency ω and the gap separation distance, D.
The BDP and BQP resonances exhibit a strong redshift of the two modes with
decreasing D down to the smallest value considered, D = 0.16 nm. In addition,
a dramatic enhancement (up to |E|ind/E0 ∼ 600) of the electric field at plasmon
resonances is predicted by the classical LRA presented in this chapter when the two
MNPs are nearly in contact [23]. This enormous field enhancement is due to the
fact that the classical LRA predicts a continuous increase of Coulomb interaction
that induces extremely high charge densities of opposite sign at the MNP surfaces
across the junction. The induced electric field Eind(r, ω) inside the cavity shown in
Figure 1.5c (e.g. |Eind|/E0 ∼ 160 for D = 1 nm) is generally much larger than the
one obtained for the individual MNP in Figure 1.4c (maximum |Eind|/E0 ∼ 35).
However, note that the behavior of |E|ind/E0 predicted by classical theories for
D ≲ 1 nm is found to be nonphysical, as we discuss in Subsection 2.3.2.

1.3 Nonlinear optical response of small
nanostructures

In the previous sections, we assumed that the optical response of the studied
systems is linear, i.e., there is a linear dependence between D(r, ω) and E(r, ω)
in the constitutive relationship given by Eq. (1.7). This assumption also imply a
linear dependence between the external electric field Eext and the induced dipole
moment, p(ω) = α(ω)Eext, related through the linear polarizability α(ω). However,
it is known that nonlinear optical phenomena can emerge when the intensity
of the illuminating field is large [36, 37, 152, 153]. In this thesis, the nonlinear
optical response of plasmonic systems is directly obtained from quantum TDDFT
calculations (see Section 2.4 and Chapter 6), but it is useful to briefly recall the
main principles of nonlinear optics using classical electromagnetic theories.

The nonlinear scattering from a nanostructure much smaller than the wavelength
of the external electric field Eext can be studied by means of the induced dipole
moment p, since the scattered power Psca is proportional to ∝ |p|2 [Eq. (1.46)].
Here, we obtain the nonlinear dipole moment in the time domain, p(t), induced in
response to a (time-dependent) electric field Eext(t) that drives the system. The
simplest model to describe classically the nonlinear optical response expresses p(t)
as a power series of Eext(t) [152, 154],

p(t) = αEext(t) + α(2) (Eext(t)
)2 + α(3) (Eext(t)

)3 + . . . , (1.50)

where α(n) are the n-order nonlinear hyperpolarizabilities of the structure under
study (with n = 2, 3, 4, . . . ). For simplicity, in Eq. (1.50), we use scalar notation3

3 In general, p(t) and Eext(t) are vectors, and α(n) is a (n + 1)-rank tensor [153].
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1.3. Nonlinear optical response of small nanostructures

Figure 1.6: (a) Sketch of the nonlinear optical response of a system illuminated by an external pulse
of fundamental frequency ω. Due to the nonlinear hyperpolarizabilities α(n) (with n = 2, 3, 4), the
system scatters light not only at the fundamental frequency ω but also at harmonic frequencies
Ω = nω. (b) Intensity spectrum of the nonlinear dipole moment p of a system as a function
of the harmonic numbers n = 1, 2, 3, 4. (c) Schematic representations of the nonlinear optical
processes associated with the second-order nonlinear hyperpolarizability α(2) involving two
different frequencies of the external illumination ω1 and ω2. (d) Same as in c, but for the
main nonlinear optical processes associated with the third-order α(3) that involve three different
incident frequencies ω1, ω2, and ω3.

and assume that the system responds instantaneously to the external electric field
Eext(t).

The nonlinear optical response of a nanostructure, classically described by
Eq. (1.50), strongly depends upon the external illumination Eext(t). On the
one hand, a monochromatic external electric field Eext(t) = Re

{
Eext

ω e−iωt
}

oscillating at a frequency ω can induce components of the dipole moment
pΩ(t) ∼ Re

{
pΩe

−iΩt
}

oscillating at frequencies Ω = nω due to the nonlinear
hyperpolarizabilities α(n). This nonlinear optical process is called n-th harmonic
generation, and it is schematically represented in Figure 1.6a. To understand this
effect, we consider as an example a nanostructure with only a linear polarizability
α and a second-order nonlinear hyperpolarizability α(2). According to Eq. (1.50),
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in this situation p(t) is given by (assuming Eext
ω to be real)

p(t) = αEext(t) + α(2) (Eext(t)
)2

= αRe
{

Eext
ω e−iωt

}
+ α(2) (Re

{
Eext

ω e−iωt
})2

= αEext
ω cos(ωt) + α(2) (Eext

ω

)2 cos2(ωt)

= αEext
ω cos(ωt) + α(2) (Eext

ω

)2 1
2 (1 + cos(2ωt)) .

(1.51)

From the last line of Eq. (1.51), we conclude that the resulting p(t) has
three different components (or harmonics): a harmonic pω(t) oscillating at the
fundamental frequency Ω = ω that is linear with Eext

ω , and two nonlinear harmonics
(proportional to (Eext

ω )2), one oscillating at the double frequency Ω = 2ω, p2ω(t)
(second-harmonic generation), and another one, p0ω, which is static (Ω = 0, optical
rectification) [152]. The example explained here can be extended to derive any
n-th harmonic generation when considering a generic nanostructure with other
hyperpolarizabilities α(n) (n > 2). It can be seen that the amplitude of a particular
n-harmonic, pnω(t), primarily increases with the n-th power of the incident field,
pnω ∝ |Eext

ω |n, so that the stronger the illumination intensity, the more efficient
n-th harmonic generation. We show in Figure 1.6b a sketch of an intensity spectrum
of the nonlinear dipole moment p(Ω) in the frequency domain as a function of the
harmonic numbers n = 1, 2, 3, 4.

Importantly, even-harmonic generation from centrosymmetric systems is
forbidden because their inversion symmetry imposes α(2n) = 0 (with n = 1, 2, 3 . . . ).
To demonstrate this effect, we can again consider the case of a nanostructure with
only a linear polarizability α and a second-order hyperpolarizability α(2), as we
did in the derivation of Eq. (1.51). However, we now consider an external electric
field of opposite sign, Eext(t) = −Re

{
Eext

ω e−iωt
}

. Thus, according to Eq. (1.50),
the nonlinear dipole moment p(t) is given in this situation by

p(t) = −αEext
ω cos(ωt) + α(2) (−Eext

ω

)2 1
2 (1 + cos(2ωt)) , (1.52)

where it is assumed again that Eext
ω is real.

Due to the inversion symmetry of the system, the amplitude of p(t) given
by Eqs. (1.51) and (1.52) must be the same but with opposite sign, which can
be obtained only if α(2) = 0, thus preventing second-harmonic generation. This
derivation can be straightforwardly generalized to demonstrate that any even-
harmonic generation is forbidden from centrosymmetric nanostructures. In Chapter
6, we show that a quantum emitter coupled to a centrosymmetric MNP activates
the otherwise-forbidden second-harmonic generation because it breaks the inversion
symmetry of the system.

On the other hand, when the external illumination has components of different
frequencies ωj = ω1, ω2, ω3, . . . , the nonlinear optical response of the system
becomes richer as compared to the one obtained under monochromatic excitation.
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According to Eq. (1.50), an external electric field, Eext(t) ∼ Re
{∑

j Eext
jω e

−iωjt
}

,
with components oscillating at frequencies ωj (with j = 1, 2, 3, . . . ), induces several
harmonics pΩ(t) ∼ Re

{
pΩe

−iΩt
}

oscillating at different frequencies Ω given by
a linear combination of the incident frequencies ωj . For example, the nonlinear
optical processes activated due to α(2) for two incident frequencies ω1 and ω2
lead to second-harmonic generation (SHG, where Ω = 2ω1 or Ω = 2ω2), sum-
frequency generation (SFG, where Ω = ω1 +ω2), or difference-frequency generation
(DFG, where Ω = ω1 − ω2) [152, 153]. In a similar way, when three different
incident frequencies are combined (ω1, ω2, and ω3), third-order nonlinear processes
characterized by α(3) can produce third-harmonic generation (THG, where Ω = 3ω1,
Ω = 3ω2 or Ω = 3ω3), and also other harmonics due to more complex combinations
given by the sum and differences between three different incident frequencies ω1, ω2
and ω3. Some of the nonlinear optical processes involving α(2) and α(3) are depicted
in Figures 1.6c,d.

1.4 Plexcitonics: Quantum emitter excitons
coupled to plasmons

Due to the strong electromagnetic fields and high field localization associated
with the excitation of LSPPs, MNPs can strongly interact with nearby quantum
emitters (QEs), such as atoms, molecules, or quantum dots. Indeed, the electronic
transitions induced by optical excitations in QEs, so-called excitons4, are much
more efficiently excited in the presence of a MNP than in free space [102, 160, 161].
Moreover, the electromagnetic interaction between MNP plasmons and QE excitons
leads to hybrid resonances at optical frequencies in coupled QE–MNPs systems
that are referred to as plasmon–exciton polaritons or plexcitons [39, 162–167].

In this thesis, we devote considerable attention to analyze quantum phenomena
arising from such QE–MNPs interaction. In Chapter 5, we adopt a quantum many-
body model to describe the QE, whereas in Chapter 3, Chapter 4 and Chapter 6 we
treat the QE classically using the point-dipole approximation. Thus, in the following
subsections we explain some important concepts in the context of electromagnetic
QE–MNPs interaction, such as the point-dipole approximation, the formalism of the
self-interaction dyadic Green’s function to classically describe the exciton–plasmon
electromagnetic coupling, and a simplified coupled harmonic-oscillator model useful
to study certain aspects of such interaction.

4 The concept of exciton is widely used in the context of bulk crystals [155], such as wide-gap
insulators [156] and semiconductors [157], to describe the electrically-neutral quantum of electronic
excitation associated with bound electron–hole pairs [158]. In this thesis, we consider excitons
formed when exciting electronic transitions in quantum emitters [159], such as HOMO–LUMO
transitions in organic molecules.
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1.4.1 The point-dipole approximation
In spite of the strong in-homogeneity of plasmonic fields, the spatial extent of
QEs is usually much smaller than the typical length scale of the plasmonic field
variation, and thus QEs are often treated as polarizable point-like objects [168].
The electrostatic potential ϕQE(r) created by a QE within the nonretarded limit is
then given by

ϕQE(r) = pQE · r − rQE

|r − rQE|3
, (1.53)

with pQE the dipole moment of the QE and rQE its position. Thus, if pQE is
known, one can use the methodology explained in Subsection 1.1.3 to obtain the
optical response of plasmonic nanostructures interacting with QEs. The simplest
way to estimate the value of pQE under weak illumination [22] is to consider that
the QE possesses only two electronic states, namely a ground state at energy ϵg and
an excited state at energy ϵex. Defining the transition frequency ωQE = ϵex − ϵeg
of the exciton as the energy difference between the excited and the ground states
of the QE, pQE evolves in time according to [22]

p̈QE(t) + γQEṗQE(t) + ω2
QEpQE(t) = α0

QEEext(t), (1.54)

where γQE and α0
QE are the intrinsic loss rate and oscillator strength of the

QE, respectively, and Eext(t) is evaluated at the position of the QE. The
oscillator strength α0

QE is related to the transition dipole moment µQE through
α0

QE = 2ωQE|µQE|2 [22]. For simplicity, α0
QE is always taken in this thesis as a

scalar, corresponding to an isotropic QE. When considering the electromagnetic
interaction between the QE and MNPs, Eext(t) in Eq. (1.54) must contain the
contributions of both the external illumination and the electric field created by the
MNPs. Moreover, the MNPs electric field is affected by pQE(t), and therefore, the
problem has to be solved self-consistently, as we do e.g. in Chapter 6. We show in
Appendix C the method used in this thesis to solve Eq. (1.54) numerically in the
time domain.

To simulate the QE–MNPs interaction in the linear-response regime, it is
usually convenient to use Eq. (1.54) in the frequency domain. In this way, the
frequency-dependent polarizability αQE(ω) relating the dipole moment pQE(ω) of
an isotropic QE and Eext(ω) is:

αQE(ω) =
α0

QE

(ω2
QE − ω2 − iωγQE) . (1.55)

1.4.2 The self-interaction dyadic Green’s function
In this subsection, we explain the dyadic Green’s function formalism adopted
to address the electromagnetic coupling between a QE and a MNP in the
frequency domain [22, 40]. We apply this formalism to individual spherical
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MNPs and dimers interacting with a single QE, but it can be applied to any
nanostructure or nanoparticle ensemble of arbitrary shape. The optical response of
a coupled QE–MNP system is determined in this thesis by the total dipole moment
p(ω) = pMNP(ω) + pQE(ω) induced in the system, which is given as a sum of the
MNP dipole, pMNP(ω), and that of the QE, pQE(ω).

The electromagnetic QE–MNP interaction can be understood as follows: the
external illumination Eext induces an electric near field Eind(r, ω) and dipole
moment pMNP(ω) at the MNP. Then, Eind(r, ω) and Eext induce a dipole moment
at the QE, pQE(ω), which acts back on itself due to the presence of the MNP.
Finally, due to the electromagnetic QE–MNP interaction, the dipole moment
pQE(ω) created at the QE also contributes to the induced dipole moment pMNP(ω)
at the MNP.

The first step to mathematically describe the physical picture depicted above
is to introduce the self-interaction dyadic Green’s function Ĝ(rQE, rQE, ω). It
provides the electric field Eself(rQE, ω) created by the MNP at the QE position,
rQE, in response to the electromagnetic radiation of the QE [104, 169–172],5

Eself(rQE, ω) = Ĝ(rQE, rQE, ω) · pQE(ω). (1.56)

The optical response of the coupled QE–MNP system can be described with
the following coupled equations for pQE(ω) and pMNP(ω),

pQE(ω) = αQE(ω)
(
I − αQE(ω)Ĝ(rQE, rQE, ω)

)−1 (
Eext + Eind(r = rQE, ω)

)
,

pMNP(ω) = α̂MNP(ω) · Eext + α̂QE
MNP(ω) · pQE(ω),

(1.57)
where I is the identity matrix, Eind(r = rQE, ω) is the electric field induced by the
isolated MNP at rQE in response to the external illumination Eext, α̂MNP(ω) is the
polarizability tensor of the MNP, and α̂QE

MNP(ω) is a tensor that provides the dipole
moment induced at the MNP in response to the electromagnetic field created by a
point dipole pQE(ω) located at rQE.

For individual spherical MNPs and dimers, one can use the procedure explained
in Subsection 1.1.3 to obtain the quantities appearing in Eq. (1.57). In particular,
for a QE coupled to an individual spherical MNP of radius a and dielectric function
ε(ω), Eq. (1.57) can be solved analytically. In this situation, Ĝ(rQE, rQE, ω)
can be obtained by solving Laplace’s equation [Eq. (1.22)] for the external
potential corresponding to a unitary point dipole with two different orientations:
perpendicular (⊥) and parallel (∥) to the MNP surface. From the electric field
induced by the MNP at the position of the dipole, Ĝ(rQE, rQE, ω) is fully defined

5 In many references in the literature [22], one can find slightly different definitions of
Ĝ(rQE, rQE, ω). In this thesis, we adopt the definition of Ĝ(rQE, rQE, ω) given by Eq. (1.56)
since it simplifies the notation.
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+
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Figure 1.7: (a) Absorption cross-section spectra σabs(ω) of an individual spherical MNP (dashed
black line) and that of a QE–MNP coupled system (blue line). The MNP has a radius a = 5 nm,
and it is characterized by a Drude dielectric function with ωp = 5.89 eV and γp = 0.21 eV. The
QE, located at 1.5 nm from the surface of the MNP, is characterized by an oscillator strength
α0

QE = 2 au, an intrinsic loss rate γQE = 10 meV, and a transition frequency ωQE = ωDP = 3.4 eV
in resonance with the DP of the MNP. (b) Same as in panel (a) but for a MNP dimer characterized
by a gap separation D = 3 nm. The QE emitter is at resonance with the BDP mode of the dimer,
ωQE = ωBDP = 3.15 eV. The results are obtained within the nonretarded approximation.

by the corresponding components [145],

G⊥(rQE, rQE, ω) =
∞∑

ℓ=1

ε(ω) − 1
ε(ω) + ℓ+1

ℓ

a2ℓ+1

R2ℓ+4 (ℓ+ 1)2, (1.58a)

G∥(rQE, rQE, ω) =
∞∑

ℓ=1

ε(ω) − 1
ε(ω) + ℓ+1

ℓ

a2ℓ+1

R2ℓ+4
1
2ℓ(ℓ+ 1), (1.58b)

with R the distance between the QE position rQE and the center of the spherical
MNP. Moreover, Eind(r = rQE, ω) can be obtained from Eq. (1.44), and α̂MNP(ω) ≡
α(ω) is given by Eq. (1.45).

On the other hand, to obtain the optical response of a QE coupled to a
spherical dimer, we numerically solve the quantities of Eq. (1.57) by following
the methodology explained in Subsection 1.1.3. Thus, the optical response of
the QE–MNPs system is obtained in this case in three steps: first, we calculate
Eind(r = rQE, ω) and α̂MNP(ω) by solving Eq. (1.35) for the external potential
ϕext(r, ω) given by Eq. (1.43) corresponding to plane-wave illumination. Second,
Ĝ(rQE, rQE, ω) and α̂QE

MNP(ω) are obtained by solving the same equations but
considering the external potential ϕext(r, ω) ≡ ϕQE(r) of a unitary point dipole
given by Eq. (1.53). Finally, we use Eq. (1.57) to calculate the total dipole moment
induced at the coupled system, p(ω) = pMNP(ω) + pQE(ω).

As an example, we show in Figure 1.7 the absorption cross-section spectra
σabs(ω) of an individual MNP (panel a) and a MNP dimer (panel b) interacting
with a QE. The MNPs have a radius a = 5 nm and are characterized using the
same Drude parameters as above (sodium). The QE is characterized [Eq. (1.45)]
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by an oscillator strength α0
QE = 2 au, an intrinsic loss rate γQE = 10 meV, and

a transition frequency ωQE resonant with the main plasmon resonance of the
nanostructures. In both situations, the presence of the QE strongly affects the
optical absorption of the coupled system (blue lines) as compared to that of the
isolated MNPs (dashed black lines). In particular, for the individual MNP Figure
1.7a shows a spectrally narrow Fano-like resonance at ω ∼ ωDP = 3.4 eV due to
the destructive interference between the excitation of the plasmon and that of
the exciton [173, 174]. The effect of the QE on the optical response is stronger
in the dimer configuration shown in Figure 1.7b due to the field enhancement in
the gap and thus larger electromagnetic coupling between the QE exciton and the
plasmonic resonances (see the following subsection for further details). In Chapter
3 and Chapter 5, we study the impact of several quantum-mechanical phenomena
in the optical response of QE–MNPs coupled systems.

1.4.3 Coupled harmonic-oscillator model
The self-interaction Green’s function formalism explained in the previous subsection
is generic and, in principle, can be applied to obtain the optical response of a
QE interacting with any plasmonic nanostructure of arbitrary shape. However,
using Eq. (1.57) requires the computation of the optical response of the plasmonic
nanostructure (e.g. using numerical methods [112–115]), which can be difficult in
many situations. Moreover, the exact numerical solution of the electromagnetic
interaction between QEs and MNPs is usually difficult to interpret. In contrast, a
simpler model based on coupled harmonic oscillators, explained in this subsection,
can provide physical insight into such exciton–plasmon electromagnetic interaction
[42, 175–178].

In this model, the LSPP in the MNP and the exciton in the QE are each
described as damped harmonic oscillators [42]. These oscillators represent, for
example, the dipole moment induced at the MNP and at the QE, respectively, and
are coupled through the electric near field induced by each structure. The equations
of motion of the QE induced dipole moment, pQE(t), and that of the MNP, pMNP(t),
are given under external plane-wave excitation Eext(t) = Re

{
E0e

−iωt
}

in time
domain by [42, 178]

p̈QE(t) + γQEṗQE(t) + ω2
QEpQE(t) = α0

QE

(
Eext(t) + βMNPpMNP(t)

)
p̈MNP(t) + γMNPṗMNP(t) + ω2

MNPpMNP(t) = α0
MNP

(
Eext(t) + βQEpQE(t)

)
,

(1.59)
where ωMNP, γMNP and α0

MNP are the resonant frequency, intrinsic loss rate and
oscillator strength associated with the single LSPP mode of the MNP, respectively.
Only a single LSPP mode is considered in the MNP, so that a generalization of
the model would be required to simultaneously account for the electromagnetic
coupling between the exciton and multiple LSPPs, such as the BDP and BQP
resonances supported by the metallic dimer shown in Figure 1.7. In Eq. (1.59), the
exciton–plasmon coupling is introduced via the electric near field induced by the
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MNP (QE), βMNPpMNP (βQEpQE), at the position of the QE (MNP).
The direct excitation of the QE by the plane wave is usually much weaker than

the excitation by the electric near field of the MNP, and thus one can consider
α0

QEEext(t) = 0 in Eq. (1.59) [42]. Moreover, pMNP(t) is expected to be much
stronger than pQE(t). Under these assumptions, the expression of the approximated
polarizability of the coupled system can be obtained in the frequency domain (using
pMNP(t) = Re

{
pMNP(ω)e−iωt

}
and pQE(t) = Re

{
pQE(ω)e−iωt

}
)

α(ω) ≈
α0

MNP
(
ω2

QE − ω2 − iωγQE
)(

ω2
MNP − ω2 − iωγMNP

)(
ω2

QE − ω2 − iωγQE
)

− 4g2ω2 , (1.60)

where we define the coupling strength g such that 4g2ω2 = α0
QEα

0
MNPβQEβMNP.

The factor 4 is introduced so that g can be directly compared to the coupling
strength used in cavity quantum-electrodynamics models [179]. This definition
implies a dependence of g on ω, g ∝ 1/ω. However, in practice we consider g to
be a constant (see below), consistent with the procedure adopted in the literature
[42]. We expect that an alternative assumption for the definition of g would not
substantially modify the results.

The expression given by Eq. (1.60) can be useful e.g. to estimate the value of
the coupling strength g between a QE exciton and a specific LSPP in the MNP.
This can be done by fitting the exact polarizability α(ω) of the QE–MNPs system
rigorously obtained by using e.g. the methodology explained in Subsection 1.4.2
to the approximated result obtained from Eq. (1.60). We follow this procedure
in Chapter 5, which allows us to identify whether the studied QE–MNPs system
is in the strong-coupling regime. In fact, the criteria adopted in the literature to
identify the strong-coupling regime are intimately related to the value of g [180].
In brief, the less demanding criterion states that g > |γMNP − γQE|/4 has to be
fulfilled. Other criteria often used are g > (γMNP +γQE)/4 and the more restrictive
g > (γMNP + γQE)/2.

Figure 1.8 shows the absorption spectra σabs(ω) [Eq. (1.49)] of a QE–MNPs
system obtained by solving Eq. (1.57) within the self-interaction Green’s function
formalism (blue line) and the approximated value of σabs(ω) obtained from
Eq. (1.60) using the coupled harmonic-oscillator model (red dotted line). The
parameters characterizing the system are the same as in Figure 1.7. In the case of
the individual MNP (Figure 1.8a), the coupling strength g between the DP and the
exciton is g = 18 meV < (γMNP − γQE)/4 < (γMNP + γQE)/4 < (γMNP + γQE)/2,
which indicates that the system is in the weak-coupling regime (here γMNP = γp).
For the metallic dimer (Figure 1.8b), the coupling strength g between the BDP
and the exciton is g = 45 meV ≈ (γMNP − γQE)/4 ≈ (γMNP + γQE)/4, thus the
system is nearly in the strong-coupling regime.

For situations of strong coupling, the coupled harmonic-oscillator model depicted
in this subsection can also be used to calculate the frequencies of the two polaritons
resulting from the electromagnetic interaction between the exciton and the LSPP.
Once the values of the coupling strength g is determined, as explained above, the
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+

Figure 1.8: (a) Absorption cross-section spectra σabs(ω) of a QE–MNP coupled system obtained
by using the self-interaction Green’s function formalism explained in Subsection 1.4.2 (blue
line) and a coupled harmonic-oscillator model (Eq. (1.60), red dotted line). The MNP has a
radius a = 5 nm, and it is characterized by a Drude dielectric function with ωp = 5.89 eV
and γp = 0.21 eV. Within the coupled-oscillator model ωMNP = ωDP = 3.4 eV is used. The
QE, located at 1.5 nm from the surface of the MNP, is characterized by an oscillator strength
α0

QE = 2 au, an intrinsic loss rate γQE = 10 meV, and a transition frequency ωQE = ωDP in
resonance with the DP of the MNP. The coupling strength is g = 18 meV, and it is obtained by
fitting the exact result obtained from Eq. (1.57) to the expression given by Eq. (1.60). (b) Same
as in panel (a) but for a MNP dimer characterized by a gap separation D = 3 nm. Within the
coupled-oscillator model ωMNP = ωBDP = 3.15 eV is used. The QE emitter is at resonance with
the BDP mode of the dimer, ωQE = ωBDP, and the coupling strength is g = 45 meV. In both
panels, γMNP = γp is used within the coupled-oscillator model.

frequencies of the upper (ω+) and the lower (ω−) polaritons can be obtained by
solving the eigenmodes of Eq. (1.59) [179]

ω± = 1
2(ωMNP + ωQE) ± 1

2Re


√

4g2 +
[
ωMNP − ωQE + i

γQE − γMNP

2

]2
 .

(1.61)
According to Eqs. (1.61), in a resonant exciton–plasmon system (ωMNP ≈ ωQE),

ω+ and ω− are separated by a factor 2
√
g2 − (γQE − γMNP)2

/16 as long as
g > |γQE − γMNP|/4, which justifies the less demanding criterion of strong coupling
mentioned above. Moreover, for situations where g >> |γQE − γMNP|/4, the
separation is 2g, leading to the so-called Rabi splitting between the upper and
lower polaritons in strongly coupled systems [181–183]. In contrast, in the weak-
coupling regime, where g < |γQE − γMNP|/4, there is no splitting between ω+ and
ω−, indicating that no polaritonic (hybrid) modes are created as a consequence of
the electromagnetic interaction between the exciton and the LSPP.
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1.5 Summary
In summary, we have presented in this chapter the classical viewpoint of plasmonic
excitations supported by MNPs and their electromagnetic coupling to QE excitons.
First, we have reviewed Maxwell’s equations in the linear-response regime, and
focused on the local-response approximation (LRA) that neglects the spatial
nonlocality of the optical response. Next, we have introduced the nonretarded
approximation adopted in this thesis and presented a method to obtain the
optical response of spherical individual nanoparticles and dimers. Then, after
briefly describing bulk and surface plasmons, we have paid special attention to
the excitation of LSPPs in plasmonic nanostructures of finite geometry such
as spherical MNPs and dimers. We have also introduced a simple model to
understand the nonlinear optical response from MNPs. Finally, we have presented
the theoretical approaches used in this thesis to describe the electromagnetic
interaction between QEs and MNPs within a classical linear-response framework.
The concepts explained in this chapter thus provide the grounds of classical light–
matter interaction and serve as a reference to study quantum phenomena that are
out of the reach of classical descriptions. In this thesis, quantum effects arising
in the light–matter interaction are studied within TDDFT as explained in the
following Chapter 2.
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2
QUANTUM MANY-BODY
DESCRIPTION OF LIGHT–MATTER
INTERACTION

The classical theoretical framework introduced in Chapter 1 can be used to
accurately describe light–matter interaction when the characteristic dimensions of
the system, such as the size of the MNP or the gap separation in MNP ensembles,
are relatively large. However, when small MNPs (≲ 10 nm) or ultra-narrow
gaps (≲ 1 nm) are considered, the quantum nature of the electrons dynamics
becomes important and classical descriptions are no longer valid. In this context, a
methodology capable of describing the electronic structure from a quantum many-
body perspective is required, which is a considerable challenge [184]. For example,
to describe the ground state of a small sodium MNP containing 1000 atoms (with
11 electrons per atom), one would have to solve the Schrödinger equation for a wave
function depending on 33000 spatial variables (three spatial variables per electron
without considering spin degeneracy and neglecting the degrees of freedom of the
nuclei). Solving this tremendously complex problem is out of current computational
capabilities [185].

To reduce the computational complexity of this many-body problem, one can
use density-functional theory (DFT), a rigorous formalism that deals with the
ground-state electron density rather than with the many-electron wave function.
DFT can be applied only to study ground-state electronic properties, so that to
determine electronic excitations in metals (and other materials) resulting from
light–matter interaction it is necessary to adopt the time-dependent extension
of DFT, the so-called time-dependent density functional theory (TDDFT). This
approach addresses the time evolution of the electron density when the system is
subjected to a time-dependent external potential. On the other hand, a semiclassical
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approach referred to as the surface-response formalism (SRF) which incorporates
the parameters d⊥(ω) and d∥(ω) (first introduced by Peter Feibelman in the
1980s [98]), has prompted great interest and practical use in the Nanophotonics
community over the last few years to account for certain quantum many-body
effects in the optical response of metals. The advantage of using the SRF is that
it is much simpler computationally as compared to TDDFT, and thus allows for
studying quantum effects in larger plasmonic nanostructures. However, the SRF
is a cruder approximation than TDDFT, and cannot account for all quantum
many-body phenomena.

In Sections 2.1 and 2.2, we briefly recall the fundamentals of DFT and TDDFT,
and describe the corresponding quantum many-body algorithms based on the
wave-packet propagation (WPP) method employed in this thesis to address the
dynamics of the electron density in time domain. We apply this TDDFT framework
in Sections 2.3 and 2.4 to introduce some of the main quantum many-body
phenomena manifested in the linear and nonlinear optical response of canonical
plasmonic systems such as individual spherical and cylindrical MNPs and their
dimers. Finally, we explain in Section 2.5 the fundamentals of the SRF used in
this thesis (complementary to TDDFT) to provide additional insights on the study
of particular quantum surface effects on the optical response.

2.1 Fundamentals of density functional theory
(DFT)

Density-functional theory (DFT) allows us to determine the ground-state electronic
properties of an interacting many-electron system by only calculating the ground-
state (or equilibrium) electron density n0(r), i.e., without the need of the exact
wave function satisfying the many-electron Schrödinger equation. According to the
work by Hohenberg and Kohn [186], n0(r) completely determines the ground-state
energy, E0, and all other electronic properties of the many-electron system subjected
to an external time-independent potential. This potential can be, for example, the
attractive Coulomb potential Vion(r) created by the positively charged ions in a
metal, as we consider here. In this case, the ground-state energy E0 of a metal can
be expressed as a unique functional of n0(r) (denoted by the square brackets),

E0[n0(r)] =
∫
dr n0(r)Vion(r) + 1

2

∫ ∫
dr dr′ n0(r)n0(r′)

|r − r′|
+ G[n0(r)], (2.1)

where the first and second terms on the right-hand side (RHS) are the energy
due to electron–ion and electron–electron Coulomb interaction in a metal, and
G[n0(r)] is a universal functional of the density n0(r) valid for any number of
electrons and any potential Vion(r). G[n0(r)] accounts for the kinetic energy and
exchange–correlation energy (associated e.g. with the Pauli exclusion principle)
of the interacting many-electron system. If G[n0(r)] were known, determining the
ground-state energy E0 and electron density n0(r) of a many-electron system could
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2.1. Fundamentals of density functional theory (DFT)

be directly obtained by minimizing E0[n0(r)] relative to n0(r) according to the
variational principle [186]. Thus, the work by Hohenberg and Kohn completely
changes the paradigm of the electronic many-body problem, since dealing with the
electron density n0(r) as the fundamental quantity instead of the the many-electron
wave function allows the study of electronic properties of many-electron systems
intractable in the past. Notice that Eq. (2.1) is formally exact. Unfortunately, the
universal functional G[n0(r)] is generally unknown and, therefore, DFT becomes in
practice an approximation. Considerable effort has been devoted over the years to
find suitable approximations for G[n0(r)] [187–189].

Kohn and Sham [190] proposed to express G[n0(r)] as a sum of two functionals,

G[n0(r)] = Ts[n0(r)] + Exc[n0(r)], (2.2)

where
Ts[n0(r)] =

∑
j∈occ

∫
dr
(
Ψ0

j (r)
)∗
T̂ Ψ0

j (r) (2.3)

is the kinetic energy of an auxiliary system of non-interacting electrons6 and
Exc[n0(r)] is the exchange–correlation energy that contains all remaining many-
body interactions. In Eq. (2.3), T̂ = − 1

2 ∇2 is the kinetic-energy operator, and
the summation runs over the occupied (j ∈ occ) time-independent Kohn–Sham
(KS) orbitals Ψ0

j(r) that determine the equilibrium electron density n0(r) of the
many-body system,

n0(r) =
∑

j∈occ
χj |Ψ0

j (r)|2, (2.4)

with the statistical factors χj accounting for both spin and symmetry degeneracy.
Note that, according to the definition of Eq. (2.4), n0(r) is considered to be positive.

The application of the variational principle to Eq. (2.1) using the functionals
given by Eqs. (2.2) and (2.3) results in the following equation [191]:(

T̂ + Vion(r) +
∫
dr′ n0(r′)

|r − r′|
+ δExc[n0(r)]

δn0(r)

)
︸ ︷︷ ︸

Ĥ0[n0(r)]

Ψ0
j (r) = ϵjΨ0

j (r), (2.5)

where Ψ0
j (r) and ϵj are the time-independent KS orbitals and energies7.

Thus, the equilibrium electronic density n0(r) [Eq. (2.4)] of the true many-body
system can be obtained within the KS scheme from the solutions of the Schrödinger
equation [Eq. (2.5)] of an auxiliary system of non-interacting electrons using an

6 Ts is thus an explicit functional of the Kohn–Sham orbitals Ψ0
j (r), but an implicit functional

of n0(r) according to Eq. (2.4) [72].
7 Note that Ψ0

j (r) and ϵj in Eq. (2.5) are the eigenfunctions and eigenvalues of the auxiliary
non-interacting electron system used to construct the exact electron density n0(r), and therefore,
ϵj and Ψ0

j (r) have no direct physical interpretation [192, 193]. An exception is made for the
energy of the highest occupied KS orbital, which can be used e.g. to estimate the work function
of a metal [194].
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effective time-independent Hamiltonian

Ĥ0[n0(r)] = T̂ + Veff[n0(r)], (2.6)

where Veff[n0] is the effective one-electron potential given by

Veff[n0(r)] = Vion(r) +
∫
dr′ n0(r′)

|r − r′|
+ Vxc[n0(r)]. (2.7)

In Eq. (2.7), the second term on the RHS is the electron–electron potential due to
Coulomb interaction in the single-electron picture, and Vxc[n0(r)] is the exchange–
correlation potential obtained from Exc[n0(r)] through the relationship

Vxc[n0(r)] = δExc[n0(r)]
δn0(r) , (2.8)

which accounts for all many-body interactions that are not present in T̂ and in the
second term of Eq. (2.7), but exist in the true interacting many-electron system.
According to the previous discussion about G[n0(r)], the exchange–correlation
energy functional Exc[n0] is not known exactly. We explain in Subsection 2.1.1 the
approximation adopted in this thesis to calculate Exc[n0(r)].

Equations (2.4) and (2.5) are referred to as the time-independent KS equations,
and have to be solved self-consistently: one can start with an assumed electron
density n0(r), then construct Veff[n0(r)] from Eq. (2.7), and finally obtain a
new value of n0(r) using Eqs. (2.5) and (2.4). This procedure is repeated until
convergence of the results is achieved. In the following Subsections 2.1.1 and
2.1.2, we describe the approximations used in this thesis to compute the potentials
Vxc[n0(r)] and Vion(r).

2.1.1 The local-density approximation (LDA)
The simplest way to determine the exchange–correlation energy functional Exc[n0(r)]
in Eq. (2.8) is to adopt the local-density approximation (LDA). If we assume that
n0(r) does not change rapidly, the variation of Exc[n0(r)] with respect to the
gradient of n0(r) can be neglected, and Exc[n0(r)] can be expressed as [62]

Exc[n0(r)] =
∫
dr n0(r) ϵxc(n = n0(r)), (2.9)

where ϵxc(n) is the exchange and correlation energy per electron of a homogeneous
electron gas with average electron density n [190]. Thus, within the LDA, the
exchange–correlation energy per particle located at position r in an inhomogeneous
system with density n0(r) is approximated by the exchange–correlation energy per
particle of a uniform electron gas with the same density, n = n0(r). The LDA has
been widely used to determine the electronic properties of many systems, including
atoms and solids where the density does not vary slowly. For metallic surfaces,
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the LDA is found to provide accurate results, which might be surprising since the
equilibrium density n0(r) varies rapidly near the metal surface [62].

Using Eq. (2.8), we obtain the exchange–correlation potential within the LDA8,

Vxc[n0(r)] =
∂
(
n0(r) ϵxc(n = n0(r))

)
∂n0(r) = ϵxc(n = n0(r)) + n0(r)∂ϵxc(n̄)

∂n

∣∣∣∣
n=n0(r)

,

(2.10)
which requires an analytical expression of ϵxc(n). Several approximations have
been proposed to that end [191, 195–197], and throughout this thesis, we use the
exchange–correlation energy-density functional ϵxc(n) given by Gunnarsson and
Lundquist [198]9:

ϵxc(n) = −1
2

(
0.916/rs + 0.0666(1 + x3)ln(1 + 1/x) − x2 + x

2 − 1/3)
)
, (2.11)

with rs =
( 3

4πn̄

)1/3 the Wigner–Seitz radius [Eq. (1.11)], and x = rs/11.9. Finally,
according to Eq. (2.10), the exchange–correlation potential that we use in this
thesis is given by [199]

Vxc[n0(r)] = −1
2

(
1.222/rs + 0.0666 ln(1 + 11.4/rs)

)∣∣∣∣
n=n0(r)

. (2.12)

2.1.2 The jellium model of free-electron metals
To obtain the potential Vion(r) in Eq. (2.7), we adopt in this thesis the jellium
model of free-electron metals [194, 200, 201], where the ions at the lattice sites are
modeled as a uniform positive background charge with density

n+(r) =

 n inside the metal

0 outside the metal
. (2.13)

Thus, within the jellium model, n (or, equivalently, rs [Eq. (1.11)]) is the only
parameter needed to characterize the metal. For example, Al is modeled with
rs = 2.07 a0, Na with rs = 4 a0, and K with rs = 4.96 a0 [62].

This positive charge density n+(r) creates an attractive Coulomb potential

Vion(r) = −
∫
dr′ n+(r′)

|r − r′|
. (2.14)

8 It can be shown that, for a functional F [ρ(r)] of the form F [ρ(r)] =
∫

dr f
(

r, ρ(r)
)

,
the functional derivative is given by δF

δρ(r) = ∂f
∂ρ

. A demonstration can be found in
https://www.youtube.com/watch?v=_ntUQ_WBp0U.

9 We consider the spin-unpolarized case with ξ = 0. Moreover, note that in ref. 198 the
expression for ϵxc(n) is given in Rydberg atomic units (while we use Hartree atomic units) and
thus it differs from our Eq. (2.11) by a factor 1

2 .
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Combining Eq. (2.14) with the second term on the RHS of Eq. (2.7), we can define
the Hartree potential as

VH[n0(r)] =
∫
dr′n0(r′) − n+(r′)

|r − r′|
, (2.15)

which represents the part of the effective one-electron potential Veff[n0(r)] associated
with electron–electron and electron–ion Coulomb interaction. In practice, in this
thesis we obtain VH[n0(r)] by solving Poisson’s equation,10

∇2VH[n0(r)] = −4π
(
n0(r) − n+(r)

)
. (2.16)

The effective one-electron potential can thus be written as [see Eq. (2.7)]

Veff[n0(r)] = Vxc[n0(r)] + VH[n0(r)], (2.17)

with Vxc[n0(r)] and VH[n0(r)] obtained from Eqs. (2.12) and (2.16), respectively.
As compared to fully atomistic ab-initio descriptions that take into account

the precise spatial position of each nucleus forming the MNP [202], the jellium
model presented in this subsection allows us to tackle MNPs of larger size (with
a comparatively low computational complexity) so that the collective plasmonic
excitations can be well developed [203]. The standard jellium model is found to
semi-quantitatively predict general quantum effects in plasmonic systems, such as
electronic spill-out, electron tunneling, nonlocal dynamical screening, nonlinear
optical response, or photo-assisted electron transport [58, 67, 68, 77, 204–213].
Many of these effects have been also confirmed by experimental studies and by
atomistic ab-initio calculations [79, 86, 214]. As a more technical note, in some
situations the standard jellium model does not describe accurately the interaction
between conduction electrons and ionic charges, resulting e.g. in an inadequate
value of the work function of the metal [215]. A simple method to overcome this
effect is to adopt the stabilized jellium model, where a constant (structureless)
potential is added to the effective one-electron potential inside the metal so that
the correct work function is obtained [216]. Moreover, the jellium model does not
describe excitations involving electrons from the inner shells, as it is the case of
d-band electronic transitions that are shown to substantially influence the optical
response of noble metals such as Au or Ag [217, 218]. To mimic the influence of
these inner shells, it is possible to use a polarizable medium which extends up to a
certain distance from the MNP surface [219].

In general, these sophistications to the jellium model have not been implemented
in this thesis11, since we mainly focus on sodium MNPs whose electronic structure
is sufficiently well described within the standard jellium model. Considering sodium
MNPs allows us to study quantum effects, within the frequency range close to that

10 Notice that solving Eq. (2.15) and Eq. (2.16) is equivalent since G(r, r′) = − 1
4π|r−r′| is the

Green’s function that satisfies ∇2G(r, r′) = δ(r − r′).
11 As an exception, to describe the electronic structure of the cylindrical metallic nanowires in

Section 2.3 we introduce a stabilizing potential to impose the value of the work function of gold.
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of typical plasmonic materials such as gold, using a relatively simplified description.

