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Introduction

T he story tells that a day between 214-212 BC, during the Second Punic War be-
tween Romans and Carthaginians, Archimedes burnt the Roman ships that were

attacking Syracuse by using mirrors as reflectors to focus sunlight on the ships and
set them on fire. Little information has reached the present days about Archimedes
and his life, and the veracity of this incident has been contested many times [1,2]. Be
it a fictitious tale, or part of ancient history, the idea of focusing light has inspired the
creation of many artifacts and tools that have proven to be beneficial during history,
albeit for less dramatic applications, such as to gain sight of distant or small objects,
undistinguishable otherwise. Indeed, enhancing our visual capability is the corner-
stone of many technological improvements and scientific discoveries. For instance,
magnifying glasses and in particular the appearance of the first optical microscopes
in the 16th and 17th centuries boosted advances in biology and medicine, improving
the quality of life of human beings to this day.

Visible and infrared light are widely used for imaging and in other optical mi-
croscopy techniques, although only features similar in dimension, or larger, than the
wavelength of the illuminating light, can be distinguished this way, i.e., traditional
optical systems are limited by the diffraction limit [3]. To be observable, objects of
sub-wavelength sizes require techniques that overcome the diffraction limit by con-
fining light into sub-wavelength dimensions. Such extreme localization of light is
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possible due to the interaction between light and matter at the nanoscale, which is
addressed by the field of Nanophotonics [4].

Sub-wavelength confinement of light can be achieved, for instance, using Surface
Plasmon Polaritons (SPPs), i.e., resonant electron density waves that are excited at
metal/dielectric interfaces as a hybridization of collective oscillations of conduction
electrons in the metal (surface plasmons) and incident electromagnetic (EM) fields at
visible and near-infrared frequencies [3,5]. Electrons in the metal and their behavior
under an external electromagnetic field have been addressed with different levels of
complexity within nanoplasmonics. For instance, within the so-called Drude model,
the optical response of the conduction electrons of metals is described as that of a
non-interacting free electron gas. Despite its simplicity, this approach is widely used
in nanophotonics, as it provides good accuracy to describe the response at energies
below d-band excitations and allows for understanding the main trends in optical
spectroscopy of metals.

Drude model

In the frequency-domain, ω, the relative dielectric permittivity of a metal,
εm(ω), within the Drude model can be expressed as:

εm(ω) = ε∞ −
ω2
p

ω(ω + iγp)
, (1)

where γp is the damping coefficient that accounts for the losses in the metal,
ε∞ is the background screening that accounts phenomenologically for the
polarizability of bound electrons (the damping related to these contributions
is not included in the Drude model) and ωp is the plasma frequency of the
metal, which is related to the electron density of the metal, n, as:

ωp =

√
ne2

ε0m∗
, (2)

with ε0 the vacuum permittivity, e the electron charge, and m∗ the effective
electron mass.

Propagating SPPs confine optical fields in the region near a flat metal/dielectric
interface extending a few tens of nanometers in the direction normal to the interface,
as sketched in Fig. 1. Although SPPs in a perfectly planar geometry cannot couple
to incoming light due to the mismatch in the momentum associated with light and
SPPs [6, 7], different strategies have been proposed to overcome this problem. For
instance, in scanning near-field optical microscopy (SNOM) a sharp metallic tip is
placed on top of the metallic interface [8]. Another technique consists of placing
fluorescent molecules near the metallic interface [9, 10]. Alternatively, a common
solution to overcome such momentum mismatch and excite SPPs is creating grated
patterns in a region of the metallic surface [11, 12]. These strategies have been used
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INTRODUCTION

Figure 1: a) Sketch of a Surface Plasmon Polariton (SPP) propagating at the metal-dielectric interface,
where the z-component of the electric field decays exponentially. b) Dispersion relation for a SPP (solid red
line) in comparison to the light cone dispersion (blue) for photons in free space. The horizontal black line
marks the SPP frequency, which satisfies εm(ωSPP) = −εd [see Eq. (3)].

to overcome such momentum mismatch and excite SPPs.
Surface Plasmon Polaritons (SPPs)

For a planar metal/dielectric interface illuminated by a monochromatic plane
wave, the boundary conditions for the EM field at the interface lead to parallel
component of the wavevector of the propagating SPP at the metal/dielectric
interface kx = kSPP [3, 5] (see Fig. 1):

kSPP =

√
εm(ω)εd
εm(ω) + εd

ω

c
, (3)

where εd is the relative permittivity of the dielectric, c is the speed of light in
vacuum and k0 = ω/c is the light wavevector in vacuum. Complete theoretical
definitions can be found in Ref. [3].

While propagating SPPs travel along a metal/dielectric interface, Localized Sur-
face Plasmons (LSPs) are confined at small nanoparticles (NPs) and can be excited
by direct illumination. The extra momentum needed to overcome the mismatch be-
tween the SPP dispersion relation and light is given by the finite geometry of the
NP. Under illumination, small spherical metallic NPs, such as the one depicted in
Fig. 2(a), show a plasmonic resonance that corresponds to the Dipolar Plasmon (DP)
mode of the spherical NP [see Fig. 2(b)], clearly apparent in the charge distribution
of Fig. 2(a). The dipolar pattern oscillates in time resonantly at the frequency of the
illumination, with a π/2 phase offset with respect to the excitation EM field, pro-
ducing a large enhancement (total field amplitude at each point normalized to the
amplitude of the incident field, |E|/|E0|) and localization of the near fields around
the nanoparticle [see Fig. 2(c)]. Interestingly, the field is localized in a region with
dimensions much smaller than the wavelength of the incoming light. The plasmon
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resonance frequency strongly depends on the size, shape, material, and surroundings
of the NPs [13–16], which make them useful for designing sensitive nanodevices that
require optical responses with specific properties. Moreover, the strongly localized
fields by the SPPs and LSPs can be used to enhance light-matter interactions of
matter deposited nearby [17,18] inaccessible by other means.

Localized Surface Plasmons (LSPs)

For a small spherical NP with radius R much smaller than the wavelength
of light (R � λ), the optical response can be calculated analytically within
the quasistatic approximation. For a metallic spherical NP with permittivity
εm(ω), embedded in a dielectric medium εd, the dipole moment induced at the
nanoparticle by an electric field E0 is obtained from the NP’s polarizability [3],
α, as:

p(ω) = εdα(ω)E0(ω), (4)

where

α(ω) = 4πε0R
3 εm(ω)− εd
εm(ω) + 2εd

. (5)

The DP resonance is excited for a frequency ωDP that satisfies the condition
εm(ωDP) = −2εd. If the metal is modeled as a lossless Drude metal without
background screening, γp = 0 and ε∞ = 1, in Eq. (1), we obtain:

ωDP = ωp√
1 + 2εd

. (6)

Therefore, if the surrounding medium is vacuum (εd = 1), the energy of the
DP resonance becomes ωDP = ωp/

√
3, which is accurate for perfect Drude-like

metals. The scattering and absorption cross sections are given by,

σsca(ω) = k4

6π |α(ω)|2, (7)

σabs(ω) = k Im[α(ω)], (8)

with k = ω/c
√
εd the wavenumber of the incident EM wave. The scat-

tering and absorption cross sections can be found from the ratios of the
powers dissipated into absorption and scattering, and the intensity of the
incident illumination. Their sum provides the extinction cross section,
σext(ω) = σsca(ω) + σabs(ω).

In the case of noble metals such as gold (Au) and silver (Ag), there is a discrep-
ancy between the theoretical value predicted by Eq. (6) and the experimental value
mainly due to the contribution to the response of these materials of the background
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Figure 2: a) Sketch of the charge density corresponding to a Localized Surface Plasmon (LSP) excited by
an incoming plane wave with amplitude E0 and momentum k, and the corresponding induced dipole moment
p. b) Extinction cross section σext of such a spherical Au particle as a function of the illumination frequency
ω. c) Near-field enhancement (|E|/|E0|) at the wavelength of the DP resonance. d) Dielectric function of
gold from experimental data [19] and Drude model.

polarizability of bound d-electrons. The optical properties of noble-metal NPs are
well reproduced when the contribution of these bound electrons and of the damp-
ing are included in the response [see Fig. 2(d) for the contribution of such bound
electrons to the metal dielectric function εm(ω)].

Plasmonic nanoparticles are referred to as optical nanoantennas due to their ca-
pability not only to localize light but also to scatter it effectively into the far field.
These nanoantennas have sizes that are in the range of a few nanometers to hundreds
of nanometers. One of the many challenges in plasmonics has been the fabrication
of NPs with high control of their shape, composition, and positioning on a sub-
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strate. Indeed, the improvement and exploration of new fabrication techniques have
received much effort and attention over the last decades, allowing remarkable preci-
sion in top-down fabrication approaches [20–22], and large versatility in bottom-up
ones [23–25].

Such control in the properties of plasmonic nanostructures is at the core of
nanophotonics, mainly due to the high dependence of the near-field localization on
the geometry of the metal/dielectric interface. Indeed, even if the incoming light
is out of resonance with respect to the plasmon, a nanostructure can exhibit non-
resonant field enhancement at sharp metal tips or NP vertices. This phenomenon,
known as the “lightning rod” effect (LRE) in electrostatics, occurs due to an accu-
mulation of charge at sharp metallic endings, i.e., the equipotential lines get closer
from each other near sharp geometries, implying larger EM fields in such regions [3].
The LRE, along with the field confinement due to plasmon resonances, is exploited
for instance in scattering-type scanning near-field optical microscopy (s-SNOM) [26].

Further field enhancement and localization of the EM field can be reached by
coupling of plasmons in adjacent metallic nanostructures due to Coulomb interaction.
Indeed, nanostructures separated by gaps of a few nanometers (∼ 1 nm) or smaller
show so-called electromagnetic “hot-spots”, and provide increased field enhancement
at the gap due to the coupling between the plasmons of adjacent nanostructures.
The optical response of such coupled nanostructures, i.e., a dimer in the case of
two nanoparticles, strongly depends on the gap length and morphology, offering a
platform for high spectral sensitivity. In this sense, the great field intensities confined
into such nanogaps, also named nanocavities, can enhance optically-driven processes.

Nanocavities can be formed by two NPs in close proximity, in which the Coulomb
interaction between the charges associated to the individual LSP modes of each
particle produces a hybridization of the modes forming a Bonding Dimer Plasmon
(BDP). These hybridized modes are produced in a similar way as atomic orbitals hy-
bridize when forming molecules [27–29]. The charge is accumulated at facing metallic
surfaces across the gap, as shown in Fig. 3(a), leading to significant increases of the
localization and enhancements of the near field at the gap, as compared to the single-
particle case [30,31], as observed in Fig. 3(b). Moreover, due to the strong Coulomb
interaction between these charges the spectral position of the BDP resonances is very
sensitive to the gap separation distance [31, 32], turning the gap nanoantennas into
very sensitive plasmonic rulers.

When the particles are at physical contact electric charge can be transferred
between two NPs and Charge Transfer Plasmon (CTP) modes can be excited. More-
over, CTPs can also be excited without direct contact if electrons can still flow from
one NP to another by other mechanisms, such as electron tunneling [33,34].

An alternative to dimers for obtaining nanometer-scale confinement of light can
be found in structures such as the nanoparticle-on-mirror (NPoM), which consists of
a metallic nanoparticle placed on top of a metallic substrate and separated by a thin
spacer-film in-between to prevent conductive contact, creating a nanogap between
the NP and the substrate [see Fig. 3(c)]. NPoM structures show great stability and
offer a suitable platform to perform molecular spectroscopy experiments on molecules
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Figure 3: a) Dimer formed by two spherical nanoparticles showing the charge density distribution, σsurf,
with charge accumulation at the regions close to the gap. b) Charge accumulation at the gap produces large
localization and enhancement of the near field |E|/|E0|. c) Nanocavities can also be formed by placing a
nanoparticle on top of a metallic substrate, separated by a thin spacer to prevent conductive contact and
create a nanogap. d) Atomic protrusions at the nanogap can further increase the localization and enhancement
of the near field at the nanogap due to a lightning rod effect.

deposited in the cavity.
One of the most used molecular spectroscopic techniques is Raman scattering,

with applications in archaeology [35], medicine [36], drug detection [37] and chemical
sensing [38]. Raman scattering was discovered by C. V. Raman in the 1920s [39]
and describes an inelastic light-scattering process in which an incident photon (light)
excites a molecule to a virtual state, which can relax back to a different state emitting
a photon of smaller energy with the production of a vibration (Stokes process), or
alternatively, it can relax to a state emitting a photon of a larger energy, while
absorbing a vibration (anti-Stokes process). Raman scattering complements Lord
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Rayleigh’s scattering theory, which describes an elastic light-scattering process.
Raman Scattering

An incident photon of energy hν0 can excite a molecule from the vibrational
ground state E0 to a virtual statea, which can relax back to the ground state
emitting a photon of the same energy hν0 (elastic process), or to another state
of different energy (inelastic process) [see Fig. 4(a)]. The former case is known
as Rayleigh scattering, being the dominant process.
Raman scattering is an inelastic process in which the molecule relaxes to a
different state and therefore emits a photon with a different energy to that of
the incident photon. The most common situation is a relaxation to an excited
state of energy E0 + hνm where hνm is the energy of a vibration, which,
following energy conservation, is accompanied by the emission a photon of
energy hν0−hνm, i.e., the emitted photon is of lower energy than the incident
photon, a process that is known as Stokes scattering.
An inverse situation can also happen, i.e., a molecule can initially be in an
excited state of energy E0 + hνm, and after excited to a virtual state, the
molecule can relax to a state of lower energy, such as the ground state E0.
This process, known as anti-Stokes scattering, is accompanied by the emission
of a photon of higher energy than the incident photon (hν0 + hνm).

aA very short-lived, unobservable quantum state, which is an intermediate state in a
multi-step process that mediates otherwise forbidden transitions, as in Raman scattering.

In Raman scattering, the difference in energy of the scattered light from the in-
cident light corresponds to the difference in energy of the vibrational states of the
probed molecule. As a molecule can have multiple vibrational modes, the scattered
light can have different wavelengths, each corresponding to a Raman scattering pro-
cess of a different vibrational mode. Thus, the resulting spectrum is very useful to
identify vibrational modes and functional groups within a molecule, offering a tool
to reconstruct the chemical structure of the molecule under study. The Raman scat-
tering spectrum of a molecule is therefore considered as the vibrational fingerprint of
such molecule.1

Anti-Stokes scattering requires the molecule to be in an excited state. Indeed,
for zero temperature T = 0 K all molecules are considered to be in the ground state,
so no anti-Stokes scattering can be observed in those circumstances. Experiments
performed at room temperature typically show a dominance of Stokes scattering as
molecules are mainly at the ground state [see Fig. 4(b)]. Moreover, the Stokes/anti-
Stokes ratio is used to measure the temperature of the molecule if one assumes a
Bose-Einstein distribution of vibrational states.

Nevertheless, Raman scattering has a big drawback, which is its small cross sec-

1Raman spectra are typically plotted with an x-axis of Raman shift (cm−1) calculated as 1/λ0−
1/λRaman where λ0 is the wavelength of the incident light and λRaman the wavelength of the emitted
Raman light.
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Figure 4: a) Energy-level diagrams in Rayleigh scattering (left), Stokes Raman scattering (center), and
anti-Stokes Raman scattering (right), for a molecule with ground state energy E0 and excited state with
energy E0 + hνm. b) A typical SERS spectrum (Raman intensity vs Raman shift) at 633 nm laser excitation
is shown for rhodamine 6G molecules (RH6G) with several Raman peaks on the Stokes side and their (weaker)
anti-Stokes counterparts. Figure adapted from Ref. [40]. c) Raman (non-SERS) and SERS spectra at 633 nm
laser excitation for RH6G. The vertical intensity axis is in arbitrary units but it is the same for both spectra.
The bottom spectrum corresponds to the signal of ∼ 7.8× 105 RH6G molecules with 400 s integration time,
while the top spectrum corresponds to the signal from a single RH6G molecule under the same experimental
conditions but with 0.05 s integration time, implying an amplification of the Raman signal by an enhancement
factor of ∼ 7.3 × 109. Figure adapted from Ref. [40]. d) Sketch showing the electronic Raman scattering
process in metals. Figure adapted from Ref. [41].
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tion, with typical Raman cross section having values often� 10−28 m2. The viability
of Raman scattering as a spectroscopy technique is greatly improved by exploiting
the enhancing effect of a plasmonic nanoantenna, which improves the performance of
Raman scattering from molecules deposited at the near field of a resonant nanoan-
tenna. This happens, for instance, when molecules are located in the near field of a
nanocavity, which enhances light emission from the molecules, a technique known as
Surface-Enhanced Raman Spectroscopy (SERS) [42]. Indeed, as the Raman scatter-
ing process scales with the 4th power of the local EM field, the plasmonic field can
lead to SERS enhancement factors of ∼ 1010 [see Fig. 4(c)].

The near field in nanocavities can be further enhanced and localized by the pres-
ence of atomic protrusions [see Fig. 3(d)], giving rise to an atomic-scale lightning
rod effect and reaching subnanometric light localization in the so-called picocavities,
which we introduce in Chapter 2. Picocavities can boost the coupling of photons
with electronic transitions of single emitters [43] or with vibrations of a molecule in
optomechanical interactions [44]. Moreover, the large field gradients around picocav-
ities break the symmetry rules of vibrations in molecules, opening the path to probe
forbidden molecular transitions in SERS, appearing as additional sharp peaks in the
SERS spectra [44].

Apart from the additional sharp peaks when a picocavity is formed in a nanocav-
ity, there are additional spectral features that are often observed in the SERS spectra.
In particular, broad background signal increases occurring on a timescale of millisec-
onds (ms) have been observed in the literature [45–49]. The background signal of
SERS spectra has been addressed as inelastic light scattering due to an electronic
Raman scattering (ERS) process in the hosting metal, similar to molecular Raman
scattering, but for electrons undergoing transitions within the Fermi sea of the metal
[see Fig. 4(d)]. We give further details about these processes in Chapter 3.

Another possibility to see at the nanoscale, or to even resolve atoms, is to pro-
duce matter excitations using swift electrons as probes. Since the first prototype
in Transmission Electron Microscopy (TEM) was demonstrated by Ernst Ruska and
Max Knoll in 1931 [50, 51], TEMs have become one of the most important tools in
modern science and have been crucial in many discoveries made in physics, chemistry,
and biology during the 20th century [52,53].

Improvements in electronics have allowed the generation of tightly focused, atom-
sized electron beams that scan the sample at high rates, obtaining images with atomic
resolution. Sub-Ångstrom resolution imaging is possible with the current state-of-
the-art aberration-corrected scanning transmission electron microscopes (STEM) [54,
55], which can capture the diverse signals emerging from the interaction of the fast
electron with matter (e.g., electromagnetic radiation, secondary and Auger electron
emission) correlated with the well-controlled position of the electron beam at the
various detectors attached to the microscope. Therefore, STEM represents a versatile
technique for spatially-resolved analysis of materials at the atomic scale.

Electron probes transmitted through or near a sample lose a small fraction of
their initial energy (and momentum) as a result of the interaction with the sample.
The probability to lose such energy is directly related to the excitations produced
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Figure 5: a) Schematics of an electron beam interacting with a sample (a nanoparticle) in aloof geometry,
showing the main terms describing the interaction between the electron beam and the sample. b) Qualitative
overview of the major excitations that contribute to an electron energy loss probability, ΓEELS, spectrum
over a wide loss energy, ω (eV) range. Plasmons are excited in the range of a few eV. Figure adapted from
Ref. [61].

by the probe in the sample [see Fig. 5(a)]. Spectral analysis of the electron en-
ergy loss (EEL) probability serves to identify matter excitations in a broad energy
range, which makes electron energy loss spectroscopy (EELS) an important analyti-
cal technique in STEM. For instance, EELS can be used to detect core losses at high
energies (from approximately 50 eV up to keVs) coming from excitations of electrons
in inner atomic shells [56, 57], which provide chemical information correlated with
atomic-scale imaging [58–60]. On the other hand, at low energies (typically below
50 eV) valence electronic excitations, interband electronic transitions, and lattice or
molecular vibrations can appear in EEL spectra [see Fig. 5(b)].

Within the framework of classical electrodynamics a fast electron beam can be
described as a point-like charge at position re(t) = r0 +vt with r0 the initial position,
v its velocity and evolution in time t. The field created by the fast traveling electron
acting on a nanostructure gives rise to an induced EM field, [Eind(r, t), Bind(r, t)],
that acts back on the probing electron. Within the classical description, these EM
fields exert an EM (Lorentz) force F(r, t) = −e[Eind(r, t) + v × Bind(r, t)] on the
probing electron of charge e; which is responsible for the energy loss of this probing
electron. The energy loss can be evaluated by integrating the force along the electron
trajectory [62,63]. For highly energetic probing electrons, it is assumed that the recoil
due to the perpendicular force is negligible [64], and therefore the electron energy
loss W can be expressed as:

W = e

∫
dtv ·Eind[re(t), t], (9)

where re(t) is the position of the probing electron.
Within the quasistatic approximation, which we use in Chapters 4 and 5 of this

thesis dedicated to EELS, the electron energy loss W can be expressed as (atomic
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units are used e = ~ = me = 1):

W = 1
2π

∫ ∞
−∞

dω

∫ ∞
−∞

dz′
∂φ(r, ω)
∂z

∣∣∣∣
z=z′

e−iωz
′/v, (10)

where the potential in frequency domain ω, φ(r, ω), satisfies Eind(r, ω) = −∇φ(r, ω).
Integrating this expression by parts and taking into account that the induced poten-
tial created by a nanoparticle vanishes at infinity, φ(x, y,±∞)→ 0, and the condition
ρ(r, ω) = ρ∗(r,−ω), and therefore, φ(r, ω) = φ∗(r,−ω), we finally obtain

W = 1
πv

∫ ∞
0

dω ω

∫ ∞
−∞

dz′Im
{
− φ(r′, ω)e−iωz

′/v

}
. (11)

Electron energy loss probability

The probability for an electron to lose energy ~ω, ΓEELS(ω), the so-called
electron energy loss probability, is defined according to Ref. [62]:

W =
∫ ∞

0
dω ω ΓEELS(ω). (12)

Thus, the electron energy loss probability is given by,

ΓEELS(ω) = 1
πv

∫ ∞
−∞

dz′Im
{
− φ(r′, ω)e−iωz

′/v

}
. (13)

The evanescent field created by the fast electrons can efficiently couple to plas-
mons in the energy range of a few eV. Interestingly, this evanescent nature of the
broadband electromagnetic field associated with the fast probing electrons in STEM-
EELS brings the possibility of exciting “dark” plasmons that are not possible to
access with conventional light-spectroscopy techniques. Characterization of the near
field, which is naturally accessible by fast electron probes [65], is often crucial for
understanding the behavior and functionality of plasmonic nanostructures.

The use of EELS to investigate plasmonic excitations and nanoplasmonic struc-
tures is widespread nowadays. It is worth mentioning that the identification of bulk
plasmons [66, 67] and the discovery of SPPs in the 1950s and 1960s [62] are directly
linked to EELS experiments with broad electron beams interacting with metallic foils
and interfaces [68, 69]. Studies at that time were typically performed with a broad
(unfocused) beam and devoted to momentum-resolved EELS, as such measurements
can be related to the dispersion of the excited modes.

In the last two decades STEM-EELS has witnessed several technical improve-
ments [70–72] that have enabled sub-nanometer resolution [54, 73], and sub-eV en-
ergy sensitivity [74]. Such progress has opened the possibility for characterization of
novel materials and nanostructures [55,75], vibrational spectroscopy with nanometer
resolution of phonons [57,76–79] or characterization of biomaterials with low energy
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beams and radiation damage reduction [57, 80, 81]. The aforementioned improve-
ments have allowed to perform single-NP EELS experiments with NP sizes below 10
nm [82–87] with sub-Ångstrom resolution.

In recent years the size-dependent shifts observed in the resonance energy of the
LSPs in such small metallic NPs have received considerable attention in the literature
[83–85, 88–90]. Moreover, the increased resolution obtained for the experimental
setups has motivated the development of a wide variety of theoretical models to
account for specific quantum effects in the properties of LSP resonances, such as
electron confinement [91], electron spill-out at the interfaces [32, 92–94], non-local
effects [95, 96] in the dielectric response, modification of local environments [87], or
activation of quantum tunneling across subnanometer interparticle gaps [34, 88, 97].
Nevertheless, the faceted shape of such small NPs and the influence of atomic-scale
features on EEL spectra has been usually neglected by considering the NPs to have
a spherical shape.

Apart from the excitation of LSPs confined to the surface of metallic NPs, elec-
tron beams can excite longitudinal pressure waves of the electron density within their
volume, i.e., confined bulk plasmons (CBPs) [95]. CBPs were first observed exper-
imentally in thin-films in 1971 in Ag [98] and in K [99] using optical spectroscopy.
Moreover, they have been also observed more recently in Mg films down to three
atomic monolayers using core-level photoemission [100]. Within EELS, CBPs have
been observed experimentally for a wide range of structures and materials, including
Ge nanorods [101], Bi nanowires [102], Bi NPs [91,103], and Al nanodisks [86]. The-
oretically, the properties of CBPs arise naturally within hydrodynamic models of the
response of the electron density at the target sample, which account for the dynamical
screening of the electrons at the sample, as opposed to the local dielectric response
approximation. Nanostructures with at least one finite dimension can confine the vol-
ume oscillations of the charge density in such dimension producing standing waves.
For instance, theoretical studies for cylinders [104–106] show excitation of CBPs for
penetrating probing electron trajectories.

In this thesis, we explore the interaction between nanometer-scale matter and
electromagnetic sources, such as light and electron beams, with a special focus on
the influence of atomic-scale features present in small metallic nanoparticles and
nanocavities.

In Chapter 1 we introduce the numerical methods used for the description of the
optical response of plasmonic nanostructures and the excitations: (i) the Boundary
Element Method (BEM), a local response method that assumes the media to be con-
tinuous and homogeneous, as well as bounded by abrupt interfaces, (ii) a modified
Discrete Dipole Approximation (DDA) in which the atoms composing the nanostruc-
tures are described as dipoles, and (iii) ab initio atomistic Time-Dependent Density
Functional Theory (TDDFT) which includes the atomistic structure and quantum
effects in the response of the plasmonic nanostructure.

Using the aforementioned methods, in Chapter 2 we explore the optical response
and near-field localization at Na nanometer-size NPs (clusters of 380 atoms) that
present atomistic features such as vertices, edges, and facets. The presence of such
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atomistic features allows for localizing and confining the near field down to subnano-
metric dimensions [107], well below the underlying plasmonic background, pushing
the spatial features of the induced near fields below the limit imposed by nanocav-
ities, and thus reaching the realm of picocavities. By adopting an abrupt boundary
interface that resembles the electronic density profile of the corresponding atom-
istic distribution within a plasmonic structure, we show that classical approaches
can faithfully reproduce the properties of the near field induced at the surface of
these NPs, including the subnanometric confinement of the field. We identify the
extra localization of the field as a non-resonant atomic-scale lightning rod effect that
enhances the plasmon-driven near field and propose a simplified local model to ad-
dress it. Moreover, we extend this concept to cover the influence of picocavities
in nanogaps, obtaining a good agreement between quantum and classical models of
the response in these extreme situations. The quantum description of these optical
picocavities at the full atomistic level reveals the importance of atomic-scale fea-
tures, although such a detailed description is limited by computational demands,
which make them unfeasible in large nanostructures. The simplified local classical
approach proposed in this thesis allows for addressing the presence of such picocavi-
ties in larger nanostructures, thus allowing standard methods of electrodynamics to
tackle the optical response in this challenging regime [108].

In Chapter 3 we discuss the emission of transient broadband spectral features
in SERS spectra obtained for NPoM structures hosting molecules at the nanogap.
We term these events of inelastic light scattering “flares”, and provide a conceptual
framework to effectively address their optical properties. We analyze flares observed
in experimental SERS spectra obtained within the group of Prof. Jeremy J. Baumberg
at the University of Cambridge. We propose a model of flares based on the dynamic
restructuring of atoms at transient defects, such as twin planes and grain boundaries,
which leads to localized changes of the plasma frequency of the metal, inducing a
stronger electric field within the metallic NP and thus an increase in the background
ERS signal.

As in optical spectroscopy, discussed in Chapter 2, ab initio atomistic TDDFT
also provides an appropriate framework to consider quantum effects in a complete
manner including the role of the atomistic structure in EELS. In Chapter 4 we study
the influence of atomic-scale features on the EEL spectra in small Na nanoparticles
using TDDFT and compare the results with those obtained within classical descrip-
tions which reproduce the atomic faceting of the NP by introducing abrupt surface
boundaries, as a way to address the influence of subnanometric features in EELS. We
prove that these atomistic features reveal their footprints in EEL spectra, showing
great sensitivity to the relative orientation of the NP with respect to the electron
trajectory and departing from the spectra of a typical spherical nanoparticle. More-
over, we identify the excitation of LSPs and CBPs in the EEL spectra, the latter
only occurring in the case of penetrating electron beam trajectories, and study their
dependence on the impact parameter of the incident electron beam.

The footprints of the CBPs observed in the TDDFT spectra presented in Chap-
ter 4 are further explored in Chapter 5, using a linear hydrodynamic model of the
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response that takes into account nonlocality. We obtain a semi-analytical expression
for the EEL probability of a spherical NP which includes the dependency on the
electron impact parameter, and also serves to address penetrating trajectories. Such
a model allows for a clearer analysis of the dependence of CBPs on parameters such
as the NP size, electron beam velocity, and impact parameter, which we exploit to
analyze the EEL spectra in spherical Na NPs. We show that the energy shifts in the
main peaks corresponding to bulk plasmons observed experimentally for Al disks [86]
are ruled by similar symmetry arguments to those applied to LSP modes.

The application of an equilibrated balance of quantum and classical models to un-
veil the optical response in plasmonic nanoantennas and nanocavities showing atomic-
scale features is proven to be an adequate tool to identify novel optical fingerprints
in such structures. This thesis thus offers an initial step to address picophotonics in
the framework of optical and electron spectroscopies.
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1 Numerical Methods

C lassical electrodynamics describes the optical response of matter using the
macroscopic formulation of Maxwell’s equations and corresponding boundary

conditions at the interfaces of an inhomogeneous system. It is commonly assumed
that the materials’ response to external electromagnetic excitation sources is local
in nature but at the nanoscale, this description shows limitations. Quantum effects
emerge at the nanometer scale as the atomistic structure and wave nature of the
constituent electrons play a major role in the response.

In this chapter, we present the numerical methods used to obtain the results
presented in this thesis. First, in Sec. 1.1, we provide the main ingredients of the
Boundary Element Method (BEM), a local response method that assumes the media
to be continuous and homogeneous, as well as bounded by abrupt interfaces. These
surfaces are discretized and boundary conditions are solved numerically to obtain the
response of the nanostructures to external electromagnetic stimuli, including light and
electron beams. Layered structures require a special treatment within BEM, which
is also described in this chapter. This approach is used to describe nanoparticles on
top of substrates as considered in Chapter 3. The BEM is the main tool in this thesis
and was used to obtain the results presented in Chapters 2 to 4.

Furthermore, in Sec. 1.2, we summarize the Discrete Dipole Approximation (DDA),
a local response method in which matter is considered to be composed of polarizable
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1.1 Boundary Element Method (BEM)

units which respond as discrete dipoles to an external electromagnetic field. This
method was used to obtain some of the results presented in Chapter 2.

Last, in Sec. 1.3, we briefly introduce the Time-Dependent Density Functional
Theory (TDDFT) used to calculate the plasmonic response of Na clusters to light
and electron beam excitations, as used in Chapters 3 and 5. This theory allows us
to compare predictions of modified local and non-local response models with those
of a quantum model which accounts for many-body dynamical screening and general
quantum effects.

Analytical methods developed in this thesis to account for non-local effects in the
plasmonic response of spherical nanoparticles are treated separately and included in
Chapter 5.

1.1 Boundary Element Method (BEM)

The classical electromagnetic interaction of external sources with matter can be de-
scribed by Maxwell’s equations, and in the presence of arbitrarily shaped abrupt
dielectric interfaces, their solution can be expressed in terms of surface integrals that
involve surface charges and currents acting as sources of the induced electromag-
netic field. The boundary element method (BEM) [109] introduced in this section
is based on finding self-consistently those interface charge and current distributions
for a given external field. We use the Matlab implementation of this method to
simulate the plasmonic response of metallic nanoparticles (MNP), using a boundary
element method (BEM) approach (MNPBEM) developed by Hohenester et al. [110].
Macroscopic Maxwell’s equations in frequency-domain can be expressed as2,

∇ ·D = 4π%, (1.1)

∇×H + ikD = 4π
c
j, (1.2)

∇ ·B = 0, (1.3)
∇×E− ikB = 0, (1.4)

where k = ω/c, with ω the angular frequency and c the speed of light, D = εE is the
electric displacement field, B = µH is the magnetic induction, % is the charge density
and j is the electric current density. The dielectric function ε(r, ω) and the magnetic
permeability µ(r, ω) might depend on space r and frequency ω in the local response
approximation. The last two equations [Eqs. (1.3) and (1.4)] allow us to write the
electric and magnetic fields E and H in terms of scalar φ and vector A potentials as,

2Gaussian units are used.
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1. NUMERICAL METHODS

medium 1

medium 2

Figure 1.1: Schematic representation of the elements involved in the boundary element method (BEM).
The interface (black solid line) separates medium 1 from medium 2. We chose the interface normal ns (black
solid arrow) at point s to be directed towards medium 2. The interaction between two points in a given
medium j is described by the Green’s function Gj (dashed arrows), and the field at position r is expressed
by the sum of the external sources (located at r′) plus a contribution from the boundary charges and currents,
σj(s) and hj(s), respectively, that account for the influence of any external and induced sources beyond the
boundary surface. Adapted from Ref. [109].

E = ikA−∇φ, (1.5) H = 1
µ
∇×A. (1.6)

Adopting the Lorenz gauge,

∇ ·A = ikεµφ, (1.7)

the first two equations [Eqs. (1.1) and (1.2)] can be recast as two decoupled wave
equations for φ and A,

(∇2 + k2εµ)φ = −4π
(
%

ε
+ σs

)
, (1.8)

(∇2 + k2εµ)A = −4π
c

(µ j + m), (1.9)

where,

σs = 1
4πD · ∇

1
ε
, (1.10)

m = − 1
4π [iωφ∇(εµ) + cH×∇µ], (1.11)

are the charge density and current density respectively. These expressions are valid
for inhomogeneous media where dielectric functions ε(r, ω) and magnetic permeabili-
ties µ(r, ω) change in space. For abrupt interfaces separating two homogeneous media
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1.1 Boundary Element Method (BEM)

with frequency dependent response functions [ε1(ω), µ1(ω)] and [ε2(ω), µ2(ω)], the
charge densities σs and current densities m only contribute at the interface, and
they can be understood as extra charges and currents localized at the surface, which
originate from the discontinuity of ε and µ at the boundary. While m cannot be
considered as a physical current in a general basis (it is not parallel to the interface,
and in particular for nonmagnetic materials it is perpendicular to the interface3), σs
is related to the surface polarization charges. Instead of using σs and m, the inter-
faces are separated into two parts (inside and outside the boundary, defined by the
normal vector ns) and effective surface charges σj and currents hj are introduced in
order to satisfy self-consistently the appropriate boundary conditions at the interface
(see Fig. 1.1).

The general solution of Eqs. (1.8) and (1.9) that vanishes at infinity for r inside
medium j is written as,

φj(r) = 1
εj(ω)

∫
dr′Gj(|r− r′|)%(r′) +

∫
Sj

dsGj(|r− s|)σj(s), (1.12)

Aj(r) = µj(ω)
c

∫
dr′Gj(|r− r′|)j(r′) +

∫
Sj

dsGj(|r− s|)hj(s). (1.13)

Here Sj refers to the boundary of media j = 1, 2. Moreover,

Gj(|r− r′|) = eikj |r−r′|

|r− r′| (1.14)

is the Green’s function that satisfies the wave equation,

(∇2 + k2
j )Gj(|r− r′|) = −4πδ(|r− r′|), (1.15)

in medium j, and kj = k
√
εjµj , with Im{kj} > 0. The first integrals on the right-

hand side of Eqs. (1.12) and (1.13) satisfy Eqs. (1.8) and (1.9) outside the interface
where σs = 0 and m = 0. The additional integrals are relevant at the interface, as
they include the effects of σs and m and compensate the discontinuity of the Green’s
function at the interface. Thus Eqs. (1.12) and (1.13) are solutions of Eqs. (1.8)
and (1.9) if the boundary charges and currents σj and hj are chosen to satisfy the
customary boundary conditions. Moreover, there is some freedom when choosing σj
and hj , i.e., one can choose them in such a way that the field induced in medium
j is just produced by charges lying in the side of the boundary Sj facing medium j
(which is, in general, the implementation used in the MNPBEM Toolbox [110–112]
used throughout this thesis), or by the whole set of interface charges at both sides.

3For an abrupt interface where the interface normal ns points towards medium 2 (see Fig. 1.1,

we have 4πσs =
(

1
ε2
− 1

ε1

)
ns · D δs, and 4πm = [iω(ε1µ1 − ε2µ2)φns + (µ1 − µ2)cH × ns]δs,

where δs is a surface Dirac delta δ function placed at the interface. It is straightforward to see
that in general, m is not parallel to the surface, and in particular, for nonmagnetic materials, it is
perpendicular to the surface.
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1. NUMERICAL METHODS

The numerical implementation to calculate the charge densities σj and current
densities hj which meets the boundary conditions of Maxwell’s equations relies on
the discretization of the interface integrals into contributions evaluated at a finite
number (N) of discrete points at the interface. The external sources and the charge
and current distributions (σj , hj) are assumed to have very small variations within
contiguous discretization elements so that they are considered constant within each
finite element. This reduces the problem to a system of equations where the operators
can be approximated by matrices of dimension N × N . In particular, the surface
integrals become sums of boundary elements, ∆Sl′ , as:∫

Sj

Gj(sl − s′)σj(s′)ds′ =
∑
l′

Gj,ll′σj,l′∆Sl′ , (1.16)

where indices l and l′ refer to the lth and l′th discrete elements, respectively.
Matrix notation will be adopted from now on, which implies a summation over

the surface elements for matrix-vector products such as Gll′σl′ . The potentials inside
and outside the boundaries are therefore given by,

φ1 = G11σ1 +G12σ2 + φext1 , (1.17)
φ2 = G22σ2 +G21σ1 + φext2 , (1.18)
A1 = G11h1 +G12h2 + Aext

1 , (1.19)
A2 = G22h2 +G21h1 + Aext

2 , (1.20)

where φextj and Aext
j are the potentials of the external excitation. Here G11 connects

elements of the inner boundary, G22 connects elements of the outer boundary, and
G12 and G21 connect elements from the inner to the outer boundary and vice versa.
In Figure 1.2(a) the case of a sphere formed out of two hemispheres of distinct
materials, which are labeled II and III surrounded by the medium I, is shown to
illustrate the connectivity of the Green’s functions. Surfaces SA, SB and SC define
the interfaces separating the media, with normal vectors nA, nB and nC defining
the inside and outside of each interface, respectively. We also show the scheme
representing the Green’s functions as matrices in Figure 1.2(b). Each matrix can be
subdivided into blocks that connect the elements of different interfaces, e.g., the only
nonzero elements in G21 are those connecting the inner elements of interface SB with
the outer elements of interface SC, i.e., GCB

21 .
The boundary conditions of the electromagnetic fields, i.e., the continuity of the

tangential component of the electric field and the normal component of the magnetic
induction, along with the Lorenz gauge condition given in Eq. (1.7), imply the con-
tinuity of φ and A. Thus, the scalar potential and vector potential need to have the
same value at each side of the interface separating medium 1 and medium 2, yielding,

G1σ1 −G2σ2 = φext2 − φext1 = φext, (1.21)
G1h1 −G2h2 = Aext

2 −Aext
1 = Aext, (1.22)
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1.1 Boundary Element Method (BEM)

Figure 1.2: (a) Sketch of a sphere surrounded by a medium with electric permitivitty εI and magnetic
permeability µIand formed out of two hemispheres of materials with optical properties (εII , µII , and εIII ,
µIII ). The left hemisphere is bounded by surfaces SA and SC , and the right hemisphere by surfaces SB
and SC . Solid arrows represent the outward normal vectors of each surface (nA, nB , and nC ), and the
dashed arrows show the connectivity of the Green’s functions. (b) Sketch of the matrices defining the Green’s
functions G11, G22, G21 and G12, blank spaces mean regions filled with Green’s functions that equal zero
(as they do not connect boundary elements within the same medium).

where, we have used,

G1 = G11 −G21, (1.23)
G2 = G22 −G12, (1.24)

φext = φext2 − φext1 , (1.25)
Aext = Aext

2 −Aext
1 . (1.26)

From here on we will assume that the media are nonmagnetic, i.e., µj = 1.
Indeed, for this case, it holds that both the tangential derivatives of all components
of the vector potential and the normal derivative of the tangential vector potential
must be continuous (enforced by the continuity of the tangential component of the
magnetic field and the vector potential). Using the continuity relationships and the
Lorenz condition given by Eq. (1.7), one obtains that (ns · ∇)A − inskεµφ is also
continuous. Thus, the following equation yields4:

H1h1 −H2h2 − ikns(G1ε1σ1 −G2ε2σ2) = α, (1.27)

where

α = (ns · ∇s)Aext + ikns(ε1φ
ext
1 − ε2φ

ext
2 ), (1.28)

and H1,2 = F1,2 ± 2π is the normal derivative of the Green’s function Gj (not to
be confused with the magnetic field), which must be taken from both sides of the

4Following Ref. [109] here we use ε2G2 = G2ε2 which later results in Eq. (1.40) for the gener-
alization to an arbitrary number of media. This exchange is possible because G2 connects points
within the same medium. This will not hold when introducing infinite layers in Sec. 1.1.2, as the
reflected Green’s functions can connect points in different layers and different media [112].
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interface, and Fj is the surface derivative of the Green’s function, given by,

Fj = (ns · ∇s)Gj(s− s′) = ns · (s− s′)
|s− s′|3 (ikj |s− s′| − 1)eikj |s−s′|. (1.29)

The singular contribution originating from the limit r→ s gives rise to the 2π term
and has to be dealt with care [109,113], as we will show a bit later.

On the other hand, the continuity of the normal component of the electric dis-
placement vector εns · (ikA−∇φ), leads to,

H1ε1σ1 −H2ε2σ2 − ikns · (G1ε1h1 −G2ε2h2) = Dext, (1.30)

where

Dext = ns · [ε1(ikAext
1 −∇sφext1 )− ε2(ikAext

2 −∇sφext2 )]. (1.31)

Considering the vectorial character of some of the quantities in Eqs. (1.21), (1.22),
(1.27) and (1.30), these equations constitute a system of eight linear surface integral
equations with eight unknown complex functions of the interface coordinates (σj and
hj for j = 1, 2).

After some algebra [109, 113], the solutions for the charge and current distribu-
tions, can be obtained:

σ2 = G−1
2 Σ−1

[
Dext′ + ikns(L1 − L2)∆−1α′

]
, (1.32)

σ1 = G−1
1 (G2σ2 + φext), (1.33)

h2 = G−1
2 ∆−1

[
ikns(L1 − L2)G2σ2 + α′

]
, (1.34)

h1 = G−1
1 (G2h2 + Aext), (1.35)

where,

Dext′ = Dext − Σ−1L1φ
ext + ikns · L1Aext, (1.36)

α′ = α− Σ1A
ext + iknsL1φ

ext, (1.37)
Σ = Σ1L1 − Σ2L2 + k2ns · (L1 − L2)∆−1ns(L1 − L2), (1.38)
∆ = Σ1 − Σ2, (1.39)

L1,2 = G1,2ε1,2G
−1
1,2. (1.40)

The discretized problem of 8N linear equations requires a computation time propor-
tional to (8N)3 if direct inversion is to be used to find the solution. Nevertheless, by
separately manipulating the N ×N matrices such as Gj , the calculation time can be
reduced to times proportional to 6N3 [109].

