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0Abstract
The present Thesis is devoted mainly to study and understand from a theoretical
perspective the femtosecond laser-induced desorption of CO from Pd(111) with
different coverages as well as the photodesorption and photooxidation of CO from
Pd(111) when covered with 0.25 ML of oxygen and 0.50 ML of carbon monoxide
(0.25 ML O+0.50 ML CO/Pd(111)).

Chapter 1 introduces the research involved in this Thesis. Palladium (Pd) is
a transition metal with well known catalytic properties, notably in facilitating
hydrogenation, dehydrogenation, and oxidation reactions. Therefore, it is employed
in a number of applications involving heterogeneous catalysis, such as in car exhaust
systems, fuel cell technologies, or in the production of chemicals for agrochemical
or pharmacological use, among others. It is also used for gas-sensing technologies.
As a result, it becomes crucial to understand how Pd behaves dynamically in various
contexts, this being linked with the current growing relevance of this metal species
in heterogeneous catalysis and in chemical industry. Adsorption and desorption of
gas-phase atoms and molecules are among the main chemical processes of interest
Pd participates at. In addition, one of the molecules most commonly involved in
the reactions catalyzed by Pd is carbon monoxide (CO). On this basis, we aim to
conduct a theoretical study of the femtosecond laser-induced desorption of CO
adsorbed on Pd(111) [CO/Pd(111)], in first instance, as well as the photodesorption
and photooxidation of CO on a Pd(111) surface covered with 0.25 monolayers
(ML) of atomic oxygen (O) and 0.50 ML of CO [O+2CO/Pd(111)]. Studying both
systems across various initial conditions, for instance, CO coverage and absorbed
laser fluence, we aim to unravel the underlying mechanisms of the laser-induced
chemical processes.
As concluded in previous experimental works, CO/Pd(111) exhibits intricate

structural properties that vary with coverage, and has more than 15 stable ways
adsorbed CO can arrange on Pd(111). Hence, such a complex adsorbate-substrate
system requires sophisticated theoretical models to accurately capture adsorption
sites, energy coupling, and reaction dynamics. We pursue to simulate the desorption
dynamics under femtosecond laser excitation using ab initio molecular dynam-
ics with electronic friction and thermostats [(𝑇𝑒 ,𝑇𝑙 )-AIMDEF], which effectively
incorporates both the laser-induced electronic and phononic excitations, while the
adiabatic forces are calculated on-the-fly from the first principles density functional
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theory (DFT). However, its high computational demand for calculating the DFT
adiabatic forces limits this kind of simulations to short time scales and small sta-
tistical ensembles. To overcome these limitations, we train neural network-based
potential energy surfaces (NN PESs) using AIMDEF data and employ those NN PESs
to perform the equivalently accurate molecular dynamics simulations, (𝑇𝑒 ,𝑇𝑙 )-MDEF.
This alternative method dramatically enhances computational efficiency, thereby
enabling extended simulations over longer time scales, the use of larger data sets,
and the study of the laser-induced dynamics under more diverse initial conditions.
During our research we pursue to investigate several key aspects that were

unsolved in experiments performed on CO/Pd(111). We want to unravel the rel-
ative role of surface electrons and phonons in the photoinduced processes. Also,
we want to investigate whether there exists any isotope effect or not, this being
linked to which mechanism –electronic or phononic– dominates photodesorption.
Along with this, we are interested in simulating two-pulse correlation (2PC) experi-
ments to further clarify the interplay between electronic and phononic excitations.
Another goal is to examine how CO desorption probability changes with initial
CO coverage and laser fluence, as well as how CO behaves after excitation, e.g.,
regarding its motion parallel and perpendicular to the surface plane. As a further
step, we want to extend our approach to mixed O and CO adlayers on Pd(111),
address some of the mentioned questions on CO/Pd(111) and also investigate how
the presence of oxygen influences interadsorbate energy transfer and alters the des-
orption dynamics. Our findings should offer a comprehensive understanding of CO
desorption mechanisms from Pd(111) surfaces under femtosecond laser excitation,
and the integration of AIMDEF model with NN PESs should open the way to similar
studies of complex surface reactions on other systems with greater computational
feasibility. Ultimately, the methodologies developed and insights gained during
this work can have broader implications, potentially benefiting the design of more
efficient catalytic systems and advancing theoretical models in surface chemistry.