2.2 Fundamentals of time-dependent density
functional theory (TDDFT)

In this section, we describe the time-dependent density functional theory (TDDFT)
used in this thesis to address optical excitations in metals. TDDFT is the time-
dependent extension of DFT, and it is based on the work by Runge and Gross
[69], which shows that an external time-dependent potential Vext(r, t) completely
determines the time evolution of a given electron density n(r, t). Moreover, this
time-dependent electron density determines all the time-dependent properties of
the many-electron system.

The work by Runge and Gross [69] allows for establishing a time-dependent
KS scheme, where the dynamics of the electron density n(r, t) of an interacting
many-electron system (initially in the ground state) subjected to a time-dependent
potential Vext(r, t) is addressed using an effective one-electron potential Veff of
the equivalent non-interacting system. The dynamics of the time-dependent KS
orbitals Ψj(r, t) starting from the ground state,

Ψj(r, t = 0) = Ψ0
j (r), (2.18)

can be obtained from the time-dependent KS equation,

i
∂

∂t
Ψj(r, t) =

(
T̂ + Veff[n(r, t)] + Vext(r, t)

)
︸ ︷︷ ︸

Ĥ[n(r,t)]

Ψj(r, t) (2.19)

with the time-dependent electron density n(r, t) given by

n(r, t) =
∑

j∈occ
χj |Ψj(r, t)|2 =

∑
j∈occ

χjΨ∗
j (r, t)Ψj(r, t). (2.20)

Similarly to the equilibrium electron density n0(r) [Eq. (2.4)], the summation
in Eq. (2.20) runs over the occupied time-dependent KS orbitals, and n(r, t) is
considered to be positive.

Equation (2.19) is an analogue of the time-dependent Schrödinger equation for
a time-dependent one-electron Hamiltonian,

Ĥ[n(r, t)] = T̂ + Veff[n(r, t)] + Vext(r, t), (2.21)

where, similar to the time-independent KS equations used for the ground state
[Eq. (2.5)], T̂ = − 1

2 ∇2 is the kinetic-energy operator, Veff[n(r, t)] is the effective
time-dependent one-electron potential,

Veff[n(r, t)] = Vxc[n(r, t)] + VH[n(r, t)], (2.22)
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and Vext(r, t) is an arbitrary time-dependent potential that drives the system.
In Eq. (2.22), VH[n(r, t)] is the time-dependent Hartree potential obtained from
Poisson’s equation [see Eq. (2.16)],

∇2VH[n(r, t)] = −4π
(
n(r, t) − n+(r)

)
, (2.23)

and Vxc[n(r, t)] is the time-dependent exchange–correlation potential. In this thesis,
we adopt the adiabatic local-density approximation (ALDA) for the exchange–
correlation potential, which assumes that Vxc[n(r, t)] is local not only in space
but also in time. Following a similar approach as for the DFT calculations [see
Eq. (2.10)], it is possible to write

Vxc[n(r, t)] = ϵxc(n = n(r, t)) + n(r, t)∂ϵxc

∂n

∣∣∣∣
n=n(r,t)

. (2.24)

Therefore, in this thesis no memory effects are considered in Vxc an thus no losses
are introduced directly in the TDDFT calculations [220, 221] (see further details
in Subsection 2.2.1 to know how losses are introduced in the system). We use
within TDDFT the exchange–correlation energy-density functional ϵxc(n) given
by Gunnarsson and Lundquist [198], i.e., the same as used in the static DFT
calculations.

To obtain the time evolution of the many-body electron density n(r, t), the
time-dependent KS equations given by Eqs. (2.19) and (2.20) need to be solved
self-consistently using the initial conditions of Eq. (2.18). Formally, Eq. (2.19) is a
nonlinear partial differential equation because the effective potential Veff[n(r, t)]
[Eq. (2.22)] is a functional of the density n(r, t) [Eq. (2.20)], which is nonlinear with
respect to the KS orbitals Ψj(r, t). Note, however, that very commonly Eqs. (2.19)
and (2.20) are solved in the frequency domain to obtain the linear optical response
of a system by assuming that the external potential Vext(r, t) is a weak perturbation
[80].

In this thesis, we use a real-time implementation of TDDFT based on the
wave-packet propagation (WPP) method and solve Eqs. (2.19) and (2.20) in the
time domain [222, 223], which allows for obtaining both the linear and the nonlinear
optical response of the system subjected to an arbitrary external field of weak or
strong intensity. We explain in the following Subsection 2.2.1 the WPP method
[224–227] adopted in this thesis.

2.2.1 The wave-packet propagation (WPP) method
Given a KS orbital Ψj(r, t1) at an instant of time t = t1, the value of Ψj(r, t2) at
another instant of time t2 > t1 is determined from the solution of Eq. (2.19), which
can be written as [228]

Ψj(r, t2) = Û(t2, t1)Ψj(r, t1), (2.25)
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where the time-evolution operator Û(t2, t1) is given by [229]

Û(t2, t1) = P̂texp
{

−i
∫ t2

t1

dt Ĥ[n(r, t)]
}
, (2.26)

with P̂t the time-ordering operator. If Ĥ[n(r, t) [Eq. (2.21)] did not depend upon
the time t, the integral of Eq. (2.26) would be trivial and Eq. (2.25) would become
Ψj(r, t2) = e−iĤ(t2−t1)Ψj(r, t1). However, Ĥ[n(r, t)] is a time-dependent functional
due to the external time-dependent potential Vext(r, t). In this case, one can use a
short time propagation and consider that the time interval t2 − t1 is short enough
so that the Hamiltonian does not significantly vary between t1 and t2 = t1 + ∆t
(with ∆t a short time step). Then, we split the time propagation of Ψj(r, t)
within the entire time interval into several short-time intervals, where Eq. (2.26) is
approximated as

Û(t1 + ∆t, t1) ≈ exp
{

−i∆t Ĥ[n(r, t1 + ∆t/2)]
}
. (2.27)

The time-evolution operator Û(t1 + ∆t, t1) given by Eq. (2.27) uses the value of the
Hamiltonian Ĥ[n(r, t)] at an intermediate instant of time t = t1 +∆t/2 to guarantee
the time-reversal symmetry of the method and thus to preserve the norm of the KS
orbitals, d

dt

∫
d3r |Ψj(r, t)|2 = 0 [230, 231]. In principle, Vext(r, t) in Eq. (2.21) can

be known at any arbitrary time since we typically know its explicit time dependence,
however we do not know the value of Veff [Eq. (2.22)] at t = t1 +∆t/2 and therefore
cannot directly estimate the value of Ĥ[n(r, t = t1 + ∆t/2)]. To overcome this
issue, we use the following iterative procedure [75]

Veff[n(r, t1 + ∆t/2)] =

 Veff[n(r, t1)] first iteration

1
2 {Veff[n(r, t1)] + Veff[n(r, t1 + ∆t)]} otherwise

,

(2.28)
where Veff[n(r, t1 + ∆t)] is obtained in the previous iteration by solving Eqs. (2.20)-
(2.25) and (2.27), using the updated value of Veff[n(r, t1 + ∆t/2)]. We typically use
3 iterations to achieve convergence.

In addition, applying the time-evolution operator Û(t1 + ∆t, t1) given by
Eq. (2.27) to propagate Ψj(r, t) from t = t1 to t = t1 + ∆t requires the application
of the exponential of the kinetic-energy operator T̂ = − 1

2 ∇2 [Eq. (2.21)], which is
nonlocal on r. As an example, we first consider the implementation of the method
in 3D Cartesian coordinates12. Then, it is convenient to further approximate

12 The exact procedure used to apply e−i∆tT̂ depends on specific issues related to the coordinate
system chosen to propagate the KS orbitals, and in this section we only discuss the general aspects
[75]. Specific details of the algorithm in other coordinate systems are given in Subsections 2.3.1,
2.3.2, and 2.3.3.
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Û(t1 + ∆t, t1) using the split-operator technique [232–234]13,

Û(t1 + ∆t, t1) ≈ e−i∆tVtot(r,t)/2e−i∆tT̂ e−i∆tVtot(r,t)/2, (2.29)

where
Vtot(r, t) = Veff[n(r, t)] + Vext(r, t). (2.30)

The advantage of using the split operator given by Eq. (2.29) is that Û(t1 + ∆t, t1)
is separated into (i) two identical operators e−i∆tVtot(r,t)/2 that are local on r
since Veff[n(r, t)] is local within the ALDA, and (ii) another operator e−i∆tT̂ that
is nonlocal on r because it involves second spatial derivatives. The operator
e−i∆tVtot(r,t)/2 is diagonal in a real-space grid representation and therefore can be
directly applied to Ψj(r, t) in real space [235]. On the other hand, the operator
e−i∆tT̂ is diagonal in the reciprocal (k-momentum) space, since the kinetic-energy
operator is T̂k = 1

2k
2 in this representation [236–238]. Thus, e−i∆tT̂k can be directly

applied to Ψj(r, t) in the reciprocal space.
As a consequence, Ψj(r, t) can be propagated from t = t1 to t = t1 + ∆t

according to Eq. (2.29) by employing space-to-momentum Fourier transforms, F̃k,
and momentum-to-space inverse Fourier transforms, F̃−1

k . Using these techniques,
Eq. (2.25) reads

Ψj(r, t1 + ∆t) = e−i∆tVtot(r,t)/2F̃−1
k

{
e−i∆tT̂k F̃k{e−i∆tVtot(r,t)/2Ψj(r, t1)}

}
,

(2.31)
where the exponential of local potentials is directly multiplied by Ψj(r, t1) on each
grid point in real space, and the application of the exponential of the kinetic-energy
operator T̂k is performed in the reciprocal space [227]. In this thesis, we use the
fast Fouirer transform to compute F̃k and F̃−1

k within the WPP algorithm.
Last, to obtain the value of the KS orbital Ψj(r, t) at any time t we can apply

the time-evolution operator given by Eq. (2.29) several times using the procedure
of Eq. (2.31) recursively [239],

Ψj(r, t) = Û(t, t− ∆t)Û(t− ∆t, t− 2∆t) . . . Û(∆t, 0)Ψj(r, t = 0)

=
smax∏
s=1

Û(s∆t, (s− 1)∆t)Ψj(r, t = 0),
(2.32)

where smax is an integer number such that t = smax∆t, and the initial conditions
at t = 0 are given by the ground-state KS orbital [Eq. (2.18)].

13 Note that, for two operators Â and B̂, eÂ+B̂ ̸= eÂeB̂ unless [Â, B̂] = 0. The kinetic-energy
operator T̂ does not commute with Vtot(r, t) = Veff[n(r, t)]+Vext(r, t), and thus e−i∆t(T̂ +Vtot(r,t))

is not strictly e−i∆tVtot(r,t)/2e−i∆tT̂ e−i∆tVtot(r,t)/2. The resulting error in Eq. (2.29) scales as
(∆t)3 [229].
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Calculation of physical observables in time and frequency domains
within the WPP method

The WPP explained in this subsection allows us to retrieve the real-space and
real-time dynamics of the occupied KS orbitals Ψj(r, t), which determine the
evolution of the electron density n(r, t) [Eq. (2.20)] and all other physical quantities
of interest. In this thesis, we typically study the optoelectronic response of different
plasmonic systems by analyzing the dipole moment p(t), the electric near field
Eind(r, t), and the electron-current density j(r, t) induced in response to different
external potentials Vext(r, t)14.

The induced dipole moment p(t) is given in time domain by

p(t) = −
∫

V

δn(r, t) r dr, (2.33)

where δn(r, t) = n(r, t)−n0(r) is the induced electron density [Eqs. (2.4) and (2.20)],
and the integral extends over the whole volume V of the studied nanostructure.

The induced electric near field Eind(r, t) can be obtained in time domain from
the Hartree potential VH[n(r, t)] [Eq. (2.23)] using

Eind(r, t) = ∇VH[n(r, t)]. (2.34)

Note that the minus sign in Eq. (2.33) and the absence of negative sign in Eq. (2.34)
is because n(r, t) is a positive-valued electron density [Eq. (2.20)], which changes
the standard sign convention of the potential VH[n(r, t)] [Eq. (2.23)]. In contrast,
the electric field Eind(r, t) given by Eq. (2.34) is defined, as usual, as the force that
a test unitary positive charge q = +1 would experience from the field, and therefore
is related to VH[n(r, t)] through Eind(r, t) = −∇ (−VH[n(r, t)]) = ∇VH[n(r, t)].

Finally, based on the continuity equation, ∂
∂tn(r, t) = ∇ · j(r, t), the induced

electron-current density j(r, t) can be calculated from [240]

j(r, t) = −
∑

j∈occ
χjIm{Ψ∗

j (r, t)∇Ψj(r, t)}. (2.35)

Very often, it is interesting to analyze the optoelectronic response of the system
in the frequency domain, ω. The frequency-resolved quantities are then obtained
from the time-to-frequency Fourier transform F [Eq. (1.3)],

14 In addition, higher-order multipole moments of cylindrical and spherical nanostructures are
also analyzed in Chapter 4 and Chapter 6.
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p(ω) =
∫ Tf

0
dt p(t) eiωt F(t), (2.36a)

Eind(r, ω) =
∫ Tf

0
dt Eind(r, t) eiωt F(t), (2.36b)

j(r, ω) =
∫ Tf

0
dt j(r, t) eiωt F(t), (2.36c)

where Tf is the total propagation time used in our simulations, which must be long
enough to achieve convergence.

Importantly, the time-dependent function F(t) (or filter) in Eq. (2.36) is
introduced to attenuate the collective time-dependent charge-density oscillations
(losses), since the ALDA-TDDFT scheme adopted in this thesis does not account for
decay and dephasing processes related to the scattering of electrons with phonons,
nor for the intrinsic losses due to inelastic electron–electron interactions. This is
a well-known failure of the ALDA used for the exchange–correlation potentials
Vxc[n(r, t)] [72, 220, 241, 242], and thus a filter F(t) has to be applied to mimic such
intrinsic losses in the system. In practice, in this thesis we employ two different
filters F(t) depending on the external excitation, as described in Sections 2.3 and
2.4.

Calculation of the projected density of electronic states (PDOS) within
the WPP method

Given an equilibrium electron density n0(r) and a ground-state effective potential
Veff(r) of a system [Eq. (2.17)], it is possible to access the energies of both the
occupied and unoccupied KS one-electron states of the system by analyzing the
projected density of electronic states (PDOS), Σ(ω). Importantly, the PDOS can
be obtained within the WPP method described here by propagating an initial
wave packet Φ(r, t = 0) = Φ0(r) of a particular symmetry according to the
time-dependent Schrödinger equation under the (time-independent) one-electron
Hamiltonian Ĥ = T̂ + Veff(r). This Hamiltonian corresponds to the Hamiltonian
of a single electron subjected to the effective ground-state potential Veff(r) of the
nanostructure under study. In this case, using the WPP method to obtain the
PDOS we do not apply any external potential Vext(r, t), and Veff(r) does not vary in
time. However, the PDOS provides information about the occupied and unoccupied
electronic states that will be involved in electronic transitions excited optically
when an external time-dependent potential is applied.

The PDOS Σ(ω) projected onto the initial wave packet Φ0(r) is given by

Σ(ω) =
∞∑

j=1
|cj |2δ(ω − ϵj), (2.37)

with δ(ω− ϵj) the Dirac delta, ϵj the eigenenergies of the one-electron Hamiltonian
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Ĥ = T̂ + Veff(r), and
cj = ⟨ϕj(r)|Φ0(r)⟩ (2.38)

the complex coefficients corresponding to the expansion of the initial wave packet
Φ0(r) into the eigenfunctions ϕj(r) of the Hamiltonian Ĥ,

Φ0(r) =
∞∑

j=1
cjϕj(r). (2.39)

The eigenfunctions ϕj(r) are not known a priori, and we apply the WPP method
to obtain Σ(ω) [Eq. (2.37)] without the need to calculate ϕj(r).

The PDOS Σ(ω) given by Eq. (2.37) represents the number of one-electron states
of a particular spatial symmetry that the nanostructure sustains at a given energy
level ω and spatial region. The PDOS includes the contribution of both the occupied
and the unoccupied states, and it gives information about the degree of localization
of a particular electronic state at a certain spatial region (determined by the initial
wave packet Φ0(r) used in the propagation). Notice that, since the PDOS shows
the one-electron energy states available in a (fictitious) non-interacting KS electron
system (see Section 2.1), the resonant energies optically excited at the interacting
many-electron system will be renormalized with respect to the non-interacting one
via Hartree and exchange–correlation potentials [192, 193]. However, the PDOS
still provides useful insights into the properties of the electronic structure of the
system. For example, we study in Chapter 5 the PDOS in the electronically coupled
QE–MNPs system to quantify the degree of electronic hybridization of the occupied
and unoccupied electronic states.

In order to calculate Σ(ω) [229, 243], we choose an initial wave packet
Φ(r, t = 0) = Φ0(r) of a particular symmetry and propagate it according to
the time-dependent Schrödinger equation corresponding to Ĥ = T̂ + Veff(r),

Φ(r, t) = e−i(T̂ +Veff(r))Φ0(r), (2.40)

by using the WPP algorithm described above [Eqs. (2.31) and (2.32)]. Note that no
external perturbation is used in the WPP calculations of the PDOS, Vext(r, t) = 0,
and that the self-consistent procedure is not applied so that Veff(r) remains constant
in time.

Once the time evolution of the initial wave packet Φ(r, t) is obtained by solving
Eq. (2.40), to calculate Σ(ω) we first apply the time-to-frequency Laplace transform
L̂ω to Φ(r, t),

L̂ωΦ(r, t) =
∫ ∞

0
dt ei(ω+iζ)tΦ(r, t) =

∫ ∞

0
dt ei(ω−Ĥ+iζ)tΦ0(r) = i

(ω − Ĥ + iζ)
Φ0(r),

(2.41)
where ζ → 0+ is a small positive number. Using Eq. (2.39), Eq. (2.41) can be
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written as
L̂ωΦ(r, t) = i

∞∑
j=1

cjϕj(r)
(ω − ϵj + iζ) . (2.42)

Then, projecting Eq. (2.42) onto the initial wave packet Φ0(r) one obtains

⟨Φ0(r)|L̂ωΦ(r, t)⟩ = i

∞∑
j=1

|cj |2

(ω − ϵj + iζ) . (2.43)

Finally, applying the Sokhotski–Plemelj theorem to Eq. (2.43), the PDOS Σ(ω)
given by Eq. (2.37) can be expressed as

Σ(ω) = 1
π

lim
ζ→0+

Re{⟨Φ0(r)|L̂ωΦ(r, t)⟩},

= 1
π

lim
ζ→0+

Re{L̂ω ⟨Φ0(r)|Φ(r, t)⟩}︸ ︷︷ ︸
A(t)

,
(2.44)

where A(t) = ⟨Φ0(r)|Φ(r, t)⟩ is the autocorrelation function that can be calculated
in time domain using the WPP method. Notice that cj are the coefficients of
Φ0(r) decomposed into the eigenfunctions ϕj(r) of the Hamiltonian Ĥ [Eq. (2.38)],
so that choosing different initial wave packets Φ0(r) leads to a different PDOS
Σ(ω) [244]. This can be useful to focus on specific electronic states with a special
symmetry or spatial distribution (as we do in Chapter 5), since only these states of
the system that are not orthogonal to the initial wave packet Φ0(r) can be accessed
by the WPP method used to calculate the PDOS.

2.3 Linear optical response of canonical
plasmonic nanostructures addressed within
TDDFT

In this section, we analyze TDDFT results of canonical systems to illustrate the
general properties of the linear optical response of plasmonic nanostructures. In
particular, we discuss in Subsection 2.3.1 the influence of the nanoparticle size in
the optical response of spherical MNPs described within the jellium model, and
introduce the quantum-mechanical concepts of Friedel oscillations, electron spill
out, and surface-enabled Landau damping. In Subsection 2.3.2, we analyze the
effect of the size and the gap separation in the optoelectronic response of spherical
MNP dimers, and introduce the concept of electron tunneling. Finally, we study
in Subsection 2.3.3 the linear optical response of individual cylindrical metallic
nanowires and their dimers, which allows us to study larger nanostructures than
the spherical MNPs because the symmetry of the system reduces the computational
demands.
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2.3. Linear optical response of canonical plasmonic nanostructures addressed
within TDDFT

2.3.1 Individual spherical metallic nanoparticles
In this subsection, we consider individual spherical MNPs surrounded by vacuum.
The electronic structure of the system is described within the jellium model of
free-electron metals (see Subsection 2.1.2) using a Wigner–Seitz radius rs = 4 a0
that corresponds to sodium. We consider closed-shell MNPs, and the number of
conduction electrons Ne is varied to study the influence of the MNP size in the
optical response. The radius of the MNPs, a, is determined from

a = N1/3
e rs. (2.45)

Before showing the results, we provide the main numerical details to carry out the
TDDFT simulations.

Numerical implementation

To obtain the ground-state KS orbitals of individual spherical MNPs containing
Ne conduction electrons using DFT, we take advantage of the spherical symmetry
of the problem and solve the time-independent KS equations given by Eqs. (2.4)
and (2.5) in a spherical coordinate system r = {r, θ, φ} (Figure 1.2a). We write
the time-independent KS orbitals as

Ψ0
jr,ℓ,m(r) ≡ Ψ0

jr,ℓ,m(r, θ, φ) = 1
r
ψ0

jr,ℓ(r)Y m
ℓ (θ, φ), (2.46)

where the sequence of the radial (jr = 1, 2, . . . ) and angular (ℓ = 0, 1, . . . ) quantum
numbers is limited by the condition ϵjr,ℓ ≤ EF, where ϵjr,ℓ is the energy of the
ground-state KS orbital (see below) and EF is the Fermi energy. The magnetic
quantum number can take the values m = (−ℓ, . . . , 0, . . . , ℓ). In Eq. (2.46), the
radial part ψ0

jr,ℓ(r) satisfies the following one-dimensional Schrödinger-like equation
[see Eqs. (2.5) and (1.24)]:(

−1
2
d2

dr2 + ℓ(ℓ+ 1)
2r2 + Veff[n0(r)]

)
︸ ︷︷ ︸

Ĥ0[n0(r)]

ψ0
jr,ℓ(r) = ϵjr,ℓψ

0
jr,ℓ(r), (2.47)

with Veff[n0(r)] given by Eq. (2.17), and the equilibrium electron density n0(r) is
given by

n0(r) = 2
∑

jr,ℓ∈occ

1
4π

2ℓ+ 1
r2 |ψ0

jr,ℓ(r)|2. (2.48)

In Eq. (2.48), the factor 2 is due to the spin, and (2ℓ+ 1) due to the degeneracy of
the KS orbital with the same angular quantum number, ℓ, and different magnetic
quantum number, m. Because of the spherical symmetry of the problem, n0(r)
and Veff[n0(r)] depend only on the radial coordinate r.

The Hartree potential VH[n0(r)] contained in Veff[n0(r)] [Eq. (2.17)] is calculated
from Poisson’s equation [Eq. (2.16)] by defining ṼH[n0(r)] = rVH[n0(r)]. This
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definition allows us to obtain the Hartree potential from

d2

dr2 ṼH[n0(r)] = −r 4π (n0(r) − n+(r)) , (2.49)

which can be solved by directly applying the inverse matrix of operator d2

dr2 to the
RHS of Eq. (2.49) using space-to-momentum Fourier sine transform.

As described in Section 2.1, the time-independent KS equations given by
Eqs. (2.47) and (2.48) are solved self-consistently using an iterative procedure
by diagonalization of the Fourier grid Hamiltonian (FGH) [237] obtained from
H0[n0(r)] [Eq. (2.47)], where the KS orbitals ψ0

jr,ℓ(r) are represented in a real-space
mesh of equidistant points in the coordinate r, and the space-to-momentum Fourier
sine transform is used to compute the operator d2

dr2 [230, 232]. At the first iteration,
the effective potential is initialized to

Veff(r) = V 0
eff

e−(r−a−1)

1 + e−(r−a−1) , (2.50)

where V 0
eff is a (negative-valued) parameter that determines the depth of the

potential. More details on the self-consistent procedure can be found in ref. 245.
Once the ground-state KS orbitals are calculated using DFT, we obtain the

linear optical response of the spherical MNP within TDDFT by applying the
WPP method described in Subsection 2.2.1. We consider here the following time-
dependent external potential,

Vext(r, t) = δ(t) E0∆t r cos θ, (2.51)

which represents a perturbation at the initial time t = 0 within the dipole
approximation corresponding to a plane-wave electric field polarized along the
z-axis. In Eq. (2.51), δ(t) is the Dirac delta function, E0 is the amplitude of the
external perturbation (we typically use E0 ∼ 10−5 au, weak enough so that the
linear-response approximation holds), and ∆t is the propagation time step used in
our simulations, typically ∆t ∼ 0.25−0.1 au (1 au ≈ 2.419×10−2 fs, see Appendix
A).

The external potential given by Eq. (2.51) breaks the spherical symmetry of the
system but preserves the rotational symmetry with respect to the z-axis (azimuthal
symmetry), and therefore the magnetic quantum number m is still a good quantum
number. It is thus convenient to express the time-dependent KS orbitals as15

Ψj,m(r, θ, φ, t) = 1
r
ψj,m(r, θ, t) 1√

2π
eimφ, (2.52)

where, here, the quantum number j replaces the pair {jr, ℓ} defining the ground-

15 In this thesis, all the considered external potentials Vext(r, t) acting on spherical MNPs
preserve the rotational symmetry of the system and thus we can always write the KS orbitals of
spherical MNPs using Eq. (2.52) and follow the procedure described in this subsection.
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state KS orbital. The orbitals ψj,m(r, θ, t) in Eq. (2.52) are obtained from the
time-dependent KS equations [Eq. (2.19)], with the kinetic-energy operator T̂
taking the form [Eq. (1.24)]

T̂ = −1
2

[
∂2

∂r2 + 1
r2

{
1

sin θ
∂

∂θ

(
sin θ ∂

∂θ

)
− m2

sin2 θ

}]
. (2.53)

The time evolution of ψj,m(r, θ, t) and ψj,−m(r, θ, t) is identical, and therefore we
only propagate ψj,m(r, θ, t) for m ≥ 0. We can thus express the time-dependent
electron density as

n(r, θ, t)
∑

{j,m≥0}∈occ

1
2πχm

1
r2 |ψj,m(r, θ, t)|2, (2.54)

with

χm =

 2 for m = 0

4 for m > 0
(2.55)

accounting for both the spin and ±m degeneracy. The orbitals ψj,m(r, θ, t) are
propagated in time by adapting the WPP scheme given by Eq. (2.32) to the use
of spherical coordinates. We represent the KS orbitals ψj,m(r, θ, t) in a meshgrid
extending in radial direction up to 25−35 a0 from the jellium edge, using a constant
radial spacing of ∆r ∼ 0.35 − 0.5 a0. The angular variable θ is discretized from 0
to π using 60 − 120 points. In particular, the operator

e
−i∆t

[
− 1

2
∂2

∂r2

]
linked to the first term on the RHS of Eq. (2.53) is applied to ψj,m(r, θ, t) in the
reciprocal space using space-to-momentum Fourier sine transforms. On the other
hand, the operator

e
−i∆t

[
− 1

2r2

{
1

sin θ
∂

∂θ (sin θ ∂
∂θ )− m2

sin2 θ

}]
linked to the second and third terms on the RHS of Eq. (2.53) is applied in real
space by expanding ψj,m(r, θ, t) in a basis of associated Legendre polynomials
Pm

ℓ (cos θ), taking advantage of the fact that Pm
ℓ (cos θ) are the eigenfunctions of

the operator
{

1
sin θ

∂
∂θ

(
sin θ ∂

∂θ

)
− m2

sin2 θ

}
. This procedure is described in detail in

ref. 75.
The linear optical response of the MNP is analyzed by calculating its absorption

cross-section spectrum, σabs(ω) = 4π
c Im{α(ω)} [Eq. (1.49)], with α(ω) the

polarizability of the system calculated from α(ω) = 1
E0∆t p(ω)16. p(ω) is obtained

using the time-to-frequency Fourier transform given by Eq. (2.36a) by considering

16 p(ω) is the frequency-dependent dipole moment induced along the z-axis, obtained according
to Eqs. (2.33) and (2.36a).
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2.5 3 3.5 4

Figure 2.1: (a) Time evolution of the dipole moment p(t) induced at a spherical sodium MNP
(rs = 4 a0) containing Ne = 1074 electrons in response to the external excitation given by
Eq. (2.51). The results directly obtained from TDDFT within the WPP method (gray line) are
damped by using different values of the attenuation factor η [Eq. (2.56)], as indicated in the
legend. (b) Absorption cross-section spectra σabs(ω) of the same MNP as in panel (a) obtained
for different values of the attenuation factor η. Using different values of the factor η (with η < κ)
leads to very similar widths of the DP resonance, κ. The results corresponding to η = 0 are
divided by 2 for clarity.

in this case the filter
F(t) = e−η/2t, (2.56)

with an attenuation factor η ∼ 0.05 − 0.2 eV smaller than the typical plasmon
resonance width (as determined e.g. through the classical calculations in Chapter
1, γp in Eq. (1.10)).

We show in Figure 2.1a the effect of the filter F(t) given by Eq. (2.56) in
the result of the time-dependent dipole moment p(t) induced at a spherical MNP
containing Ne = 1074 conduction electrons. Without applying the filter (η = 0, gray
line), p(t) oscillates in time showing revivals because, as discussed in Subsection
2.2.1, the ALDA-TDDFT model adopted in this thesis does not include intrinsic
dissipation processes in the free-electron gas. When an attenuation factor η > 0
is applied, p(t) is exponentially damped, thus accounting for the losses of the
metal phenomenologically. This attenuation factor η also affects dramatically the
absorption cross-section spectrum σabs(ω) of the system as illustrated in Figure
2.1b. Indeed, for η = 0 the plasmon peak in σabs(ω) at around ω = 3.2 eV is
fragmented into a set of discrete lines associated with the single electron–hole
excitations that build up the plasmon17 (see below) [206, 246]. The inclusion of η
broadens these single electron–hole excitation peaks and allows us to retrieve the
broad Lorentzian-like profile of the plasmon resonance similarly to the classical

17 The width of the peaks associated to single electron–hole excitations in Figure 2.1b for η = 0
is due to the finite calculation time Tf, where in this case we use Tf ∼ 13000 au. However, we
typically use Tf ∼ 3000 − 4000 au in this thesis for linear-response calculations, enough to achieve
convergence when using η = 0.05 − 0.2 eV.
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prediction shown in Figure 1.4d. We employ the filter given by Eq. (2.56) in
Chapter 3, Chapter 4, and Chapter 5, where we study the linear optical response
of different plasmonic systems.

Figure 2.2: (a) Equilibrium electron density n0(r) (solid lines) and background jellium denisty
n+(r) (dashed filled lines) as a function of the radial coordinate, r, for spherical MNPs
characterized by a Wigner–Seitz radius rs = 4 a0 (sodium) and containing different numbers of
conduction electrons: Ne = 338 electrons (purple), 638 electrons (brown), 1074 electrons (blue),
2260 electrons (green), and 4458 electrons (red). Results are normalized to the average electron
density n̄ =

(
4
3 πr3

s

)−1
[Eq. (1.11)]. (b) Induced electron density δn(r, ω) (multiplied by r2)

along the radial axis r (θ = 0) at the DP frequency ω = ωDP = 3.25 eV for a sodium MNP
containing 4458 electrons in response to the external plane-wave excitation given by Eq. (2.51).
The dashed red line represents the position of the jellium edge of the MNP. An attenuation factor
η = 0.2 eV [Eq. (2.56)] is used to perform the Fourier transform.

Influence of the size of small spherical nanoparticles on their optical
response

We show in Figure 2.2a the equilibrium electron density profile n0(r) obtained for
spherical MNPs containing different number of conduction electrons within the range
Ne = 338 − 4458, resulting in a radius a ∼ 1.5 − 3.5 nm [Eq. (2.45)]. Quantum-
mechanical phenomena such as electron spill-out [247] and Friedel oscillations
[248, 249] of the equilibrium electron density n0(r) are observed. The electron spill
out of n0(r) is a consequence of the finite potential barrier at the MNP surface that
allows electrons to spread outside the background jellium edge located at r = a.
Moreover, Friedel oscillations are due to electron reflection at r = 0 and at the MNP
boundary, and can be understood as a manifestation of the Gibbs phenomenon
occurring in the Fourier series of step-like functions: the electron density n0(r) is
given by a summation of a finite number of ψ0

jr,ℓ(r) orbitals [Eq. (2.48)] and thus
exhibits oscillations along the radial coordinate r. In addition, n0(r) in Figure 2.2a
features either a peak or a dip at r = 0 depending on the number of conduction
electrons. While for Ne = 338 electrons (purple), 638 electrons (brown) and 1074
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electrons (blue) there is a dip at r = 0, for Ne = 2260 electrons (green) and 4458
electrons (red) there is a peak. This behavior is related to the relative contribution
of the ψ0

jr,ℓ(r) orbitals with ℓ = 0 (which depends upon the number of occupied
closed shells), since only those with ℓ = 0 can contribute to the electron density
n0(r) precisely at r = 0 and only low-ℓ orbitals ψ0

jr,ℓ(r) contribute close to the
center of the MNP because of the centrifugal potential ℓ(ℓ+ 1)/r2 [Eq. (2.47)] that
forbids electrons with high angular quantum number ℓ to approach the center of
the MNP.

Figure 2.2b shows the electron density δn(r, ω) induced at the dipolar plasmon
(DP) frequency ωDP = 3.25 eV in a spherical MNP (Ne = 4458 is considered
as an example) in response to an external plane-wave excitation. The induced
density δn(r, ω) is predominantly located near the surface of the MNP as expected
from classical descriptions. However, due to the nonlocal dynamical screening of
conduction electrons described within the jellium model [58, 126], δn(r, ω) spreads
beyond the limits of the classical sharp edge at r = a (not to be confused with the
spill out of the equilibrium electron density n0(r) shown in Figure 2.2a).

0
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Figure 2.3: (a) TDDFT results of the absorption cross-section spectra σabs(ω) of spherical
MNPs with different number of conduction electrons, Ne = 338 (purple), 638 (brown), 1074
(blue), 2260 (green), and 4458 (red). The electronic structure of the MNPs is described
within the jellium model using a Wigner–Seitz radius rs = 4 a0 that corresponds to sodium.
An attenuation parameter η = 0.07 eV is used [Eq. (2.56)]. (b) Classical LRA results
of σabs(ω) for spherical MNPs with different radius a, as obtained from Eq. (1.45). a =
27.9 a0 (purple), 34.4 a0 (brown), 40.96 a0 (blue), 52.49 a0 (green), and 65.83 a0 (red). The value
of the radius a is determined according to Eq. (2.45). A Drude dielectric function [Eq. (1.10)]
with ωp = 5.63 eV and γp = 0.175 eV is used for all MNP sizes, which reproduces the TDDFT
data for the largest MNP (red curve).

We next show in Figure 2.3 the absorption cross-section spectra σabs(ω) of the
spherical sodium MNPs. The TDDFT results (panel a) illustrate that quantum
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finite-size effects [250–252] break the invariance with particle size of the spectral
profile of σabs(ω) predicted by classical (nonretarded) LRA calculations (panel
b). First, decreasing the size of the MNP within TDDFT produces a redshift of
the DP resonance18 from ωDP ∼ 3.25 eV (red, lower spectrum) to ωDP ∼ 3 eV
(purple, upper spectrum), in contrast to the size-invariant ωDP = ωp/

√
3 ≈ 3.25 eV

classical LRA value19 (see Subsection 1.2.3). This redshift is a consequence of
the spill out of the induced charges due to nonlocal dynamical screening shown in
Figure 2.2b. One can interpret in an intuitive picture that the size of the MNP
is effectively increased [194], which for the same number of electrons reduces the
electron density and, thus, also the classical value of ωp [Eq. (1.12)] and ωDP. The
impact of this spill out, and thus the redshift, is more significant the smaller the
MNP is [96, 256, 257].

Further, the width of the DP resonances, κ, obtained with TDDFT increases
with decreasing the size of the MNP [258]. For small-sized MNPs, as considered
in Figure 2.3, the width of the plasmon resonance κ obtained within TDDFT is
determined by surface-enabled Landau damping [64, 66, 194, 259–261], consisting
in the plasmon decay into single electron–hole excitations caused by the scattering
at the MNP surface (see also Figure 2.1b). Indeed, the MNP surface provides
the momentum required for electrons to excite an intraband transition within the
conduction band and create an electron–hole pair [262, 263], which is forbidden in
the bulk due to momentum conservation. This quantum surface effect gains more
importance with decreasing the radius a of the MNP. Indeed, the plamon resonance
width associated with Landau damping scales as ∼ a−1 [264–267] (see Subsection
2.5.1). Finally, the fragmented shape of σabs(ω) obtained for the smallest MNP
considered in Figure 2.3a (purple, Ne = 338 electrons) is also a consequence of
surface-enabled Landau damping. For such small MNPs the energy difference
between different single electron–hole transitions is larger than the broadening
η = 0.07 eV [Eq. (2.56)] accounting for dissipation processes in the system [268].
These single-electron features gradually disappear with increasing the number of
conduction electrons, because the spectrally close electron–hole transitions merge
with each other. In this situation, a Lorentzian resonance profile of σabs is obtained,
and thus the system is said to exhibit a “better-developed” plasmonic behavior
with increasing size [203, 269].

2.3.2 Dimers of spherical metallic nanoparticles
We next consider a dimer composed by two identical spherical metallic nanoparticles
(MNPs) of radius a, as schematically shown in Figure 2.4. The electronic structure
of the MNPs is described within the jellium model by considering a closed-shell
configuration as introduced in Subsection 2.3.1. The gap separation between the

18 This is not the case for noble metals such as Au or Ag, where interband transitions involving
d-band electrons give rise to a blueshift of ωDP instead of a redshift with decreasing size of the
MNP [80, 253–255].

19 In Figure 2.3b we use ωp = 5.63 eV so that the value of ωDP obtained classically coincides
with that obtained in Figure 2.3a within TDDFT for the largest MNP.
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Figure 2.4: Sketch of a MNP dimer consisting of two spherical MNPs separated by a gap distance
D. Cylindrical coordinates r = {ρ, z, φ} are adopted to perform the calculations. The origin of
coordinate axes z and ρ is at the middle of the gap formed by the two MNPs. The z-axis also
corresponds to the dimer axis.

two MNPs, D, is defined as the distance between the two closest jellium edges
of each MNP. We study in this subsection the influence of the MNP size and
gap separation distance D in the optoelectronic response of MNP dimers. The
methodology to perform the calculations is based on the WPP method introduced
in Subsection 2.2.1 using cylindrical coordinates r = {ρ, z, φ} (see coordinate
system in Figure 2.4). We briefly describe below the specific aspects of the WPP
method related to the cylindrical coordinate system adopted here.

Numerical implementation

We consider z-polarized illumination exciting the MNP dimer, so that the rotational
symmetry of the system with respect to the z-axis is preserved (cylindrical
symmetry). It is thus convenient to express the time-dependent Kohn–Sham
(KS) orbitals Ψj,m(ρ, z, φ, t) using cylindrical coordinates r = {ρ, z, φ} as

Ψj,m(ρ, z, φ, t) = 1√
2π
ψj,m(ρ, z, t)eimφ, (2.57)

where the quantum numbers {j,m} define the KS state. In particular, here the
magnetic quantum number m is also a good quantum number (similarly as for
the individual MNP in Subsection 2.3.1), i.e., during the time propagation each
KS orbital Ψj,m(ρ, z, φ, t) preserves the initial value of m given by that of the
ground-state KS orbital, Ψj,m(ρ, z, φ, t = 0) = Ψ0

j,m(ρ, z, φ).
For relatively large gap separation, D ≳ 20 a0, the ground state KS orbitals

Ψ0
j,m(ρ, z, φ) can be obtained from those of the individual MNP [Ψ0

jr,ℓ,m(r, θ, φ),
Eq. (2.46)] since, in this case, KS orbitals corresponding to different MNPs do
not spatially overlap.20 Thus, Ψ0

j,m(ρ, z, φ) are straightforwardly obtained from
the values of Ψ0

jr,ℓ,m(r, θ, φ) by direct interpolation between the spherical and
cylindrical coordinate systems, where the displacement ±(a+D/2) of the center
of each MNP in the z-axis is taken into account (see geometry in Figure 2.4). For

20 The quantum number j defining the KS state in cylindrical coordinates replaces the pair
{jr, ℓ} in spherical coordinates.
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smaller gap separation, D ≲ 20 a0, the ground-state KS orbitals Ψ0
j,m(ρ, z, φ) are

obtained within the WPP method introduced in Subsection 2.2.1, where the gap
separation D determining the position of the positive background jellium density
n+(r) [Eq. (2.13)] is slowly reduced starting from a large value D ≈ 20 a0. The gap
separation D → D − v0t decreases with velocity v0 of the order of v0 ∼ 0.002 au,
which guarantees that the equilibrium electron density n0(r) adiabatically follows
the motion of the positive background density n+(r), and thus the ground-state
KS orbitals of the desired value of D can be obtained. In this adiabatic process
performed within the WPP method, no external excitation is applied. A detailed
description of the ground-state calculation of the MNP dimer is reported in ref.
125.