Quasistatic approximation

The electromagnetic interaction between two points can be considered instantaneous
if their distance is much smaller than the wavelength of the interaction λ. This holds
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for small particles of size R � λ, where one can assume k → 0, reducing Helmholtz
equation [Eq. (1.8)] to Poisson’s equation,

∇2φ(r) = −4π%(r)
ε

. (1.41)

This equation can be solved with the quasistatic Green’s function that describes the
Coulomb interaction,

G(r− r′) = 1
|r− r′| ≡ G(r, r′), (1.42)

and is the solution of the equation,

∇2G(r− r′) = −4πδ(r− r′), (1.43)

in an unbounded, homogeneous medium. For inhomogenous dielectric environments,
with abrupt boundaries Sj separating regions Vj of homogeneous dielectric medium
inside a given region, the solution takes the form

φ(r) =
∫
∂Sj

G(r, s′)σ(s′)ds′ + φext(r), (1.44)

where φext(r) is the scalar potential of the external excitation source and σ(s) is a
surface charge distribution located at the boundaries Sj . In analogy to the retarded
case, the solution is constructed in such a way that Poisson’s equation is automat-
ically satisfied, and the surface charge distribution σ(s) has to be chosen such that
it satisfies the boundary conditions of the electromagnetic field at the boundaries.
The continuity of the tangential electric field at the boundary is satisfied when the
potential is continuous along the boundary, which is fulfilled if σ(s) is the same at
both inner and outer sides of the boundary. On the other hand, the continuity of
the normal component (with respect to the boundary) of the electric displacement
implies the boundary integral equation

lim
r→s

ns · ∇φ(r) = lim
r→s

∂φ(r)
∂n

= lim
r→s

∫
Sj

∂G(r, s′)
∂n

σ(s′)ds′ + ∂φext(r)
∂n

. (1.45)

Special caution has to be taken to deal with the integral on the right-hand side
for r → s. By considering a coordinate system with normal vector ns pointing in the
z direction, i.e., ns = ẑ, we can write, r = (0, 0, z) and s = ρ(cosϕ, sinϕ, 0) in polar
coordinates. By assuming the charge distribution σ(s) constant in a small circle of
radius R, the boundary integral becomes,

lim
z→±0

ns ·
∫ r− s′

|r− s′|3 ds
′ → lim

z→±0
2πz

∫ R

0

ρ dρ

(ρ2 + z2)3/2 = ±2π. (1.46)
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The sign depends on whether the direction of approximation is from the inside or
outside the boundary (i.e. positive for the inside case, negative for the outside case).
We finally obtain,

lim
r→s

ns · ∇φ(r) = ∂φ(r)
∂n

=
∫
Sj

F (s, s′)σ(s′)ds′ ± 2πσ(s) + φext(s)
∂n

, (1.47)

where

F (s, s′) = ∂G(s, s′)
∂n

. (1.48)

Now, we discretize the boundary into small surface elements and assume that the
charges are located at the centroids of each ith surface element. Then, Eq. (1.47)
becomes, (

∂φ

∂n

)
i

=
∑
j

Fijσj ± 2πσi +
(
∂φext

∂n

)
i

, (1.49)

which can be written in compact matrix notation as:

∂φ

∂n
= Fσ ± 2πσ + ∂φext

∂n
. (1.50)

The continuity of the normal component of the electric displacement field sets:

ε2

(
Fσ + 2πσ + ∂φext

∂n

)
= ε1

(
Fσ − 2πσ + ∂φext

∂n

)
. (1.51)

From this expression we obtain for the surface charge distribution:

σ = −(Λ + F)−1 ∂φ
ext

∂n
, (1.52)

where,

Λ = 2π ε2 + ε1

ε2 − ε1
1. (1.53)

This implies that the material parameters (included in Λ) and geometrical properties
(included in F) are fully decoupled. This is the central equation of the quasistatic
BEM approach. Once the charge distribution is calculated, one can all the sought
quantities, e.g., electric fields, optical spectra, or electron energy loss spectra.

1.1.1 Electron energy loss spectroscopy within the BEM

In principle, the BEM can address any external source by establishing the external
scalar and vector potentials [111]. This includes the case of swift electrons of electron
microscopes which lose energy exciting plasmons by passing close to or penetrating
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1.1 Boundary Element Method (BEM)

Figure 1.3: Sketch showing the electron (blue dot) with a trajectory along the z-axis defined by r(t) =
r0 + vt (blue arrow), with velocity v = vẑ (green arrow) and constant position in the xy-plane r0 (red arrow),
setting the impact parameter.

metallic nanoparticles. Here we briefly introduce the basics of the calculation of the
quantities analyzed within electron energy loss spectroscopy (EELS). Details about
the calculation of EELS probabilities within the BEM can be found in Refs. [65,109,
111, 115]. In particular, in MNPBEM the kinetic energy of the exciting electron is
assumed to be much higher than the plasmon energies (typical electron microscopes
operate with electron energies of several hundreds of keV). Thus, the change in the
velocity of the electron due to plasmon excitations can be considered negligible, and
therefore the loss process can be described in the lowest order perturbation theory.
As emphasized in Ref. [111], this approach is not suited for low electron energies or
thick samples.

Without any loss of generality, let us consider an electron trajectory along the
z-axis, with the position of the electron given by r(t) = r0 + vt, with v = vẑ the
velocity of the electron, as sketched in Fig. 1.3. The electron charge distribution is
thus,

%(r, ω) = −e
∫
dteiωtδ(r− r0 − vt) = − e

v
δ(ρ− b)eiωv (z−z0), (1.54)

where −e is the charge of the electron, and b is the impact parameter in the xy-plane.
In the quasistatic approximation, the external potential is given by the solution of
Poisson’s equation

φext =
∫

%(r′, ω)
ε(r′, ω)|r− r′|dz

′. (1.55)

In unbounded space the potentials associated with the charge distribution of Eq.
(1.54) are given analytically by the Liénard-Wiechert potentials [114], leading to
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[65,109,111]:

φext(r) = − 2
vεj

K0

(
ω

v

|ρ− b|
γj

)
ei
ω
v (z−z0), (1.56)

Aext(r) = εj
v
c
φext(r), (1.57)

where K0(x) is the modified Bessel function of order zero, and γj = (1− εjv2/c2)− 1
2

the Lorentz factor. Within MNPBEM these expressions for the unbounded medium
can be directly introduced into Eqs. (1.12) and (1.13), as the charge and current
distributions σj and hj will automatically guarantee that the boundary conditions
are satisfied at the interfaces.

We have already introduced in the Introduction the electron energy loss, W , in
Eq. (9), which can be calculated from the work performed by the electron against
the induced field, Eind, as:

W = e

∫
dtv ·Eind[r(t), t] =

∫ ∞
0

dω ω ΓEELS(ω), (1.58)

where ΓEELS(ω) is the electron energy loss probability, given per unit of transferred
energy,

ΓEELS(ω) = e

πω

∫
dtRe

{
e−iωtv ·Eind[r(t), ω]

}
, (1.59)

and Eind[r(t), ω] is the induced electric field evaluated at the electron’s trajectory.
Within the local response approximation, the electron energy loss probability can be
separated into two contributions,

ΓEELS = Γboundary + Γbulk, (1.60)

where Γboundary is the energy loss probability due to localized surface plasmons, which
can be calculated from the surface charge and current distributions σj and hj ; and
Γbulk is the bulk loss probability for electron propagation inside a lossy medium:

Γbulk(ω) = e2L

πv2 Im
{(

v2

c2
− 1
ε(ω)

)
ln
(

q2
c − k2ε(ω)

(ω/v)2 − k2ε(ω)

)}
, (1.61)

where L is the propagation length inside the medium, k = ω/c is the wavenumber
of light with frequency ω in vacuum, ε is assumed to be local (independent of wave
vector q) and qc is a cutoff for collected momentum transfer [65].

In most cases, Γboundary can be calculated by obtaining an expression for the
induced electric field along the electron trajectory and evaluating the expression
given in Eq. (1.59). By introducing the induced potentials of Eqs. (1.12) and (1.13)
into the energy loss probability of Eq. (1.59) one obtains a more efficient scheme for
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1.1 Boundary Element Method (BEM)

Figure 1.4: Sketch of an electron with velocity v = vẑ (white arrow) along a trajectory following the
z − axis (dashed lines) that crosses the boundary with medium j (blue region) at the entrance and exit
points, z0

j and z1
j respectively.

calculating Γboundary:

Γboundary(ω) = e

πω

∫ z1
j

z0
j

dzRe
[
e−iωz/v

∮
∂Vj

dav ·
{
ikGj(r− s)hj(s)

−∇Gj(r− s)σj(s)
}]
, (1.62)

where z0
j and z1

j are the entrance and exit points of the electron beam in a given
medium, r = r0+zẑ gives the electron trajectory, and ∂Vj is the boundary separating
each medium, as sketched in Fig. 1.4. Integration by parts allows to write the second
term in the parentheses of Eq. (1.62) as:

∫ z1
j

z0
j

dze−iωz/v
∂Gj(r− s)

∂z
= e−iωz/vGj(r− s)|z

1
j

z0
j

+ i
ω

v
e−iωz/vϕj(s),

where the potential-like term ϕj(s) =
∫ z1

j

z0
j
dze−iωz/vGj(r − s) associated with the

electron propagation inside medium j is introduced. The first right-hand side term,
once introduced in Eq. (1.62), gives e−iωz/v

∮
Gj(r− s)σj(s)da|

z1
j

z0
j
, where the integral

expression corresponds to the scalar potential at the crossing points of the trajectory
with the particle boundary. Moreover, as the potential is continuous across the
boundaries, this term needs to be zero for all crossing points. Finally, we end up
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with:

Γboundary(ω) = − e

πω

∑
j

Im
[ ∮

∂Vj

daϕj(s)
{
k v · hj(s)− ωσj(s)

}]
, (1.63)

where the integration, instead of along the electron trajectory, is only performed over
the boundary, where the surface charge and current distributions σj and hj have been
already calculated. It must be noticed that the points where the trajectory crosses
the boundary have to be treated with care in Eqs. (1.56), (1.57) and (1.63). Details
about their treatment can be found in Ref. [111].

Quasistatic approximation in EELS

As already mentioned, in the quasistatic approximation Laplace or Poisson’s equation
needs to be solved instead of the Helmholtz equation. First one can calculate the
external potential from the solution of Poisson’s equation given by Eq. (1.55), and
then one calculates the surface charge distribution σ(s, ω) by solving the boundary
integral equation, given by Eq. (1.52). Once the charge distribution is calculated, it
is straightforward to obtain the induced potential along the electron beam path [see
Eq. (1.12)] and therefore the electron energy loss probability, as given by Eq. 13 in
the Introduction,

ΓEELS(ω) = e

π~

∫
dt Im{−φind[r(t), ω]e−iωt}, (1.64)

in the quasistatic approximation, and can be written in terms of the surface charge
distribution as,

ΓEELS(ω) = − 2e
πv

∮
K0(ω|R−R0|/v) Im

{
σ(s, ω)eiωz/v

}
da+ Γbulk(ω). (1.65)

In the quasistatic approximation, considering the limit c→∞, the bulk loss proba-
bility Γbulk given by Eq. (1.61) reduces to,

Γbulk(ω) = 2e2L

π~v2 Im
{
− 1
ε(ω)

}
ln(qcv/ω), (1.66)

where L is the propagation length inside the medium and qc is a cutoff for collected
momentum transfer in the detector [65].

1.1.2 Infinite layers in the BEM

Many experiments are performed with nanoparticles placed on top of substrates or
embedded within layered structures, with the corresponding influence on the plas-
monic response of the nanostructure. This effect of infinite substrates has been
included in the plasmonic response of metallic nanostructures within the BEM, and
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Figure 1.5: a) A metallic nanoparticle placed on top of an infinite substrate, showing the discretization of
the NP’s boundary. b) Infinite layers are incorporated in the MNPBEM by taking into account the reflected
Green’s function due to the substrate [112]. c) The reflected Green’s functions (Gσσ2 , Ghh2 , Ghσ2 , Gσh2 and
G
‖
2) are obtained in a three step process: (i) first, the scalar and vector potentials originating from the source

points (e.g., σ in the sketch) are expanded in cylindrical waves; (ii) second, the reflection and transmission
coefficients, i.e., charge and current densities induced at the layer (e.g., σσ2 ) are calculated using the boundary
conditions of Maxwell’s equations; (iii) last, the potentials (e.g. Gσσ2 ) at the observation points are computed
by integrating over all cylindrical waves.

it is implemented in the MNPBEM Toolbox [112]. In this section, we give the de-
tails of such implementation, as used in this thesis to obtain the theoretical results
presented in Chapter 3.

For substrates with the outer surface normal pointing in the z-direction, i.e.,
substrates extending in the xy-plane, the current distribution, h, can be decomposed
into parallel h‖ (lying in the xy-plane) and perpendicular components h⊥ (pointing in
the z-direction). Equation (1.27) shows that the parallel component h‖ is decoupled
from the perpendicular component h⊥ and the charge distribution σ, and that h⊥
and σ are coupled through layer interactions. The first step is to rewrite Eqs. (1.21),
(1.22), (1.27) and (1.30) for a layered structure, followed by expressing h‖ in terms of
h⊥ and σ, and then one needs to set up the coupled equations for h⊥ and σ and solve
them within the BEM through matrix inversion. This approach deals with matrices
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of order 2N instead of matrices of order N , which is the case of the BEM approach
without layers.

We will first consider an isolated nanoparticle located in a dielectric environment
of a layered structure as in Fig. 1.5(a), and assume that all boundary elements
connected to the layered structure are outer elements (labeled with 2). The potentials
inside the nanoparticle are still expressed as φ1 = G1σ1 + φext1 . For the boundary
elements outside the nanoparticle, one needs to replace G by the Green’s function
for the layered structure and to account for the fact that h⊥2 and σ2 become coupled,

φ2 = φext2 +Gσσ2 σ2 +Gσh2 h⊥2 , (1.67)
A⊥2 = Aext⊥

2 +Ghh2 h⊥2 +Ghσ2 σ2. (1.68)

The continuity of potentials becomes,

G1σ1 = Gσσ2 σ2 +Gσh2 h⊥2 + φext, (1.69)
G1h

⊥
1 = Ghh2 h⊥2 +Ghσ2 σ2 +Aext⊥, (1.70)

G1h‖1 = G
‖
2h
‖
2 + Aext‖. (1.71)

On the other hand, the continuity of Lorentz’s condition becomes,

H1h‖1 −H
‖
2h
‖
2 − ikn̂

‖(ε1G1σ1 − ε2G
σσ
2 σ2 − ε2G

σh
2 h⊥2

)
= α‖, (1.72)

H1h
⊥
1 −Hhh

2 h⊥2 −Hhσ
2 σ2 − ikn̂⊥

(
ε1G1σ1 − ε2G

σσ
2 σ2 − ε2G

σh
2 h⊥2

)
= α⊥, (1.73)

where α‖ and α⊥ are the parallel and perpendicular components of α [see Eq. (1.28)],
respectively. The continuity of electric displacement vector reads as,

ε1H1σ1 − ε2H
σσ
2 σ2 − ε2H

σh
2 h⊥2 − ikn̂

‖ ·
(
ε1G1h‖1 − ε2G

‖
2h
‖
2
)

−ikn̂⊥
(
ε1G1h

⊥
1 − ε2G

hh
2 h⊥2 − ε2G

hσ
2 σ2

)
= Dext. (1.74)

The surface charges and currents for this situation are then obtained from Eqs.
(1.69)-(1.74) after some rearrangements (outlined in Appendix A of Ref. [112]):(
ε1Σ1G

σσ
2 − ε2H

σσ
2
)
σ2 +

(
ε1Σ1G

σh
2 − ε2H

σh
2
)
h⊥2

− ikn̂‖ · Γ n̂‖(ε1 − ε2)
(
Gσσ2 σ2 +Gσh2 h⊥2

)
− ikn̂⊥(ε1 − ε2)

(
Ghσ2 σ2 +Ghh2 h⊥2

= Dext − ε1Σ1φ
ext + ikn̂ · ε1Aext + n̂‖ · Γ

(
α‖ − Σ1Aext‖ + ikn̂‖ε1φ

ext), (1.75)(
Σ1G

hσ
2 −Hhσ

2
)
σ2 +

(
Σ1G

hh
2 −Hhh

2
)
h⊥2 − ikn̂⊥(ε1 − ε2)

(
Gσσ2 σ2 +Gσh2 h⊥2

)
= α⊥ − Σ1A

ext⊥ + ikn̂⊥ε1φ
ext, (1.76)

with Σ1 = H1G
−1
1 , Σ‖2 = H

‖
2G
‖−1
2 and Γ = ik(ε1 − ε2)(Σ1 − Σ‖2)−1. Equations

(1.75) and (1.76) can be understood as a matrix equation for (σ2, h
⊥
2 ) to be solved

through matrix inversion. Once both quantities are obtained, h‖2 is calculated from
the following equation:(

Σ1 − Σ‖2
)
G
‖
2h
‖
2 = ikn̂‖(ε2 − ε1)

(
Gσσ2 σ2 +Gσh2 h⊥2

)
+ α‖ − Σ1Aext‖ + ikn̂‖ε1φ

ext.
(1.77)
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The rest of the quantities (σ1, h⊥1 and h‖1) can be obtained from Eqs. (1.69) - (1.71).
The generalization to structures made of an arbitrary number of media is not

straightforward. In the absence of a layered structure, the Green’s functions can be
considered such that they connect only points within the same medium, as in [109],
which makes it possible to use G2ε2 = ε2G2. Nevertheless, with the presence of
layers this is no longer valid, as the reflected Green’s functions can connect points
within different media, and thus ε2 and G2 cannot be exchanged. In particular, the
potentials are given by,

φ1 = G11σ1 +G12σ2 + φext1 , (1.78)
φ2 = Gσσ22 σ2 +Gσh22 h

⊥
2 +G21σ1 + φext2 , (1.79)

A⊥1 = G11h
⊥
1 +G12h

⊥
2 +Aext⊥

1 , (1.80)
A⊥2 = Ghh22 h

⊥
2 +Ghσ22 σ2 +G21h

⊥
1 +Aext⊥

2 , (1.81)

A‖1 = G11h‖1 +G12h‖2 + Aext‖
1 , (1.82)

A‖2 = G
‖
22h
‖
2 +G21h‖1 + Aext‖

2 . (1.83)

The continuity of the potential can be expressed by Eqs. (1.69), (1.70) and (1.71),
by redefining the Green’s functions as

G1 = G11 −G21, (1.84)
Gσσ2 = Gσσ22 −G12, (1.85)
Gσh2 = Gσh22 , (1.86)

Ghh2 = Ghh22 −G12, (1.87)

G
‖
2 = G

‖
22 −G12, (1.88)

Ghσ2 = Ghσ22 , (1.89)

which also holds for the derivatives of the Green’s functions H. In a similar fashion,
the continuity of the Lorentz’s condition and continuity of the electric displacement
vector can be expressed by Eqs. (1.72), (1.73) and (1.74), by considering the following
relations:

ε1G1 = ε1G11 − ε2G21, (1.90)
ε2G

σσ
2 = ε2G

σσ
22 − ε1G12, (1.91)

ε2G
σh
2 = ε2G

σh
22 , (1.92)

ε2G
hh
2 = ε2G

hh
22 − ε1G12, (1.93)

ε2G
‖
2 = ε2G

‖
22 − ε1G12, (1.94)

ε2G
hσ
2 = ε2G

hσ
22 . (1.95)

Let us refer to ε1G1 = G̃1 and similarly for ε2G2 = G̃2. Now, by proceeding as
for two media, the following equations are obtained:

(Σ̃1G
σσ
2 − H̃σσ

2 )σ2 + (Σ̃1G
σh
2 − H̃σh

2 )h⊥2 − ikn̂
‖ · Γ n̂‖[(L1G

σσ
2 − G̃σσ2 )σ2

+ (L1G
σh
2 − G̃σh2 )H⊥2 ]− ikñ⊥[(L1G

hσ
2 − G̃hσ2 )σ2 + (L1G

hh
2 − G̃hh2 )h⊥2 ]

= Dext − Σ̃1φ
ext + ikn̂L1Aext + n̂‖ · Γ(α‖ − Σ1Aext‖ + ikn̂‖L1φ

ext), (1.96)
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and

(Σ1G
hσ
2 −Hhσ

2 )σ2 + (Σ1G
hh
2 −Hhh

2 )h⊥2 − ikn̂⊥[(L1G
σσ
2 − G̃σσ2 )σ2

+ (L1G
σh
2 − G̃σh2 )h⊥2 ] = α⊥ − Σ1A

ext⊥ + ikn̂⊥L1φ
ext, (1.97)

where, Σ̃1 = H̃1G
−1
1 , Γ = ik(L1 − L‖2)(Σ1 −Σ‖2)−1, L1 = G̃1G

−1
1 , and L2 = G̃

‖
2G
‖−1
2

have been used. As previously, this expression can be understood as a matrix equa-
tion for (σ2, h

⊥
2 ) to be solved through matrix inversion. Once both quantities are

obtained, h‖2 is calculated from,

(Σ1 − Σ‖2)G‖2h
‖
2 = ikn̂‖[(L1G

σσ
2 − G̃σσ2 )σ2 + (L1G

σh
2 − G̃σh2 )h⊥2 ]

+ α‖ − Σ1Aext‖ + ikn̂‖L1φ
ext. (1.98)

The Green’s functionsG‖2, Gσσ2 , Gσh2 , Ghσ2 , andGhh2 are the essential ingredients of
the BEM approach for layered structures, and are computed similarly to related field-
based approaches [116, 117]. For instance, let us consider a boundary element with
surface charges σ and currents h within a layered structure [see Figure 1.5(c)]. These
sources lead to potentials φext = Gσ andAext = Gh evaluated at the interfaces of the
layered structure. In accordance with field-based approaches, the induced potentials
containing the interaction with the layers are calculated in three steps: (i) first the
scalar and vector potentials originating from the source points, where the source
surface charges σ and currents h are located, are expanded in cylindrical waves, (ii)
second the surface charge densities, σσ2 , σh2 and current densities hσ2 ,h

h
2 induced at the

interfaces are computed by using the BEM equations, and (iii) finally the potentials
at the observation points are computed by integrating over all cylindrical waves.

In step (i) the Sommerfeld identity,

eikr

r
= i

∫ ∞
0

kρ
kz
J0(kρρ)eikz|z|dkρ, (1.99)

is employed [116], with J0(x) the Bessel function of order zero and the wavevector k
decomposed into the radial component kρ and the z-component kz =

√
k2 − k2

ρ.
The wave impinging at the interface is reflected and transmitted, and therefore in

step (iii) one needs to sum over all reflected and transmitted waves to calculate the
potentials at the observation points, i.e., one has to calculate integrals of the form,

I(k) = i

∫ ∞
0

kρ
kz
J0(kρρ)eikzzA(kρ, kz)dkρ, (1.100)

where A(kρ, kz) is a generalized reflection or transmission coefficient to be discussed
below. To evaluate the integral of Eq. (1.100) we directly follow reference [117] and
deform the integration path in the complex plane using the recipes given in that
work.

To compute the reflection and transmission coefficients in the BEM for the layered
structure, we proceed as follows. Consider a layered structure with interfaces at zµ.
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outer surface normal
layer

layer

layer

layer

medium

medium

medium

Figure 1.6: Scheme representing the layered structure. The intra-layer Green’s function Gµ0 connects
points at layer zµ in medium µ and the inter-layer Green’s function Gµ connects points between different
layers (located at layers zµ and zµ−1) in medium µ.

As shown in Fig. 1.6, we denote the medium above the layer with µ and the medium
below the layer with µ+ 1. Thus, µ = 1 denotes the uppermost medium. We assume
that the outer surface normal points into the positive z-direction, and denote the
surface charges and currents at the upper side of zµ with σµ2 and hµ2 , and at the lower
side of zµ with σµ+1

1 and hµ+1
1 . Additionally, we introduce the intra-layer Green’s

function Gµ0 that connects points in layer zµ and in medium µ (on the same side
of the interface), and inter-layer Green’s function Gµ that connects points between
different layers.

Let φµ1,2 and Aµ
1,2 denote the external excitations described by scalar and vector

potentials, respectively. As the BEM equations (1.21), (1.22), (1.27) and (1.30)
decouple h‖ from (σ, h⊥), we can treat excitations A‖ and φ, A⊥ separately. For
parallel excitations, Aµ

1,2, we obtain the following set of equations for the parallel
surface currents hµ1,2:

Gµ+1
0 hµ+1

1 −Gµ0h
µ
2 −Gµh

µ
1 +Gµ+1hµ+1

2 = Aµ
2 −Aµ+1

1 , (1.101)
2πi(hµ+1

1 + hµ2 )− kµzGµh
µ
1 − kµ+1

z Gµ+1hµ+1
2 = kµzA

µ
2 + kµ+1

z Aµ+1
1 , (1.102)

which can be solved for each wavevector through matrix inversion. For a perpendicular
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vector potential Aµ1,2 or a scalar potential φµ1,2 the BEM equations become:

Gµ+1
0 σµ+1

1 −Gµ0σ
µ
2 −Gµσ

µ
1 +Gµ+1σµ+1

2 = φµ2 − φ
µ+1
1 , (1.103)

Gµ+1
0 hµ+1

1 −Gµ0h
µ
2 −Gµh

µ
1 +Gµ+1hµ+1

2 = Aµ
2 −Aµ+1

1 , (1.104)

2πi
(
εµ+1σ

µ+1
1 + εµσ

µ
2

)
+ k
(
Gµ+1

0 εµ+1h
µ+1
1 −Gµ0εµh

µ
2

)
− kµz εµGµσ

µ
1 − kµ+1

z εµ+1G
µ+1σµ+1

2 − kεµGµhµ1 + kεµ+1G
µ+1hµ+1

2

= kµz εµφ
µ
2 + kµ+1

z εµ+1φ
µ+1
1 + kεµA

µ
2 − kεµ+1A

µ+1
1 , (1.105)

2πi
(
hµ+1

1 + hµ2

)
+ k
(
Gµ+1

0 εµ+1σ
µ+1
1 −Gµ0εµσ

µ
2

)
− kµzGµh

µ
1 − kµ+1

z Gµ+1hµ+1
2 − kεµGµσµ1 + kεµ+1G

µ+1σµ+1
2

= kµzA
µ
2 + kµ+1

z Aµ+1
1 + kεµφ

µ
2 − kεµ+1φ

µ+1
1 . (1.106)

The reflected Green’s functions for layered structures can be computed from these
equations. For instance, one can calculate Ghσ by considering an exciting scalar
potential produced by a surface charge σ at the source point, and then computing
the perpendicular component of the vector potential produced by the induced surface
current density hµ1,2 at the observation point.

In summary, the reflected Green’s functions are calculated following a three-step
process: (i) first, the positions of a set of sources in space (source points) need to
be defined; (ii) for each source point the surface charges and currents induced at the
interface of a layered structure are calculated; (iii) the scalar and vector potentials,
generated by the source point and influenced by the layered structure, are obtained
in another set of points in space (observation points).

The evaluation of the reflected Green’s functions is rather time-consuming, and
it can be a bottleneck for BEM simulations. Waxenegger et al. implemented in the
MNPBEM Toolbox [112] an approximate method to calculate the reflected Green’s
functions and therefore to speed up the calculation. The approach is based on setting
up a table of reflected Green’s functions, for which a suitable grid of different radii
r and z-values is defined, followed by an interpolation of the data. The reflected
Green’s functions G(r, z1, z2) depend on the radial distance between the observation
and source points r, and the z-values of the observation points z1 and the source
points z2. For the uppermost or lowermost medium, the Green’s functions only
depend on the distance in the z-axis between the observation points, i.e., z1+z2 [116],
which allows for an additional calculation speed-up. In order to evaluate H2, the
derivatives Fr = ∂G/∂r and Fz = ∂G/∂z1 are also needed. Moreover, instead of
directly interpolating, a further assumption is made, by assuming that G, Fr, and
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Fz follow a functional dependence of the form,

G(r, z1, z2) = g(r, z2, z2)
r̃

, (1.107)

Fr(r, z1, z2) = −fr(r, z1, z2)r
r̃ 3 , (1.108)

Fz(r, z1, z2) = −fz(r, z1, z2)z̃
r̃ 3 , (1.109)

where z̃ is the sum of the z1 and z2 distances to the respective closest layer interfaces,
r̃ =
√
r2 + z̃2, and g, fr, fz are tabulated values. Equations (1.107) - (1.109) have

the advantage that for small r and z-values the functional shape is the same as for
quasistatic Green’s functions using image charges [114], and for layered structures g,
fr, and fz are expected to have only a weak spatial dependence in general.

Once the reflected Green’s functions have been computed, they can be used along
with the direct Green’s functions to obtain the solutions of the BEM equations (1.96)
and (1.97). Nevertheless, there is a critical issue regarding the boundary elements
that are directly located on an interface. Before pondering on such interface elements,
we recall that in the normal BEM approach one has to be careful when computing
the surface derivative of the Green’s function for diagonal elements [109]

lim
r→s

(n̂ · ∇r)G(r, s′) = (n̂ · ∇s)G(s, s′)± 2πδ(s− s′), (1.110)

where the sign of the singular term depends on whether r approaches s from the
inside or outside. Inspection of Eqs. (1.107) - (1.109) shows that a similar singular
contribution is present in the reflected Green’s function for elements belonging to a
layer interface. The surface derivative Fz of the reflected Green’s function is now
split into two contributions (note that n̂ points into the z-direction):

Fz(r, z1, z2) = −f0
z̃

r̃3 − [fz(r, z1, z2)− f0] z̃
r̃3 , (1.111)

where f0 = lim
r,z̃→0 fz(r, z̃). When approaching the boundary through the limit

limr→s Fz(r, z1, z2), the first term gives a singular contribution ±2πf0δ(s− s′), simi-
larly to Eq. (1.110), whereas the second term has a smooth r and z dependence and
can be safely integrated over the boundary element.

In summary, infinite layered structures can be efficiently handled within BEM by
setting a table of reflected Green’s functions that can be used via interpolation to
calculate the induced charge and current densities at the boundaries of a nanostruc-
ture with arbitrary shape. The consideration of infinite layers is useful in situations
such as the one presented in Chapter 3 where we simulate the optical response of
nanoparticle-on-mirror (NPoM) structure, which consists of a metallic nanoparticle
placed on top of a metallic substrate and separated by a thin spacer-film in-between
to prevent conductive contact, creating a nanogap between the NP and the sub-
strate. We use the implementation of infinite layered structures for the MNPBEM
Toolbox [112] with such purpose.

36



1. NUMERICAL METHODS

1.2 Discrete Dipole Approximation (DDA)

We explain in this section the discrete interaction model (DIM) as introduced in
Ref. [118] which is used to calculate the optical response of small metallic clusters
to compare with the results obtained within the BEM and TDDFT in Chapter 2.
In the DIM the nanoparticle is described as formed by a number of atoms, each
characterized by its corresponding polarizability. One could consider the DIM as an
atomistic variant of the discrete dipole approximation (DDA), which is commonly
used to simulate the plasmonic response of large metallic nanoparticles. The DDA
consists in discretizing the volume of the particle in an array of points, each acquiring
a dipole moment in response to a local electric field, which is calculated iteratively.
Indeed, the DIM is an extension of the point-dipole interaction (PDI) model used
to calculate the optical response of molecules [119–122], by representing each atom
with an atomic polarizability and calculating atomic induced dipoles self-consistently
through their interactions with each other and with the external electric field ac-
cording to classical electrostatics. The PDI model has been extended to include a
damping term related to the internal electric fields at short distances [123–129], and
also intramolecular charge-transfer using either atomic capacitances [122,130,131] or
atomic electronegativity [132–134].

The molecular behavior of small metallic clusters has motivated the extension
of the PDI model to metallic clusters as a capacitance-polarizability interaction
model (CPIM) [135, 136]. The CPIM bridges the gap between quantum mechani-
cal methods and the macroscopic electrodynamic description, although often relies
on the parametrization of atomic polarizabilities and capacitances with data calcu-
lated within TDDFT, which limits its practical aspect. In the DIM this barrier is
tackled by only taking into account the atomic polarizabilities, which are calculated
from a Clausius-Mossotti relationship [118]. This is the scheme used to obtain the
results presented in this thesis.

For a system with N interacting atoms such as the one shown in Fig 1.7, where
each ith atom is characterized by a polarizability αi,αβ , the total energy of the system,
V , can be written as:

V = 1
2

N∑
i

µindi,αα
−1
i,αβµ

ind
i,β −

1
2

N∑
i

N∑
j 6=i

µindi,αT
(2)
ij,αβµ

ind
j,β −

N∑
i

Eext
α µindi,α , (1.112)

where Roman subscripts, i, j, denote ith and jth atoms, Greek subscripts, α, β,
denote (x, y, z) components, and µindi,α is the induced dipole at the ith atom. Einstein
summation convention is used for Greek subscripts. The first term is the self-energy
required for creating an induced atomic dipole moment, where αi,αβ represents a
component of the atomic polarizability tensor of atom i. The second term is the
dipole-dipole interaction, where T (2)

ij,αβ = ∇α∇β(1/Rij) is the interaction tensor of
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Atomistic cluster

Total polarizability

Atom

Atomic

polarizability

Figure 1.7: In the discrete interaction model (DIM) the atoms are represented by spheres with atomic
polarizability αi,αβ , where the Roman subscript, i, denotes the ith atom, and Greek subscripts, α, β, denote
x, y and z components. For an atomistic cluster of N interacting atoms the total polarizability of the atomistic
cluster αNPαβ can be found by minimizing the total energy of the system [Eq. (1.112)].

rank 2, with Rij the interatomic distance. The last term in Eq. (1.112) is the inter-
action between the atomic dipoles and an external electric field Eext

α . In the DIM
a Gaussian charge distribution is used to describe the polarizable atom (considered
to be a sphere) to ensure that there is no “polarizability catastrophe” [124], i.e., to
make sure that the equations do not diverge as the interatomic distance tends to
zero. The interaction tensor is therefore renormalized, which effectively introduces a
screening of the interaction at short distances [133,136], given by,

T
(2)
ij,αβ =

3rij,αrij,β − δαβr2
ij

r5
ij

[
erf
(
rij
Rij

)
− 2√

π

rij
Rij

e−(rij/Rij)2
]

− 4√
π(Rij)3

rij,αrij,β
r2
ij

e−(rij/Rij)2
, (1.113)

where rij is the atomic distance between the ith and jth dipole, Rij = [(Ri)2 +
(Rj)2]1/2, and Ri is the effective radius of the dipole i, which we consider to be the
radius of the atom, and erf(x) is the error function. In contrast, the DDA model
treats the atoms as point objects and thus the bare unscreened interaction tensor is
used in that approach. Retardation effects are not included in our case because of
the small size of the nanoparticles studied, however, this could be straightforwardly
included using the fully retarded interactions tensor [137,138].

The induced self-consistent dipole of an atom i, along direction β can then be
found by minimizing the total energy given by Eq. (1.112) with respect to the induced
atomic dipoles, which leads to the following set of linear response equations

µindi,β = αi,αβ

(
Eext
α +

N∑
j 6=i

T
(2)
ij,αβµ

ind
j,β

)
, (1.114)
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which are solved self-consistently using an iterative solver. The total polarizability
of the entire NP is then calculated by summing up on all atoms as:

αNPαβ =
N∑
i

∂µindi,α
∂Eext

β

, (1.115)

from which the optical absorption cross section at frequency ω is obtained as

σabs(ω) = 4πωn
c

Im
{
αNP(ω)

}
, (1.116)

where n is the refractive index of the surrounding medium and αNP(ω) is the isotropic
polarizability of the nanoparticle,

αNP(ω) = 1
3 [αNPxx (ω) + αNPyy (ω) + αNPzz (ω)]. (1.117)

The electric field around the nanoparticle can be obtained directly from the atomic
dipoles, using either the renormalized interaction tensor in the DIM or the bare inter-
action tensor in the DDA. In our calculations we consider the atomic polarizability
to be isotropic and obtained from the Clausius-Mossotti relationship as [118]:

αi = 6
π
R3
i

ε− ε0

ε+ 2ε0
, (1.118)

where ε is the dielectric constant of the NP and ε0 is the dielectric constant of
vacuum.

1.3 Atomistic ab-initio quantum model: Time-Dependent Den-
sity Functional Theory

The study of the interaction of electromagnetic fields and matter has gathered much
effort and interest throughout the history of modern physics. During the previous
century, the description of this interaction surpassed the realm of classical macro-
scopic physics and reached down to the level of atoms and molecules with the aid
of quantum mechanics (QM). In the approach presented in this section, the external
fields are considered to be of low intensity, and therefore correctly described within
perturbation theory. The optical perturbation is treated as a classical electric poten-
tial, while the perturbed system obeys the laws of QM. While our main interest is
on the response of the system to the external perturbation, we first need to briefly
summarize the theory behind the description of the unperturbed system, i.e. the
ground-state of the system, and then formulate the time-dependent perturbation
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theory to follow the evolution of the excited states. The ground-state is obtained
according to density functional theory (DFT), and the excited states are described
by using linear-response time-dependent DFT (TDDFT). A priori, both DFT and
TDDFT make it possible to model matter of arbitrary chemical composition with
minimal empirical input and are therefore considered to be ab initio frameworks.

The electrons and nuclei composing the atoms are fully described by the wave
function ψ(r1, r2, ...,R1,R2, ...; t) which depends on the electrons’ coordinates ri, the
coordinates of the nuclei RI and time t. The wave function represents a “probabil-
ity amplitude”. Although this amplitude is not directly measurable, its square in
an infinitesimally small volume in the many-body configurational space gives the
probability of finding the system at time t in a given configuration [139]. More-
over, the probability of finding particles at certain positions should not be time-
dependent in the absence of a time-dependent perturbation, and so the wave func-
tion can be separated into a time-independent amplitude ψ(r1, r2, ...,R1,R2, ...) and
a time-dependent phase. The time-independent term obeys the eigenvalue equation

Ĥψ = Eψ, (1.119)

where the eigenvalues E are the total energies that the system can have. In the non-
relativistic approximation the Hamiltonian operator Ĥ can be constructed from the
Schrödinger equation [140]

Ĥ = −
∑
i

∇2
i

2me
−
∑
I

∇2
I

2MI
+ 1

2
∑
i6=j

1
|ri − rj |

−
∑
iI

ZI
|ri −RI |

+
∑
I 6=J

ZIZJ
|RI −RJ |

,

(1.120)

where me is the mass of the electron, ri the position of the ith electron, and
MI , RI and ZI are the mass, position and atomic number of the Ith atomic nu-
cleus, respectively. The small indices i, j run over electrons and the capital indices
I, J run over nuclei. The first two terms of the Hamiltonian Eq. (1.120) corre-
spond to the kinetic energy terms of electrons and nuclei, while the rest of the
terms correspond to the Coulomb interaction between all pairs of bodies (electron-
electron, electron-nucleus, and nucleus-nucleus). Unfortunately, Eq. (1.120) does
not allow for a simple separation of variables, neither for analytical solutions in
almost all cases. Therefore, the diagonalization problem in Eq. (1.119) will re-
quire a discretization of the multi-dimensional wave function. Moreover, a direct
diagonalization is generally impractical as the computational complexity will grow
exponentially with the number of particles. Fortunately, it is possible to find ac-
curate approximate solutions to Eq. (1.119) by using different methods, such as
DFT. The first step, not exclusive to this method, consists in separating the elec-
tron and nuclei variables in the wave function, based on the three orders of magni-
tude difference between the mass of the electron me and the nuclei Mn, such that
ψtotal(r1, r2, ...,R1,R2) = ψelec(r1, r2, ..., rN ) × ψnuclei(R1,R2, ...,RM ), also known
as the Born-Oppenheimer approximation [139]. Moreover, in most cases, the masses
of nuclei can be safely assumed to behave as classical point particles and treated
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according to classical mechanics [140]. Therefore, the Hamiltonian in Eq. (1.120) can
be further approximated by considering the interaction of the nuclei with the elec-
trons as an external potential Vext(r), acting on the electrons. Thus, the Hamiltonian
for a system with N electrons can be expressed under these approximations as,

Ĥ =
N∑
i=1

{
p2
i

2me
+ Vext(ri) + 1

2

N∑
j 6=i

e2

|ri − rj |

}
, (1.121)

where pi is the momentum of the ith electron, and Vext(r) the external potential at
position r. The Hamiltonian can also be expressed as,

Ĥ = T̂ + V̂ext + Ŵee, (1.122)

with T̂ the kinetic-energy operator, V̂ext the external potential operator and Ŵee
the electron-electron (Coulombian) interaction operator. Nevertheless, still further
approximations are needed to treat this Hamiltonian, as the exact wave function
ψelec(r1, r2, ..., rN ) cannot be so easily simplified. DFT is one of the theories allowing
to effectively separate variables within the electronic wave function.

1.3.1 Density Functional Theory (DFT)

As explained above, the main challenge to obtain quantities of interest in the many-
body problem is the exponential growth of the computational complexity with the
number of particles N . Among these quantities, one of great interest is the ground-
state energy E0. This quantity can be obtained from the variational principle with
the following minimization [139]:

E0 = min
ψ

〈
ψ

∣∣∣∣Ĥ∣∣∣∣ψ〉, (1.123)

where the search is over allN -electron anti-symmetric wave functions ψ(r1, r2, ..., rN ),
normalized to unity < ψ|ψ >= 1. DFT greatly reduces the complexity of the many-
boy problem by reformulating the variational theorem in terms of the electron density
n(r), defined from the wave function ψelec(r1, r2, ..., rN ) as

n(r) = N

∫
d3r2

∫
d3r3...

∫
d3rNψ

∗
elec(r, r2, ..., rN )ψelec(r, r2, ..., rN ). (1.124)

Moreover, the electron density n(r) is normalized to the number N of electrons in
the system,

∫
n(r)d3r = N . In this section, we will highlight the main ingredients

of DFT. Complete reviews and applications of DFT in atomic, molecular, and solid-
state physics can be found in Refs. [140,141].

Hohenberg-Kohn theorems

In 1964 Hohenberg-Kohn (HK) demonstrated [142] that the ground-state electron
density n(r) determines the potential Vext(r) up to an arbitrary additive constant,
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thus there cannot exist two local potentials differing by more than a constant which
have the same ground-state density.

The Hohenberg-Kohn theorem states that [142]: “the ground-state density n(r)
determines the potential Vext(r), which in turn determines the Hamiltonian, and thus
everything about the many-body problem. In other words, the potential Vext(r) is a
unique functional of the ground-state density n(r)’ ’. Therefore, all the ground-state
properties will be functionals of the electronic density n(r). The ground-state wave
function ψ for potential V (r) is itself a functional of n, denoted by ψ[n], which was
exploited by HK to define the universal (i.e., independent from the external potential)
density functional

F [n] =
〈
ψ[n]

∣∣∣T̂ + Ŵee

∣∣∣ψ[n]
〉
. (1.125)

The universal density functional F [n] can be used to define the total electronic energy
function E [n] for a specific external potential Vext(r),

E [n] = F [n] +
∫
Vext(r)n(r)d3r. (1.126)

Moreover, by minimizing the total electronic energy functional E [n] with respect
to N -electron densities with some local potential (referred to as V (x)-representable
densities) we can obtain the ground-state energy E0 of the system considered. This
minimum energy is reached for a ground-state density n0(r) that corresponds to the
potential Vext(r):

E0 = min
n
E [n]. (1.127)

Summarizing, the existence of the mapping from a ground-state density n0(r) to the
external potential Vext(r), the existence of the universal density functional F [n], and
the variational property of the ground-state energy with respect to the density n(r)
constitute the set of Hohenberg-Kohn theorems.

Kohn-Sham method

In 1965 Kohn and Sham (KS) [143] proposed to decompose the universal functional
F [n] using a single-determinant wave function Φ, and a constrained search formula-
tion for the kinetic energy

F [n] = min
Φ→n

〈
Φ
∣∣∣T̂ ∣∣∣Φ〉+ EHxc[n], (1.128)

with EHxc[n] the Hartree-exchange-correlation functional and Φ → n meaning that
the minimization is done over the normalized single-determinant wave function Φ. We
use Ts[n] as the non-interacting kinetic energy functional, Ts[n] = min

Φ→n

〈
Φ
∣∣∣T̂ ∣∣∣Φ〉 =〈

Φ[n]
∣∣∣T̂ ∣∣∣Φ[n]

〉
, with Φ[n] the minimizing single-determinant wave function for a
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given density (not necessarily unique), which is called the KS wave function. The
idea of the KS method is then to use the exact expression of Ts[n] by reformulating
the variational property of F [n] in terms of Φ,

E0 = min
n

{
min
Φ→n

〈
Φ
∣∣∣T̂ ∣∣∣Φ〉+ EHxc[n] +

∫
Vext(r)n(r)d3r

}
= min

Φ

{〈
Φ
∣∣∣T̂ + V̂ext

∣∣∣Φ〉+ EHxc[nΦ]
}
. (1.129)

Thus, the exact ground-state energy E0 and density n0(r) can in principle be obtained
by minimizing over single-determinant wave functions only. The advantage of the
KS scheme is to use the single-determinant wave function Φ instead of the multi-
determinant wave function ψ, which represents a tremendous simplification. With
the single-determinant wave function, Φ, the kinetic energy can be treated explicitly,
and only EHxc[n] remains to be determined as a functional of the density.

Moreover, the minimization in Eq. (1.129) over the single-determinant wave func-
tion Φ can be reformulated to a minimization of the total electronic energy, as

E [{φi}] =
N∑
i=1

∫
φ∗i

(
− 1

2∇
2 + Vext(r)

)
φi(r)d3r + EHxc[n], (1.130)

with respect to the spatial orbitals φi(r), which form a set ofN orthonormal functions
{φi(r)}i=1,...,N . The density is then expressed in terms of the spatial orbitals φi(r)
as,

n(r) =
N∑
i

|φi(r)|2. (1.131)

The method of the Lagrange multipliers can then be used to perform the mini-
mization with the Lagrangian:

L[{φi}] = E [{φi}]−
N∑
i=1

εi

(∫
φ∗i (r)φi(r)d3r − 1

)
. (1.132)

The Lagrange multiplier εi is associated to the normalization condition of φi(r). The
functional derivative of the Lagrangian L with respect to φ∗i (r) leads to the following
equation, (

− 1
2∇

2 + Vext(r)
)
φi(r) + δEHxc[n]

δφ∗i (r)
= εiφi(r), (1.133)

since the Lagrangian L should be stationary with respect to the variations of orbitals
φi(r). The derivative of the functional Hartree-exchange-correlation energy EHxc[n]
with respect to φ∗i (r) is given by,

δEHxc[n]
δφ∗i (r)

=
∫
δEHxc[n]
δn(r′)

δn(r′)
δφ∗i (r)

d3r′. (1.134)
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Figure 1.8: Schematic representation of the self-consistent loop used to solve the KS equations. One
starts from an initial guess for the electron density corresponding to the ground state n0(r), which is used
to calculate the effective potential Veff(r) to be introduced in the Kohn-Sham equation. The Kohn-Sham
equation is solved and from the eigenfunctions φi(r) that are obtained one calculates the new charge density
n(r). The new charge density is mixed with the old charge density n0(r) to obtain the mixed n′0(r) to again
begin the loop until the charge densities calculated between successive loops are converged.