Chapter 2 provides a comprehensive theoretical background for understanding
molecule-surface interactions and how these can be efficiently modeled computa-
tionally in complex multiatomic systems. The chapter begins by introducing the
adiabatic theorem and the Born-Oppenheimer approximation to show how elec-
tronic and nuclear degrees of freedom of a multiatomic system can be uncoupled
to simplify their theoretical characterization.
Next, the Kohn-Sham DFT is introduced as a fundamental tool for calculating

the electronic PESs of multiatomic systems and hence for simulating molecular
dynamics on surfaces. The chapter ends with an overview of commonly used
exchange-correlation functionals.

Chapter 3 focuses on the dynamics of metal surfaces with adsorbed molecules
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when excited by a femtosecond laser pulse. Such excitation can induce a number
of processes in the adsorbates, including desorption, dissociation, recombination,
rotation, vibration, and diffusion on the surface. The primary goal is to under-
stand and describe femtochemical phenomena on adsorbate-decorated surfaces,
in particular, desorption. We begin by describing photoinduced desorption mech-
anisms, starting with some insights about the development of femtochemistry
and the experimental techniques that have enabled access to ultrafast time scales.
The chapter distinguishes between direct and indirect photoinduced desorption,
introducing key concepts such as desorption induced by electronic transitions
(DIET) and desorption induced by multiple electronic transitions (DIMET). These
mechanisms are accessed depending on the incident laser fluence and involve a
different amount of electronic excitations, and particularly within DIMET multiple
excitations can enhance desorption probabilities through rapid adsorbate excitation
processes like “multiple-level ladder climbing". As a first approach to modeling pho-
toinduced desorption, two simple two-state models, the Menzel-Gomer-Redhead
(MGR) and Antoniewicz ones, are briefly explained. Although these models provide
some foundational understanding, they fall short in explaining complex experimen-
tal observations, particularly for metal surfaces where indirect excitation routes
and nonadiabatic effects play significant roles. This remarks the need for more
profound theoretical frameworks to accurately describe the intricate dynamics of
photoinduced processes on metal surfaces.

For metal substrates, we consider the two-temperature model (2TM) to describe
the substrate excitation process. The 2TM accounts for the nonequilibrium dynam-
ics of the electronic and lattice temperatures following laser irradiation. Electrons
absorb the laser energy, leading to a rapid increase in electronic temperature and
subsequent energy transfer to the lattice through electron-phonon coupling. After-
wards, we examine the dynamics of adsorbates, focusing on nonadiabatic effects.
The chapter introduces molecular dynamics with electronic friction (MDEF) as
a method to model the energy transfer processes between excited electrons and
adsorbate nuclei, which are obviously not captured by the Born-Oppenheimer
approximation. The local density friction approximation (LDFA) is employed to
calculate position-dependent friction coefficients for each adsorbate by considering
the metal as a homogeneous free electron gas at each point of the surface. The
contribution of phononic excitations is also incorporated by coupling the lattice
to a thermostat, specifically using the Nosé-Hoover thermostat to ensure that the
lattice follows the time-dependent temperature predicted by 2TM. This allows
for the inclusion of both electronic and phononic energy inputs in the adsorbate
dynamics. The calculation of adiabatic forces is discussed, comparing AIMDEF and
PES-mediated MDEF. While AIMDEF provides high accuracy by calculating forces
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on-the-fly using DFT, PES-mediated MDEF significantly reduces computational
costs by utilizing a precalculated PES.
Chapter 4 addresses the computational challenges in accurately simulating