The time evolution of the KS orbital ψj,m(ρ, z, t) in {ρ, z}-space [Eq. (2.57)]
under a general external excitation Vext(ρ, z, t) is governed by the time-dependent
KS equation [Eq. (2.19)] for a time-dependent Hamiltonian expressed as

Ĥ[n(ρ, z, t)] = T̂ + Veff[n(ρ, z, t)] + Vext(ρ, z, t), (2.58)

where the effective potential Veff[n(ρ, z, t)] is obtained from Eq. (2.7), and the
kinetic-energy operator is expressed in cylindrical coordinates as

T̂ = −1
2
∂2

∂z2︸ ︷︷ ︸
T̂z

− 1
2ρ

∂

∂ρ
ρ
∂

∂ρ
+ m2

2ρ2︸ ︷︷ ︸
T̂ρ

. (2.59)

Owing to the cylindrical symmetry, the time evolution is identical for KS orbitals
with magnetic quantum number ±m, and thus only the orbitals with m ≥ 0 are
propagated. In this case, the time-dependent electron density is given by

n(ρ, z, t) =
∑

{j,m≥0}∈occ

χm|ψj,m(ρ, z, t)|2, (2.60)

where χm is given by Eq. (2.55) and accounts for spin and ±m degeneracy (χm = 2
for m = 0 and χm = 4 for m > 0).

As a technical detail, the radial coordinate ρ is not expressed in equidistant
spatial points, but using a non-uniform meshgrid. This procedure allows us to use
a tighter meshgrid close to ρ = 0 than at larger radial distances, thus improving
the accuracy of the method [229]. In particular, we use the following function to
express the coordinate ρ in the calculations

ρ(ρ̃) = ρ̃− b√
a

atan
(
ρ̃√
a

)
, (2.61)

where a = 700, b = 595, and the variable ρ̃ is expressed in an equidistant uniform
meshgrid.
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The kinetic-energy operator T̂ given by Eq. (2.59) can be then written as

T̂ = −1
2
∂2

∂z2︸ ︷︷ ︸
T̂z

− 1
2ρρ′

∂

∂ρ̃

ρ

ρ′
∂

∂ρ̃
+ m2

2ρ2︸ ︷︷ ︸
T̂ρ̃

, (2.62)

with ρ′ = ∂ρ
∂ρ̃ . Further, by redefining the time-dependent KS orbital as [Eq. (2.57)]

ϕj,m(ρ̃, z, t) =
√
ρρ′ψj,m(ρ̃, z, t), (2.63)

the time-dependent KS equation [Eq. (2.19)] to be solved finally transforms into

i
∂

∂t
ϕ(ρ̃, z, t) =

(
T̂ + Veff[n(ρ̃, z, t)] + Vext(ρ̃, z, t)

)
ϕ(ρ̃, z, t), (2.64)

with
T̂ = −1

2
∂2

∂z2︸ ︷︷ ︸
T̂z

− 1
2
√
ρρ′

∂

∂ρ̃

ρ

ρ′
∂

∂ρ̃

1√
ρρ′ + m2

2ρ2︸ ︷︷ ︸
T̂ρ̃

. (2.65)

As described in Subsection 2.2.1, the most-involved part of the WPP algorithm
is the application of the operator ei∆tT̂ [Eq. (2.31)], where in this case T̂ = T̂z + T̂ρ̃

is given by Eq. (2.65). Using the coordinate system and change of variables
employed in this subsection, the operator ei∆tT̂z is diagonal in the momentum-space
representation, and thus it can be applied by representing ϕ(ρ̃, z, t) in a real-space
meshgrid of equidistant points in the z-coordinate and employing the direct and
inverse space-to-momentum Fourier transforms, as introduced in Subsection 2.2.1.
On the other hand, the operator ei∆tT̂ρ̃ is diagonal neither in real space nor in
momentum space. To apply this operator, we employ the Cayley transform such
that [130, 229]

ei∆tT̂ρ̃ϕ(ρ̃, z, t) =
(

1 + 1
2 i∆tT̂ρ̃

)−1(
1 − 1

2 i∆tT̂ρ̃

)
ϕ(ρ̃, z, t) + O(∆t3), (2.66)

where the operator T̂ρ̃ [Eq. (2.65)] is represented in a matrix form using finite
differences with equidistant points in ρ̃ to express the derivatives [225, 226]. Further
details on the numerical procedure used in this thesis to apply the WPP method
in cylindrical coordinates can be found in ref. 75.

Influence of the particle size and gap separation in the optoelectronic
response of spherical nanoparticle dimers

We illustrate in Figure 2.5 the TDDFT results of the optical response of spherical
dimers consisting of two identical sodium MNPs (rs = 4 a0) of radius a, obtained
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using the following external potential [see Eq. (2.51)]

Vext(ρ, z, t) = δ(t) E0 ∆t z, (2.67)

corresponding to plane-wave illumination E = E0 ẑ polarized along the dimer
z-axis. The radius of the MNPs is determined from the number of conduction
electrons Ne according to Eq. (2.45). We consider Ne = 638 electrons (a = 34.4 a0,
panels a,d,g,j), Ne = 1074 electrons (a = 40.96 a0, panels b,e,h,k), and Ne = 4458
electrons (a = 65.83 a0, panels c,f,i,l).

We first analyze the absorption spectra σabs(ω) shown in Figures 2.5a,b,c,
where the gap separation distance, D, is varied from D = 16 a0 to D = 40 a0
(D ≈ 0.85 − 2.1 nm). For all the MNP sizes considered, the excitation of the
bonding dipolar plasmon (BDP) resonance at ωBDP ∼ 2.7 − 3 eV, mainly formed
due to the electromagnetic interaction between the DP resonances (ℓ = 1) of the
individual MNPs (see Figure 1.5b), dominates the absorption spectra σabs(ω).
This BDP redshifts with decreasing D for all MNP sizes, consistent with the
classical LRA prediction displayed in Figure 1.5a. Despite the overall similarity
of the results obtained within TDDFT for different sizes of the MNPs, there
are remarkable differences arising from the quantum finite-size effects that we
introduced in Subsection 2.3.1 [126]. Similarly to the results of individual MNPs,
the width of the BDP resonance is narrower for Ne = 4458 than for Ne = 638, and
the shallow spectral features associated with single electron–hole transitions present
for the smallest MNPs disappear with increasing the size of the MNPs. Further, the
spectrum for Ne = 4458 in panel (c) shows a second peak at ωBQP ∼ 3.3 − 3.4 eV
that corresponds to the bonding quadrupolar plasmon (BQP) formed due to the
optical hybridization between the plasmonic modes of the individual constituents
(mainly a mixture of ℓ = 1 and ℓ = 2, see Figure 1.5b). This BQP mode, however,
is not developed for Ne = 638 (panel a) because surface-enabled Landau damping
hinders the formation of high-order plasmonic modes (see details in Chapter 3).
In general, for relatively large gap separation, D = 16 − 40 a0, the same quantum
surface effects observed in Figure 2.3a for individual MNPs are also present in the
optical response of MNP dimers.

Significantly, quantum many-body phenomena are more relevant for smaller
gap separation, D ≲ 10 a0 (≲ 0.5 nm), where electron tunneling becomes an
important process [50, 68, 202, 270–272]. Electron tunneling affects both the
absorption cross-section spectra σabs(ω) (Figures 2.5d,e,f) and the enhancement
of the electric field |E|ind/E0 (Figures 2.5g,h,i), but its influence is clearer on the
latter. In contrast to the monotonous increase of the resonant |E|ind/E0 with
reducing D expected from classical LRA calculations (Figure 1.5c), the TDDFT
results in Figures 2.5g,h,i reveal that the maximum field enhancement is reached for
D ∼ 0.5 nm irrespective of the size of the MNPs that form the dimer. For smaller
gap distances, D ≲ 0.5 nm, the induced electric field in the middle of the gap
gets quenched since the net electron transfer caused by electron tunneling tends to
neutralize the high charge densities of opposite sign localized at the MNP surfaces
across the junction [67, 83, 86, 126]. The effect of electron tunneling for small
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Figure 2.5: TDDFT study of the linear optical response of spherical MNP dimers of different
size and gap separation, D. (a,b,c) Waterfall plot of the absorption spectra σabs(ω) of spherical
MNP dimers with a different number of conduction electrons Ne for gap separation ranging from
D = 16 a0 ≈ 0.85 nm (bottom) to D = 40 a0 ≈ 2.1 nm (top) in steps of 2 a0. (d,e,f) Color maps
of σabs(ω) as a function of the gap separation distance, D, and the frequency of the external
excitation, ω. Smaller gaps than in panels (a,b,c) are considered. (g,h,i) Induced electric-field
enhancement |E|ind/E0 in the middle of the gap formed by two MNPs as a function of ω and
D. (j,k,l) z-component of the induced electron-current density |j(r, ω)| in the middle of the gap
[Eq. (2.35)] as a function of ω and D. Panels (a,d,g,j) correspond to Ne = 638 conduction electrons,
(b,e,h,k) to Ne = 1074 electrons, and (c,f,i,l) to Ne = 4458 electrons. In all the panels, the
external plane-wave electric field is polarized along the dimer z-axis. An attenuation parameter
η = 0.07 eV is used in Eq. (2.56) to obtain the spectral response.
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junctions is further corroborated by analyzing the z-component of the induced
electron-current density |j(r, ω)| in the middle of the gap [Eq. (2.35)], as shown
in Figures 2.5j,k,l. For D ∼ 0.5 nm, i.e., prior to the direct geometrical contact
(D = 0) between the two MNP surfaces, an electron current at optical frequencies
ω ∼ 1 − 3.5 eV is established across the nanogap which increases when closing the
gap distance D.

We thus find that electron tunneling dramatically influences the optical
properties of MNP dimers with small gap separation, D ≲ 0.5 nm, an effect
that cannot be captured using standard classical theories [83, 86]. For larger
separation distances, D ≳ 0.5 nm, electron tunneling does not play a significant
role, but other quantum surface effects such as the spill out of the induced charges
and surface-enabled Landau damping also influence the optical properties [58]. We
show in Subsection 2.5.1 that the semiclassical SRF can be used to predict the
optical properties of MNP dimers with relatively large gap separation successfully.
Importantly, we also show that the SRF cannot be used to describe sub-nanometric
junctions since this approach is not designed to account for electron tunneling.

2.3.3 Cylindrical metallic nanowires
We next use TDDFT to study the optical response of an individual cylindrical
nanowire of radius Rc and that of a dimer composed by two identical nanowires.
The nanowires are infinite along the z-axis, and thus translationally invariant
with respect to the z-axis (see the geometry of the systems in Figure 2.6a). The
individual nanowire is also rotationally invariant with respect to the azimuthal
angle φ. The radius Rc of the nanowire is given by [126]

Rc =
√

4
3Ñe r3

s , (2.68)

where Ñe is the number of conduction electrons per unit length in the z-direction.
We use the methodology described below to obtain the optical response of individual
nanowires and nanowire dimers and, in Chapter 4, this methodology allows us to
obtain the Feibelman parameter d⊥(ω, k∥) as a function of both the frequency of
the external excitation, ω, and of the wavenumber parallel to the metal surface, k∥.

Numerical implementation

To derive the Kohn–Sham (KS) equations (Section 2.1) used to calculate the ground
state of an infinite individual nanowire, we first consider the case of a cylinder with
a spatial periodicity L in the z-direction (the infinite nanowire will be the case for
L → ∞) [128]. Applying the periodic boundary conditions in the z-direction, and
due to the azimuthal symmetry of the system, the ground-state KS orbitals of the
cylinder can be represented in a cylindrical coordinate system (ρ, z, φ) as [128]

Ψ0
j,m,q(ρ, z, φ) = 1√

2π
ψ0

j,m(ρ)eimφ 1√
L
ei 2π

L qz, (2.69)
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with {j,m, q} the quantum (integer) numbers that define a KS state. The time-
independent KS equation is given in these coordinates by [Eq. (2.5)](

Ĥ[n0(ρ)] − 1
2
∂2

∂z2

)
Ψ0

j,m,q(ρ, z, φ) =
(
ϵj,m + 1

2

(
2π
L
q

)2
)

Ψ0
j,m,q(ρ, z, φ),

(2.70)
where ϵj,m are the eigenvalues of the radial part of the Hamiltonian Ĥ[n0(ρ)],(

T̂ + VH[n0(ρ)] + Vxc[n0(ρ)]
)

︸ ︷︷ ︸
Ĥ[n0(ρ)]

ψ0
j,m(ρ) = ϵj,mψ

0
j,m(ρ), (2.71)

and the ρ-space kinetic-energy operator T̂ is expressed as

T̂ = −1
2

(
1
ρ

∂

∂ρ

(
ρ
∂

∂ρ

)
− m2

ρ2

)
. (2.72)

The equilibrium electron density n0(ρ) is given by

n0(ρ) = 2
∑

{j,m,q}∈occ

|Ψ0
j,m,q(ρ, z, φ)|2

= 2
∑

{j,m,q}∈occ

1
2π |ψ0

j,m(ρ)|2 1
L

∑
q

Θ
(
EF −

(
ϵj,m + 1

2

(
2π
L
q

)2
))

,

(2.73)

where EF is the Fermi energy, Θ represents the Heaviside step function, and the
factor 2 is due to the spin degeneracy. Because of the cylindrical symmetry, the
±m states are degenerate so that we only solve Eqs. (2.70) and (2.71) for m ≥ 0.

The case of the infinite cylindrical nanowire can be obtained by taking L → ∞
in Eqs. (2.69)-(2.73). In such a situation, the summation over the quantum number
q in Eq. (2.73) can be transformed into an integral over the continuous variable
kz = 2π

L q, and n0(ρ) can be expressed as

n0(ρ) =
∑

{j,m≥0}∈occ

χj,m|ψ0
j,m(ρ)|2, (2.74)

with the statistical factor χj,m accounting for spin and ±m degeneracy (see
Subsection 2.3.1), as well as for the degeneracy due to the electron motion along
the z-axis,

χj,m =


1

π2

√
2(EF − ϵj,m) for m = 0

2
π2

√
2(EF − ϵj,m) for m>0

. (2.75)

Similarly to the equilibrium density for spherical MNPs in Subsection 2.3.1
[Eq. (2.48)], n0(ρ) of the cylindrical nanowire, given by Eq. (2.74), only depends
upon the radial coordinate ρ. The orbitals ψ0

j,m(ρ) of the individual nanowire are
therefore obtained from Eqs. (2.71) and (2.74) using a self-consistent procedure
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based on the KS scheme described in Subsection 2.3.1, where the Hamiltonian
Ĥ[n0(ρ)] in Eq. (2.71) is diagonalized by expressing T̂ [Eq. (2.72)] in real space
with finite differences [75, 130].

Once the time-independent KS orbitals ψ0
j,m(ρ) of the individual nanowire

are obtained from Eqs. (2.71) and (2.74), we use the WPP method described
in Subsection 2.2.1 and propagate in real time the KS orbitals ψp subjected to
an external time-dependent potential. The time-dependent potential Vext(x, y, t)
depends on the (x, y)-coordinates so that the translational invariance of the system
along the z-axis is preserved. For the time propagation, we discretize ψp on
an equidistant mesh in Cartesian coordinates, ψp ≡ ψp(x, y, t), where the initial
conditions ψp(x, y, t = 0) ≡ ψ0

j,m(ρ, φ) are given by the KS orbitals of the ground
state. Note that when expressing the time-dependent KS orbitals in Cartesian
coordinates, the quantum number p replaces the pair {j,m} used in cylindrical
coordinates for the ground state. One of the advantages of using Cartesian
coordinates ψp ≡ ψp(x, y, t) for the time propagation is that it is possible to
directly apply the same algorithm as for the individual nanowire to study e.g.
the optical response of a pair of parallel nanowires (nanowire dimer, Figure 2.6a)
under the influence of any external potential Vext(x, y, t) depending on (x, y).
This algorithm basically consists in applying the pseudospectral FGH method
[230, 236, 237] to calculate the kinetic-energy operator T̂ as well as the Hartree
potential VH[n(x, y, t)] [Eq. (2.23)].

We obtain the optical response of nanowires to a spatially-constant x-polarized
external electric field of amplitude E0, corresponding to the following external
potential [see Eq. (2.51)]:

Vext(x, y, t) = δ(t) E0∆t x. (2.76)

Mesh steps of the order of ∆x = ∆y ∼ 0.5 a0 and a time step of ∆t ∼ 0.1 au are
typically used in this thesis for the cylindrical geometry. The KS orbitals ψp(x, y, t)
evolve in time according to the time-dependent KS equations [Eq. (2.19)], with the
time-dependent electron density n(x, y, t) expressed in Cartesian coordinates as

n(x, y, t) =
∑

k∈occ
χp |ψp(x, y, t)|2 . (2.77)

In Eq. (2.77), the statistical factors χp are now given by

χp = 2
π

√
2(EF − ϵp), (2.78)

where ϵp is the eigenenergy of the ground-state KS orbital ψp(x, y, t = 0).

Optical response of individual cylindrical metallic nanowires and dimers

We show here the TDDFT results for the linear optical response of an individual
metallic nanowire and nanowire dimers [59, 119, 273–276] consisting of Ñ = 240 a−1

0
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Figure 2.6: (a) Geometry of the individual cylindrical nanowire (left) and the dimer composed
by two parallel nanowires (right). The radius of the nanowires is Rc, which is determined by
the number of conduction electrons Ñ per unit length in the z-direction according to Eq. (2.68).
The cylinders are infinite along the z-axis (translationally invariant), and are separated by a gap
distance D along the x-axis in the dimer configuration. (b) Absorption cross-section spectrum
σabs(ω)/L per unit length L in the z-direction of an individual nanowire characterized by a
Wigner–Seitz radius rs = 3.02 a0 and Ñ = 240 a−1

0 (Rc ≈ 94.3 a0). (c) Same as in (b) but for
the dimer configuration where the gap separation is varied from D = 14 a0 to D = 40 a0. An
attenuation parameter η = 0.07 eV [Eq. (2.56)] is used to perform the Fourier transform.

electrons per unit length in the z-direction (radius Rc ≈ 94.3 a0). We use a jellium
model with a Wigner–Seitz radius rs = 3.02 a0 (ωp ≈ 8.98 eV) characteristic of
the conduction electron density of gold. In addition, we introduce a stabilizing
potential21 [216] inside the metal so that the work function WF = 5.5 eV of gold
is retrieved [277]. Note that, since the jellium model does not account for optical
transitions involving localized d-band electrons (see Subsection 2.1.2), the plasmonic
response obtained here presents important differences with respect to the results
that would be obtained for a more exact model of gold. However, this description
of the metallic nanowires still allows one to predict electron transport properties of
gold junctions in off-resonant excitation conditions, as implemented in recent works
[77, 210, 278] when studying the electron-currents dynamics induced by ultrafast

21 Applying a stabilizing potential simply consists in introducing a constant potential inside
the metal in the effective potential given by Eq. (2.17) both in the ground-state and in the
time-dependent calculations. This procedure does not introduce any additional computational
difficulty.
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electromagnetic fields in plasmonic gaps. Here we are interested in the general
trends of the optical response of these systems, where similar physical effects as
described in Subsections 2.3.1 and 2.3.2 for spherical MNPs are also expected to
be present.

Figure 2.6b shows the absorption cross-section spectrum σabs(ω)/L per unit
length L in the z-direction of an individual metallic nanowire of radius Rc ≈
94.3 a0 (≈ 5 nm). Due to the relatively large size of the nanowire, σabs(ω)/L does
not exhibit single electron–hole transition features and the plasmonic response
is well developed. A single peak associated with the DP resonance (m = 1) of
the nanowire emerges at ωDP = 6.24 eV, slightly below the classical nonretarded
prediction, ωDP = ωSP = ωp/

√
2 = 6.35 eV22 [22], as a consequence of the spill out

of the induced charges (see Subsection 2.3.1).
On the other hand, Figure 2.6c displays the absorption spectrum σabs(ω)/L of

a dimer formed by two parallel nanowires, identical to that discussed in Figure 2.6b.
The gap separation, D, ranges from D = 14 a0 to D = 40 a0 (D ∼ 0.75 − 2.1 nm).
The overall qualitative behavior of σabs(ω)/L with reducing gap distance D is almost
identical to either the classical LRA (Figure 1.5a) or TDDFT (Figure 2.5c) results
of the spherical MNP dimers, and can be understood using the electromagnetic
hybridization picture introduced in Subsection 1.2.3 [150, 151]. Note that, due to
the azimuthal symmetry of the individual nanowires, here the magnetic quantum
number m plays a similar role as the multipole order ℓ in spherical MNPs. For the
largest gap separation, D = 40 a0 (D ∼ 2.1 nm), two distinct modes emerges: a
BDP at ωDP ∼ 5.35 eV formed from the hybridization of the DP modes (m = 1)
of the individual nanowires, and a broad pseudomode at ωPSM ∼ 6.2 eV formed
by the hybridization of nearly-degenerated higher-order modes (m > 1). This
pseudomode is slightly redshifted with respect to the surface plasmon frequency.
For smaller gap separations, D ∼ 28 a0, σabs(ω)/L exhibits three well-defined peaks
because another distinct resonance corresponding to the BQP at ωBQP ∼ 5.9 eV
emerges. The BDP and the BQP resonances redshift with reducing D because of
the increasing attractive interaction between the charges of opposite sign across
the junction [126].

2.4 Nonlinear effects in the optical response of
spherical plasmonic nanoparticles addressed
within TDDFT

In previous sections, we focused on the linear optical response of MNPs, which
are shown to strongly enhance the strength of the incident electric field at
optical frequencies because of the excitation of plasmon resonances. However,
plasmonic nanostructures also exhibit an efficient nonlinear optical response to

22 While the DP resonance in spherical MNPs (ℓ = 1) is classically at ωDP = ωℓ=1 = ωp/
√

3
within the nonretarded approximation, the DP resonance in cylindrical nanowires (m = 1) is at
the surface plasmon frequency, ωDP = ωm=1 = ωSP = ωp/

√
2 [22].
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strong illumination intensities, thus being good candidates for the fabrication of
nanodevices based on nonlinear optics [36]. One manner to theoretically study the
nonlinear optical response of MNPs is to adopt the classical scheme introduced
in Section 1.3 with the use of the nonlinear hyperpolarizabilities α(n), ad hoc
parameters that characterize the nonlinear optical response of the system. In this
section, we show that the real-time TDDFT approach based on the WPP method,
employed in previous sections to study the linear optical response of plasmonic
structures, can also be used to analyze nonlinear effects in the optical response
without using ad hoc parameters.

As an example, we consider the nonlinear optical response of an individual
spherical MNP. We describe the electronic structure of the MNP within the jellium
model introduced in Subsection 2.1.2 using a Wigner–Seitz radius rs = 4 a0 of
sodium. We address a spherical MNP that contains 1074 conduction electrons,
with a radius a = 40.96 a0 (≈ 2.2 nm). The numerical implementation is almost
identical to the one used in Subsection 2.3.1. The only difference is that for this
study of nonlinear effects, instead of using the external potential Vext(r, t) given by
Eq. (2.51), here we use the following one:

Vext(r, t) = E0 r cos θ cos(ω(t− t0)) e−( t−t0
σ )2

, (2.79)

which corresponds to the potential experienced by an electron interacting with an
incident Gaussian laser pulse polarized along the z-axis. The fundamental frequency
of the external illumination ω = 1.585 eV in this section is half of the DP frequency
ωDP = 3.17 eV (see Figure 2.3a), the duration of the pulse is σ = 5 × 2π/ω, and
the arrival time of the pulse t0 is t0 = 5σ.

In order to analyze the nonlinear optical response of the individual MNP, we
calculate within TDDFT the time evolution of the induced electron density δn(r, t)
and obtain the time-dependent induced dipole moment, p(t) [Eq. (2.33)], as well as
the electric near field (induced field), Eind(r, t) [Eq. (2.34)], created by the MNP
in response to an incident electromagnetic pulse. The frequency-resolved quantities
are then obtained from the time-to-frequency Fourier transform given by Eq. (2.36),

δn(r,Ω) =
∫

dt δn(r, t) eiΩt e−( t−t0
σ )2

,

p(Ω) =
∫

dt p(t) eiΩt e−( t−t0
σ )2

,

Eind(r,Ω) =
∫

dt Eind(r, t) eiΩt e−( t−t0
σ )2

,

(2.80)

where in this case the filter F(t) is given by

F(t) = e−( t−t0
σ )2

. (2.81)

The Gaussian filter F(t) introduced in Eq. (2.81) partially accounts for decay and
dephasing processes of the collective density oscillations that are not included in
the present ALDA-TDDFT approach [72, 241, 242] (see Section 2.2), and allows us
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Figure 2.7: Nonlinear optical response of the individual spherical MNP as calculated within
TDDFT for an incident z-polarized Gaussian electromagnetic pulse with fundamental frequency
ω = 1.585 eV (half of the frequency of the MNP dipolar plasmon ωDP = 3.17 eV).The intensity
is I0 = 108 W cm−2 (dashed blue line) or I0 = 1010 W cm−2 (red line). Panel (a) shows the
square of the induced dipole moment |p(Ω)|2, and panel (b) the absolute value of the spectrum
of the electric near field |Eind(r, Ω)| induced at the z-axis at 18 a0 (≈ 0.95 nm) from the MNP
surface. The symbol Ω represents the frequency of the induced electromagnetic fields in response
to the incident illumination with fundamental frequency ω.

to reach convergent spectral response at high-harmonic frequencies. This approach
is justified because the fundamental frequency is strongly detuned from the DP
resonance of the MNP, so that no electron-density oscillation and high-harmonic
generation is expected when the laser is switched off. Consistently, we apply a
Gaussian filter given by the envelope of the incident pulse. Moreover, in Eq. (2.80)
we use the symbol Ω (compare Eq. (2.80) with Eq. (2.36)) to refer to the oscillation
frequency of the electromagnetic fields (and dipole moments) induced by the MNP
due to the nonlinear optical response to the external excitation oscillating at ω.

The nonlinear optical response of the individual spherical MNP is displayed
in Figure 2.7. In panel (a), we show the intensity spectrum of the induced dipole
moment |p(Ω)|2, which is proportional to the power of light emitted to the far field
[Eq. (1.46)]. In panel (b), we show the spectrum of the induced near field |Eind(r,Ω)|
at the z-axis, at 18 a0 (≈ 0.95 nm) from the MNP surface. Results are obtained
for an incident Gaussian electromagnetic pulse with intensity I0 = 108 W cm−2

(E0 = 4.8 × 10−5 au, dashed blue line) and I0 = 1010 W cm−2 (E0 = 4.8 × 10−4 au,
red line), averaged over the duration of the pulse σ. The corresponding energy per
incident pulse is well below the documented damage threshold of small MNPs [279–
281]. The induced dipole moment |p(Ω)|2 in Figure 2.7a exhibits only odd harmonics
n = 1, 3, 5 . . . . Thus, only odd multiples Ω = ω, 3ω, 5ω, . . . of the incoming
frequency ω are emitted by the system into the far field, consistently with the
inversion symmetry of the MNP that prevents even-harmonic generation [152, 282]
(see Section 1.3). Overall, the nonlinear response |p(Ω)|2 for I0 = 1010 W cm−2

is several orders of magnitude larger than that for I0 = 108 W cm−2. This large
increase is in accordance with the In

0 dependence of |p(Ω = nω)|2, expected from
the standard theory of nonlinear optics as described in Section 1.3 [152].

In contrast to the far-field response, both odd and even harmonics are present in
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Figure 2.8: Color maps of the real part of the induced electron density δn(r, Ω) (left), of the
radial component of the electric near field Eind(r, Ω) (center), and of the tangential component
of Eind(r, Ω) (right) induced at the fundamental, second, third, and fourth-harmonic frequency
by a z-polarized Gaussian electromagnetic pulse with fundamental frequency ω = 1.585 eV and
intensity I0 = 1010 W cm−2 incident at the individual spherical MNP. Results are rotationally
symmetric with respect to the z-axis, and they are shown in the (x, z)-plane normalized to unity.

the spectrum of the electric near field induced by the individual MNP (Figure 2.7b).
Indeed, at the metal–vacuum interface the inversion symmetry is locally broken,
and short-range even-harmonic electric fields can be induced close to the MNP
surface [283–287]. As expected, the induced field |Eind(r,Ω)| is orders of magnitude
larger for I0 = 1010 W cm−2 (red line) than for I0 = 108 W cm−2 (blue).

The color maps of the induced electron density δn(r,Ω) and of the electric
near field Eind(r,Ω) induced by the incident z-polarized Gaussian electromagnetic
pulse are shown in Figure 2.8 for the fundamental, second, third, and fourth
harmonics. The induced charge density δn(r,Ω = nω) of the n-th harmonic
and the corresponding near field Eind(r,Ω = nω) are shown in the (x, z)-plane.
Because of the symmetry of the configuration, the calculated color maps are
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independent of a rotation around the z-axis. At odd harmonics (n = 1, 3),
the induced charge densities are antisymmetric with respect to the (x, y)-plane,
δn(x, y, z, nω) = −δn(x, y,−z, nω), which results in a net dipole moment (see
Figure 2.7a). In contrast, a quadrupolar-like near field and symmetric charge-
density, δn(r, nω) = δn(-r, nω), are induced at even harmonics (n = 2, 4) [288–294].
The dipole moment p(Ω) is zero in this case, and thus there is no emission into the
far field at even harmonics. Thus, despite the second harmonic being at resonance
with the dipolar plasmon of the MNP, the latter can not be excited because of the
symmetry selection rules. Another consequence of the symmetry selection rules
is that, for any point located in the (x, y)-plane, the even-harmonic near field in
that point is oriented perpendicularly to the z-polarized incident pulse. We use in
Chapter 6 the insights obtained in this section to study nonlinear effects when the
spherical MNP is coupled to a QE located nearby, demonstrating that the presence
of the QE enables the emission into the far field at the second-harmonic frequency,
otherwise forbidden because of the inversion symmetry of the MNP.

2.5 Semiclassical surface-response formalism
(SRF)

In this section, we introduce the semiclassical surface-response formalism (SRF)
employed in this thesis, which allows one to account for quantum surface effects using
much less computationally-demanding calculations as compared to the TDDFT
methodology. In brief, the SRF is an extension of the classical LRA (Chapter
1) that incorporates surface-response corrections at the metal–dielectric interface
in the solution of Maxwell’s equations (Section 1.1) by means of the so-called
Feibelman parameters obtained from quantum-mechanical calculations [95–98].
These parameters, commonly denoted as d⊥ and d∥, were first introduced by Peter
Feibelman in the 1980s [98], and have received renewed attention during the last
years [97, 124, 129, 276, 295–302] due to their usefulness to study systems that
have recently become experimentally feasible. Indeed, the semiclassical SRF based
on the Feibelman parameters allows us to account for the gradual variation of the
induced electron density across the metal–vacuum interface (see Figure 2.2b), in
contrast to the classical LRA described in Chapter 1 that considers the polarization
charges to be located strictly at the metal boundary of infinitesimal width.

The Feibelman parameters d⊥ and d∥ are usually defined by considering a
semi-infinite metal surface [54, 55, 62, 98], although the expressions for d⊥ and
d∥ have been also proposed for other geometries such as spherical MNPs [95]23.
To our knowledge, the Feibelman parameters have been so far computed in the
literature within the long-wavelength approximation, which consists in neglecting
the nonlocality of the optical response in the direction parallel to the metal–
dielectric interface. Thus, within the long-wavelength approximation, d⊥ ≡ d⊥(ω)
and d∥ ≡ d∥(ω) solely depend on the excitation frequency, ω, and not on the

23 In Chapter 4 we analyze the Feibelman parameter d⊥ for a cylindrical metallic nanowire.
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wavenumber parallel to the metal surface, k∥. In this thesis we thus refer to the
k∥-independent d⊥(ω) and d∥(ω) as the nondispersive Feibelman parameters. We
adopt the long-wavelength approximation in this section and in Chapter 3, where
we identify situations where this approximation becomes inaccurate. In Chapter
4, we calculate the Feibelman parameters as a function of both ω and k∥ and
propose a dispersive SRF that overcomes the shortcomings of the long-wavelength
approximation.

The nondispersive Feibelman paramaters defined for a semi-infinite planar metal–
vacuum interface at z = 0 (Figure 1.3a) are usually expressed as [62, 81, 124, 296]:

d⊥(ω) =
∫
dz z δn(z, ω)∫
dz δn(z, ω) , (2.82a)

d∥(ω) =
∫
dz z ∂

∂z j∥(z, ω)∫
dz ∂

∂z j∥(z, ω)
, (2.82b)

with δn(z, ω) the quantum-mechanical (complex-valued) electron density induced
in response to the external excitation, and j∥(z, ω) the parallel-to-the-surface
component of the associated induced electron current density. Other definitions
equivalent to Eq. (2.82) that express the parameters in terms of the electromagnetic
fields and nonlocal dielectric functions have been also used [62, 98, 296, 303]. In
Eq. (2.82), the real part of d⊥(ω) (Re{d⊥(ω)}) corresponds to the position of the
centroid of the induced charge density with respect to the positive background edge
of the metals (see schematic representation in Figure 2.9a), while the imaginary
part (Im{d⊥(ω)}) is related to surface-enabled Landau damping [62] (see below).
On the other hand, Re{d∥(ω)} represents the position of the centroid of the normal
derivative of the electron current parallel to the metal surface.

The Feibelman parameters d⊥(ω) and d∥(ω) are surface-response functions
inherent to a specific metal, but also dependent on the surrounding material
[62]. Importantly, d∥(ω) given by Eq. (2.82b) vanishes for charge-neutral planar
surfaces [62, 304], and it is also expected to be much less important than d⊥(ω)
for curved surfaces [95]. In this thesis we thus consider d∥(ω) = 0, consistent with
the approximation adopted in other studies [81, 124, 296, 300]. We show in Figure
2.9b the nondispersive Feibelman parameter d⊥(ω) used in this section and in
Chapter 3, obtained in ref. 296 for a sodium planar surface (rs = 4 a0) surrounded
by vacuum24. The Feibelman parameter d⊥(ω) in Figure 2.9b shows a resonance
at ω ∼ 4.7 eV, associated with the excitation of the Bennet plasmon at ω ∼ 0.8ωp

[79, 305], also referred to as the multipole surface plasmon [62, 306] (not to be
confused with localized multipole plasmons supported e.g. by spherical MNPs).
Kramers-Kronig relations connect the real (blue line) and imaginary (red line)
parts of d⊥(ω) [307].

The advantage of the SRF is that, once the Feibelman parameters are obtained

24 Ref. 124 provides the parametrization to express the data of d⊥(ω) obtained in ref. 296
within TDDFT as a sum of Lorentzian functions.
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Figure 2.9: (a) Schematic representation of the nondispersive Feibelman parameter d⊥(ω) in a
planar metal–vacuum interface. Re{d⊥(ω)} corresponds to the position of the centroid of the
induced charge δn(z, ω) with respect to the classical metal surface located at z = 0. (b) Real
(blue) and imaginary (red) parts of the nondispersive Feibelman parameter d⊥(ω) obtained in
ref. 296 for a planar sodium–vacuum interface. The parameter shown in panel (b) is used in this
section and in Chapter 3, where we study quantum surface phenomena in the interaction between
QEs and MNPs.

for a planar surface of a given material using quantum-mechanical methods, these
parameters can in principle be applied to account semiclassically for quantum
surface effects in the optical response of arbitrary-shaped MNPs. Within the
semiclassical SRF, the electromagnetic problem is addressed by solving Maxwell’s
equations [Eq. (1.5)] with the use of local dielectric functions (e.g. a Drude dielectric
function, Eq. (1.10)), and introducing a set of modified boundary conditions at
the metal–dielectric interfaces that differ from those used within the classical LRA
[Eqs. (1.16) and (1.18)]. d⊥(ω) and d∥(ω) can be related, respectively, to a surface
polarization oriented perpendicularly to the interface and to a parallel surface
current [97, 296] leading to the following modified boundary conditions (see also
ref. 124):

n̂ ×
(

ESRF
out − ESRF

in

)
= −d⊥(ω) n̂ × ∇

[
n̂ ·
(

ESRF
out − ESRF

in

)]
, (2.83a)

n̂ ·
(

DSRF
out − DSRF

in

)
= d∥(ω) ∇ ·

[
n̂ ×

(
DSRF

out − DSRF
in

)
× n̂

]
, (2.83b)

n̂ ×
(

HSRF
out − HSRF

in

)
= iωd∥(ω)

[
n̂ ×

(
DSRF

out − DSRF
in

)
× n̂

]
, (2.83c)

n̂ ·
(

BSRF
out − BSRF

in

)
= 0, (2.83d)

where n̂ is the normal unit vector pointing outwards from the metal boundary, and
the superscript “SRF” denotes that the fields are calculated within the semiclassical
SRF. Note that, as mentioned above, we consider d∥(ω) = 0, so that in practice
we only consider the modifications introduced by Eq. (2.83a) into the boundary
conditions. The rest of the boundary conditions remain the same as in the classical
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LRA [Eqs. (1.16) and (1.18)].
In the following Subsection 2.5.1, we explain how we implement in this thesis

the semiclassical SRF within the nonretarded approximation to obtain the optical
response of spherical MNPs and their dimers.

2.5.1 Optical response of spherical nanostructures using the
SRF

Within the nonretarded approximation, the semiclassical SRF can be
straightforwardly implemented to obtain the optical response of spherical MNPs
using the numerical method introduced in Subsection 1.1.3 with very little
modifications. The optical response of the spherical MNPs of radius a is determined
by the potential ϕind

SRF(r, ω) induced in response to an external potential ϕext(r, ω).
According to Eq. (1.26), ϕind

SRF(r, ω) can be written in a spherical harmonic basis
set Y m

ℓ (θ, φ),

ϕind
SRF(r, ω) =

∞∑
ℓ=0

ℓ∑
m=−ℓ

bSRF
ℓm (ω)Y m

ℓ (θ, φ)

 rℓ/aℓ r ≤ a

aℓ+1/rℓ+1 r ≥ a
. (2.84)

The only difference between Eq. (2.84) and the one used within the classical
LRA [Eq. (1.26)] is that the coefficients bSRF

ℓm (ω) and bℓm(ω) are different. In this
case, bSRF

ℓm (ω) within the SRF are determined by applying the modified boundary
conditions given by Eq. (2.83a) and Eq. (2.83b). For d∥(ω) = 0, as considered
in this thesis, Eqs. (2.83a) and (2.83b) can be written within the nonretarded
approximation in terms of the total potential ϕSRF(r, ω) = ϕext(r, ω) + ϕind

SRF(r, ω)
[see Eq. (1.23)],

∇∥
(
ϕSRF

out − ϕSRF
in

)
= −d⊥(ω) ∇∥

[
n̂ · ∇

(
ϕSRF

out − ϕSRF
in

)]
, (2.85a)

n̂ · ∇ϕSRF
out = ε(ω) n̂ · ∇ϕSRF

in , (2.85b)

with ∇∥ the surface gradient operator [124]. Using Eq. (2.84) and Eq. (2.85) (here
n̂ = r̂) results in

bSRF
ℓm (ω) = ξ(ℓ, ω)

∫
dΩ̃ [Y m

ℓ (θ, φ)]∗ ∂
∂r
ϕext(r, ω)

∣∣∣∣
r=a

, (2.86)

where the integral extends over the solid angle Ω̃ = {θ, φ} and

ξ(ℓ, ω) = −a(ε(ω) − 1)(1 + ℓd⊥(ω)/a)
(ℓ+ 1)(1 + ℓd⊥(ω)/a) + ℓε(ω)(1 − (ℓ+ 1)d⊥(ω)/a) . (2.87)

Once the coefficients bSRF
ℓm (ω) are determined from Eqs. (2.86) and (2.87), one can

calculate the induced potential within the SRF using Eq. (2.84) and thus obtain the
optical response of the spherical MNP. In a similar way, the optical response of a
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spherical MNP dimer within the SRF can be obtained using the coupled-multipole
method described in Subsection 1.1.3 but replacing Eq. (1.34) by Eq. (2.87).

As explained in Subsection 1.2.3, for plane-wave illumination ϕext(r, ω) =
−E0 r cos θ [Eq. (1.43)] the integral in Eq. (2.86) has an analytical solution (which
is non-null only for ℓ = 1), and the polarizability αSRF(ω) of the individual MNP
within the SRF results in [see Eq. (1.45)]:

αSRF(ω) = a3 (ε(ω) − 1) (1 + d⊥(ω)/a)
ε(ω) + 2 − 2 (ε(ω) − 1) d⊥(ω)/a . (2.88)

We show in Figure 2.10a the absorption cross-section spectra σabs(ω) =
4πω

c Im{αSRF(ω)} obtained within the semiclassical SRF [Eq. (2.88)] for individual
spherical MNPs with different radius ranging from a = 27.9 a0 (purple) to
a = 65.83 a0 (red). These MNPs sizes correspond to the ones considered in
Figure 2.3 using TDDFT (panel a) and classical LRA (panel b) calculations. A
single Lorentzian-like peak emerges for all MNP sizes considered in Figure 2.10a,
associated with the excitation of the DP resonance. Importantly, the semiclassical
SRF predicts a redshift of the frequency of the DP resonance ωSRF

DP with decreasing
size of the MNP, as well as an increase of the DP resonance width, κSRF. These
predictions are in agreement with the TDDFT results shown in Figure 2.3a, and can
be directly inferred from the analytical expression of αSRF(ω) given by Eq. (2.88):
the frequency of the DP resonance ωSRF

DP is determined from the poles of αSRF(ω),
while κSRF is given by the full width at half maximum (FWHM) [267],

ωSRF
DP = ωp√

3
(
1 − Re{d⊥(ω = ωSRF

DP )}/a
)
, (2.89a)

κSRF = γp + 2ωSRF
DP Im{d⊥(ω = ωSRF

DP )}/a. (2.89b)

The second term on the RHS of Eq. (2.89a) introduces a redshift of ωSRF
DP due

to the spill out of the induced charges that increases with reducing a as long
as Re{d⊥(ω = ωDP)} is positive (Figure 2.9b, blue line). Moreover, the second
term on the RHS of Eq. (2.89b) introduces an additional broadening produced by
surface-enabled Landau damping that increases with reducing a, consistent with
TDDFT results (see Subsection 2.3.1). However, the semiclassical SRF presented
in this section is not designed to capture the discrete electronic levels of the small-
sized quantum system, and thus the features associated with single electron–hole
transitions naturally manifested within TDDFT for the smallest MNPs are not
present in the SRF results (compare purple and brown curves in Figures 2.3a and
2.10a).