One can introduce the Hartree-exchange-correlation potential VHxc(r), which is a
functional of the density, as the function derivative of EHxc[n] with respect to n(r),

VHxc(r) = δEHxc[n]
δn(r) . (1.135)

Using the decomposition EHxc[n] = EH[n] + Exc[n], where EH[n] is the Hartree energy
functional, and Exc[n] is the exchange-correlation energy functional, we get,

VHxc(r) = δEH[n]
δn(r) + δExc[n]

δn(r) = VH(r) + δExc[n]
δn(r) , (1.136)

where the Hartree potential VH(r) = δEH[n]
δn(r) is defined as:

VH(r) =
∫

n(r′)
|r− r′|d

3r′. (1.137)

Furthermore, from Eq. (1.131) one can obtain the derivative of n(r) with respect to
the orbitals φi(r) as:

δn(r′)
δφ∗i (r)

= φi(r)δ(r− r′). (1.138)
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Injecting Eq. (1.138) into Eq. (1.134) and using the definition given in Eq. (1.136) of
the Hartree-exchange-correlation potential VHxc(r), we finally obtain the Kohn-Sham
equations:

Heff(r)φi(r) = εiφi(r), (1.139)

where εi are the KS orbital energies with Heff(r) = − 1
2∇

2 + Veff(r) the one-electron
KS Hamiltonian and Veff(r) = Vext(r) + VHxc[n](r) the so-called KS potential. The
orbitals φi which satisfy the KS equation (1.139) are called KS orbitals. The KS
equations constitute a set of coupled self-consistent equations since the potential
VHxc[n](r) depends on all the occupied orbitals {φi(r)}i=1,...,N through the density
n(r). The ground-state density n(r) of the KS system of N non-interacting electrons,
defined by the effective Hamiltonian Heff, is the same as the exact ground-state
density n0(r) of the physical system of N interacting electrons. The exact ground-
state energy E0 is then easily obtained by injecting the KS orbitals into Eq. (1.130).

Ideally, DFT is an exact theory, and, with the Kohn-Sham method described
previously, the approach is very appealing since the solution of a self-consistent
one-body problem is much simpler than the original correlated many-body prob-
lem. Unfortunately, the exchange-correlation (xc) energy Exc cannot be determined
exactly and must be approximated. Several approximations exist, such as the local-
density approximation (LDA) [143, 144] or the generalized gradient approximation
(GGA) [145,146] which are the ones used in the results shown in this thesis.

1.3.2 Time-Dependent Density Functional Theory (TDDFT)

The DFT can only be used to calculate physical quantities related to the ground-
state of the system. To calculate the response of a system to an external perturbation
one needs to implement the time-dependent DFT (TDDFT). A system under a time-
dependent perturbation can be described by the time-dependent wave function, which
satisfies the time-dependent Schrödinger equation [139]:

Ĥ(t)ψ(t) = i
dψ(t)
dt

, (1.140)

with Ĥ(t) the time-dependent Hamiltonian similar to the time-independent Hamil-
tonian but with a time-dependent external potential Vext. The initial (unperturbed
at t = 0) wave function is typically obtained from the ground-state obtained within
DFT. Moreover, as E. Runge and E. K. U. Gross demonstrated in 1984 [147], and in
analogy to the HK theorems of DFT, in TDDFT there is a correspondence between
the time-dependent density n(r; t) and the external perturbation Vext(r; t), except for
a constant. Following the idea of Kohn and Sham, one can define a fictitious system
of non-interacting electrons that satisfy the time-dependent Kohn-Sham equations:

i
∂φi(r; t)

∂t
=
[
− ∇

2

2 + Veff[n](r; t)
]
φi(r; t), (1.141)
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where n(r; t) is the electron density computed from the time-dependent KS orbitals
φi(r; t) similarly to Eq. (1.131) but now depending on time,

n(r; t) =
N∑
i=1
|φi(r; t)|2. (1.142)

The KS density n(r; t) is defined to be precisely that of the real system. By virtue of
the one-to-one correspondence, the potential Veff(r; t) yielding this density is unique.
We then define the xc potential, Vxc(r; t), as part of the total effective potential,
Veff(r; t), as:

Veff(r; t) = Vext(r; t) + VH(r; t) + Vxc(r; t), (1.143)

where the Hartree potential is given by:

VH(r; t) =
∫
d3r′

n(r′; t)
|r− r′| . (1.144)

The xc potential Vxc(r; t) is a functional of the entire history of the density, n(r; t).
This time-dependent functional Vxc(r; t) is more complex than the similar functional
for the ground-state case, and its knowledge implies the solution of all the time-
dependent Coulomb interacting problems.

According to the KS theorem discussed previously, the ground-state of a quantum
system is determined uniquely if the ground-state is non-degenerate. Therefore, the
time-dependent xc potential is a functional of the time-dependent density alone only
if the many-electron and KS wave functions are non-degenerate.

In ground-state DFT, the xc potential Vxc(r; t = 0) is the functional derivative
of the xc energy functional Exc[n], i.e., Vxc(r) = δExc[n]

δn(r) . It would be useful to find
an xc functional Exc[n] whose functional derivative gives the xc potential Vxc(r; t) =
δExc[n](t)
δn(r;t) . In this work, we are using adiabatic time-dependent xc functionals. In

the adiabatic functionals, the xc action Axc[n](r; t) depends on the instantaneous
density n(r; t), i.e., there is no memory of previous times. This is a strong but very
common approximation. Besides allowing us to use any standard approximation
for the ground-state (as far as the xc kernel can be computed), this approximation
solves the problem of the causality breaking, since all xc effects only depend on
the instantaneous electron density. Moreover, in this thesis we mainly focus on
spectroscopy properties of the system, therefore we will further assume a weak time-
dependent perturbation δVext(r; t) to the time-independent external potential Ṽext(r),

Vext(r; t) = Ṽext(r) + δVext(r; t). (1.145)

The perturbation theory for TDDFT can be formulated via so-called linear-response
functions. In the following, we discuss the linear-response theory within TDDFT.
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1.3.3 Linear-Response Theory

Spectroscopic information about optical excitations within the time-dependent KS
formalism can be extracted using the time-dependent KS Eqs. (1.141) - (1.143) with
a simple adiabatic functional for the time-dependent xc potential Vxc[n](r; t). The
system is usually assumed to be in its ground-state before the perturbation is applied
at t = 0, and therefore the KS ground-state (occupied KS orbitals) can be used
as the initial state. We can compute the time-dependent induced dipole moment
Di(t) =

∫
riδn(r; t)d3r by adding a weak kick-like perturbation δVext = Eext · r δ(t)

at instant t = 0, and solving the KS Eqs. (1.141) - (1.143). The Fourier transform of
the induced dipole moment, Di(t), will give the spectrum of the dipole polarizability
α(ω), which is related to the optical absorption cross section given by Eq. (1.116).
In fact, this procedure is found in many implementations of TDDFT [148,149].

Compared to real-time TDDFT, linear-response TDDFT is restricted to small
perturbations, and usually misses some information on the excitations (non-linear
processes) and some other effects (charging/discharging) that are modeled within
real-time TDDFT. Nevertheless, the computational cost of linear-response TDDFT
is notably smaller than that of real-time TDDFT, as the frequency resolution of the
latter is linked to the total propagation time, which also requires stable algorithms.
Moreover, real-time TDDFT also requires sufficiently stable algorithms for the time
propagation, which are not completely trivial [148, 149]. On the other hand, linear-
response TDDFT is less general, although being formulated directly in the frequency
domain, it simplifies the interpretation of the results. Moreover, as described below,
it can be formulated in an efficient way that allows for studying very large systems.

In the framework of linear-response TDDFT, the induced charge density δn(r; t)
is given by the convolution product in time of the external potential δVext(r; t) with
the so-called response function χ(r, r′; t):

δn(r; t) =
∫
dt′
∫
d3rχ(r, r′; t− t′)δVext(r′; t′), (1.146)

i.e., if the external potential is slightly changed at positione r and time t′, χ encodes
the information about how the density will be changed at point r and later time t.
Moreover, we note that χ is a function only of t− t′, and not of (t, t′), as it does not
depend on the time t0 at which the perturbation is switched on. Since the present
framework is in real-space, we can drop the spatial variables temporarily for the sake
of clarity:

δn(t) =
∫
dt′χ(t− t′)δVext(t′). (1.147)

Now, the Fourier transform of this expression is simply

δn(ω) = χ(ω)δVext(ω), (1.148)

or

δn(ω) = χ0(ω)δVeff(ω), (1.149)
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where δVeff = δVext + VHxc is the KS potential which includes the small perturba-
tion δVext, and χ0(ω) is the non-interacting response as defined in Eq. (1.149). In
particular, χ0(ω) encodes how the non-interacting KS electrons would respond to
changes in the effective potential δVeff(ω). Thus, although χ and χ0 are generally
different quantities, both must yield the same density response δn(ω). The reason
behind using Eq. (1.149) over Eq. (1.148) is that χ0(ω) has a close expression in
terms of KS orbitals and energies, which is not the case for χ(ω):

χ0(r, r′;ω) = lim
ε→0

∑
n,m

(fn − fm)φ
∗
n(r)φm(r)φ∗m(r′)φn(r′)
ω − (Em − En) + iε

, (1.150)

where (n,m) are indices summing over the KS orbitals, and φn and En are the KS
states and eigenfrequencies, respectively. Moreover, fn are occupation terms: if n and
m are both occupied or unoccupied states then fn− fm = 0, otherwise, fn− fm 6= 0.
The constant ε is an infinitesimally small value to avoid divergence. Thus, χ0 is
obtained from the occupied and virtual ground-state KS orbitals φn obtained within
DFT. In particular, if the Hartree-exchange-correlation potential VHxc is set not to
change in response to the external perturbation δVext(ω), we end up with χ = χ0. In
such a situation the excitations of the system can be exactly described as one-electron
excitations in the KS potential obtained from the ground-state density. From Eqs.
(1.149) and (1.148) we obtain: 

χ(ω) = δn(ω)
δVext(ω) ,

χ0(ω) = δn(ω)
δVeff(ω) .

(1.151)

Since δVeff(ω) = δVext(ω) + δVHxc(ω), taking the variational derivative with respect
to δn(ω), we get:

δVeff(ω)
δn(ω) = δVext(ω)

δn(ω) + δVHxc(ω)
δn(ω) . (1.152)

Furthermore, taking into account that δVeff/δn = χ−1
0 and δVext/δn = χ−1, and

defining δVHxc(ω)
δn(ω) = KHxc(ω), usually referred to as xc kernel, we obtain:

χ−1
0 (ω) = KHxc(ω) + χ−1(ω), (1.153)

or

χ−1(ω) = [χ−1
0 (ω)−KHxc(ω) + χ−1(ω)]−1. (1.154)

Then, after some algebra, we can obtain:

χ(ω) = χ0(ω) + χ0(ω)KHxc(ω)χ(ω). (1.155)
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This equation is the well known Petersilka-Gossman-Gross equation [150], which can
be further simplified using Eqs. (1.151):

[1− χ0(ω)KHxc(ω)]δn(ω) = χ0(ω)δVext(ω). (1.156)

Moreover, including Eq. (1.149) into Eq. (1.151), we obtain the following system of
integral equations

[1− χ0(ω)KHxc(ω)]χ0(ω)δVeff(ω) = χ0(ω)δVext(ω). (1.157)

Acting from the left in the last equation with the inverse of the non-interacting
response function χ−1

0 (ω), we end up with:

[1−KHxc(ω)χ0(ω)]δVeff(ω) = δVext(ω). (1.158)

We note that Eq. (1.158) might be slightly more handy than Eq. (1.156) because,
after determination of the effective potential δVeff(r;ω), one can easily apply several
types of analysis of the induced density δn(r;ω) [151], which are difficult to achieve
otherwise. The algorithm to discretize and solve the linear Eqs. (1.155) or (1.156),
developed by D. Sánchez-Portal’s group [152], is further detailed in the following
lines.

1.3.4 Response Function within LCAO with Numerical Atomic Orbitals

The linear combination of atomic orbitals (LCAO) method was developed in the early
days of quantum mechanics to expand molecular orbitals. Using the LCAO method
one can expand the KS states φn(r) in Eqs. (1.139) and (1.150) as

φn(r) = Xn
a f

a(r−Ra), (1.159)

where Einstein’s summation convention is used over index a, which refers to the ath
atomic nucleus. The expansion coefficients Xn

a are determined by self-consistently
solving Eq. (1.131) and (1.139), while fa(r) is a set of atomic orbitals, i.e., a set of
known functions centered at the atomic nuclei Ra. The atomic orbitals fa(r) possess
a radial-angular decomposition (using Einstein’s summation convention):

fa(r) = fa(r)Yla,ma(r), (1.160)

where fa(r) is a radial function depending on the radial distance to the origin r, and
Yl,m(r) are the spherical harmonics which will be chosen as real spherical harmonics.
In order to assert in the notation the independence of the radial orbitals fa(r) on
the magentic quantum number ma, we use also a multiplet index µ:

faµ,m(r) = fµ,m(r) = fµ(r)Ylµ,m(r). (1.161)

In this notation, the multiplet index µ and magnetic quantum number m determine
the orbital index a = aµ,m.
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When inserting the LCAO ansatz of Eq. (1.159) into Eq. (1.150) to describe
the response function, one encounters products of localized functions fa(r)f b(r),
a set of quantities that are known to be linearly dependent. There is extensive
literature [153–155] on the linear dependence of products of atomic orbitals.

The approach described here and initially devised by D. Foerster [156], constructs
the basis for the products of orbitals fa(r)f b(r) relying on the diagonalization of a
Coulomb metric in the basis of original orbital products < ab|cd >. The diago-
nalization is done for each atomic pair individually to maintain the locality of the
constructed product basis (PB). Moreover, in the process of constructing, we use
the spatial symmetry of the orbitals’ products to further reduce the dimension of
the diagonalized metric [152, 156]. The resulting basis set of dominant products is
of controlled quality and is locally-optimal by construction. However, the dominant
functions belonging to different atom pairs could still overlap strongly and, thus, the
problem of linear dependence is not fully solved. Therefore, the basis of dominant
products was augmented by a re-expression procedure allowing to only use atom-
centered product functions. Both product basis sets, the dominant products as well
as the atom-centered PB set, allow to expand the atomic orbitals products fa(r)f b(r)
within the so-called product vertex ansatz [157]:

fa(r)f b(r) = V abµ Fµ(r), (1.162)

where V abµ are the product vertex coefficients and Fµ(r) are the product functions
of the orbitals of two atoms [µ stands as a shorthand for the ordered pair of atoms
(a, b)]. Inserting the product vertex ansatz of Eq. (1.162) into the response function
[Eq. (1.150)], the following is obtained:

χ0(r, r′;ω) =
∑
µ,ν

Fµ(r)χ0
µν(ω)F ν(r′), (1.163)

where the matrix χ0
µν(ω) is given by:

χ0
µν(ω) = (fn − fm)

(Xn
a V

ab
µ Xm

b )(Xm
c V

cd
ν Xn

d )
ω − (Em − En) + iε

. (1.164)

Furthermore, inserting the expansion of Eq. (1.163) into the Petersilka-Grossman-
Gross equation for the interacting response given in Eq. (1.155), we obtain the matrix
equation:

χµν(ω) = χ0
µν(ω) + χ0

µµ′(ω)Kµ′ν′

Hxc χν′ν(ω), (1.165)

for the interacting response matrix χµν(ω). Inserting the PB in Eq. (1.158), one gets
the linear equation for the induced effective potential δV νeff(ω):[

δµν −Kµµ′

Hxcχ
0
µ′ν′(ω)

]
δV νeff(ω) = δV µext(ω), (1.166)
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to be solved iteratively. The interaction kernel Kµν
Hxc is defined by

Kµν
Hxc =

∫
d3r d3r′Fµ(r)KHxc(r, r′)F ν(r′), (1.167)

while the external δV µext(ω) and effective δV µeff(ω) potentials are defined by

δV µext(ω) =
∫
d3rFµ(r)δVext(r;ω), (1.168)

δV µeff(ω) =
∫
d3rFµ(r)δVeff(r;ω). (1.169)

In the following sections, we apply this method to calculate the response of a cluster
with two types of external excitations, of interest in this thesis: extended electro-
magnetic planewaves and electron beams.

1.3.5 Optical Polarizability Tensor

The external electric field of a monochromatic electromagnetic plane wave can be
expressed as δEext(r;ω) = E0e

ik·r, where E0 is the amplitude of the electric field
and k is the wavevector. If the characteristic size of the excited system R̃ is much
smaller than the wavelength of the incoming field λ = 2π

k = 2πc
ω � R̃, the optical

perturbation of the system can be accurately described by the external potential
δVext = E0 · r, as expressed within the quasistatic approximation. The optical re-
sponse δV µeff(ω) [as mentioned earlier, µ stands as a shorthand for the ordered pair of
atoms (a, b)] for any direction of the external field E0 can be calculated by inserting
the external potential δVext in Eq. (1.166):[

δµν −Kµµ′

Hxcχ
0
µ′ν(ω)

]
δV νeff(ω) = dµi , (1.170)

where the dipole moment dµi is given by

dµi =
∫
d3rFµ(r)ri, (1.171)

and the indices i enumerates the Cartesian space coordinates (x, y, z). Once the
effective KS potential δV νeff(ω) is known, the induced density can be calculated as

δniµ = χ0
µν(ω)δV νeff(ω), (1.172)

which can be transformed back into real space

δni(r;ω) = Fµ(r)δniµ. (1.173)

We will analyze the induced charge density δn(r, ω) in Na380 clusters in Chapter 2 un-
der optical excitation and in Chapter 4 for excitation with electron beams. Moreover,
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the quasistatic approximation gives rise to the notion of the optical polarizability ten-
sor

Pij(ω) =
∫
d3rd3r′riχ(r, r′;ω)r′j . (1.174)

The absorption cross section σabs(ω) is proportional to the trace of the imaginary
part of the polarizability Pij(ω):

σabs(ω) = −4πω
3c Im[Pxx(ω) + Pyy(ω) + Pzz(ω)], (1.175)

which provides the optical response of the whole macroscopic object under study.

1.3.6 Electron Energy Loss Spectroscopy within TDDFT

In the previous section, the iterative TDDFT method was applied to compute the
optical polarizability tensor within the dipole approximation. The iterative method
to calculate the induced density can be used to calculate the response of the system
under other external perturbations, such as fast electrons as those used in electron
energy loss spectroscopy (EELS). The observable measured in experiments within
EELS, using TEM, is the electron energy loss probability ΓEELS(ω) [see Eq. 13
in Introduction]. Typically the electron probes carry kinetic energy ranging from
tens to hundreds of keVs. For such electrons, their wavelength is rather short (from
0.5 to 4 Å), and therefore the interaction of the probe with the nanoparticle is
too short to provoke any change in the trajectory with significant probability. The
velocity of the probing electron is therefore considered to be constant. Moreover,
the current density of the probe electrons can be kept small (i.e., the separation
distance between consecutive electron probes is larger than the emission wavelength)
and the interaction of the probe electrons with the target electrons remains in the
linear-response regime [65]. Furthermore, in this thesis, we focus on valence electron
excitations. The latter, together with the high speed of electrons, justifies the use of
a linear-response formulation to obtain standard EEL spectra.

The general expression for the electron energy loss probability ΓEELS(ω) is given in
Eq. (1.59) as a function of the induced field Eind(r;ω) created by the induced density
δn(r;ω). As in the classical approximation, retardation effects are not relevant due
to the nanometer size of the particles considered here, and therefore the Coulomb
potential can be used to calculate the induced field. After some algebra [158], the
electron energy loss probability can be expressed in terms of the induced density
δn(r;ω) and the external potential created by the moving charge δVext(r;ω):

ΓEELS(ω) = − 1
π
Im
∫
d3rδV ∗ext(r;ω)δn(r;ω), (1.176)

= − 1
π
Im
∫ ∫

d3rd3r′δV ∗ext(r;ω)χ0(r, r′;ω)δVeff(r′;ω). (1.177)

The induced charge density δn(r;ω) can be calculated within the linear-response the-
ory by expansion in terms of {Fµ(r)}, Eq. (1.172), and using linear Eqs. (1.149) and
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(1.158) to compute the expansion coefficients δnµ(ω). In this way, the components
of the external potential δV µext are expressed by

δV µext(ω) = 1
2π

∫
dteiωt

∫
Fµ(r)

|r−Rµ
elec(t)|

d3r, (1.178)

whereRµ
elec(t) = R0+vet−Rµ andRµ are the positions of atomic nuclei at which the

product functions {Fµ(r)} are centered, and (R0,ve) are the electron probe position
and velocity, respectively. In order to compute the components in Eq. (1.177), we will
use the Laplace expansion [114] of the Coulomb interaction and Fourier transform of
the components in time domain, as

δV µext(t) =
∫

Fµ(r)
|r−Rµ

elec(t)|
d3r

=
∑
l,m

4π
2l + 1

∫
d3r

rl<
rl+1
>

Y ∗lm(r̂)Ylm(r̂µelec(t))F
µ(r), (1.179)

where r< = min(r, r′), r> = max(r, r′) and Ylm(r̂) are real spherical harmonics. Since
Fµ(r) = Fµ(r)Ylµmµ(r̂) and

∫
Y ∗lm(r̂)Yl′m′(r̂)dΩ = δll′δmm′ , we can then remove the

sum over l and m, obtaining,

δV µext(t) = 4π
2lµ + 1Ylµmµ(r̂µelec(t))

∫
r2 rl<
rl+1
>

Fµ(r)dr. (1.180)

The final step consists in separating the radial integral into two integration intervals

δV µext(t) = 4π
2lµ + 1Ylµmµ(r̂µelec(t))

[
1

(Rµelec(t))lµ+1

∫ Rµelec(t)

0
rlµ+2Fµ(|r|)dr

+ (Rµelec(t))
lµ

∫ +∞

Rµelec

Fµ(|r|)
rlµ−1 dr

]
. (1.181)

Using the components computed in time domain, following Eq. (1.181), we apply
Fourier transform (FFT is used) and get the components as in Eq. (1.178) in the
frequency domain. Although it is possible to obtain a closed analytical expression
for δV µext(ω) for external trajectories, i.e., when the trajectory passes outside the sup-
port region of a given product basis functions Fµ(r), general trajectories do overlap
with these function, and therefore δV µext(ω) is computed numerically. In principle,
following the work of Ferrel and Echenique [259] it is possible to find a close ana-
lytical expression for δV µext(ω). Finally, the electron energy loss probability can be
expressed as a scalar product using the product basis set, as

ΓEELS(ω) = − 1
π
Im
(
δV µ∗ext(ω)δnµ(ω)

)
, (1.182)

which is the expression implemented in the calculation of spectra in Chapter 4.
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2 Optical response of metallic
picocavities

M ost of the fascinating properties and applications of plasmonic nanoparticles
are based on the tunability of their optical response, along with their abil-

ity to enhance electromagnetic fields, squeezing the electromagnetic energy down to
nanometer-scale volumes around sharp tips or at interparticle gaps, producing “hot
spots”, behaving as effective optical nanoantennas [30, 159–161]. This is possible
through the excitation of localized surface plasmons that couple efficiently to light,
allowing to overcome the diffraction limit [162]. The near-field patterns in nanostruc-
tures under light excitation strongly depend on the size, composition, and shape of
the individual particles, along with plasmon hybridization in coupled nanostructures.

Light scattering of nanoparticles of arbitrary shape and size is usually well ad-
dressed within a classical electrodynamics framework (with the use of a suitable
dielectric function), by solving Maxwell’s equations for specific compositions, mor-
phologies, and environments [18,163–172]. When the size or the separation distance
between plasmonic nanoparticles becomes on the order of a few nanometers or even
smaller, the quantum nature of the electron dynamics emerges due, among others, to
the particle-size effect in the electron confinement [83, 173–176], the inhomogeneous
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dynamical screening of the electron response [177, 178], the electron spill-out at the
metal interfaces [32], the presence of atomistic inhomogeneities [107,179], or even the
activation of quantum tunneling [180, 181] across subnanometer interparticle gaps.
All of these effects are initially not included in typical local classical electrodynam-
ical descriptions of the optical response, and different levels of approximation have
been adopted to address their influence in the optical response in extended classical
models [96, 97, 182, 183]. Among all these effects, the presence of atomic-scale fea-
tures at the surfaces has not been deeply explored in the context of plasmonics up
to recently, due to the intrinsic limitations of most of the phenomenological classi-
cal models, which do not address the quantum effects mentioned above. A proper
description of the effect of atomic-scale edges, wedges, vertices, and protrusions at
surfaces requires, in principle, a complete quantum theoretical framework, which in-
cludes the atomistic structure of the nanoparticles and the wave nature of electrons
building up the plasmonic excitations.

Ab initio atomistic methods provide an appropriate quantum framework to con-
sider the aforementioned effects including the atomistic structure in a straightfor-
ward and complete manner [163, 184–187], with the drawback of being computa-
tionally demanding. Recently, a few works [107, 179, 188, 189] have shown the im-
pact of the atomistic structure on the optical response of metal clusters of a few
nanometers and dimers within atomistic time-dependent density functional theory
(TDDFT) [147,190], showing that the atomistic structure at the interfaces of a metal-
lic nanostructure needs to be considered for an accurate description of the local field
distribution around atomic-scale features. It has been shown that the presence of
single atoms or atomic edges in facets of the nanoparticles allows for localizing and
confining the near field down to subnanometric dimensions, well below the under-
lying plasmonic background [107]. This level of field confinement goes beyond that
of nanocavities, where the field is localized to larger nanometric regions, thus reach-
ing the realm of picocavities. This has enabled a possible route toward photonics
at the picoscale, where the localization of EM fields in atomic-scale cavities leads to
extremely small effective mode volumes, thus boosting the coupling of photons with
the electronic transitions of single emitters [43] or with the vibrations of a molecule
in optomechanical interactions [44].

The quantum description of these optical picocavities at the full atomistic level
reveals the importance of atomic-scale features. However, such a detailed description
is often limited by the computational requirements, even with the relatively efficient
TDDFT methods. Here we propose the use of a simplified local classical approach
to address the optical response and the EM field distribution around picocavities.
By adopting an abrupt sharp boundary interface that coincides with the electronic
density profile of the atomistic distribution within a plasmonic structure we show
in Sec. 2.1 that a faithful reproduction of the near-field properties of the picocavity
can be achieved for single metallic nanoparticles. The extra localization of the field
around atomic-scale features is identified as a non-resonant atomic-scale lightning rod
effect in Sec. 2.2. This concept is extended to cover the influence of picocavities in
nanogaps in Sec. 2.3. The proposed methodology is capable of exposing the extreme
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2. OPTICAL RESPONSE OF METALLIC PICOCAVITIES

nanophotonic properties of these picocavities embedded in larger structures, thus
allowing standard methods of electrodynamics to address this challenging regime
[108].

The data corresponding to the results obtained within TDDFT were calculated
by Marc Barbry in the group of Prof. Daniel Sánchez-Portal, while the DDA data
was calculated by Yao Zhang in the group of Prof. Javier Aizpurua, both at the
CFM in Donostia.

2.1 Subnanometric features in single metallic nanoparticles

To understand the effects of subnanometric features in the plasmonic response of
small metallic nanoparticles, we consider nanoparticles with icosahedral symmetry
that present atomic-scale features such as facets, edges, and vertices. We attempt
to separate the influence of these morphological features from other effects such as
electron confinement, inhomogeneous dynamical screening of the electron response,
the electron spill-out at the metal interfaces, etc., and analyze to what extent classical
approaches can reproduce the properties of the far and near field obtained within
atomistic quantum approaches, with a special interest in the field localization and
enhancement around the vertices.

For such a purpose, we use three different approaches.

i) First, we consider a Na380 atomistic cluster within TDDFT framework de-
scribed in Chapter 1, which is the largest cluster size for which the global min-
imum icosahedral symmetry (as described using an effective Murrell-Mottram
potential [191]) is available [192]. This structure5 is further relaxed using den-
sity functional theory (DFT), as implemented in the SIESTA code [193, 194],
within the Generalized Gradient Approximation (GGA), with the use of the
Perdew-Burke-Ernzerhof functional [145]. The geometry relaxation ensures the
stability of the structure and that it corresponds at least to a local minimum
of the DFT energy landscape of Na380. Subsequently, we obtain the TDDFT
linear optical response of the cluster within the so-called adiabatic local density
approximation (LDA) [143,144]. Using an iterative scheme developed by Koval
and co-workers [151] we calculate the optical response at the TDDFT level for
large systems at moderate computational cost [107,151,189,195].

ii) Secondly, we consider the same atomistic structure within a classical approach,
i.e., the dipoles within DDA [118, 122, 135, 136] are placed at the very same
positions as the atoms in TDDFT. Each atom i is characterized by an atomic

5The initial structure of the Na380 cluster was downloaded from the Cambridge Cluster
Database. Wales, D. J.; Doye, J. P. K.; Dullweber, A.; Hodges, M.; Naumkin, F.; Calvo, F.;
Hernández-Rojas, J.; Middleton, T. F. http://www-wales.ch.cam.ac.uk/CCD.html.
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2.1 Subnanometric features in single metallic nanoparticles

polarizability αi, obtained from the bulk dielectric function ε(ω) through the
Clausius-Mosotti relationship, αi ∝ (ε − 1)/(ε + 2). Each atom is treated
as a sphere with polarizability αi, and radius rat = 2.08 Å, ad described in
Chapter 1. The interaction between atoms is described as a dipole-dipole one
and the distance between dipoles is determined from the relaxed atomistic
structures. The optical response is obtained from the isotropic polarizability of
the nanoparticle, αNP, given by the coherent sum of the self-consistent atomic
polarizabilities αNP =

∑
i αi, and the optical absorption cross section of the

structure is calculated as σabs = 4πω Im(αNP).

iii) Last, we consider a continuous classical approach within the Boundary Element
Method (BEM), which assumes the medium within the nanoparticle (metal)
to be homogeneous and isotropic and to be separated from the surrounding
medium (vacuum) by an abrupt boundary interface resembling the electronic
density profile of the atomistic distribution. The optical response of the metal
is characterized by a local dielectric function, ε(ω). The calculations are carried
out with the MNPBEM Toolbox [110, 111]. BEM requires the discretization
of the boundary surfaces, instead of the whole volume of the different dielec-
tric media, speeding up the solution of Maxwell’s equations in inhomogeneous
media. For the size of the nanoparticles studied in this work, below the intrin-
sic mean free path of conduction electrons in bulk metals, surface scattering
effects become important. In order to account for this effect in the classical
approach, we include a correction to the free-electron model (Drude model) of
the dielectric response following the prescriptions in the literature [196], with
the assumption that surface scattering effects lead to a reduced effective mean
free path Leff, which adds a damping factor in the Drude dielectric function
of the bulk metal. When specular reflection of electrons at the boundaries is
assumed, as in the so-called Billiard model [197], the effective mean free path is
given by Leff = 4V/A, where V and A are the volume and area of the nanopar-
ticle, respectively [198]. Therefore, we adopted the modified Drude model of
the dielectric function given by

ε(ω) = ε∞ −
ω2
p

ω2 + iω

(
vF
Leff

+ γd

) , (2.1)

where ωp = 6.05 eV [199] is the Na plasma frequency, vF is the Fermi velocity
(vF = 1.07 × 106 m/s for Na [199]) and the intrinsic damping term is γd =
27.6 meV [200].

More details about the three approaches used to perform the numerical calcula-
tions are included in Chapter 1.

2.1.1 Influence of smoothening nanoparticle vertices and edges

While the atomistic structure of nanoclusters is constrained by the crystallography
and relaxation of the structure, continuous approaches such as that developed within
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2. OPTICAL RESPONSE OF METALLIC PICOCAVITIES

Figure 2.1: (a) Atomistic cluster composed by 380 atoms (dipoles) used in TDDFT (DDA) calculations.
(b) Sketch of the continuous icosahedral cluster used in BEM calculations. The sphere of radius r = 18.5 Å
surrounding the icosahedron has been drawn for reference. The vertices and edges have been rounded to
have a minimum cap radius of rNa = 2.08 Å.

BEM have the “freedom” to model any shape, a versatile aspect that can be exploited
with care, and adapted to the context. For instance, an infinitely sharp vertex
is unphysical, even more for Ångstrom scales, and thus it usually requires some
smoothening or rounding of the surface. We choose the endings of vertices and edges
in our structures to be rounded by means of a spherical cap of radius rNa ∼ 2.08 Å
(Wigner-Seitz radius of sodium) as shown in Fig. 2.2, i.e., we consider these ending-
features to have the curvature of an atom approximated by a sphere.

Figure 2.3 shows the absorption cross section of single icosahedral particles of
radii r = 1 nm, 1.6 nm, 1.8 nm and 2 nm with non-smoothened and with smoothened
vertices and edges in their surface morphology following the approach iii) described
above. The radius r is defined as the minimum radius of the sphere surrounding the
non-smoothened icosahedrons thus, the smoothened nanoparticles after the rounding
are slightly smaller. The smoothening radius rNa has been kept fixed for all particle
sizes, while the damping term in the dielectric function due to surface scattering
effects depends on the size of the nanoparticle following Eq. 2.1. Overall, the spectra
show a dominance of the dipolar plasmonic (DP) mode, but the relative weight of
higher-order modes with respect to the DP is larger in particles with sharp geometries
(dashed lines) than in smoothened geometries (continuous lines). Also, the plasmonic
resonances of the smoothened geometries are slightly blueshifted and spectrally more
dispersed, as compared to the non-smoothened ones.

Regarding the influence of size in the absorption cross section, as the smoothen-
ing radius is kept constant for different particle sizes, the smaller the particle, the
smoother its overall shape is, i.e., more similar to a sphere. Thus, the particle size
affects both the relative weight and position of the plasmon peaks for smoothened
NPs. On the other hand, for decreasing particle sizes, the damping due to surface-
scattering effects increases, broadening the signal and smearing out the effects of
the particle smoothening on the spectrum, which is observed for example in the re-
sponse of the particle with r = 1 nm in Fig. 2.3, where only a broad peak can be
distinguished.
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2.1 Subnanometric features in single metallic nanoparticles

Figure 2.2: (a) Surface mesh used to model the initial regular icosahedral particle (sharp vertices and
edges). (b) Detail of one of the vertices to be smoothened. (c) Location of the sphere of radius rNa used to
smoothen the vertex. (d) Smoothened vertex with the spherical cap in place. The smoothened surface matches
the contour of the sphere. (e) Detail of the vertex of the final smoothened particle. (f ) A complete view of the
final smoothened icosahedral particle. The number of elements of the surface mesh is kept constant during
the smoothening process.

2.1.2 Far-field and near-field optical response of single nanoparticles

Now that we have set the procedure of the rounding of a continuous cluster, we explore
the optical response and field localization around atomic-scale features associated
with the edges and vertices of nanoparticle morphologies in isolated particles within
the three different approaches. To that end, we perform calculations of the absorption
cross section and near-field distribution in single Na icosahedral clusters using the
numerical methods introduced in Chapter 1. As mentioned above, quantum atomistic
calculations adopt the geometry shown in Fig. 2.1(a), whereas the classical local
calculations adopt the smooth icosahedral shape displayed in Fig. 2.1(b) (with r =
1.85 nm). Additionally, the situation of a smooth spherical geometry with no atomic-
scale features is also considered as a reference. The absorption cross sections obtained
from the three approaches are compared in Fig. 2.4. In the TDDFT calculation (blue
line) we observe a single peak at 3.15 eV, corresponding to the dipolar plasmon (DP)
resonance, and a shoulder at around 3.8 eV. In the DDA calculation (green line) we
observe a single peak at 3.25 eV corresponding to the DP and a broad shoulder. The
BEM calculation (red line) shows two clear peaks emerging at 3.2 eV and 3.6 eV,
and corresponding to the DP and a quadrupolar plasmon (QP) mode, respectively.
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2. OPTICAL RESPONSE OF METALLIC PICOCAVITIES

Figure 2.3: Absorption cross section as a function of energy for icosahedral nanoparticles with smoothened
(straight lines) and sharp (dashed lines) vertices and edges in their morphology, as obtained using the BEM.
The radii of the minimum sphere surrounding the nanoparticles are r = 1 nm, 1.6 nm, 1.8 nm and 2 nm.
The smoothening radius has been set to rNa = 2.08 Å for all the nanoparticle sizes.

:

Moreover, due to the high symmetry of the system, the dependence of the far-field
on the polarization of incident light is negligible.

The difference in the energies of the DP among the different models is minimal,
but more pronounced differences can be found in their intensity, especially in the
calculation with DDA. Moreover, when smoother geometries are considered in the
classical BEM calculations, there is a predominance of the DP mode and smearing out
of the QP mode, as shown in Fig. 2.3. This explains the presence of a clear second
peak in the BEM cross section, as compared to the shoulder obtained in the full
quantum calculation, effectively rounded by the effect of the electron cloud spilling
at the interfaces. The spectrum corresponding to a classical spherical particle, of
similar size (r = 1.85 nm) sketched in Fig. 2.1(b), is also shown (dashed black line)
for reference. A single peak, corresponding to the DP, emerges at 3.45 eV for the
smooth spherical particle. The difference in the intensity of the DP arises in part
due to the activation of higher-order modes in the case of the icosahedral particle.

One of the most important aspects of an optical resonator is its capacity to local-
ize the optical mode to an effective volume as small as possible. In Fig. 2.5 the field
distribution around the Na nanoparticle is mapped for two perpendicular incident
polarizations. The energy considered in all the plots corresponds to the dipolar plas-
monic resonance. Data are displayed in the (y, z) plane passing through the center of
the particle. The polarization of the incident field is parallel to the y-axis for the plots
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2.1 Subnanometric features in single metallic nanoparticles

Figure 2.4: Absorption cross section of a Na particle calculated using TDDFT (blue line), BEM (red line)
and DDA (green line). The energies of the dipolar plasmons obtained for all three models are highlighted
by round dots. The dashed black line corresponds to the absorption cross section of the sphere in Fig. 2.1
b), as calculated with BEM. A peak corresponding to a quadrupolar plasmon (QP) is observed for BEM
at ω = 3.6 eV, while a shoulder is appreciated for TDDFT and DDA around ω ∼ 3.8 eV. TDDFT data
provided by Marc Barbry and DDA data provided by Yao Zhang, both at the CFM.

on the top row, and along the z-axis for the plots on the bottom row. The atomistic
structure of the nanoparticle clearly emerges in the TDDFT and DDA results (left
and right columns), and as one might expect, there is no atomistic contrast in the
classical near-field map (middle column), due to the continuous description of the
media interfaces within this model. Remarkably, both model descriptions reproduce
very similarly the effect of localization of the near field at the atomic protrusions
within the interfaces of the particles (at their vertices and edges), giving rise to pro-
nounced atomic-scale “hot spots”. These subnanometric-scale hot spots are identified
in all the field distributions on top of the plasmonic nanometric background, and they
are also correctly captured by the classical local description (middle column). One
can thus conclude that it is possible to describe the main features of sub-nanometric
localization of the fields if the atomistic structure of the particle is correctly approxi-
mated by a smooth and continuous surface. This extreme confinement of the field to
subnanometric effective volumes goes beyond that of nanocavities, where the field is
localized to nanometric regions, so these cavities showing subnanometric localization
are referred to as picocavities.

These results set the validity of classical approaches to effectively address the
actual local field distribution around atomistic features, even in the most extreme
situations of localization. With this result at hand, it can be proposed that atomic-
scale hot spots in large plasmonic configurations can be correctly tackled by a proper
classical approach which accounts for the atomistic structure geometrical profile.
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2. OPTICAL RESPONSE OF METALLIC PICOCAVITIES

Figure 2.5: Induced near-field enhancement for a single icosahedral Na nanoparticle obtained using (a-b)
TDDFT, (c-d) BEM, and (e-f) DDA. The external field E0 is polarized along the y axis (top row) and along
z axis (bottom row). TDDFT data provided by Marc Barbry and DDA data provided by Yao Zhang, both at
the CFM.

Next, we analyze deeper the physical mechanism underlying this atomic-scale optical
localization.

2.2 Atomic-scale lightning rod effect

In the previous section, we have studied the influence of atomic-scale features in
the optical response of single metallic nanoparticles and observed that the electro-
magnetic field can be localized in subnanometric regions. In this section, we will
show that this extra-localization of the field around atomistic features is sustained
by a non-resonant effect that cooperates with the overall plasmonic enhancement
produced by the collective oscillation of the electronic surface charge density in the
nanoparticle. At the macroscopic scale, it is well known that isopotential regions
which expel the electric field and present a pronounced geometrical curvature pro-
duce an abrupt change of the electrical potential, φ(r), in their proximity (large
potential gradient), and thus strong induced electric fields Eind, since, in the qua-
sistatic limit, Eind = −∇φ(r). The field enhancement following a strong potential
gradient due to the curvature of a perfectly metallic curved interface is commonly
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Figure 2.6: a) Sketch showing a vertex on an icosahedral atomistic nanoparticle used in TDDFT (circles
represent atoms). The dotted line along the nanoparticle interface shows the surface used in the BEM
calculations. The zone where the field is localized has been highlighted with oblique lines. (b) Zoom-
in of the region enclosed by the cyan dashed lines of the TDDFT near-field maps from Fig. 2.5(b); (c)
zoom-in of the BEM near-field maps from Fig. 2.5(d). (d) Sketch of an atomic protrusion on a spherical
nanoparticle that produces an atomic lightning rod effect enhancing the background plasmonic field given
by the spherical nanoparticle. (e) Near-field enhancement map of the induced electric field |Eind| with
respect to the background plasmonic field |Ebp|, corresponding to an almost flat protrusion (a/b ≈ 0.1),
with practically no enhancement of the field. (f ) Near-field enhancement map as in (e), corresponding to
a spherical protrusion (a/b ≈ 1), giving a maximum field enhancement, |Eind|/|Ebp|, of ≈ 3. (g) Field
enhancement at the boundary (x = 0, z = a) of an oblate spheroidal protrusion as a function of the aspect
ratio. The colored dots correspond to the field enhancements at the positions marked in panels (b) and (c).
The enhancement of the induced fields has been calculated with respect to the plasmonic background field,
|Ebp|, obtained at the boundary of a typical spherical surface, which is on the order of |Ebp| ≈ 6 [blue dot
as a reference in (g)]. TDDFT data provided by Marc Barbry in CFM.

described as the “lightning rod effect”. In analogy to the macroscopic situation, in the
proximity of an atomic protrusion, an atomic-scale lightning rod effect is produced,
which is responsible for the extra localization at the vertices and edges of an interface
[see schematics in Fig. 2.6(a)]. In spite of the strong quantum effects that govern the
optical response of the electron gas at the subnanometric scale, including dynamical
screening and spill-out, the main features of the field localization and enhancement
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2. OPTICAL RESPONSE OF METALLIC PICOCAVITIES

in atomic protrusions can be correctly addressed by the consideration of a sharp
curvature that follows the atomistic profile, as demonstrated with the quantum and
classical calculation of this effect in Fig. 2.5(a-d). A zoom-in of the near field around
one of these protrusions [marked with blue dashed squares in Figs. 2.5(b,d)] is dis-
played in more detail in Figs. 2.6(b,c). The classical calculation faithfully reproduces
the spatial extension and the intensity of the quantum atomic-scale localization, with
a field distribution that corresponds to a protrusion of the size of the metal atomic
radius.

From nanocavities to picocavities

Photonic resonators or cavities withstand standing optical waves (modes) and
thus can be used to store energy. Their main properties are given by the
quality factor Q, which gives the rate of energy loss relative to the energy
stored in the resonator in each optical cycle, and the effective mode volume
Veff, which describes the spatial extension of the mode (i.e., how much is light
confined) within the cavity. Plasmonic nanoparticles and nanogaps present
low Q values (Q ∼ 10) due to their intrinsic losses, but are able to confine the
electromagnetic field to nanometric dimensions (Veff > 1− 100 nm3), and are
therefore referred to as nanocavities. The presence of atomic protrusions or
features on these nanostructures can produce an atomic-scale lightning rod
effect that, when added to the effect of a plasmonic resonance, decreases the
Veff to subnanometric dimensions (Veff < 1 nm3), and are thus referred to as
picocavities. These picocavities define the ultimate limit of confinement of
light provided by condensed matter, which relies on the lightning rod effect
associated with the potential profile driven by the electron density in the
vicinity of a protruding atom.