photoinduced chemical processes on gas-decorated metal surfaces. While AIMDEF
provides a powerful and accurate framework for such simulations, its computa-
tional expense limits its applicability to time intervals of a few picoseconds and to
small statistical ensembles of a few hundreds of trajectories. To overcome these
limitations, the development of NN PESs as an efficient alternative to AIMDEF is
explored. Neural networks offer a way to approximate the complex PES of the
adsorbate-substrate system, significantly reducing the computational costs, while
maintaining high accuracy. The chapter begins with an introduction to neural
networks, detailing their general features and the training process. It covers the
architecture of feed-forward NNs, the role of neurons and activation functions,
and the methods used to optimize the network weights during training. Key con-
cepts such as cost functions, overfitting, and early stopping are defined, and their
importance to ensure the robustness of the NN models is remarked.

Subsequently, the chapter focuses on methods for constructing NN-based PESs.
It highlights the limitations of early feed-forward NN approaches, which lacked of
transferability and symmetry preservation. The introduction of high-dimensional
neural network potentials (HDNNPs) by Behler and Parrinello marks a break-
through in this respect, solving these limitations through the use of atom-centered
symmetry functions (ACSFs) that ensure invariance under translations, rotations,
and permutations of atoms. ACSFs are then explained, including radial and angular
symmetry functions, and the challenges associated with selecting appropriate pa-
rameters to accurately represent atomic environments are discussed. The evolution
of HDNNPs towards more sophisticated versions is also briefly addressed.
The focus then shifts to the embedded atom neural network (EANN) approach,

which is inspired by the embedded atom method (EAM) applied to metallic sys-
tems. EANN utilizes Gaussian-type orbitals (GTOs) to construct embedded atomic
densities that inherently preserve the required symmetries. This approach extends
the applicability of EAM by allowing for more accurate modeling of both metallic
and non-metallic systems. In this respect, we discuss the mathematical formulation
of EANN, including the calculation of embedded densities and the training process
that incorporates both energies and forces from AIMDEF data.
Chapter 5 handles the study of femtosecond laser-induced desorption of CO

from the Pd(111) surface with a specific coverage of 0.75 ML, using a PES generated
by the EANN method (EANN PES). The data used to train the PES were obtained
from previous AIMDEF simulations of the same process, whose relevant details are
described in the beginning of the chapter. This characterization includes the system
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configuration, computational parameters, and simulated experimental conditions. It
is emphasized that modeling laser-induced reactions requires considering multiple
adsorbates, variations in adlayer coverage, and significant fluctuations in surface
temperature, which increases the complexity of the configurational space.

Subsequently, the process of constructing the EANN PES for the CO/Pd(111) sys-
tem at 0.75 ML is detailed. A representative set of input data is selected for training,
categorizing trajectories according to the number of desorption events observed.
Specific EANN parameters, such as the NN architecture and GTO parameters within
EANNmodel are optimized, seeking a balance between accuracy and computational
efficiency. It is determined that an architecture with two hidden layers of 60 nodes
each (60-60) provides the best performance in terms of accuracy and computation
time. The quality of the trained PES is then evaluated using a static approach,
comparing the energies and forces predicted by the PES with reference AIMDEF
values on an independent set of configurations not used in training. It is noted how
initial maximum errors in atomic forces are reduced after identifying and adding
to the training set those configurations that contribute significantly to the errors
prior to PES retraining. This refinement also leads to lower root mean square error
(RMSE) values in energies and atomic forces. To include electronic friction forces
in the simulations, a numerical fitting method is developed to model the surface
electronic density required to calculate friction coefficients within LDFA. A density
generator function (DGF) based on a sum of exponential functions is proposed,
with parameters adjusted to reproduce the electronic density values obtained in
AIMDEF simulations.