We analyze next the optical response of a spherical MNP dimer obtained within
the semiclassical SRF. Figure 2.10b illustrates the absorption cross-section spectra
σabs(ω) of a dimer formed by two spherical MNPs of radius a = 34.4 a0, where the
gap separation is varied from D = 16 a0 to D = 40 a0. Taking the TDDFT results
for Ne = 638 electrons as a reference (shown in Figure 2.5a), the semiclassical
SRF correctly reproduces the overall broadening of the spectra as well as the
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Figure 2.10: Semiclassical SRF study of the optical response of shperical MNPs and their
dimers. (a) Absorption cross-section spectra, σabs(ω), of individual spherical MNPs with
different radius a obtained within the semiclassical SRF according to Eq. (1.49) and Eq. (2.88).
a = 27.9 a0 (purple), 34.4 a0 (brown), 40.96 a0 (blue), 52.49 a0 (green), and 65.83 a0 (red). (b)
Absorption cross-section spectra σabs(ω) of spherical MNP dimers with radius a = 34.4 a0 for
different size of the gap, D, ranging from D = 16 a0 to D = 40 a0. The external electric field is
polarized along the dimer z-axis. (c) Induced electric-field enhancement |E|ind/E0 in the middle
of the gap formed by two MNPs with radius a = 34.4 a0. Results are shown as a function of the
frequency of the external plane-wave illumination, ω, and the surface-to-surface gap distance, D.
(d, e) Same as in panels (b,c) but for larger MNPs with radius a = 65.83 a0. In all the panels,
we use the SRF with the nondispersive Feibelman parameter d⊥(ω) obtained in ref. 296 for a
planar sodium–vacuum interface. A plasma frequency ωp = 5.89 eV and a damping parameter
γp = 0.1 eV are used to characterize sodium within the Drude model [Eq. (1.10)]. In (c) and (d),
the upper range of values in the color bar denote saturation.

redfshift of the BDP resonance with decreasing D. Moreover, the BQP is hardly
formed within the SRF due to surface-enabled Landau damping as predicted by
TDDFT calculations (see further details in Chapter 3). However, the single-particle
excitation features present in the TDDFT results are again absent in the SRF
description. The agreement between SRF (Figure 2.10d) and TDDFT (Figure 2.5c)
improves when considering larger MNPs with radius a = 65.83 a0, since in this
case σabs(ω) within TDDFT does not exhibit single-particle excitation features
associated with the finite size of the MNPs. The BQP is well developed within the
two approaches in this case.

Finally, we show in Figures 2.10c and 2.10e that the SRF correctly describes
the electric-field enhancement |E|ind/E0 for relatively large junctions but that it
fails for very narrow gaps D ≲ 0.5 nm. For D ≳ 0.5 nm, i.e., for distances where
electron tunneling does not play a significant role, the results obtained in Figures
2.10c,e within the SRF are qualitatively in good agreement with the TDDFT results
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shown in Figures 2.5g,i: both approaches predict an increase of the resonant field
enhancement |E|ind/E0 with reducing the gap down to D ∼ 0.5 nm. However, for
smaller gaps D ≲ 0.5 nm, the semiclassical SRF (incorrectly) predicts a continuous
enhancement of |E|ind/E0 at the plasmon resonance when further reducing D
because the SRF does not account for electron tunneling that neutralizes the
large charge densities at the surfaces of both MNPs [83]. Thus, the semiclassical
SRF cannot be used to simulate the optical response of plasmonic systems with
subnanometric gap separations where electron tunneling becomes important. In this
situations, fully quantum TDDFT calculations or other semiclassical descriptions
such as the quantum-corrected model are needed [83–87].

2.6 Summary
In summary, we have described in this chapter the methodologies employed in this
thesis to account for quantum many-body effects in the optical response of plasmonic
nanostructures. First, we have reviewed the fundamentals of DFT and TDDFT,
and focused on the WPP method to obtain the dynamics of the electron density in
real time under external time-dependent excitation. Next, we have briefly described
the numerical implementation of the WPP-TDDFT algorithms for the specific
geometries considered here, namely individual spherical MNPs and nanowires, as
well as their dimers. Then, by analyzing the linear optical response of the studied
nanostructures, we have introduced the main quantum many-body effects present in
the interaction between light and MNPs, namely Friedel oscillations, electron spill
out, surface-enabled Landau damping, and electron tunneling, which are found to
dramatically modify the optical properties of the systems. We have also shown that
the use of the TDDFT methodology in time domain allows us to directly address the
nonlinear optical response of a system without using any ad-hoc parameter such as
the nonlinear hyperpolarizabilities α(n) introduced in Section 1.3. Finally, we have
introduced the semiclassical SRF, a methodology capable of incorporating quantum
surface phenomena such as electron spill out and surface-enabled Landau damping
using computationally less-demanding calculations as compared to TDDFT, but
incapable of accounting for other quantum effects such as electron tunneling in
subnanometric gap separations. The methodologies and concepts explained in
this chapter thus provide the grounds of the quantum many-body approach to
light–matter interaction and serve as a reference to study in the next chapters novel
quantum many-body phenomena arising from the optical and electronic coupling
between MNPs and QEs.
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3
QUANTUM SURFACE EFFECTS IN
THE ELECTROMAGNETIC COUPLING
BETWEEN QUANTUM EMITTERS
AND METALLIC NANOPARTICLES

As discussed in Section 1.4, the absorption and emission rates of quantum emitters
(QEs) are greatly increased due to their electromagnetic interaction with MNPs
located nearby, leading to a plethora of interesting phenomena [182, 183, 308–
311]. For example, the spontaneous decay rate and exciton energy of the QE are
drastically modified, and hybrid plasmon–exciton polaritonic states can be created
in the strong-coupling regime [180, 312–316]. As pointed out in previous chapters,
the coupling between QEs and MNPs has been extensively used in a variety of
applications, such as in surface-enhanced fluorescence [25–27], biosensing [317, 318],
or single-molecule detection [28, 29], among others.

Together with the experimental progress, considerable theoretical effort has
been devoted to accurately describing the electromagnetic QE–MNPs interaction,
and several models at different levels of approximation have been adopted [105, 145,
169, 319–323]. In this chapter, we use the point-dipole approximation described in
Subsection 1.4.1 to model the exciton dynamics of a QE [40, 45, 324, 325], and thus
consider that the spatial extent of the QE is much smaller than the effective field
localization of the plasmonic resonance [144, 172, 326–328], and that the electronic
orbitals of the QE and those of the metal atoms forming the MNPs do not spatially
overlap [107, 109, 329].

As described in Subsection 1.4.2, the electromagnetic QE–MNPs interaction
can be described within the point-dipole approximation using the formalism of
the self-interaction dyadic Green’s function, Ĝ(rQE, rQE, ω) [40, 104, 169–172],
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which in the weak-coupling regime determines the Purcell factor [101, 102] and
Lamb shift [103, 104] in the emission by the QE produced by the plasmonic
environment. Typically, a local dielectric function obtained experimentally or from
simple theoretical approaches, such as the Drude model (Subsection 1.1.1), can be
used to characterize the MNPs. However, such a dielectric function does not account
for quantum phenomena relevant in MNPs of small characteristic dimensions such as
electron spill-out, surface-enabled Landau damping, or nonlocal dynamical screening
[10, 61, 64, 66, 96, 126, 209, 212, 219], introduced in Section 2.3 when analyzing
the linear optical response of MNPs. These nonclassical phenomena, inherent
to the quantum nature of electrons in metals, are also expected to influence the
QE–MNPs electromagnetic interaction when small MNPs and QE–MNPs distances
are considered [65, 124, 300, 330–336].

In this chapter, we use the TDDFT approach [58, 79, 80, 202, 210, 214, 337–341]
based on the WPP method introduced in Chapter 2 to provide a fundamental
description of the electromagnetic coupling between QEs and canonical MNPs. The
QE–MNP separations are set sufficiently large so that electron tunneling is negligible
and thus the electromagnetic interaction mainly determines the optical properties
of the system. However, we consider QE–MNP separations small enough for the
aforementioned quantum surface effects to be important. We first use TDDFT
to calculate the self-interaction Green’s function Ĝ(rQE, rQE, ω) that governs the
QE–MNPs coupling. A comparison with classical LRA results (Subsection 1.1.1)
reveals the importance of quantum effects. Further, we compare TDDFT results
and the semiclassical nondispersive SRF (Section 2.5) that incorporates quantum
surface-response corrections via the Feibelman parameter d⊥(ω) obtained in the
long-wavelength approximation, which allows us to identify surface-enabled Landau
damping and spill-out of the induced electron density as the dominant quantum
mechanisms dramatically influencing the electromagnetic QE–MNPs interaction.

TDDFT also provides a benchmark to establish the validity range of the
(standard) nondispersive SRF to adequately account for the dominant quantum
phenomena arising in the electromagnetic interaction between QEs and MNPs. The
nondispersive SRF, as used in this chapter, neglects the nonlocal optical response in
the direction parallel to the metal surface (long-wavelength limit), enabling a very
efficient implementation of nonlocality in nanoscale geometries [97]. In this chapter,
we identify situations of very small QE–MNP distances where the nondispersive
implementation of the SRF eventually fails, indicating that the dispersion of the
Feibelman parameters with respect to the wavenumber parallel to the surface needs
to be considered (see Chapter 4).

3.1 System and methods
We analyze the electromagnetic coupling between a point-like QE and two different
canonical plasmonic nanostructures. First, we consider in Subsections 3.2.1, 3.2.2,
and 3.2.3 the case of an individual spherical MNP, where the QE is placed at a
distance d from the MNP surface (Figure 3.1a). Then, in Subsection 3.2.4, we
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Figure 3.1: Sketch of the systems studied in this chapter, consisting of a QE modeled as a point
dipole pd placed (a) at a distance d from the surface of an individual spherical MNP, and (b)
at the center of a gap of size D formed by two identical spherical MNPs. The point dipole is
oriented along the z-axis, which is also the axis of the dimer. Each MNP is represented within
the free-electron jellium model using a Wigner–Seitz radius rs = 4 a0 that corresponds to sodium,
and contains Ne = 4458 conduction electrons resulting in a radius a = 65.83 a0 (≈ 3.5 nm).

analyze a dimer composed by two identical spherical MNPs separated by a gap
distance D (Figure 3.1b), with the QE situated at the center of the gap (z = 0).
We define the coordinates in the same way as in Subsections 2.3.1 and 2.3.2, such
that the center of the nanoparticle(s) and the QE is at the z-axis. The entire
system is surrounded by vacuum.

We consider closed-shell jellium MNPs of radius a = 65.83 a0 (≈ 3.5 nm), which
results in a well-developed plasmonic response [203] in the TDDFT simulations.
The surface-to-emitter distance is sufficiently large to ensure that the electron
densities of the MNPs at the position of the QE are negligible, and therefore
there is no electron tunneling [43, 67, 68, 83, 86, 342]. Specifically, we consider
surface-to-emitter distances d in the range of d = 10 − 42 a0 (≈ 0.5 − 2.2 nm)
for the case of the individual MNP, and gap separations of D = 2d = 20 − 45 a0
(≈ 1.1 − 2.4 nm) for the dimer structure. We use the point-dipole approximation
described in Subsection 1.4.1 to model the QE and thus neglect its spatial extent.

We focus on the study of the self-interaction Green’s function Ĝ(rQE, rQE, ω)
defined according to Eq. (1.56), which provides the electric field Eself(rQE, ω)
created by the metallic nanostructure at a position rQE in response to a point
dipole pd located at the same position and oscillating at a frequency ω. Importantly,
Ĝ(rQE, rQE, ω) determines the total decay rate (Γ) and the Lamb shift (∆ωQE) of
a QE that interacts weakly with the plasmonic nanostructure [104, 170–172],

Γ = γ0 + γnr
QE + 2|µQE|2Im{k̂ · Ĝ(rQE, rQE, ω = ωQE) · k̂}, (3.1a)

∆ωQE = −|µQE|2Re{k̂ · Ĝ(rQE, rQE, ω = ωQE) · k̂}, (3.1b)

with γ0, γnr
QE and µQE the spontaneous decay rate in vacuum, the non-radiative
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intrinsic loss rate, and the transition dipole moment of the QE along the k̂-direction,
respectively [22]. The self-interaction Green’s function Ĝ(rQE, rQE, ω) in Eq. (3.1a)
and Eq. (3.1b) is evaluated at the transition frequency of the QE, ω = ωQE. The
unit vector k̂ defines the orientation of pd. We note that the enhancement of the
decay rate due to the QE–MNPs coupling is often normalized by γ0, which gives
the Purcell factor

FP =
Γ − γnr

QE

γ0
= 1 + 3c3

2ω3
QE

Im{k̂ · Ĝ(rQE, rQE, ω = ωQE) · k̂}, (3.2)

c being the speed of light in vacuum [102, 343].
We restrict our analysis to the case of a point dipole oriented along the

z-axis, pd = pd ẑ, where ẑ is the unit vector along the z-axis. Moreover,
we use rQE = rQE ẑ, so that Ĝ(rQE, rQE, ω) can be considered as a scalar,
Ĝ(rQE, rQE, ω) ≡ G(rQE, rQE, ω), because of the symmetry of our system. In
the upcoming subsections, we briefly summarize the key aspects of the three
different models used in this chapter to obtain G(rQE, rQE, ω), namely the TDDFT,
the classical LRA, and the semiclassical SRF based on the nondispersive Feibelman
parameters. Further details on the methodologies adopted in this chapter are
provided in Chapters 1 and 2.

3.1.1 Time-dependent density functional theory (TDDFT)
In the TDDFT calculations we describe the MNPs within the jellium model of
free-electron metals [194, 200] as introduced in Subsection 2.1.2. We use a Wigner–
Seitz radius equal to that of sodium, rs = 4 a0, which allows us to use the values
of the nondispersive Feibelman parameters obtained in ref. 296 (Figure 2.9b) to
calculate G(rQE, rQE, ω) within the SRF and make the comparison between the
TDDFT and SRF results. Note also that the DP resonance of sodium MNPs lies at
optical frequencies (ωDP ∼ 3 eV, see Figure 2.3), very close to that of gold MNPs,
thus placing the results within the frequency range relevant for actual applications
in plasmonics. The closed-shell MNPs contain Ne = 4458 conduction electrons,
which sets the radius of the background jellium edge to a = 65.83 a0 (≈ 3.5 nm).

In order to obtain the self-interaction Green’s function within TDDFT,
GTDDFT(rQE, rQE, ω), we use the WPP method explained in Subsection 2.2.1
to solve the time-dependent KS equations given by Eqs. (2.19) and (2.20) in time
domain, and to calculate the time evolution of the electron density n(r, t). Instead
of Eq. (2.51) used to model plane-wave illumination in Chapter 2, the external
potential Vext(r, t) that drives the system [Eq. (2.21)] is given in this chapter by
an impulsive potential created by a point dipole,

Vext(r, t) = −pd ∆t ẑ · r − rQE

|r − rQE|3
δ(t), (3.3)

with δ(t) the Dirac delta function and the amplitude pd sufficiently small to ensure
a linear response. Vext(r, t) appears with a minus sign in Eq. (3.3) because it is
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acting on electrons with charge qe = −1. For the individual MNP, we employ
the method described in Subsection 2.3.1 and represent the occupied KS orbitals
Ψj(r, t) using a meshgrid in spherical coordinates, whereas for the dimer we adopt
cylindrical coordinates as introduced in Subsection 2.3.2. The propagation time-step
is ∆t ∼ 0.05 au.

The Hartree potential VH[n(r, t)] [Eq. (2.23)] is calculated for the individual
spherical MNP by expressing VH[n(r, t)] as a sum of Legendre polynomials Pℓ(cos θ),

VH[n(r, t)] =
∞∑

ℓ=0

1
r
Vℓ(r, t)Pℓ(cos θ), (3.4)

since the system subjected to the external potential Vext(r, t) given by Eq. (3.3)
possesses rotational symmetry with respect to the z-axis, and therefore the response
is independent of the azimuthal angle φ. Using the Laplace operator ∇2 in spherical
coordinates [Eq. (1.24)], Poisson’s equation given by Eq. (2.23) can be expressed
as:

∞∑
ℓ=0

1
r

(
d2

dr2 − ℓ(ℓ+ 1)
r2

)
︸ ︷︷ ︸

Aℓ

Vℓ(r, t)Pℓ(cos θ) = −4π
∞∑

ℓ=0
nℓ(r, t)Pℓ(cos θ), (3.5)

where
nℓ(r, t) = 2

2ℓ+ 1

∫ 1

−1
(n(r, t) − n+)Pℓ(cos θ)d(cos θ), (3.6)

and we express the operator Aℓ =
(

d2

dr2 − ℓ(ℓ+1)
r2

)
in matrix form using the method

of the Fourier grid Hamiltonian with sine basis functions [344]. From Eq. (3.5),
Vℓ(r, t) can then be directly obtained from

Vℓ(r, t) = −4πA−1
ℓ

(
r nℓ(r, t)

)
. (3.7)

For the dimer geometry we obtain VH[n(r, t)] following the procedure described in
Subsection 2.3.2 [75].

Finally, we calculate the time-dependent electric field Eind(r = rQE, t) induced
by the metallic nanostructure at the position rQE of the QE using VH[n(r, t)]
according to Eq. (2.34). The time-to-frequency Fourier transform [Eq. (2.36)]
finally leads to the frequency-resolved self-interaction Green’s function [compare to
Eq. (1.56)],

GTDDFT(rQE, rQE, ω) = 1
pd∆t

∫ Tf

0
dt Eind(rQE, t) ei(ω+iη/2)t︸ ︷︷ ︸

Eself(rQE,ω)

, (3.8)

where Tf = 3500 au is the total propagation time used in our simulations (enough
to achieve convergence), and η = 0.07 eV accounts for relaxation processes beyond
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the ALDA-TDDFT description [241, 242] of the many-body dynamics such as the
interaction of excited electrons with phonons and many-body inelastic electron–
electron scattering events (see Sections 2.2 and 2.3).

3.1.2 Classical local-response approximation (LRA)
The classical self-interaction Green’s function, GLRA(rQE, rQE, ω), is obtained
within the (nonretarded) local-response approximation (LRA) using the
methodology described in Subsection 1.1.3 for the external potential given
by Eq. (1.53), ϕQE(r) = pQEẑ · r−rQE

|r−rQE|3 . The specific details to obtain
GLRA(rQE, rQE, ω) for both the individual spherical MNP and the dimer are
given in Subsection 1.4.2. In this chapter, we use a Drude-type local dielectric
function ε(ω) to characterize the metal [Eq. (1.10)], with a plasma frequency
ωp =

√
3
r3

s
= 5.89 eV and intrinsic damping parameter γp = 0.1 eV. The value of

parameter γp is obtained from the comparison of the absorption spectrum σabs(ω)
of the individual spherical MNP calculated with TDDFT and with the SRF, as
detailed in the following Subsection 3.1.3.

In the case of a point-like QE at position rQE oriented in the radial direction
and exciting the individual MNP of radius a, the self-interaction Green’s function
is given by Eq. (1.58a) [145]

GLRA(rQE, rQE, ω) =
∞∑

ℓ=1
(ℓ+ 1)2 a

2ℓ+1

R2ℓ+4
ε(ω) − 1
ε(ω) + ℓ+1

ℓ

, (3.9)

with R the distance between the position rQE of the QE and the center of the
MNP, and ℓ the multipole order of the plasmonic resonance.

3.1.3 Semiclassical surface-response formalism (SRF)
The semiclassical SRF employed in this chapter is based on the nondispersive
Feibelman parameter d⊥(ω) given by Eq. (2.82a) [95, 98], a (frequency-dependent)
complex-valued function that allows for incorporating quantum surface effects into
an otherwise classical description. Indeed, Re{d⊥(ω)} determines the position of
the centroid of the induced charge density with respect to the positive jellium edge
of the metal, and Im{d⊥(ω)} accounts for surface-enabled Landau damping [62]. As
explained in Section 2.5, in this chapter we consider d∥(ω) = 0 [Eq. (2.82b)] and use
the nondispersive parameter d⊥(ω) obtained by Christensen et al. [296] within the
jellium model (Figure 2.9b) for a semi-infinite planar metal surface with rs = 4 a0
(see also ref. 124). Using the parameter d⊥(ω) obtained for planar surfaces is a
reasonable approximation when the radius of curvature of the nanostructure or
the typical length of the variation of the external potential along the surface is
much larger than the Feibelman parameter. One of the objectives of this chapter is
indeed to test the validity of this approximation for situations where the radius of
curvature of the system is small and the external potential along the metal surface
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(here created by the point-dipole QE) varies rapidly.
Similarly to the classical LRA, within the semiclassical SRF one can obtain

an analytical solution of the nonretarded self-interaction Green’s function in the
present system, GSRF(rQE, rQE, ω). The expression for GSRF(rQE, rQE, ω) can
be obtained from Eq. (2.86) and Eq. (2.87) considering the external potential
ϕext(r, ω) ≡ ϕQE(r) of a point dipole given by Eq. (1.53), which results in (for
d∥(ω) = 0) [95, 124]:

GSRF(rQE, rQE, ω) =
∞∑

ℓ=1
(ℓ+ 1)2 a

2ℓ+1

R2ℓ+4
(ε(ω) − 1)

(
1 + ℓ

ad⊥(ω)
)

ε(ω) + ℓ+1
ℓ − (ε(ω) − 1) ℓ+1

a d⊥(ω)
. (3.10)

For d⊥(ω)/a → 0, i.e., for situations where the radius of the MNP a is much larger
than the surface-response correction d⊥(ω), Eq. (3.10) reduces to the classical LRA
expression of GLRA(rQE, rQE, ω) given by Eq. (3.9).

The value of the damping parameter γp used in the Drude-type dielectric
function ϵ(ω) [Eq. (1.10)] for the classical LRA as well as for the SRF results
is obtained from the fitting of the absorption cross-section spectrum σabs(ω) of
the individual MNP calculated within TDDFT to the result obtained within
the nondispersive SRF. The absorption cross section σabs(ω) within TDDFT is
calculated using the methodology described in Subsection 2.3.1 for plane-wave
illumination [given by Eq. (2.51)], and the SRF value is obtained using the
polarizability αSRF(ω) given by Eq. (2.88). Figure 3.2 shows very good agreement
between the TDDFT results (solid blue line) and the nondispersive SRF (dashed
red line) when using γp = 0.1 eV, thus justifying the value of γp used in this chapter.

For simplicity, in the following we generically use G(rQE, rQE, ω) to refer to
any of GTDDFT(rQE, rQE, ω), GLRA(rQE, rQE, ω), and GSRF(rQE, rQE, ω). The
methodology used to calculate G(rQE, rQE, ω) will be clear in the context of each
subsection.

3.2 Results and discussion
In this section, we present the results for the electromagnetic coupling between a
QE and spherical metallic nanostructures. First, in Subsection 3.2.1, we focus on
the role of quantum phenomena by comparing quantum TDDFT and classical LRA
results for a QE in proximity to an individual spherical MNP. Then, in Subsection
3.2.2, we compare results of TDDFT and the semiclassical nondispersive SRF for
the same system. In Subsection 3.2.3, we use the nondispersive SRF to analyze
the origin of the observed quantum effects, and discuss the validity range and
shortcomings of the long-wavelength Feibelman paramater d⊥(ω) that neglects the
nonlocality of the optical response in the direction parallel to the metal surface.
Finally, in Subsection 3.2.4, we extend the analysis to the case of a dimer of two
identical spherical MNPs, showing that the quantum surface effects observed for
the individual MNP are also manifested in the dimer configuration and that the
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Figure 3.2: Comparison between the absorption cross-section spectra σabs obtained from TDDFT
calculations within the jellium model using a Wigner–Seitz radius rs = 4 a0 (solid blue line),
and from the nondispersive SRF using a plasma frequency ωp = 5.89 eV and intrinsic damping
parameter γp = 0.1 eV in the Drude dielectric function given by Eq. (1.10) (dashed red line). The
nondispersive SRF results are obtained from Eq. (2.88), and the TDDFT results are obtained
following the procedure described in Subsection 2.3.1. An attenuation factor η = 0.07 eV
[Eq. (2.56)] is used to perform the Fourier transform within TDDFT.

nondispersive SRF does not describe accurately situations of gap distances narrower
than D ∼ 1.5 nm for the present dimer geometry.

3.2.1 Quantum TDDFT vs. classical LRA
We first analyze the quantum effects that influence the self-interaction Green’s
function G(rQE, rQE, ω) obtained for a QE placed in front of an individual spherical
MNP. The QE is oriented in the radial direction perpendicular to the MNP surface
(see sketch in Figure 3.1a). To identify the quantum effects, we first compare in
Figure 3.3 the classical LRA (panels a,b) and the TDDFT (panels c,d) results.
We plot both the imaginary (a,c) and real (b,d) parts of G(rQE, rQE, ω) which are
related to the Purcell factor and Lamb shift, respectively [Eqs. (3.1a) and (3.1b)].
Results are shown as a function of the oscillation frequency of the QE, ω, and the
distance d between the QE and the surface of the spherical MNP, d = R− a.

The classical LRA calculations predict a dependence of G(rQE, rQE, ω) on
frequency determined by various multipolar plasmon modes excited by the QE,
resulting in several peaks in the spectra of Im{G(rQE, rQE, ω)} (Figure 3.3a). The
three lower-frequency sharp resonances are associated with the dipolar (DP, ℓ = 1),
quadrupolar (QP, ℓ = 2), and octupolar (OP, ℓ = 3) plasmons of the spherical MNP.
Their frequencies ωℓ are given by the poles of Eq. (3.9), Re

{
ϵ(ωℓ) + ℓ+1

ℓ

}
= 0. As
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Figure 3.3: (a) Classical LRA result of the (a) imaginary part (Im{G(rQE, rQE, ω)}), and (b) real
part (Re{G(rQE, rQE, ω)}) of the self-interaction Green’s function G(rQE, rQE, ω) obtained for a
point-like QE placed in front of an individual spherical MNP of radius a = 65.83 a0 (≈ 3.5 nm).
Results are shown as a function of the frequency ω of the oscillating QE and the surface-to-emitter
distance, d. Panels (c) and (d) correspond to the results obtained with TDDFT simulations. In
(a) and (b), the upper and lower range of values in the color bar denote saturation.

we consider a metal described with a Drude dielectric function, this results in

ωℓ = ωp

√
ℓ

2ℓ+ 1 . (3.11)

From Eq. (3.11) it follows that the frequencies of the DP, QP and OP are
respectively ωDP ≈ 3.4 eV, ωQP ≈ 3.7 eV, and ωOP ≈ 3.85 eV. The high-
frequency broad peak at ωPSM ∼ 4 eV (i.e., close to the surface plasmon frequency
ωSP = ωp/

√
2 ≈ 4.16 eV) corresponds to the so-called pseudomode [143], which

is composed by a pilling up of several overlapping high-order plasmonic modes
(ℓ = 4, 5, 6, . . . ) with closely-spaced resonant frequencies.
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At small d ≈ 0.53 − 1 nm, Im{G(rQE, rQE, ω)}, as calculated within the
classical LRA, is dominated by the pseudomode excitation. As the distance
between the QE and the MNP increases, Im{G(rQE, rQE, ω)} decreases, and the
relative contribution of different plasmon modes changes in favor of the low ℓ
resonances (this behavior can be seen more clearly in Figure 3.4). Thus, for large
d ∼ 1.6−1.8 nm, the values of Im{G(rQE, rQE, ω)} attained within the pseudomode
frequency range become comparable to those at the sharp DP and QP resonances.
The faster decrease of the resonances associated with high-order plasmon modes
with increasing d can be inferred from Eq. (3.9), where R = a+d. We also note that
the value of Im{G(rQE, rQE, ω)} obtained for a QE resonant with the pseudomode
at ωPSM = 4.05 eV and located at d = 0.58 nm corresponds to a Purcell factor
FP ≈ 5.2 × 106 [Eq. (3.2)]. This very large value is explained by the small volume
of the MNP (and the resulting strong field localization).

In contrast to the classical results, Im{G(rQE, rQE, ω)} as calculated with
TDDFT (Figure 3.3c) mainly reveals a single broad feature [345] for the range of
distances considered in this chapter. At small separation d ≈ 0.53 − 1 nm, the
maximum value of Im{G(rQE, rQE, ω)} is reached within the frequency interval
ω ∼ 3.6 − 3.7 eV, i.e., it is redshifted with respect to the classical pseudomode
peak. As d increases, the resonant feature slightly shifts to lower frequencies.
Moreover, the overall profile somewhat sharpens, albeit, in sheer contrast with the
classical theory, the contributions of different plasmon modes remain spectrally
broader and are barely resolved. Consistent with the strong broadening of the
plasmon resonances due to quantum effects, the TDDFT results show smaller
values of Im{G(rQE, rQE, ω)} at resonance, and thus lower QE decay rates, as
compared to the classical LRA prediction. For example, for a QE placed at a
distance d = 0.58 nm, the resonant Purcell factor FP calculated within TDDFT
is FP ≈ 1.5 × 106. This is more than three times smaller than the maximum
LRA value. On the other hand, the broadening of the spectra leads to a larger
off-resonant Im{G(rQE, rQE, ω)} obtained with TDDFT as compared to classical
LRA predictions.

We next compare the classical LRA and quantum TDDFT results for the real
part of the self-interaction Green’s function, Re{G(rQE, rQE, ω)}, which determines
the Lamb shift ∆ωQE of the QE transition frequency [Eq. (3.1b)]. As depicted in
Figure 3.3b, and consistent with the results obtained for the imaginary part of the
Green’s function (Figure 3.3a), the frequency dependence of Re{G(rQE, rQE, ω)}
obtained from classical LRA calculations features a rich resonance profile. For an
individual plasmonic mode, the Kramers-Kronig relations would lead to a sign
change of Re{G(rQE, rQE, ω)} at the resonance frequency. In the full calculations,
Re{G(rQE, rQE, ω)} does not show the sign change at resonance for low ℓ modes
and small distances, because of the off-resonant contribution associated with
neighboring plasmon modes with larger ℓ. It is only at the pseudomode frequency
that the contribution of the nearly degenerate resonances leads to a change of sign
of Re{G(rQE, rQE, ω)} from positive values at frequencies below ωPSM ∼ 4 eV to
negative values above this frequency. When d increases, the contribution from
off-resonant neighboring modes is reduced so that, in addition to the pseudomode
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resonance, the sign change of Re{G(rQE, rQE, ω)} can be observed at the DP and
QP resonances. This appears particularly clear in Figure 3.4 discussed below,
where we show the frequency dependence of the Green’s function calculated for a
set of fixed separations, d, between the QE and the MNP surface.

Similarly to the results obtained for the imaginary part, the TDDFT calculations
in Figure 3.3d show smaller absolute values of Re{G(rQE, rQE, ω)} (Lamb shift)
and a broader structure at the resonant plasmon frequency ω ∼ 3.3 − 3.7 eV
as compared to the classical LRA. This holds for the entire distance d range
considered in this chapter. Notably, a single broad resonance is appreciated in the
TDDFT results, and Re{G(rQE, rQE, ω)} changes its sign from positive to negative
only at the resonant frequency ω ∼ 3.3 − 3.7 eV, i.e. at lower frequency than
within the classical LRA. As a consequence, for QEs with transition frequencies
within the range of ωQE ∼ 3.7 − 4 eV, each model predicts a photonic Lamb shift
∆ωQE ∝ Re{G(rQE, rQE, ω = ωQE)} of opposite sign [Eq. (3.1b)]. For example,
according to the LRA, a QE located at d = 0.58 nm and characterized by a
transition dipole moment µQE = 0.1 e nm and resonant frequency ωQE = 4 eV
experiences a redshift of ∆ωQE ≈ −130 meV. In contrast, TDDFT predicts a
blueshift of ∆ωQE ≈ 34 meV under the same conditions.

3.2.2 Quantum TDDFT vs. semiclassical nondispersive
SRF

After identifying the main quantum-mechanical effects in Figure 3.3, we can use
the nondispersive SRF to dissect the role of nonlocality and the spill-out of the
induced charges that can be behind the differences between the classical LRA and
TDDFT results of G(rQE, rQE, ω) discussed above. To this end, we compare in
Figure 3.4 the real part (upper panels a-e) and the imaginary part (lower panels f-j)
of G(rQE, rQE, ω) as calculated using the three different approaches (TDDFT, LRA,
and SRF). Results are shown as a function of the oscillation frequency of the QE,
for selected values of the surface-to-emitter distance d. The solid and dashed blue
lines show the reference TDDFT results and those obtained using the nondispersive
SRF, respectively. The classical LRA results are plotted by gray-dotted lines. The
overall good agreement between the TDDFT and the nondispersive SRF in Figure
3.4 establishes the validity of the latter and allows us to use the framework of the
SRF to analyze the role of the quantum phenomena manifested in G(rQE, rQE, ω),
as we discuss below.

We first focus on the results at relatively large distance d = 1.38 − 2.22 nm
(panels a-c and f-h), where the agreement between the nondispersive SRF and
TDDFT is particularly good. The semiclassical SRF accurately reproduces the
TDDFT results of the spectral position and resonance profile of G(rQE, rQE, ω),
thus correctly accounting for the redshift and larger broadening of the peaks as
compared to the classical LRA. On the other hand, for distances below d ≤ 0.95 nm
(panels d,e and i,j), the nondispersive SRF results are redshifted with respect
to those of TDDFT, i.e., the semiclassical model based on the long-wavelength
approximation of d⊥(ω) overestimates the redshift of the plasmonic modes from
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Figure 3.4: Real part (upper panels a-e) and imaginary part (lower panels f -j) of the self-
interaction Green’s function obtained for a point-like dipole in proximity to an individual spherical
MNP of radius a = 65.83 a0 (≈ 3.5 nm) made of sodium, as calculated from TDDFT (solid lines),
within the nondispersive SRF (dashed lines) and within the classical LRA (dotted gray lines).
Each panel corresponds to a selected surface-to-emitter distance d, ranging from d = 0.58 nm
(rightmost panels) to d = 2.22 nm (leftmost panels), according to the labels on top.

the resonant frequencies obtained within the LRA as d decreases. The differences
between the TDDFT and nondispersive SRF increase when reducing surface-to-
emitter distance, d. Thus, based on this comparison, we conclude that for small
d the calculations based on the long-wavelength Feibelman parameters provide a
qualitative agreement with TDDFT, but not quantitative accuracy.

3.2.3 Interpretation of the quantum effects within the
nondispersive SRF and its limitations

The overall good agreement as well as the discrepancy for small separation between
the TDDFT and SRF results can be understood from the analytical SRF expression
of G(rQE, rQE, ω). The resonant frequencies ωℓ can be found from the poles of
Eq. (3.10),

Re
{
ε(ωℓ) + ℓ+ 1

ℓ
− (ε(ωℓ) − 1)ℓ+ 1

a
d⊥(ωℓ)

}
= 0, (3.12)
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so that, for a Drude-type dielectric function [Eq. (1.10)], ωℓ can be obtained from
the following expression:

ω2
ℓ ≈ ω2

p

ℓ

2ℓ+ 1

(
1 − (ℓ+ 1)

a
Re {d⊥(ωℓ)}︸ ︷︷ ︸

spill-out of the
induced electron density

)
, (3.13)

where ωℓ >> γp is assumed. For the sodium jellium material considered here,
where interband transitions are negligible, the finite electrostatic potential barrier
at the jellium surface allows for the induced electron density to spill out of the
metal boundary, giving rise to positive values of Re {d⊥(ω)} in the frequency range
of interest [296]. The positive Re {d⊥(ω)} decreases the value of ωℓ in Eq. (3.13),
and one can thus conclude that the spill-out of the induced electron density is
responsible for the redshift of all the resonant frequencies ωℓ, as compared to the
LRA values given by Eq. (3.11). This redshift is larger for plasmonic modes of
higher order ℓ.

To illustrate this discussion, we show in Figure 3.5a the resonant frequencies ωℓ

of the first ten plasmonic modes (ℓ = 1 − 10) of the individual spherical MNP as
obtained from the LRA (Eq. (3.11), red dots), the TDDFT (orange dots) and the
nondispersive SRF (Eq. (3.13), blue dots). For simplicity, we calculate the SRF
values of ωℓ as the frequency at which the imaginary part of the corresponding
ℓ-contribution to G(rQE, rQE, ω), Gℓ(rQE, rQE, ω), is maximum [Eq. (3.10)], and
we have checked that the results are consistent with Eq. (3.13). The TDDFT
results of the resonant frequency ωℓ are defined here as the mean value between
the two frequencies at which Im{Gℓ(rQE, rQE, ω)} is half of the maximum value.

The results in Figure 3.5a show good agreement between the TDDFT and the
nondispersive SRF for the first four resonant frequencies ωℓ (ℓ ≤ 4), which explains
the match in the spectral position of G(rQE, rQE, ω) obtained by the two models
for relatively large distance d = 1.38 − 2.22 nm, where the response is mostly
dominated by these low-order modes (panels a-c and f-h in Figure 3.4). However,
for higher-order plasmonic modes ℓ ≳ 5, the values of ωℓ within the SRF start to
decrease with increasing ℓ, instead of getting larger as occurs for small ℓ and for
the TDDFT results. Thus, the nondispersive SRF results in considerably lower
values of ωℓ as compared to the TDDFT predictions. As a consequence, since the
relative contribution of these high-order modes ℓ ≳ 5 becomes important only for
very small d, the nondispersive SRF calculations produce an additional redshift of
G(rQE, rQE, ω) as compared to TDDFT for small separation distances d ≤ 0.95 nm.
This effect can be clearly identified in panels d,e and i,j in Figure 3.4. As observed
in Chapter 4, the mismatch between the nondispersive SRF and the TDDFT values
of ωℓ for ℓ ≳ 5 is a consequence of the approximation adopted to implement the
calculation of d⊥(ω). Indeed, the d⊥(ω) parameter is obtained by considering the
long-wavelength limit (small wavenumber in the direction parallel to the surface)
[98] in a planar metal–vacuum interface [124, 296], which translates, in the case of
a spherical MNP, into the condition ℓd⊥(ω)/a << 1. Thus, for a given radius a
of a MNP, large values of ℓ, above a threshold value, do not fulfill this condition.
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Figure 3.5: (a) Resonant energies ωℓ of the first ten plasmonic modes (ℓ = 1 − 10) as obtained
from the LRA (red dots), TDDFT (orange) and nondispersive SRF (blue), measured in units
of the plasma frequency ωp = 5.89 eV. (b) Contribution of the first seven plasmonic modes
Gℓ(rQE, rQE, ω) (ℓ = 1 − 7) to the imaginary part of the self-interaction Green’s function
G(rQE, rQE, ω), as obtained from TDDFT calculations (solid lines), within the nondispersive SRF
(dashed lines) and within the classical LRA (dashed-dotted lines). Panel on the left corresponds
to a surface-to-emitter distance d = 0.95 nm, and panel on the right to d = 0.58 nm. The spectra
in panel (b) are shifted vertically for visibility.

Indeed, for small QE–MNP separation, large ℓ values are required to capture the
full response, and thus the nondispersive SRF based on the long-wavelength limit
of d⊥(ω) becomes inaccurate in such a situation.

Additionally, the SRF can also be used to explain the broad resonance profile of
G(rQE, rQE, ω) shown by the TDDFT results in Figure 3.3 and Figure 3.4. From
Eq. (3.10), we infer that the broadening κℓ of the ℓ-resonance, Gℓ(rQE, rQE, ω), is
given within the SRF by

κℓ ≈ γp + ωℓ
ℓ+ 1
a

Im {d⊥(ωℓ)}︸ ︷︷ ︸
surface-enabled Landau damping

, (3.14)

which expresses an enhancement of the total damping κℓ produced by surface-
enabled Landau damping because Im {d⊥(ωℓ)} is positive [124]. As a consequence,
most plasmonic ℓ-modes within TDDFT spectrally overlap, giving rise to the
generally broad profile of the total G(rQE, rQE, ω), which includes the contributions
Gℓ(rQE, rQE, ω) from all ℓ-modes (Figures 3.3 and 3.4) [345].

In order to illustrate the consequences of surface-enabled Landau damping,
we show in Figure 3.5b the contribution of the first seven plasmonic modes
Gℓ(rQE, rQE, ω) (ℓ = 1 − 7) to the spectra of the imaginary part of the self-
interaction Green’s function G(rQE, rQE, ω), as obtained from the three different
models employed in this chapter. Results are shown for d = 0.95 nm (left-hand side
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panel in b) and d = 0.58 nm (right-hand side panel in b). As expected, within the
classical LRA (dashed-dotted lines) all the multipoles have the same broadening,
with full width at half maximum (FWHM) equal to γp. In contrast, both TDDFT
(solid lines) and the nondispersive SRF (dashed lines) predict an increasing FWHM
with increasing plasmonic order ℓ, as given by Eq. (3.14). Finally, the comparison
of the results obtained for d = 0.95 nm and d = 0.58 nm in Figure 3.5b corroborates
that the relative contribution of higher-order plasmonic resonances increases with
decreasing surface-to-emitter distance d within the three models employed in this
chapter (LRA, TDDFT and SRF).