A quantitative estimation of the atomic-scale lightning rod effect can be inferred
from a quasistatic analysis of the field distribution around a semispheroidal feature
on top of a metallic flat interface [see schematics in Fig. 2.6(d)]. The exemplary semi-
spheroidal feature mimics an atomic protrusion and is characterized by a semiwidth
b, and a semiheight a, as depicted in Fig. 2.6(f). We consider an incident background
plasmonic field Ebp, which would be the induced field in a spherical particle without
corrugations, and calculate the induced field Eind distribution and intensity around
the semispheroidal protrusion for two distinctive situations: (i) a featureless protru-
sion of very small height (a/b ≈ 0.1) in Fig. 2.6(e), and (ii) half an atom protruding
from the flat surface (a/b ≈ 1) in Fig. 2.6(f), mimicking the supporting particle sur-
face (of much larger radius). Whereas the featureless protrusion hardly provides any
field enhancement (|Eind|/|Ebp| ≈ 1), the atomic-sized protrusion produces a 3-fold
extra enhancement over the incident background field. The full set of field enhance-
ments obtained for all the different values of a/b are shown in Fig 2.6(g), which is
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2.3 Picocavities in plasmonic nanogaps

given by:

E

Ebp
= sin2 t

1− t
tan t

, (2.2)

where t = acos(a/b). This analytical estimation is in very good agreement with the
actual values obtained from the classical and quantum calculations (red and green
dots in Fig. 2.6(g), respectively), validating the interpretation of a non-resonant
lightning rod effect at the atomic scale as responsible for the extra enhancement
observed in atomistic protrusions.

The good agreement between the classical and quantum results paves the way to
perform simple and general calculations, and make predictions of the field enhance-
ment produced in much larger and complex structures in which these picocavities are
present. Quantum approaches generally cannot deal with nanometric structures of
large size due to the high computation demands of such systems. This atomic-scale
lightning rod effect is commonly present in many situations in nanophotonics, for
instance in molecular spectroscopy, where the subnanometric localization of the field
has been key to resolve single-molecule picoscopy [44].

2.3 Picocavities in plasmonic nanogaps

In the previous section, we have analyzed the optical response of picocavities present
in single metallic nanoparticles and characterized the subnanometric localization as
an atomic-scale lightning rod effect. One of the best plasmonic resonators is given by
the formation of a metal-insulator-metal (MIM) structure, connecting two metallic
nanostructures at nanometric separation distances, forming a plasmonic nanogap as
the one sketched in Fig. 3(c) of the Introduction. In order to explore the properties
of local field enhancements and effective mode volumes in plasmonic nanocavities
with atomic-scale protrusions, we consider three different configurations of metallic
dimers formed by the sodium clusters analyzed in the previous section, according to
their mutual orientation. The icosahedral clusters present atomistic features and are
aligned across the gap in configurations referred to as (a) facet-to-facet, (b) vertex-to-
facet, and (c) vertex-to-vertex, as sketched Fig. 2.7. Moreover, the separation distance
also affects the properties of the system and will be considered as a parameter.

Due to the distinct nature of the three approaches considered in this chapter, we
need to define the separation distance of the gap dsep differently for the atomistic
approaches (TDDFT and DDA) and the continuous classical approach (BEM). For
the atomistic framework, within both TDDFT and DDA, the separation distance is
set as the distance between the centers of the closest gap atoms (or dipoles for DDA)
from opposite clusters dsep. In the case of the continuous classical description, BEM,
the separation distance is considered as the distance between the closest points of
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2. OPTICAL RESPONSE OF METALLIC PICOCAVITIES

Figure 2.7: Sketch of the three inter-particle gap geometries considered, a) facet-to-facet , b) vertex-to-
facet and c) vertex-to-vertex, and the polarization of the incident electric field E0, oriented along the dimer
axis.

the particles surfaces, dc, with an additional correction term corresponding to the
distance between the center of an outermost sodium atom and the surface of the
particle (the Na atoms have been considered as spheres of radius rNa = 2.08 Å),
dsep = dc + 2 · rNa, as shown in Fig. 2.8.

2.3.1 Far-field optical response of picocavities

Before analyzing the local field and the effective mode volume, it is useful to address
the far-field response of each gap configuration as a function of interparticle distance
and compare the results obtained within TDDFT, BEM, and DDA descriptions.
We perform calculations of the absorption cross sections for the three different gap
geometries corresponding to the three particle orientations, (a) facet-to-facet, (b)
vertex-to-facet, and (c) vertex-to-vertex, sketched in Fig. 2.7. We trace the optical
modes of the cavities from a separation distance of dsep = 20 Å to a situation of
touching and overlapping of the particles (dsep ≤ 4 Å). The polarization of the
incident light is oriented along the dimer axis.

The absorption cross section of all the plasmonic gaps is mainly characterized by
the existence of a bonding dimer plasmon (BDP) that slightly redshifts when the
two particles approach [27, 31]. This effect is very clear in the classical calculations
(middle and bottom rows in Fig. 2.9). For large separation distances (dsep > 6 Å)
the gap modes appear at a similar energy for all the configurations considered.

In the TDDFT calculations [first row in Figs. 2.9(a-c)] the BDP slightly redshifts
as the interparticle distance decreases, and below dsep = 6 Å it eventually fades
away, indicating that the quantum tunneling regime is being reached [107]. At those
separation distances, the charge transfer plasmon (CTP) at lower energy (around 2
eV) emerges due to the current induced by the tunneling effect, even if the particles
are not in physical contact (dsep ∼ 5 Å, while the interatomic distance is ∼ 4 Å).
Notice the higher intensity of the CTP mode for the facet-to-facet geometry with
respect to the other two configurations, due to a larger particle surface area exposed
at the minimum gap distance, which includes a greater overlapping of the electron
densities of the clusters gap interfaces. Furthermore, for these short distances the
higher-order charge transfer plasmon (CTP’) mode is also excited at higher energy
(about 3 eV). Notice that for vertex-to-facet and vertex-to-vertex geometries in Figs.
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dsep

dcrNa rNa

Figure 2.8: Sketch showing the parameters used to define the separation distance between particles in the
three approaches. For the two atomistic models, TDDFT and DDA, the separation distance is defined as the
smallest distance between the center of the atoms (circles) from opposite clusters, dsep, and for the continuous
approach, BEM, it is defined as the sum of the distance between the surfaces (dashed lines) that define the
continuous metallic particles, dc, corrected with the classical radius of a sodium atom, rNa = 2.08 Å,
dsep = dc + 2rNa.

2.9(b,c), the CTP’ modes have larger relative weight than the lowest order CTP
mode, as the tunneling transport of the electrons through the gap is reduced when
going through a vertex, rather than in a situation of facet-to-facet tunneling [Fig.
2.9(a)].

Similarly to the situation of the isolated nanoparticle, we also mimic the config-
uration of the plasmonic gaps of different morphologies with the use of a classical
approach based on the BEM. Overall, the optical response calculated within the clas-
sical framework is very similar to the quantum one for dsep > 6 Å. For this classical
separation range, a similar redshift of the BDP mode is observed in the classical
description to that observed in the results of the TDDFT calculation. This behavior
also appears for dimers composed of spheres [31], and it is enhanced here by the ex-
treme geometrical features of our system. This can be clearly observed by comparing
the facet-to-facet gap (d) which shows a slight excitation of the bonding quadrupolar
plasmon (BQP) and intense BDP mode, and the vertex-to-vertex (f) with a much
stronger excitation of BQP and lower BDP intensity.

Beyond this classical regime, major differences with respect to the TDDFT results
are observed in the 4 Å < dsep < 6 Å separation range, as electron spilling effects
and the strong tunneling of electrons between both nanoparticles affect the optical
spectra. A local classical electrodynamical approach cannot reproduce these effects
due to their pure quantum nature, even though novel effective approaches have been
developed to account for them with extended classical treatments [97].

Finally, for overlapping particles with dsep < 4 Å, the pattern observed in the
classical spectra, characterized by a distribution of charge transfer plasmons (CTPs
and CTP’s), perfectly reproduces that of the TDDFT results, although the relative
intensities of CTP and CTP’ are dramatically dependent on the geometry and width
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Figure 2.9: Absorption cross section spectra of icosahedral dimers obtained using TDDFT in the first
row a)-c), BEM in the second row d)-f), and DDA in the third row g)-i) as a function of the inter-particle
separation distance dsep. The hybridized bonding dimer plasmon (BDP) mode, bonding quadrupolar plasmon
(BQP) mode, charge transfer plasmon (CTP) mode and higher-order charge transfer plasmon (CTP’) mode
are highlighted in the spectra for those cases where such identification is possible. The minimum distance
(dC = 0 Å) for which the continuous (BEM) particles overlap is highlighted with dashed white lines. TDDFT
data provided by Marc Barbry and DDA data provided by Yao Zhang, both at the CFM.

of the neck connecting the particles. As far as the optical spectrum is concerned, most
of the spectral features are well reproduced by the classical approach, identifying the
bonding plasmon at the gap and the charge transfer when the overlap is produced.
The quantum situation for separations below 6 Å requires further elaboration as
shown in the literature [97].

We complement our study on plasmonic gaps with the use of an atomistic clas-
sical approach based on DDA. The optical response obtained within this framework
shares some spectral features as observed within both the quantum and continuous
classical approaches for dsep > 6 Å. The BDP mode shows a similar redshift com-
pared to BEM (and thus slightly larger than in TDDFT) for decreasing separation
distances. Moreover, the comparison among the different configurations reveals the
same trend as in BEM: the facet-to-facet gap (g) shows an attenuated excitation of
the BQP and intense BDP compared to the vertex-to-facet (h) and vertex-to-vertex
(i) configurations, although they are not as distinguishable as in BEM calculation.

As it happens for BEM calculations, the limitations of DDA are noticeable when
entering the quantum regime in the dsep < 6 Å separation range. Even more, difficul-
ties arise to properly address the situation for overlapping particles with dsep < 4 Å.
In particular, this situation requires a different approach compared to TDDFT, as
the direct removal of layers of dipoles from a cluster leads to a new nanogap with
non-overlapping clusters. On the other hand, if the layers were kept in their position,
the dipoles would overlap leading to unphysical results. Thus, in an attempt to avoid
both situations, a smooth transition from non-overlapping to overlapping has been
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modeled, which yet does not recover the response observed for TDDFT and BEM.

2.3.2 Near-field optical response of picocavities

The gap plasmon identified for the three morphologies in Fig. 2.9 is a canonical
mode in plasmonics widely exploited as a building block for molecular sensing and
spectroscopy [201–204]. We now analyze the validity of the classical approaches to
address the local field distribution and the effective mode volume of the gap mode.
We focus on the vertex-to-facet configuration and analyze the local field distribution
for different separation distances within both quantum and classical approaches. We
select this configuration because it gathers both vertex and facet features and thus
illustrates adequately the outcome for each morphology. In Fig. 2.10, we show the
induced fields for four different particle separations, namely, dsep = 20 Å (first row,
a-c), dsep = 10 Å (second row, d-f), dsep = 6 Å (third row, g-i) and dsep = 1 Å (fourth
row, j-l), which have been chosen to illustrate the different interaction regimes: weak
interaction, medium interaction, strong interaction and charge transfer regimes.

Quantum (TDDFT) results are displayed in the left column of Fig. 2.10, contin-
uous classical (BEM) results in the middle column, and atomistic classical (DDA)
results in the right column. In the weak interaction regime, (dsep = 20 Å, a-c) the
near-field distribution resembles that in isolated single particles. Nevertheless, a
larger enhancement of the field is observed in the gap, meaning that a hybridization
of the dipolar modes of the particles into the BDP mode also emerges at this separa-
tion distance. Continuous classical (BEM), atomistic classical (DDA), and quantum
(TDDFT) results equally reproduce the presence of the atomic-scale hot spots, not
only in field distribution but also in the intensity of the enhancement produced (of
the order of 25-fold) with respect to the incoming field, although DDA lacks some
of the field distribution around the nanoparticle and the field is mainly localized
around the vertex rather than in the gap. As the nanoparticles’ gap is decreased,
the BDP gets more localized at the gap [Figs. 2.10(d-h)]. All approaches predict the
progressive localization of the field in the medium and strong interaction regimes,
with values of the field enhancement at the gaps of around 35 fold. Finally, as the
nanoparticles overlap [Figs. 2.10(j,l)], charge transfer across the particle is produced,
expelling the field from the gap producing, an effect correctly captured by the quan-
tum and continuous classical results, but not by the atomistic classical results. As
observed in the comparison between quantum and classical results in Fig. 2.10, the
continuous classical approach provides a very adequate framework to address the
local-field distribution around atomic-scale features, even in the extreme situation
of small clusters where quantum effects are more pronounced. We can thus con-
clude that this classical approach can be safely used to describe atomic-scale features
in much larger plasmonic structures, which cannot be directly tackled by quantum
methods.

The near-field maps in the charge transfer regime, plotted for the CTP’ mode
energies in Figs. 2.10(j,l) confirm that this regime can be also correctly captured by
means of a continuous classical description. In the case of the TDDFT description
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Figure 2.10: Induced near-field enhancement maps in the plane (x, y) for a metallic dimer characterised
by a vertex-to-facet gap configuration [sketch in Fig. 2.7(b)] calculated with quantum TDDFT (left column),
with classical BEM (middle column), and with DDA (right column). Separation distances between particles
are dsep = 20 Å panels (a-c), dsep = 10 Å panels (d-f), dsep = 6 Å panels (g-i) and dsep = 1 Å panels
(j-l). The most intense resonances are selected for each separation distance. In most of the cases this
resonance corresponds to the BDP, except those shown in panels (j-l), where the charge transfer CTP’ is the
most intense resonance. TDDFT data provided by Marc Barbry and DDA data provided by Yao Zhang, both
at the CFM.

(panel j) the charge is transferred through the “gap” due to the overlap of the electron
wave functions so that the field is expelled to the surrounding of the gap and thus
the field confinement decreases. The same occurs in the classical BEM description
(panel h), where the particles’ profile follows the overlapping neck of the particles’
electronic wave functions, and thus the field is also expelled to the outside with a very
similar pattern when compared to the TDDFT result. Moreover, the main features
of the near-field distribution around the vertices are also preserved in both models.
On the other hand, DDA fails to reproduce the field distribution pattern as there is
always an effective gap among the nanoparticles where the field is localized instead
of expelling it to the surrounding of the gap.
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2.3 Picocavities in plasmonic nanogaps

2.3.3 Effective mode volume of picocavities

One of the most important properties of an optical resonator is the effective mode
volume Veff associated with its resonance modes, i.e., the spatial confinement of
the modes. Following the common (normal mode) prescription, the effective mode
volume can be obtained as an integration of the energy of the induced local fields of
a mode, |Eind(x, y, z)|2, normalized to the maximum local energy, |Emax

ind |2, over the
total volume, Vtot:

Veff =
∫
Vtot

|Eind(x, y, z)|2

|Emax
ind |2

dx dy dz. (2.3)

The definition of a general effective mode volume has been source of debate within
the community of photonic cavities in the last decade [205, 206]. We note that the
definition given above for Veff is rigorous for cavities with infinite quality factor
Q. A rigorous mathematical definition for leaky cavities (cavities that present losses,
due to radiation and/or absorption, and therefore finite Q) has been given within the
framework of Quasinormal Modes (QNM) [207]. Here we do not intend to explore the
intricacies of QNMs 6 , but to analyze the field localization in the nanogap obtained
within the full electromagnetic response of the plasmonic system using TDDFT,
BEM and DDA. Thus, the above prescription for Veff is adequate to evaluate the
localization of the field in equal footing for the three models, taking into account
that the plasmonic resonances are spectrally well separated.

When an atomic-scale lightning-rod effect is mounted on a plasmonic resonance,
a slight modification of the field-enhancement and the effective mode volume is pro-
duced by this effect. As we have illustrated throughout this chapter, the classical
description of the atomic-scale features turns to be a very adequate framework to
address the properties of these picocavities. We thus compare now the maximal field
enhancement and effective mode volume obtained in the different plasmonic cavities
as a function of gap separation distance, dsep. Classical and quantum results for
the effective mode volumes are displayed in Fig. 2.11, for three mutual orientations
considered earlier in this chapter. Maximum near-field enhancement at the center
of the gap |Emax

ind |/|E0| is shown in panels (a-c) of Fig. 2.11, and the corresponding
effective mode volume Veff in panels (d-f).

6The fundamental difference between quasinormal modes and normal modes is that the former
appear as solutions to non-Hermitian differential equation problems, with complex eigenfrequencies,
and consequently, many concepts derived for the normal modes of Hermitian problems do not
apply. For instance, for a resonator embedded in an otherwise homogeneous permittivity distribution
εB = n2

B, quasinormal modes are obtained by solving the wave equation, ∇ × ∇ × E(r, ω) −
k2ε(r, ω)E(r, ω) = 0, with the Silver-Müller radiation condition (equivalent to Sommerfield radiation
condition for scalar functions), r̂ × ∇ × E(r, ω) + inBkE(r, ω) → 0 (as |r| → 0), as the boundary
condition, where ε(r, ω) is the position and frequency dependent relative permittivity, k = ω/c is
the ratio of the angular frequency to the speed of light in vacuum and where r̂ is a unit vector
in the direction of r. The use of this radiation condition turns the wave equation into a non-
Hermitian eigenvalue problem, even if ε(r, ω) is real, so that the eigenmodes are QNMs f̃µ(r) with a
discrete spectrum of complex resonance frequencies ω̃µ = ωµ− iγµ. The radiation condition ensures
that the light propagates away from the cavity (for leaky resonators), although the QNMs diverge
(exponentially) at large distances, which is rather challenging conceptually and numerically. Further
details can be found in Ref. [205].
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Figure 2.11: (a-c) Maximum local induced-field enhancement |Emax
ind |/|E0| at the central plane bisecting

the gap between two nanoparticles forming a plasmonic gap in the three configurations shown on the top of
Fig. 2.7: facet-to-facet, vertex-to-facet, and vertex-to-vertex, as a function of the separation distance between
the particles, dsep. The blue line stands for the TDDFT quantum calculations, the red line shows the classical
BEM results, and the green line the DDA results. The vertical dotted red line marks the touching situation,
dc = 0. Small arrows indicate the threshold separation distance below which the effect of quantum tunneling
becomes noticeable [97]. (d-f) Effective mode volume Veff of the local field, as defined in the text (Eq. 2.3), for
all three configurations. The data correspond to the energies for which the largest maximum of the induced
near field for each configuration and distance is obtained. The dashed black line addresses the effective mode
volume corresponding to the gap of spherical particles of radius r = 1.85 Å. TDDFT data provided by Marc
Barbry and DDA data provided by Yao Zhang, both at the CFM.

For separation distances larger than dsep ∼ 8− 10 Å, the maximum induced near
fields show similar trends for all the configurations with excellent agreement between
the quantum and the classical descriptions. For smaller separation distances, the
quantum model properly accounts for the quenching of the local field enhancement
produced by the quantum tunneling at optical frequencies [97], whereas the classical
picture provides an unphysical increase of the local field. The quantum description
(blue line, TDDFT) addresses the existence of a maximum of local field at dsep = 8 Å
for the facet-to-facet configuration, which is slightly shifted to a smaller separation
for the other configurations showing atomic-scale protrusions (dsep = 7 Å for vertex-
to-facet and vertex-to-vertex configurations), due to a reduced effect of the tunneling
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in those configurations. In the classical descriptions (red and green lines in Fig 2.11,
the enhancement of the local fields increases exponentially as the gap is closed, with
larger values for vertex-to-vertex and vertex-to-facet configurations due to a more
pronounced lightning rod effect. In light of these results, one can conclude that
the classical description of the atomic scale local fields is correct until separation
distances of about 8 Å.

Along with the maximum absolute value of the field enhancement, the corre-
sponding effective mode volume, Veff , for each situation is shown in Fig. 2.11(d-f).
As has been mentioned, Veff provides the effective localization volume in which the
field is localized in the middle of the gap. Figure 2.11(d-f) shows the results as a
function of dsep for the corresponding configurations and energies used in Fig. 2.11(a-
c). For the quantum and continuous classical approaches, Veff shows similar trends
for all the configurations with slight differences due to the details of each particular
cavity. For dsep > 5 Å, where the BDP mode dominates the response in all the gap
configurations, there is a smooth increase of field confinement, i.e., decrease of Veff , as
the particles get closer, in both the quantum and classical descriptions. The classical
approach agrees very well with the quantum one: for a facet-to-facet configuration
[Fig. 2.11(d)] confinement below 3 nm3 is possible, only limited by the extension of
the atomic facets. An extreme situation is achieved with the presence of atomic-scale
tips (picocavities) [Figs. 2.11(e,f)]. In such a situation, the effective mode volumes
reach subnanometric volumes, below 1 nm3. This level of confinement of light is
the ultimate limit provided by condensed matter and relies on the lightning rod ef-
fect associated with the potential profile driven by the electron density profile in the
vicinity of a protruding atom, as described in Fig. 2.6.

It should be noted that the classical theory correctly describes this level of local-
ization in spite of the presence of spill-out or dynamical screening effects, as demon-
strated here. The atomistic quantum calculations are, for now, greatly limited in
particle size, i.e., they cannot go beyond structures of a few nanometers (few thou-
sands of atoms) due to computational cost. This barrier prevents direct comparison
with experiments using medium-to-large-sized nanostructures that are usually used
in molecular spectroscopy. In particular, the large optical field gradient in these pic-
ocavities can change the Raman selection rules of molecules placed in their vicinity,
exciting otherwise forbidden vibrational transitions in single molecules [44].

For gap separation distances dsep < 8 Å, the BDP mode is quenched due to
electron tunneling, and thus the effective mode volume increases as the local field
spreads out from the plasmonic cavity. This sets a threshold separation distance
below which the classical description is not appropriate. This behavior depends
much on the geometrical details of each particular configuration, as observed from
the difference in the blue line of Figs. 2.11(d-f).
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2.4 Discussion and summary

The optical response of small metallic nanoparticles and nanogaps that contain
atomic-scale features has been analyzed in this chapter, paying special attention
to the extreme localization of light associated with them. In order to gain insight
into the influence of morphology on this localization, we have applied three differ-
ent approaches to describe the atomic-scale boundaries, which account for different
“complexity” levels: i) an atomistic ab initio quantum description based on TDDFT,
ii) an atomistic classical approach based on the DDA, and iii) a continuous classical
description based on the BEM.

We observe subnanometric localization of light around the vertices of single metal-
lic nanoparticles using all three approaches. A lightning rod effect at the atomic
scale is identified as responsible for the extreme localization of light, induced by the
electrical potential gradient produced by the electronic wave functions at the atom-
istic features. When superimposed on top of a nanometric plasmonic resonance, the
lightning rod effect acts as a multiplier effect, producing an extra factor of field en-
hancement, which is characterized by a further spatial localization as compared to
the supporting underlying resonance, with a similar spectral distribution. We show
that the effective mode volumes of these atomistic features can reach subnanometric
dimensions, taking the localization of light to the realm of the picoscale, with mode
volumes below 1 nm3. Based on these results we introduce the concept of picocavity.

Our calculations show that a classical model which solves Maxwell’s equations,
where the atomic-scale features are described by abrupt boundaries following the
profile of the electron density associated with the atoms, is able to reproduce very
satisfactorily the field localization and the effective mode volume in relevant canonical
plasmonic nanoresonators, such as in single metallic nanoparticles and nanometric
gaps formed by nanoparticle dimers. The current work has focused on Na nanopar-
ticles; however, the classical description of the atomic-scale lightning rod effect can
be extended to noble metals, such as Ag or Au, widely used in nanoplasmonics, with
the appropriate description of the dielectric function to account for interband tran-
sitions in these materials. Moreover, the good agreement between the classical and
quantum calculations supports the use of classical approaches in the calculation of
the optical response of medium-to-large plasmonic nanostructures that can also show
subnanometric localization of the field in the presence of atomic-scale features. In
particular, picocavities are exploited in many situations in nanophotonics, such as
molecular spectroscopy, where the subnanometric localization of the field has been
key to resolve single-molecule picoscopy [43,44].

75





3 Addressing structural
inhomogeneities in metallic
nanocavities as probed by
optical spectroscopy

T he presence of atomic-scale features and protrusions shows the ability to local-
ize light down to subnanometric volumes forming picocavities, as discussed in

Chapter 2. The large field enhancement and, especially, the large field gradients
produced around these picocavities are of great interest in molecular spectroscopies,
such as in Surface-Enhanced Raman Scattering (SERS). In particular, symmetries
forbidding the excitation of specific molecular vibrational modes can be broken by
these large field gradients, making these modes accessible to probes used in optical
experiments [44,208].

A suitable and robust structure to perform SERS experiments is the nanoparticle-
on-mirror (NPoM) structure [209], which consists of a metallic nanoparticle placed
on top of a metallic substrate and separated by a thin spacer-film in-between to
prevent conductive contact, creating a nanogap between the NP and the substrate
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3.1 Nanoparticle-on-Mirror configuration

as shown in Fig. 3(c) in the Introduction. The charges induced in the NP under
illumination produce a mirror image charge distribution at the substrate, creating a
confined plasmon at the nanogap similar to that produced in a NP dimer [210–212]
(see Sec. 2.3 for dimers with small nanoparticles). The presence of picocavities at the
nanogap of NPoM structures has been studied and successfully exploited to perform
single-molecule SERS. Moreover, light-induced atomic restructuring at the surface
of metallic nanostructures has been reported to be at the origin of the picocavities
[44,213].

In time-resolved SERS, the characteristic spectral signature of picocavities is re-
vealed with the appearance and disappearance of light emission at specific wave-
lengths related to symmetry forbidden excitations/transitions. Along with these
phenomena, other dynamical features have been observed in time-dependent SERS,
such as sudden broad-band Gaussian increases of the background signal [47–49],
which we refer to as emission flares. Nevertheless, the origin of these flares has
not been investigated systematically. In order to analyze these spectral events, ex-
periments were performed by Cloudy Carnegie at Cambridge University under the
supervision of Prof. Jeremy J. Baumberg to capture over a million time-dependent
scattering spectra for more than 3000 NPoMs.

A great part of the background SERS signal in NPoM structures is known to come
from electronic Raman scattering (ERS), which is proportional to the 4th power of
the local electric field. In this chapter, we study flares in SERS spectra and model
them as a dynamic restructuring of atoms at transient defects, such as twin planes
and grain boundaries, which lead to localized changes of the plasma frequency of
the metal, and thus induce a stronger electric field within the metallic NP. In Sec.
3.1 we analyze the optical response of NPoM structures and characterize the modes
present in such structures. We analyze flares observed in experimental SERS spectra
obtained by the group of Prof. Jeremy J. Baumberg, which are included in this thesis
for completeness, in Sec. 3.2. We follow up in Sec. 3.3 by providing a theoretical
background of ERS. In Sec. 3.4 we theoretically study the influence of local changes
in the plasma frequency on the optical response and the field penetration in NPoM
structures proposing a model to explain the appearance of flares in SERS spectra.

3.1 Nanoparticle-on-Mirror configuration

To understand the origin of the flares, we first need to gain insight into the optical
response of the plasmonic structure, i.e., the nanoparticle-on-mirror (NPoM) con-
figuration shown in Fig 3.1(a). As mentioned above, the NPoM structure consists
of a metallic nanoparticle placed on top of a metallic substrate, separated by a thin
spacer-film of thickness d in-between to prevent conductive contact. This creates a
nanogap between the NP and the substrate as shown in Fig. 3.1(a).
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Figure 3.1: a) Sketch of a faceted spherical gold nanoparticle with radius R = 40 nm and facet width w
separated from a gold substrate by a dielectric spacer of thickness d = 0.9 nm and permittivity εg = 2.1,
under p-polarized illumination with angle of incidence θ = 55◦. b) Sketch of an infinite metal-insulator-metal
(MIM) structure. c) Bottom facet of the NP in the NPoM structure showing the finite MIM structure. d)
Dispersion relation of the infinite MIM structure, where k0 = 2π/λ is the wavevector of incident light in
vacuum, k‖ is the corresponding wavevector in the MIM waveguide. e) Extinction spectra map of the NPoM
geometry described in (a) as a function of w (from perfectly spherical NP to hemispherical NP as in the
schematics to the left). Open circles trace the resonance peaks of all excited modes, dashed grey lines track
the dispersion relation of the cavity modes smn and the red dashed line is a guide to the eye of the bonding
dimer antenna `1 mode. f-i) Near-field maps at the center of the gap corresponding to the modes excited for
a facet width w = 20 nm (nominal facet width of the NPs often used in experiments). j-m) Corresponding
near field along the x-axis at the center of the gap.
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Real nanoparticles typically show crystallographic faceting, and as such, they lay
on one of the facets, creating a nanocavity of certain width w, which is similar to
a finite metal-insulator-metal (MIM) waveguide. For small gaps (d < 10 nm) of
dielectric permittivity εg = n2

g between infinite metallic walls (εm) the dispersion
relation of the lowest MIM modes can be expressed by [214,215]:(

k‖

k0

)2
= n2

eff = εg + 2ζ
[
1 +

√
1 + (εg − εm)/ζ

]
, (3.1)

where k0 = 2π/λ is the wavevector of incident light in vacuum, k‖ is the correspond-
ing wavevector in the MIM waveguide, and ζ = (k0dεm/εg)−2, where d is the gap
distance. For very thin gaps and a Drude model with no damping for the metal this
equation reduces to

k‖ = − 2εg
dεm

= −2εg
d

[
ε∞ −

ω2
p

ω2

]−1
. (3.2)

We can obtain the skin depth7 of the electric field in the metal by taking into account
that the wavevector satisfies k2

0 = k2
⊥+k2

‖, where k⊥ is the perpendicular (respect to
the nanoparticle and substrate interfaces) wavevector, and that for typical nanogap
parameters such as d = 0.9 nm, εg = 2.1, ωp = 9 eV, ε∞ = 10, the nanogaps adopt
large high wavevectors (k‖ = 10 − 100k0 with k0 = 2π/λ) and thus short effective
wavelengths, as observed in Fig. 3.1(d). Thus, k‖ � k0 and,

δ⊥ = 1
Im{k⊥}

= dεm
2εg

. (3.3)

In the nanostructure considered, this continuum of MIM gap modes of the infinite
MIM structure is broken into discrete states, as imposed by the finite size of the bot-
tom facet of the NP, which localizes the modes in the gap due to partial reflection at
the discontinuities of the MIM gap. Indeed, a two-dimensional Fabry-Pérot resonator
model captures the nature and symmetry of the cavity modes sustained by the NPoM,
whose associated electric field can be well described in cylindrical field coordinates
(ρ, φ, z) (z perpendicular to the particle and substrate interface) [114,216]:

Ez(r, φ, z) =
∑
m

AmJm(k‖ρ)eimφe−z/δ⊥ , (3.4)

where Jm are the cylindrical Bessel functions of order m, Am are the expansion
coefficients, and k‖ the component of the wavevector parallel to the top and bottom
interfaces. For a finite-size cylindrical gap of width w, the discrete wavelengths are
given by [114,216,217]:

λmn = πwneff
amn − β

. (3.5)

7Also referred to as penetration depth, although the latter is also used in reference to the depth
at which the intensity or power of the field decays to 1/e of its surface value, instead of the amplitude
of the field.
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Here amn is the nth root of the mth-order Bessel function Jm, with m the angular
momentum number related to the azimuthal dependence of the modes in the cylin-
drical symmetry and β an appropriate phase accumulated due to the reflection of the
waves at the edges of the cavity [216–218]. Here we consider β = π/2 as the fields
show a maximum near the edge of the cavity instead of a node. These cavity modes
are confined to the nanogap and show strong near field-enhancements, although they
are in general weakly radiative or nonradiative.

The structure of modes in a specific NPoM configuration is a result of a complex
coupling of these cavity modes, which can be labeled as smn modes, and the modes
of the nanoantenna deposited on the mirror, which one can label as antenna l modes
[217]. Antenna modes with correct symmetry can couple to specific cavity modes
smn, yielding strong anticrossings and mixed smn + ` = jn modes. We show in Fig.
3.1(e) the scattering cross section, σsca, as a function of the facet width w for a NP
with radius R = 40 nm, separated from an semi-infinite gold substrate by a dielectric
spacer of thickness d = 0.9 nm and permitivitty εg = 2.1, as calculated within the
MNPBEM [112] with the implementation for infinite layers. The spectral map shows
that light is most efficiently coupled into the nanogaps around the anticrossings
between the ` and modes smn [217]. The bonding dimer plasmon mode, here labeled
as `1 [red dashed line in Fig. 3.1(e)], efficiently couples to the incoming light polarized
along the NP-substrate axis, and thus dominates the far field. As it has been reported,
for small separations higher-order antenna modes, `2, `3, ... can also be efficiently
excited [31,211].

These modes show large field enhancement at the nanogap, as shown in the near-
field maps in Fig. 3.1(f-i) for the 4 lowest modes with a facet width w = 20 nm. The
field is localized at the nanogap, showing a number of azimuthally symmetric nodes
that increase in number with mode order. Moreover, as observed in Fig. 3.1(j-m) the
field profiles are not perfectly concentric. This happens in part due to retardation
effects, and, on the other hand, due to the slight mixing with the low wavelength
branches of the cavity smn modes [grey dashed lines in Fig. 3.1(b)]. The latter
especially happens for the low wavelength modes in small facet widths w < 20nm,
where cavity modes are spectrally closer to each other.

3.2 Experimental observation of flares

In this section, we will briefly introduce the flares observed in SERS experiments per-
formed by Cloudy Carnegie in the University of Cambridge within the group of Prof.
Jeremy J. Baumberg [219, 220], and summarize their main features. Further details
about the experimental setup and observations can be found in Refs. [219,220]. In the
study, nano-fabricated individual gold nanoparticles were spaced above an ultra-flat
gold film by a self-assembled molecular monolayer (SAM) (initially biphenyl-4-thiol,
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BPT) forming a plasmonic hotspot in the gap between mirror and nanoparticle,
and tracked using automated nanoparticle location to collect statistics on millions of
events [213].

These NPoM structures of near-spherical 80 nm diameter colloidal noble-metal
particles are however not quite uniform, most commonly appearing as icosahedrons
and cuboctahedrons, as observed in the inset of Fig. 3.2(a). These nanoparticles
contain multiple grain boundaries and crystal defects, as they are not monocrys-
talline [221], which alter the local electron density in the immediate vicinity [222].
Furthermore, it has been shown that the crystallinity of nanoparticles is open to
movement and, therefore, not entirely fixed and constant [223–225], which is known
as the “quasi-molten” model of nanoparticles.

The sample is illuminated by a 633 nm laser and scattered light is collected and fil-
tered out to reveal inelastic scattering. The time-dependent SERS spectra, collected
with 10 ms timescales, show the sharp lines corresponding to the BPT vibrational
modes on the Stokes side (see Introduction) in Fig. 3.2(c) (vertical persistent lines).
The close-packing in the SAM ensures fixed-energy stable persistent SERS lines to
be observed for the few hundred BPT molecules inside the nanogap. The molec-
ular temperature is estimated as 341 ± 17K using the anti-Stokes-to-Stokes ratio,
although the electronic Raman scattering (ERS) background contribution suggests
the electrons in the metal might be up to 300K warmer in these pumped conditions.

Aside from the persistent lines, two other classes of spectral features are observed
in Fig. 3.2(c). The first corresponds to the appearance and disappearance of new
vibrational lines/peaks in both the Stokes and anti-Stokes spectra, evidencing “pic-
ocavity” formation. Picocavities, which have been studied in detail at cryogenic and
room temperature [44, 213], arise from gold adatoms pulled out of the gap surface
facets by trapped light. The extra optical confinement and large local field gradients
around these picocavities lead to the breaking of Raman selection rules, giving single-
molecule SERS [44,208]. Aside from picocavities, another spectral feature, rarer but
more intense, can occasionally be observed in the spectra. These features, which we
term as flares, are sudden Gaussian-shaped increases of the background of the SERS
spectra. They last for only fractions of a second, as it is seen in Fig. 3.2(c). Individual
events are plotted in Fig. 3.2(d) for a picocavity (top panel, purple line) and a flare
(bottom panel, blue line) along with a stable BPT spectrum (grey). Picocavity lines
are mirrored around the laser wavelength in the anti-Stokes, a behavior absent for
the flares. In fact, the peak of the flare is on the Stokes side and its tail extends into
the anti-Stokes, although no inversion symmetry is observed around the laser line.

To better identify the features of these events, the first SERS spectrum in each
time series is subtracted from all the subsequent spectra, which leaves only the in-
tensity increases for flare events (picocavity events are filtered out). Some cases can
be seen in Fig. 3.3(a) from a single NPoM that have been fitted to a Gaussian profile.
The transient peaks occurring briefly at different times vary in width and spectral
position, demonstrating that the Gaussian lineshape can vary within the observation
window (seconds) of a single nanostructure. Moreover, the lack of sharp features on
these spectra imply that the SERS of the molecular vibrations does not change during
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Figure 3.2: a) Nanoparticle-on-Mirror structure, sandwiching a molecular self-assembled monolayer.
Inset shows typical icosahedral nanoparticle, with twin planes highlighted with dashed lines. b) Biphenyl-
4-thiol (BPT) molecule making up monolayer. c) Time-dependent SERS spectra showing transient spectral
features corresponding to picocavities (top panel, purple arrow) and multiple flares (bottom panel, blue
arrow). d) Integrated snapshots (∆t = 10 ms) of a picocavity event (top panel, purple line) and a broad flare
event (bottom panel, blue line) compared to stable BPT spectra for same nanoparticle (grey). Experimental
measurements from Cloudy Carnegie at Cambridge University. Figure adapted from Ref. [219].
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Figure 3.3: a) Different flare inelastic scattering spectra (with persistent stable SERS lines subtracted, S̄)
from a single NPoM, that have been collected at different times t. Spectra has been sorted into groups I, II
by emission wavelength. b) Map of plasmon `1 mode wavelength λc against flare mode centre wavelength for
flares from 3411 NPoMs. Grey histograms show distributions, from which two distinct groups are identified.
Points corresponding to spectra in (a) highlighted with circles. c) Mean flares per second vs. power, for NPoM
samples immediately after self-assembly (black) or after 14 days in air at 300 K (blue), picocavities (green).
Here 500 NPoMs are surveyed for each power, lines show exponential fits, error bars indicate standard
deviations. Experimental measurements from Cloudy Carnegie at Cambridge University. Figure adapted from
Ref. [219].

flaring, which emphasizes their different origin to picocavities and their emergence
from electronic Raman scattering inside the metal itself.

In addition to the collection of inelastic-scattering data via laser irradiation, dark-
field (elastic) measurements were also performed. The dark-field spectra were used to
elucidate the plasmonic modes of the NPoM before and after laser irradiation, giving
the range in nanoparticle size and geometry across the sample. To survey the range
of flares, a map of the fitted flare wavelength vs. nanoparticle `1 mode wavelength
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(λc) is plotted in Fig. 3.3(b). Although the `1 mode positions lie at λc ' 800 nm,
there is a bi-modal distribution in flare wavelengths which is not resolved in standard
elastic dark-field scattering experiments8. We label the two cluster groups I and II
[Fig. 3.3(a-b)] and note that even a single NPoM nanostructure can show flare events
of both types within the range of a few seconds, suggesting that flare events are not
entirely nanoparticle-dependent.

Dark-field scattering can also reveal morphological changes to the NPoM nanos-
tructures, in particular for the `1 mode spectral peak at λc, which redshifts strongly
with an increase in bottom facet width linked to nanoparticle damage from laser
irradiation [217, 226]. Nevertheless, the laser irradiation required for the inelastic
scattering measurements is not sufficient to cause significant damage to the nanos-
tructure. The redshift in the `1 mode has been linked to a facet width increase which
requires movement of surface atoms on the nanoparticle, which suggests that if the
flare event is related to atomic displacements then the process that leads to a higher
degree of damage could also create flares.

In the following lines we sum up the main features observed for flares:

• Activation energy. Experiments performed for different laser powers show
an exponential power dependence, as can be observed in the average number of
flare events per second of measurement as a function of laser power in Fig. 3.3(c)
shows an exponential power dependence, suggesting that flare events require
an activation energy, and indicating a structural process at play. Compared to
picocavities, which have a known activation energy of ∼ 0.8 eV [44], the flares
show an activation energy of ∼ 4 eV (calculated from the gradient of the flare
power dependence), i.e., 5-fold that of the picocavity power. Samples left to
“age” in air for two weeks show an increase in the number of flares, although it
does not alter the activation energy as the gradient is unchanged. In fact, the
aging process does not alter the morphology of NPoMs on the sample, as can be
concluded from the near-identical distribution of the coupled-mode positions
for both samples [219]. Moreover, flares seem to be metastable as long as energy
continues to be injected.

• Influence of Molecular Spacers. Replacing the molecular spacer with other
spacers showed variations in flare occurrence, although no relationship between
the gap distance and number of flares was observed. Nevertheless, although
the gap distance and gap refractive index vary between the molecules, and
therefore the distribution in coupled-mode wavelengths is shifted [227, 228],
the wavelength of the flares is observed to be centered around similar spectral
ranges, suggesting that spacer molecules are not at the root of flares.

• Reversibility. With the aim of understanding what happens during flares,
in addition to laser excitation, the system was simultaneously irradiated with

8In dark-field scattering experiments the sample is illuminated with light that is not collected
back by the objective lens, and therefore is not part of the image, i.e., only the light scattered by
the sample is collected, with reflected light blocked.
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broadband incoherent white-light, and the behavior of the coupled plasmon
mode peak was tracked in real time from the elastic scattering (Fig. B.1 in
App. B). The `1 mode stays almost unperturbed before and after the flare,
however when a flare happens there is a small but instantaneous redshift of the
`1 mode and an overall increase in the intensity, before returning to the initial
position and intensity of the mode. Redshifts to the `1 at the exact time of
the flare event evidence structural changes in the NPoM that, nevertheless, are
reversible (opposed to processes that cause permanent damage), which suggest
metastable changes, or that they are ephemeral in the vicinity of the plasmonic
hot-spot.

Further details about the experimental setup and experimental observations can
be found in [219,220].

3.3 Background signal in SERS: Electronic Raman Scatter-
ing in metals

In the previous section, we described the flares observed in the background signal
of SERS. The origin of the background signal of SERS has been assigned in the
literature to an inelastic light scattering process, also described as electronic Raman
scattering (ERS) [41, 229]. In ERS, electrons within the Fermi sea inside the metal
are excited into a virtual state by the incoming plasmon-coupled photon and then
de-excited back down to an empty state within the Fermi sea. The difference in
photon energy between ingoing and outgoing photons, ∆, requires a change in the
momentum of the electron because of the quadratic free-electron s-band dispersion
in noble metals. This extra momentum is supplied by the strongly localized field of
the plasmon that couples photons into and out of the metal. Moreover, the d-bands
can be ignored within this picture, as the incoming and outgoing photons are far
detuned from any resonant transition between electronic states. We will assume a
zero temperature for the Fermi distribution to retain analytic expressions, as in [41].

A sketch of the ERS process is depicted in Fig. 3.4(a). A pumping photon with
energy hν excites an electron from an initial state i at the Fermi energy, EF, to a
virtual state v with higher energy (solid blue arrow) together with a shift in the
wavevector ∆k (solid orange arrow) and a relaxation back to the final state f on the
free electron dispersion band (solid red line), emitting a photon with energy hν −∆,
where ∆ is the energy difference between the initial i and final f states. Electrons
that are below the Fermi level down to energies EF−∆ are also able to undergo this
process (dashed arrows), leaving the electron just above EF.

The rate Rif for each step of this process can be considered using Fermi’s golden
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Figure 3.4: a) Intraband light scattering process of electronic Raman scattering (ERS), for pump (blue
arrows) and emission (red arrows) photons that differ by energy ∆. The required change in momentum ∆k
is gained by the vertical transitions to a virtual state from the plasmon localization in space. Solid arrows
show the transitions from the highest energy initial state i at the Fermi energy, while dashed lines show the
lowest energy initial state i for which the only allowed transition is to a final state f just above the Fermi
energy EF. b) Equivalent process of intraband scattering to real state r on the free particle dispersion. c)
Scattering from energy Ei (blue solid line) to final energy Ef (red solid line) requires different wavevectors
(orange arrows) along kz . For the particular transition shown, a strip of states (blue) along the sphere of
radius ki hold the same ∆kz . d) Cross section of k-volume that undergoes scattering of fixed ∆kz in (c).
Figure adapted from Ref. [41].

rule (in atomic units),

Rif = 2πgif |Mif |2, (3.6)

where gif is the density of states, and Mif is the matrix element for the transition
from the initial state i to the final state f , and can be written as the overlap integral,

Mif = 〈f |H ′|i〉 =
∫
ψ∗f (r)H ′(r)ψi(r)d2r, (3.7)

where H ′ is the perturbation caused by electromagnetic field, r is the position of the
electron, and ψi(r) and ψf (r) are the wave functions of the initial and final states.
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The perturbation due to the electromagnetic field can be expressed as [230],

H ′ = p ·A, (3.8)

where p = −i∇ is the momentum operator and A is the vector potential describing
the electromagnetic field.

To evaluate the matrix element for each process we need to know the wave func-
tions of the states and the form of the perturbation due to the electromagnetic wave.
In the case of MIM structures such as the NPoM, the electromagnetic field is mainly
confined in one direction (here considered z), and it drops exponentially inside the
metal E(z) ∝ e−z/δ⊥ with a skin depth δ⊥ = dεm

2εg , as given by Eq. (3.3). Thus,
here we exclude any dependence of the field on the xy-plane, therefore only the z
component of the initial momentum, kiz, of the electron is scattered, and the x and
y components of the initial momentum, kix, kiy, are conserved in the process. On
the other hand, we consider the electron states to be described by the free particle
wave function ψ(r) ∝ eik·r.