Molecular dynamics simulations with electronic friction and thermostats, hence
including interactions with both hot electrons and phonons [(Te,Tl) −MDEF], are
then performed using the optimized PES and the proposed DGF. Two data sets are
generated, one of 100 trajectories with the same initial conditions used for AIMDEF
calculations, and the other one of 2000 trajectories. Both reproduce with high
precision the CO desorption data reported in the original AIMDEF simulations,
such as desorption probabilities and energy distributions of the desorbed molecules.
Additionally, the statistical improvement allowed by the computational efficiency
of MDEF enables more detailed analysis of the dynamic processes involved. As a
preliminary example, a study of the rovibrational states of desorbed CO molecules
in the initial dynamics stage is performed on the larger MDEF dynamics ensemble
using a quasiclassical approach. Most of these desorbed molecules are found to
be in the vibrational ground state and low rotational states, providing valuable
information on how CO is excited during the desorption process. We also highlight
how usage of EANN PESs significantly reduces computational times compared
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to AIMDEF simulations –from several days to mere seconds per trajectory, under
equal conditions– without sacrificing accuracy.
Chapter 6 presents our study on the photoinduced desorption dynamics from

Pd(111) of two CO isotopologues, 12C16O and 13C18O, with a coverage of 0.75 ML
under high laser fluence conditions. Using our 0.75 ML CO/Pd(111) PES, we perform
extensive MDEF to explore potential isotope effects in the desorption process. Two
types of simulation are performed: one set of (Te,Tl) −MDEF, and another that
includes only phonon interactions (Tl −MDEF). For each kind of calculation, an
ensemble of 2000 trajectories is generated. Our results reveal minor differences
in desorption probabilities between isotopologues at early times (up to 4 ps) in
the (Te,Tl) − MDEF simulations, attributable to interactions with hot electrons.
However, these differences become negligible over extended simulation times up
to 50 ps, as both isotopologues show similar desorption probabilities and rates,
indicating that phonon-mediated mechanisms dominate the desorption process at
longer time scales. The desorption rates further support this finding, showing nearly
identical patterns for both isotopologues in each simulation type, with (Te,Tl) −
MDEF rates peaking earlier and sharper due to the influence of hot electrons
in the initial stages. Notably, an analysis of the vibrational states of desorbed
CO shows minimal vibrational excitation, primarily induced by interactions with
hot electrons. While a slight isotope effect is observed in the high-energy tail of
desorbed molecules, this favoring vibrational excitation of the lighter isotopologue,
such an effect is limited to about 1% of the total desorption yield. Consequently,
our study finds no significant isotope effect on the CO/Pd(111) photodesorption
dynamics and points to a phonon-dominated dynamics.

Chapter 7 investigates the femtosecond laser-induced desorption of CO/Pd(111)
surface under different conditions than those considered in AIMDEF. To begin
with, the transferability of our 0.75 ML PES towards a 0.33 ML coverage and that
of a 0.33 ML towards a 0.75 ML adlayer is examined. We find that incorporating
data from both coverages to train an EANN PES is convenient to solve the energy
mismatches between coverages and to gain accuracy in their analysis. Subsequently,
a multicoverage EANN PES is developed with AIMDEF data at both 0.33 and 0.75 ML
adlayers, both coming from (Te,Tl) − AIMDEF and from dynamics that only allow
electron interactions with adsorbates (Te − AIMDEF). This multicoverage PES
demonstrates high accuracy and transferability, allowing successful simulation of
CO desorption even at intermediate coverages not included in the training, such as
0.60 ML.
Afterwards, around 100 000 MDEF trajectories are calculated under different

absorbed laser fluence and coverage conditions, for Te − MDEF (only electron
excitation on adsorbates allowed) and (Te,Tl) −MDEF situations. Our simulations
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show that the probability of CO desorption increases with coverage and that there
is a superlinear relationship between desorption probability and absorbed laser
fluence, hence consistent with the DIMET regime. Moreover, we find that both
hot electrons and phonons contribute to the desorption process, with the phonon
mechanism dominating at higher fluences and longer time scales. Additionally,
it is also noted that CO molecules can desorb directly or after being temporarily
trapped in the physisorption region, with the latter phenomenon appearing to be
more pronounced at higher coverages. We also find that CO moves along the full
surface plane after becoming excited and that those desorbing molecules do not
take any preferred polar angle to desorb.