3.2.4 Quantum TDDFT vs. nondispersive SRF in a
nanoparticle dimer

In this subsection, we extend the analysis of the calculation of the Green’s function
to a dimer comprising two identical spherical MNPs, where the QE is placed at
the center of the gap of size D, as sketched in Figure 3.1b. This configuration has
received special attention due to its capability to strongly enhance the amplitude
of the incident electric field within the nanogap [23], leading to very efficient QE–
MNPs interaction. Thus, the study of nonclassical effects in the dimer configuration
appears particularly interesting.

Figure 3.6 shows the real (right-hand side panels) and imaginary (center panels)
parts of the self-interaction Green’s function G(rQE, rQE, ω) calculated for the
dimer configuration, as obtained with classical LRA calculations (top), TDDFT
(middle), and the nondispersive SRF (bottom). The QE is oriented along the dimer
axis (the z-axis). Results are shown as a function of the oscillation frequency of
the QE, ω, and the size of the gap, D. Thus, the distance d between the QE and
the surface of each MNP forming the nanogap is d = D/2.

Both the imaginary part (Figure 3.6b) and real part (Figure 3.6c) of
G(rQE, rQE, ω) calculated within the classical LRA show similar behavior for
the dimer configuration as for the individual MNP. For the range of gap sizes
D = 20 − 45 a0 (≈ 1.06 − 2.4 nm) covered in Figure 3.6, the classical LRA results
show a rich resonance profile with at least three well-defined resonances, namely the
bonding dipolar plasmon (BDP, ωBDP ∼ 3 eV), the bonding quadrupolar plasmon
(BQP, ωBQP ∼ 3.5 eV) and the broad dimer pseudomode (ωPSM ∼ 3.75 − 4.1 eV).
These BDP, BQP and pseudomode are the results of the optical hybridization
between the plasmonic ℓ-order modes of the individual MNPs [151]. For all the D
values considered, the BDP and BQP resonances are narrow, while the pseudomode
is broad because it originates from the hybridization of high-order plasmonic modes
ℓ ≥ 3 of the isolated MNPs with closely-spaced resonant frequencies. The spectral
weight of the pseudomode within the classical LRA considerably increases for
small gap separations, and it becomes dominant for gaps smaller than D ≲ 36 a0
(D ≲ 1.9 nm).

In contrast to these classical LRA predictions, the TDDFT results (panels
e,f) show only two distinct resonant features: a BDP at ωBDP ∼ 2.75 eV and a
pseudomode at ωPSM ∼ 3.25 − 3.5 eV, i.e., the distinct BQP mode does not split
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Figure 3.6: Self-interaction Green’s function G(rQE, rQE, ω) obtained for a point-like QE placed at
the center of the gap of size D formed by two identical Na spherical MNPs of radius a = 65.83 a0
(≈ 3.5 nm). The QE is oriented along the dimer z-axis. a-d-g Sketches of the system studied
within the three models employed in this chapter: (a) classical LRA, where the dielectric response
of the metal is described by a local dielectric function ε(ω) and standard hard-wall boundary
conditions are applied at the metal–vacuum interface, (d) TDDFT, where the time evolution
of the electron density n(r, t) =

∑
j∈occ χj |Ψj(r, t)|2 is obtained from the time-dependent KS

equations and (g) Nondispersive SRF, which uses the local dielectric function ε(ω) to describe
the bulk response of the metals but incorporates quantum surface-response corrections at the
metal–vacuum interface by means of the d⊥(ω) parameter. Imaginary part (panels b,e,h) and real
part (c,f,i) of the self-interaction Green’s function G(rQE, rQE, ω) as obtained from the classical
LRA (b-c), TDDFT (e-f) and nondispersive SRF (h-i). Results are shown as a function of the
oscillation frequency of the QE, ω, and the size of the gap, D. In (b), (c), and (h), the upper
and lower range of values in the color bar denote saturation.
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D=2.65 nm D=2.33 nm D=1.90 nm D=1.48 nm D=1.06 nm

Figure 3.7: Real part (upper panels a-e) and imaginary part (lower panels f -j) of the self-
interaction Green’s function obtained for a point-like dipole placed at the center of a gap of size D
formed by two identical Na spherical MNPs of radius a = 65.83 a0 (≈ 3.5 nm), as calculated from
TDDFT (solid lines), within the nondispersive SRF (dashed lines), and within the classical LRA
(dotted gray lines). Each panel corresponds to selected gap sizes D ranging from D = 1.06 nm
(rightmost panels) to D = 2.65 nm (leftmost panels). Gap separation distances are indicated on
the top panels.

from the broad pseudomode due to Landau damping. Within TDDFT, the BDP is
the dominant resonance for the whole range of gap sizes covered in this chapter,
and its spectral weight increases as the gap separation D becomes larger. The
nondispersive SRF (panels h,i in Figure 3.6) accurately reproduces the TDDFT
spectra when comparing the strength and the spectral position of the BDP and the
pseudomode. The broadening of the BDP resonance is also well reproduced by the
SRF. However, we note that the pseudomode obtained from the nondispersive SRF
calculations is sharper (albeit still substantially broader than the LRA prediction)
than the one obtained within TDDFT. This effect is directly related to the redshift
of the high-order modes ℓ ≳ 5 with increasing ℓ shown by the nondispersive SRF
in Figure 3.5 for an individual MNP, which is expected to be reflected also in
the dimers results. Since the high-ℓ resonances of the individual MNP have lower
frequency, they cannot contribute to the broadening of the pseudomode in the
large frequency range ωPSM ∼ 3.5 eV.

For the sake of a quantitative comparison between the classical LRA, TDDFT
and nondispersive SRF results, we show in Figure 3.7 the frequency dependence of
G(rQE, rQE, ω) calculated for a set of fixed gap separations D, as obtained from
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a cut of Figure 3.6. Although there are quantitative discrepancies between the
TDDFT and the SRF results for narrow gaps D ∼ 1 − 1.5 nm (panels d,e,i,j in
Figure 3.7), the overall good agreement between the two approaches indicates
that the spill-out of the induced charges and surface-enabled Landau damping,
already discussed in the individual MNP results, are also the main quantum
mechanisms influencing G(rQE, rQE, ω) in the dimer configuration. Moreover, these
results corroborate the validity of the long-wavelength limit implementation of the
SRF to adequately describe the electromagnetic interaction between a QE and a
plasmonic gap nanostructure for situations where the gap separation is larger than
D ∼ 1.5 nm (panels a,b,c,f,g,h in Figure 3.7). However, similarly to the case of
the individual MNP in Subsections 3.2.2 and 3.2.3, for smaller gap separations
in a dimer, D < 1.5 nm, the limitations of the approximation used to obtain the
Feibelman parameter d⊥(ω) (neglecting the nonlocality of optical response in the
direction parallel to the metal surface) affects the accuracy of the results, since in
such a case, high-order plasmonic ℓ-modes are also relevant in the response of the
system.

3.3 Summary
In this chapter, we study the influence of quantum phenomena on the
electromagnetic interaction between a point-like quantum emitter (QE) and
canonical metallic nanostructures. We focus on the study of the self-interaction
dyadic Green’s function Ĝ(rQE, rQE, ω) obtained for an individual spherical MNP
and a dimer comprising two identical spherical MNPs, with the QE oriented
perpendicular to the metal surfaces. In the case of the dimer, the QE is located in
the middle of the gap. We consider sufficiently large QE–MNP separations so that
charge-transfer processes related to electron tunneling do not play a role.

We first calculate Ĝ(rQE, rQE, ω) in the presence of an individual sodium
MNP using time-dependent density functional theory (TDDFT), and then employ
analytical expressions derived from a semiclassical model (referred to as the
nondispersive SRF) in order to identify the origin of the quantum effects that
influence the QE–MNP coupling. This nondispersive SRF incorporates surface
quantum-response corrections by means of the Feibelman d⊥(ω) parameter obtained
under the long-wavelength approximation. The overall good agreement between
TDDFT and the nondispersive SRF for both the individual and the dimer
configurations confirms that surface-enabled Landau damping and the spill-out
of the induced electron density drastically affect the electromagnetic QE–MNPs
interaction. These mechanisms explain why the resonances of Ĝ(rQE, rQE, ω)
obtained from TDDFT are redshifted and broader as compared to those obtained
from a classical calculation using the local-response approximation (LRA) of the
optical response of the metals.

We find that these quantum effects become more significant with increasing
order ℓ of the plasmonic resonance. The analysis of the TDDFT calculations
indicates that the higher the value of ℓ, the larger the broadening κℓ produced by
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surface-enabled Landau damping as well as the redshift produced by the spill-out
of the dynamical screening charges. Thus, the quantum phenomena explored in
this chapter show a considerable influence in the optical response for very small
distance between a QE and a metallic surface, and when the QE is coupled to
high-order plasmonic modes of the nanostructure.

We also find that the nondispersive SRF calculations based on the long-
wavelength limit of the Feibelman parameter d⊥(ω) describe more accurately
the Green’s function of a dipolar emitter when considering QEs coupled to low-
order plasmonic modes. However, these calculations are not accurate when the
contribution from high-order modes (ℓ ≳ 5) of the nanostructure is large, as occurs
when the distance d between the QE and the MNP is very small, d ∼ 0.6 nm.
As a consequence, in the dimer configuration the nondispersive SRF calculations
underestimate the broadening of the pseudomode and become inaccurate for gap
separations of the order of D ∼ 1 − 1.5 nm. The shortcomings of the nondispersive
SRF are due to the limitations to address the parallel nonlocality of the response
when using a d⊥(ω) parameter where the dependence on the wavenumber k∥ parallel
to the metal surface (or, equivalently, the angular momentum ℓ for spherical MNPs)
is neglected. For more accurate results, it is necessary to go beyond the long-
wavelength limit of d⊥(ω) to properly account for the nonlocality of the surface
response in the direction parallel to the surface, as this impacts the results in
situations where the QE–MNP distance is small (high-order ℓ modes involved).
The extension of the SRF to a dispersive model that takes into account the
k∥-dependence of d⊥ is proposed in Chapter 4.

This chapter thus provides a fundamental description of the quantum
phenomena influencing the electromagnetic interaction between a QE and plasmonic
nanostructures for surface-to-emitter distances as small as ≈ 0.5 nm. For even
smaller separation, charge-transfer processes between the QE and the MNPs can
influence the optoelectronic response of the system, so that a many-body treatment
based on TDDFT of both the QE and the MNPs is necessarily required to naturally
account for any quantum effect in those extreme situations, including also charge-
transfer processes. We adopt this strategy in Chapter 5.
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4
DISPERSIVE SURFACE-RESPONSE
FORMALISM TO ADDRESS OPTICAL
NONLOCALITY IN SITUATIONS OF
EXTREME PLASMONIC FIELD
CONFINEMENT

As shown in Chapter 3, the surface-response formalism (SRF) based on the
Feibelman parameter d⊥ allows us to capture quantum effects such as the spill
in/out of the induced charges, surface-enabled Landau damping, and nonlocal
dynamical screening in a computationally simple manner. To the best of our
knowledge, d⊥ has been so far computed using the long-wavelength approximation
[98], which consists in neglecting the nonlocality of the optical response in the
direction parallel to the metal–dielectric interface. The nondispersive Feibelman
parameter is then a function of the excitation frequency, d⊥ ≡ d⊥(ω), and it does
not depend on the wavenumber k∥ parallel to the metal surface. Considering
the long-wavelength limit reduces the computational effort to obtain d⊥(ω) from
quantum calculations. Moreover, it simplifies the implementation of the SRF
in existing numerical tools that solve Maxwell´s equations in Nanophotonics as
employed in a number of recent studies [97, 124, 129, 296, 299, 300].

Using the long-wavelength limit of d⊥ (i.e., considering k∥ ∼ 0) is a reasonable
approximation when the nonlocality of the optical response in the direction
perpendicular to the surface dominates, i.e., when the characteristic scale ∆s

of the optical field variation along the surface is large as compared to that of the
surface-response correction, ∆s >> d⊥. This is the case of e.g. typical individual
metallic nanoparticles (MNPs) subjected to plane-wave illumination. However, in
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Chapter 3 we demonstrate that using the long-wavelength approximation of d⊥(ω)
within the nondispersive SRF is not accurate when describing situations involving
multipole plasmon modes characterized by localized surface charges that rapidly
vary along the MNPs surface. This is analogous to exciting plasmons with large
transverse wavenumber k∥, and therefore requires to go beyond the long-wavelength
limit of d⊥.

In this chapter, we demonstrate that accounting explicitly for the nonlocality
of the optical response in the direction parallel to the surface lifts the shortcomings
of the nondispersive SRF. Using a dispersive Feibelman parameter d⊥ ≡ d⊥(ω, k∥)
that is a function of ω and k∥ allows for correctly predicting the optical response
of plasmonic structures in extreme situations where plasmon-induced charges
characterized by high k∥ can be excited, such as in structures with small radius or
small gaps, for instance. We first study in Subsection 4.2.1 the energy dispersion of
localized multipolar plasmon resonances sustained by a cylindrical metallic nanowire
using TDDFT, and show that the energies of multipolar plasmon modes in such a
nanowire are governed by a universal parameterm/Rc equivalent to the wavenumber
k∥ of surface plasmons at planar interfaces (here m is the magnetic quantum number,
and Rc is the nanowire radius). Consistent with this statement, we demonstrate
that the energy dispersion of localized multipolar plasmon modes relative to m/Rc

in cylindrical nanowires follows the previously-studied k∥-dispersion of nonretarded
surface plasmons at planar metal surfaces [62, 306, 346]. Thus, TDDFT calculations
of the cylindrical nanowire are used in Subsection 4.2.2 to obtain the Feibelman
parameter d⊥ ≡ d⊥(ω, k∥ = m/Rc), which reveals a strong dependence on k∥.
We show in Subsection 4.2.3 that the dispersive (k∥-dependent) SRF accurately
reproduces the energy dispersion of plasmon resonances obtained from TDDFT
for the cylindrical nanowire. Furthermore, we demonstrate that the same set of
d⊥(ω, k∥) can be used to address optical nonlocality in the parallel direction in
metallic nanostructures of different shapes. To this end, we apply the dispersive
SRF to small spherical MNPs as well as to nanometer-gap spherical dimers coupled
to quantum emitters (QEs), obtaining a good agreement between the dispersive
SRF and TDDFT results. This chapter thus provides a significant advance toward
the implementation of a SRF that adequately accounts for quantum effects in the
optical response of plasmonic systems exhibiting extreme optical nonlocality.

4.1 System and methods
Three different plasmonic nanostructures are considered in this chapter to show
the generality of the dispersive SRF: (i) an infinite cylindrical nanowire of radius
Rc extended along the z-axis, as described in Subsection 2.3.3, which is used to
calculate d⊥(ω, k∥), (ii) an individual spherical MNP of radius a, as described
in Subsection 2.3.1, and (iii) a dimer consisting of two identical spherical MNPs
with a QE located in the middle of the gap. The dimer considered here is the
same as the one considered in Chapter 3. All the nanostructures considered in
this chapter are described within the jellium model of free-electron metals (see
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Figure 4.1: Sketch of the systems studied in this chapter. (a) Cylindrical Na nanowire with
radius Rc, infinite along the z-axis. ρ is the radial coordinate, and φ the azimuthal angle. The
system possesses rotational symmetry with respect to the z-axis. We consider three different
values of the radius: Rc = 75 a0, 100 a0, and 150 a0. (b) Spherical Na nanoparticle with radius
a = 65.83 a0. (c) A point-like quantum emitter (QE) with a dipole moment pd placed at the
middle of the gap formed by two identical spherical Na nanoparticles. The QE is represented
by the green arrow. The gap separation distance is denoted as D. In all the structures, Na is
characterized by a Wigner–Seitz radius rs = 4 a0.

Subsection 2.1.2) using a Wigner–Seitz radius rs = 4 a0 that corresponds to sodium.
The classical bulk plasma frequency is therefore ωp =

√
3
r3

s
= 5.89 eV, the surface

plasmon frequency ωSP = ωp/
√

2 = 4.16 eV, and the localized dipolar plasmon
(DP) frequency ωDP = ωp/

√
3 = 3.4 eV. We choose this material because it allows

for a direct comparison between our results and those obtained in Chapter 3
using the long-wavelength approximation. The schematic representation of the
nanostructures studied in this chapter is depicted in Figure 4.1.

The optical response of individual spherical MNPs and dimers has been
studied in detail in previous chapters, and thus here we focus on the numerical
procedure used to obtain the energy dispersion of localized multipolar plasmon
resonances sustained by the cylindrical nanowire. We address cylindrical nanowires
with large radii Rc (as compared to that of spherical MNPs) within the range
Rc = 75−150 a0 (≈ 4−8 nm) characterized by well-developed multipolar plasmons,
thus allowing us to span a large range of periods 2πRc/m of the spatial variation of
plasmon-induced charges along the nanowire surface. Here, owing to the cylindrical
symmetry of the system, the multipolar plasmon modes can be characterized by
the magnetic number m related to the eimφ dependence on the azimuthal angle φ
of the potentials, fields and induced charges.

In the frequency domain, the potential Vind(ρ, φ, ω) induced at ρ > Rc in
response to an external excitation Vext(x, y, t) can be expressed as
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Vind(ρ, φ, ω) = 2
mmax∑
m=1

(
Rc

ρ

)m

Qm(ω) cos(mφ), (4.1)

where Qm(ω) is the frequency-resolved multipole moment of order m per unit
length along the z-axis. Our aim is to determine the frequency and width of these
multipolar resonances.

With this purpose, we use the Kohn–Sham scheme (KS) of TDDFT introduced
in Section 2.2. We employ the same numerical implementation as described in
Subsection 2.3.3 but, instead of considering a x-polarized plane-wave excitation
given by Eq. (2.76), here we consider the following impulsive external potential
Vext(x, y, t):

Vext(x, y, t) = ξ δ(t)
mmax∑
m=1

(
ρ

Rc

)m

cos(mφ), (4.2)

where x = ρ cosφ and y = ρ sinφ, δ(t) is the Dirac delta function, the amplitude
ξ is sufficiently weak to ensure a linear response, and mmax = 30 is the highest
multipole order considered in the simulation. In Eq. (4.2), we write explicitly
the dependence of Vext(x, y, t) on the spatial variables (x, y) to stress that we use
Cartesian coordinates as described in Subsection 2.3.3. Due to the excitation used
here, multipolar plasmon excitations are localized at the (x, y)-plane, and do not
propagate along the z-axis. The term localized referring to plasmons excited at
the nanowire is often omitted but implicitly assumed. Because of the cylindrical
symmetry of the system, m is a good quantum number, i.e., an external potential
with angular dependence cos(mφ) excites localized multipolar plasmon modes at
the nanowire characterized by induced charges with the same angular dependence
cos(mφ).

Using the real-time ALDA-TDDFT methodology in Cartesian coordinates as
introduced in Subsection 2.3.3, we calculate the time-dependent multipole moment
Qm(t) induced at the nanostructure per unit length along the z-axis, defined as25

Qm(t) = − 1
m

∫∫
dx dy

(
ρ

Rc

)m

cos(mφ) δn(x, y, t), (4.3)

where the electron density δn(x, y, t) induced by Vext(x, y, t) in Eq. (4.2) is given
by [Eq. (2.77)]

δn(x, y, t) = n(x, y, t) − n(x, y, t = 0). (4.4)

The frequency-resolved spectrum of the multipole moment Qm(ω) is finally
obtained from the time-to-frequency Fourier transform,

Qm(ω) =
∫
dt Qm(t)e(iω−η/2)t, (4.5)

25 The 1/ (Rc)m factor of the definition of the cylindrical multipole moment in Eq. (4.3) (and
consistently the factor (Rc)m in Eq. (4.1)) simplifies the comparison between the results of the
calculations performed for nanowires of different radius Rc.
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where an attenuation factor η = 0.15 eV is used [Eq. (2.56)] to mimic dissipation
processes beyond the reach of the ALDA-TDDFT scheme adopted here (see details
in Section 2.2).

It is worth mentioning that, for mmax = 1, Eq. (4.2) expresses the nonretarded
potential corresponding to a plane-wave illumination polarized along the x-axis.
Such illumination is typically used in linear-response TDDFT calculations to obtain
the dipolar polarizability of the system, as described in Subsection 2.3.3.

4.2 Results and discussion

4.2.1 TDDFT study of the energy dispersion of multipolar
plasmon resonances in a metallic nanowire

Figure 4.2 shows the intensity spectrum of the multipole moments, |Qm(ω)|2,
obtained for a cylindrical nanowire of radius Rc = 150 a0 (panel a) and Rc = 100 a0
(panel b) in response to the external potential given by Eq. (4.2). The results
for different values of m are plotted, ranging from m = 1 (top) to m = mmax
(bottom). For the largest nanowire mmax = 30 is considered, whereas for the
smallest one mmax = 23. The general behavior of multipolar plasmon resonances
|Qm(ω)|2 is independent of the size of the nanostructure: first, for a given m, a
well-defined resonance centered at a frequency ωm is obtained associated with the
excitation of the multipolar plasmon mode of order m. The width of the multipolar
plasmon resonance for the two nanowires increases with increasing m because of
the enhancement of surface-enabled Landau damping, where the plasmon decays
into electron–hole pair excitations at the surface region, as discussed in Chapter 3
for spherical MNPs for increasing ℓ. Moreover, regardless of the specific value of
the radius Rc, ωm first redshifts with increasing m and, after reaching a minimum,
it continuously blueshifts. However, the multipolar plasmon resonances of a given
order m are broader for the smaller nanowire, and do not emerge at the same
frequency ωm for the two sizes. For example, the dipolar plasmon resonance
(m = 1) emerges at ω1 ∼ 4.1 eV for Rc = 150 a0 (extremely close to the classical
long-wavelength limit of the surface plasmon frequency, ωSP = 4.16 eV), while
for Rc = 100 a0 it appears at ω1 ∼ 4.06 eV. Moreover, for the largest nanowire
the minimum value of ωm is reached at m = 10 (ω10 ∼ 3.8 eV), whereas for the
smallest nanowire the minimum is obtained at m = 8. The differences in the results
obtained for the two nanowires are particularly apparent when comparing ωm for
m = 20: in this case, there is a mismatch in ωm of the order of ∼ 0.5 eV.

The results shown in Figure 4.2a,b are closely related to the dispersion relation
of surface plasmon resonances supported by planar metal–vacuum interfaces as a
function of the parallel wavenumber k∥, as we discuss below. Indeed, the induced
fields and surface charge densities of localized multipolar plasmons considered
in this chapter have a dependence of exp(imφ) on the azimuthal angle φ. By
introducing the coordinate r∥ along the surface of the nanowire cross-section,
r∥ = Rc φ, the angular dependence transforms into exp(imφ) → exp(i m

Rc
r∥).
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Figure 4.2: (a) Intensity spectrum of the multipole moment |Qm(ω)|2 induced at an infinitely
long cylindrical Na nanowire (rs = 4 a0) of radius Rc = 150 a0 (≈ 8 nm). Results are shown
as a function of the frequency of the external excitation, ω, for different values of the magnetic
quantum number m, ranging from m = 1 (top) to m = 30 (bottom), as indicated in the insets.
All |Qm(ω)|2 are normalized to their corresponding maximum value. (b) Same as in (a) but for
a smaller nanowire of radius Rc = 100 a0 (≈ 5.3 nm) and magnetic number within the range
m = 1 − 23. Results are displaced in the vertical axis for clarity.

For Rc → ∞, the cylindrical geometry tends to the planar-surface geometry
with r∥ being the coordinate parallel to the surface, so that setting m

Rc
→ k∥

recovers the standard dependence exp(ik∥r∥) of a surface plasmon propagating
along the surface [see Eq. (1.38)]. Thus, we interpret m

Rc
in the following as

an “effective” wavenumber k∥ by considering that localized multipolar plasmons
in the nanowire correspond to confined surface plasmons with a quantized
wavelength λ∥ = 2πRc/m [347]. To support this correspondence, we compare
in Figure 4.3 the intensity spectra |Qm(ω)|2 obtained for nanowires with radius
Rc = 75 a0 (dahsed lines), 100 a0 (dotted lines), and 150 a0 (solid lines).
Results are shown for selected values of m such that k∥ = m/Rc =
0.013, 0.02, 0.04, 0.067, and 0.1 a−1

0 . Whenever the ratio m/Rc is fixed, the
intensity spectrum of the multipole moment |Qm(ω)|2 obtained for nanowires of
different size shows near perfect match with each other, thus confirming that an
effective wavenumber k∥ = m/Rc determines the optical response of the system.
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Figure 4.3: Intensity spectrum of the multipole moments |Qm(ω)|2 obtained for cylindrical
nanowires of different radii Rc and selected values of the magnetic number m. Solid lines:
Rc = 150 a0. Dotted lines: Rc = 100 a0. Dashed lines: Rc = 75 a0. The selected values of
m are such that k∥ = m/Rc = 0.013 a−1

0 (red), k∥ = 0.02 a−1
0 (blue), k∥ = 0.04 a−1

0 (brown),
k∥ = 0.067 a−1

0 (orange), and k∥ = 0.1 a−1
0 (purple) for the three values of Rc. The spectra

|Qm(ω)|2 corresponding to a specific wavenumber k∥ = m/Rc are normalized to the maximum
value obtained for the case of Rc = 150 a0. Results are displaced in the vertical axis for clarity.

4.2.2 Calculation of the dispersive Feibelman parameter
d⊥(ω, k∥)

The results presented in the previous section allow us to calculate d⊥ ≡ d⊥(ω, k∥) as
a function of both the excitation frequency ω and the effective wavenumber parallel
to the surface, k∥ = m/Rc, using the cylindrical geometry. In this subsection, we
first obtain the expression of the Feibelman parameter d⊥ for a cylindrical metallic
nanowire within the SRF, and then discuss the TDDFT results of d⊥ ≡ d⊥(ω, k∥)
calculated for the present system following the methodology employed in the
previous subsection.

Expression of the Feibelman parameter d⊥ for a cylindrical nanowire

To obtain the expression of the Feibelman parameter d⊥ for a cylindrical nanowire
infinite along the z-axis, we focus on the SRF solution of the electrostatic potential
ϕind(ρ, φ, ω) induced at the nanowire (in the nonretarded approximation). Due
to the translational invariance of the system with respect to the z-axis, ϕind only
depends upon the spatial variables (ρ, φ). The induced potential ϕind(ρ, φ, ω) can
thus be expressed as:

ϕind(ρ, φ, ω) =
m=∞∑

m=−∞
ϕm(ρ, ω) eimφ, (4.6)

where formally the sum extends from m = −∞ to m = ∞.
The radial part of the induced potential, ϕm(ρ, ω), is given by the solution of
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Poisson’s equation,[
1
ρ

∂

∂ρ

(
ρ
∂

∂ρ

)
− m2

ρ2

]
ϕm(ρ, ω) = 4πδnm(ρ, ω), (4.7)

where δnm(ρ, ω) are the moments of the induced electron density δn(ρ, φ, ω)
satisfying

δn(ρ, φ, ω) =
m=∞∑

m=−∞
δnm(ρ, ω) eimφ. (4.8)

To solve Eq. (4.7), we first consider the Green’s function Gm(ρ, ρ′) that satisfies
the following equation[

1
ρ

∂

∂ρ

(
ρ
∂

∂ρ

)
− m2

ρ2

]
Gm(ρ, ρ′) = 1

ρ
δ(ρ− ρ′), (4.9)

so that
ϕm(ρ, ω) = 4π

∫ ∞

0
ρ′dρ′Gm(ρ, ρ′)δnm(ρ′, ω). (4.10)

The solution of Eq. (4.9) for m ̸= 0 is given by

Gm(ρ, ρ′) =


− 1

2m

(
ρ
ρ′

)m

for ρ < ρ′

− 1
2m

(
ρ′

ρ

)m

for ρ > ρ′
. (4.11)

Thus, according to Eq. (4.10), the radial part of the induced potential is given
by

ϕm(ρ, ω) = −2 π
m

[∫ ρ

0
ρ′ dρ′

(
ρ′

ρ

)m

δnm(ρ′, ω) +
∫ ∞

ρ

ρ′ dρ′
(
ρ

ρ′

)m

δnm(ρ′, ω)
]
.

(4.12)
For example, within the (piecewise-constant) local-response approximation

(LRA), where the induced charge density δnm(ρ, ω) = σm(ω)δ(ρ−Rc) is strictly
located at the jellium edge of the nanowire of radius Rc, Eq. (4.12) leads to the
classical LRA solution of the induced potential

ϕLRA
m (ρ, ω) =


−2 π

mσm(ω) ρm

Rm−1
c

for ρ < Rc

−2 π
mσm(ω) Rm+1

c

ρm for ρ > Rc

. (4.13)

However, when quantum surface effects are considered within the SRF, δnm(ρ, ω)
is not strictly located at the jellium edge of the nanowire but it has a finite extension
near the metal surface. In what follows, we assume that δnm(ρ, ω) is nonzero
only in the small region ±∆ (with ∆ ≪ Rc) inside and outside the jellium edge
located at ρ = Rc. Further, we introduce the variable δρ such that ρ′ = Rc + δρ,
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so that δρ varies within the interval ±∆. We can thus develop
(

ρ
ρ′

)m

and
(

ρ′

ρ

)m

in Eq. (4.12) into a Taylor series around Rc with respect to δρ, which results in(
ρ

ρ′

)m

= ρm

Rm
c

−m
ρm

Rm+1
c

δρ+ O
(
δρ2

R2
c

)
≈ ρm

Rm
c

[
1 −m

δρ

Rc

]
, (4.14)

and (
ρ′

ρ

)m

= Rm
c

ρm
+m

Rm−1
c

ρm
δρ+ O

(
δρ2

R2
c

)
≈ Rm

c

ρm

[
1 +m

δρ

Rc

]
. (4.15)

Using Eqs. (4.14) and (4.15), the radial part of the potential ϕm(ρ, ω) outside
the surface region Rc ± ∆ can be expressed within the SRF [Eq. (4.12)] as

ϕm(ρ, ω) =


−2 π

m

(
ρ

Rc

)m ∫ Rc+∆
Rc−∆ ρ′ dρ′δnm(ρ′, ω)

[
1 −mρ′−Rc

Rc

]
for ρ < Rc − ∆

−2 π
m

(
Rc

ρ

)m ∫ Rc+∆
Rc−∆ ρ′ dρ′δnm(ρ′, ω)

[
1 +mρ′−Rc

Rc

]
for ρ > Rc + ∆

.

(4.16)
By comparing the potential ϕm(ρ, ω) within the SRF [Eq. (4.16)] and the

classical LRA result ϕLRA
m (ρ, ω) [Eq. (4.13)], one can define the surface charge

qcyl(ω,m) per unit length in the z-coordinate and per 2π in φ

qcyl(ω,m) ≡
∫ Rc+∆

Rc−∆
ρ dρ δnm(ρ, ω), (4.17)

and the Feibelman parameter for a cylindrical nanowire,

dcyl
⊥ (ω,m) ≡

∫ Rc+∆
Rc−∆ ρ dρ (ρ−Rc) δnm(ρ, ω)

qcyl(ω,m) , (4.18)

so that the induced potential ϕm(ρ, ω) within the SRF outside the surface region
Rc ± ∆ is given by

ϕm(ρ, ω) =


−2 π

m

(
ρ

Rc

)m

qcyl(ω,m)
[
1 − m

Rc
dcyl

⊥ (ω,m)
]

for ρ < Rc − ∆

−2 π
m

(
Rc

ρ

)m

qcyl(ω,m)
[
1 + m

Rc
dcyl

⊥ (ω,m)
]

for ρ > Rc + ∆
.

(4.19)
As expected, for Rc → ∞ or ∆ → 0, Eq. (4.19) reduces to the classical LRA

solution ϕLRA
m (ρ, ω) given by Eq. (4.13) with σm(ω) = q(ω,m)

Rc
. The numerator in

the definition of the Feibelman parameter dcyl
⊥ (ω,m) [Eq. (4.18)] is an analogue of

the induced surface dipole moment [62] per unit length in the z-coordinate, while
the denominator is an analogue of the induced surface charge per unit length in the
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Figure 4.4: (a) Real part of the dispersive Feibelman parameter d⊥(ω, k∥ = m/Rc) for selected
values of k∥ as obtained from TDDFT calculations performed for a cylindrical nanowire of radius
Rc = 150 a0. The parameter d⊥(ω) obtained in ref. 296 under the long-wavelength approximation
is shown by the dashed black line as a reference. Results are shown as a function of the frequency,
ω. The values of k∥ are indicated in the inset. (b) Same as in (a) for the imaginary part. The
sketch in the inset represents the induced charge density δn(x, ω, k∥) in a semi-infinite planar
metal surface, with the Feibelman parameter d⊥(ω, k∥) accounting for the position of the centroid
of δn(x, ω, k∥) relative to the geometrical metal surface. n0 represents the equilibrium electron
density.

z-coordinate. In this respect, Eq. (4.18) is similar to the definition of the Feibelman
parameter d⊥ for a planar metal surface introduced in Eq. (2.82a), and thus, the
real part of dcyl

⊥ (ω,m) provides the position of the centroid of the induced charges
with respect to the jellium edge of the metal as a function of ω and m, and the
imaginary part is related to the contribution of surface-enabled Landau damping.

TDDFT results of d⊥(ω, k∥)

Once dcyl
⊥ (ω,m) is calculated for a given m and nanowire radius Rc according to

Eq. (4.18) using the WPP algorithm within TDDFT, d⊥ ≡ d⊥(ω, k∥) is obtained
using dcyl

⊥ (ω,m) with k∥ = m/Rc. The integrals in Eq. (4.18) are calculated within
a region extending ∆ ∼ 20 a0 inside and outside the metal surface in the radial
direction.

We show in Figure 4.4 the real (Re
{
d⊥(ω, k∥)

}
, panel a) and imaginary

(Im
{
d⊥(ω, k∥)

}
, panel b) parts of the dispersive Feibelman parameter obtained

from TDDFT calculations using a cylindrical nanowire of radius Rc = 150 a0.
Results are shown as a function of ω for various values of the "effective" wavenumber
k∥ = m/Rc. We show in Appendix D that the calculations performed for a different
nanowire radius Rc = 100 a0 with the same ratio m/Rc give very similar results.

The results shown in Figure 4.4 for k∥ = 0.0067 a−1
0 (red line), corresponding

to the smallest wavenumber considered, show a complex-valued Lorentzian-like
resonance at ω ∼ 4.6 eV. This resonance is associated with the excitation of the
Bennet plasmon at ω ∼ 0.8ωp [62, 79, 305, 306], as discussed in Section 2.5. The
results of d⊥(ω, k∥) for small k∥ are consistent with the results of Christensen et al.
[296] obtained for a flat surface of the same material in the long-wavelength limit
(k∥ = 0, dashed black lines). However, with increasing k∥, the Bennet plasmon
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resonance in d⊥(ω, k∥) broadens and blueshifts [62]. Importantly, in the frequency
range ω ∼ 2.5 − 4.5 eV relevant for plasmon excitations, the following trend is
observed with increasing k∥: first, Re

{
d⊥(ω, k∥)

}
generally decreases and can even

change its sign from positive to negative values, indicating that the centroid of the
induced charge density shifts towards the inside of the metal for high k∥. Further,
Im
{
d⊥(ω, k∥)

}
increases overall reflecting more efficient decay of the plasmon into

electron–hole pair excitations via surface-enabled Landau damping. Additionally,
in the low-frequency regime ω ≲ 2 eV, i.e., well away from any collective plasmon
resonance, the optical response of the system is close to that of an ideal metal
and becomes independent of k∥. Thus, Re

{
d⊥(ω, k∥)

}
∼ 1.2 a0 indicates that the

centroid of induced charge density approaches the position of the image potential
plane with respect to the jellium edge [62].

4.2.3 Validation of the dispersive SRF
Once the Feibelman parameter d⊥(ω, k∥) is obtained from TDDFT calculations,
we next establish the validity of the dispersive SRF proposed in this chapter to
correctly account for quantum surface effects in nanoscale plasmonic systems. To
that end, we first show that the dispersive SRF model correctly reproduces the
TDDFT results of the energy dispersion of plasmon resonances in a cylindrical
nanowire as a function of k∥ = m/Rc. We then extend the applicability of the
dispersive SRF to obtain the optical response of individual spherical MNPs as well
as their dimers.

Energy dispersion of plasmon resonances in a metallic nanowire as a
function of k∥

We show in Figure 4.5 the energy ωs(k∥) of plasmon resonances sustained by
metallic nanowires of radius Rc. The TDDFT (blue), dispersive SRF (orange), and
nondispersive SRF (red) results are shown as a function of the effective wavenumber
k∥ = m/Rc. Within TDDFT, we obtain the resonant plasmon frequency ωs as the
mean value between the frequencies of the half-maximum of |Qm(ω)|2 displayed in
Figure 4.2. As we detail in Appendix E, within the dispersive SRF, ωs is determined
from the following transcendental equation,

ωs(k∥) = ωSP

(
1 −

k∥

2 Re{d⊥(ωs, k∥)}
)
, (4.20)

which is solved self-consistently for a given wavenumber k∥ = m/Rc. The
nondispersive SRF results are also obtained from Eq. (4.20) using the parameter
d⊥(ω) calculated by Christensen et al. [296] under the long-wavelength limit
(k∥ = 0).

When k∥ increases, the plasmon frequency ωs(k∥) in Figure 4.5 obtained from
TDDFT first redshifts, reaches a minimum at k∥ ∼ 0.08 a−1

0 , and then continuously
blueshifts. This shape of the plasmon energy dispersion is determined by the
change of the location of the dynamically-induced screening charges from above to
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Figure 4.5: (a) Energy dispersion ωs(k∥) of the plasmon resonances sustained by a cylindrical
nanowire of radius Rc as a function of the effective wavenumber parallel to the metal surface,
k∥ = m/Rc. Here m stands for the magnetic quantum number. Results are obtained using
three different models: TDDFT (blue); dispersive SRF (orange), where the Feibelman parameter
d⊥(ω, k∥) depends on ω and k∥; and nondispersive SRF (red), where d⊥(ω) is a function
of frequency exclusively. The TDDFT results are obtained for two cylindrical nanowires,
Rc = 100 a0 and 150 a0, as indicated in the insert. We also show the experimental (black
rectangles) and theoretical (purple line) results of the surface plasmon dispersion of a planar
Na–vacuum interface [62, 306, 346].

below the classical image plane, i.e., a shift of the centroid of the induced charge
density from outside the metal to inside [62, 306, 346]. Importantly, this change
of the location of the dynamically-induced screening charges is well described by
the dispersive Feibelman parameter d⊥(ω, k∥) shown in Figure 4.4a, and thus the
dispersive SRF results in Figure 4.5 correctly reproduce the TDDFT values within
the broad range of k∥ considered. Notice that the dispersion of ωs(k∥) obtained
here within TDDFT and within dispersive SRF for cylindrical nanowires closely
matches the measured (black rectangles) and calculated (purple line) dispersion
curve of the surface plasmon propagating at a planar Na–vacuum interface26

[62, 306, 346], which further confirms the equivalence between the wavenumber k∥
of propagating surface plasmons and the effective wavenumber m/Rc of localized
multipolar plasmons sustained by the infinite metallic nanowire.

In contrast, the nondispersive SRF only predicts accurately the plasmon energy
dispersion for small values of the parallel wavenumber, k∥ ≲ 0.06 a−1

0 . Indeed,
for small values of k∥ where the long-wavelength approximation is well justified,
Figure 4.5 shows an excellent agreement between the TDDFT and both dispersive
and nondispersive SRF results. This good agreement occurs because we consider as
a reference the nondispersive parameter d⊥(ω) reported by Christensen et al. [296],
which is very close to the dispersive parameter d⊥(ω, k∥) obtained in this chapter
with the TDDFT methodology for small k∥ within the frequency range of interest

26 The results of ref. 346, originally presented in units of the bulk plasmon frequency, are
rescaled using the value ωp = 5.89 eV considered here.
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(compare in Figure 4.4a the red and the blue lines with the reference dashed black
line). However, for higher wavenumber, k∥ ≳ 0.06 a−1

0 , the nondispersive model
fails to account for the change of the location of the dynamically-induced screening
charges with increasing k∥ and thus mistakenly predicts a continuous redshift of
ωs across the entire range of wavenumbers k∥. Figure 4.5 thus demonstrates the
necessity of considering the explicit dependence of d⊥ on k∥ to accurately describe
the nonlocal plasmonic response for k∥ ≳ 0.06 a−1

0 .

Dispersive SRF applied to other geometries: individual spherical
nanoparticle and nanoparticle dimer

We finally show that the dispersive SRF presented in this chapter can be used
to treat nonlocality in a broad range of plasmonic systems using the dispersive
Feibelman parameter d⊥(ω, k∥) that we obtained for a cylindrical nanowire (with
k∥ = m/Rc). In particular, we demonstrate the applicability of the dispersive SRF
proposed here to correctly account for quantum surface effects and nonlocality in
the optical response of individual spherical MNPs and their dimers. To validate the
results in these configurations, we compare a set of optical properties as obtained
within the dispersive SRF with those obtained with TDDFT calculations.

As a first example of a canonical plasmonic system, we consider a spherical Na
metal nanoparticle (MNP) with radius a = 65.83 a0 (≈ 3.5 nm), as schematically
depicted in Figure 4.1b. This spherical MNP is the same as the one considered
in Chapter 3, where we showed that its size is sufficiently large to ensure a
well-developed plasmonic response and, on the other hand, it is small enough for
nonlocal effects to noticeably affect the optical response. As discussed in Subsection
1.2.3, individual spherical MNPs support (localized) multipole plasmon resonances
characterized by the angular momentum ℓ. This symmetry parameter ℓ in spherical
MNPs plays an analogous role to the magnetic quantum number m in cylindrical
nanowires, and determines the spatial scale of the charge-density oscillations along
the surface. Thus, we tentatively assign k∥ = ℓ/a for spherical MNPs. The
spectrum of multipole plasmons is determined by the multipolar polarizabilities
αℓ(ω), which are given within the SRF by [see Eq. (3.10)]:

αℓ(ω) ∝
(ε(ω) − 1)

(
1 + k∥d⊥(ω, k∥)

)
ε(ω) + ℓ+1

ℓ − (ε(ω) − 1) ℓ+1
a d⊥(ω, k∥)

. (4.21)

In Eq. (4.21), ε(ω) is the dielectric function of the material described within the
Drude model (using ωp = 5.89 eV and γp = 0.1 eV in Eq. (1.10)).