One can calculate the rate Riv for the i → v process shown in Fig. 3.4(a). The
matrix element Miv for this transition is given by

Miv = 〈v|p ·A|i〉 =E

∫
dx e−ikfxxeikixx

∫
dy e−ikfyyeikiyy

·
∫
dz e−ikfzz

∂

∂z

(
e−qzeikizz

)
, (3.9)

where E is the amplitude of the electric field within the metal, and kfx, kfy and kfz
are the x, y and z components of the momentum of the final state f (the momentum
of the virtual state v, is the same as the final state f). For a specific initial state i,
Eq. (3.9) yields

|Miv|2 = E2 k
2
iz + q2

∆k2
z + q2 , (3.10)

with ∆kz = kfz−kiz. The conservation of wavevectors orthogonal to kz implies that
k2
f − k2

fz = k2
i − k2

iz, and therefore,

∆kz =
√
k2
f − k2

i + k2
iz − kiz =

√
κ2 + k2

iz − kiz, (3.11)

with κ2 = k2
f − k2

i = b(Ef − Ei) = b∆, with b = 2m/~2, Ei the energy of the initial
state and Ef the energy of the final states.

To calculate the rate for this transition we have to integrate over all possible
initial states,

Riv ∝
∫ EF
EF−∆

dEi g(Ei)|Miv|2, (3.12)
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and therefore we need to know the density of electronic states g(Ei). For a specific
initial energy Ei lying between EF − ∆ and EF (see Fig. 3.4(c)), the initial states
lie on a sphere set by the free electron dispersion relation E = ~2|k|2/2m = k2/b,
shown as a blue circle in Fig. 3.4(c). Moreover, different initial states within the
sphere defined by |ki| (blue line) require different wavevector changes ∆kz (dashed
orange arrows) to reach a final state within the sphere defined by |kf | (red line).
Nevertheless, the wavevector change ∆kz required for states with the same kiz and
|ki| is the same, i.e., the rate for a i → v transition for initial states lying within a
circular ribbon (in the k-space) with constant kiz is the same, as shown by the green
circular ribbon in Fig. 3.4(c-d). The infinitesimal volume of the circular ribbon is
given by dVk = 2πdkisdkiz = 2πdkidkiz, which can be applied to the integral over
k-momentum space,

Riv ∝ E2
∫ kF

kF−k′
dki

∫ ki

−ki
dkzi

k2
iz + q2(√

κ2 + k2
iz − kiz

)2
+ q2

, (3.13)

with k′ = kF −
√
b(EF −∆), and kF =

√
b EF the Fermi wavevector.

On the other hand, the equivalent scattering rate from the virtual state back down
to the free electron dispersion branch (but this time with no momentum change), Rvf ,
only provides another factor of E2 as there is no change in momentum.

The total scattering rate is given by

Rif ∝ RivRvfVm, (3.14)

where Vm is the volume of the metal that is accessed by the plasmonic field. The
lateral spatial width of the field in the gap is well approximated by a Gaussian
intensity distribution with FWHM =

√
2Rd/εg , which gives an effective area of the

plasmon mode Am ∼ 2πRd/εg [33, 209, 231]. By taking into account that the skin
depth is δ⊥ = dεm

2εg [Eq. (3.3)], we obtain Vm ' Amδ⊥ =
( 2πRd

εg

)( 1
q

)
= πRd2

f̃εg
, with

f̃ = 2εg/Re{1/εm}, with Re the real part. As a result, we obtain the full rate as:

Rif ∝
E4
cR

f̃εg
(1− e3)E2

F

(
`

d

)2
, (3.15)

where, we have defined the critical length ` = 2kF
b∆ and the energy difference e = 1−

∆/EF, and Ec is the field enhancement at the cavity. Details about this derivation
can be found in Ref. [41]. As in Raman scattering, this photon emission rate depends
on the fourth power of the field enhancement, which is expectable as they are very
similar processes. Both processes consist of exciting electrons up to a virtual state
before returning to a state lying higher in energy than the initial state. In the case
of anti-Stokes scattering, the final state would lay lower in energy than the initial
state.

Instead of using the expression for the local field enhancement at the cavity, Ec,
and to compare more accurately with experiments, one can use numerical simulations

89



3.4 SERS spectral flares from electron density inhomogeneities

to obtain the intensity of the local field in the metal, I(r) = |E(r)|2, at the wavelength
of the pumping light, λi, and light emission wavelength, λf , i.e., the local field
intensities Iλi(r) and Iλf (r) respectively, allowing us to write:

Rif ∝ k4
F`

2(1− e3)
∫
Iλi(r) · Iλf (r)dV, (3.16)

where the integral over volume is only evaluated within the metal (where the electrons
can undergo ERS) and the prefactor depends on the material.

The inelastic light scattering (ILS) process shown here can be thought of as elec-
tronic Raman scattering (ERS, with no vibrational states involved). This process also
produces background light in addition to the vibrational fingerprints from molecules
nearby. For this reason, any change in the plasmonic structure (size, shape, etc.)
invariably will modify both the SERS vibrational fingerprints as well as the SERS
background [41, 229]. Nevertheless, a modification of the ratio between light just
inside and just outside the metal will correspondingly alter the ratio of vibrational
peaks to the background.

3.4 SERS spectral flares from electron density inhomogeneities

In the previous section, we have linked the background signal in SERS experiments
with ERS emission from the metallic structures, and it has been shown that this
effect depends on the 4th power of the electromagnetic field in the metal. Thus, a
temporary situation that produced larger electromagnetic fields in the metal could
explain the emergence of flares in the background SERS spectra shown at particular
instants of time, as shown in Fig. 3.2(c) in Sec. 3.2.

In principle, one could consider some other mechanisms as possible sources for
these spectral features. For instance, the broadband nature of flares could suggest
black-body radiation. The spectral range of the flares (640-700 nm) also matches that
of two-photon absorption and emission from some molecules. Hot electron emission
in small nanoparticles could be another possibility. Instead, the behavior observed
for flares excludes some of these phenomena, based mainly on the following:

• Black-body radiation corresponding to the temperatures obtained from the
anti-Stokes/Stokes ratio from molecules (300-400K) and electrons in the metal
(600-1100K) does not match the measured flare wavelengths.

• The spectral range of the flares is not severely affected by the particular type
of molecules, which discards two-photon emission as a possible mechanism of
the effect, which would depend on the specific molecule.
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Figure 3.5: 2D sketches of a) high-angle, b) low-angle and c) twin-plane grain boundaries adapted from
Ref. [232], where θ is the misorientation angle. d) Data from Alekseeva et al. [221] showing high-angle
grain boundaries and twinning planes measured in 100 nm Pd nanoparticles. e) Simulations from Tschopp et
al. [233] showing an example of the variation in grain boundary energy with misorientation angle, θ. Figure
composition adapted from Ref. [220].

• Experiments show millisecond time-scale dynamics for flares, which collides
with the picosecond time-scale of hot electron emission, not to mention that
both black-body radiation and two-photon emission should not depend on time.

Moreover, the broadband nature of the flares and the lack of new spectral lines
exclude the molecules deposited at the nanocavity as the source of spectral flares.
Thus here we consider that the spectral flares observed in the experiments could be
due to dynamical local changes in the metallic structure that temporarily produce
larger field enhancements within the metal, and therefore a temporary increase in
ERS emission which would be observed as flares of the background signal in SERS.

We base our reasoning on the fact that, although we consider the nanoparticles to
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be spherical in our model calculations, as performed within the BEM [112], the ac-
tual nanoparticles used in the experiments have a crystallographic atomistic structure
with faceting and polyhedral shapes, which can present defects and crystal mismatch-
ing. In order to account for the effects of the atomistic structure, we consider in a
simple approach the crystalline defects in the metal nanoparticle and the film, made
up of multiple crystal domains. The intersection between two crystallographic con-
figurations can host 2D or 3D defect planes, also known as grain boundaries. Grain
boundaries have been studied using electron microscopy methods [221, 234], which
can reach atomic-precision resolution and allow the identification of crystal domains.
Nevertheless, the effects of grain boundaries and crystallographic defects on the plas-
monic resonance of such systems have not been properly addressed up to date. The
simplest forms of grain boundaries are shown in Fig. 3.5(a-c) [232]. Here we consider
only lattice planes in 2D and particularly highlight the distinction between low-angle
and high-angle grain boundaries. The lattice planes are offset to each other by a
certain angle, θ, which defines the distinction between both categories: low-angle
boundary if the angle is θ . 15◦, and high-angle boundary if the angle is θ & 15◦.
According to Alekseeva et al. [221], high angles outnumber low angles by 100 : 1 in
nanoparticles of diameterD ∼ 100 nm, although the nanoparticles used in such study
were made of palladium rather than gold, and were formed via hole-mask colloidal
lithography.

The angle between lattice planes, θ, known as misorientation angle, determines
the amount of disorder and reduction in the density of metallic atoms in the grain
boundaries. For instance, twinning plane defects such as those shown in Fig. 3.5(c),
are a special case in which the adjoining planes are exactly mirrored, so the crystal
pattern continues and there is no reduction in density. Figure 3.5(e) shows the angle-
dependence of the grain boundary energy, for which a maximum at 45◦ is observed.
The initial position with no misalignment is at 0◦ and for this particular lattice, there
is a 90◦ rotational symmetry, resulting in a twinning plane and subsequent energy
minima at these points.

The consideration of exact lattices for complex geometries in the context of plas-
monics is still beyond the scope of full ab initio quantum methods, such as those
based on TDDFT, due to their expensive computational requirements. To circum-
vent this challenge, we model the effect of the grain boundaries, and the corre-
sponding local change in the lattice structure by considering the alteration of the
average electron density at high- and low-angle boundaries as an effective change in
the local plasma frequency, ∆ωp, which yields an effective local plasma frequency
ωeffp = ωp −∆ωp ∝

√
neff/m∗ [see Eq. (2)]. In the case of a twinning plane, there is

no change in the average electron density (by definition), but the band-structure of
the material is locally altered, thus modifying the effective electron mass m∗ [235],
and therefore we could also consider the plasma frequency to be altered.

The number of possibilities regarding the position, size, shape, and material-
related properties of these localized regions with lower electron density is large and
challenging to be fully explored. Here we will focus on three canonical situations
which we deemed to be the most representative ones for all considered and tested:
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vacuum cracks at the bottom facet, grain boundaries at the NP facet edges, and
grain boundaries across the NP facet. The effect of these structural modifications in
the plasmonic response of the system is studied in the following sections.

3.4.1 Cracks

As mentioned above, the nanoparticles used in the experiments show polyhedral
shapes, including pentagonal bipyramids which are known to have an angle mismatch
in their structure that causes variable strain throughout the nanoparticle [236]. Fur-
thermore, it has been shown that adatoms can form on the surface of nanoparticles,
a process that can be further fed by the strong fields induced at the gap and within
the metal around the gap [44].

Although it is unclear to what extent optical fields localized at the gap can pro-
duce larger (nanometer-sized) changes in the crystal lattice, here we model the cre-
ation of a vacuum “crack” at the bottom of the nanoparticle with a hemiellipsoidal
geometry, as illustrated in Fig. 3.6(a), where we show two representative cracks, a
vertical one in red, and an inclined one in purple. These cracks are assumed to be
created due to the strain in the lattice. The actual simulated geometry corresponds
to a hemiellipsoid of characteristic ellipsoid axis lengths of a = 0.5 nm, b = 2.5 nm
and c = 5 nm. These cracks can show an inclination angle θ with respect to the
xy-plane as shown in Fig. 3.6(a).

The scattering-cross section of a NPoM with such a crack, shown in Fig. 3.6(b),
shows an almost identical spectrum for a vertical crack (θ > 90◦) compared to the
situation without any crack (flat facet) for both the `1 and `2 modes. Moreover, for
large inclination angles (θ > 60◦) a slight redshift of the scattering peaks is observed
for wavelengths in the spectral flare region, although there is almost no dependence
of the `1 mode on the inclination angle. On the other hand, small inclination angles
of the crack (θ < 60◦) show a blueshift in the spectral flare region, which clashes
with the experimental results shown in Sec. 3.2. Moreover, small inclination angles
(lightest blue line, θ = 30◦) also show the emergence of more scattering peaks and
a redshift and decrease in intensity of the `1 mode due to the coupling of the lowest
side of the crack with the bottom facet, while a blueshift is observed for the `2 mode.

Furthermore, the near-field map in the proximity of such cracks in Fig. 3.6(c)
shows large field enhancements and gradients around the bottom edges of the cracks
providing a lightning rod effect which would break the symmetry selection rules
for molecular SERS similar to the case of picocavities, as in Chapter 2. Instead,
the SERS spectra obtained in the experiments during the flare events do not show
extra vibrational lines from the molecules, which suggests that the field around the
molecules is not drastically affected. If one disregarded that issue, inclined cracks
would be a good candidate to explain the spectral flares in ERS as they show larger
field enhancements inside the metal [Fig. 3.6(e)] when compared to the NPoM without
a crack [Fig. 3.6(f)]. Nevertheless, along with mentioned pitfalls of the model, this
geometry involves the creation of two new Au-air boundaries, which is energetically
unfavorable [237], suggesting that this form of geometrical crystallographic defects
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Figure 3.6: a) Detail of the nanoparticle cracks (red and purple regions) at the bottom of the nanoparticle in
the NPoM configuration, simulated for vertical orientation and inclination of the crack θ. b) Inclination angle-
dependence of the scattering cross section for crack geometry with parameters a = 0.5 nm, b = 2.5 nm
and c = 5 nm. c) Near-field maps for crack inclination angle 30◦, showing field localization near the crack.
Near-field maps showing the field inside the metal at the bottom facet of the nanoparticle around d) a vertical
crack (90◦), e) an inclined crack (30◦), and f) no crack.
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might not be the most adequate candidate to explain the origin of the spectral flares.

3.4.2 Grain boundaries at the NP facet edges

Instead of forming a crack, which is energetically unfavorable, it might be more
realistic to consider that grain boundaries host a reduced density of gold atoms.
Electron-microscopy has confirmed that such grain boundaries appear at the facets
of nanoparticles [221, 234], but alterations in their crystallographic structure have
not been observed yet using optical methods. Considering the nanometric extension
of the grain boundaries, we model the drop in the corresponding electron density as
a reduction of the local plasma frequency in the vicinity of the defect. The reduction
of the local plasma frequencies has been suggested to be of the order of 25% in the
vicinity of a grain boundary [222].

This model accounts more realistically for grain boundaries and lattice defects
than the crack described in Sec. 3.4.1 Grain boundaries could be placed at the facets
or the edges of these facets. We first consider the later, which we model as toroidal
patches at the bottom facets with effective reduced plasma frequency, ωeffp , and size
determined by parameters rp and h, as illustrated with brown dark color (2D section
in red) in Fig. 3.7(a). This description effectively accounts for accounting for the
existence of different types of defects at the NP facet edges.

The scattering cross section of a NPoM including such edge defect [Fig. 3.7(b)]
shows a redshift and a decrease in intensity for increasing size (rp value) of patches.
The spectral region related to the flares (640 nm - 700 nm) shows variations with
patch size in the position of the spectral peaks and intensities. Moreover, the near
fields at the nanogap do not show any lightning rod effect around the NP edges
that would produce increased field gradients, and therefore no extra SERS lines from
the molecules deposited there would appear. This agrees well with the experimental
observations. The field penetration within the patch is also increased when the
plasma frequency at the edge is reduced, as shown in Figs. 3.7(d-e).

Changes at the edges of the bottom facet have been reported [226, 238], which
are usually irreversible. For instance, light-induced damage is known to increase
the facet width, which produces a redshift of the `1 mode [217, 226], as observed in
Fig. 3.1(e). Nevertheless, the experimental results from Sec. 3.2 suggest a reversible
mechanism to be behind the flares. In particular, the experiments in which white-
light illumination was combined with inelastic laser light scattering (see Fig. B.1
in App. B) show that the position and intensity of the `1 mode regain their initial
position after a flare event.

3.4.3 Grain boundaries across the NP facet

So far we have considered the grain boundaries to be located at the edges of the
facet of the NP, but grain boundaries and twinning planes are also present along the
facets. The model considered for this situation is illustrated in Fig. 3.8(a), with the
size of the patch (determined by the three semiaxes of the patch a, b and c) and the
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Figure 3.7: a) Detail of the grain boundary at the NP facet edge (toroidal shape in dark brown, section in
red) as used in model simulations, with w the width of the NP facet. b) Scattering cross section for such a
geometry as a function of patch size rp, with parameters ωeffp = 8 eV and height of the edge inhomogeneity
h = 2 nm. c) Near-field maps of the grain boundaries at the edges of the facet with rp = 2 nm, h = 2 nm
and ωeffp = 6.5 eV. Near-field maps showing a zoom-in of the field inside the metal in d) a defect at the
edge and e) edge with no defect.
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amount of effective ωeffp reduction accounting for the existence of different types of
defects.

This structure accounts more realistically for grain boundaries and lattice defects
than the crack described in Sec. 3.4.1 We have calculated the dependence of the
scattering cross section for such configuration on several parameters, such as the
reduction in effective plasma frequency in Fig. 3.8(b), patch size in Fig. 3.8(c) and
patch position in Fig. 3.8(d). The main scattering-cross section plots in Figs. 3.8(b-d)
show slight redshifts and decreases in intensity for the `1 mode, especially for large
patches taking large areas of the bottom facet [Fig. 3.8(c)], as one would expect when
considering that a reduction of one of the metallic facets (NP or substrate) would
have a similar effect. Instead, the modes across the 640-700 nm spectral region,
which cover the region in which the flares are experimentally observed, show greater
dependence on the inhomogeneity patch parameters, as the modes of the NPoM
structure are especially sensitive to any changes happening at the nanogap.

Furthermore, this model does not show increased field gradients around the grain
boundaries, as observed in Figs. 3.9(a), an issue that would cause additional Raman
lines from the molecules nearby. Instead, the field penetration increases within the
regions with reduced plasma frequency. According to Eq. (3.15) of the theory of ERS
emission, the Raman signal scales with the 4th power of the local field, and therefore,
one could expect a larger local field within the metal to produce larger background
ERS signal, i.e., flares.

With the aim of understanding these results, one can derive a simple expression
to estimate the increase in the ERS emission as a function of the parameters of our
model. First we will obtain the field penetration into the metal as a function of ωeffp .
From the conservation of the perpendicular component of the displacement field D⊥
at the metal-insulator interface, one gets:

εmE⊥,m = εgE⊥,g, (3.17)

where εg and εm are the permittivities in the gap and metal respectively. The per-
mittivity of the metal depends on the plasma frequency ωp, and the penetration into
the metal, η is then given by:

η(ωp) =
∣∣∣∣E⊥,mE⊥,g

∣∣∣∣ =
∣∣∣∣ εg
εm(ωp)

∣∣∣∣, (3.18)

which depends on the plasma frequency of the metal ωp. In the grain boundary
regions ωp is reduced by ∆ωp, thus we have a reduced plasma frequency, ωeffp , which
increases the field penetration into this region,

η(ωeffp ) =
∣∣∣∣ εg
εm(ωeffp )

∣∣∣∣. (3.19)

As mentioned in Sec. 3.1, the field within the metal decays exponentially at a rate that
depends on the effective wavevector of the plasmon in the MIM waveguide [214,215].
Moreover, the field is mainly polarized in the perpendicular direction, so from now
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Figure 3.8: a) Detail of the grain boundary at the NP facet (hemiellipsoidal shape) simulated, with w the
width of the NP facet. b) Local plasma frequency dependence of scattering cross section for geometry with
parameters a = b = 2 nm and c = 1 nm. c) Size dependence of scattering cross section for geometry with
parameters ωeffp = 6.5 eV and c = 1 nm. d) Position dependence of scattering cross section for geometry
with parameters ωeffp = 6.5 eV, a = b = 2 nm and c = 1 nm.
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Figure 3.9: a) Near-field map for hemiellipsoidal patches with a = b = 2 nm and c = 1 nm and ωeffp =
6.5 eV. Near-field maps showing the field inside the metal in a defect at the facet with b) ωeffp = 6.5 eV,
c) ωeffp = 7 eV, and d) no defect. Near field at the center of the gap (z = 0.45 nm) for a = 2 showing an
increase in the near field for decreasing ωeffp .

on we will omit the explicit reference to the component ⊥ of the field. For very
thin MIM waveguides, the dispersion relation reduces to the one given by Eq. (3.2),
k‖ = − 2εg

dεm
. Moreover, the skin depth δ⊥ = dεm

2εg given by Eq. (3.3) depends on the
metal permittivity and is therefore inversely proportional to the field penetration,
δ⊥ ∝ 1/η(ωp). Thus, the field in the metal is given by,

Em(z) = η(ωp)Ege
−z/δ⊥ , (3.20)

where Eg is the electric field at the nanogap. Furthermore, by assuming that the
Poynting vector is conserved for MIM plasmons propagating in the gap, one gets that
|Eg|2k‖ is conserved, which leads to field enhancements within the dielectric material
at the center of the facet of Eg ∝

√
η, further increasing the field inside the metal

due to the reduction of ωp. This is supported by simulations, as shown in Fig. 3.9(e).
For instance, reducing ωp = 9 eV to 6.5 eV gives a +24 % increase in Eg as predicted.

Finally, as described in Sec. 3.3, the ERS in the metal giving rise to the flare is
proportional to the 4th power of the optical field in the metal, integrated over the
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volume in which the field penetrates within the metal [see Eqs. (3.15) and (3.16)]. To
calculate the contribution of metallic regions with different ωeffp to the background
ERS intensity, I, let us consider a small cylindrical region within one of the metallic
sides in the MIM, with radius a, height h� δ⊥, and homogeneous plasma frequency
ωp. The contribution of such cylindrical region to the background ERS intensity can
be expressed as the volume integral of Eq. (3.20), which yields,

I ∝ πa2δ⊥[η(ωp)Eg]4, (3.21)

where we assume the field to be invariant in the direction parallel to the MIM struc-
ture.

Proceeding in a similar fashion we calculate the increase in the background ERS
intensity, Ifl, due to a cylindrical patch with a reduction to the plasma frequency
∆ωp, radius a and height c > δ′⊥/4 ∼ 1 nm, with δ′⊥ ∝ 1/η(ωeffp ), similar to the ones
shown in Fig. 3.9, as,

Ifl ∝ πa2δ′⊥[η(ωeffp )E′g]4, (3.22)

which neglects the background contribution from the rest of the facet (as it is much
smaller), as detailed in Appendix C. Therefore the ratio of flares to background ERS
intensity given by:

Ifl
Ibgd

=
(

2a
w

)2(η(ωeffp )
η(ωp)

)5
, (3.23)

where Ibgd is the background ERS intensity from the whole facet of width w in the
absence of the grain boundary.

Effective plasma model for antenna mode shift

Larger ∆ωp reductions (smaller ωeffp ) in the defect “patch” region at the center of the
nanoparticle facet and an increase in patch radius can affect the plasmonic modes and
therefore the optical response of the whole NPoM plasmonic structure as observed in
Fig. 3.8(b-c). In order to gain insight into these trends, we will consider an analytical
perturbation model to describe the system under consideration. We will focus on the
redshift of the wavelength of the `1 mode, λc, produced by the patch of reduced
effective ωeffp . As shown in Sec. 3.1, the MIM dispersion relation [Eq. 3.2] provides a
good estimation of the modes within the NPoM cavity, which we can be recast as

ω2 =
ω2
p

ε∞ + 2εg
k‖d

. (3.24)

When the facet width w is fixed, this also fixes k‖ [see Eq. (3.5)], so that the MIM
dispersion becomes proportional to ωp.

We will assume that the main antenna mode, `1, follows a Gaussian intensity dis-
tribution |E(r)|2 = I(r) ∝ e−4 ln 2r2/(∆x)2 with FWHM ∆x =

√
2Rd/εg as sketched
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Figure 3.10: a) NPoM structure with flat facet (no inhomogeneity) showing a Gaussian intensity distribu-
tion, I(r), with r the radial position at the unperturbed bottom facet with width w of the NP with radius R,
separated from a metallic substrate by a dielectric spacer of thickness d. b) NPoM structure with a decrease
plasma frequency, ∆ωp, at the center of the facet perturbing the cavity in a patch with width 2a. The panels
at the low row show a zoom-in of the potential associated with each situation, with the Gaussian intensity
distribution with FWHM ∆x in green.

in Fig. 3.10(a). The field is confined to the cavity due to a potential proportional
to the local plasma frequency of the metal V (r) ∝ ωp(r). Thus, if the plasma fre-
quency ωp(r) is not uniform along the finite MIM waveguide, the potential V (r) and
frequency of the mode ωc will also be affected.

We can calculate the wavelength shift δλc of the `1 mode due to a perturbation
∆ωp in a small region in the MIM [see Fig. 3.10(b)] using first order perturbation
theory. Taking into account that Eq. (3.24) follows the dependence ω ∝ ωp, we will
consider that the frequency shift δω of the nanocavity mode is proportional to the
plasma frequency change ∆ωp. Therefore, considering ω0

p the unperturbed plasma
frequency, the relative shift of the nanocavity mode is given by,

−δλ
λc

= δω

ωc
= 1

2

∫ w/2
0 r dr|E(r)|2[−Θ(a− r)∆ωp]∫ w/2

0 r dr|E(r)|2ω0
p

= −1
2

∆ωp
ω0
p

∫ a
0 r drI(r)∫ w/2

0 r drI(r)
, (3.25)

where the prefactor of 1/2 is included since the perturbation is assumed only on one
side of the waveguide (the NP’s facet side). Introducing the Gaussian dependence of
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Figure 3.11: a-b) Simulated (points) and analytical (dashed lines) coupled NPoM mode redshifts vs a
and ∆ωp, showing their agreement. c) Analytical model for relative flare intensity vs mode redshift for
(dashed) a = 2, 4, 6, 8, 10 nm over ∆ωp = 0 − 3.5 eV and (solid) ∆ωp = 1, 1.3, 1.6, 1.9, 2.2, 2.5, 2.8 eV
over a = 0− 15 nm. Grey histograms show experimental measurements of flare intensity (left) and `1 mode
redshift (bottom) ocurrence. Red marker shows maximum likelihood realization. Experimental measurements
from Cloudy Carnegie at Cambridge University. Figure adapted from Ref. [219].

the intensity,

δλc
λc

= −δω
ωc

= 1
2

(
∆ωp
ω0
p

)∫ a

0
r dr exp

(
− 4 ln 2 r2

∆x2

)
= 1

2

(
∆ωp
ω0
p

)[
1− exp

(
2 ln 2εga2

Rd

)]
, (3.26)

which gives an analytical expression for `1 mode shifts on the introduction of a patch
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of reduced effective ωeffp .

In Figs. 3.11(a-b) we compare the values given by this equation (dashed lines) with
those obtained within full electromagnetic calculations (BEM) (dots) and observe a
good agreement for low values of a and ∆ωp. Mapping the analytical flare intensity
and redshift vs. (a, ∆ωp), as indicated by the dashed and solid lines in Fig. 3.11(c),
allows us to compare these results of the analytical model with the number of flare
events in the experiments obtained in Cambridge (grey histograms), and so examine
the most appropriate effective parameters (a, ∆ωp) to reproduce the occurrence of
events.

By inspection of the flares, we find that most of the data lie within a = 2− 3 nm
and ∆ωp = 2 − 3 eV, which implies that such inhomogeneities are indeed small
but strongly perturb the local electronic properties of Au. These parameters suggest
single- or few-plane defects, such as those which have been observed via other methods
such as TEM [221,234]. The patch areas are indeed consistent with line defects that
are 1 nm wide, stretching across the entire facet, which are typically found in electron
microscope images.

This model matches many of the flares observed in the experiments. Moreover,
the spectral range of flares is well matched to the higher-order modes (short wave-
lengths) which are very sensitive to changes at the nanogap. Compared to the other
two geometries considered in Sec. 3.4.1 and Sec. 3.4.2, this is the only effective con-
figuration of inhomogeneities in which a change to the plasmonic modes is achieved
without producing a lightning rod effect.

In order to match the time-scale of the spectral flares, the modifications of grain
boundaries should happen on the millisecond time-scale, before reverting to an iden-
tical situation as before. Although this is unlikely, as this would imply a complete
reorganization of the NP crystal structure, a plausible explanation would be that
these defects move across and away from the plasmonic hot-spot on this time-scale,
and therefore would only be observable directly in the vicinity of the facet center.

It is worth mentioning that although nanoparticles have been shown to have a
quasi-molten nature [223–225] and diffusive displacement [239, 240] via electron mi-
croscopy methods, this is the first time that these sort of effects have been observed
optically. If the formation and restructuring of atomic-scale surface defects are in-
deed being observed via optical methods, this allows for non-destructive analysis of
nanoparticle grain boundaries, which can be measured in situ and under ambient
conditions. An inhomogeneous distribution of the plasma frequency serves as an
effective model which captures the modification of the whole optical response of an
entire NPoM, due to an underlying microscopic origin. Such simple effective models
thus prove to be valid to obtain rough estimations of the size and extension of the
inhomogeneity in the structure.
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3.5 Discussion and Summary

In this chapter, we have linked the apparition of flares in ms time-dependent SERS
experiments of molecules in NPoM structures to dynamic changes of the atomic
structure of the metallic NP. We have effectively modeled these structural changes as
a drop in the local plasma frequency at small regions of the metallic nanostructure
due to the decrease of the electronic density at the grain boundaries. The model
explains the increase of the ERS due to a larger field penetration and the shifts
observed for the NPoM modes.

Although this model is successful in explaining a number of the observed flare
features, there are a number of issues not fully addressed. The increased likelihood
of flares with the aging of the nanoparticle is not understood, although oxidative
effects may lead to a higher number of defects within the nanoparticle, leading to a
higher number of flare modes observed. However, more research would be needed to
ascertain whether defect numbers do in fact increase in this way, possibly through
correlation with electron microscopy. Similarly, the model presented here accounting
for grain changes in the grain boundaries at the bottom facet of the NP cannot
explain why more flares are observed for different spacer molecules. This difference
is likely due to the effect of molecular binding to the gold (since purely molecular
processes have been ruled out), but a deeper understanding of this effect is needed.

Additionally, although the redshift in the NPoM `1 mode is predicted by simu-
lations, the coupled-mode observations are not fully reproduced by the model based
on a drop of the electronic density at the grain boundaries. In experimental obser-
vations, spectral flares are only observed in the 640-700 nm region, with broad-band
white light required to observe the higher-wavelength `1 modes.

Finally, it must be pointed out that this effective response model does not address
why an increase in the `1 mode intensity is seen in the event of a flare. In fact,
simulations predict that all `1 mode redshifts should be seen alongside a decrease in
intensity of the `1 mode. This could be explained by a stimulated electronic Raman
scattering process, which depends on the 8th power of the electromagnetic field,
assuming that the confinement is sufficiently high to generate CW SRS [241–244] at
the redshifted coupled plasmon, even with incoherent illumination.

The effective local plasma frequency model presented in Sec. 3.4 explains with
relative success the origin of the spectral flares observed in SERS experiments, and as
an initial stepping stone, aims to address the need for a more fundamental framework
for understanding such phenomena. This effective model fails to address some of
the aspects observed for spectral flares, such as the increases in the scattered light
intensity observed for laser+white light illumination. A complete description of the
underlying physical mechanism would require a quantum ab initio framework to
capture the dynamics of the atomic structure and their influence on the local electron
density, and therefore on ERS. Due to the complexity of the system, the calculation
of its optical response is out of the scope of full ab initio frameworks, although they
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can be used, for instance, in simplified geometries (such as 2D infinite slabs) to
understand the influence of grain boundaries and atomic-scale dynamics on the local
electron density at the surface of the metal, which can be useful for less sophisticated
frameworks in more complex geometries. Thus, there is plenty of room to cover
between the effective local plasma model and full ab initio frameworks in the way
to gain a more precise understanding of the origin of the spectral flares observed in
SERS experiments.
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4 Atomic-scale structural features
as probed by swift electrons

E lectron energy loss spectroscopy (EELS) [56–59] in scanning transmission elec-
tron microscopy (STEM) [54,55], together with optical spectroscopies [245,246],

has played a crucial role in understanding the properties and dynamics of plasmons in
nanoparticles (NPs). In particular, technical progress in the performance of STEM-
EELS microscopy in the last two decades [70–72] has enabled sub-nanometer resolu-
tion [54, 73] and sub-eV energy sensitivity [74] in EELS, opening new opportunities
for characterization of novel materials and nanostructures [55, 75]. Thanks to these
advances it is possible to perform vibrational spectroscopy with nanometer resolu-
tion of phonons [57, 76–79] or to characterize biomaterials with low energy beams
reducing radiation damage [57,80,81]. Although this technique has been successfully
used for decades in the characterization of localized plasmon resonances in metallic
nanoparticles [247, 248], only with the aforementioned improvements it is now pos-
sible to implement single-NP EELS experiments with sizes in the range below 10
nm [82–87] with extraordinary resolution, turning STEM into a suitable tool for the
study of new and complex phenomena at the nanometer-scale.

In this context, much attention in the literature has been turned towards quan-
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tum size effects of collective resonances localized at the surface of NPs, i.e., LSPs.
Blueshifts [83] of 0.5 eV were measured in the surface plasmon resonance energy
of Ag nanoparticles when their radius was decreased from 20 nm to less than 2
nm [83–85, 89, 90]. The interaction between coupled gold nanoprisms has also been
probed by EELS showing mode hybridization and large field localization at the
nanogaps [249, 250]. Quantum plasmon resonances controlled by molecular tunnel
junctions between two plasmonic Ag resonators have also been probed by EELS com-
bined with atomic resolution imaging [251]. Moreover, a tomography scheme based
on electron microscopy has allowed 3D-imaging of LSPs in silver nanocubes [252],
and more recently, 3D maps of the local density of states of plasmonic nanoparticles
with nm spatial resolution and sub-eV energy resolution have been obtained [253].

Classical electrodynamics, within local dielectric theory [65, 254–256], has suc-
cessfully explained the plasmonic response of NPs, providing analytical expressions
to account for EELS in targets of simple geometries. Solutions of Maxwell’s equa-
tions have been implemented in numerical tools for EELS configurations, such as the
BEM [109,111] or FDTD methods [257], which allow for simulation of EELS in struc-
tures of complex geometrical shapes and different environments. Nevertheless, the
increased resolution obtained in the last experimental setups has pushed the devel-
opment of phenomenological and semiclassical theories to account for specific quan-
tum effects in the properties of LSP resonances, such as electron confinement [91],
electron spill-out at the interfaces [32, 92–94], non-local effects in the dielectric re-
sponse [95, 96], modification of local environments [87], or activation of quantum
tunneling across subnanometer interparticle gaps [34, 97]. Most of the classical and
semiclassical theories rely on spherical descriptions of the NP’s geometry, character-
ized by local ε(ω) or non-local ε(ω, k) dielectric functions, with ω the frequency and
k the wavevector of the excitations, but often these theoretical approaches do not
consider the specific crystallographic faceting of the NP’s sides, i.e., the atomic-scale
surface features.

In analogy with optical spectroscopy, discussed in Chapter 2, ab initio atomistic
methods such as TDDFT provide an appropriate quantum framework to consider
the aforementioned effects in a straightforward and complete manner including the
role of the atomistic structure in EELS. In the following, we compare the results
of electron energy losses obtained within atomistic TDDFT for an icosahedral Na380
cluster with those obtained within a classical BEM model that reproduces the atomic
faceting of the NP by means of abrupt surface boundaries, as a way to address the
influence of subnanometric features in EELS. As a benchmark to understand the EEL
probability in small nanoparticles, we first explore in Sec. 4.1 the canonical case of
spherical nanoparticles within the local dielectric response approximation. We show
the influence of subnanomatric features in EELS and identify the modes excited for
axial electron trajectories in typical icosahedral NPs for different orientations in Sec.
4.2, which in general differ from those observed in spherical nanoparticles. We extend
this study to analyze the impact parameter dependence of EEL spectra in Sec. 4.3
and identify the excitation of LSPs and CBPs. The nature of the latter is further
explored in Chapter 5.
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4.1 Electron energy loss in small nanoparticles

One of the most studied configurations in EELS is the spherical nanoparticle. The
spherical symmetry simplifies the mathematical expressions of the electromagnetic
fields induced by a probing electron and provides a direct way to analyze the system’s
response. Different models have been proposed to account for the response of the
material constituting the NP, each accounting for certain effects, such as non-local
effects, quantum confinement, spilling out of the electron density, or electron-beam-
induced changes to the surrounding material. Nevertheless, all of these approaches
have in common that the nanoparticle is considered to be spherical, whereas actual
small nanoparticles (a ∼ 1 − 10 nm), as studied within EELS, usually have poly-
hedral shapes [85, 87], which include crystallographic features forming atomic-scale
geometries such as facets, edges, and vertices. Even so, the strength of a model
that describes the NP’s geometry as spherical relies on its simplicity, which allows
for analytical or semi-analytical solutions of the EEL probability, and a benchmark
that is useful to analyze the EEL spectra of nanoparticles with a smaller degree of
symmetry, such as icosahedral nanoparticles.

Regarding the description of the material’s response, the local response approx-
imation is the simplest description, yet relatively accurate, that can be used to de-
scribe the EEL probability in small nanoparticles. The expressions obtained for the
EEL probability of a spherical particle can be further simplified if the nonretarded
approximation is considered. For a spherical nanoparticle with radius a and whose
material response is described by a local dielectric function ε(ω) [see Fig. 4.1(a)], the
EEL probability of an electron, ΓEELS(ω), at an impact parameter b (which can be
larger or smaller than the radius a) and velocity v, is given by the semi-analitycal
expression [258]:

ΓEELS(ω) = Γbulk(ω) + 4a
πv2

∞∑
l=0

m=l∑
m=0

(2− δm0) (l −m)!
(l +m)!

{
Im[γl(ω)](Aolm)2

+ Im
[
2βl(ω)− 1

ε(ω)

]
AolmA

i
lm + Im[αl(ω)](Ailm)2

}
, (4.1)

where,

αl(ω) = (l + 1)(ε(ω)− 1)
ε(ω)(lε(ω) + l + 1) , βl(ω) = 2l + 1

lε(ω) + l + 1 , γl(ω) = l(1− ε(ω))
lε(ω) + l + 1 , (4.2)

and

Aolm = al
∫ ∞
√
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rl+1P
m
l

(
z

r

)
glm

(
ωz

v

)
, (4.3)

Ailm = 1
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∫ √a2−b2
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dz rlPml
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z
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)
glm

(
ωz

v

)
. (4.4)
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In these integrals, z =
√
r2 − b2, Pml (x) is the associated Legendre polynomial of

degree l and order m, and,

glm(x) =
{

cos(x), if l +m even
sin(x), if l +m odd.

(4.5)

The first term in Eq. (4.1), Γbulk(ω), gives the bulk losses due to the electron trajec-
tory traveling a distance L =

√
a2 − b2 in a lossy medium. The other terms give the

losses due to the presence of the surface. In particular, the second term [∼ (Aolm)2]
is related to the energy loss experienced by the electron when it is outside the sphere
(before entering or after exiting the sphere); the third term [∼ AolmA

i
lm] is related

to losses experienced by the electron outside the sphere (after exiting) by excitations
excited when the electron is inside the sphere, and losses experienced by the electron
when it is inside the sphere by excitations excited when the electron is outside the
sphere (before entering); the last term [∼ (Ailm)2] gives the losses experienced the
electron when it is inside the sphere by excitations excited when the electron is still
inside the sphere.

For external trajectories (b > a) Eq. (4.1) reduces to the following analytical
expression [259,260], which has been widely used in the literature:

ΓEELS(ω) = 4a
πv2

∞∑
l=0

m=l∑
m=0

2− δm0

(l −m)!(l +m)!

(
ωa

v

)2l
K2
m

(
ωb

v

)
Im
[

ε(ω)− 1
ε(ω) + (l + 1)/l

]
,

(4.6)

where Km(x) is the modified Bessel function of the second kind of order m.
This latter expression gives some insight into the dependence of the energy losses

on the different parameters. For instance, when ωa/v � 1, which is the case for small
nanoparticles (a ∼ 1− 10 nm) and fast electrons (Ek ∼ 100 keV, v ∼ 0.55 c), and the
electron is far from the particle (b � a), the dipolar term (l = 1) dominates. For
grazing trajectories, (b ∼ a) the dominant contribution to each l comes from them = l
term, and the dipolar mode does no longer dominate so strongly over the high-order
modes. The dependence of the EEL probability on the impact parameter is illustrated
in Fig. 4.1(b), where ΓEELS is plotted as a function of the impact parameter for a Na
nanoparticle of radius a = 2 nm, whose material is characterized as a Drude dielectric
function with ωp = 6.05 eV and γ = 0.3 eV (which includes surface scattering effects
as described in Chapter 2, Sec. 2.1). For external trajectories with large impact
parameters (b � a), EELS provides similar plasmon excitation as those obtained
in optical spectroscopy. Grazing trajectories imply that the field generated by the
probing electron beam at the NP surface can no longer be considered to propagate
similar to a plane wave [the decay of the field intensity in the direction perpendicular
to the electron beam propagation is large in the proximity of the beam, notice the
modified Bessel function K0 in Eq. (1.56)], and together with the dipolar plasmon,
higher-order modes also couple to the probing field as observed in Fig. 4.1(b) for
b ∼ a. The spectra in Fig. 4.1(b) also show that the main losses are caused by
excitations produced when the probing electron trajectory crosses the NP.
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c)

b)a)

Na

Figure 4.1: a) Spherical nanoparticle with radius a and frequency-dependent local dielectric function
ε(ω) and a electron traveling nearby with impact parameter b and velocity v. b) EEL spectra colormap for a
Na (ωp ∼ 6.05 eV) spherical nanoparticle with radius a = 2 nm. c) Waterfall plots of the EEL probability
spectra for the energy region corresponding to the LSPs for individual impact parameters (straight purple
lines) with the energy corresponding to each l-mode highlighted (dashed grey lines).

For penetrating trajectories (b < a), we observe in Fig. 4.1(b) that the excitation
of LSPs shows great dependence on the impact parameter, and the excitation of the
bulk plasmon at ∼ 6 eV with a much larger intensity than the LSPs [see saturation
of ΓEELS in Fig. 4.1(b)]. The excitation of the lowest five LSP modes (l = 1 − 5)
in such situation is tracked in Fig. 4.1(c). Here we observe that the dipolar mode
l = 1 fades away as the impact parameter tends to zero [left-hand side of Fig 4.1(b)
at ω ' 3.45 eV]. The reason for this behavior is explained by symmetry arguments:
due to azimuthal symmetry, only m = 0 modes are excited by the electron beam, and
as the external potential produced by the electron beam scales as φext(r, ω) ∼ eiωz/v
[see Eq. (1.56)], the change in the phase of the potential along a spherical NP for an
axial trajectory is given by ∆ϕ = Lω/v, where L is the characteristic length of the
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a)

b)

Figure 4.2: a) The contributions of the first l = 10 modes to the EEL probability, normalized with the sum
of all contributions, is given for each l mode. Odd l modes (blue color palette) dominate for 2aω/πv ∼ 2n+1
∀n ∈ N, and even l modes (red color palette) dominate for 2aω/πv ∼ 2n ∀n ∈ N. b) The contribution of
modes with l +m odd (blue palette) and l +m even (red palette) to the total EEL probability (normalized
with the sum of all contributions) for impact parameters b/a = 0, 0.25, 0.5, 0.75.

nanostructure (L ' 2 a in this case). For small nanoparticles (L = 2 a ∼ 4 nm)
and fast electrons (Ek ∼ 100 keV), the change in the phase is almost negligible
(∆ϕ ∼ 0.22� π, for ω ∼ 6 eV), which leaves the external potential almost unchanged
along the electron path, and thus mainly even l modes are excited in the particle, as
the phase of the induced charge density at the entry and exit points of the electron
has to be almost equal. This happens for the excitation of the l = 2 modes at
ω ' 3.8 eV and zero impact parameter b = 0 in Figs. 4.1(b,c). The activation of the
modes can be related to the properties of the terms in Eq. (4.1). The integrals Ail0 in
Eq. (4.1) are small for odd l modes compared to even l modes, as for odd l modes one
gets gl0

(
ωa
v

)
= sin

(
ωa
v

)
∼ ωa

v � 1, while for even l modes gl0
(
ωa
v

)
= cos

(
ωa
v

)
∼ 1
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for axial trajectories (b = 0).9
In general, the contribution of even or odd l modes for axial trajectories (b = 0)

depends on the reduced radius ωla/v, where ωl = ωp
√
l/(2l + 1) is the energy of

the l mode. In particular, the condition ωa/v ∼ lπ/2 determines the dominance
of either odd or even modes [256]. The dependence of odd and even modes on
the reduced radius aωl/πv is illustrated in Fig. 4.2(a). Moreover, this symmetry
argument not only holds for axial trajectories but for any penetrating trajectory
(as long as the nanoparticles are small and the velocity of electrons large), i.e., in
general, even l+m modes dominate over odd l+m modes. This behavior is clearly
demonstrated in Fig. 4.2(b), where the contribution of modes with odd and even l+m
to the total EEL probability is shown for impact parameters b/a = 0, 0.25, 0.5, 0.75
as a function of the reduced length of the electron trajectory in the nanoparticle
L′ = 2

√
a2 − b2ωl/πv. One can observe that for small reduced lengths even l + m

modes dominate, almost independently of the impact parameter b, i.e., for small
nanoparticles and fast electrons, even l +m modes are mainly excited.