In addition, two-pulse correlation (2PC) experiments are also simulated for both
0.33 and 0.75 ML adlayers to further analyze the desorption mechanisms and the
relative roles of electrons and phonons. The simulations qualitatively reproduce
the experimental observations, suggesting that desorption is a synergistic process
driven by both subsystems. However, some discrepancies are found with the
experimental data, especially at low coverage and negative time delays, indicating
the need for further investigations. Despite this, our study overall demonstrates the
effectiveness of machine-learning-based PESs for simulating complex laser-induced
desorption processes on metallic surfaces. The developed MDEF methodology
provides a deeper understanding of the CO desorption dynamics on Pd(111) and
lays the groundwork for future studies in other complex systems and under various
experimental conditions.
Chapter 8 describes the femtosecond laser-induced desorption and potential

oxidation of CO in theO+2CO/Pd(111) system. UsingDFT calculationswith the vasp
code, we first determine the most energetically favorable arrangement of CO and O
adsorbates on the Pd(111) surface. Our relaxation studies show that the minimum
energy configuration for the unperturbed system corresponds to O atoms adsorbed
at fcc sites and CO molecules at top and hcp sites. We then thermalize the system
at an initial temperature of 90 K to prepare for photodesorption dynamics. We then
perform AIMDEF simulations under various conditions, including two different
laser fluences and different types of simulations (Te − AIMDEF and (Te,Tl) −
AIMDEF).

We observe that CO molecules and O atoms, when excited, gain significant
mobility along the 𝑧 axis, which is perpendicular to the surface, and the 𝑥𝑦 plane
parallel to the surface, the mobility being enhanced when both electron and phonon
excitations are considered. In this respect, O atoms occasionally dive below the top-
most Pd layer and CO desorbs either directly or after remaining transiently trapped,
as seen for CO/Pd(111). Our simulations also reveal that both CO desorption and
recombinative oxidation to form CO2 can occur, especially when both electronic
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and phononic excitations are considered, this further implying the existence of a
cooperative effect of both channels in adsorbate excitation. Although recombinative
oxidation happens less frequently than desorption, especially at higher fluence, it is
almost as frequent as desorption for lower fluence. Nonetheless, the statistics of the
(Te,Tl) − AIMDEF simulations are at the moment too limited and it is not possible
to extract reliable conclusions in this respect. Furthermore, we have examined the
desorption and reaction probabilities for each adsorption site. Interestingly, most
of the desorbed CO, including the single CO2 desorption occurring at each fluence,
are molecules that were initially adsorbed at top sites, which are characterized by a
higher desorption energy than those adsorbed on hcp sites. The additional analysis
of the adsorbate kinetic energies evidences that the latter molecules initially gain
slightly more energy than those at top. Altogether, these results showing more
desorption from top sites remark that the laser-induced dynamics in this system
cannot be interpreted in terms of the energetics under equilibrium conditions.

To end with, the main conclusions of this Thesis, along with additional remarks
on future research, are presented in Chapter 9.
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0Resumen

Esta Tesis se centra principalmente en el estudio y la comprensión, desde una
perspectiva teórica, de la desorción inducida por láser de femtosegundo del CO
adsorbido sobre una superficie de Pd(111) con diferentes recubrimientos. Asimismo,
se aborda la fotodesorción y la fotooxidación de CO en Pd(111) cuando la superficie
está cubierta con 0,25 monocapas (ML) de oxígeno y 0,50 ML de monóxido de
carbono (0,25 ML O + 0,50 ML CO/Pd(111)).