In Figure 4.6a, we compare the imaginary part of αℓ(ω), Im{αℓ(ω)} (normalized
to its maximum), obtained from TDDFT (solid filled curves), nondispersive SRF
(left-hand side panel, short-dashed lines) and dispersive SRF (right-hand side panel,
long-dashed lines) for different values of ℓ. The TDDFT results are obtained
following the procedure described in Chapter 3, and for the nondispersive SRF
results we use the parameter d⊥(ω) calculated in ref. 296 within the long-wavelength
approximation. A clear peak associated with the excitation of the multipolar ℓ
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D=2.33 nm D=2.33 nm

D=1.06 nm D=1.06 nm

Figure 4.6: Comparison between the results obtained using TDDFT (solid lines), dispersive
SRF (long-dashed lines), and nondispersive SRF (short-dashed lines). (a) Imaginary part of
the first ten multipolar polarizabilities αℓ(ω) (ℓ = 1 − 10). The left-hand side panel presents
the comparison between TDDFT and nondispersive SRF results, whereas the right-hand side
panel presents the comparison between TDDFT and dispersive SRF results. Each spectra is
normalized to the corresponding maximum value obtained within TDDFT for each value of ℓ. The
spectra corresponding to different ℓ are vertically displaced for visibility. The TDDFT results are
represented by solid lines with hatched area. (b,c) Lamb shift ∆ωQE (left-hand side panels) and
Purcell factor FP (right-hand side panels) obtained within the three methods for a point-dipole
quantum emitter (QE) at the center of a spherical MNP dimer of radius a = 65.83 a0 (≈ 3.5 nm).
The dipole is oriented along the dimer axis, and its transition dipole moment is µ = 0.1 e nm
(with e the electron charge). In (b), the gap separation is D = 2.33 nm. In (c), D = 1.06 nm.
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plasmon mode appears in each spectrum of Im{αℓ}, which allows for the discussion
on their energies and widths.

The TDDFT results of Im{αℓ(ω)} in Figure 4.6a show that the multipole
plasmon resonances of order ℓ continuously blueshift with increasing ℓ in the
considered range ℓ = 1 − 10. The resonance broadens as ℓ increases due to the
enhancement of surface-enabled Landau damping [64, 66, 194, 259–261]. As already
discussed in Chapter 3, the nondispersive SRF accurately reproduces the TDDFT
data of Im{αℓ(ω)} for low values of ℓ ∼ 1 − 4, but fails to make correct predictions
for ℓ ≥ 5. Indeed, for these large values of effective k∥ = ℓ/a, the plasmonic
resonances within the nondispersive SRF start to redshift with increasing ℓ in
contrast to the continuous blueshift obtained from TDDFT calculations. Thus, the
nondispersive SRF predicts multipole plasmon frequencies that deviate significantly
from the TDDFT values. In sheer contrast, by accounting for the dependence
of the Feibelman parameter d⊥ on k∥, the dispersive SRF correctly captures the
energy blueshift and broadening of multipole plasmon resonances in Im{αℓ(ω)}
(see right-hand side panel in Figure 4.6a). Although some quantitative differences
emerge for large multipole order ℓ = 7 − 10, one can observe an overall good
agreement between TDDFT and the dispersive SRF results over the entire range
of ℓ values considered here. Thus, the dispersive SRF is useful to describe localized
multipole plasmon resonances of large order ℓ sustained by small MNPs.

Finally, we address another canonical plasmonic system: a dimer of spherical
MNPs. Specifically, we study the case of a point-dipole quantum emitter (QE)
located at the center of the gap formed by two identical spherical MNPs with
radius a = 65.83 a0 (≈ 3.5 nm), as sketched in Figure 4.1c. This system is identical
to the one considered in Chapter 3. The QE is oriented along the axis of the MNP
dimer (the z-axis). The gap separation distance, D, is in the nanometer scale, and
thus nonlocality strongly influences the optical response of the system, as shown in
Chapter 3. We focus on the enhancement of the QE total decay rate given by the
Purcell factor FP and the change of resonant frequency ∆ωQE (Lamb shift) due to
the self-interaction of the QE with the MNP dimer. The Lamb shift is calculated
considering a transition dipole moment µ = 0.1 e nm (with e the electron charge).
The TDDFT and SRF results are obtained within the nonretarded approximation
following the procedure described in Chapter 3, where for the dispersive SRF we
use the Feibelman parameter d⊥(ω, k∥) obtained in this chapter.

Figure 4.6b shows the Lamb shift ∆ωQE (left-hand side panel) and Purcell factor
FP (right-hand side panel) obtained for a gap separation D = 2.33 nm, as calculated
with the three models employed in this chapter (TDDFT, dispersive SRF, and
nondispersive SRF). The three approximations show qualitatively good agreement,
although the nondispersive SRF results slightly deviate from the TDDFT and
dispersive SRF predictions. For this relatively large gap, the excitation of low-ℓ
multipole plasmon resonances dominates the response of the MNP dimer to the
field created by the point-dipole QE (see Chapter 3), which validates the long-
wavelength approximation behind the nondispersive SRF results. Nonetheless, the
results obtained within the dispersive SRF are more accurate when compared to
TDDFT.
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The better performance of the dispersive SRF to describe the electromagnetic
QE–MNPs interaction is more evident when considering a smaller gap, which
naturally involves larger values of ℓ in the response. Figure 4.6c shows the Lamb
shift ∆ωQE and Purcell factor FP for a gap separation D = 1.06 nm. In this
situation, because of the higher spatial confinement of the induced charges at the
metal surfaces across the gap, plasmon modes with large multipolar order ℓ become
important. These large-ℓ modes have overlapping resonant frequencies and thus
contribute to a single broad peak (referred to as the pseudomode, see Chapter 3)
at ω ∼ 3.4 eV, as revealed by the TDDFT calculations. Since the nondispersive
model does not accurately describe the energy of large-ℓ multipolar modes for the
individual MNP (Figure 4.6a), it also fails to predict the energy and the width
of the plasmon pseudomode obtained within TDDFT for the dimer of small gap.
Moreover, the nondispersive SRF strongly overestimates the Purcell factor and the
Lamb shift close to the bonding dipolar plasmon (BDP) resonance at ω ∼ 2.75 eV
because of the contribution of high-ℓ multipolar modes near the BDP frequency
within the nondispersive model (see Figure 4.6a). In contrast, the dispersive SRF
provides accurate results even for this small gap separation, thus indicating that the
dispersive SRF is well suited to correctly account for nonlocality in situations where
plasmon-induced charges are characterized by a rapid variation in the direction
parallel to the metal surface.

4.3 Summary
In summary, in this chapter we have proposed a dispersive SRF that explicitly
accounts for the dependence of the Feibelman parameter d⊥ on the wavenumber
parallel to the metal surface, k∥. Using TDDFT calculations as a reference,
we have demonstrated that the dispersive SRF is much more accurate than the
nondispersive SRF, usually implemented in the literature, in describing plasmonic
systems characterized by extremely confined induced fields. The dispersive SRF
proposed here thus overcomes the limitations of the nondispersive SRF identified
in Chapter 3.

Using the analogy between localized multipolar plasmons in infinite cylindrical
nanowires of radius Rc and propagating surface plasmons at planar metal–
vacuum interfaces, we have demonstrated that m/Rc can be interpreted as a
wavenumber parallel to the surface, k∥ = m/Rc (here m is the magnetic quantum
number). This study has allowed us to obtain the dispersive Feibelman parameter
d⊥(ω, k∥ = m/Rc) using cylindrical nanowires, which is incorporated into the SRF
to complete the description based on the long-wavelength value d⊥(ω, k∥ = 0), used
in Chapter 3 and in other recent works [124, 129, 296, 299, 300].

Supported by the examples of cylindrical and spherical metallic nanostructures,
we have demonstrated that, in contrast to the nondispersive model, the dispersive
SRF accurately describes the nonlocal optical response in extreme situations where
the induced charges are characterized by a rapid variation in the direction parallel
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to the metal surface (large k∥). The results shown in this chapter thus contribute to
the development of a theoretical model that captures quantum nonlocal effects in
extreme situations, while keeping the numerical efficiency and easy implementation
into the framework of classical electromagnetic theories [348]. We thus believe that
the dispersive SRF proposed in this chapter can be useful to correctly account
for optical nonlocality in nanostructured systems with extreme plasmonic field
confinement, as it can be the case of metallic nanostructures interacting with
fast electrons, MNPs coupled to QEs in close proximity, or MNPs ensembles
with extremely narrow junctions. The dispersive SRF substantially improves
the perfomance of the nondispersive SRF to describe nonlocality in the optical
response of narrow junctions, however it still lacks the description of charge-transfer
processes. To account for such effects by using semiclassical models, it would be
necessary to further develop the present framework combining the SRF with e.g. a
quantum-corrected model [83–87].
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5
ELECTRONIC EXCITON–PLASMON
COUPLING IN A NANOCAVITY
BEYOND THE ELECTROMAGNETIC
INTERACTION PICTURE

The main mechanism that controls the interaction between quantum emitters (QEs)
and metallic nanoparticles (MNPs) is the excitation of the QE exciton by the local
electric field associated to the MNP plasmon. In previous chapters, the plasmonic
response of MNPs is described either classically (Chapter 1) or by using TDDFT
simulations that capture nonlocal and quantum surface effects (Chapter 3), while
the exciton dynamics of the QE is modeled within the point-dipole approximation.
The success of the methodologies used in previous chapters to explain the main
features of the optical response in plasmonic nanocavities is due to the dominance
of the electromagnetic interaction in the QE–MNP coupling for separations as small
as one nanometer [145, 349]. However, at even smaller separations between emitters
and metal surfaces, of the order of Ångstroms, another quantum effect becomes
important: electronic states localized at the QE and at the MNPs hybridize into
"supermolecular" states which modify optical transitions, allowing for electron
transfer between the QE and the MNP.

Despite its importance [166, 349–352], the effect of hybridization between the
QE and the MNP electronic states as well as the corresponding electron-transfer
processes remain largely unexplored in Nanophotonics, as the quantum theoretical
treatment of the problem is challenging. It is only recently that such studies have
become within the reach of theoretical efforts [107–109, 323, 329] enabling e.g. a
better understanding of light emission in tunneling junctions [309–311]. Notably,
it has been shown that a QE bridging two MNPs can trigger electron conductance
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across subnanometric junctions, which strongly influences the optical and electronic
(optoelectronic) response of the coupled system [107–109, 329, 353].

In this chapter, we apply a fully quantum many-body approach based on
TDDFT to study the optoelectronic response and exciton dynamics in a QE–MNPs
system where the QE is located at subnanometric separation from the metallic
interfaces. In contrast to the methodologies employed in previous chapters, here
we use a TDDFT treatment to describe the electronic structure of both the QE
and the MNPs. We place particular emphasis on the role of electronic coupling
and electron transfer between the QE and the MNPs to unveil the manifestation
of these quantum effects in the optical response of the entire coupled system.
Importantly, we demonstrate that the modification of the electronic structure of
the hybrid QE–MNPs system as well as the broadening of the electronic states of
the QE due to charge transfer lead to a breakdown of the classical electromagnetic
description of plasmon–exciton interaction. We reveal important quantitative and
qualitative differences between quantum TDDFT and classical LRA results of the
linewidths and frequencies of the relevant optical modes. Moreover, we also observe
the formation of a novel charge-transfer plasmon mode at low frequencies mediated
by the emitter electronic structure.

5.1 System and methods
We consider a QE interacting with a plasmonic dimer formed by two spherical
MNPs. As sketched in Figure 5.1a, the QE placed in the middle of a plasmonic
nanogap is illuminated by a plane wave polarized along the dimer axis (z-axis). In
this chapter, the gap separation D is varied to explore different regimes of electronic
QE–MNPs coupling, ranging from electronically decoupled QE–MNPs (large D) to
electronically coupled ones (small D). The calculation of the optical response is
performed within the Kohn–Sham (KS) scheme of time-dependent density functional
theory (TDDFT) [70–72, 189] as introduced in Section 2.2, which successfully
incorporates quantum phenomena such as many-body and single electron–hole
pair excitations, electronic spill-out, nonlocal screening or electron tunneling in
(sub)-nanometric metallic cavities [79, 125, 202, 211, 212, 214, 337, 338, 342].

The electronic structure of the MNPs is described within the jellium model
of free-electron metals [194, 200] introduced in Subsection 2.1.2, using a Wigner–
Seitz radius of rs = 4 a0 that corresponds to sodium. Each MNP contains 638
conduction electrons (radius a = 34.4 a0 ≈ 1.8 nm), and the Fermi level of the
MNPs stands at EF = −2.86 eV below the vacuum level. In contrast to the
point-dipole approximation employed in previous chapters to model the QE (e.g.
in Chapter 3), here we consider a “more realistic” QE that has a finite spatial
extension. The electronic structure of the QE is described as a two-level system
using a model potential VQE(r) (see below). The optical response of the coupled
QE–MNPs is addressed using the wave-packet propagation (WPP) method in
cylindrical coordinate system, as introduced in Subsection 2.3.2. To excite the
system, we apply an external potential Vext(r, t) = E0 ∆t z δ(t) [Eq. (2.67)], which
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Figure 5.1: (a) Sketch of the system studied in this chapter. A QE with a single optically-allowed
HOMO–LUMO transition is located in the middle of a gap of size D formed by two spherical
MNPs. The QE and each MNP contain 2 and 638 conduction electrons, respectively. (b) Effective
one-electron potential Veff(r) (top) and equilibrium electron density n0(r) (bottom) along the
symmetry z-axis for the coupled QE–MNPs system with gap size D = 26 a0. The HOMO and
LUMO energy levels of the isolated QE are represented by red and green lines, respectively. The
Fermi level EF = −2.86 eV of the MNPs is shown by the black dashed line. (c) Absorption
cross-section spectra σabs(ω) of the isolated MNP dimer for D = 26 a0 (blue line) and D = 38 a0
(green). Dashed and solid lines correspond to the results obtained with classical LRA and TDDFT
simulations, respectively. (d) Absorption cross-section spectra σabs(ω) of the isolated QE for
different values of the parameter V0 [Eq. (5.3)] used to control optical and electronic properties
of the QE.

corresponds to plane-wave illumination polarized along the z-axis.
Prior to studying the coupled QE–MNPs system, we summarize in Figure 5.1c

the TDDFT results of the absorption spectra of the isolated MNP dimer of radius
a = 34.4 a0 ≈ 1.8 nm considered in this chapter (solid lines). Gap separation
distance of D = 38 a0 (green) and D = 26 a0 (blue) are considered here. The
optical response of the MNP dimer is characterized by a bonding dipolar plasmon
(BDP) resonance at ωBDP ∼ 3 eV. As expected from the results shown in Chapter 1
and Chapter 2, this BDP mode redshifts when reducing the gap separation because
of the increased capacitive coupling between the two MNPs [354]. As a reference, in
Figure 5.1c we also show the results from classical (nonretarded) LRA calculations
(dashed lines) introduced in Section 1.1. The MNPs are described in this case
with a Drude dielectric function [Eq. (1.10)] using an “effective” plasma frequency
ωp = 5.43 eV and intrinsic damping parameter γp = 0.15 eV. These parameters are
chosen to provide reasonably good agreement between the TDDFT and classical
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LRA results of the absorption spectrum of the individual MNP (not shown) [125].
Using this value of ωp = 5.43 eV (i.e., slightly smaller than the nominal bulk plasma
frequency ωp = 5.89 eV of sodium for rs = 4 a0, Eq. (1.12)) allows us to account
for the redshift of the dipolar plasmon (DP) frequency of the small individual MNP
because of the electron spill-out and dynamical screening introduced in Subsection
2.3.1. In addition, the damping parameter γp = 0.15 eV used in LRA in this
chapter accounts for all the decay channels of the plasmon excitation including
the contribution of surface-enabled Landau damping. Further, in all classical LRA
calculations we also introduce a gap scaling of ∆ = 3.4 a0 to (partially) account
for the spill-out of the induced electron density with respect to the geometrical
surface of the MNPs in the dimer configuration (correctly captured by the TDDFT
simulations, as shown in Subsection 2.3.2). Introducing the gap scaling ∆ = 3.4 a0
is similar to considering the Feibelman parameter d⊥(ω) employed in Chapter 3 and
Chapter 4, as reported in ref. 58. In this thesis we found that this procedure is valid
to reproduce the redshift of the BDP of the MNP dimer, however it overstimates
the strength of the higher-order plasmon modes such as the BQP. Thus, nonlocal
and quantum effects are partially introduced in the classical LRA calculations of
this chapter in an effective manner, which allows us to correctly reproduce the
TDDFT spectra of the isolated MNP dimer.

We next introduce in Subsection 5.1.1 the TDDFT description adopted in this
chapter to model the QE, which allows for studying the effect of the electronic
interaction between the QE and MNPs states.

5.1.1 Characterization of the model quantum emitter (QE)
The electronic structure of the QE is described within the free-electron jellium
model (Subsection 2.1.2), in a similar way as we model the MNPs. We consider a
spherical QE of radius RQE = 5 a0 (≈ 0.26 nm) containing two valence electrons.
The spin-restricted case is considered [355]. In the ground-state configuration of
the QE, the total spin is zero, and the 2 electrons with opposite spins occupy the
same Kohn–Sham (KS) valence orbital. From the charge neutrality condition, the
positive background density n+ [Eq. (2.13)] representing the atomic cores of the
QE and spreading over its spatial extent satisfies

4
3πR

3
QEn+ = 2. (5.1)

The occupied (j = 1) and unoccupied (j = 2, 3, 4, . . . ) one-electron KS orbitals
Ψ0

QE,j(r) of the QE and their energies ϵQE,j are obtained from the time-independent
KS equation of DFT [Eq. (2.5)],

Ĥ[n0
QE(r)]Ψ0

QE,j(r) = ϵQE,jΨ0
QE,j(r), (5.2)

where ϵQE,j are the one-electron energy levels of the QE, and we use spherical
coordinates as described in Subsection 2.3.1. The equilibrium electron density of
the isolated QE, n0

QE(r), is given in this case by n0
QE(r) = 2|Ψ0

QE,1(r)|2, with the
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factor 2 accounting for spin degeneracy.
Controlling the values of the one-electron energy levels ϵQE,j of the QE states

allows us to study different situations of the QE–MNPs coupling, where the QE
exciton can be either in resonance or out of resonance with the main BDP resonance
of the MNP dimer at ωBDP ∼ 3 eV (see Figure 5.1c). To this end, we introduce in
the Hamiltonian Ĥ[n0

QE(r)] [Eq. (5.2)] an additional attractive potential VQE(r)
[216]. This attractive potential VQE(r) can be thought of as a pseudopotential due
to the atomic cores, it is localized in the spatial region of the QE, and it is given
by

VQE(r) = −V0e
−4|r|2/R2

QE . (5.3)

The one-electron energy levels ϵQE,j of the QE states can be thus modified by
changing the parameter V0.

In this chapter, we refer to Ψ0
QE,1(r) as the highest occupied molecular orbital

(HOMO), which is a 1s (ℓ = 0,m = 0) orbital with zero orbital momentum (ℓ) and
magnetic quantum number (m). Thus, the electronic configuration of the QE is 1s2.
The energy level of the HOMO is EHOMO = ϵQE,1. For the values of V0 [Eq. (5.3)]
considered in this chapter, we find only three energy-degenerate unoccupied KS
orbitals accessible for optical transitions from the ground state. These orbitals
correspond to the 2p-shell and are characterized by the orbital momentum ℓ = 1
and magnetic quantum numbers m = 0,±1. With ψQE,2p(r) the radial part of the
KS orbital of the isolated QE, we can define

Ψ0
QE,2(r) = Y 0

1 (θ, φ)ψQE,2p(r),
Ψ0

QE,3(r) = Y −1
1 (θ, φ)ψQE,2p(r),

Ψ0
QE,4(r) = Y 1

1 (θ, φ)ψQE,2p(r),
(5.4)

where Y m
ℓ (θ, φ) are the spherical harmonics. Because of the symmetry of the system

considered in this chapter (see Figure 5.1a), with an incident electromagnetic wave
polarized along the z-axis, the electronic transitions preserve the magnetic quantum
number m, and thus are effective between the ground-state 1s KS orbital and the
2p (ℓ = 1,m = 0) KS orbital Ψ0

QE,2(r). Thus, the optical absorption of the QE is
determined by the 1s → 2p transition. For the sake of simplicity, in this chapter
we refer to Ψ0

QE,2(r) as the lowest unoccupied molecular orbital (LUMO).
The free parameter V0 of the potential VQE(r) [Eq. (5.3)] is used to control the

energy levels of the HOMO (EHOMO = ϵQE,1) and the LUMO (ELUMO = ϵQE,2)
of the QE, as schematically depicted in Figure 5.1a by the red and green lines,
respectively. As a consequence, the parameter V0 also determines the oscillator
strength α0

QE and transition frequency ωQE of the QE exciton [Eq. (1.54)] relevant
in the optical response of the coupled QE–MNPs system. We show in Table
5.1 the energy levels EHOMO and ELUMO, as well as the oscillator strength
α0

QE and transition frequency ωQE of the QE exciton, obtained for the three
different values of the background potential V0 = 1 eV, 3 eV, and 5 eV [Eq. (5.3)]
considered in this chapter. The values of EHOMO and ELUMO are directly obtained
from time-independent DFT calculations following the procedure described in
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Subsection 2.3.1, whereas the values of α0
QE and ωQE are estimated by fitting the

absorption cross section spectrum σabs(ω) of the isolated QE calculated within
TDDFT to the classical value obtained from Eq. (1.55) and Eq. (1.49) using
the point-dipole approximation (see Figure 5.1d). We use an intrinsic damping
parameter γQE = 70 meV in the classical LRA calculations for the three different
situations determined by V0 considered in this chapter. The value of γQE = 70 meV
corresponds to the attenuation parameter η = 70 meV used in the filter given
by Eq. (2.56) to obtain the frequency-resolved response from real-time TDDFT
simulations in this chapter.

EHOMO [eV] ELUMO [eV] ωQE [eV] α0
QE [au]

V0 =1 eV -3.29 -1.23 2.58 1.70
V0 =3 eV -3.40 -1.16 2.75 1.62
V0 =5 eV -3.57 -1.08 2.95 1.52

Table 5.1: Energy levels of the HOMO (EHOMO) and the LUMO (ELUMO) of the isolated QE of
radius RQE = 5 a0 as obtained from time-independent DFT calculations for different values of
V0, together with the oscillator strength α0

QE and resonant transition frequency ωQE obtained by
fitting the TDDFT results according to the classical value of the absorption cross section obtained
obtained from Eq. (1.55) using the point-dipole approximation.

As shown in Table 5.1, the resonant transition frequency ωQE of the QE does
not match exactly the energy difference between the one-electron energy levels
obtained from time-independent DFT calculations, i.e., ωQE ̸= ELUMO − EHOMO.
Indeed, as pointed out in Chapter 2, when introducing the Kohn–Sham scheme of
TDDFT adopted in this thesis (see Section 2.1), EHOMO and ELUMO represent the
energy levels of a fictitious non-interacting electron system, so that the resonant
frequencies of the interacting system will be renormalized with respect to the
non-interacting one via Coulomb and exchange–correlation potentials [192, 193].

5.2 Results and discussion

5.2.1 Influence of the QE exciton quenching at optical
frequencies

Once the optical response of the isolated constituents has been determined, we
can analyze how the optical response of the hybrid system is affected by the
optoelectronic coupling between the QE and the MNP dimer. To this end, we first
compare in Figure 5.2 the classical LRA (panels a,c) and quantum TDDFT (panel
b,d) results of the absorption cross section spectra σabs(ω) of the QE–MNPs system
as a function of gap separation D. The gap separation is varied from D = 40 a0 to
D = 16 a0, which allows for covering different interaction regimes and for observing
the onset of electronic hybridization in the system. We consider two different QEs
in Figure 5.2, characterized by a transition frequency ωQE = 2.58 eV in panels
a,b (V0 = 1 eV in Eq. (5.3), see Table 5.1), and ωQE = 2.75 eV in panels c,d
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Figure 5.2: Optical absorption of the hybrid QE–MNPs system considered in this chapter.
Waterfall plot of the absorption spectra as obtained from (a,c) classical LRA, and (b,d) TDDFT
simulations for a gap separation distance ranging from D = 16 a0 to D = 40 a0 in steps of 2 a0.
The D value is indicated at each second spectra marked by the black line. Results are shown
as a function of frequency, ω. The transition frequency ωQE of the isolated QE is marked with
a vertical magenta arrow in all the panels. The blue (LR), green (UR), and red (BQP) dots
indicate the resonance frequencies of the main modes of the system. Panels (a,b) correspond
to ωQE = 2.58 eV, and (c,d) to ωQE = 2.75 eV. Both situations represent a QE exciton out of
resonance with the main BDP of the MNP dimer at ωBDP ∼ 3 eV.

(V0 = 3 eV). The two situations correspond to a QE transition frequency ωQE out
of resonance with the BDP of the MNP dimer at ωBDP ∼ 3 eV (see Figure 5.1c),
and therefore the observed effects are qualitatively very similar in both cases. We
thus discuss the two off-resonant QE–MNPs systems together, and will consider a
resonant situation at the end of this subsection.

To make an intuitive link with the classical picture of the point-dipole QE in
proximity to a MNP dimer, we first outline the classical results of the absorption
spectra σabs(ω) of the coupled system shown in Figure 5.2a,c. Three resonant
features are obtained within the framework of classical electromagnetic theory for
the two off-resonant QEs considered: a lower resonance (LR; blue dots) considerably
shifting to lower frequencies as the gap separation is reduced, an upper resonance
(UR; green dots) at ωUR ∼ 3 eV, and a bonding quadrupolar plasmon (BQP; red
dots) at ωBQP ∼ 3.4 eV, more pronounced for narrow gaps. The LR shifts from
ωLR ∼ 2.5 eV to ∼ 1.8 eV in the case of ωQE = 2.58 eV (panel a), and from
ωLR ∼ 2.7 eV to ∼ 2 eV in the case of ωQE = 2.75 eV (panel c).

For large interparticle distance, D = 30 − 40 a0, the spectra in Figure 5.2b,d
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obtained within the TDDFT approach are in good agreement with classical LRA
results (Figure 5.2a,c). Indeed, in these situations, the electron densities of the
individual nanoconstituents do not spatially overlap, thus avoiding the hybridization
of the electronic orbitals. At these large separations, the assignment of the
underlying modes can be performed using their asymptotic behavior. First, the
LR can be associated with the QE exciton. This excitonic frequency is slightly
redshifted with respect to the transition frequency ωQE of the isolated QE due
to the interaction with the MNPs (Lamb shift) [103]. The TDDFT calculations
of the induced electron density confirm the excitonic nature of the LR branch,
characterized by a strongly polarized QE, as observed in Figure 5.3a (the case of
ωQE = 2.58 eV is shown). On the other hand, the UR at ωUR ∼ 3 eV is associated
with the BDP plasmon mode of the isolated MNP dimer. The induced electron
density at the QE appears polarized in the direction opposite to the main dipole
induced at the MNPs, since ωUR is higher than the exciton frequency ωQE of the
isolated QE (see Figure 5.3b).

Upon decreasing the gap separation below D = 26 a0 ≈ 1.4 nm, the quantum
nature of the electron dynamics strongly affects the overall shape of the absorption
profile. The BQP mode shown by the classical LRA approach at ωBQP ∼ 3.4 eV is
not developed in the TDDFT results. This is because, for these small particles,
surface-enabled Landau damping prevents the formation of high-order plasmonic
resonances [124, 336], as discussed in Section 2.3.2 and Chapter 3. Moreover, for
small gap separations, the TDDFT simulations predict a smaller redshift and
stronger broadening of the UR branch as compared to classical results. These
effects can be mainly ascribed to quantum phenomena such as nonlocality and
finite-size effects that are important for such small MNPs, but also to electron
transport between the MNPs mediated by the electronic structure of the QE [329],
as we further confirm in Subsection 5.2.2. The induced electron density shown
in Figure 5.3d indicates that the BDP character of the UR mode is preserved for
these small separations.

The most dramatic difference between quantum TDDFT and classical LRA
results is observed for the LR branch with excitonic asymptotic character. Classical
calculations predict a strong and continuous redshift of the LR with decreasing
gap separation distance due to the electromagnetic interaction, i.e., the interaction
between the QE exciton dipole and its induced screening charges at the surfaces
of the MNPs across the gap. In sheer contrast to this classical prediction, within
the fully quantum model, the LR branch blueshifts with decreasing gap size for
D ≤ 26 a0, and gradually disappears loosing its excitonic character and evolving
into a broad low-frequency shoulder of the UR for the smallest gap size considered
in Figure 5.2b,d (D = 16 a0). This can be observed in Figure 5.3c, where the
loss of the exciton character can be identified through the spread of the induced
electron density over the MNPs (compare panels a and c).

The blueshift of the LR branch with decreasing separation and its subsequent
disappearance shown in Figure 5.2b,d are direct consequences of the hybridization
between the electronic states of the QE and those of the MNPs. The excited electron
initially localized on the 2p LUMO of the QE can tunnel through the potential
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Figure 5.3: TDDFT results of the induced electron density δn(r, ω) (red for positive and blue
for negative sign) for different optical resonances of the QE–MNPs system for ωQE = 2.58 eV
(V0 = 1 eV in Eq. (5.3)). The resonance frequency is indicated at the top of each panel. Panels
(a) and (b) correspond to a gap separation distance D = 40 a0, and (c) and (d) to D = 18 a0,
as indicated. Each snapshot is taken at the instant of time t when the absolute value of the total
dipole moment of the system is maximum. Results are plotted in the (x, z)-plane, and the system
holds axial symmetry with respect to the z-axis.

barrier separating the QE from the MNPs. The electron transfer from the QE
into the empty states of the MNPs above the Fermi level results in the quenching
of the QE signature in the optical response [166]. This electronic interaction
between the QE and the MNPs can be clearly observed in Figure 5.4, where we
show the evolution of the projected density of electronic states (PDOS) [229] upon
decreasing of the dimer gap separation D for the two off-resonant QEs considered
so far (panel a: V0 = 1 eV, ωQE = 2.58 eV, panel b: V0 = 3 eV, ωQE = 2.75 eV).
Due to the azimuthal symmetry of the system, the magnetic quantum number m
is a preserved quantity, so that the HOMO can only couple to electronic states
with m = 0. Consistently, the PDOS localized at the QE is calculated within the
m = 0 symmetry subspace in the region of the QE using the WPP method as
described in Subsection 2.2.1. To this end, we propagate a Gaussian-like initial
wave packet Φ0(r) = Ce|r−r0|2/4 (C is a normalization constant) centered at the
dimer z-axis at r0 = 1

2RQE ẑ (with the center of the QE at the origin of coordinates,
and RQE = 5 a0 the radius of the QE).

For large separation distance, D ∼ 30 − 40 a0, the PDOS in Figure 5.4 shows
two well-defined peaks corresponding to the HOMO and LUMO of the QE. Thus,
the excitation of the HOMO–LUMO 1s → 2p electronic transition leads to an
induced dipole moment that can be correctly described within a classical point-
dipole approximation. However, upon reducing D, the electronic states localized
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Figure 5.4: Projected density of electronic states (with m = 0 symmetry) localized at the QE.
Results are shown as a function of the electron energy for different values of the gap size D
ranging from D = 16 a0 to D = 40 a0 as displayed in the inset. The Fermi level EF = −2.86 eV of
the MNPs is depicted by a vertical dashed line. Panel (a) correspond to the results obtained for
V0 = 1 eV in Eq. (5.3) (resulting in ωQE = 2.58 eV), and panel (b) to V0 = 3 eV (ωQE = 2.75 eV).

at the QE experience a broadening which reveals an increase of the rate of electron
transfer between the QE and the MNPs [229]. The HOMO has higher binding
energy and thus it is more localized in space as compared to the LUMO. For this
reason, the coupling of the HOMO with the MNPs is smaller, and its resonance
in the PDOS is well defined and preserved even for the smallest separation of the
gap, D = 16 a0, considered here. As D is decreased, the HOMO energy shifts
to lower values owing to the increase of the Coulomb interaction with the MNPs.
In contrast, the less bound and thus more spatially extended LUMO strongly
hybridizes with the unoccupied states of the MNPs. As a consequence, the LUMO
resonance in the PDOS dramatically broadens when narrowing the gap. Finally,
for smaller gaps D ∼ 20 a0, the peak of the LUMO vanishes, revealing the absence
of a well-defined unoccupied electronic state localized in the QE which could be
optically accessible. We can describe this effect as the electronic quenching of
the QE-localized dipole expressed in the optical excitation [166]. Indeed, in this
situation the excited electron is shared between the LUMO of the QE and the
MNPs electronic states.

The modifications of the HOMO and LUMO by the electronic interactions
between the QE and the MNPs shown in Figure 5.4 drastically affect the coupling
between the QE excitation and light as identified in Figure 5.2b,d, and lead to
(i) the blueshift of the LR mode for gap sizes below D ∼ 26 a0, and (ii) the
progressive transformation of the LR mode into a broad spectral feature appearing
as a shoulder of the UR mode. The excitation in this case is built up by the hole
localized in the HOMO of the QE and an excited electron delocalized over the
QE–MNPs system.
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Resonant situation

To demonstrate that the underlying physics owing to quantum effects holds
irrespective of the detuning between ωQE and ωBDP, we analyze next in Figure
5.5 the situation where the exciton frequency of the isolated QE ωQE = 2.95 eV
(V0 = 5 eV in Eq. (5.3), see Table 5.1) is in resonance with the main BDP of the
MNP dimer at ωBDP ∼ 3 eV. In particular, this choice is convenient to analyze the
regime of strong electromagnetic coupling (or, in short, strong coupling) between
the exciton and the plasmon, where the coupling strength g overcomes the losses
and hybrid polaritonic states are formed.
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Figure 5.5: (a) Waterfall plots of the optical absorption spectra of the resonantly coupled QE–
MNPs system obtained from classical LRA calculations. The incident electromagnetic plane wave
is polarized along the dimer axis (z-axis). Results are shown as a function of the frequency ω
for gap sizes ranging from D = 16 a0 to D = 40 a0 in steps of 2 a0. The D value is indicated at
each second spectra marked by the black lines. The blue (lower resonance, LR), green (upper
resonance, UR), and red (bonding quadrupolar plasmon, BQP) dots indicate the main modes
of the system. The exciton frequency of the isolated QE, ωQE = 2.95 eV (marked with vertical
magenta arrows), is close to the dominant BDP resonance of the MNP dimer. (b) Blue dashed
line with dots: coupling strength g obtained for the resonant QE–MNPs system for different
values of the gap size D [Eq. (1.60)]. The values (γQE + γp)/4 and (γQE + γp)/2 are drawn by
orange and green lines, respectively. (c) Same as in panel (a) but for the results obtained within
the TDDFT model. (d) PDOS (with m = 0 symmetry) localized at the QE for the resonant
QE–MNPs system characterized by V0 = 5 eV in Eq. (5.3). Results are shown as a function of
the electron energy for different values of the gap size D ranging from D = 16 a0 to D = 40 a0 as
displayed in the inset.
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The classical LRA results of σabs(ω) in Figure 5.5a show a splitting between
the LR (blue dots) and the UR (green dots) with respect to the resonant frequency
ωQE of the isolated QE already for large gap separation distance D = 40 a0. This
LR–UR splitting is a signature of the strong coupling between the QE exciton and
the BDP resonance of the MNP dimer, as we further confirm by analyzing in Figure
5.5b the coupling strength g. The coupling strength g is obtained by fitting the
classical LRA results of σabs(ω) to the spectra obtained from the coupled harmonic-
oscillator model introduced in Section 1.4.3 [Eq. (1.60)]. Figure 5.5b shows that,
for the largest distance considered (D = 40 a0), the criterion g > (γMNP + γQE)/4
often used to identify strong coupling is satisfied. With decreasing D, the LR–UR
frequency difference in Figure 5.5a strongly increases within the classical LRA
model owing to the stronger electromagnetic coupling between the exciton and
the plasmon. This is consistent with the increase of g, observed in Figure 5.5b,
which satisfies the more restrictive criterion g > (γMNP + γQE)/2 for smaller gaps
D ≤ 32 a0. Moreover, within the classical LRA framework, the higher-order
plasmonic modes of the MNPs contribute to the electromagnetic interactions
between the dimer and the QE for small gap separations. The effect of these
higher-order modes, well documented for isolated dimer antennas [23], results here
in an additional redshift of both the LR and UR branches, which explains why the
UR branch appears at lower frequencies than the exciton frequency ωQE = 2.95 eV
of the isolated QE. Results in Figure 5.5a,b thus demonstrate that the resonant
QE–MNPs system would be in the strong-coupling regime according to the classical
LRA description.

The TDDFT results of σabs(ω) in Figure 5.5c also show a splitting between the
LR and the UR with respect to ωQE for large gap separation distance D = 40 a0,
although the strength of the LR is weaker than the one predicted by the classical
model. This difference is a consequence of the nonlocality and finite-size effects
(introduced in Section 2.3) that affect the optical response of the isolated MNP
dimer, as confirmed by the analysis shown in Subsection 5.2.2 below. The general
similarity between classical and TDDFT results for large separation occurs because
there is no QE exciton quenching produced by electronic hybridization for such
large separation. At those distances the electronic QE–MNPs coupling does not
play a role. However, upon reducing the gap size D, the electronic orbitals of the
QE hybridize with those of the MNPs. As shown in Figure 5.5d, the LUMO evolves
into a broad structure reflecting the fast transfer of the excited electron between
the LUMO of the QE and the conduction-band states of the MNPs quantized by
the finite-size effect. This electronic interaction has an immediate consequence on
the optical response of the strongly coupled QE–MNPs system since it hinders
the energy transfer between the QE and the MNPs, thus attenuating the UR–LR
splitting in exciton-plasmon polariton systems as well as producing a progressive
merging of the LR and UR branches into a broad spectral feature when decreasing
gap separation D. In this situation, strong electromagnetic coupling is, therefore,
frustrated due to electronic QE–MNPs coupling.
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Figure 5.6: Absorption cross-section spectra σabs(ω) of the studied QE–MNPs system, as obtained
from the semiclassical model employed in this section. This semiclassical approach is based on
the self-interaction Green’s function [Eq. (1.57)] and considers that the QE is a classical point
dipole, however Ĝ(rQE, rQE, ω), Eind(r = rQE, ω), α̂MNP(ω) and α̂QE

MNP(ω) are obtained from
TDDFT simulations of the isolated MNP dimer. Results are shown as a function of the frequency
ω for gap size ranging from D = 16 a0 to D = 40 a0 in steps of 2 a0. Panel (a) corresponds to
the results obtained for ωQE = 2.58 eV, and panel (b) to ωQE = 2.95 eV.

5.2.2 Quantum finite-size effects vs. electronic QE–MNPs
coupling

In order to gain a better understanding of the role played by the electronic QE–
MNPs coupling in the optical response, and to discard nonlocal and finite-size
effects as studied in Chapter 3 in connection with QE exciton quenching, we
apply here a semiclassical27 approach to the current QE–MNPs system. This
semiclassical approach adopts the self-interaction Green’s function formalism (see
Subsection 1.4.2), where the QE is introduced as a classical point dipole. The dipole
moments induced at the MNPs and at the QE are then obtained from Eq. (1.57).
However, the quantities Ĝ(rQE, rQE, ω), Eind(r = rQE, ω), α̂MNP(ω) and α̂QE

MNP(ω)
are obtained from the TDDFT simulations of the MNP dimer, as described in
Subsection 2.3.2 and Chapter 3. This semiclassical approach naturally includes
finite-size effects on the response of the MNP dimer such as electron spill-out,
nonlocality, surface-enabled Landau damping, and single electron–hole transitions.
However, since the QE is introduced as a classical point dipole, the electronic
coupling between the MNPs and the QE, as well as the actual electronic structure
of the QE and the finite-size extension of its transition density are not accounted
for. Thus, we expect that the differences between TDDFT and the semiclassical
approach reveal the effect of electronic hybridization, only accounted for within
the fully quantum TDDFT model.

We show in Figure 5.6 the absorption cross-section σabs(ω) obtained within
the semiclassical model employed in this subsection for ωQE = 2.58 eV (panel a)

27 The semiclassical approach employed in this chapter should not be confused with the
semiclassical SRF employed in Chapter 3 and Chapter 4.
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and ωQE = 2.95 eV (panel b). For large gap separation distances, D ∼ 30 − 40 a0,
the semiclassical results shown in Figure 5.6 coincide with the results of TDDFT
calculations displayed in Figure 5.2b (ωQE = 2.58 eV) and Figure 5.5c (ωQE =
2.95 eV). In particular, consistent with the discussion of the previous subsection,
the LR calculated for the resonant case ωQE = 2.95 eV within both the semiclassical
model and TDDFT is considerably weaker than the one predicted by the classical
LRA approach (Figure 5.5a). Thus, the origin of the difference between the TDDFT
and the classical LRA absorption spectra resides on quantum surface effects that
are important for such small MNPs. Indeed, at large D there is no hybridization
between the electronic states localized at the QE and at the MNPs.