4.2 Influence of subnanometric features in nanoparticle EELS

In the previous subsection, we have presented EEL spectra for a spherical NP as
calculated within the local response approximation to describe the NP’s material
response. Most of the studies addressing EELS in these situations have focused on
the effects produced by quantum confinement, nonlocality, spill-out, and changes
in the NP’s environment. As we have mentioned, the influence of the atomic-scale
features of the NPs in the plasmonic response is usually disregarded. Here we explore
the sensitivity of EELS to the specific atomistic structure of a NP by addressing the
energy loss spectrum in the valence region of a sodium nanocluster composed of 380
atoms, as shown in Fig. 4.3. We calculate the atomistic ab initio electron energy
loss probability within TDDFT for different electron trajectories. This allows for
including the effect of the NP’s facetting naturally, within a quantum treatment of
the electrons and atoms that form the NP. The probing electron’s kinetic energy is
considered to be Ek ∼ 100 keV in all the calculations presented in this chapter. First,
we select three representative electron trajectories; crossing the center of the particle,
and penetrating it through (i) a vertex, (ii) an edge, or (iii) a facet. In analogy to the
previous chapter, and in order to ease the interpretation of the results and to evaluate
the need for full quantum calculations, we implement three additional descriptions
of the NP within a classical dielectric framework with abrupt interfaces, using the
MNPBEM [111]: (i) a regular icosahedron resembling the atomistic structure of

9For axial trajectories we have Pml (z/r) = Pml (1) = δm0, which reduces the integrals to Ail0 =
1

al+1

∫ a
0 dz zlgl0

(
ωz
v

)
and Aol0 = al

∫ a
0

dz
zl+1 gl0

(
ωz
v

)
.
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4.2 Influence of subnanometric features in nanoparticle EELS

Figure 4.3: Scheme of an atomistic Na380 NP and electron beams, crossing through and passing by the
NP, at impact parameter b, defined with respect to the trajectory crossing the center of the NP. Atoms forming
atomistic features such as a vertex (red), edge (green) and facet (blue) are highlighted among generic Na
atoms displayed in purple.

the NP (with smoothened edges and vertices as in Chapter 2); (ii) a smoothened
icosahedral NP which approaches the shape of the electronic cloud in the atomistic
cluster and would capture effects derived from the atomistic geometry; (iii) and a
perfectly spherical nanoparticle (radius a=1.85 nm), as a benchmark of the NP shape
commonly used in the literature.

As pointed out, the trajectories that we consider cross the center of the NP with
the penetrating point at a vertex, a facet, or an edge, as depicted in Fig. 4.4(a). Notice
that for a structure with perfect icosahedral symmetry these trajectories correspond
to the three symmetry axes of the icosahedron (5-fold, 3-fold, and 2-fold, for vertices,
facets, and edges, respectively).

The EEL spectra calculated within the atomistic TDDFT framework are shown in
Fig. 4.4(b). The sensitivity of the spectra to the particle orientation and the atomic-
scale features is apparent in this figure. Depending on the trajectory, different peaks
that correspond to the excitation of localized surface plasmons (LSPs) are activated:
a peak at energy ω = 3.4 eV emerges for the vertex trajectory (red line); the trajectory
through the edge (green line) shows two peaks at ω = 3.45 eV and ω = 4.1 eV, the
latter being more intense; and a single peak at ω = 4.05 eV is observed for the facet
trajectory (blue line). Moreover, a main peak at ω = 6.35 eV and some shoulders
at lower and higher energies are observed for all three trajectories (with some slight
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Figure 4.4: a) Three icosahedral nanoparticles oriented with respect to the symmetry axes of a regular
icosahedron: 5-fold, through two opposing vertices (red); 2-fold, through two opposing edges (green); and 3-
fold, through two opposing facets (blue). The electron beam trajectories are set to penetrate the nanoparticle
through/following these symmetry axes (marked by crosses). b) EEL spectra for the three trajectories shown
in panel a) for a Na380 nanocluster as calculated within TDDFT. c-f) Isosurfaces of the charge density
distribution for the main modes excited for each trajectory. g-j) Charge density distribution plotted at the
NP surface (the NP surface is obtained from the isosurface calculated for the unperturbed charge density;
more details in the main text). TDDFT data provided by Marc Barbry at the CFM.
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4.2 Influence of subnanometric features in nanoparticle EELS

differences in intensity), which correspond to confined bulk plasmons (CBPs), as we
will prove further on. Just notice that the intensities of the latter are similar or even
higher than those of the LSPs at lower energies. The characteristics of CBPs will be
studied in detail in Chapter 5.

To get further insight into the impact of atomic-scale features in the EEL spec-
trum and into the properties of the corresponding plasmonic excitations, we explore
in Figs. 4.4(c-j) the induced charge density distributions associated with the main
plasmon modes identified in the EEL spectra of Fig. 4.4(b). On the one side, in
Figs. 4.4(c-f) we plot the isosurfaces of the induced charge density, which show its
phase (sign) at the NP’s surface (and within the NP), allowing for identification
of the modes. Nevertheless, it is not straightforward to extract information about
the charge localization at the surface from these isosurfaces, as one usually needs to
calculate several isosurfaces for different isovalues of the charge density to that end.
We intend to better visualize the charge localization in Figs. 4.4(g-j) by proceeding
as follows: (i) we obtain an isosurface with an electron density threshold value (i.e.,
isovalue) ne = 0.00169 e/Å3 [189] from the ground state charge density of the cluster
in the absence of any external perturbation (this corresponds to the surface of the
NP, which will be also used to create the smooth icosahedron geometry in the BEM
calculations, presented below10), (ii) we plot the induced charge density data at the
previously established NP surface, which makes it easier to identify regions of greater
charge localization at the surface.

The lowest energy LSP at ω = 3.4 eV excited for the vertex electron trajectory
[first column from the left, in Fig. 4.4(c,g)] shows a quadrupolar pattern [Fig. 4.4(c)].
Compared to the QP excited in spheres for axial trajectories (l = 2, m = 0), the
charge density distribution observed in Fig. 4.4(g) shows strong charge localization
around the vertices and a characteristic five-pointed star-like charge distribution
around the electron path, directly related to the 5-fold symmetry of the NP with
respect to the electron trajectory. The LSPs excited for the edge (ω = 4.1 eV, green)
and facet (ω = 4.05 eV, blue) electron trajectories, show lower symmetry of the
charge distribution, with rhomboid or triangle-like patterns around the electron path
[Fig. 4.4(d-e)], but a stronger localization at vertices, edges and facets [Fig. 4.4(h-i)].
In contrast, the charge density distributions of the CBPs excited at ω = 6.35 eV
for the three trajectories do not show localization at vertices or patterns related to
the shape of the nanoparticle, as observed in the charge density distributions [Fig.
4.5(f,j)]. In fact, due to the nature of the CBPs, i.e., electron collective oscillations
localized in the volume of the NP, these oscillations mainly depend on the size of the
nanoparticle, more than on the local atomistic morphology of the surface.

These results reveal the sensitivity of LSPs to the atomistic shape of a NP and
the crystallographic orientation probed by the electron. In this sense, shape effects

10The electron density isovalue to create the isosurface that we used in BEM calculations is
somewhat arbitrary [189]. Nevertheless, the volume of the resulting continuous NP used in the
BEM calculations is equivalent to 380 Na atoms with atomic radius rs ∼ 2.18Å, which is close to
the Wigner radius rs = 2.08Å used to describe the plasmonic response, i.e., dielectric function, of
Na in the BEM calculations. The larger size can be considered to be due to a certain spillage of
electrons to the vacuum, making the NP effectively larger.
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in larger NPs have been studied extensively in the literature within the classical
dielectric formalism [261], which accounts accurately for the response of large metallic
NPs. Nevertheless, as nanometric and subnanometric nanoparticle sizes are reached,
the classical local dielectric formalism fails to reproduce quantum effects such as
electron confinement into the NP, or electron spill-out effects, which need to be
included in the material’s response. Although some of these effects have been tackled
for small spherical NPs [262], they oversight the influence of the NP’s shape and the
presence of crystallographic features, which greatly affect the EEL spectra, as we
have shown in this section. With the aim of understanding the role of these atomic-
scale features, we complete our atomistic study with classical calculations of the
EEL spectra within the BEM where we reproduce the crystallographic shapes of
the particles through classical abrupt boundaries, mimicking the specific atomistic
shape of each NP. The comparison of the results of the EEL spectra obtained from
one and another method will reveal the accuracy and the limitations of classical local
dielectric theories, as commonly used in EELS, to describe atomistic features in NPs.

4.2.1 Continuous description of atomic-scale features

The presence of atomic-scale features breaks the spherical symmetry of a NP, and can
result in plasmon modes shifting and, even splitting [263], thus lifting the plasmon
energy degeneracy with respect to the modes of a spherical particle, as shown in Fig.
4.4(b). This is very clear, in particular, for the vertex electron trajectory, but not so
obvious for the edge and facet ones. The reason for this may be found in the electron
density distribution induced by the beam at the surface, which does not vary much
for an edge and the facet trajectories but is quite different for the vertex trajectory.

This dependence of the EEL spectra on the NP’s geometry is further explored in
Fig. 4.5, where we show the results for two NPs using a continuous dielectric model to
address the material’s response within BEM. The geometries of the NPs, following the
atomistic geometrical shape of the nanocluster, are shown together with the energy
loss spectrum of a spherical NP of the same size (a = 1.85 nm). The numerical
BEM and the dielectric approach used are detailed in Chapter 1. The spectra for the
irregular smoothened icosahedron [sketch in the inset of Fig. 4.5(a)], which captures
the geometry of the unperturbed electron density of the nanocluster used in the
atomistic TDDFT calculations, are plotted in Fig. 4.5(a). These spectra are very
similar to those of Fig. 4.4 (TDDFT results): two modes appear at ω = 3.6 eV, mainly
excited for the vertex electron trajectory (red line), and ω = 4.0 eV for the edge (green
line) and facet (blue line) trajectories. In contrast, the spectra obtained for a regular
icosahedron resembling the crystallographic or atomistic shape of the nanocluster
[sketch in Fig. 4.5(b)] show three separate modes, each one corresponding to a specific
trajectory; at ω = 3.3 eV for the vertex trajectory (red line), at ω = 3.9 eV for the
edge trajectory (green line), and at ω = 4.2 eV for the facet trajectory (blue line).

For reference, the spectrum of a spherical NP of the same size is shown with
a black line in Figs. 4.5(a,b). The latter clearly differs from the spectra of the
icosahedral NPs used in TDDFT [Fig. 4.4(b)] and in the BEM simulations [Figs.
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Figure 4.5: a) EEL spectra for a Na nanoparticle with smooth icosahedral shape and b) regular icosahedral
shape calculated within BEM for three different trajectories crossing each NP through two opposing vertices
(red), through two opposing edges (green), and through two opposing facets (blue). The EEL spectrum for a
spherical NP is plotted in black in each figure, and the shape of each NP is plotted in the inset. Charge
density plots representing the LSP modes highlighted with squares in (a) and with diamonds in (b) as
calculated with BEM for c) a spherical Na NP of radius a = 1.85 nm, d) for a smooth icosahedral Na NP
and e) for a regular icosahedral Na NP.
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4.5(a,b)], highlighting the signature of the atomistic surface structure in the EEL
spectra of nanoclusters. In particular, the main LSP peak observed for the spherical
NP corresponds to the surface quadrupolar plasmon (QP, l = 2) at ω = 3.8 eV, as
depicted in Fig. 4.5(c), left box. Notice that this is the main surface mode excited
for the electron trajectory crossing the center of the NP, as the dipolar mode l = 1 is
inhibited, due to its azimuthal symmetry (only m = 0 modes are excited) as already
explained in Sec. 3.1.

The induced charge densities in the smoothened irregular icosahedral and the
regular icosahedron NP modelings are represented in Figs. 4.5(d) and 4.5(e), respec-
tively. The patterns of the induced charge densities in the particles described with
continuous boundaries are very similar to those obtained within TDDFT (Fig. 4.4).
The patterns obtained for the icosahedral particles are qualitatively similar to those
of Fig. 4.5(c) for the spherical NP. One can also observe the similarities between the
charge density distributions of the smoothened continuous boundaries [Figs. 4.5(d,e)]
and those of the atomistic TDDFT cluster [Fig. 4.4(c)] in spite of the energy differ-
ence.

Apart from the LSPs discussed above, the most intense EELS excitation appears
at ω = ωp = 5.9 eV, which is a bulk plasmon (BP) footprint, independent (in energy)
of the nanoparticle’s shape (sphere, smooth icosahedron or regular icosahedron) and
trajectory. The lack of dependence on the NP shape and electron trajectory of the
bulk plasmon appearing in BEM simulations is a direct consequence of the continuous
dielectric framework, in which the contribution of the bulk plasmons to the energy
loss probability is introduced ad hoc [see Eq. (1.66) in Chapter 1].

On the other hand, Figs. 4.5(c-e) show a strong charge localization around the
electron path for the BP, but no charge oscillations at the surface, in contrast to
the TDDFT results [Fig. 4.4(f,j)]. The comparison between the results obtained
with the atomistic TDDFT and the three classical continuous approaches illustrates
unambiguously the influence of atomic-scale features on the EEL spectrum, and
the need for an accurate geometrical description of the atomistic cluster. Although
LSP patterns are reasonably well addressed with the use of classical description in
smoothened surfaces, these approaches fail to describe the properties of CBPs due to
the intrinsic constraints of the dielectric framework. The differences observed in bulk
charge densities deserve a further analysis, which is addressed at the end of Chapter
5.

4.3 Impact parameter dependence

So far we have focused on a particular set of electron trajectories, although typical
EELS experiments usually scan the NPs, involving a wide variety of them, and par-
ticularly external trajectories. It is well known that for external trajectories with
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large impact parameters (b � a), EELS provides plasmon patterns similar to those
obtained in optical spectroscopy, i.e., the field generated by the electron beam at the
surface of the NP is similar to that of a uniform and homogeneous external field.
Under these conditions, the optical response of the icosahedral NPs does not differ
much from that of a spherical one (the dipolar plasmon dominates the spectrum for
small NPs, as observed in Fig. 2.4 of Chapter 2), and does not show much dependence
on its relative orientation [107,261,264]. Nevertheless, as the beam gets closer to the
NP’s surface (b ∼ a), the intensity of higher-order modes increases, and thus the plas-
monic response shows a dependence on the impact parameter [259,260], which is no
longer similar to that obtained with an optically homogeneous and uniform source.
Moreover, in the previous section, we showed that for axial penetrating electron tra-
jectories the EEL spectra for icosahedral NPs depend on the relative orientation of
the NP with respect to the electron beam. Thus, one could expect that in general,
penetrating trajectories will show orientation-dependent EEL spectra in atomistic
NPs, which will be different from the EEL spectra for spherical NPs. Therefore,
we now explore the influence of the atomistic features of the nanocluster on the ex-
citation of different modes as a function of electron beam distance to the particle.
To that end, we calculate EEL spectra for both penetrating and external electron
trajectories for different impact parameters.

We show the dependence of the EEL spectra on impact parameter as calculated
within the atomistic ab initio theory, for three different orientations of the NP as
shown in the sketch of Figs. 4.6(a-c). Colormaps of such EEL spectra are shown
in Figs. 4.6(d-f). The spectra shown in Fig. 4.6(d) correspond to the orientation
labeled as “near-facet”, which is chosen such that the external electron trajectories
are parallel to the facet. The results that are shown in Fig. 4.6(e) and labeled as
“near-edge” correspond to electron trajectories parallel to the closest edge. Last, the
spectra presented in Fig. 4.6(f) labeled as “near-vertex” correspond to trajectories
perpendicular to two opposing vertices and in-plane with one of the edges formed by
the closest vertex to the trajectory. Moreover, we have extracted five representative
spectra from the results corresponding to impact parameters, b = 0, 0.5, 1, 1.5 and
3 nm [corresponding to the electron trajectories sketched in Figs. 4.6(a-c) and using
the same colors] which are plotted in Fig. 4.6(g-i).

We first focus on the “near-facet” electron trajectories shown in Fig. 4.6(d,g).
For external trajectories (b & 1.5 nm) the spectra are dominated by the excitation of
LSPs; there is no trace of CBPs (they are distinguishable only if a logarithmic scale
is used). In particular, for trajectories far from the NP, such as b = 3 nm, the main
excitation is the dipolar plasmon (S1) at ω = 3.2 eV, in a similar fashion as when
light is used as an excitation source [107, 264]. Decreasing the impact parameter
increases the intensity of the energy loss, and especially the relative intensity of
higher-order plasmon (HOP) modes, which are more sensitive to the inhomogeneity
of the field created by the electron beam, in contrast to the dipolar mode. For
grazing trajectories, such as b = 1.5 nm, in addition to the dipolar mode (S1), a peak
corresponding to higher-order modes (S3) is observed at ω = 4.1 eV, which perfectly
matches the energy of the mode excited for edge and facet axial trajectories plotted
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Figure 4.6: Trajectory sets are defined for specific orientations of the nanoparticle related to the trajectories
passing near crystallographic features highlighted in cyan and labelled as a) near-facet, b) near-edge and
c) near-vertex. Color maps of EEL spectra as a function of electron impact parameter b, for d) near-facet, f )
near-edge, and g) near-vertex electron trajectories, calculated using atomistic TDDFT for a Na nanocluster.
The peaks corresponding to different plasmon modes are highlighted by bullet points and labelled as surface
(S) or bulk (B) modes. g-i) EEL spectra from (a-c), respectively, for impact parameters b = 0 nm (blue line),
b = 0.5 nm (red line), b = 1 nm (green line), b = 1.5 nm (magenta line), and b = 3 nm (amber line).
TDDFT data provided by Marc Barbry at the CFM.

in Fig. 4.4(a).
For penetrating trajectories (b < 1.5 nm), together with the LSPs, a band of

CBPs is also present at higher energy in the spectra of Fig. 4.6(d), whose intensity is
highly sensitive to the impact parameter of the electron beam. Regarding the LSPs,
the dipolar mode (S1) dominates the spectrum only for trajectories close to the
surface b & 2/3a, but as the impact parameter decreases, the quadrupolar plasmon
(S2) at ω = 3.4 eV becomes the main excitation, consistent with the results of the
excitation in the vertex trajectory, plotted in Fig. 4.4(a). This transition from the
S1 to the S2 mode for small impact parameters clearly illustrates the deactivation
of the dipolar mode due to its lack of azimuthal symmetry, as pointed out in the
previous section for the spherical NP. When the electron probe approaches the NP
axis, b→ 0, higher-order modes (S3) are efficiently excited.

Similar to the LSP in Figs. 4.6(d), the energy losses corresponding to CBPs show
different behaviors as a function of the impact parameter. For b = 1 nm a single
peak (B2) at ω = 5.9 eV is observed. The spectrum for b = 0.5 nm has an additional
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CBP (B4) at ω = 6.5 eV. The spectrum of the central trajectory b = 0 nm, on the
other hand, exhibits two different excitations at ω = 5.6 eV (B1) and ω = 6.35 eV
(B3). Although bulk plasmon modes have received less attention than LSPs in the
literature, shifts of bulk plasmon detected in experiments [83,86,91] can be explained
by the existence of different CBPs whose excitation depends on the relative impact
parameter, similarly as it occurs with the LSPs. As pointed out above for LSPs, by
symmetry arguments, central trajectories inhibit certain CBPs, resulting in effective
blueshifts of the bulk plasmon in experiments.

Regarding the other two sets of trajectories, we observe that the spectra for
the “near-edge” [Figs. 4.6(e,h)] and “near-vertex” [Figs. 4.6(f,i)] trajectories share
some similarities with the results for the “near-facet” trajectories [Figs. 4.6(d,g)],
such as the excitation of the dipolar plasmon (S1) for external trajectories, and the
overall distribution of the peaks. Nevertheless, there are some differences regarding
the excitation of higher-order modes and the relative intensity of the peaks. For
instance, for the trajectory labeled as “near-edge”, almost no excitation of the S3
modes is observed for grazing incidence and the relative intensities of modes S2 and
S3 for penetrating trajectories are different as compared to the “near-facet” case. On
the other hand, CBPs show seemingly no strong dependence on the NP’s orientation.

To better illustrate the capability of EELS to characterize atomistic features in
NPs and support our interpretation of the excitations within TDDFT, we compare
now the atomistic results with those from a classical description in a smooth icosa-
hedral NP with boundaries that reproduce the atomistic features. We show in Figs.
4.7(a-c) the EEL spectra corresponding to the “near-facet”, “near-edge” and “near-
vertex” electron trajectories, defined in the same way as for TDDFT calculations, and
in Fig. 4.7(d) the EEL spectra corresponding to a spherical NP of radius a = 1.5 nm
as a reference. Moreover, we have also selected five representative spectra from these
results corresponding to impact parameters, b = 0, 0.5, 1, 1.5 and 3 nm, which are
plotted in Figs. 4.7(e-h).

The general trends for the excitations of the LSPs observed for the classical calcu-
lations are similar to those observed within the TDDFT calculations: i) the spectra
exhibit the excitation of the dipolar plasmon (S1) at ω = 3.35 eV for external tra-
jectories with large impact parameters (b >> a), ii) higher order modes (S3) at
ω = 4.0 eV are excited for grazing trajectories b ∼ a and penetrating trajectories
b < a, and iii) the quadrupolar plasmon (S2) is excited at ω = 3.8 eV for small
impact parameters. Moreover, direct comparison between individual trajectory sets
calculated within each model shows that the classical calculations qualitatively cap-
ture the spectral features observed in the TDDFT calculations. Nevertheless, there
is an increased relative intensity of the LSPs in the classical model compared to the
atomistic model, which may be attributed to non-local effects included in TDDFT
but not accounted for in the classical description, producing more damped high-
order plasmon modes [265]. Furthermore, the small discrepancies observed in the
LSP energies can be attributed to quantum effects not considered within the BEM.

On the other hand, the classical approach fails to reproduce, as expected, the
spectral features observed in TDDFT for energies larger than the plasma energy.
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4. ATOMIC-SCALE FEATURES AS PROBED BY ELECTRONS
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Figure 4.7: Color map of EEL spectra as a function of the impact parameter b, for a) near-facet, b) near-
edge, and c) near-vertex electron trajectories, calculated for a smooth icosahedral shape using BEM. The
peaks that correspond to different plasmon modes are highlighted by bullet points and labelled as surface
(S) or bulk (B) modes. d) Color map of EEL spectra as a function of the impact parameter calculated using
BEM for a spherical NP of radius a = 1.5 nm. The peaks are highlighted by bullet points and the LSPs
are labelled according to their l order. EEL spectra for impact parameters b = 0 nm (blue line), b = 0.5 nm
(red line), b = 1 nm (green line), b = 1.5 nm (magenta line), and b = 3 nm (amber line) for e) near-facet,
f ) near-edge, and g) near-vertex electron trajectories for a smooth icosahedral shape, and h) for a spherical
NP.
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4.3 Impact parameter dependence

In particular, we observe that a sharp bulk plasmon is activated for penetrating
trajectories, at the same energy ω = 5.9 eV, independently of impact parameter,
with identical value as that obtained for the axial trajectories of Figs. 4.5(a).

We also show for reference the EEL spectra for a spherical NP of radius a =
1.5 nm circumscribing the nanocluster Na380 in Figs. 4.7(d,h). The spectra exhibit
the excitation of the dipolar plasmon l = 1 (ω = 3.45 eV) for external trajectories
with b >> a and higher order modes l > 1 for grazing trajectories (b ∼ a). Pene-
trating trajectories produce a fading of the dipolar plasmon and enhancement of the
quadrupolar plasmon l = 2 (ω = 3.8 eV) for small impact parameters. In particular,
for the central trajectory with azimuthal symmetry (b = 0 nm), the dipolar peak
disappears, and instead a broad peak appears, which gathers the contributions of
high-order modes with even l number that are too close in energy from each other to
be distinguishable. Additionally, a sharp bulk plasmon is activated for penetrating
trajectories, at the same position ω = 5.9 eV, independently of impact parameter,
and of equal value as the one discussed for axial trajectories in icosahedral NPs shown
in Figs. 4.5(a,b) (black lines).

When compared to the atomistic TDDFT results, the spherical approximation
fails to reproduce even qualitatively the LSP spectra for penetrating and grazing
trajectories (in particular the gap between modes S2 and S3). As we have shown,
the differences observed in the spectra between the atomistic TDDFT (Fig. 4.6) and
a spherical NP within a classical description [Fig. 4.7(d-h)], are mainly due to the
different shapes considered in each model. The modes of a plasmonic NP greatly
depend on its shape [266] both in energy and, in particular, symmetry. Their exci-
tation depends on the relative symmetry of the mode with respect to the electron
trajectory. The above argument is supported by corresponding induced charge den-
sity distributions plotted in Fig. 4.8(a). The charge density isosurfaces (red positive,
blue negative) shown in this figure correspond to the modes highlighted and labeled
in Fig. 4.6(d-f). In the low-energy LSP spectral band, mode S1 is identified as a
dipolar plasmon, mode S2 as a quadrupolar plasmon, and mode S3 as a HOP mode
excited for the edge and facet trajectories, at least for b ≤ 0.5 nm. The transition
from the dipolar pattern S1 to the quadrupolar S2 one, from impact parameter b = 1
nm to 0.5 nm, explains the shift of the lowest energy excitation in the spectrum as
the electron beam goes from the surface of the NP towards its center. Mode S3 has
a more irregular charge distribution, as observed at the bottom panel of Fig. 4.8(a),
with charge concentration on the vertex atoms. The presence of these hot-spots at
the vertices and the high selectivity of the modes could be exploited in the recently
developed techniques employing STEM to map molecular excitations using the sub-
nanometric field localization produced atomic-scale features at the surface of metallic
NPs, as implemented in SERS experiments, where even single-molecule detection has
been achieved [44].

Notice also that the evolution of the charge pattern with impact parameter follow-
ing the symmetry marked by the electron path with respect to the particle. Moreover,
the charge density distributions corresponding to mode S3 for b ≥ 1 nm are slightly
different to those observed for b ≤ 0.5 nm, although they have similar energy, i.e.,
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b) near-edge and c) near-vertex electro trajectories corresponding to the peaks highlighted, respectively, in
Figs. 4.6(d-f), calculated using TDDFT for impact parameters b = 0, 0.5, 1, 1.5, 3 nm. TDDFT data provided
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b = 0, 0.5, 1, 1.5, 3 nm.

they are two different modes degenerated in energy. This is similar to the degener-
acy in energy found in spherical NPs for modes with the same l-number but different
m-number.

It is also instructive to compare these charge distributions with those excited in
the classical smooth icosahedral NPs and the reference spherical NP plotted in Fig.
4.9. The icosahedral shapes [4.9(a-c)] capture the evolution of the charge distributions
that correspond to the dipolar plasmon (S1), quadrupolar plasmon (S2), and higher-
order modes (S3), including the atomic-scale features of the induced charge density.

The spherical nanoparticle [Fig. 4.9(d)] captures well the clean excitation of the
dipolar plasmon l = 1 and the quadrupolar plasmon l = 2 patterns, being the energy
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4. ATOMIC-SCALE FEATURES AS PROBED BY ELECTRONS

gap between both modes wider as compared to atomistic TDDFT results. The whole
LSP band of the atomistic nanocluster spectrum is wider due to localization of the
induced charge around the crystallographic features [266], as clearly observed in the
charge densities of S3 in Fig. 4.8. Thus, these results illustrate the limitations of the
spherical NP description (even if a jellium model was used) to address the spectral
features arising from atomic-scale protrusions characteristic of such small NPs.

We analyze now the CBP band and its evolution with impact parameter. In
the top panels of Fig. 4.8(a) the differences between the modes excited for b =
0 nm and b = 0.5 nm [Fig. 4.6] are evident from the corresponding charge density
isosurfaces. As already mentioned, this evolution with impact parameter and the
richness of the charge distributions of the CBPs obtained with the atomistic TDDFT
framework cannot be reproduced within the classical framework calculations, neither
within a spherical nor within a more accurate description of the shape of the particle
(icosahedral models). In the energy range of 5.5-6 eV, mode B1 shows an almost
homogeneous (angular monopolar) charge distribution with characteristic localization
of the charge at the vertices, while mode B2 has a dipolar distribution (with flipped
polarity as compared to S1). On the other hand, at 6.35 eV and 6.5 eV, modes B3 and
B4 are so overlapped, that a qualitative characterization based on the surface charge
density can be misleading. In fact, the charge oscillations of the CBPs occur inside
the volume of the NP, as opposed to the LSPs which are localized at the surface. The
characterization of the CBP modes will be elucidated in the next chapter, where the
properties of the modes will be unveiled within a hydrodynamic model that accounts
for the non-local response of matter.

4.4 Discussion and Summary

The influence of atomic features of nanometer-scale metallic nanoparticles on the EEL
spectra has been explored in this chapter. We have first considered the paradigmatic
case of the nanosphere as a baseline to understand the underlying symmetry of the
plasmonic response of small nanoparticles when excited by swift electron beams.
Moreover, we have shown that atomic features of nanometer-scale metallic particles
greatly influence their plasmonic response, as exposed through EEL spectra for axial
trajectories and different NP orientations, and thus these features need to be ac-
counted for in a full description of their plasmonic response. Besides the particular
atomic morphology of the nanoparticle, the ab-initio TDDFT method used to calcu-
late the EEL spectra includes naturally all the effects related to the quantum nature
of electrons. Much of the discussion from previously published papers about EELS
in NPs are focused on the shift, to the red or to the blue (mainly depending on the
material), of the LSPs when their size is decreased, in particular the shift of the dipo-
lar surface plasmon and the bulk plasmon. Different phenomenological descriptions
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4.4 Discussion and Summary

have been implemented in the literature to explain these shifts, including quantum
effects as electron spill-out [32,92,93], dispersion in the dielectric response [95,96] or
dielectric functions which account for quantum confinement [91]. In general, these
studies do not consider the non-spherical shape of the nanoparticle, not to say the
atomic-scale structure which, as we have shown, dramatically affect the EEL spec-
tra for grazing and penetrating trajectories (especially for excitation of higher-order
modes), adding an additional aspect to be considered when interpreting the results
in EELS experiments, where small NPs usually show icosahedral shapes [85,87].

The shape effect on LSP and CBP bands has been explored by comparing the
TDDFT spectra with those calculated with two classical dielectric models of the
NP, adapted to the icosahedral shape of the atomistic distribution and the electronic
landscape of the nanocluster. Concerning LSPs, the later model provides good agree-
ment with sensitivity to the orientation of the electron beam trajectory with respect
to the edge, facet, or vertex crystallographic features.

Moreover, the excitation of collective electron oscillations inside the volume of the
NPs, the so-called CBPs, are inherently included in the TDDFT framework. Con-
trary to the LSPs, local dielectric models with boundaries resembling the atomistic
shape of the NP are not able to account for the rich footprints of the CBP band of the
spectrum, neither for the intensity nor for the width of the CBPs or their sensitivity
to the impact parameter.

We have shown that ab-initio atomistic TDDFT offers a state-of-the-art frame-
work to study the interaction of electron beams with small NPs. This method can be
applied to a wide variety of materials, including Ag NPs, which are still the object of
much discussion and controversy in the literature [267]. The sensitivity to the atomic-
scale features and diverse CBPs of the EEL spectra is at hand with the spatial and
energy resolution of STEM microscopes, with a special mention to signal-to-noise
ratio, as averaging over different sets of trajectories and statistic measurements can
wash out the fine structure of spectra. Moreover, these atomic-scale features would
further enhance the interaction between plasmons and molecules attached to the ver-
tices, an aspect which can be exploited in plasmon-enhanced molecular spectroscopy
with STEM, a technique with great potential to be developed in the future [268].
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5 Hydrodynamic model to
address EELS of plasmonic
nanoparticles

C onfined Bulk Plasmons (CBPs) are volume oscillations of the electron density
confined in finite regions, such as in nanostructures. They have been observed

experimentally in EELS measurements for a wide range of structures and materials,
including thin Mg films [100], Ge nanorods [101], Bi nanowires [102], Bi NPs [91,103],
and Al nanodisks [86]. On the other hand, bulk plasmon modes confined in nanostruc-
tures have been studied theoretically with different non-local dielectric approaches to
account for dispersion and dynamical screening effects [104–106]. Non-local effects
emerge in nanoplasmonics at the few-nanometer scale due to the spatial correlation
of the induced charge density, an effect which prevents the pilling up of electrons
at short distances. This pressure (known as Fermi-Dirac pressure) exerted by the
electron density, and its effects (including CBPs), are parametrically included within
hydrodynamic models and have been used to study CBPs in spherical NPs excited
with light or electron beams. Nevertheless, for light and external electron beam tra-
jectories [95] the intensity of CBP excitation is several orders of magnitude smaller
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than that of LSPs. However, as described in the previous chapter, the energy losses
in small Na nanoclusters for penetrating electron trajectories show comparable in-
tensities for CBPs and LSPs. Within the ab initio method presented in the previous
chapter, CBP modes emerge naturally, in contrast to continuous local classical ap-
proaches of the response, where bulk modes are introduced through the loss function,
Im[−1/ε(ω)] [Eqs. (1.60) and (1.66) in Sec. 1].

Although electron energy losses have been theoretically studied since long ago,
the expressions of the energy loss probability given in the literature for spherical
nanoparticles and penetrating trajectories within a non-local approach consist of av-
erages over impact parameters [269], momentum-dependent solutions for the EEL
probability [270], formal solutions without explicit expressions for the EEL prob-
ability [271] or are directly limited to local descriptions [258, 272, 273]. Moreover,
models accounting for confinement effects in a local dielectric framework [83] do not
incorporate the impact-parameter dependence shown in the previous chapter as cal-
culated with ab initio methods. To the best of our knowledge, we have not found in
the literature any expression for the EEL probability showing an explicit impact pa-
rameter dependence that considers penetrating trajectories within a hydrodynamic
model, which would be of high interest to study CBPs and their excitation by electron
beams.

In this chapter, we obtain such expression starting from a linear hydrodynamic
model (HDM) that takes into account nonlocality. We first introduce the main as-
pects of this model and then apply it to a spherical nanoparticle with hard boundaries,
to obtain the properties of the surface and bulk plasmons with nanoparticle size in
Sec. 5.1. In Sec. 5.2 an analysis of the non-local expression of the different terms of
the EEL probability is provided for internal/penetrating electron trajectories as well
as for external ones. Once the EEL semi-analytical formula is obtained, the impact
parameter dependence of the plasmon excitation is studied in Sec. 5.3. In Sec. 5.4 we
focus on the influence of the electron beam energy, i.e., the velocity of the electron,
to elucidate the symmetry dependence of the excitation of CBPs. Last, in Sec. 5.5
we compare the results obtained within ab initio atomistic TDDFT for penetrating
trajectories presented in Chapter 4 with the results of the CBP excitations obtained
in this chapter.
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5. HYDRODYNAMIC MODEL OF NANOPARTICLES IN EELS

5.1 Hydrodynamic model applied to a spherical nanoparticle

The excitation of plasmons in small particles by fast electrons has been widely stud-
ied in the literature. Most works were developed in the framework of the classical
local dielectric theory, where the target response is given by the bulk local dielectric
function. Simple expressions for the EEL probability with the use of a local dielec-
tric function of the material, ε(ω), have been obtained, both in the non-retarded
limit (quasistatic approximation) [259] and in the fully relativistic approach [65]. In
the non-retarded case, the excitations of the particle can be labeled by the angular
momentum l, whose energy does not depend on the size of the target. Retardation
introduces a redshift of the energy of the modes as the size of the particle increases,
which is significant for particle sizes that meet ωac−1 ≥ 1, where a is the radius of
the particle and c is the velocity of light. In the case of plasmon excitations in metal-
lic particles, relativistic corrections are relevant for particles larger than ∼ 10 nm.
When considering the dispersion of the material’s response, this introduces a depen-
dence of the plasmon energies with the size of the nanoparticle target, due to the
inability of the electrons in the NP to respond to fields of atomic-range wavelengths.
This effect is thus expected to be more relevant for small particles. One way of
addressing this situation consists in describing the target response by means of a
momentum-dependent non-local dielectric function ε(k, ω). For targets bounded by
abrupt planar interfaces, Ritchie and Marusak [274] proposed the so-called Specular
Reflection Model (SRM), where some extra boundary conditions need to be imposed.

Nevertheless, the SRM presents two drawbacks. On the one hand, it is suitable
only for abrupt interfaces, so it does not account for effects related to the electron
density variation along the interface, which is relevant at grazing or for penetrating
electron trajectories. On the other hand the non-local dielectric function ε(k, ω)
describes the target’s response in term of excitations with quantum numbers given
by the energy ~ω and momentum ~k. This description is appropriate in the case
of planar surfaces, where the elemental excitations can be properly labeled by these
magnitudes, but it fails to describe the excitations of a nanoparticle, by means of the
natural momentum integer numbers l,m. In this chapter, we will also consider the
boundaries to be abrupt, but we will derive an expression for the EEL probability by
a probing electron in spherical NPs with a derivation of the expressions in real-space.

In this section, we introduce the basis of the non-retarded hydrodynamic ap-
proach [94] to study the interaction between a fast electron and a spherical metal
nanoparticle. Although originally the general model is formulated for diffuse inter-
faces, we restrict our study to abrupt interfaces. The description of the bulk response
of the corresponding infinite medium is equivalent to that of the Hydrodynamic Di-
electric Function,

ε(k, ω) = 1−
ω2
p

ω(ω + iγ)− β2k2 , (5.1)
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5.1 Hydrodynamic model applied to a spherical nanoparticle

where ωp is the frequency of the undispersed bulk plasmon, γ is the damping constant,
which represents the inverse of the plasmon lifetime, and β a constant that accounts
for the finite compressibility of the electron gas.

Following Ref. [94], we consider the excitation of an inhomogeneous electron gas
under the influence of an external field perturbation, Eext(r, ω), which follows the
dynamics equation:

β̃2(r)∇2%(r, ω) + [(ω + iγ)ω − ω̃2
p(r)]%(r, ω) +∇β̃2(r)∇%(r, ω)

+ 1
4π∇ω̃

2
p∇
∫
dr′ %(r, ω)
|r− r′| =

= ω̃2
p(r)%ext(r, ω)− 1

4π∇ω̃
2
p∇
∫
dr′ %

ext(r, ω)
|r− r′| , (5.2)

where %(r, ω) is the induced charge density, %ext(r, ω) = 1
4π∇·E

ext is the probe charge
density11, the function ω̃2

p(r) = 4πn(r) stands for the frequency of the local plasmon
at r, with n(r) the unperturbed charge density, and β̃2(r) is the local dispersion pa-
rameter that accounts for the finite compressibility of the electron gas. This equation
is an integro-differential equation, and in the general case, it is as cumbersome to
solve as its counterpart in k-space. Nevertheless, the complexity of this equation can
be seriously reduced for abrupt interfaces. Although both functions ω̃2

p(r) and β̃2(r)
are not continuous at the interface, they can be considered as the limiting case of
an extremely thin interface. This way, inside the medium, Eq. (5.2) turns out to
be the Helmholtz equation, which admits an analytical solution for simple shaped
NP targets in terms of the natural coordinates associated with the geometry of the
surface. In this situation, the interface terms in ∇ω̃2

p(r) and ∇β̃2(r) just provide the
boundary condition at the interface.

In the following lines, we apply this formalism to small spherical metallic nanopar-
ticles with abrupt boundaries. Moreover, we consider that the inner medium (metal-
lic nanoparticle) is characterized by a constant plasma frequency ωp =

√
4πn and a

constant compressibility parameter β =
√

3/5vF, where vF = (3π2n)1/2 is the Fermi
velocity of the electron gas, with n = 3/4πr3

s the unperturbed electron density, and rs
the free electron gas parameter, including a constant damping term γ. Then, we have
ω̃2
p(r) = ω2

pθ(a − r), β̃2(r) = β2θ(a − r), with θ(x) the Heaviside step function, and
Eq. (5.2) reduces to the Helmholtz equation inside the metal (outside %(r, ω) = 0),

[∇2 + µ2(ω)]%(r, ω) =
ω2
p

β2 %
ext(r, ω), (5.3)

where µ is a ω-dependent parameter defined as

µ2(ω) = 1
β2

[
ω(ω + iγ)− ω2

p

]
. (5.4)

11In this chapter EM Gaussian units and atomic units, e = ~ = me = 1 are used.
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5. HYDRODYNAMIC MODEL OF NANOPARTICLES IN EELS

On the other hand, as mentioned above, the interface terms ∇ω̃2
p(r) and ∇β̃2(r)

provide the boundary condition (BC) to obtain:

− 1
4πω

2
p

∂

∂r

∫
dr′ %(r′, ω)
| r′ − r | − β

2 ∂

∂r
%(r, ω) = 1

4πω
2
p

∂

∂r

∫
dr′ %

ext(r′, ω)
| r′ − r | , (5.5)

to be satisfied at the interface r = a. This BC is the hydrodynamic condition of
zero electron current normal to the surface [275,276], meaning that electrons moving
in the radial direction cannot exit the hard boundary and must be reflected back
towards its center.

Before addressing the calculation of the EEL probability, it is helpful to consider
the dispersion of the plasmonic modes in the absence of an external perturbation. In
such a situation, Helmholtz equation reduces to its homogeneous version,

[∇2 + µ2(ω)]%(r, ω) = 0. (5.6)

In spherical coordinates the charge density can be expressed in terms of spherical
Bessel functions of the first kind, jl(x), and spherical harmonics, Y ml (Ω), as:

%(r, ω) =
∞∑
l=0

l∑
m=−l

Alm(ω)jl[µ(ω)r]Y ml (Ω), (5.7)

where the coefficients Alm(ω) need to be obtained from the BC. The mode energies
ωln (the meaning of the number n is explained in the following lines) are obtained
from the solution of the BC [Eq. (5.5)] in absence of external perturbation, i.e.,
%ext(r, ω) = 0 [269–271],

ω2
p

2l + 1
l + 1
µ

jl+1[µ(ω)a]− β2µ(ω)j′l [µ(ω)a] = 0, (5.8)

where we have used Laplace expansion,

1
|r− r′| =

∞∑
l=0

m∑
l=−m

4π
2l + 1(−1)m

rl<
rl+1
>

Y −ml (Ω)Y ml (Ω′). (5.9)

The condition given by Eq. (5.8) shows that the dispersion does not break the de-
generation on the azimuthal number m present in the local dielectric approach [see
Eq. (4.1)]. Nevertheless, it gives multiple energies for each l, related to the ze-
roes of the spherical Bessel function of the first kind and its derivatives, labeled as
n = 0, 1, 2, 3, .... The solutions of Eq. (5.8) can be obtained numerically, and provide
all the possible plasma resonances excited at a NP of radius a and electron density
parameter rs. Nevertheless, it is instructive to distinguish two different regions in
the frequency spectrum within the solutions: ω < ωp and ω > ωp.

For ω < ωp (considering γ = 0) it is clear that µ(ω) given by Eq. (5.4) is a purely
imaginary number, as shown in Fig. 5.1(a) and the plasma oscillations are therefore
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c) Bulk plasmons - 

e) Bulk plasmons - 

d) Bulk plasmons - 

b) Surface plasmons

f)

a)

Figure 5.1: a) Real (orange) and imaginary (purple) parts of µ(ω) for γ = 0, showing the region cor-
responding to surface plasmons at ω < ωp and the region corresponding to the bulk plasmons at ω > ωp
(grey dashed line separates both regions). Size dependence of plasmonic modes in Na nanoparticles within
the hydrodynamic model. b) Surface plasmons and c)-e) bulk plasmons associated with number (c) n = 1,
(d) n = 2 and (e) n = 3. Bottom panels below b)-e) show isosurfaces for each mode, at isovalues equal to
plus/minus (red/blue) b) ten times and c-e) twice the mean absolute value of the charge density in the sphere.
The spherical NP outline is indicated in shaded gray. f) Spherical Bessel function plotted for l = 0, 1, 2, 3
and n = 1, 2, 3 showing the radial component of the charge density associated to the CBPs.
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5. HYDRODYNAMIC MODEL OF NANOPARTICLES IN EELS

attenuated. Electron collective oscillations are confined to the surface r = a, as the
spherical Bessel functions behave as exponentials for increasing imaginary arguments.
In fact, using the large argument expansion of the spherical Bessel function, x = µa�
1,

jl(x)→ 1
2
e|x|

|x|
, (5.10)

it can be proved that

ξl(ω) = ljl(x)
xj′l(x) → 0, (5.11)

and in the local limit (β → 0, incompressible fluid) the well known energies of the
LSP modes for spherical NPs are recovered:

ωl =
√

l

2l + 1ωp. (5.12)

In this regime below the plasma frequency. ω < ωp, the EM field is screened and
plasma oscillations are attenuated, i.e., there is no propagation of longitudinal plasma
waves and the charge density is confined to the surface. In contrast, above the plasma
frequency, ω > ωp, µ(ω) is real and the spherical Bessel functions are oscillatory func-
tions describing longitudinal plasma oscillations that can propagate. In the case of
finite geometries, such as a spherical nanoparticle, the longitudinal plasma oscilla-
tions are reflected back at the boundary providing stationary collective electron waves
that we refer to as confined bulk plasmons (CBPs).