El Capítulo 1 presenta la investigación desarrollada en esta Tesis. El paladio (Pd)
es un metal de transición con conocidas propiedades catalíticas, especialmente para
reacciones de hidrogenación, deshidrogenación y oxidación. Por ello, se emplea en
muchas aplicaciones relacionadas con la catálisis heterogénea, como en sistemas
de escape de automóviles, tecnologías de pilas de combustible o producción de
compuestos para la industria agroquímica o farmacéutica, entre otras. También se
utiliza en sensores de detección de gases. Por estas razones, resulta crucial entender
la dinámica del Pd en diferentes contextos, dada la relevancia creciente de este metal
en la catálisis heterogénea y en la industria química. Entre los procesos químicos
más relevantes en los que participa el Pd se encuentran la adsorción y desorción de
átomos y moléculas en fase gaseosa. Además, una de las moléculas más comunes
en las reacciones catalizadas por Pd es el monóxido de carbono (CO). Partiendo de
esta base, queremos llevar a cabo un estudio teórico de la desorción inducida por
láser de femtosegundo del CO adsorbido en Pd(111) [CO/Pd(111)], y también de la
fotodesorción y fotooxidación de CO en la superficie Pd(111) cubierta con 0,25 ML
de oxígeno atómico (O) y 0,50 ML de CO [O+2CO/Pd(111)]. Mediante el estudio de
ambos sistemas bajo diversas condiciones iniciales —por ejemplo, bajo diferentes
coberturas de CO y fluencias del láser— pretendemos desentrañar los mecanismos
subyacentes a estos procesos químicos inducidos por láser.

Tal y como han concluido diferentes trabajos experimentales previos, el CO/Pd(111)
exhibe complejas propiedades estructurales que varían con el recubrimiento, pre-
sentando más de 15 configuraciones estables de CO adsorbido en Pd(111). Por
ello, un sistema adsorbato-sustrato tan complejo requiere de modelos teóricos
sofisticados para determinar con exactitud los sitios de adsorción, el acoplamiento
energético y la dinámica de reacción. Nosotros buscamos simular la dinámica de
desorción bajo excitación de láser de femtosegundo empleando dinámica molecular
ab initio con fricción electrónica y termostatos [(𝑇𝑒 ,𝑇𝑙 )-AIMDEF], la cual incorpora
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de forma efectiva las excitaciones, tanto electrónicas como fonónicas, inducidas por
el láser, mientras que las fuerzas adiabáticas se calculan sobre la marcha a partir
de primeros principios mediante la teoría del funcional de la densidad (DFT). Sin
embargo, el alto coste computacional asociado al cálculo de fuerzas adiabáticas
con DFT limita este tipo de simulaciones a escalas temporales cortas y a pequeños
conjuntos estadísticos. Para superar estas limitaciones, entrenamos superficies de
energía potencial basadas en redes neuronales (NN PESs) usando datos de AIMDEF
y empleamos estas NN PESs para realizar simulaciones de dinámica molecular
con fricción electrónica y termostatos [(𝑇𝑒 ,𝑇𝑙 )-MDEF], equivalentes en precisión
pero mucho más eficientes computacionalmente. Este método alternativo permite
extender las simulaciones a escalas temporales más largas, usar conjuntos de datos
más amplios y estudiar la dinámica inducida por láser bajo condiciones iniciales
más diversas.
Durante nuestra investigación pretendemos abordar varios aspectos clave que