As already discussed, the electronic QE–MNPs coupling strongly affects the
absorption spectra of the system for D below D ∼ 26 a0, which is now further
corroborated from the comparison between the semiclassical results in Figure 5.6,
the TDDFT results in Figure 5.2b and Figure 5.5c, and the classical results in
Figure 5.2a and Figure 5.5a. First, TDDFT shows substantial broadening and
reduction of the amplitude for the UR evolving from the BDP of the MNP dimer
as compared to both semiclassical and classical results. These effects, not captured
by the semiclassical model, are attributed to the charge-transfer processes between
the MNPs. In our system, electron transport can occur at larger gap separations as
compared to typical vacuum junctions (see Subsection 2.3.2) because it is assisted
by photoexcited electron transfer through the LUMO of the QE [356].

On the other hand, the semiclassical model in Figure 5.6 predicts a continuous
redshift of the LR for the off-resonant case (panels a), and increasing LR–UR
splitting for the resonant case (panel b) with decreasing gap size D, consistent with
the classical LRA predictions. As compared to these classical results, the main
difference is that the semiclassical model shows a weakening and a broadening of
the LR upon decreasing D, which points toward the role of nonlocal optical effects
that can also affect the electromagnetic response for such a small system [336] as
discussed in detail in Chapter 3. Therefore, the comparison of the results obtained
within the classical LRA, the semiclassical model, and the TDDFT approach as
employed in this chapter allows us to conclude that the blueshift of the LR for
decreasing D below D ≤ 26 a0 for the off-resonant QE–MNPs system, as well as the
weakening of the LR–UR splitting for the resonant case, are only observed when
the hybridization between the MNPs and the QE electronic orbitals is possible,
i.e., when the (excited) electron can tunnel across the system.

5.2.3 Charge-transfer resonances at low frequencies
Finally, we discuss in Figure 5.7 the role of the QE in triggering electron transport
between the two MNPs across the junction in response to external illumination.
In the last years, several works have identified the emergence of charge-transfer
plasmons (CTP) supported by metallic vacuum junctions for gap separations
typically below ∼ 0.4 nm and resonant frequencies of the order of a few electronvolts
[43, 68, 83, 84, 86, 342, 357]. CTP are plasmonic resonances where a net electron
transport occur between the MNPs that form the nanogap (see Subsection 2.3.2).
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Figure 5.7: (a) Absorption spectra of the hybrid QE–MNPs system for low illumination frequencies
ω = 0−1 eV. Results are shown for a gap size D ranging from D = 12 a0 to D = 18 a0, as indicated
in the inset. The reference absorption spectrum of the isolated MNP dimer for D = 12 a0 is shown
by the dashed black line. The situations for V0 = 1 eV (top) and V0 = 5 eV (bottom) in Eq. (5.3)
are considered. (c) Color maps of the induced electron density (left) and the electron-current
density along the z-direction (right) for an incident z-polarized electromagnetic plane wave of
frequency ωCT = 0.11 eV. The gap distance is D = 16 a0, and V0 = 1 eV. On the right-hand
side panel, the boundaries of the jellium edges of the MNPs are indicated by dashed lines. The
snapshots are taken at the instants of time when the absolute value of the total dipole moment
(left-hand side panel) and of the electron-current density in the middle of the junction (right-hand
side panel) are maximum. (c) Ground-state potential Veff along the symmetry z-axis of the
hybrid QE–MNPs system for D = 16 a0.

Moreover, as pointed out in previous works [107–109, 329, 353], the presence of a QE
bridging a metallic nanogap substantially modifies the charge-transfer properties of
the system and triggers out the emergence of low-frequency resonances associated
with electron transport between the MNPs.

In our study, the absorption cross-section σabs(ω) shown in Figure 5.7a for
two different QEs characterized by V0 = 1 eV (top) and V0 = 5 eV (bottom)
reveals that a charge-transfer resonance emerges in the low-frequency region,
ωCT ∼ 0.1 − 0.2 eV, for gap sizes D = 12 a0 − 18 a0 (D ≈ 0.6 − 0.95 nm, thus
larger than typical tunneling distances in metal–vacuum–metal junctions studied
in Subsection 2.3.2). Our results are consistent with the findings reported in the
literature [74, 107, 108, 353]. This new resonance is only activated due to the
presence of the QE (see the response of the isolated dimer depicted by the dashed
line), and it blueshifts and strengthens considerably when decreasing interparticle
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distance. The charge-transfer character of the mode is clearly revealed by the
induced electron density shown in Figure 5.7b (left-hand side panel), with each
MNP exhibiting a monopolar electron density pattern of opposite sign, and it is
further corroborated by the electron-current density along the z-direction (right-
hand side panel), which clearly shows that electrons shuttle from one MNP to
another. In the studied QE–MNPs system, the observed charge-transfer resonances
at ωCT ∼ 0.1 − 0.2 eV emerge because for gap separations of D ∼ 18 a0 and below,
the QE gives rise to a decrease of the potential barrier close to the dimer axis
below the Fermi level of the system (Figure 5.7c), so that even a classically-allowed
over-the-barrier electron transport between the MNPs becomes possible. Thus,
the low-frequency charge-transfer plasmon reported here can be understood as a
consequence of the ballistic electron transport and does not require the tunneling
mechanism aid by a localized state at the QE [109].

5.3 Summary
In summary, in this chapter we have identified the role played by electronic
coupling in the optical response of a canonical hybrid system consisting in a two-
level quantum emitter (QE) placed in a nanogap formed by two spherical metal
nanoparticles (MNPs). Using a TDDFT description for both the QE and the
MNPs, we have demonstrated the quenching of the QE exciton originated by the
hybridization of the excited states localized at the QE and the electronic states of
the MNPs. This exciton quenching drastically affects the optoelectronic response
of the hybrid QE–MNPs system for small gap separations. For example, it gives
rise to a blueshift of the lower resonance (LR) with decreasing gap separation
distance below D ≲ 26 a0 for situations where the QE transition frequency ωQE is
out of resonance with the main plasmonic mode of the MNP dimer, in contrast to
the classical LRA calculations that predict a continuous redshift. Further, exciton
quenching produced by the electronic interaction also leads to a drastic attenuation
of the LR–UR splitting in resonant QE–MNPs systems, thus frustrating the strong
coupling predicted by classical LRA simulations. On the other hand, depletion of
the potential barrier within sub-nanometric gaps due to the presence of the QE
gives rise to a low-frequency electron-transfer resonance at ωCT ∼ 0.2 eV, even for
situations where the electronic states of the QE do not act as a gateway for electron
transport between the MNPs. Our findings are expected to qualitatively apply
for plasmon–exciton systems irrespective of the specific electronic structure of the
nanoconstituents, since they are based on general and robust quantum-mechanical
phenomena such as electron tunneling and electron transfer between the MNPs
and the QE. Thus, the results obtained in this chapter stress the need to consider
the QE–MNPs electronic coupling, in addition to the standard electromagnetic
interaction, in order to unveil fundamental quantum effects related to charge
transfer, often affecting practical implementation of nanoscale sources of photon
emission and optoelectronic nanodevices.
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6
SECOND-HARMONIC GENERATION
FROM A QUANTUM EMITTER
COUPLED TO A METALLIC
NANOPARTICLE

In previous chapters, we focused on the analysis of quantum effects emerging in the
optical and electronic response of plasmonic systems in situations where the intensity
of the external illumination is weak and thus the response is linear. However, when
the intensity of the external illumination is strong, the excitation of plasmonic
resonances in metallic nanoparticles (MNPs) can also lead to nonlinear effects that
can be useful for (bio-)imaging [358–360] or for generation of extreme-ultraviolet
attosecond laser pulses [361], among others [36, 37]. In particular, second-harmonic
generation (SHG), whereby two photons at the fundamental frequency are absorbed
to emit one photon at the second-harmonic frequency, is at the focus of very active
research owing to its practical and fundamental interest [362–371]. In this context,
it has been shown that plasmonic nanostructures resonant at the fundamental or at
the second-harmonic frequency (or at both frequencies) can give rise to considerable
enhancement of SHG [294, 367, 368, 372–383]. Recent experiments have also shown
the polarization-resolved probing of the nonlinear near-field distribution of metallic
nanostructures by using doubly resonant plasmonic antennas [384]. To achieve
SHG, however, the symmetry of the system needs to be considered. For example,
we showed in Section 1.3 and Section 2.4 that, for typical plane-wave incidence,
SHG is forbidden from nanostructures that are centrosymmetric. This nonlinear
response is thus very sensitive to the geometry of the system and to surface effects
that may eventually break the symmetry constraints and lead to the emission of
light at the second-harmonic frequency [37, 68, 154, 385–388].
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In this chapter, we study SHG from a coupled system consisting of a quantum
emitter (QE) placed in the vicinity of a spherical MNP [111, 389, 390], as sketched
in Figure 6.1a. The small individual centrosymmetric MNP does not allow for
second-harmonic emission into the far field, but it creates second-harmonic near
fields in the proximity of the MNP surface. The presence of the QE lifts the
symmetry constraints and allows for SHG. When the electronic transition frequency
of the QE, ωQE, is resonant with the second harmonic of the incident frequency, the
QE plays the role of an optical resonator, which efficiently couples to the nonlinear
electric near field induced close to the MNP (see Section 2.4), transduces this near
field into the far field, and thus produces SHG [384]. This QE–MNP system thus
enables frequency conversion and allows for its control. To calculate the nonlinear
response of the coupled system and to reveal the physical mechanisms behind
SHG in this situation, we use TDDFT calculations [70, 71] based on the wave-
packet propagation (WPP) method introduced in Section 2.2. With the insights
obtained from the TDDFT simulations, we develop a semi-analytical model that
accurately reproduces the TDDFT results. This semi-analytical model also allows
for addressing more general and complex situations beyond the reach of TDDFT,
making possible a detailed study of the sensitivity of SHG to different parameters
that characterize the system. In particular, we demonstrate the polarization
conversion of the nonlinear signal, as well as the existence of various regimes of
SHG determined by the intrinsic losses of the QE. The methodology and results
presented in this chapter can pave the conceptual road for enhancing and optimizing
SHG mediated by QEs coupled to plasmonic systems [391, 392].

6.1 System and methods
We consider a QE located in proximity to a spherical sodium MNP. The MNP
is characterized as in Section 2.4 (Wigner–Seitz radius rs = 4 a0, Ne = 1074
conduction electrons, and radius a = 40.96 a0). The dipolar plasmon (DP)
resonance of the individual MNP is at ωDP = 3.17 eV, and the quadrupolar plasmon
(QP) resonance at ωQP = 3.4 eV. A Gaussian-like external excitation Vext(r, t)
given by Eq. (2.79) with fundamental frequency ω, duration σ = 5 × 2π/ω, and
intensity I0 = 1010 W cm−2 (amplitude E0 = 4.8×10−4 au) is used within TDDFT
in this chapter. Importantly, as discussed in Section 2.4, such spherical MNP
cannot emit second-harmonic light into the far field due to symmetry constraints,
however second-harmonic fields with a quadrupolar pattern are induced in the
proximity of the MNP because the inversion symmetry is locally broken at the
surface (right-hand side panel in Figure 6.1b). The transition frequency of the QE
is set to be resonant with the second harmonic of the fundamental frequency of the
external illumination, ωQE = 2ω, so that a variation of ω in our calculations implies
simultaneous variation of ωQE. The QE plays the role of an optical resonator,
sensitive to the second-harmonic electric near field [384]. We model the QE as
a point-like dipole as described in Subsection 1.4.1, using an oscillator strength
α0

QE = 1 au in Eq. (1.54). The value of the intrinsic damping parameter γQE is
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Figure 6.1: (a) Sketch of the system studied in this chapter: the radius of the spherical sodium
MNP is a = 40.96 a0 (≈ 2.2 nm), and the point-like QE is located at position rQE, at a distance d
from the MNP surface. A Wigner–Seitz radius rs = 4 a0 is used to characterize the MNP within
the jellium model. (b) Color maps of the real part of the radial component of the electric near
field Eind(r, ω) induced at the fundamental (ω, left-hand side panel) and at the second-harmonic
frequency (2ω, right-hand side panel) by a z-polarized Gaussian electromagnetic pulse with
fundamental frequency ω = 1.585 eV and intensity I0 = 1010 W cm−2 incident at the individual
spherical MNP in the absence of the QE (same results are also shown in Figure 2.8). Results
are rotationally symmetric with respect to the z-axis, and they are shown in the (x, z)-plane
normalized to unity. Red and blue colors are used for positive and negative values, respectively
(white for zero).

varied in this chapter within the range γQE = 0.1 eV − 10−7 eV.
The expectation value of the QE dipole moment, pQE(t), evolves in time

according to [22] [see Eq. (1.54)]:

p̈QE(t) + γQEṗQE(t) + ω2
QEpQE(t) = α0

QEEtot(rQE, t), (6.1)

where the total electric field Etot(rQE, t) acting on the QE position rQE is given
by the sum of the incident laser pulse (with amplitude E0, duration σ = 5 × 2π/ω,
and arrival time t0 = 5σ),

Eext(t) = ẑ E0 cos(ω(t− t0)) e−( t−t0
σ )2

, (6.2)

and the field Eind(rQE, t) induced by the MNP [Eq. (2.34)] at the position rQE of
the QE, Etot(rQE, t) = Eext(t) + Eind(rQE, t). Note that Eind(rQE, t) includes the
reaction of the MNP not only to the incident pulse, but also to the electric field
induced by the QE. It thus also accounts for the QE self-interaction (see Subsection
1.4.2). We describe in Appendix C how we solve Eq. (6.1) in this thesis.

The QE dipole pQE(t) acts as a radiation source emitting into the far field as
well as affecting the dynamics of the conduction electrons of the MNP. Because of
the small size of the system, retardation effects can be neglected, so that the QE
placed at a position rQE near the MNP creates an electrostatic potential given by
[Eq. (3.3)]:

VQE(r, t) = −pQE(t) · r − rQE

|r − rQE|3
. (6.3)
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Thus, the Kohn–Sham Hamiltonian Ĥ[n(r, t)] within TDDFT [Eq. (2.19)] acting
on the MNP conduction electrons is given by

Ĥ[n(r, t)] = T̂ + VH[n(r, t)] + Vxc[n(r, t)] + Vext(r, t) + VQE(r, t), (6.4)

where, as discussed in Section 2.1 and Section 2.2, n(r, t) is the time-dependent
electron density [Eq. (2.20)], T̂ = − 1

2 ∇2 is the kinetic-energy operator, VH[n(r, t)] is
the Hartree potential [Eq. (2.23)], Vxc[n(r, t)] is the exchange–correlation potential
[Eq. (2.12)] calculated using the kernel of Gunnarsson and Lundquist [198], and
Vext(r, t) is the external potential given by Eq. (2.79) that drives the QE–MNP
system. We employ the WPP algorithm in spherical coordinates as described in
Subsection 2.3.1. In this case, the time-dependent Kohn–Sham equations given
by Eq. (2.19) and Eq. (2.20) are solved self-consistently together with Eq. (6.1),
Eq. (6.3), and Eq. (6.4). These equations are solved in time domain, and the
time-to-frequency Fourier transform given by Eq. (2.80) is used to obtain the
frequency-resolved quantities of interest such as the nonlinear dipole moment
induced at the MNP, pMNP(Ω), and at the QE, pQE(Ω). The total dipole moment
p(Ω) is given by the sum of both, p(Ω) = pMNP(Ω) + pQE(Ω). Here, the symbol
Ω is used to denote the frequency of the induced dipole moments, since we are
considering the nonlinear regime where ω ̸= Ω in general. A Gaussian filter F(t)
given by Eq. (2.81) is used in the Fourier transforms to partially account for decay
and dephasing processes of the collective density oscillations that are not included
in the present ALDA-TDDFT approach (see Section 2.2).

6.2 Results and discussion

6.2.1 TDDFT results
We initially place the QE at the z-axis, corresponding to the direction of polarization
of the incident laser pulse, at a distance d = 18 a0 (≈ 0.95 nm) from the MNP
surface. For this geometry, only z-polarized dipole moments are induced in the
QE and in the MNP. The system then possesses cylindrical symmetry with respect
to the z-axis, which greatly reduces the computational demands for the TDDFT
calculations. The frequency of the external excitation ω = 1.585 eV is first
considered such that its second harmonic matches the DP frequency of the MNP,
2ω = ωDP = 3.17 eV, and the intrinsic damping parameter of the QE is set to
γQE = 0.1 eV.

Figure 6.2 shows that the coupled QE–MNP system features strong emission at
both odd and even harmonics, in contrast to the individual MNP that only emits
at odd-harmonics due to the inversion symmetry of the system (see Section 2.4).
In this figure, the intensity spectrum of the total induced dipole moment |p(Ω)|2
calculated within TDDFT for the coupled QE–MNP structure is shown by the blue
line, revealing clear peaks at even harmonics Ω = 2ω, 4ω and 6ω. The reference
results obtained for the nonlinear response of the individual MNP (without QE)
are shown by the dashed red line (only harmonics at Ω = ω, 3ω, 5ω and 7ω are
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Figure 6.2: Intensity spectrum of the total dipole moment |p(Ω)|2 of the coupled QE–MNP
system (solid blue line) and of the individual MNP (dashed red line). Results are obtained for an
incident z-polarized Gaussian electromagnetic pulse with fundamental frequency ω = 1.585 eV
and intensity I0 = 1010 W cm−2. The QE is located at the z-axis, at a distance d = 18 a0
(≈ 0.95 nm) from the MNP surface, and it is characterized by a transition frequency ωQE = 2ω,
an intrinsic damping parameter γQE = 0.1 eV, and oscillator strength α0

QE = 1 au, following
Eq. (6.1). Results are shown as a function of the frequency measured in units of the fundamental
frequency ω. In the inset, the solid blue line corresponds to the same result as in the main
figure (with QE), and the dashed black line corresponds to the results obtained for the transition
frequency of the QE resonant with the fourth harmonic of the incident light, ωQE = 4ω, with
ω = 0.79 eV.

observed, as discussed in Figure 2.7). The even harmonics in the far field from the
coupled QE–MNP system emerge because the QE breaks the reflection symmetry
with respect to the (x, y)-plane, and thus the total inversion symmetry of the
system [388]. Note that the spectra in Figure 6.2 are artificially broadened by
application of the Gaussian filter given in Eq. (2.81) that allows for introducing
losses in the system. We show in Figure 6.3 the effect of the Gaussian filter given
by Eq. (2.81). While the nonfiltered spectrum of the hybrid MNP-QE system (blue
line) appears quite noisy, the filtered one presents very well-defined high-harmonic
peaks (red line). All the peaks are broadened by the filter, which results in an
attenuation of the maximum value of the peaks as compared to the nonfiltered
signal. Figure 6.3 thus illustrates how this filtering procedure allows us to reach
convergent spectral response at high-harmonic frequencies. In Subsection 6.2.2, we
develop a semi-analytical method that allows us to overcome the difficulties of the
ALDA-TDDFT calculations to incorporate losses [72, 241, 242].

The resonance between the transition frequency of the QE, ωQE, and the second
harmonic of the incident pulse strongly enhances the intensity emitted by the system
at 2ω. To illustrate this resonance effect, we show in the inset of Figure 6.2 the
results obtained for a different situation. The QE transition frequency ωQE in this
case is set to be resonant with 4ω (dashed black line), and the system is illuminated
by a Gaussian pulse with fundamental frequency ω such that the fourth harmonic
matches the frequency of the MNP dipolar plasmon, 4ω = ωQE = ωDP = 3.17 eV.
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Figure 6.3: Intensity spectrum |p(Ω)|2 of the induced dipole moment of the coupled
QE–MNP system considered in this chapter for the case when we apply the Gaussian
filter (red dotted line) and without applying the filter (blue line). The QE is located at
d = 18 a0 from the MNP surface, and a Gaussian electromagnetic field with frequency
ω = 1.585 eV and average intensity I0 = 1010 W cm−2 is used. Results are shown as a
function of the frequency measured in units of the fundamental frequency ω.

For this excitation frequency, the TDDFT results reveal that |p(Ω)|2 at the second
harmonic decreases by several orders of magnitude in favor of the emission at the
fourth harmonic resonant with the QE transition. With the purpose of enhancing
SHG, in the following we thus focus on the situation where ωQE = 2ω.

Physical mechanism behind SHG from the QE–MNP system

We next use TDDFT calculations to determine the physical mechanism behind
the nonlinear second-harmonic response of the coupled QE–MNP system shown
in Figure 6.2. The dipole moment of the QE, pQE(t), mainly oscillates at the
fundamental frequency ω and at the second-harmonic frequency 2ω of the incident
pulse. Indeed, the QE transition is resonant with the second harmonic, ωQE = 2ω,
but the field acting on the QE at the fundamental frequency ω is orders of magnitude
stronger than the near field induced by the MNP at 2ω (see Figure 2.7b). As a
result, the off-resonant dipole moment of the QE at ω can be strong and, thus,
two distinct channels might contribute to the second-harmonic dipole moment of
the coupled QE–MNP system: (i) the excitation of the QE dipole moment at the
resonant second-harmonic frequency 2ω induces a second-harmonic dipole moment
at the MNP due to a linear interaction, and (ii) the off-resonant dipole moment of
the QE at the fundamental frequency ω lifts the symmetry constraint of the entire
system and allows for the second-harmonic dipole moment to be induced at the
MNP via a nonlinear process.

In order to obtain the respective weight of the two different channels inducing
a second-harmonic dipole at the MNP, we proceed as follows: using the Fourier
analysis, we split the dipole moment pQE(t) of the QE obtained from the TDDFT
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Figure 6.4: (a) Time evolution of the two main components of the QE dipole moment: (i) one
oscillating at the second-harmonic frequency 2ω (p2ω

QE(t), red line), and (ii) the other one oscillating
mainly at the fundamental frequency ω (pω

QE(t), blue line). The QE is located at d = 18 a0 from
the MNP surface, and a Gaussian electromagnetic field with frequency ω = 1.585 eV and average
intensity I0 = 1010 W cm−2 is used [Eq. (6.2)]. (b) Second-harmonic dipole moment of the
MNP, |pMNP(Ω ∼ 2ω)|2, when interacting with the QE from a full calculation (black line), when
interacting with the QE oscillating only at 2ω (blue line), and when interacting with the QE
oscillating at ω (red line, amplified 50 times) for the same parameters as in panel a. For further
details see the main text. (c) Sketch of the main physical process behind SHG in the present
system. The MNP induces a near field at 2ω that excites the emitter. Then, the linear QE–MNP
electromagnetic interaction at 2ω generates the emission into the far field at the second-harmonic
frequency.

calculation of the coupled QE–MNP system into a sum of the two leading
contributions, pQE(t) = pω

QE(t) + p2ω
QE(t), one oscillating at the fundamental

frequency, pω
QE(t), and the other one at the second-harmonic frequency, p2ω

QE(t).
pω

QE(t) and p2ω
QE(t) are shown in Figure 6.4a by the blue and red lines, respectively.

We then run two different TDDFT simulations, where the electron density of the
MNP evolves in the following way:28

(i) solely under the action of the potential created by the point dipole oscillating
at the second-harmonic frequency, V 2ω

QE(r, t) = −p2ω
QE(t) · r−rQE

|r−rQE|3 [Eq. (6.3)], with
no external laser pulse applied (Vext(r, t) = 0), and

(ii) under the action of the external potential Vext(r, t) given by Eq. (2.79)
(corresponding to the laser pulse) plus the potential created by the point dipole
oscillating at the fundamental frequency, V ω

QE(r, t) = −pω
QE(t) · r−rQE

|r−rQE|3 .

28 The self-consistency loop is stopped in both cases, in the sense that the MNP does not act
back on the QE.
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As shown in Figure 6.4b, the second-harmonic dipole moment |pMNP(Ω ∼ 2ω)|2
of the MNP obtained in scenario (i) and shown with blue line, closely corresponds to
the result of the complete self-consistent calculation (black line). On the other hand,
the second-harmonic dipole moment |pMNP(Ω ∼ 2ω)|2 obtained under scenario
(ii) is more than 2 orders of magnitude weaker (red line) than the one obtained
from the full calculation. These results point toward the following main physical
mechanism underlying far-field SHG in the present system:

1. The interaction of the (strong) incident laser pulse with the conduction
electrons of the MNP generates a second-harmonic near field.

2. The second harmonic of the near field of the MNP resonantly drives the QE
at 2ω and induces a second-harmonic dipole moment at the QE.

3. The resulting QE dipole oscillating at 2ω radiates into the far field in the
presence of the MNP.

The physical process revealed by TDDFT simulations is sketched in Figure 6.4c
[111], and allows us to develop a practical semi-analytical approach in Subsection
6.2.2 which, by combining TDDFT and classical results, can be used to describe
more complex situations involving the intrinsic losses of the QE as well as its
position with respect to the MNP.

6.2.2 TDDFT vs. semi-analytical model
The understanding of the physical mechanism behind SHG established above using
TDDFT calculations can be used to develop a semi-analytical model capable of
reproducing the role of the QE in the second-harmonic response of the coupled
QE–MNP system. As discussed below, this semi-analytical model goes beyond
the TDDFT because it naturally incorporates the losses and the plasmon decay,
and thus lifts the necessity of using artificial broadening of the spectral features
[Eq. (2.81)]. Moreover, this approach allows us to analyze systems without axial
symmetry, i.e., situations of arbitrary polarization of the incident pulse and position
of the QE. Such analysis would be computationally out of reach for the TDDFT
calculations.

This semi-analytical model is based on the self-interaction Green’s function
formalism described in Subsection 1.4.2, which addresses the QE–MNP
electromagnetic coupling in frequency domain. The QE is excited by the incident
laser pulse and by the nonlinear electric near field induced at the MNP, as obtained
from the TDDFT calculations of the individual MNP, i.e., in the absence of the
QE. The excited QE then radiates into the far field in the presence of the MNP.
The last stage of the calculation, which involves the coupling of the QE with the
MNP and the resulting light emission to the far field, is treated within the classical
framework introduced in Chapter 1. Using the self-interaction Green’s function
formalism we obtain (see Subsection 1.4.2):
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pQE(Ω) =(
I − αQE(Ω)Ĝ(rQE, rQE,Ω)

)−1
αQE(Ω)Etot(rQE,Ω),

pMNP(Ω) = pTDDFT
MNP (Ω) + αMNP(Ω)Ĝ0pQE(Ω), (6.5)

where pTDDFT
MNP (Ω) is the dipole moment of the individual MNP induced by the

incident laser pulse, calculated with TDDFT in the absence of the QE (this
contribution is zero for even harmonics Ω = 2ω, 4ω, . . . ). The electric field at the
position rQE of the QE, Etot(rQE,Ω), is given by

Etot(rQE,Ω) = ETDDFT
ind (rQE,Ω) + Eext(Ω), (6.6)

where the field of the external laser pulse Eext(Ω) (Fourier transform of Eq. (6.2))
is added to the electric field ETDDFT

ind (rQE,Ω) created by the noninteracting
MNP. ETDDFT

ind (rQE,Ω) is obtained from TDDFT calculations for the individual
MNP subjected to a Gaussian laser pulse (Section 2.4), and it introduces all the
second-harmonic nonlinearity. The polarizability of the sodium MNP of radius
a, αMNP(Ω), and that of the QE, αQE(Ω), are obtained from Eq. (1.45) and
Eq. (1.55), respectively. Finally, in Eq. (6.5) Ĝ(rQE, rQE,Ω) is the self-interaction
dyadic Green’s function that provides the electric field created by the spherical
MNP at position rQE in response to a point dipole located at the same position
[Eq. (1.58)], and the vacuum Green’s function Ĝ0 provides the electric field at the
center of the MNP produced by a unitary point dipole placed at position rQE [22].

Within this semi-analytical model, we use a Drude dielectric function ε(Ω) of the
MNP given by Eq. (1.10), where the plasma frequency ωp = 5.49 eV and intrinsic
damping parameter γp = 0.218 eV are determined from the fit to the linear optical
absorption spectrum σabs of the individual MNP calculated within TDDFT (not
shown). This parametrization allows us to partially account for quantum finite-size
effects in the plasmonic response of the MNP [64, 194], as described in Section
2.3 and Chapter 3. Moreover, to mimic the effect of the spill-out of the induced
charge density, naturally included within the TDDFT results, the semi-analytical
model calculations are performed using a reduced “effective” QE–MNP separation
deff = d− ∆, where ∆ = 1.5 a0. As a result, e.g., the TDDFT data obtained for the
QE located at d = 18 a0 from the MNP surface are compared with semi-analytical
model results obtained for deff = 16.5 a0. As pointed out in Chapter 5, introducing
the distance scaling ∆ is effectively similar to considering the Feibelman parameter
d⊥ to account for the spill-out of the induced electron density [58].

We analyze the performance of the semi-analytical approach by comparing the
TDDFT and the semi-analytical results for the nonlinear response of the coupled QE–
MNP system excited by a z-polarized Gaussian pulse with fundamental frequency
ω = 1.585 eV and intensity I0 = 1010 W cm−2. We show in Figure 6.5a the intensity
spectrum of the total dipole |p(Ω)|2 as obtained from TDDFT (solid blue line)
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Figure 6.5: (a) Intensity spectrum of the induced total dipole moment |p(Ω)|2 obtained from the
TDDFT calculations (blue line) and from the semi-analytical model (dashed red line). Results are
shown as a function of the frequency measured in units of the fundamental frequency ω = 1.585 eV
of the incident laser pulse. The QE is located at d = 18 a0 (0.95 nm) from the MNP surface. (b)
Second-harmonic dipole moment |p(Ω = 2ω)|2 calculated using the semi-analytical model (dashed
lines) and TDDFT (solid lines). Results are shown as a function of the QE–MNP distance d
for three different fundamental frequencies such that 2ω = 2.4 eV (off resonance), 2ω = 3.17 eV
(at resonance with the MNP dipolar plasmon), and 2ω = 3.4 eV (at resonance with the MNP
quadrupolar plasmon). In both panels a z-polarized Gaussian pulse of intensity I0 = 1010 W cm−2

is used [Eq. (6.2)].

and from the semi-analytical model (dashed red line) calculations. An excellent
agreement between the two approaches is obtained for the nonlinear dipole moment
at the second harmonic Ω = 2ω, which is at the focus of the present chapter.

On the other hand, for higher-order harmonics the agreement strongly worsens,
specially for high-order even harmonics Ω = 4ω and Ω = 6ω that can be generated
only due to the QE–MNP electromagnetic interaction. This indicates that other
nonlinear processes beyond the scope of the present model become important for
such low-intensity harmonic generation. It is worth noting that, for the sake of
comparison between the two approaches, the Gaussian filters employed in the
Fourier analysis of the time-dependent quantities in the TDDFT [Eq. (2.81)] are
also introduced in the semi-analytical model calculations shown in Figure 6.5a,b
[393].

The results shown so far are obtained for the second harmonic in resonance with
the DP of the MNP, 2ω = ωDP = 3.17 eV. One would expect that, under these
conditions, SHG is very efficient because the emission of the QE resonantly excited
by the near field of the MNP at 2ω is further enhanced by the DP of the MNP playing
the role of a nanoantenna [367, 368, 378–384]. On the other hand, the second-
harmonic near field of the MNP that drives the QE, ETDDFT

ind (rQE,Ω = 2ω), has a
quadrupolar character [288–294, 394] (see right panel in Figure 6.1b), and therefore
it should be stronger when the second-harmonic frequency matches the quadrupolar
plasmon (QP) resonance of the MNP [394], i.e., when 2ω = ωQP = 3.4 eV. This,
in turn, could also lead to an efficient excitation of the QE and thus increase the
emitted second-harmonic signal.

In order to find the optimal conditions for SHG from the coupled QE–MNP, we
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use the TDDFT and the semi-analytical method to study how the second-harmonic
emission into the far field depends on the fundamental frequency ω. In Figure 6.5b,
the second-harmonic dipole intensity |p(Ω = 2ω)|2 is shown as a function of the
distance d of the QE from the MNP surface for three different frequencies ω of
the incident Gaussian laser pulse. First, the values of ω are set such that the
second harmonic matches either the DP (2ω = 3.17 eV, dipole resonant) or the QP
(2ω = 3.4 eV, quadrupole resonant) resonances of the MNP. We consider as well
the reference case where both the fundamental frequency and the second harmonic
are out of resonance with any of the plasmonic modes of the MNP (2ω = 2.4 eV, off
resonant). We recall that the transition frequency of the QE is always in resonance
with the second harmonic, ωQE = 2ω.

Remarkably, the semi-analytical model in Figure 6.5b does an excellent job in
reproducing the TDDFT results for the three situations. Both approaches show the
strongest SHG when the second-harmonic frequency matches the DP resonance of
the MNP, while the off-resonant conditions lead to the smallest SHG. Furthermore,
for all three excitation frequencies |p(Ω = 2ω)|2 monotonically decreases with
increasing distance d. This behavior reflects the decrease of the nonlinear near field
created by the MNP at Ω = 2ω (right panel in Figure 6.1b). However, as we show
using the semi-analytical model in Subsection 6.2.3, the dependence of SHG on
the frequency and distance is strongly affected by the intrinsic losses of the QE
(determined by the damping parameter γQE). This aspect of the problem cannot
be addressed within the present TDDFT because, as stated above, it lacks the
description of the decay and dephasing processes [241, 242], forcing an artificial
broadening of the spectral features using, e.g., the Gaussian filters applied to
connect the time-resolved and the frequency-resolved quantities [Eq. (2.81)]. As a
consequence, reliable information can only be obtained from TDDFT for the cases
where the QE has large intrinsic losses.

6.2.3 Influence of the intrinsic losses and the position of the
QE on the efficiency of SHG

The semi-analytical model introduced in the previous section can be used for
a detailed study of SHG from the coupled QE–MNP structure in response to
incident plane-wave illumination (in contrast to the electromagnetic Gaussian pulse,
Eq. (6.2), considered previously). Moreover, the analysis of the dependence of SHG
on experimentally relevant parameters, which was not computationally possible
with TDDFT, becomes within reach. Namely, we are interested in the dependence
of SHG on the fundamental frequency ω of the external laser, on the intrinsic losses
of the QE (γQE), and on the position of the QE relative to the MNP.

The second-harmonic dipole P2ω induced in the coupled QE–MNP system
by an incident plane wave with average intensity I0 can be estimated from the
frequency-resolved dipole p(Ω) induced by the electromagnetic Gaussian pulse
[Eq. (6.2)] as obtained from Eq. (6.5). The relationship between P2ω (induced
under plane-wave excitation) and p(Ω) (under electromagnetic Gaussian pulse) is
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Figure 6.6: Second-harmonic response |P2ω |2 of the coupled QE–MNP system illuminated
with an incident z-polarized plane wave with fundamental frequency ω and average intensity
I0 = 1010 W cm−2 for different positions of the QE in the (x, z)-plane. The distance is measured
from the surface of the MNP, and the QE is placed at a point given by (d, θQE). The polar
angle θQE is measured with respect to the symmetry z-axis parallel to the electric field vector of
the incident electromagnetic plane wave (see inset in panel a). Different panels correspond to
the results obtained for different values of the fundamental frequency ω (rows) and intrinsic QE
losses determined by γQE (columns). We set ω such that (i) the second harmonic is at resonance
with the QP resonance of the MNP (2ω = 3.4 eV, quadrupole resonant, top row), (ii) the second
harmonic is at resonance with the DP resonance of the MNP (2ω = 3.17 eV, dipole resonant,
middle row), and (iii) the fundamental frequency and the second harmonic are out of resonance
with respect to any mode of the MNP (2ω = 2.4 eV, off resonant, bottom row). The choice
of γQE illustrates situations with high (γQE = 10−1 eV, left-hand side column), intermediate
(γQE = 10−3 eV, center column), and low (γQE = 10−7 eV, right-hand side column) QE losses.

given by

P2ω = 8
√

2πI0

σcE2
0

p(Ω = 2ω), (6.7)

where c is the speed of light in vacuum, and σ and E0 are the duration and the
amplitude of the electromagnetic Gaussian pulse used in the TDDFT simulations,
respectively (see details in Appendix F). p(Ω = 2ω) is calculated using the semi-
analytical model [Eq. (6.5)].

The color maps in Figure 6.6 show the second-harmonic response |P2ω|2 of the
coupled QE–MNP structure subjected to an incident z-polarized plane wave with
fundamental frequency ω and average intensity I0 = 1010 W cm−2 for different
positions of the QE, defined by the distance d from the MNP surface and the polar
angle θQE (see Figure 6.1a and the inset in Figure 6.6a for the geometry of the
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system). The range of distances d = 1 − 5 nm considered in Figure 6.6 is set such
that retardation effects can be neglected. The results are axially symmetric with
respect to the z-axis, and without loss of generality, we consider that the QE is
placed in the (x, z)-plane.

Each panel in Figure 6.6 shows the dependence of the SHG on the QE position
for different fundamental frequency, ω, and intrinsic damping parameter of the QE,
γQE. Specifically, we performed calculations for (i) high QE losses (γQE = 0.1 eV),
which often occur in experiments at room temperature, (ii) intermediate losses
(γQE = 10−3 eV), and (iii) low losses (γQE = 10−7 eV), close to the spontaneous
decay rate of the QE. Similarly to the discussion in Figure 6.5b, we consider
fundamental frequencies ω corresponding to three different situations: (i) the second
harmonic is at resonance with the DP resonance of the MNP (2ω = ωDP = 3.17 eV,
dipole resonant), (ii) the second harmonic is at resonance with the QP of the MNP
(2ω = ωQP = 3.4 eV, quadrupole resonant), and (iii) both the second harmonic and
the fundamental frequency are off-resonance with respect to any plasmon mode of
the MNP (2ω = 2.4 eV, off resonant).

Some common features can be observed in Figure 6.6. First, the symmetry
with respect to the position of the emitter given by the angle θQE = π/2, which
reflects the symmetry of the system with respect to the (x, y)-plane. Second, SHG
is generally higher for the QE placed around the z-axis (θQE ≈ 0 and π), the
region where the near field excited at 2ω is stronger (due to its quadrupolar spatial
profile, see right panel in Figure 6.1b). Indeed, the near field resonantly excites
the QE and partially imprints its spatial distribution into the dependence of the
second-harmonic signal on the position of the QE. Another result common for
large and intermediate QE losses is that the strongest SHG is obtained for the
second-harmonic frequency at resonance with the DP of the MNP, 2ω = ωDP,
which corroborates the TDDFT results discussed in Subsection 6.2.2.

The most prominent feature revealed by the results in Figure 6.6 is however the
key role played by the intrinsic losses of the QE in the efficiency of SHG and in its
dependence on the QE position. In general, lower intrinsic losses allow us to obtain
significantly larger SHG. Remarkably, with γQE ranging from high (10−1 eV) to
intermediate (10−3 eV) and low (10−7 eV) losses, the character of SHG as a function
of the distance d (within the studied distances) changes completely. While |P2ω|2
is monotonously decreasing for large QE losses in the range of distances considered
(panels a,b,c), it is maximized at d ∼ 1.5 − 2 nm for intermediate losses (panels
d,e,f), and at d ∼ 15 − 20 nm for low losses (this last result is not shown in the
figure because it falls outside the validity limit of the nonretarded approximation
used in the calculations). As a further striking result, for low intrinsic QE losses
γQE = 10−7 eV, the resonant condition with the DP of the MNP in panel (h),
2ω = ωDP, does not lead to the largest but to the smallest SHG. The maximum
SHG is obtained in this case for the QE resonant with the QP resonance of the
MNP (panel g) and for off-resonant conditions (panel i).

In order to understand these results, it is useful to consider the respective
weights of the contributions to the total second-harmonic dipole from the QE, PQE

2ω ,
and from the MNP, PMNP

2ω , where P2ω = PQE
2ω + PMNP

2ω . For simplicity, we discuss
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the case of the QE located at the z-axis, but the same arguments are valid for
other geometries. From Eq. (6.5) we obtain

|PQE
2ω |

|P2ω|
= 1

|1 + αMNP(2ω) ẑ Ĝ0 ẑ|
,

|PMNP
2ω |

|P2ω|
= |αMNP(2ω) ẑ Ĝ0 ẑ|

|1 + αMNP(2ω) ẑ Ĝ0 ẑ|
. (6.8)

These expressions are very useful since they do not depend on the particular
properties of the QE. As shown in Figure 6.7a, at large distance d, SHG is
dominated by the dipole moment induced at the QE for the three excitation
frequencies (dashed lines), while at short separation distances the dipole moment
of the MNP provides the leading contribution (solid lines). Note that, given the
scaling of the MNP polarizability with the particle radius, αMNP ∼ a3 [Eq. (1.45)],
and the dependence on the separation distance of the vacuum Green’s dyadic in the
near field, ẑ Ĝ0 ẑ ∼ 1/|a+ d|3, the crossover region would move to larger distances
d with increasing MNP radius.

Along with the relative contributions to SHG given by Eq. (6.8), the response
of the QE at 2ω plays a key role in SHG from the coupled QE–MNP system. The
self-interaction due to the presence of the MNP modifies the total decay rate of the
QE, Γ, due to the Purcell effect. Therefore, it is useful to discuss how the decay
rate of the QE changes due to this self-interaction with the MNP. The total decay
rate Γ (or, equivalently, “effective” broadening) of the QE resonance is given by

Γ = γQE + α0
QEIm{ẑ Ĝ(rQE, rQE, 2ω) ẑ}/2ω, (6.9)

where ẑ Ĝ(rQE, rQE, 2ω) ẑ ∝ 1/|rQE|6 = 1/(a + d)6 can be adopted as an
approximation (ℓ = 1 in Eq. (1.58a)). The self-interaction contribution to Γ
given by the second term on the RHS of Eq. (6.9) is shown in Figure 6.7b. Because
of the frequency dependence of the self-interaction Green’s function Ĝ(rQE, rQE, 2ω)
[Eq. (1.58)], this is largest when the second-harmonic frequency is resonant with
the DP or QP resonance of the MNP, and smallest for the off-resonance conditions.
Notice that the broadening Γ of the QE transition determines the maximum
nonlinear dipole moment of the QE that can be reached at resonance with the
second-harmonic near field of the MNP, ωQE = 2ω.