Figure 5.1(b-e) shows the mode dispersion for the lowest l and n CBPs (consider-
ing γ = 0). In principle, the first eigenvalue obtained from Eq. (5.8) for each l (except
for l = 0), which we label as the n = 0 mode, corresponds to a surface plasmon, al-
though for large l the energies can be larger than ωp due to the dispersion, especially
for small nanoparticles. Fig. 5.1(b) shows the dispersion relation for surface plasmons
l = 1− 4 which scale linearly with the inverse of the radius ωl,0 ∼ a−1. The energy
of the mode has been normalized to the local LSP energies, so that it can be clearly
observed that for a� 1 nm the local LSP energies are recovered. Lower panels show
the eigenmodes charge distributions corresponding to m = l for each l. Note that
there is no surface plasmon for l = 0, as it would violate charge conservation.

The dispersion relations for the bulk plasmons (n = 1− 3) in Figs. 5.1(c-e) show
that for large nanoparticles a� 1 the energy of the modes tends to ωp, as expected,
and an inverse dispersion relation with NP size. It is helpful to consider Eq. (5.8)
for l = 0, which, taking into account that j′0(x) = −j1(x), yields j′0(µa) = 0, and
therefore,

ω2
0,n

ω2
p

= 1 + x2
0,n

(
β

a

)2
, (5.13)
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5.2 Electron energy loss probability

where x0,n is the nth positive root of j′0(x), the derivative of the 0th-order spherical
Bessel function. This is the signature of momentum quantization in the radial di-
rection [100]. Indeed, Fig. 5.1(f) shows the radial component of the eigenmodes for
l = 0, 1, 2, 3 and n = 1, 2, 3, showing the oscillation of the charge density. Christensen
et al. [95] obtained a similar condition for all l’s within a hydrodynamic model that
includes retardation by neglecting the coupling of the pressure waves to light, i.e., by
searching for radial standing wave solutions, thus neglecting the transverse compo-
nents. Moreover, that work neglects l = 0 modes which do not couple to excitation
sources that do not penetrate the nanoparticle, as they do not consider penetrating
trajectories. In our expression, all components are included for l > 0. While l = 0
bulk modes do not couple to light (plane waves), other bulk terms such as l = 1 do,
albeit their intensity is orders of magnitude weaker than their surface counterparts.

5.2 Electron energy loss probability

We have introduced the hydrodynamic model for spherical nanoparticles and pro-
vided the main ingredients to understand the underlying plasmonic mode structure.
Here we will apply this formalism to calculate the electron energy loss (EEL) probabil-
ity in small spherical metallic nanoparticles. Although this problem has been tackled
since long ago, the solutions for penetrating trajectories are limited in the literature
to averages over impact parameters [269], momentum-dependent solutions [270], for-
mal solutions without explicit expressions for the EEL probability [271], or direct
local descriptions [258,272,273]. In this section, we obtain an expression for the EEL
probability within the hydrodynamic model that explicitly depends on the impact
parameter of the electron probe and, as such, might be useful for interpretation of
state-of-the-art experiments with narrow electron beams and high spatial precision,
and therefore precise impact parameter control.

The charge density for an external electron beam with a trajectory along the
z-axis, impact parameter b and velocity v can be expressed in spherical coordinates
(see schematics in Fig. 5.2) and in frequency domain as:

%ext(r, ω) = −1
v

δ(r sin θ − b)δ(ϕ)
r sin θ eiωr cos θ/v. (5.14)

The expansion into spherical harmonics gives:

%ext(r, ω) =
∞∑
l=0

l∑
m=−l

%extlm (r, ω)Y ml (Ω), (5.15)
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5. HYDRODYNAMIC MODEL OF NANOPARTICLES IN EELS

Figure 5.2: Sketch showing the electron (blue dot) at position r = (r, θ, ϕ) (blue arrow, and shaded
orange and purple angles) with a trajectory along the z-axis defined by impact parameter b (red arrow), and
with velocity v = v ẑ (green arrow).

where

%extlm (r, ω) = −2αlm
v
√
r2 − b2

Πlm(r, b;ω), (5.16)

with

αlm =

√
2l + 1

4π
(l −m)!
(l +m)! , (5.17)

Πlm(r, b;ω) = glm(ωr/v)Pml (
√

1− b2/r2), (5.18)

and

glm(x) =
{

cos(x), if l +m is even,
i sin(x), if l +m is odd.

(5.19)

In Eq. (5.18) Pml (x) is the associated Legendre polynomial of degree l and order m.
Making use of the spherical symmetry of the problem we also expand %(r, ω) in

terms of the spherical harmonics,

%(r, ω) =
∞∑
l=0

l∑
m=0

%lm(r, ω)Y ml (Ω). (5.20)

This decomposition allows us to write the BC at r = a [Eq. (5.5)] as,

ω2
p

2l + 1
l + 1
al+2

∫ a

0
dr rl+2%lm(r, ω)− β2 ∂%lm(r, ω)

∂r

∣∣∣∣
r=a

=

=
ω2
p

2l + 1

{
− l + 1
al+2

∫ a

0
dr rl+2%extlm (r, ω) + l al−1

∫ ∞
a

dr

rl−1 %
ext
lm (r, ω)

}
. (5.21)
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We tackle the general solution of the most complex case: penetrating trajectories.
Our treatment requires separating the external potential into r > a (the electron
is outside the nanoparticle) and r < a (the probing electron inside the nanoparti-
cle). Moreover, penetrating trajectories require the solution of the inhomogeneous
Helmholtz equation (5.3). This solution can be separated into a homogeneous solu-
tion that satisfies both the inhomogeneous BC and homogeneous Helmholtz equation
(complementary solution), and a particular solution that satisfies the inhomogeneous
Helmholtz equation and homogeneous BC. Herein we will omit any ω-dependence of
the terms.

Below the particular solution is obtained by solving Helmholtz equation for the
Green’s function G(r, r′):

G(r, r′) =
∞∑
l=0

Y ml (Ω′) Y ml (Ω)Gl(r, r′), (5.22)

which satisfies,

[∇2 + µ2]G(r, r′) = δ(r, r′). (5.23)

The reduced Green’s function introduced in Eq. (5.22), Gl, satisfies the spherical
Bessel function,[

d2

dr2 + 2
r

d

dr
− l(l + 1)

r2 + µ2
]
Gl(r, r′) = 1

r2 δ(r − r
′). (5.24)

Moreover, Gl is continuous at r = r′ while its derivative has a discrete jump at
r = r′ [277]. It also fulfills the homogeneous BC at r = a,

ω2
p

2l + 1
l + 1
al+2

∫ a

0
dr rl+2Gl(r, r′)− β2 ∂Gl(r, r′)

∂r

∣∣∣∣
r=a

= 0. (5.25)

This condition holds for all l, except for l = 0, which due to the divergence theorem,
and in order to satisfy charge conservation, fulfills the following condition at the
surface,

∂G0(r, r′)
∂r

∣∣∣∣
r=a

= 1
a2 . (5.26)

After some algebra, one obtains the reduced Green’s function for each l,

Gl(r, r′) =


a(r′) jl(µr), 0 < r < r′ < a,

b(r′) jl(µr) + c(r′) yl(µr), 0 < r′ < r < a

0, a < r, r′,

(5.27)
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with,

a0(r′) = µ
[
− 1
a2µ2j1(µa) + y0(µr′)− y1(µa)

j1(µa) j0(µr′)
]
, (5.28)

b0(r′) = − 1
a2µj1(µa) −

y1(µa)
j1(µa)µj0(µr′), (5.29)

c0(r′) = µj0(µr′), (5.30)

and for l > 0,

al(r′) = µyl(µr′)−
Nl
Ml

µjl(µr′)−
1
Ml

ω2
p

2l + 1
l + 1
al+2

r′l

µ2 , (5.31)

bl(r′) = −Nl
Ml

µjl(µr′)−
1
Ml

ω2
p

2l + 1
l + 1
al+2

r′l

µ2 , (5.32)

cl(r′) = µjl(µr′), (5.33)

where,

Nl =
ω2
p

2l + 1
l + 1
µ

yl+1(µa)− β2µy′l(µa), (5.34)

Ml =
ω2
p

2l + 1
l + 1
µ

jl+1(µa)− β2µj′l(µa). (5.35)

Note that Ml is the mode’s energy expression. Once the Green’s function has been
calculated, the particular solution is obtained as:

%plm(r) =
ω2
p

β2

∫ a

0
dr′r′2Gl(r, r′)%extlm (r′). (5.36)

By, adding the complementary solution, the full solution that satisfies both the BC
in Eq. (5.21) and the inhomogeneous Helmholtz equation (5.3) is:

%lm(r) =
2ω2

p

v
αlm

{
jl(µr)

[
l + 1

(2l + 1)al+2Ml

(
1 +

ω2
p

µ2β2

)
E ilm −

l al−1

(2l + 1)Ml
Eolm

+ Nl
Ml

µ

β2 I
j
lm(b, a)− µ

β2 I
y
lm(b, a)

]
− µ

β2 Θ
(r
b
− 1
)[
yl(µr)Ijlm(b, r)

− jl(µr)Iylm(b, r)
]}
, (5.37)

where, αlm is defined by Eq. (5.17), Θ(x) is the Heaviside step function, Ml and
Nl are given by Eqs. (5.35) and (5.34) respectively, and the following integrals are
introduced:

E ilm ≡
1

al+1

∫ a

b

dr rl
Πlm(r, b)√
1− b2/r2

, (5.38)

Eolm ≡ al
∫ ∞
a

dr

rl+1
Πlm(r, b)√
1− b2/r2

, (5.39)
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and

Iflm(x1, x2) ≡
∫ x2

x1

dx
fl(µx)Πlm(x, b)√

1− b2/x2
, (5.40)

with Πlm(x, b) ≡ Πlm(x, b;ω) defined by Eq. (5.18). In the last integral fl is a
spherical Bessel function of either the first or second kind.

Once the induced charge density is known [Eqs. (5.20) and (5.37)], the induced
potential at position r can be obtained by integration:

φ(r) =
∫
V

%(r′)
|r− r′|dr

′

=
∞∑
l=0

4π
2l + 1Y

m
l (Ω)

∫ a

0
dr′ r′2

rl<
rl+1
>

%lm(r′)

=
∞∑
l=0

Y ml (Ω)φlm(r), (5.41)

where φlm(r) is the radial component of the induced potential

φlm(r) = 4π
2l + 1

∫ a

0
dr′ r′2

rl<
rl+1
>

%lm(r′). (5.42)

Finally, the energy loss experienced by the probing electron is obtained as usual:

W = 1
2π

∫ ∞
−∞

dω

∫ ∞
−∞

dz′
∂φ(r, ω)
∂z

∣∣∣∣
z=z′

e−iωz
′/v. (5.43)

This integral is calculated by parts, taking into account that, φ(x, y,±∞) → 0, to
obtain:

W = i

2πv

∫ ∞
−∞

dω

∫ ∞
−∞

dz′ω φ(r′, ω)e−iωz
′/v. (5.44)

Moreover, from the condition that both charge density and induced field are real
variables, i.e., %(r, ω) = %∗(r,−ω) and φ(r, ω) = φ∗(r,−ω), we get to:

W = 1
πv

∫ ∞
0

dω ω

∫ ∞
−∞

dz′Im
{
− φ(r′, ω)e−iωz

′/v

}
. (5.45)

Thus, the electron energy loss probability is given by:

ΓEELS(ω) = 1
πv

∫ ∞
−∞

dz′Im
{
− φ(r′, ω)e−iωz

′/v

}
. (5.46)

By taking into account the parity conditions Pml (−x) = (−1)l+mPml (x) and g∗lm(x) =
(−1)l+mglm(x), Eq. (5.46) can be further recast as:

ΓEELS(ω) = 2
πv

∞∑
l=0

αlm(−1)l+m+1
∫ ∞

0
dz′Im

{
φlm(r′, ω)Pml

(
z′

r′

)
glm(ωz′/v)

}
.

(5.47)
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In order to get furhter insight into this expression, the integral is separated into
two regions, z <

√
a2 − b2 and z >

√
a2 − b2, inside and outside the nanoparticle

respectively. This way the expressions obtained for the radial component of the
induced potential [see Eqs. (E.2) and (E.3) in App. E], are introduced to obtain,
after some algebra,

ΓEELS(ω) =
4aω2

p

πv2

∞∑
l=0

l∑
m=0

(−1)l+m(2− δm0) (l −m)!
(l +m)! Im

{
Γoo
lm + Γio,1

lm + Γio,2
lm

+ Γii,1
lm + Γii,2

lm + Γii,3
lm + Γb

lm

}
, (5.48)

where,

Γoo
lm = l jl+1(µa)

(2l + 1)µMl
[Eolm]2 (5.49)

Γio,1
lm = − 2 l jl−1(µa)

(2l + 1)µMl
E ilmEolm (5.50)

Γio,2
lm = 2l

a2µ2Ml
Ijlm(b, a)Eolm (5.51)

Γii,1
lm = (l + 1)jl−1(µa)

(2l + 1)µMl

(
1 +

ω2
p

µ2β2

)
[E ilm]2 (5.52)

Γii,2
lm = −2(l + 1)

a2µ2Ml

(
1 +

ω2
p

µ2β2

)
Ijlm(b, a)E ilm (5.53)

Γii,3
lm = −2l + 1

aµβ2

[
Nl
Ml

[Ijlm(b, a)]2 − 2
∫ a

b

dr
Πlm(r, b;ω)√

1− b2/r2
yl(µr)Ijlm(b, r)

]
(5.54)

Γb
lm = 2

aµ2β2

∫ a

b

dr

∫ r

b

dr′
r′l

rl+1
Πlm(r, b;ω)√

1− b2/r2

Πlm(r′, b;ω)√
1− b2/r′2

. (5.55)

The meaning of the subscripts labeling used in these definitions is explained below
and sketched in Fig. 5.3.

oo (out-out): the electron is outside the nanoparticle when inducing a charge density
in the NP, and the electron is also outside the nanoparticle when losing energy
due to the induced potential [sketch in Fig. 5.3(a)].

io (in-out): the electron is inside (outside) the nanoparticle when inducing a charge
density in the NP, and the electron is outside (inside) the nanoparticle when
losing energy due to the induced potential [sketches in Fig. 5.3(b,c)].

ii (in-in): the electron is inside the nanoparticle when inducing a charge density in
the NP, and the electron is also inside the nanoparticle when losing energy due
to the induced potential [sketch in Fig. 5.3(d)].
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5.2 Electron energy loss probability

Figure 5.3: Contributions adding to the total electron energy loss probability. The external charge density
%ext(r, ω) (blue solid line) creates an external potential φext(r, ω) (blue arrow) inducing a charge density
%(r, ω) (red area) in the nanoparticle, which in turn creates an induced potential φ(r, ω) (green arrow) at
the position of the external charge density %ext(r, ω) (green line). Different contributions to ΓEELS are
displayed in the different panels: a) Γoo (out-out), b) and c) Γio (out-in and in-out) and d) Γii (in-in) are
sketched.

Moreover, the last term, Γb
lm, corresponds to the direct bulk losses experienced by

the electron in an infinite lossy material.
The plots of the calculated ΓEELS in Fig. 5.4 support the interpretation of these

terms and the total loss for each l (black line). We have calculated each term of
the interaction, (in-in), (in-out/out-in) and (out-out), for nanoparticles of radii a =
1, 2 nm, axial trajectory b = 0, selecting the contributions with l = 0 and l = 2 to the
total loss (due to azimuthal symmetry only even l andm = 0, are considered since the
rest of the terms have small contributions). For l = 0 we observe in Fig. 5.4(a-b) that,
apart from the direct bulk term Γb

00 (dark green), only the in-in terms Γii,1,2,3
00 (light

green) contribute to the losses. This clearly suggests that l = 0 modes can only be
excited with trajectories penetrating the nanoparticle, as they are radial oscillations
that otherwise do not couple to outer electromagnetic fields. Moreover, we see that
no LSPs are present for l = 0, and still, a begrenzung or boundary-effect [62, 278]
occurs for confined bulk plasmons, i.e., the in-in terms contain a correction (negative
contribution) to the direct bulk term diminishing its intensity and instead of exciting
confined bulk plasmons. Another remarkable result is the blueshift of the peaks for
a = 1 nm compared to a = 2 nm due to dispersion [279].

Opposite to the previous case, in Figs. 5.4(c-d) it is observed that all terms
contribute to the excitation of the l = 2 contribution, including in-out (orange)
and out-out (red) terms. In particular, the LSP shows the contribution of all terms
except the direct bulk term. Actually Γii,3

20 does not contribute to the LSP and
could therefore be considered as a purely CBP term. It is therefore clear that the
contributions to confined bulk plasmons mainly come from the in-in terms, which
only contribute with penetrating trajectories.

For external trajectories, i.e., probes outside the particle (b > a), the right-hand
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Total -

Bulk infinite

in-in

in-out

out-out

Total - 

Bulk infinite

in-in

in-out

out-out

a)

c)

b)

d)

Figure 5.4: Decomposition of the EEL probability for impact parameter b = 0 with l = 0 for a) a = 1 nm
and b) a = 2 nm, the total contribution (black line) and the pure bulk term (dark green), in-in (light green),
in-out (orange) and out-out (red) terms. Similar decomposition with l = 2 for c) a = 1 nm and d) a = 2 nm.
Dashed vertical grey line highlights the frequency ω = ωp corresponding to the pure bulk term.

side of Helmholtz equation (5.3) is zero and the solution of the charge density is
simply given by,

%(r) =
∞∑
l=0

l∑
m=−l

Almjl(µr)Y ml (Ω), (5.56)

where jl is the lth order spherical Bessel function of the first kind, and the coefficients
Alm are calculated from the BC, Eq. (5.5), which in this case reduces to:

Alm

[
ω2
p

2l + 1
l + 1
µ

jl+1(µa)− β2µj′l(µa)
]

= 1
4πω

2
pφ

ext
lm (r)|r=a. (5.57)

Following Ferrell et al. [260], the components of the potential due to the electron
probe can be written as:

φextlm (r) = 2αlm
v(l −m)!

(
iω

|ω|

)l+m( |ω|r
v

)l
Km

(
|ω|b
v

)
, (5.58)
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where Km(x) stands for the modified Bessel function of order m.
Once the induced charge density is obtained it is straightforward to calculate the

induced potential and the energy loss probability:

ΓEELS = 4
πa2v2

∞∑
l=0

l∑
m=0

2− δm0

(l −m)!(l +m)!

(
ω

v

)2l
K2
m

(
ωb

v

)
Im
{

Ξl(ω)
}
, (5.59)

where Ξl(ω) is:

Ξl(ω) ≡ a3ω2
p

ljl+1(µa)
(2l + 1)µMl

, (5.60)

which is the equivalent to the multipolar polarizability given in the literature to de-
scribe the interaction of light with NPs [84,95,280,281], but here using a momentum
dependent ε(k, ω) dielectric framework, and integrals in momentum-space involving
this function. This result can also be obtained by using Eq. (5.48) and taking into
account that only Γoolm contributes in this case. The expression for external trajec-
tories given by Eq. (5.59) was obtained in the literature [271], and we provide it for
completeness. In the local limit β → 0, Eq. (5.59) reduces to the expression given by
Ferrell and Echenique [259] for a Drude-like dielectric function.

5.3 Impact parameter dependence

In the previous section, we have introduced a hydrodynamic framework and given a
semi-analytical expression of the EEL probability for penetrating electron trajectories
in spherical nanoparticles. In this section, we study the dependence of this EEL
probability on the probing impact parameter b. As discussed in Chapter 4, this
dependence is not properly described by the local dielectric approach. We consider
a sodium nanoparticle (rs = 2.08 Å, ωp ∼ 6.05 eV) with radius a = 1.5 nm and
damping term γ = 0.1 eV. The calculated ΓEELS for both internal (b/a < 1) and
external (b/a > 1) electron trajectories [see Fig. 5.5(a)] is represented in Fig. 5.5(b).

For external trajectories and large impact parameters (b/a ∼ 2) the surface dipo-
lar plasmon (l = 1, n = 0) dominates the spectra, as the external field created by
the electron probe that reaches the nanoparticle is very similar to a plane wave.
Nevertheless, as the impact parameter decreases, higher-order modes are excited, es-
pecially at grazing trajectories (b/a ∼ 1), as the external perturbing field that reaches
the nanoparticle no longer resembles a plane wave. Compared to the local dielectric
description, the higher order modes are more spread in energy, and they are not
bounded by the surface plasmon energy ωS = ωp/

√
2 [see Fig. 5.5(b)]. Moreover, no

bulk plasmon excitation is observed at first sight for external trajectories.
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a) b)

Figure 5.5: a) Spherical Na nanoparticle (rs = 2.08 Å, ωp ∼ 6.05 eV) with radius a = 1.5 nm
targeted by electron beams with impact parameter b and velocity v (Ek = 100 keV). b) Electron energy loss
probability, ΓEELS, as a function of the normalized impact parameter b/a for such as nanoparticle calculated
using the hydrodynamic model. Straight line highlights the grazing trajectories (b = a) and orange and
green dashed lines the plasma frequency ωp and the surface plasmon frequency ωsp = ωp/

√
2.

The spectra for penetrating trajectories show greater dependence on the impact
parameter. For instance, the surface dipolar mode (l = 1, n = 0) is the main mode
excited for trajectories in the outer half of the NP (0.5 < b/a < 1), and it fades away
for trajectories in the inner half (b/a < 0.5). As in the local description, this decrease
in intensity for decreasing impact parameters is observed for all odd l modes, not
only for the dipolar one. This is expected, as for axial trajectories (b/a = 0), small
nanoparticles, and fast electrons (ωa/v � π/2) even l modes dominate the spectrum,
as described in Chapter 4 and summarized in Fig. 4.2.

Regarding the bulk plasmon, close to 6 eV, there are two remarkable trends dif-
ferent from the EEL spectra obtained for the local model [Fig. 4.7(d)]. First, the bulk
plasmon peak does not emerge immediately for b = a, but for impact parameters close
to b ∼ 3a/4. This is also observed in ab initio calculations for non-spherical particles
and also with non-local models in planar interfaces [282]. Second, there is an apparent
blueshift of the bulk peak for increasing impact parameters. This behavior is further
illustrated in the spectra of specific impact parameters (b/a = 0, 0.2, 0.4, 0.6, 0.8, 1)
presented in Fig. 5.6, where the total EEL probability is plotted as a black line, and
the contribution of the l modes in different colors. The domination of even l modes
over the odd l modes for an axial trajectory is clear from Fig. 5.6(a) and the steady
activation of the odd l modes as the impact parameter increases can be traced in Figs.
5.6(b-f), which happens both for surface and bulk modes. Moreover, these results
show that the apparent blueshift of the bulk plasmon is due to the excitation of sev-
eral confined bulk plasmons (CBPs) that are too close spectrally to be distinguished,
and whose excitation depends on the impact parameter in a similar way as in the case
of LSPs. Furthermore, the intensity of these CBP peaks also decreases for increasing
impact parameters, becoming almost negligible for b/a > 0.8. This means that the
bulk plasmon starts to be excited for impact parameters at a certain distance from
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a) b)

d)

f)

c)

e)

Figure 5.6: Electron energy loss probability (black line) and the contribution from l = 0 − 10 modes
(all m are added for each l) to the total energy loss probability for normalized impact parameters b/a =
0, 0.2, 0.4, 0.6, 0.8, 1.

the surface, contrary to the result in the local dielectric description, which could lead
to an underestimation of the NPs size if the bulk plasmon loss is taken as a reference
to measure the size of the NP. To highlight the impact parameter dependence of the
activation of the bulk plasmon, in Fig. 5.7(a) we represent the intensity of the main
CBP peak (blue line) as a function of impact parameter normalized to the maximum
intensity (obtained for b/a = 0), together with the blueshift of the peak energy. A
similar behavior is observed for the full-width half maxima (FWHM) of the peak
in Fig. 5.6(b), which increases for increasing impact parameters. Such behavior has
been reported for Al disks in the literature [86].

To get further insight into the symmetry dependence of the CBP excitation, we
direct our attention towards the induced charge distribution at the energy of the
plasmonic resonance. The isosurfaces corresponding to such charge distributions
are plotted in Fig. 5.8(a). In general, we observe that the electron density (blue) is
expelled from the trajectory of the electron beam (black line) and that positive charge
density is localized around it. Moreover, there is some overlapping of the surface and
the bulk modes, clearly observed for b/a = 0.4 and b/a = 0.6. The structure of
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Figure 5.7: a) Normalized (to the maximum value of b = 0) CBP intensities and normalized energies
plotted as a function of the position of the electron beam on a a = 1.5 nm Na sphere. b) Normalized CBP
intensities and FWHM plotted as a function of the position of the electron beam for the same structure.

the induced charge density inside the nanoparticle is better visualized by removing
a hemisphere, as in Fig. 5.8(b), or by simply plotting the induced charge density
in 2D maps such as in Figs. 5.8(c-d). The charge density for the axial trajectory
b/a = 0 shows perfect azimuthal symmetry, as the main excited mode is l = 0, n = 1,
although there is some contribution from l = 2, n = 1 [see Fig. 5.6(a)]. This symmetry
is broken as the impact parameter increases and odd l modes are excited, as observed
for b/a = 0.2. For instance, l = 1, n = 1 has the largest contribution for b/a = 0.4
[see Fig. 5.6(c)], while for b/a = 0.6 many modes contribute with similar intensity
[see Fig. 5.6(d)].

CBP modes should in principle be less sensitive to changes at the surface than
LSPs. Nevertheless, spill-out effects, which are sensitive to the embedding media, can
also affect the energy of the bulk modes. For instance, sodium nanostructures are
known to sustain large electron spill-out effects, not included in our approach, which
would increase the effective size of the nanoparticle, and as such, decrease the energy
of the modes. Anyway, it is unclear if they would affect all modes equally, which could
lead to larger energy differences between the different modes making them easier to
detect individually. Certainly, NP size affects the dispersion of the modes and as
such, for large NPs the different modes should be difficult to distinguish as they
would get closer in energy. Nevertheless, due to the interplay between the velocity of
the electron beam and the size of the nanoparticle, one can expect the energy of the
bulk plasmon to vary for increasing NP sizes depending on the prevalence of odd or
even l modes. We explore in the next section the role played by the electron probe
velocity in the activation of CBPs.
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5.4 Electron velocity dependence

Figure 5.8: a) Isosurfaces calculated for the induced charge density (red positive, blue negative, isovalue
taken as the mean value of the absolute value of the induced charge density) corresponding to the main CBPs
excited for normalized impact parameters b/a = 0, 0.2, 0.4, 0.6. b) Half of the isosurface has been removed to
visualize the induced charge density in the interior of the nanoparticle. c) and d) 2D induced charge density
maps in the c) xz-plane and d) xy-plane for the corresponding normalized impact parameters. These cases
are marked as crosses in Fig. 5.7.

5.4 Electron velocity dependence

It is known that within the local description the excitation of LSPs by external
electrons depends on the ωa/v ratio [256], at least for axial trajectories. In principle,
the excitation of the CBPs should also depend on the velocity of the probe. Here we
focus on the axial trajectory b = 0 and check the influence of the probing electron’s
energy on the EEL spectrum.

Direct inspection of Eqs. (5.48) - (5.55) suggests that the excitation of the modes
mainly depends on the integrals defined by Eqs. (5.38), (5.39) and (5.40), which define
the coupling to the external source. In fact, for axial trajectories, these integrals
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Figure 5.9: a) Normalized electron energy loss probability, ΓEELS × v2, as a function of reduced radius
ã = 2ωpa/vπ. Odd l modes (green circles), even l modes (red circles), and the main CBP peak (black circles)
are highlighted. b)-f) Electron energy loss probability (black line) and contributions from l = 0− 10 modes
(all m are added for each l) to the total energy loss probability for reduced radii ã = 0.1, 0.5, 1, 1.5, 1.9.
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5.4 Electron velocity dependence

reduce to

E il0 = 1
al+1

∫ a

0
dr rlgl0(ωr/v), (5.61)

Eol0 = al
∫ ∞
a

dr

rl+1 gl0(ωr/v), (5.62)

Ijl0(0, a) =
∫ a

0
dr jl(µr)gl0(ωr/v), (5.63)

for m = 0, and they are zero for m 6= 0. This gives us a hint about the relationship
between ωa/v and the excitation of the modes: for ωa/v ∼ 0, i.e., for small nanopar-
ticles (a < 5 nm) and fast electrons (Ek ∼ 100keV), even l’s dominate the spectra
as

lim
x→0

gl0(x) ∼

 lim
x→0

sin(x) ∼ 0, if l odd,

lim
x→0

cos(x) ∼ 1, if l even.
(5.64)

This means that the phase of the charge density is similar at the entry and exit points
of the electron beam. We further analyze the dependence on the electron velocity v
by keeping the size of the nanoparticle a untouched, so that the ratio between even
and odd l modes changes due to dispersion effects without modifying their energy.

In Fig. 5.9(a) the EEL probability is plotted as a function of reduced radius
ã = 2ωpa/vπ. The EEL probability has been multiplied by the square of the velocity
in order to normalize the intensity, and the modes are labeled as (l, n). For small
radii, ã ∼ 0.1 (large v, Ek ∼ keV) the LSP region of the spectra is dominated by
even l modes (red circles), and the main CBP peak (black circles) corresponds to the
(0, 1) mode, as expected from the discussion in Sec. 5.3. For increasing ã (decreasing
v) well-defined peaks emerge in the LSP region of the spectra due to the activation
of odd l modes (green circles). In this sense, the maximum intensity for each mode is
approximately given by 2aωlv−1 ' uπ (u having the same parity as l). The frequency
involved in this expression is the one corresponding to each mode ωl, which due to
dispersion can notably deviate from ωl,local =

√
l/(2l + 1)ωp for LSPs, and therefore

the velocity for which a maximum intensity can be achieved is different for each
mode, i.e., different values of ã, as shown in Fig. 5.9(a). This transition in the parity
of the dominant modes is clearly observed for LSPs, with a complete domination of
odd l modes for ã = 1. Additionally, new peaks corresponding to CBPs emerge at
higher energies, although the main bulk peak does not disappear. In fact one can
observe a blueshift of ∼ 0.1 eV for this peak from ã = 0.1 to ã = 1.9.

In order to understand this behavior and the underlying structure of the EEL
spectra, Figs. 5.9(b-f) display the contributions of each l mode to the total energy
loss probability for ã = 0.1, 0.5, 1, 1.5, 1.9. These plots show that for small ã mainly
even l CBPmodes contribute to the spectra, as expected from the argument explained
above, and that for increasing ã odd l CBP modes are activated. Nevertheless, due
to the large overlapping between the modes for ã > 1, the main peak is a mixture
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5. HYDRODYNAMIC MODEL OF NANOPARTICLES IN EELS

Figure 5.10: a) Energy of the main bulk plasmon peak showing a blueshift for increasing reduced radius
2ωpa/(vπ) ofr a Na nanoparticle of radius a = 1.5 nm. b) Isosurfaces calculated for the induced charge
density (red positive, blue negative) corresponding to the main CBPs excited for reduced radii 2ωpa/(vπ) =
0.1, 0.5, 1, 1.5, 1.9 marked as crosses in (a). c) Half of the isosurface has been removed to visualize the
induced charge density inside the nanoparticle. d) 2D induced charge density maps in the xz-plane.

of modes (0,1) and (1,1), which results in an effective blueshift, as shown in Fig.
5.10(a).

The transition from the pure (0,1) mode to a mixture of (0,1) and (1,1) modes
is further illustrated in Fig. 5.10(b-d), where we have plotted the induced charge
density distributions corresponding to ã = 0.1, 0.5, 1, 1.5, 1.9.

The results presented in the previous section along with those presented in this
section illustrate the possibility to address CBP excitations in small metallic NPs as
probed by electron beams within a HDM. Interestingly, the high symmetry of the
geometry allows for semi-analytical expressions that ease a straightforward charac-
terization of the modes and allows to gain insight into the interplay between different
parameters, such as NP size, impact parameter, and electron beam energy, on the
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5.4 Electron velocity dependence

EEL spectra. Thus, having such a tool at hand, in the next section we will make
use of the HDM to gain insight into the CBPs observed for the ab initio atomistic
simulations shown in Chapter 4.

5.5 CBPs within ab initio atomistic TDDFT

Taking advantage of the HDM analysis presented in this chapter for the interaction
of fast electron beams with an electron gas confined to a sphere, we can get further
insights into the nature of the CBPs by comparing these results with those from the
ab initio atomistic simulations shown in Chapter 4. Such comparison is illustrated
in Fig. 5.11. To observe the plasmonic excitations inside the NP, we remove a chunk
(a quarter) of the isosurfaces corresponding to the modes of Fig. 4.8(a) for b = 0 nm
and b = 0.5 nm. In this way, the structure of the charge density inside the NP will
be more clearly unveiled. The four CBP modes discussed in the previous chapter
have a rich charge distribution. To analyze the CBP charge distributions we perform
a parallel calculation of bulk modes within the HDM as described in Sec. 5.1 which
serves now as a reference. The mode structure of the atomistic Na cluster is apparent
in Fig. 5.11(a,b) for the nanocluster (TDDFT calculations) and in Figs. 5.11(c,d) for
the spherical NP (HDM), where the cuts of the calculated charge distribution at the
planes xy, xz and yz are shown to help for the interpretation of the data.

As described in Secs. 5.2 and 5.3, the HDM provides semi-analytical expressions
of the induced charge density for spherical nanoparticles expanded in spherical har-
monics Y lm(Ω). The energy of the LSP (for ω < ωp) and CBP modes (for ω > ωp),
is also addressed within the HDM, where ωp is the plasma frequency of the metal
considered. This framework offers a clear and simple picture to identify the CBPs of
the nanocluster studied in Chapter 4. The energies and charge distributions of the
bulk modes of a spherical Na nanoparticle (radius a =1.85 nm) are obtained from
Eqs. (5.7) and (5.8), and then compared with the TDDFT results for the nanoclus-
ter studied in Chapter 4. A bunch of modes is obtained for ω > ωp, for given (l,m)
angular and azimuthal degrees of freedom of the charge distributions corresponding
to radial oscillations of the charge density with a different number of nodes. The
HDM eigenmodes, labeled as (l,m, n) that best match the TDDFT results of Fig.
5.11(a,b) are displayed in Fig. 5.11(c,d). From this comparison we identify mode B1
as the HDM (l = 0, m = 0, n = 1) eigenmode, describing a breathing mode with an
angular monopolar distribution and one radial node. Mode B2 is identified as the
(l = 1, m = 1, n = 1) HDM eigenmode, i.e., a dipolar CBP mode with one radial
node. Mode B3 corresponds to the (l = 0, m = 0, n = 2) HDM eigenmode, which
is an angular monopolar CBP with two radial nodes. Last, mode B4 is identified as
the (l = 1, m = 1, n = 2) HDM eigenmode, a dipolar CBP with two radial nodes.

Notice that for the atomistic cluster, shown in Fig. 5.11(a-c) the energy shown
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TDDFT (induced charge density)
a)
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Hydrodynamic model (CBP modes)
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Figure 5.11: Comparison of bulk modes within TDDFT calculations and within the HDM. a) Isosurfaces
of the charge density (with a quarter NP removed) for the different bulk modes excited for impact parameters
b = 0 nm and b = 0.5 nm (EEL spectra in Fig. 4.6), and b) 2D charge density maps at the xy-, xz- and
yz-planes. c) Isosurfaces of the eigenmodes in the absence of any perturbation, l = 0, n = 1, m = 0; l = 0,
n = 2, m = 0; l = 1, n = 1, m = 1; and l = 1, n = 2, m = 1, obtained within the HDM for a spherical
NP, and d) their corresponding charge distributions at the xy-, xz- and yz-planes.
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5.5 Discussion and Summary

corresponds to the position of the spectral peak in Fig. 4.6(a), not to the energy of
a particular mode (the charge density distributions are a superposition of different
modes). In particular, the surface charge distribution of mode B3 represented in Fig.
4.8(a) shows a pattern closer to a quadrupolar distribution (l = 2, m = 0, n = 1),
and thus contributions from that mode are probably present in the TDDFT results.
In contrast, in the results of the HDM densities only the actual contributions of
the pure individual modes are represented. Moreover, there is a general blueshift
of the HDM modes with respect to the atomistic TDDFT resonances, which varies
among different modes (ωHDM

010 − ωTDDFT
B1 = 0.59 eV, ωHDM

111 − ωTDDFT
B2 = 0.38 eV,

ωHDM
020 − ωTDDFT

B3 = 0.11 eV, ωHDM
121 − ωTDDFT

B4 = 0.11 eV) and is more dramatic for
the lowest B1 mode.

This large shift between CBP energies obtained for HDM and TDDFT is in part
a consequence of the fundamental differences between both models: (i) on the one
side, the HDM is a hard boundary closed box model for which the mode energies
are systematically blueshift with decreasing NP size [84, 87, 96, 283, 284]; (ii) on the
other hand, within TDDFT the plasmon modes are observed to redshift for alkali
metals such as Na for decreasing NP sizes due to the spill-out of electrons [32, 93],
an effect not included in the HDM implemented here. Furthermore, although the
HDM describes the confinement of the electron charge collective oscillations, both
models consider different NP shapes, which may increase the energy mismatch of the
plasmons, especially for the lowest order modes.

Moreover, the wake of the probing electron path through the nanoparticle is
clearly observed in the TDDFT charge distribution maps, distorting the symmetry
of the mode patterns with respect to those within the HDM. On the other hand,
the excitation of the CBPs shows certain dependence on the orientation of the NP,
although it is not as critical as for the LSPs. We have focused on a particular type
of trajectory (facet) in this section, but similar results are obtained for different sets
of trajectories (edge and vertex). Taking into account all these differences one can
conclude that, albeit the HDM approach gives only qualitative values, it is a very
useful tool to identify the symmetries of the CBPs obtained in the full quantum
atomistic calculations.

5.6 Discussion and Summary

By using a hydrodynamic framework that neglects spill-out effects but incorporates
dispersion effects, we have obtained an analytical expression for the mode disper-
sion in hard-bounded spherical nanoparticles, which showed two fundamental sets
of modes: LSPs and CBPs. Using this approach we have derived an expression of
the energy loss probability for both penetrating and external electron trajectories in
spherical nanoparticles and applied this approach to sodium nanoparticles.
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We have calculated and analyzed the impact parameter dependence of the EEL
probability spectra. The results show the sensitivity of CBPs to the impact parameter
of the incoming electron beam trajectory, with an effective blueshift of the bulk
peak for increasing impact parameters due to the excitation of higher-order CBPs
for penetrating trajectories close to the NP’s surface, as experimentally observed in
Al disks [86]. Moreover, we have studied the dependence of the EEL spectra on
the electron beam velocity/energy, showing the relationship between the NP’s size,
mode energy, and velocity. A comparison between the CBPs obtained within ab
initio TDDFT and the HDM yields the characterization of the excited CBPs within
TDDFT and their dependence on the impact parameter. Shifts already observed for
different impact parameters in experiments [86,103] are captured nicely within these
models.

The BP peak in Al has recently been exploited to measure temperature in an ac-
tive microelectronic device on the nanometer length scale [285], which emphasizes the
importance of a full understanding of CBPs nature and excitation in nanostructures.

The HDM introduced in this chapter also provides a physical picture of the be-
grenzung effect for the CBPs. Moreover, the HDM can be extended to other metals
such as silver, by including the d-band electrons as a background permittivity ε∞, in
a similar way to the local response approximation.

All in all, the HDM allows us to identify and analyze special CBPs in extremely
small metallic nanoclusters, thus it serves as a very useful and adequate tool to
explore atomic-scale nanoplasmonics.
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Conclusions and outlook

T he present thesis addresses theoretically the role of atomic-scale features in the
plasmonic response of NPs as probed by light and swift electrons, exploring the

limits of light confinement. For this purpose, we have calculated the optical and
electron energy loss spectra of such plasmonic nanostructures within atomistic ab
initio and classical electrodynamics frameworks, in order to address the accuracy and
limitations of the latter. After a brief introduction to the field of nanoplasmonics, and
to the different theoretical approaches and numerical tools used in our calculations
(Chapter 1), we have addressed the optical response of plasmonic nanostructures
in the first part (Chapters 2 and 3) and the signatures of atomistic features and
electron confinement in Na nanoparticles in the second part (Chapters 3 and 4). We
now summarize our results together with some of the possible future directions:

• In Chapter 2 we described the optical response of Na clusters composed of 380
atoms and nanogaps as canonical systems that contain atomic-scale features,
with special focus on the extreme subnanometric localization of light associated
with them, within three different models to describe the atomic-scale bound-
aries: i) an atomistic ab initio quantum model based on TDDFT, ii) an atom-
istic classical model based on the DDA, and iii) a continuous classical model
based on the BEM. We observed that the presence of such atomistic features
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allows for localizing and confining the near field down to subnanometric dimen-
sions, well below the underlying plasmonic background, going therefore beyond
nanocavities and thus reaching the realm of picocavities. The extra localization
of the EM field is identified as a non-resonant atomic-scale lightning rod effect
enhancing the plasmon-driven near field. Based on this study a simplified local
model is proposed to address this effect. The good match as obtained from
the full atomistic TDDFT results and the classical BEM results to address
the optical response and light confinement on the nanogaps between two Na
clusters in the non-tunneling regime allows for the use of standard methods of
electrodynamics approaches to address this challenging regime.

• In Chapter 3 we discussed the emergence of spectral flares in time-dependent
molecular SERS experiments performed in Au NPoM plasmonic structures.
We linked the appearance of these spectral flares to dynamical local changes in
the metallic structure of the NP that temporarily produce larger field enhance-
ments within the metal, producing a larger field in it and therefore a temporary
increase in ERS emission, which would be observed as flares of the background
signal in SERS. We propose an effective local plasma frequency model to ad-
dress the influence of such structural inhomogeneities on the field penetration
into the metal, and consequently on ERS emission. Moreover, this effective
model provides us with a qualitative framework to understand the patterns
experimentally observed for spectral flares, although further sophistication of
theoretical methods might be needed to fully unveil the underlying microscopic
origin of the inhomogeneities. Thus, this model could be considered as an initial
stepping stone in the path to a more sophisticated theory that fully explains
the spectral flares in SERS spectra.

The second part of this thesis is devoted to the plasmonic excitations induced by
electron probes in small nanoparticles such as the canonical Na cluster studied in
Chapter 2.

• In Chapter 4 we explored the influence of atomistic features of nanometer-scale
Na atomistic clusters on the EEL spectra within an atomistic ab initio TDDFT
framework, which naturally includes the effects related to the quantum nature
of electrons. We expose the different plasmonic response of these atomistic
NPs as compared to perfect spherical NPs, and unveil the effects that the
orientation and impact parameter of the electron beam have on the low energy
EEL spectra associated with the different nature of LSP and CBP excitations
in such atomistic NPs showing crystallographic facets. In order to gain insight
into the influence of the NP’s atomistic shape on the EEL spectra, we use two
classical dielectric models of the NP, adapted to the icosahedral shape of the
atomistic distribution and the electronic landscape of the nanocluster, showing
that classical electrodynamics frameworks can accurately capture the influence
of atomic-scale features in NPs on the LSP excitations by electron beams if
an appropriate NP shape is considered. Nevertheless, we also conclude that
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classical continuous models are not able to reproduce at the same level the
spectral features associated with the CBP excitations provided by the TDDFT
calculations for the electron trajectories penetrating the NPs.

• In order to gain insight into the physical description of these electronic exci-
tations we explored a non-local model of the electron gas that describes these
collective excitations. Chapter 5 focused on a hydrodynamic model to describe
the interaction of swift electrons and small spherical metallic NPs with abrupt
boundaries. Within this framework, we obtained a general semi-analytical ex-
pression for the EEL probability valid also for penetrating trajectories. Al-
though non-local effects in the optical response of metallic NPs have been ad-
dressed in the literature, less attention has been paid to these effects in the
interaction with electrons. We paid special attention to the role of confinement
in such small NPs, which gives rise to longitudinal standing plasma waves along
the radial direction of the NPs, appearing as additional peaks in the spectrum
above the bulk plasmon energy. We characterized their dependence with the
electron probe impact parameter, demonstrating that their excitation obeys
similar symmetry arguments to those ruling the excitation of LSPs in spherical
NPs. In this regard, we also explored the influence of the electron beam veloc-
ity on the excitation of CBPs, which supported the aforementioned symmetry
arguments. The semi-analytical expression obtained for the EEL probability al-
lowed us to characterize the CBPs excited within an atomistic ab initio TDDFT
model used in Chapter 4, proving to be a useful tool to explore atomic-scale
nanoplasmonics.