We are now in a position to explain the main trends observed in Figure 6.6.
Let us consider first the case of high intrinsic losses γQE = 10−1 eV dominating
the decay of the QE over the extra losses introduced by the self-interaction, so
that the “effective” broadening remains unchanged, Γ ≃ γQE (see Figure 6.7b).
The QE dipole at the second-harmonic frequency can then be estimated from
PQE

2ω ∝ ETDDFT
ind (rQE, 2ω)/γQE [Eq. (6.5)]. The near field at the second-harmonic

frequency induced by the MNP in response to the incident field is of quadrupolar
character so that ETDDFT

ind ∝ 1/|rQE|4, and correspondingly PQE
2ω ∝ 1/|rQE|4.

Further, the second-harmonic dipole of the MNP resulting from the interaction with
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Figure 6.7: (a) Relative contributions of the MNP, |PMNP
2ω |/|P2ω | (solid lines), and of the QE,

|PQE
2ω |/|P2ω | (dashed lines) to the total nonlinear dipole P2ω of the system at the second-harmonic

frequency [Eq. (6.8)]. Results are shown as a function of the QE–MNP distance d. The QE is
located at the z-axis (θQE = 0). (b) Additional broadening of the QE transition because of the
interaction with the MNP. The quantity α0

QEIm{ẑ Ĝ(rQE, rQE, 2ω) ẑ}/2ω is shown as a function
of the QE–MNP distance d. In the two panels we consider three different fundamental frequencies
of the incident light, corresponding to 2ω = 3.4 eV (second harmonic at resonance with the QP
resonance of the MNP, blue lines), 2ω = 3.17 eV (second harmonic at resonance with the DP
resonance of the MNP, red lines), and ω = 2.4 eV (off-resonant conditions, green lines).

the QE can be obtained from Eq. (6.5). This is given by PMNP
2ω = αMNP(2ω)Ĝ0PQE

2ω ,
which results in PMNP

2ω ∝ 1/|rQE|7. Therefore, the maximum total nonlinear dipole
P2ω is reached for small d (the MNP dominating regime, see Figure 6.7a), and
monotonically decreases with increasing d as a consequence of the drop-off of both
the second-harmonic near field and the QE–MNP interaction. Since the emission
is maximum for short distances where it is dominated by the nonlinear dipole
moment of the MNP, the power emitted to the far field is enhanced when the
second-harmonic matches the dipolar plasmon, i.e., when the MNP polarizability
αMNP is largest.

We consider next the case of low intrinsic losses, γQE = 10−7 eV, such that the
decay of the QE dipole is determined by the self-interaction for all the distances
considered in the figures: Γ ≃ α0

QEIm{ẑ Ĝ(rQE, rQE, 2ω) ẑ}/2ω (magnitude
plotted in Figure 6.7b). The nonlinear dipole of the QE at the second-harmonic
frequency can then be estimated from PQE

2ω ∝ ETDDFT
ind (rQE, 2ω)/Γ [Eq. (6.5)]. The

dependence of PQE
2ω on the separation distance d is thus governed by that of the

self interaction Γ ∼ 1/|rQE|6 (using ℓ = 1 in Eq. (1.58a) as an approximation) and
that of the quadrupole near field at the second harmonic ETDDFT

ind ∝ 1/|rQE|4. As
a result, PQE

2ω ∝ |rQE|2, while PMNP
2ω = αMNP(2ω)Ĝ0PQE

2ω ∝ 1/|rQE|. The largest
nonlinear dipole can be finally reached at large |rQE| owing to the dipole moment
of the QE. The system is in the regime where the emission from the QE dominates
(Figure 6.7a) and the intensity of SHG increases as ∼ |PQE

2ω |2 ∝ |rQE|4. Additionally,
since Im{ẑĜ(rQE, rQE, ω)ẑ} is maximum at resonance with the DP resonance of the
MNP, setting 2ω = ωDP leads to a larger broadening of the QE resonance (larger Γ
in Eq. (6.9)) and thus to smaller SHG. Thus, the largest nonlinear signal is obtained
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in this regime for the second harmonic in resonance with the quadrupolar mode of
the MNP and for off-resonance conditions. Apart from the losses introduced by
the MNP, the second-harmonic near field ETDDFT

ind (rQE, ω = 2ω) induced by the
individual MNP is stronger for the second harmonic matching the QP resonance of
the MNP [394], 2ω = ωQP = 3.4 eV, which explains why the SHG in Figure 6.6g
is largest for this frequency. Interestingly, the reduction of the second-harmonic
signal at small |rQE| because of the self-interaction term has a similar physical
origin as the well-known effect of QE luminescence quenching in the linear regime
[40, 169].

For intermediate losses, γQE = 10−3 eV, the “effective” broadening Γ of the QE
is given by the self-interaction at small distances d from the surface and saturates
to the intrinsic value γQE at larger distances (see Figure 6.7b). As a consequence,
by increasing d the induced QE dipole at the second harmonic changes its distance
dependence from PQE

2ω ∝ |rQE|2 to PQE
2ω ∝ 1/|rQE|4 leading to a maximum of SGH

for a distance range of d = 1.5 − 2 nm.

6.2.4 Polarization conversion of the second-harmonic field
To close this chapter, we show the possibility to control the polarization of light
emitted at the second-harmonic frequency owing to the quadrupolar character of
the second-harmonic near field of the MNP. We analyze in Figure 6.8b the direction
of polarization of the total second-harmonic dipole P2ω of the system for different
positions of the QE with respect to the MNP. The direction of polarization of
the nonlinear dipole is defined by the angle βP2ω , measured between P2ω and the
positive direction of the z-axis, as schematically shown in Figure 6.8a. The position
of the QE is given by the angle θQE. The QE is placed at different θQE while
keeping a fixed distance d = 2 nm from the MNP surface. The calculations are
performed considering intermediate intrinsic losses, γQE = 10−3 eV, but the same
qualitative behavior is found for other situations.

When the QE is located at θQE = 0 or θQE = π, corresponding to the
polarization direction of the external laser field, the total emitting dipole at
2ω, P2ω, is z-polarized (βP2ω

= 0), i.e., it is parallel to the excitation laser. In
contrast, when the QE is placed at θQE = π/2, the induced second-harmonic dipole
P2ω is x-polarized (βP2ω

= π/2) due to the quadrupolar character of the induced
near field at the second harmonic. This implies a full polarization conversion of
the second-harmonic radiation with respect to the external illumination. This
result is a robust consequence of the symmetry of the system, as discussed in
previous sections. When the QE is located at the z-axis, the system has a rotation
symmetry with respect to the z-axis, thus no x- or y-polarized second-harmonic
dipole can be produced. In a similar way, when the QE is located at the x-axis, the
system is symmetric with respect to the (x, y)-plane, and therefore the z-polarized
second-harmonic dipole is forbidden.
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Figure 6.8: (a) Sketch of the QE–MNP system, where the polarization angle βP2ω is defined
as the angle between P2ω and the positive direction of the z-axis . (b) Polarization direction
βP2ω of the total emitting dipole P2ω as a function of the angular position θQE of the QE.
The QE distance from the MNP surface is fixed to d = 2 nm, and γQE = 10−3 eV. θQE = 0
corresponds to the QE located at the z-axis, and θQE = π/2 corresponds to the QE located at the
x-axis. We consider three different fundamental frequencies of the incident light, corresponding
to 2ω = 3.4 eV (second harmonic at resonance with the QP resonance of the MNP, blue lines),
2ω = 3.17 eV (second harmonic at resonance with the DP resonance of the MNP, red lines), and
2ω = 2.4 eV (off-resonant conditions, green lines).

6.3 Summary
In summary, we have studied in this chapter how the electromagnetic coupling of
a QE with a centrosymmetric MNP alters the nonlinear response of the coupled
system and enables otherwise-forbidden SHG. Using TDDFT simulations we have
shown that, when the second harmonic of the fundamental frequency is resonant
with the transition frequency of the quantum emitter, the latter plays the role of
an optical resonator that scatters the local second-harmonic near field created by
the MNP into the far field.

For the present system, the TDDFT calculations reveal the following three-step
scenario of SHG process: first, the MNP generates a second-harmonic near field in
response to the incident radiation, second, the QE is resonantly excited at 2ω by
this near field and, finally, the QE emits in the presence of the MNP. We would
like to stress, however, that the generalization of this mechanism to other systems
has to be done carefully considering the specific properties of the QE and the MNP.
In particular, the polarization of the QE at the fundamental frequency could also
lead to an appreciable nonlinear response of the MNP as would be, for instance, in
the case of a small MNP and a strongly polarizable QE.

The insights provided by the TDDFT calculations allowed us to develop a
semi-analytical model of the second-harmonic response of the QE–MNP coupled
system. Using the semi-analytical model, we have demonstrated that the efficiency
of the SHG, its dependence on the position of the QE, and its dependence on the
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frequency match between the plasmonic modes of the MNP and the QE transition,
is determined by the relative weight of the QE intrinsic losses and the broadening
of the QE resonance induced by the self-interaction mediated by the MNP. We have
shown that it is possible to obtain orders of magnitude stronger SHG by reducing
the intrinsic losses of the QE.

Finally, we have demonstrated the possibility to control the polarization of light
emitted at the second harmonic. We have shown that the polarization of the total
second-harmonic dipole of the QE–MNP system depends on the position of the
QE with respect to the axis defined by the polarization of the incident light. In
particular, this allows us to obtain a full polarization conversion where the dipole
emitting at the second harmonic is perpendicular to the external illuminating field.

Although the results shown in this chapter are obtained for a model spherical
MNP and a structureless QE, the qualitative conclusions stem from the robust
phenomenon of generation of even-harmonic near fields close to the MNP surface,
from general symmetry constraints, and from the physics of optical resonators
interacting with plasmonic nanostructures. It thus appears from our findings that
the coupled QE–MNP structure can be a promising platform for creating and
controlling second-harmonic generation.
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This thesis explores diverse quantum many-body phenomena in the optical response
of metallic nanoparticles (MNPs) and in their coupling to quantum emitters (QEs)
via plasmon–exciton interaction. In general, TDDFT has been the key tool to
study a variety of quantum effects both in the linear and nonlinear regime of the
optical response of the studied systems. Moreover, we have shown that overall the
semiclassical surface-response formalism (SRF) based on the Feibelman parameters
is a good approximation to capture quantum surface effects in the optical response
of nanoscale plasmonic systems in situations where electron tunneling and nonlinear
effects do not play a significant role.

The main findings and conclusions obtained in this thesis are summarized below:

• In Chapter 3, we provide a fundamental description of the electromagnetic
coupling between spherical MNPs and point-dipole QEs at the nanoscale in
situations where electron tunneling and any other charge-transfer process
related to the electronic coupling between the QE and the MNPs can be
neglected. With this purpose, we use TDDFT within the jellium model to
study the impact of quantum surface effects on the self-interaction Green’s
function that governs the electromagnetic QE–MNPs interaction, showing that
quantum many-body effects produce a redshift and broadening of plasmonic
resonances not considered in classical theories that use a local dielectric
response of the metals. With the help of the (standard) nondispersive SRF
based on the long-wavelength Feibelman parameters (which neglects the
nonlocality of the optical response along the metal surface), we confirm that
the origin of the quantum effects can be linked to the spill out of the induced
charges and surface-enabled Landau damping. Moreover, we demonstrate
that, although the nondispersive SRF correctly reproduces the nonlocal
surface response obtained by fully quantum TDDFT calculations for most
QE–MNPs configurations, this approach fails when the QE is located in very
close proximity to the MNP surface.

• In Chapter 4, we propose a dispersive SRF that resolves the shortcomings
of the nondispersive SRF often used in the literature (and in Chapter 3) by
explicitly accounting for the nonlocality of the optical response along the
metal surface in the parallel direction. We first use TDDFT simulations to
obtain the optical response of a metallic nanowire as described within the
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jellium model, and calculate the Feibelman parameter d⊥(ω, k∥) as a function
of the external excitation frequency, ω, and the wavenumber parallel to the
metal surface, k∥. Moreover, by studying the optical response of a cylindrical
nanowire as well as that of spherical MNPs and their dimers using d⊥(ω, k∥),
we show that by explicitly accounting for the dependence of the Feibelman
parameters on k∥ it is possible to extend the applicability range of the SRF
to situations where extremely confined plasmonic fields are induced. The
dispersive SRF proposed in Chapter 4 can thus be used to effectively account
for quantum nonlocal effects in plasmonic systems with generality as long as
charge-transfer processes and nonlinear effects are not involved.

• In Chapter 5, we analyze the effect of electronic coupling between a two-level
QE and a spherical MNP dimer, in addition to the standard electromagnetic
interaction. This electronic QE–MNPs coupling is often ignored in classical
descriptions of the optical response as well as in other semiclassical models
such as the SRF employed in Chapters 3 and 4, which treat the QEs as
point-like dipoles. Using TDDFT calculations for the entire QE–MNPs hybrid
system, we show that the hybridization between the electronic states of the
QE and those of the MNPs strongly modifies the energy, the width and the
very existence of the optical resonances of the coupled system. The QE exciton
is shown to be quenched for QE–MNP surface-to-surface distances smaller
than ≈ 0.5 nm. We can thus conclude that the application of a quantum
many-body treatment which addresses charge-transfer processes between the
QE and the MNPs is crucial to correctly address the optoelectronic response
of a QE–MNPs system at (sub)-nanometer distances.

• In Chapter 6, we study nonlinear optical processes leading to second-harmonic
generation (SHG) in a system comprising a QE and an individual spherical
MNP, where the transition frequency of the QE is set to be resonant with
the second harmonic of the incident frequency. We show that the QE enables
strong SHG, otherwise forbidden due to symmetry constraints of the individual
MNP. TDDFT calculations allow us to identify the main mechanism driving
this nonlinear effect, where the QE plays the role of an optical resonator that
experiences the nonlinear near fields generated by the metallic nanoantenna
located nearby. We also develop a model that, by combining TDDFT and
classical calculations, captures the main effects and contributions to this
nonlinear process in a computationally simple manner. Using this model, we
show that changing the position as well as the intrinsic properties of the QE
and the MNP provides a high degree of control of nonlinear light emission.

We hope that the research carried out throughout this thesis has contributed to
provide a deeper fundamental insight into quantum many-body phenomena that
occur in (sub)-nanometric plasmonic cavities interacting with QEs. In addition,
the results shown in this thesis open new questions that could also be addressed
with the methodologies used and proposed here. Among others, we believe that
the TDDFT methodology based on the wave-packet propagation method can
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be applied e.g. to study nonlinear optoelectronic processes in plasmon–exciton
systems of subnanometric dimensions, as well as charge-transfer effects in plasmonic
nanocavities excited by ultrafast electromagnetic fields in situations of extremely
narrow gaps where electron tunneling is important. Moreover, the quantitative
accuracy of our predictions could be improved by considering atomic-scale features
in the MNPs and QEs, a challenge that would require to go beyond the jellium
description of the electronic structure adopted here.

On the other hand, we believe that the dispersive SRF proposed in this
thesis could be straightforwardly implemented in existing numerical tools in
Nanophotonics and could thus become a very valuable method for predicting
optical nonlocal effects in practical nanoscale plasmonic configurations. Considering
systems typically implemented in experiments would require the extraction of the
dispersive Feibelman parameters as a function of k∥ for materials relevant in
plasmonics, such as silver or gold, where d-band electronic transitions are known
to play a crucial role producing e.g. a spill in of the induced charges instead of
spill out. The effect of d-electrons is neglected within the jellium model employed
in this thesis, and thus more sophisticated models or improvements to the present
jellium model would be needed to extract the appropriate Feibelman parameters
and thus extend the dispersive SRF proposed in this thesis to experimental
situations. All in all, we expect that the quantum TDDFT and the semiclassical
SRF methodologies presented in this thesis can be further exploited in future to
investigate novel quantum phenomena in Nanophotonics and thus contribute to
technological advances.
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Appendix A

Atomic units

In this thesis, we use Hartree atomic units (au), where the following fundamental
physical constants are all unity by definition:

• electron mass me,

• elementary charge e,

• Bohr radius a0,

• Reduced Planck’s constant ℏ = h/2π,

• Coulomb’s constant 1/(4πϵ0).

The equivalence between Hartree atomic units and the International System of
Units (SI) of the main physical quantities is given in Table A.1.

Quantity Hartree atomic units SI units
Mass me 9.10938215 · 10−31 kg

Charge e 1.602176487 · 10−19 C
Length a0 5.2917720859 · 10−11 m

Angular momentum ℏ 1.054571628 · 10−34 Js
Energy Eh = ℏ2/(mea

2
0) 4.35974394 · 1018 J

Magnetic field ℏ/(ea2
0) 2.350517382 · 105 T

Electric dipole moment ea0 8.47835281 · 1011 Cm
Electric field Eh/(ea0) 5.14220632 · 1011 V/m

Time ℏ/Eh 2.418884326505 · 10−17 s

Table A.1: Equivalence between Hartree atomic units and SI units of the main physical quantities.
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Appendix B

Electric near field induced by a
spherical nanoparticle within the
classical local-response
approximation (LRA)

We show in this appendix the classical LRA expression of the electric near field
Eind(r, ω) induced by an individual spherical nanoparticle of radius a in response
to an arbitrary external illumination. Within the nonretarded approximation,
Eind(r, ω) is obtained from Eind(r, ω) = −∇ϕind(r, ω) [Eq. (1.28)], where the
induced potential ϕind(r, ω) is given by Eq. (1.26). In spherical coordinates {r, θ, φ},
the gradient ∇ is given by:

∇ = ∂

∂r
r̂ + 1

r

∂

∂θ
θ̂ + 1

r sin θ
∂

∂φ
φ̂, (B.1)

so that the components {Eind
r (r, ω), Eind

θ (r, ω), Eind
φ (r, ω)} of

Eind(r, ω) = Eind
r (r, ω)r̂ + Eind

θ (r, ω)θ̂ + Eind
φ (r, ω)φ̂

can be expressed as:

Eind
r (r, ω) =


−
∑
ℓ,m

ℓ Y m
ℓ (θ, φ)bℓm(ω)rℓ−1/aℓ r < a

∑
ℓ,m

(ℓ+ 1) Y m
ℓ (θ, φ)bℓm(ω)aℓ+1/rℓ+2 r > a

, (B.2)
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Eind
φ (r, ω) =


−
∑
ℓ,m

im
sin θ Y

m
ℓ (θ, φ) bℓm(ω)rℓ−1/aℓ r ≤ a

−
∑
ℓ,m

im
sin θ Y

m
ℓ (θ, φ) bℓm(ω)aℓ+1/rℓ+2 r ≥ a

, (B.3)

Eind
θ (r, ω) =


−
∑
ℓ,m

∂
∂θ [Y m

ℓ (θ, φ)] bℓm(ω)rℓ−1/aℓ r ≤ a

−
∑
ℓ,m

∂
∂θ [Y m

ℓ (θ, φ)] bℓm(ω)aℓ+1/rℓ+2 r ≥ a
, (B.4)

where the coefficients bℓm(ω) are given by Eq. (1.27). In Eq. (B.4), we can calculate
the derivative ∂

∂θ [Y m
ℓ (θ, φ)] as follows:

∂

∂θ
[Y m

ℓ (θ, φ)] =

√
2ℓ+ 1

4π
(ℓ−m)!
(ℓ+m)!e

imφ ∂

∂θ
Pm

ℓ (cos θ)

= −

√
2ℓ+ 1

4π
(ℓ−m)!
(ℓ+m)!e

imφ 1
2

(
(ℓ+m)(ℓ−m+ 1)Pm−1

ℓ (cos θ)

− Pm+1
ℓ (cos θ)

)
,

(B.5)
with Pm

ℓ (cos θ) the associated Legendre Polynomials.
Finally, we can write the components {Eind

x (r, ω), Eind
y (r, ω), Eind

z (r, ω)} of
Eind(r, ω) = Eind

x (r, ω)x̂ + Eind
y (r, ω)ŷ + Eind

z (r, ω)ẑ in Cartesian coordinates:Eind
x (r, ω)

Eind
y (r, ω)

Eind
z (r, ω)

 =

sin θ cosφ cos θ cosφ − sinφ
sin θ sinφ cos θ sinφ cosφ

cos θ − sin θ 0

Eind
r (r, ω)

Eind
θ (r, ω)

Eind
φ (r, ω)


=

Eind
r (r, ω) sin θ cosφ+ Eind

θ (r, ω) cos θ cosφ− Eind
φ (r, ω) sinφ

Eind
r (r, ω) sin θ sinφ+ Eind

θ (r, ω) cos θ sinφ+ Eind
φ cosφ

Eind
r (r, ω) cos θ − Eind

θ (r, ω) sin θ.


(B.6)
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Appendix C

Dynamics of quantum emitters in
the time domain

We describe in this appendix the method used in this thesis to solve Eq. (1.54)
numerically in time domain, which is crucial to obtain the TDDFT results of the
nonlinear optical response of a quantum emitter coupled to a metallic nanoparticle
in Chapter 6. The second-order differential equation given by Eq. (1.54) can be
transformed into a system of two first-order equations,

Q̇QE(t) + γQEQQE(t) + ω2
QEPQE(t) = α0

QEEext(t),
QQE(t) = ṖQE(t),

(C.1)

which, after redefining
QQE(t) → iωQEQ̃QE(t)

and
PQE(t) → iP̃QE(t),

can be written in a matrix form,

i
∂

∂t

[
P̃QE(t)
Q̃QE(t)

]
︸ ︷︷ ︸

ΨQE(t)

=
[

0 iωQE
−iωQE −iγQE

]
︸ ︷︷ ︸

ĤQE

[
P̃QE(t)
Q̃QE(t)

]
︸ ︷︷ ︸

ΨQE(t)

+
[

0
α0

QEEext(t)/ωQE

]
︸ ︷︷ ︸

F (t)

. (C.2)

We have then transformed Eq. (1.54) into the following vector equation,

i
∂

∂t
ΨQE(t) = ĤQEΨQE(t) + F (t), (C.3)

where
ΨQE(t) ≡

[
P̃QE(t)
Q̃QE(t)

]
. (C.4)
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The solution to Eq. (C.3) is

ΨQE(t) = −i
∫ t

−∞
dt′e−iĤQE(t−t′)F (t′). (C.5)

Therefore,

ΨQE(t+ ∆t) = −i
∫ t+∆t

−∞
dt′e−iĤQE(t+∆t−t′)F (t′)

= −ie−iĤQE∆t
(∫ t

−∞
dt′e−iĤQE(t−t′)F (t′) +

∫ t+∆t

t

dt′e−iĤQE(t−t′)F (t′)
)

= e−iĤQE∆tΨQE(t) − i∆te−iĤQE∆t/2F (t+ ∆t/2)

= e−iĤQE∆t/2{e−iĤQE∆t/2ΨQE(t) − i∆tF (t+ ∆t/2)}.
(C.6)

In the last two steps of the derivation in Eq. (C.6), we have approximated the
integral in the following way,∫ t+∆t

t

dt′e−iĤQE(t−t′)F (t′) ≈ ∆t eiĤQE∆t/2F (t+ ∆t/2) . (C.7)

To apply the operator e−iĤQE∆t/2 in Eq. (C.6), we use the Split-Operator
technique as described in Subsection 2.2.1,

e−i ∆t
2 ĤQE ≈ e−i ∆t

4 Γ̂e−i ∆t
2 Ĥ0e−i ∆t

4 Γ̂, (C.8)

where
Ĥ0 =

[
0 iωQE

−iωQE 0

]
, Γ̂ =

[
0 0
0 −iγQE

]
. (C.9)

On the one hand, since Γ̂ is a diagonal matrix, the operator

e−i ∆t
4 Γ̂ =

[
1 0
0 e− ∆t

4 γ

]
(C.10)

can be directly applied.
On the other hand, to apply the operator e−iĤ0

∆t
2 , we write the matrix H0 as

Ĥ0 = V̂ Λ̂V̂ −1, (C.11)

where
V̂ = 1√

2

[
1 1

−i i

]
, V̂ −1 = 1√

2

[
1 −i
1 i

]
, (C.12)

and Λ̂ is a diagonal matrix containing the eigenvalues of Ĥ0, λ1 = ωQE and
λ2 = −ωQE as elements.
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Therefore,

e−iĤ0∆t/2 =
∞∑

n=0

(
−i∆t

2

)n 1
n!

(
Ĥ0

)n

=
∞∑

n=0

(
−i∆t

2

)n 1
n!

(
V̂ Λ̂V̂ −1

)n

=V̂
( ∞∑

n=0

(
−i∆t

2

)n 1
n!

(
Λ̂
)n
)
V̂ −1 = V̂ e−iΛ̂∆t/2V̂ −1

=
[
V11 V12
V21 V22

] [
e−iλ1∆t/2 0

0 e−iλ2∆t/2

] [
V11 V21
V12 V22

]
.

(C.13)

In summary, we solve Eq. (1.54) using Eq. (C.6) recursively, where the operator
e−iĤQE∆t/2 is approximated with the Split-Operator technique given by Eq. (C.8).
Finally, e−iĤ0

∆t
2 is expressed using Eq. (C.11), Eq. (C.12), and Eq. (C.13).
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Appendix D

Dispersive Feibelman parameter
obtained for cylindrical nanowires
of different size

We show in this appendix the dispersive Feibelman parameter d⊥(ω, k∥) obtained
within TDDFT for different nanowire radius Rc such that the effective wavenumber
k∥ = m/Rc is fixed for each nanowire. Figure D.1 shows the real (panel a) and
imaginary (b) parts of d⊥(ω, k∥) obtained for Rc = 100 a0 and Rc = 150 a0. The
results for Rc = 150 a0 are shown in Figure 4.4 (Chapter 4). The values of m for
each nanowire size are chosen such that they give the same ratio k∥ = m/Rc for the
two radii Rc. k∥ = 0.02 a−1

0 , 0.1 a−1
0 and 0.2 a−1

0 are considered in this appendix.
As explained in Chapter 4, an effective wavenumber k∥ = m/Rc determines

the optical response of the system, and therefore Figure D.1 shows very good
agreement between the results obtained for different radius as long as the ratio
k∥ = m/Rc is fixed. The invariance of the results with respect to modification of
the size of the nanowire further supports that the parameter d⊥(ω,m/Rc) obtained
from TDDFT calculations for a cylindrical nanowire can be indeed interpreted
as the dispersive d⊥(ω, k∥) corresponding to a planar metal surface. The small
discrepancies between the results obtained for different radius and large k∥ (i.e.,
for large m or small Rc) are because the coupling between the plasmon and single-
particle excitations (surface-enabled Landau damping) leads to discrete features in
the otherwise smooth resonance profile of d⊥(ω, k∥), which hampers the extraction
of the Feibelman parameter d⊥(ω, k∥).
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Figure D.1: (a) Real part of the dispersive Feibelman parameter d⊥(ω, k∥ = m/Rc) for different
values of m and Rc as obtained from TDDFT calculations performed for cylindrical nanowires.
Results are shown as a function of the frequency, ω. The values of m and Rc are indicated in the
inset. (b) Same as in (a) for the imaginary part. A Wigner–Seitz radius rs = 4 a0 corresponding
to sodium is used to describe the electronic structure of the system within the jellium model.
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Appendix E

Plasmon resonances sustained by a
cylindrical nanowire within the
surface-response formalism

We discuss in this appendix the resonance conditions of localized surface plasmons
sustained by a cylindrical nanowire within the SRF, which are derived by applying
the classical boundary conditions between two media. To link the SRF and the
classical LRA solution of the induced potential [Eq. (4.6)],

ϕind(ρ, φ, ω) =
∞∑

m=−∞
ϕm(ρ, ω)eimφ,

we assume that, outside the small region Rc ± ∆, the classical boundary condition
of the continuity of the normal component of the displacement vector D(ρ, φ, ω)
holds [Eq. (1.15a) with σs = 0],

n̂ · D(ρ, φ, ω)
∣∣∣∣
ρ=Rc−∆

= n̂ · D(ρ, φ, ω)
∣∣∣∣
ρ=Rc+∆

, (E.1)

where n̂ is the normal unit vector pointing outwards from the metal boundary. The
boundary condition given by Eq. (E.1) corresponds to the one given by Eq. (2.83b)
with d∥(ω) = 0.

Since D(ρ, φ, ω) = ε(ω)E(ρ, φ, ω) (with ε(ω) the dielectric function), n̂ = ρ̂,
and E(ρ, φ, ω) = Eext − ∇ϕind(ρ, φ, ω) (with Eext the external electric field) the
boundary condition given by Eq. (E.1) yields

ε(ω)
(
ρ̂ · Eext − ∂ϕind(ρ, φ, ω)

∂ρ

)∣∣∣∣
ρ=Rc−∆

=
(
ρ̂ · Eext − ∂ϕind(ρ, φ, ω)

∂ρ

)∣∣∣∣
ρ=Rc+∆

.

(E.2)
The external electric field can be expressed as Eext =

∑∞
m=−∞ Eext

m (ρ)eimφ,
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and thus Eq. (E.2) transforms into

ε(ω)
(
ρ̂ · Eext

m (ρ) − ∂ϕm(ρ, ω)
∂ρ

)∣∣∣∣
ρ=Rc−∆

=
(
ρ̂ · Eext

m (ρ) − ∂ϕm(ρ, ω)
∂ρ

)∣∣∣∣
ρ=Rc+∆

.

(E.3)
Using the definitions of the potentials ϕm(ρ, ω) given by Eq. (4.19), we obtain

2π q
cyl(ω,m)
Rc

= ε(ω) − 1
ε(ω)

[
1 − m

Rc
dcyl

⊥ (ω,m)
]

+
[
1 + m

Rc
dcyl

⊥ (ω,m)
] ρ̂ · Eext

m (ρ). (E.4)

The surface charge qcyl(ω,m) per unit length in the z-coordinate (and per 2π
in φ) of the nanowire within the SRF is then

qcyl(ω,m) = ε(ω) − 1
ε(ω) + 1 − m

Rc
dcyl

⊥ (ω,m) [ε(ω) − 1]
Eext

m

Rc

2π . (E.5)

In what follows, we assume that the metal dielectric function ε(ω) is well
described with a Drude model [Eq. (1.10)], so that we obtain

qcyl(ω,m) = −
ω2

p

2ω(ω + iγp) − ω2
p + m

Rc
dcyl

⊥ (ω,m)ω2
p

Eext
m

Rc

2π , (E.6)

or
qcyl(ω,m) = −

ω2
p

2ω(ω + iγp) − ω2
p

[
1 − m

Rc
dcyl

⊥ (ω,m)
] Eext

m

Rc

2π . (E.7)

The plasmon resonance frequencies ωm are given by the poles of the denominator
in Eq. (E.7)

2ωm(ωm + iγp) − ω2
p

[
1 − m

Rc
dcyl

⊥ (ω,m)
]

= 0. (E.8)

Thus, for dcyl
⊥ (ω,m) ≪ Rc, we can express the frequency of the plasmon resonance

as

ωm = ωp√
2

[
1 − 1

2
m

Rc
Re{dcyl

⊥ (ω = ωm,m)}
]
, (E.9)

and the width as

κm = ωp√
2

m

Rc
Im
{
dcyl

⊥ (ω = ωm,m)
}

+ γp. (E.10)

Finally, using again k∥ = m/Rc, we obtain the following expressions for the plasmon
resonance frequency ωs(k∥) (see Eq. (4.20) in Chapter 4) and the width κs(k∥) as
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a function of k∥:

ωs(k∥) = ωSP

(
1 −

k∥

2 Re{d⊥(ωs, k∥)}
)
, (E.11)

κs(k∥) = ωSPk∥Im{d⊥(ωs, k∥)} + γp, (E.12)

where ωSP = ωp√
2 is the surface plasmon frequency for k∥ = 0.
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Appendix F

Relationship between the results
obtained under finite Gaussian
pulses and plane-wave excitation

In Chapter 6, we first obtain the nonlinear response of the system subjected to
a quasi-monochromatic Gaussian electromagnetic pulse [Eq. (6.2)], and then we
obtain in Subsection 6.2.3 the corresponding results for plane-wave illumination.
In this appendix, we explain how we estimate the results of the second-harmonic
nonlinear response of the system under plane-wave illumination by using the
results obtained for a finite Gaussian pulse: we first discuss how we connect the
second-harmonic near field created by the individual MNP under finite-pulse and
plane-wave illumination, and then we extend this discussion to the second-harmonic
dipole moment of the coupled QE–MNP system.

Second-harmonic near field

In response to the following z-polarized plane-wave illumination,

Eext(t) = ẑEpw cosωt = ẑEpw

2
(
e−iωt + eiωt

)
, (F.1)

the individual MNP (without QE) induces a nonlinear near field Eind(r, t) along
the direction defined by the unit vector ξ̂ that can be expressed as a sum of different
harmonics Ω = nω,

Eind(r, t) =
∑

n

Enω,ξ̂(r)e−inωt. (F.2)

We define χ(2)
field-field,ξ̂

(r) as the constant of proportionality relating the amplitude
of the ξ̂-polarized second-harmonic near field E2ω,ξ̂(r) (n = 2) induced at position
r near the MNP surface and the square of the amplitude of the component
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Appendix F. Relationship between the results obtained under finite Gaussian
pulses and plane-wave excitation

Eω = Epw/2 of the incident plane wave Eext(t) [Eq. (F.1)] oscillating at the
fundamental frequency ω, such that

E2ω,ξ̂(r) = χ
(2)
field-field,ξ̂

(r)EωEω

= 1
4χ

(2)
field-field,ξ̂

(r)E2
pw.

(F.3)

Thus, for an incident plane wave the constant of proportionality χ(2)
field-field,ξ̂

(r)
is straightforwardly obtained from

χ
(2)
field-field,ξ̂

(r) = 4E2ω,ξ̂(r)/E2
pw. (F.4)

However, in Chapter 6 the second-harmonic near field of the individual MNP
is extracted from TDDFT simulations that consider illumination by a Gaussian
pulse following [Eq. (6.2)]

Eext(t) = ẑE0 cos(ω(t− t0))e−( t−t0
σ )2

= ẑE0

2

(
e−iω(t−t0) + eiω(t−t0)

)
e−( t−t0

σ )2

,

(F.5)
and, therefore, χ(2)

field-field,ξ̂
(r) cannot be directly obtained from Eq. (F.4). In this

situation, the component Eω of Eext(t) oscillating at the fundamental frequency ω
is given by

Eω(t) = E0

2 e−iω(t−t0)e−( t−t0
σ )2

, (F.6)

so that, according to Eq. (F.3), the component of the near field E2ω,ξ̂(r, t) that
oscillates along the ξ-axis at 2ω is given in time domain by

E2ω,ξ̂(r, t) = 1
4χ

(2)
field-field,ξ̂

(r)E2
0e

−i2ω(t−t0)e−2( t−t0
σ )2

, (F.7)

where we assume that χ(2)
field-field,ξ̂

(r) is constant over the spectral width of the
illumination field. Using the time-to-frequency Fourier transform F [ ] we get the
frequency-resolved quantity

E2ω,ξ̂(r,Ω) = F
[
E2ω,ξ̂(r, t)

]
= 1

4χ
(2)
field-field,ξ̂

(r)E2
0F
[
e−i2ω(t−t0)

]
∗ F

[
e−2( t−t0

σ )2]
,

(F.8)

where the symbol * represents the convolution. Finally, the component of the near
field oscillating at 2ω yields (in frequency domain)

E2ω,ξ̂(r,Ω) = 1
4χ

(2)
field-field,ξ̂

(r)E2
0

√
π

2 σe
−(Ω−2ω)2σ2/8, (F.9)
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so that, evaluating at the second-harmonic frequency Ω = 2ω,

E2ω,ξ̂(r,Ω = 2ω) = 1
4χ

(2)
field-field,ξ̂

(r)E2
0

√
π

2 σ. (F.10)

The electric near field E2ω,ξ̂(r,Ω = 2ω) induced by the MNP at the second-
harmonic is calculated within TDDFT in Section 2.4, i.e., E2ω,ξ̂(r,Ω = 2ω) =
ETDDFT

ind (r,Ω = 2ω)·ξ̂. Thus, using Eq. (F.10) we can finally estimate χ(2)
field-field,ξ̂

(r)
as

χ
(2)
field-field,ξ̂

(r) = 4
√

2
π

ETDDFT
ind (r,Ω = 2ω) · ξ̂

σE2
0

, (F.11)

where, E0 is the amplitude of the Gaussian electromagnetic pulse used in the
TDDFT calculations. Therefore, once we have the value of χ(2)

field-field,ξ̂
(r) and

E2ω,ξ̂(r,Ω = 2ω) = ETDDFT
ind (r,Ω = 2ω) · ξ̂ obtained from TDDFT calculations, we

can finally use Eq. (F.3) to estimate the second-harmonic near field that would be
induced by an individual MNP in response to plane-wave illumination.

Second-harmonic dipole moment

Once the second-harmonic near field E2ω,ξ̂(r) that would be induced by a plane
wave incident to an individual MNP is calculated (as explained above), we can
also obtain the total second-harmonic dipole P2ω induced in the coupled QE–MNP
system in response to plane-wave illumination, as considered in Subsection 6.2.3.
P2ω is given by the sum of the dipole moment of the MNP, PMNP

2ω , and that
of the QE, PQE

2ω . To obtain P2ω under plane-wave illumination, we can apply
the semi-analytical model based on the self-interaction Green´s function used in
Subsection 6.2.2. In particular, it is possible to apply Eq. (6.5) of Chapter 6 but
substituting the dipole moments pQE(Ω) and pMNP(Ω), as well as the induced
electric field ETDDFT

ind (rQE,Ω) (obtained in response to finite-pulse excitation) by
the corresponding value under plane-wave illumination. Applying this procedure
results in

P2ω = PQE
2ω + PMNP

2ω

=
(
I + αMNP(2ω)Ĝ0

)(
I − αQE(2ω)Ĝ(rQE, rQE, 2ω)

)−1

︸ ︷︷ ︸
F(rQE,2ω)

αQE(2ω)E2ω,ξ̂(rQE),

(F.12)
where E2ω,ξ̂(rQE) is obtained from Eq. (F.10) and we have defined the factor

F(rQE, 2ω) =
(
I + αMNP(2ω)Ĝ0

)(
I − αQE(2ω)Ĝ(rQE, rQE, 2ω)

)−1
. (F.13)
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Appendix F. Relationship between the results obtained under finite Gaussian
pulses and plane-wave excitation

Inserting Eq. (F.3) into Eq. (F.12), the total dipole moment P2ω oscillating at 2ω
induced by the plane-wave illumination given by Eq. (F.1) yields

P2ω = F(rQE, 2ω)αQE(2ω)χ(2)
field-field,ξ̂

(rQE)EωEω

= 1
4F(rQE, 2ω)αQE(2ω)χ(2)

field-field,ξ̂
(rQE)E2

pw.
(F.14)

From the definition of χ(2)
field-field,ξ̂

(r = rQE) in Eq. (F.11), and expressing
Eq. (F.14) in terms of the average intensity I0 of the plane wave,

I0 = 1
8π cE

2
pw, (F.15)

(c is the speed of light in vacuum) we finally obtain the second-harmonic dipole
P2ω of the coupled QE–MNP system,

P2ω = 8
√

2πI0

cσE2
0

F(rQE, 2ω)αQE(2ω)ETDDFT
ind (rQE,Ω = 2ω). (F.16)

Furthermore, since

F(rQE, 2ω)αQE(2ω)ETDDFT
ind (rQE,Ω = 2ω)

is exactly the dipole moment p(Ω = 2ω) under Gaussian-pulse illumination
calculated with the semi-analytical model using Eq. (6.5) in Chapter 6 (evaluated at
Ω = 2ω), P2ω induced by a plane wave with average intensity I0 and fundamental
frequency ω can be directly obtained from

P2ω = 8
√

2πI0

cσE2
0

p(Ω = 2ω), (F.17)

as we use in Chapter 6 [Eq. (6.7)].
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This thesis theoretically addresses the optoelectronic response of metallic nanoparticles 
(MNPs) as well as their coupling to quantum emitters (QEs). Nanometer-scale systems 
are considered where optical nonlinearity, nonlocality, or electron-transfer processes can 
all play an important role. To capture these quantum many-body effects, Time-Dependent 
Density Functional Theory (TDDFT) is used primarily, in combination with semiclassical 
models based on the Surface-Response Formalism (SRF) and classical calculations based 
on the Local-Response Approximation (LRA). We demonstrate that, at the nanometer 
scale, electron spill-out and surface-enabled Landau damping drastically influence the 
electromagnetic interaction between MNPs and QEs, which produce a redshift and 
broadening of plasmonic resonances not captured by classical theories. We show that 
these effects can be correctly described by the semiclassical SRF, in particular when 
one considers the nonlocal response in the direction parallel to the metal surface. In 
addition, we predict that the hybridization between the electronic states of the QE and 
those of the MNPs drastically modifies the optical response of the coupled system in 
situation involving subnanometric distances, since the exciton in the QE is found to be 
quenched due to electronic coupling. This quenching dramatically influences the frequency 
and the width of the optical resonances sustained by the coupled structure. Finally, we 
demonstrate that the electromagnetic coupling of a QE to a spherical MNP can also 
affect the nonlinear optical response of the system, enabling otherwise-forbidden second-
harmonic generation (SHG). The content of this thesis thus presents a quantum mechanical 
many-body approach to the optical response of plasmonic cavities, which provides new 
insights into coupling with emitters, electron transfer processes and nonlinear effects. All 
these effects are of paramount importance in nowadays state-of-the-art Nanophotonics.
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