Nanoplasmonics at the atomic scale has plenty to offer and opens a wide range
of opportunities for future research and applications in extreme nanophotonics. The
topics discussed in this thesis and the results obtained might serve as milestones on
the way to uncover novel physical and chemical phenomena at the subnanometric
scale as well as to apply those processes into the development of new devices.
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A Near field of an oblate
spheroidal protrusion

The expression to address the atomic-scale lightning rod effect given in Chapter 2
is obtained by considering the atomic bump to be an oblate spheroid. Here we
calculate the field enhancement proceeding in a similar fashion as in Ref. [286] where
it is calculated for prolate spheroids. We employ the oblate spheroidal coordinates
(ξ, η, ϕ), which are defined as:

x = d
√

(1 + ξ2)(1− η2) cos(ϕ), (A.1)

y = d
√

(1 + ξ2)(1− η2) sin(ϕ), (A.2)
z = d ξ η, (A.3)

where the coordinate η is restricted by 0 ≤ ξ <∞, and η is restricted by −1 ≤ η < 1,
and d = b2 − a2 (a and b are the equatorial and polar radii, respectively, plotted in
Figure 4(f)). Solving Poisson’s equation, the potential is given by:

φ =
{
AP 0

1 (η)P 0
1 (iξ), ξ < ξ0,

B P 0
1 (η)Q0

1(iξ)− Ebpd ξ η, ξ > ξ0,

=
{
iA η ξ, ξ < ξ0,

B η Q0
1(iξ)− Ebpd ξ η, ξ > ξ0,

(A.4)
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A. Nearfield of an oblate spheroidal protrusion

where,

A = iEbpd

(
1− Q0

1(iξ0)(ε− 1)ξ0
εQ0

1(iξ0)− iξ0Q0′
1 (iξ0)

)
,

B = Ebpd(ε− 1)ξ0
εQ0

1(iξ0)− iξ0Q0′
1 (iξ0) .

P 0
1 (x) and Q0

1(x) are the first- and second-kind Legendre functions, ξ0 = a√
a2−b2 ,

and ε is the dielectric function of the material inside the spheroid. The field along
the z-axis, x = 0, y = 0, outside the spheroid is given by:

E =
(

1− (ε− 1)iξ0Q0′
1 (iξ)

εQ0
1(iξ0)− iξ0Q0′

1 (iξ0)

)
Ebp. (A.5)

Considering the spheroidal bump to be metallic for the studied wavelengths, thus
ε << 1, we can approximate the field enhancement at z = a (ξ = ξ0) to be:

E

Ebp
= 1− iξ0Q

0′
1 (iξ0)

Q0
1(iξ0) , (A.6)

where the second-kind Legendre functions are defined as [287]:

Q0
1(iξ) = −1 + iξatanh

(
1
iξ

)
, (A.7)

Q0′
1 (iξ) = atanh

(
1
iξ

)
+ iξ

1 + ξ2 . (A.8)

Using these definitions, after some algebra, we reach the following expression:

E

Ebp
= −1

(1 + ξ2
0)
[
− 1 + iξ0 atanh

(
1
iξ0

)] , (A.9)

which can be simplified to the expression:

E

Ebp
= sin2 t

1− t
tan t

, (A.10)

using atanh(z) = 1
i atan(iz), and a/b = cos t, [ξ0 = 1/ tan t].
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B Flares with laser + white
light illumination

To investigate what happens during flares, in addition to laser excitation the system
is simultaneously irradiated with broadband incoherent white-light and the `1 mode
peak observed in real time from the elastic scattering (Fig. B.1). A typical flare
event recorded in this way is shown in Fig. B.1(a). The higher-wavelength Raman
modes of the BPT spacer molecule are visible as well as the tails of the flare events,
giving the time of occurrence. The `1 mode (`1) is also observed, which matches
the spectrum measured on the dark-field spectrometer at the start of the experiment
(dashed red line). The `1 mode stays almost unperturbed before and after the flare
(dashed grey line shows average value), however when a flare happens there is a small
but instantaneous redshift of the `1 mode and an overall increase in the intensity,
before returning to the initial position and intensity of the mode. Redshifts to the `1
at the exact time of the flare event evidence structural changes in the NPoM that,
nevertheless, are reversible (opposed to processes that cause permanent damage),
which suggest metastable changes, or that they are fleeting in the vicinity of the
plasmonic hot-spot. Laser irradiation without white light shows no plasmonic `1
mode in Fig. B.1(b), as expected. On the other hand, illumination with white-light
but no laser irradiation [Fig. B.1(c)] shows stable `1 modes and no flares.

165



Figure B.1: a) When the system is illuminated with both incoherent white light and 633 nm laser, both
`1 mode (`1) and flare modes can be observed. The left panel shows the flare fit. b) Illumination with laser
only enables observation of flare modes, but no coupled mode is visible (red dashed line shows `1 mode
measured with the dark-field spectrometer, measured before kinetic series). c) Conversely when illuminating
solely with white light, only the `1 mode is visible. Experimental measurements from Cloudy Carnegie at
Cambridge University. Figure adapted from Ref. [219].
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C Model for the increase in
SERS background

For the nanogap without any change in plasma frequency ωp, at the metal-insulator
interface (z = 0) we have (omitting reference to the component ⊥ in the notation),

εm(ω0
p)E0

m = εgEg ⇒ η(ω0
p) =

∣∣∣∣E0
m
Eg

∣∣∣∣ =
∣∣∣∣ εg
εm(ω0

p)

∣∣∣∣. (C.1)

The field inside the metal is thus given by:

E0
m(z) = Egη(ω0

p)e−z/δ
0
, (C.2)

where δ0 is the skin depth of the field within the metal. The ERS is proportional to
the the 4th power of the field inside the metal. If we integrate the field for a cylinder
of radius a, assuming the field to be invariant in the direction parallel to the gap

I0
fl ∝

∫ 2π

0
dϕ

∫ a

0
r dr

∫ ∞
0

dz|E0
m(z)|4

∝ πa2|Eg|4[η(ω0
p)]4

∫ ∞
0

dz e−4z/δ0
(C.3)

∝ π

4 a
2|Eg|4[η(ω0

p)]4δ0. (C.4)
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C. Model for the increase in the SERS background

Now, if we calculate the same for the patch, at the metal-insulator interface we
have,

εm(ωp)Em(0) = εgE
′
g ⇒ η(ωp) =

∣∣∣∣Em(0)
E′g

∣∣∣∣ =
∣∣∣∣ εg
εm(ωp)

∣∣∣∣. (C.5)

The field inside the patch is therefore,

Em(z) = E′gη(ωp)e−z/δ. (C.6)

At the metal-metal interface (ωp - ω0
p interface), at z = c

εm(ωp)Em(c) = εm(ω0
p)E0

m(c)⇒ η′(ωp) =
∣∣∣∣E0

m(c)
Em(c)

∣∣∣∣ =
∣∣∣∣εm(ωp)
εm(ω0

p)

∣∣∣∣ (C.7)

and the field inside the metal is thus:

E0
m(z) = Em(c)η′(ωp)e−(z−c)/δ0

= E′gη(ωp)η′(ωp)e−c/(δe−(z−c)/δ0

= E′gη(ωp)η′(ωp)ec
δ−δ0

δδ0 e−z/δ
0
. (C.8)

Again, integrating over a cylinder of radius a we obtain,

Ifl ∝
π

4 a
2|E′g|4[η(ωp)]4

{
δ[1− e−4c/δ] + [η′(ωp)]4e4c δ−δ

0

δδ0 δ0e
−4c/δ0

}
∝ π

4 a
2|E′g|4[η(ωp)]4δ

{
[1− e−4c/δ] + [η′(ωp)]5e−4c/δ

}
. (C.9)

where we have used δ ∝ 1/εm in the last line. Considering that δ ∼ 5 nm for Au at
optical frequencies, we can neglect the exponentials for c ∼ δ/5 ∼ 1 nm, and finally,

Ifl ∝
π

4 a
2δ|E′g|4[η(ωp)]4.

If we assume that the Poynting is conserved for MIM plasmons propagating in
the gap, |Eg|2k‖ is conserved which leads to field enhancements within the dielectric
material at the center of the facet of Eg ∝

√
e. If we now consider the whole facet,

the increase in the ERS background due to a defect of reduced ωp is given by,

Ifl
Ibgd

=
a2 1

e′ (e
′
√
e′)4 + [(w2 )2 − a2] + 1

e (e
√
e′)4

(w2 )2 1
e (e
√
e)4

=
a2e′5 + [(w2 )2 − a2] + e3e′2

(w2 )2e5 , (C.10)

where e ≡ e(ωp) and e′ ≡ e(ωp − ∆ωp). Taking into account that e′3 � e3 we can
neglect the second term and only take into account the ERS coming from the region
with reduced ωp, which leaves,

Ifl
Ibgd

=
(

2a
w

)2
e

e′

(
e′
√
e′

e
√
e

)4
. (C.11)
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D Effective plasma model for
antenna mode shift

Here we adopt quantum mechanical notation to calculate the first-order correction
given by a perturbation method for a Ĥ = Ĥ0 + λV̂ , where V̂ is the perturbation
and λ a small parameter. The unperturbed Hamiltonian gives,

Ĥ0 |n(0)〉 = E(0)
n |n(0)〉 . (D.1)

The first-order correction to the energy is given by

E(1)
n = 〈n(0)|V̂ |n(0)〉 . (D.2)

The MIM dispersion relation tells us that this energy is proportional to the plasma
frequency ωp for fixed facet widths w. We will assume that for a finite MIM structure
the energy of the lowest mode is given by

E
(0)
1 = ωC. (D.3)

We will also consider the potential that holds the modes confined to the cavity is
proportional to the local plasma frequency V (r) ∝ ωp(r), which for the unperturbed
cavity is ωp(r) = ω0

p, and for the perturbed cavity ωp(r) = ω0
p − Θ(a − r)∆ωp
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D. Analytical model for coupled mode shift

Therefore, the frequency shift of the perturbation is given by

− δλ
λC

= δω

ωC
= E

(1)
1

E
(0)
1

= 1
2

∫ w/2
0 r dr|ψ(r)|2[−Θ(a− r)∆ωp]∫ w/2

0 r dr|ψ(r)|2ω0
p

= −1
2

∆ωp
ω0
p

∫ a
0 r drI(r)∫ w/2

0 r drI(r)
, (D.4)

where the prefactor of a half comes from our placement of the perturbed patch on
only one metal surface of the MIM cavity. We now can use the Gaussian intensity
distribution of the lowest mode, with a full width at half maximum (FWHM):

∆x =
√

2Rd/εg. (D.5)

Therefore, if ∆x = FWHM, we have

I(r) ∼ e−4 ln 2 r2
(∆x)2 . (D.6)

Therefore

δλ

λC
= 1

2
∆ωp
ω0
p

∫ a
0 r dr exp

{
− 4 ln 2 r2

(∆x)2

}
∫ w/2

0 r dr exp
{
− 4 ln 2 r2

(∆x)2

} (D.7)

= 1
2

∆ωp
ω0
p

1− exp
{
− 4 ln 2a

2εg
2Rd

}
1− exp

{
− 4 ln 2w

2εg
8Rd

} (D.8)

∼ 1
2

∆ωp
ω0
p

{
1− exp

(
− 4 ln 2a

2εg
2Rd

)}
. (D.9)
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E Induced potential within
the Hydrodynamic Model

The calculation of EEL probability in Chapter 5 requires the calculation of the in-
duced potential at the position of the electron. One has z =

√
r2 − b2 for z > 0 and

z = −
√
r2 − b2 for z < 0, i.e. z = z

|z|r, which allows to express the induced potential
as:

φ(r) =
∞∑
l=0

l∑
m=−l

αlm

(
z

|z|

)l+m
Pml (

√
1− b2/r2)eimϕφlm(r), (E.1)

taking into account that Y ml (Ω) = αlmP
m
l (z/r)eimϕ and Pml (−x) = (−1)l+mPml (x),

where αlm is defined by Eq. (5.17), Pml (x) is the associated Legendre polynomial of
degree l and order m, and φlm(r) is the radial component of the induced potential
defined by Eq. (5.42). Furthermore, separating the cases r < a and r > a, for r < a
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yields:

φilm(r) = 4π
2l + 1

2ω2
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v
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ω2
p

µ2β2

)
E ilm −

l al−1

µ
Eolm

+ 2l + 1
β2

(
NlIjlm(b, a)−MlIylm(b, a)

)]
jl(µr)
µMl

+
[
− (l + 1)jl−1(µa)

(2l + 1)a2l+1µMl

(
1 +

ω2
p

µ2β2

)
E ilm + ljl−1(µa)

(2l + 1)µMl
Eolm

+ l + 1
al+2µ2Ml

(
1 +

ω2
p

β2µ2

)
Ijlm(b, a)− 1

µ2β2 E
i
lm

]
rl

− 1
β2 Θ

(r
b
− 1
)[2l + 1

µ
yl(µr)Ijlm(b, r)− 2l + 1

µ
jl(µr)Iylm(b, r)

+ 1
rl+1µ2

∫ r

b

dr′r′l
Πlm(r′, b;ω)√

1− b2/r′2
− rl

µ2

∫ r

b

dr′

r′l+1
Πlm(r′, b;ω)√
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. (E.2)

For r > a,

φolm(r) = 4π
2l + 1

2ω2
pαlm

v

1
rl+1

{
l

(2l + 1)
jl−1(µa)
µMl

E ilm

− l a2l+1jl+1(µa)
(2l + 1)µMl

Eolm −
l al−1

µ2Ml
Ijlm(b, a)

}
, (E.3)

where E ilm(x) and Eolm(x) are defined by Eqs. (5.38) and (5.39) respectively, Ijlm(x1, x2)
and Iylm(x1, x2) are defined by Eq. (5.40), Πlm(x) is defined by Eq. (5.18), and Ml

and Nl are defined by Eqs. (5.35) and (5.34) respectively.
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A ntzinako istorio batek dioenez, K.a. 214-212 urteen arteko egun eguzkitsu
batean, alegia, erromatarren eta kartagoarren arteko Bigarren Gerra Puniko

betean, Sirakusa erasotzen ari ziren erromatarren ontziei su eman zien Arkimedesek.
Izan ere, ispiluekin berak sortutako tramankulu batez baliatuz eguzki-argia islatu
eta ontziei su eman omen zien. Tamalez, Arkimedesen bizitzari buruz informazio
gutxi iritsi zaigu gaur egundaino, eta gertaera hauen egiazkotasuna askotan jarri
izan da zalantzan [1, 2]. Fikziozko ipuina izan, ala antzinako historiaren pasartea
izan, argia lokalizatzearen ideiak historian zehar onuragarri izan diren hainbat gailu
eta tresna sortzea eragin du, horren dramatikoak ez diren aplikazioetarako izan bada
ere. Aipatzekoa da argiaren lokalizazioaren erabilera bestela bereizezin liratekeen
objektu urrunak edo txikiak bistaratzeko. Izan ere, gure ikusmen-gaitasuna
hobetzea hobekuntza teknologiko eta aurkikuntza zientifiko askoren oinarria da.
Adibidez, luparen, eta bereziki, lehen mikroskopio optikoen agerpenak, XVI. eta
XVII. mendeetan bultzada nabarmena eman zien biologiari eta medikuntzari, gaur
egundaino gizartearen bizi-kalitatea hobetuz.

Argi ikusgaia eta infragorria oso erabiliak dira irudiak sortzeko eta mikroskopia
optikoko beste hainbat teknikarako, nahiz eta argiaren uhin-luzeraren tamaina bera
edo handiagoa duten xehetasunak soilik bereiz daitezkeen modu honetan, alegia,
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difrakzio-muga deritzona pairatzen dute ohiko sistema optikoek tradizionalek [3].
Argiaren uhin-luzera baino txikiagoak diren objektuak behatu ahal izateko, argia
bere uhin-luzera baino txikiagoa den espazioan konfinatu dezaketen tekniken beharra
dugu. Hain zuzen ere, nanoeskalan argiaren eta materiaren arteko elkarrekintzaren
ondorioz, argiaren lokalizazioa lor daiteke eskala honetan. Elkarrekintza berezi hori
aztertzeaz eta deskribatzeaz arduratzen den Fisikaren arloari Nanofotonika deritzo
[4].

Argiaren uhin-luzera azpiko konfinamendua gainazaleko plasmoi polaritoien
(ingelesez surface plasmon polariton, SPP) bidez erdietsi daiteke, hots,
metal/dielektriko-gainazaletan kitzikatzen diren elektroi-dentsitatearen uhin
erresonanteen bidez. SPPak metaleko banda eroaleko elektroien oszilazioen, alegia,
gainazaleko plasmoien (ingelesez surface plasmon), eta maiztasun ikusgai eta
infragorriko uhin elektromagnetiko (EM) erasotzaileen arteko hibridazioaren ondorio
dira. Metaleko elektroiek kanpoko eremu elektromagnetikoen aurrean duten portaera
konplexutasun maila ezberdinekin aztertzen dira Nanoplasmonika arloan. Adibidez,
Drude-ren eredua deritzonean, metalaren eroapen-banda elektroien erantzuna
elektroi askeen gas baten gisa deskribatzen da. Bere sinpletasuna gorabehera,
hurbilketa hau oso erabilia da nanofotonikan, zehaztasun handiz deskribatzen
baitu elektroien erantzuna d-bandako kitzikapen-energia baino baxuagoak diren
energietan, metalen espektroskopia optikoan behatzen diren ezaugarri nagusiak
ulertzeko aukera emanez.

Metal/dielektriko-gainazal lauetan hedatzen diren SPPek nanometro gutxi
batzuetan konfinatu dezakete eremu elektrikoa gainazalarekiko normala den
norabidean. Nahiz eta SPPak geometria lau guztiz perfektuan ez zaizkion argiari
akoplatzen SPPen eta argiaren momentuak bat ez datozela eta [6, 7], estrategia
ezberdinak proposatu izan dira arazo honi aurre egiteko. Besteak beste, ekorketako
hurbileko eremuko mikroskopia optikoan (ingelesez scanning near-field optical
microscopy, SNOM) punta metaliko zorrotz bat jartzen da gainazal metalikoaren
gainean [8]. Molekula fluoreszenteak gainazal metalikotik gertu kokatzean datza
beste teknika bat [9, 10]. Hauez gain, momentuen arteko tartea gainditzeko eta
SPPak kitzikatzeko ohiko irtenbidea ohi da gainazal metalikoan patroi-sareak sortzea
teknika litografikoen bidez [11,12].

SPPak metal/dielektriko-gainazal batean hedatzen diren bitartean, gainazaleko
plasmoi lokalizatuak (ingelesez localized surface plasmon, LSP) nanopartikula
txikietan konfinatuta daude eta zuzenean argiztatuta kitzika daitezke. Kasu
honetan SPP eta argiaren arteko momentuaren tartea gainditzeko behar den
momentu gehigarria nanopartikularen geometria finituak ematen du. Argipean,
nanopartikula esferiko txikiek erresonantzia plasmoniko bat erakusten dute,
NP esferikoen plasmoi dipolarrari (ingelesez dipolar plasmon, DP) dagokiona.
Argiztapenaren maiztasunarekin erresonantzian dagoen elektroi-hodeiak denboran
oszilatzen du, patroi dipolarrari segiz, eta kitzikapen-eremu elektromagnetikoarekiko
π/2-ko desfasearekin. Honek eremuaren handitze nabarmena dakar eta eremu
hurbilaren lokalizazioa eragiten du nanopartikularen inguruan. Fenomeno hau oso
interesgarria da, argiztapenaren uhin-luzera baino askoz txikiagoa den eskualde
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batean lokalizatzen baita eremua. Gainera, plasmoi-erresonantzien maiztasuna
NPren tamaina, eitea, material eta ingurunearen araberakoa da [13–16], eta
honek oso erabilgarri bihurtzen ditu nanopartikulak erantzun optiko zehatza duten
nanogailu sentikorrak diseinatzeko. Horrez gain, SPPek eta LSPek sorturiko
eremu hain lokalizatuak argiaren eta nanoegitura metalikoen inguruko materiaren
arteko elkarrekintza areagotzeko erabil daitezke [17,18], bestela ezinezkoa gertatuko
litzatekeena.

Nanopartikula plasmonikoek, argia eremu hurbilean lokalizatzeko duten
gaitasunaz gain, argia eremu urrunera sakabanatzeko duten gaitasuna dela eta,
nanoantena optikotzat jotzen dira. Nanoantena hauen tamaina nanometro gutxi
batzuetatik ehunka nanometrorainokoa izan daiteke. Azken urteotan, Plasmonikaren
erronka ugarietako bat nanopartikulen fabrikazioaren kontrol zehatza izan da, honek
ezartzen baititu nanopartikularen eitea, konposaketa eta substratu gaineko posizioa.
Izan ere, fabrikazio-teknika berrien hobekuntzak eta esplorazioak ahalegin eta
arreta handia jaso dute azken hamarkadetan, punta-puntako zehaztasuna emanez
goitik beherako fabrikazio metodoei (ingelesez top-down fabrication) [20–22], eta
moldakortasun handia behetik gorako fabrikazio metodoei (ingelesez bottom-up
fabrication) [23–25].

Nanoegitura plasmonikoen kontrola nanofotonikaren muina da, hein handi batean
eremu hurbilak metal/dielektriko-gainazalaren geometriarekiko duen menpekotasun
handiagatik. Izan ere, argiztapena plasmoiarekiko erresonantziaz kanpo egonik ere,
nanoegitura batek eremuaren handitze ez-erresonantea erakutsi dezake metalezko
punta zorrotzetan edo nanopartikulek izan ditzaketen erpinetan. Fenomeno
hau, tximistorratz efektu (ingelesez lightning rod effect, LRE) izenez ezaguna
elektrostatikan, metalezko ertz zorrotzetan pilatzen den karga dela eta gertatzen
da. Hau da, lerro ekipotentzialak elkarrengandik gertuago daude geometria
zorrotzetan, eta horrek eremu elektromagnetiko handiagoak inplikatzen ditu halako
eskualdeetan [3]. Adibidez, tximistorratz efektua, erresonantzia plasmonikoek
sorturiko eremuaren konfinamenduarekin batera, sakabanatze-motako ekorketako
hurbileko eremuko mikroskopio optikoan (ingelesez scattering-type scanning near-field
optical microscope, s-SNOM) baliatzen da.

Bestalde, elkarrengandik gertu dauden nanoegitura metalikoetan kitzikatutako
plasmoien akoplamendua baliatuz, Coulomb elkarrekintza dela eta, eremu
elektromagnetikoaren handitze eta lokalizazio are handiagoak lor daitezke
nanoegituren arteko hutsarteetan. Izan ere, ∼ 1 nm edo txikiagoak diren hutsarteek
“puntu-bero” (ingelesez hot-spot) deritzenak azaltzen dituzte, alegia, alboko
nanoegituretan kitzikatutako plasmoien akoplamenduak are gehiago handitzen du
eremua nanoegituren arteko hutsarteetan. Halako egituren (tartean dimero deritzen
bi nanopartikulez osatutako egiturak) erantzun optikoak menpekotasun handia du
hutsartearen luzera eta morfologiarekiko, espektro-sentikortasun handiko plataforma
bat eskainiz. Zentzu horretan, nanohutsarte horietan, nanobarrunbe (ingelesez
nanocavity) ere deitutakoetan, konfinatutako eremuaren intentsitate handiek prozesu
optikoak bultzatu ditzakete.

Nanobarrunbea elkarrengandik oso gertu kokaturiko bi nanopartikulak osatu
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ohi dute. Gertutasun horren ondorioz, partikula bien LSP moduen arteko
hibridazioa sortzen da Coulomb elkarrekintza dela eta, molekula bat osatzean
atomoetako orbitalak hibridatzen diren gisan. Nanopartikulen kasuan dimeroen
lotura-plasmoia (ingelesez bonding dimer plasmon, BDP) deritzona eratzen da
[27–29]. Karga hutsartearen albo banako metalezko gainazaletan pilatzen da,
nanopartikula isolatuen aldean eremuaren handitze eta lokalizazio nabarmenak
sortuz hutsartean [30, 31]. Horrez gain, karga hauen arteko Coulomb elkarrekintza
oso indartsua denez, espektroan BDP erresonantziek duten posizioa oso sentikorra
da hutsartearen luzerarekiko, hau da, bi partikulen gainazal metalikoen arteko
distantziarekiko [31, 32], hutsarte-nanoantenak erregela plasmoniko oso sentikorrak
bihurtuz. Partikulen arteko ukipena dagoenean, karga elektrikoa partikula batetik
bestera pasa daiteke eta beraz, karga-transferentziaren plasmoiak (ingelesez Charge
Transfer Plasmon, CTP) kitzika daitezke. Horrez gain, CTPak ukipen zuzenik
gabeko nanopartikuletan ere kitzika daitezke, elektroiak nanopartikula batetik
bestera beste mekanismo baten bidez lekualdatzen badira, adibidez, elektroien tunel-
efektu kuantikoaren bidez [33,34].

Dimeroez gain, argiaren nanometro-eskalako konfinamendua erdiesteko beste
aukera bat ispilu gaineko nanopartikula (ingelesez NanoParticle-on-Mirror, NPoM)
deritzon egituran aurki daiteke. Egitura hau substratu metaliko batez eta bere
gainean jarritako nanopartikula metaliko batez osatuta dago, elkarrengandik film-
bereizgailuaz bereizita daudenak, horrela nanopartikula eta substratuaren artean
hutsart bat sortuz. NPoM egiturek egonkortasun handia erakusten dute eta
plataforma oso egokia eskaintzen dute nanobarrunbean jarritako molekulekin
espektroskopia molekularreko esperimentuak egiteko.

Gaur egun gehien erabiltzen den molekula-espektroskopia tekniketako bat
Raman sakabanaketan oinarritua dago, arkeologian [35], medikuntzan [36], drogen
detekzioan [37] eta konposatu kimikoen detekzioan [38] oso erabilia dena. Raman
sakabanaketa C. V. Raman-ek aurkitu zuen 1920. hamarkadan [39] eta argiaren
sakabanaketa prozesu inelastiko bat deskribatzen du. Prozesu honetan fotoi batek
(argia) molekula bat egoera birtual batera kitzikatzen du, eta ondoren beste
egoera ezberdin batera erlaxatu daiteke molekula, energia txikiagoko fotoi bat
igorriz eta bibrazio bat sortuz (Stokes prozesua), edo bestela, beste egoera batera
erlaxatu daiteke energia altuagoko fotoi bat igorriz eta bibrazio bat xurgatuz (anti-
Stokes prozesua). Raman sakabanaketa Lord Rayleigh-en sakabanaketaren teoriaren
osagarria da, azken honek argiaren prozesu elastiko bat deskribatzen baitu.

Raman sakabanaketan, sakabanatutako argiaren eta argiztatzeko erabilitako
argiaren energien arteko aldeari dagokion energia molekularen bibrazio-egoeraren
energia-tarteari dagokio. Molekula batek bibrazio-modu anitz izan ditzakeenez,
sakabanatutako argiak ere uhin-luzera ezberdinak izan ditzake, uhin-luzera bakoitza
bibrazio-modu jakin baten sakabanaketa prozesuari dagokiolarik. Ondorioz lortutako
espektroa, beraz, oso baliagarria da molekula baten bibrazio-moduak eta talde
funtzionalak identifikatzeko, molekularen egitura kimikoa berreraikitzeko tresna bat
eskainiz. Hori dela eta, molekula baten Raman sakabanatze-espektroa molekula
horren bibrazioen hatz-marka (vibrational fingerprint ingelesez) modura hartzen da.
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Anti-Stokes sakabanaketa gertatzeko molekulak kitzikatutako egoera batean egon
behar du. Zero tenperaturan, T = 0 K, molekula guztiak oinarrizko egoeran daudela
jotzen da, eta beraz, egoera horretan ezin daiteke anti-Stokes sakabanaketarik
behatu. Giro-tenperaturan eginiko esperimentuetan Stokes sakabanaketa gailentzen
da molekula gehienak oinarrizko egoeran baitaude. Gainera, Stokes/anti-Stokes
proportzioa molekularen tenperatura neurtzeko erabil daiteke bibrazio-egoeren
banaketak Bose-Eistein banaketa betetzen duela suposatuz gero.

Hala ere, Raman sakabanaketak eragozpen handia du: bere sekzio-eragilea
oso txikia da, ohiko balioak � 10−28m2 direlarik. Raman sakabanaketaren
erabilera, espektroskopiarako teknika gisa, nabarmen hobetzen da nanoantena
plasmonikoek eremua handitzeko duten gaitasuna probestuz gero. Izan ere,
nanoantenen erresonantziak sorturiko eremu hurbilean kokatutako molekulen Raman
sakabanaketa nabarmen handitzen da. Hau gertatzen da, adibidez, molekulak
nanobarrunbe bateko eremu hurbilean kokatzen direnean, molekuletatik argiaren
igorpena erraztuz, Gainazalez Handitutako Raman Sakabanaketa (ingelesez Surface-
Enhanced Raman Scattering, SERS). Honen oinarri fisikoa ondokoa da: Raman
sakabanaketa eremu elektromagnetiko lokalaren 4. berredurarekiko menpekotasun
lineala duenez, eremu plasmonikoak ∼ 1010 handitze-faktoreak eragin ditzake
SERSen.

Nanobarrunbeetako eremu hurbila are gehiago handitu eta lokalizatu daiteke
irtengune atomikoen presentzia dela eta, zeinak tximistorratz efektua eragin
dezakeen eskala atomikoan, argiaren lokalizazio azpinanometrikoa ahalbidetuz
pikobarrunbe (ingelesez picocavity) deritzenetan, 2. kapituluan azalduko dugun
bezala. Pikobarrunbeek fotoien eta fotoi-bakarreko igorleen trantsizio elektronikoen
akoplamendua areagotu dezakete [43], edo fotoien eta molekuletako bibrazioen
arteko elkarrekintza optomekanikoak [44]. Horrez gain, pikobarrunbeetako eremuen
gradiente handiek molekuletako bibrazioen simetria-arauak hautsi ditzakete,
debekatutako trantsizio molekularrak aztertzeko bidea irekiz SERSen. Trantsizio
hauek gailur zorrotz gehigarri gisa agertzen diren SERS espektroetan [44].

Nanobarrunbeetan sortutako pikobarrunbeek eragindako gailur gehigarriez gain,
SERS espektroan beste zenbait xehetasun ageri ohi dira maiz. Zehazki, ms-ko
denbora-eskalan hondoko seinale zabalaren handitzea behatu da hainbat ikerketa
lanetan [45–49]. SERS espektroko hondoko seinalearen jatorria metaleko Raman
elektroi-sakabanaketa (ingelesez electronic Raman scattering process, ERS) deritzon
prozesuaren ondorioz sortzen den argiaren sakabanaketa inelastikoarekin erlazionatu
izan da. Prozesu hau molekuletan gertatzen den Raman sakabanaketaren parekoa da,
baina kasu honetan metaleko Fermiren itsasoko elektroien trantsizioetarako izango
litzateke. Prozesu honen inguruan xehetasun gehiago ematen ditugu 3. kapituluan.

Nanoeskalan ikusteko beste aukera bat, atomoak behatzera iristeraino, elektroi-
sorta azkarrak erabiliz materian kitzikapenak sortzea da. 1931. urtean Ernst Ruskak
eta Max Knoll-ek transmisioko mikroskopia elektronikoan (ingelesez Transmission
Electron Microscopy, TEM) erabilitako lehen prototipoa frogatu zutenetik [50, 51],
TEMak zientzia modernoko tresnarik garrantzitsuenetako bat bihurtu dira eta
funtsezko izan dira fisikan, kimikan eta biologian XX. mendean zehar egindako
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aurkikuntza ugaritan [52,53].
Elektronikan izandako hobekuntzei esker laginak abiadura handian eskaneatzen

dituzten elektroi sorta oso enfokatuak sortu dira, bereizmen atomikoa duten
irudiak lortzea ahalbidetuz. Aberrazio-zuzenketak dituzten gaur egungo punta-
puntako ekorketa eta transmisioko mikroskopio elektronikoekin (ingelesez Scanning
Transmission Electron Microscope, STEM) gaur egun posible da Ångstrom-azpiko
bereizmena lortzea [54, 55]. Are gehiago, mikroskopiari erantsitako neugailu
ezberdinei esker elektroi azkarren eta materiaren arteko elkarrekintzatik sorturiko
seinale anitzak (adibidez, erradiazio elektromagnetikoa, Auger elektroien eta elektroi
sekundarioen igorpena) neur ditzakete elektroi sortaren posizioarekin zehaztasun
handiz korrelazionatuta. Beraz, STEMak materialak espazio-bereizmenarekin eskala
atomikoan aztertzeko teknika oso malgua eskaintzen du.

Lagin bat zeharkatzen duten edo laginetik gertu igarotzen diren elektroi sortek
hasierako energiaren (eta momentuaren) zati txiki bat gal dezakete laginarekin duten
elkarrekintzaren ondorioz. Elektroiek energia zehatz bat galtzeko probabilitatea
laginean sortzen duten kitzikapenaren izaerarekin zuzenean erlazionatua dago.
Elektroien energia-galera (ingelesez electron energy loss, EEL) probabilitatearen
espektro-analisiak materiaren kitzikapenak energia-tarte zabal batean identifikatzeko
balio du, elektroien energia-galera espektroskopia (ingelesez electron energy loss
probability, EELS) STEMen teknika analitiko garrantzitsua bihurtuz. Adibidez,
atomoen barne-geruzetako elektroien kitzikapenetatik datozen energia altuko galerak
(gutxi gorabehera 50 eV-tik keV-ra) detektatzeko erabil daiteke EELS [56, 57],
horrela, eskala atomikoko irudiekin korrelazionatuta, egitura kimikoari buruzko
informazioa emanez [58–60]. Bestalde, energia baxuetan (normalean 50 eV-tik
beherakoak) balentzia-bandako elektroien kitzikapenarekin, banda-arteko trantsizio
elektronikoekin, eta kristal-sarearen edo molekulen bibrazioeki erlazionatutako
energia-galerak ager daitezke EEL espektroan.

Elektroi azkarrek sorturiko eremu desgerkorra dela eta modu eraginkorrean akopla
daitezke plasmoiekin eV gutxi batzutako energia-tartean. Izan ere, elektroi azkarrek
sorturiko eremu elektromagnetikoaren izaera desagerkorrak argi-espektroskopia
konbentzionalean kitzika ezin daitezkeen plasmoi “ilunak” kitzikatzea ahalbidetzen
du STEM-EELS teknikan. Egitura plasmonikoen portaera eta funtzionalitatea
ulertzeko ezinbestekoa izaten da maiz eremu hurbila karakterizatzea, eta hauxe era
naturalean azter daiteke elektroi sorta azkarren bidez [65].

Kitzikapen plasmonikoak eta egitura nanoplasmonikoak aztertzeko EELSen
erabilera oso hedatua dago gaur egun. Aipagarria da bolumeneko plasmoien
identifikazioa [66, 67] eta SSPen aurkikuntza XX. mendeko 50.-60. hamarkadetan
[62] zuzenean erlazionatuta daudela xafla eta gainazal metalikoekin egindako
EELS esperimentuekin [68, 69]. Garai hartako ikerketak orokorrean elektroi sorta
zabalekin (fokatu gabeak) egin ohi ziren, eta momentu-espazioan aztertzen zen
EELS espektroa, neurketa hauek kitzikatutako modoen dispertsioarekin erlazionatu
baitaitezke.

Azken bi hamarkadetan bereizmen azpinanometrikoa [54, 73] eta eV-az azpiko
energia-sentikortasuna [74] ahalbidetu duten hainbat hobekuntza teknikoren lekuko
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izan da STEM-EELS [70–72]. Aurrerapen horiek bideak ireki dituzte material eta
nanoegitura berriak ezaugarritzeko [55, 75], fonoien bereizmen nanometrikoarekin
espektroskopia bibrazionala egiteko [57,76–79], edo energia baxuko elektroi sortekin
eta erradiazio-kalte murritzarekin biomaterialak ezaugarritzeko [57, 80, 81]. Horrez
gain, aipatutako hobekuntzek 10 nm baino txikiagoak diren nanopartikula isolatuetan
EELS esperimentuak egitea ahalbidetu dute [82–87] Å-azpiko bereizmenarekin.

Azken urteotan, LSPen erresonantzia-energien gorriranzko eta urdineranzko
lerrakuntzek NP txikien tamainarekiko duten menpekotasunak arreta nabarmena
bereganatu du literaturan [83–85, 88–90]. Gainera, tresneria esperimentalean
lorturiko bereizmenaren hobekuntzak LSP erresonantzietan eragina duten efektu
kuantikoak agerian utzi ditu. Horrek eredu teorikoen garapena bultzatu du efektu
desberdinak deskribatzeko, hala nola, elektroien konfinamendua [91], elektroien
isurpena (ingelesez spill-out) gainazaletan [32,92–94], ez-lokaltasun efektuak funtzio
dielektrikoan [95,96], aldaketak ingurune lokalean [87], edo tunel-efektu kuantikoaren
aktibazioa partikulen arteko hutsarte azpinanometrikoetan [34,88,97]. Hala ere, NP
txikien eite poliedrikoa eta ezaugarri atomistikoek EEL espektroan duten eragina
arbuiatu egin izan da gehienetan, NPren eitea esferikoa dela suposatuz.

Nanopartikula metalikoen gainazalean konfinatuta dauden LSPak kitzikatzeaz
gain, elektroi sortek elektroi-dentsitatearen luzetarako presio-uhinak kitzika ditzakete
bolumenean, hots, konfinatutako bolumeneko plasmoiak (ingelesez confined bulk
plasmons, CBP) [95]. CBPak 1971. urtean behatu ziren esperimentalki lehen aldiz,
zilarrezko [98] eta potasiozko, [99] xafla finetan espektroskopia optikoa erabiliz.
EELSen, CBPak egitura eta material anitzentzat behatu dira esperimentalki, besteak
beste, germaniozko nanoharietan [101], bismutozko nanoharietan [102], bismutozko
nanopartikuletan [91, 103], eta aluminiozko nanodiskoetan [86]. Teorikoki, CBPak
naturalki agertzen dira elektroi-dentsitatearen erantzunaren eredu hidrodinamikoen
baitan, elektroi-dentsitatearen konpresibilitate finitua kontuan hartzen baitute.
Gutxienez dimentsio finitu bat duten nanoegituretan, karga-dentsitatearen
bolumeneko oszilazioak konfina daitezke dimentsio horretan, uhin geldikorrak sortuz.
Adibidez, zilindroearen kasuan eginiko azterketa teorikoek CBPen kitzikapena
erakusten dute elektroien ibilbideak lagina zeharkatzen duenean [104–106]. Tesi
honetan, eskala nanometrikoa duen materiaren eta uhin-elektromagnetikoen arteko
elkarrekintza aztertuko dugu, hala nola, argiak edo elektroi sortak kitzikatzen
dituzten nanopartikula metaliko txikietan eta nanobarrunbeetan ageri diren
ezaugarri atomistikoen eraginean arreta berezia jarriz.

Egitura plasmonikoen erantzun optikoa eta kitzikapen-iturriak deskribatzeko
erabili ditugun metodo numerikoak azaldu ditugu 1. kapituluan: (i) mugako
elementuen metodoa (ingelesez Boundary Element Method, BEM), ingurune
jarraituak eta homogeneoak eta hauen arteko muga definituak onartzen dituen
erantzun lokalaren metodoa, (ii) dipolo diskretuen hurbilketa (ingelesez Discrete
Dipole Approximation, DDA), zeinean nanoegiturak osatzen dituzten atomoak dipolo
gisa deskribatzen diren, eta (iii) denboraren menpeko dentsitatearen funtzionalaren
teoria (ingelesez Time Dependent Density Functional Theory, TDDFT) ab initio
metodo atomistikoa, zeinak nanoegitura plasmonikoaren egitura atomistikoa eta
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efektu kuantikoak kontuan hartzen dituen.
Aipaturiko metodoak erabiliz, 2. kapituluan ezaugarri atomistikoak, hala nola,

erpin, ertz eta aurpegiak dituzten nanometro gutxi batzutako sodiozko NPen
(380 atomo) erantzun optikoa eta eremu hurbila aztertu ditugu. Ezaugarri
atomistiko horiek eremu hurbila dimentsio azpinanometrikoetan lokalizatzea eta
konfinatzea ahalbidetzen dute [107], hondoko eremu plasmonikoa baino gehiago,
induzitutako eremu hurbilen ezaugarri espazialak nanobarrunbeek inposaturiko
muga espazialetatik harago bultzatuz, eta beraz, pikobarrunbeen erreinura iritsiz.
Nanoegitura plasmoniko jakin bateko egitura atomistikoari dagokion karga-
dentsitatearen profilaren antza duen gainazal jarraitua eta leuna aukeratuz,
NP hauen gainazalean induzitzen den eremu hurbilaren ezaugarriak fideltasunez
erreproduzitu ditzakete hurbilketa klasikoek. Plasmoiek sorturiko eremu hurbila
handitzen duen eskala atomiko tximistorratz efektu ez-erresonantea identifikatu
dugu lokalizazio gehigarriaren arrazoi gisa, eta eredu lokal sinple bat proposatu dugu
hura azaltzeko. Horrez gain, kontzeptu hau nanohutsarteetan pikobarrunbeek duten
eraginaren azterketara hedatu dugu, muturreko egoera honetan eredu kuantiko eta
klasikoek ematen duten erantzunean adostasuna lortuz. Maila atomistikoan eginiko
pikobarrunbe optikoen deskribapen kuantikoak agerian uzten du eskala atomikoko
ezaugarrien garrantzia, nahiz eta halako deskribapenak eskakizun konputazionalek
mugatzen dituzten, nanoegitura handietarako simulazioak egitea ezinezko bihurtuz.
Tesi honetan proposatutako eredu klasiko sinpleagoak pikobarrunbeen presentzia
nanoegitura handietan kontuan izatea ahalbidetzen du, egitura hauen erantzun
optikoa kalkulatzeko erronka ohiko metodo elektrodinamikoen bidez egitea
ahalbidetuz [108].

3. kapituluan nanohutsartean molekulak dituzten NPoM egituretan lorturiko
SERS espektroetan agertzen diren hondoko seinalearen handitze aldakorra
eztabaidatu dugu. Argiaren sakabanaketa inelastikoaren gertaera hauei distira
deritzegu, eta esparru kontzeptual bat ematen dugu beraien ezaugarri optikoak
aintzat hartzeko. Cambridge-ko Unibertsitateko Jeremy J. Baumberg irakaslearen
taldean esperimentalki lortutako SERS espektroetan atzemandako distirak aztertu
ditugu. Defektu aldakorretako, hala nola makla-planoetako eta ale-ertzetako,
atomoen berregituraketa dinamikoaren eraginez sortzen diren distirak azaltzeko
eredu bat proposatu dugu. Eredu honen arabera, atomoen berregituraketak plasma-
maiztasunaren aldaketa lokalizatuak eragiten ditu metalean, eta horren ondorioz
eremu elektriko indartsuagoak induzitzen ditu NP metalikoaren baitan, horrela
hondoko ERS seinalea handituz.

Espektroskopia optikoan bezala, 2. kapituluan eztabaidatua, TDDFT ab
initio metodoak esparru egokia eskaintzen du EELSen efektu kuantikoen eta
egitura atomistikoaren eragina kontuan izateko. Ezaugarri atomistikoek sodiozko
nanopartikulen EEL espektroan duten eragina aztertu dugu 4. kapituluan,
TDDFT erabiliz. Lortutako emaitzak, nanopartikularen itxura atomistikoa
kontuan hartzen duten eredu klasikoekin lortutako emaitzekin alderatu ditugu,
ezaugarri azpinanometrikoek EELSen duten eragina aztertzeko. Horrela, ezaugarri
atomistikoak EEL espektroan agerian gelditzen direla frogatu dugu, elektroi sorten
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ibilbidearekiko eta nanopartikularen orientazioarekiko duen sentikortasuna ageriko
jarriz, ohiko nanopartikula esferikoen hurbilketak deskribatzen ez duena. Gainera,
EEL espektroan LSP eta CBP moduen kitzikapenak identifikatu ditugu, azkenak
nanopartikula zeharkatzen duten elektroien ibilbideentzat soilik kitzikatzen direlarik.
Bestalde, espektroek elektroi sortaren talka-parametroarekiko menpekotasuna duten
aztertu dugu.

Bukatzeko, 4. kapituluan aurkeztutako TDDFT espektroetan behatutako
CBPen aztarnak 5. kapituluan aztertu ditugu xehetasun gehiagoz, materialaren
erantzuna ez-lokaltasuna kontuan hartuz deskribatzen duen Eredu Hidrodinamiko
lineal bat erabiliz. Formalismo honen baitan nanopartikula esferikoen EEL
probabilitatearen adierazpen semi-analitikoa lortu dugu, talka-parametroaren
menpekotasuna deskribatzen duena, zeinak egitura zeharkatzen duten ibilbideentzat
ere balio duen. Horrez gain, eredu honek CBPek hainbat parametrorekiko duten
menpekotasuna aztertzeko aukera ematen digu, hala nola, nanopartikularen tamaina
edo elektroi sorten abiadura. Guk sodiozko partikula esferikoen EEL espektroak
aztertzeko baliatu badugu ere, gure ereduak aluminiozko diskoetan esperimentalki
behatu diren CBPen portaera azaltzen du [86], besteak beste.

Ezaugarri atomistikoak dituzten nanoantena eta nanobarrunbe plasmonikoen
erantzun optikoa eredu kuantiko eta klasikoen bidez deskribatu dugu tesi honetan,
agerian utziz egitura hauetan fenomeno optiko berriak aztertzeko eredu hauek
duten baliagarritasuna. Tesi honek, beraz, espektroskopia optikoaren eta elektroi-
espektrokopiaren esparruetan pikofotonika aztertzeko lehen pauso bat eskaintzen du.
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