quedaron sin resolver en experimentos anteriormente realizados en CO/Pd(111).
Queremos desentrañar el papel relativo de los electrones y fonones de la superfi-
cie en los procesos fotoinducidos. También nos interesa averiguar si existe o no
un efecto isotópico, lo cual está relacionado con qué mecanismo —electrónico o
fonónico— domina en la fotodesorción. Además, nos proponemos simular experi-
mentos de correlación de dos pulsos láser (2PC) para avanzar en la clarificación de la
interacción entre excitaciones electrónicas y fonónicas. Otro objetivo es examinar
cómo varía la probabilidad de desorción de CO con el recubrimiento inicial de CO
y la fluencia del láser, así como el comportamiento del CO tras la excitación, por
ejemplo, en cuanto a su movimiento paralelo y perpendicular a la superficie. Como
paso adicional, extenderemos nuestro enfoque a mezclas de O y CO adsorbidas
en Pd(111), abordando algunas de las cuestiones mencionadas en CO/Pd(111) e
investigando cómo la presencia de oxígeno influye en la transferencia de energía
entre adsorbatos y altera la dinámica de desorción. Nuestros hallazgos deberían
proporcionar una comprensión detallada de los mecanismos de desorción de CO
desde superficies de Pd(111) bajo la excitación con láser de femtosegundo, y la
integración del modelo AIMDEF con NN PESs debería allanar el camino a estudios
similares de reacciones superficiales complejas en otros sistemas con una mayor
viabilidad computacional. En última instancia, las metodologías desarrolladas y los
conocimientos adquiridos a lo largo de este trabajo pueden tener implicaciones más
amplias, beneficiando el diseño de sistemas catalíticos más eficientes y llevando a
mejorar los modelos teóricos en química de superficies.

El Capítulo 2 ofrece una base teórica completa para entender las interacciones
molécula-superficie y cómo se pueden modelar computacionalmente de manera
eficiente en sistemas multiatómicos complejos. El capítulo comienza introduciendo
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el teorema adiabático y la aproximación de Born-Oppenheimer para mostrar cómo
los grados de libertad electrónicos y nucleares de un sistema multiatómico pueden
desacoplarse y, así, simplificar su caracterización teórica.
A continuación, se presenta el método de Kohn-Sham como una herramienta

fundamental para calcular las superficies de energía potencial electrónicas (PES) de
sistemas multiatómicos en DFT y, por ende, para simular la dinámica molecular en
superficies. El capítulo finaliza con una visión general de varios de los funcionales
de intercambio y correlación más utilizados.
El Capítulo 3 se centra en la dinámica de superficies metálicas con moléculas

adsorbidas cuando son excitadas por un pulso láser de femtosegundo. Dicha ex-
citación puede inducir diversos procesos en los adsorbatos, incluyendo desorción,
disociación, recombinación, rotación, vibración y difusión sobre la superficie. El
objetivo principal es entender y describir fenómenos femtoquímicos en superficies
decoradas con adsorbatos, en particular la desorción. Comenzamos describiendo los
mecanismos de fotodesorción, partiendo de algunos apuntes sobre el desarrollo de la
femtoquímica y las técnicas experimentales que han permitido acceder a escalas de
tiempo ultrarrápidas. Este capítulo distingue entre desorción fotoinducida directa
e indirecta, introduciendo conceptos clave como la desorción inducida por una
transición electrónica (DIET) y la desorción inducida por múltiples transiciones
electrónicas (DIMET). Estos mecanismos dependen de la fluencia del láser incidente
e involucran diferentes niveles de excitación electrónica; en particular, en el caso de
DIMET, múltiples excitaciones pueden incrementar las probabilidades de desorción
mediante procesos de ascenso por la "escalera de niveles múltiples”. Como primer
acercamiento a la caracterización teórica de la fotodesorción, se describen breve-
mente dos modelos simples de dos estados: los de Menzel-Gomer-Redhead (MGR)
y Antoniewicz. Aunque estos modelos brindan una comprensión inicial, no logran
explicar observaciones experimentales más complejas, sobre todo en superficies
metálicas, donde las rutas de excitación indirectas y los efectos no adiabáticos
desempeñan un papel significativo. Esto resalta la necesidad de marcos teóricos
más profundos para describir con precisión la dinámica intrincada de los procesos
fotoinducidos en superficies metálicas.

Para sustratos metálicos, se considera el modelo de dos temperaturas (2TM) para
describir el proceso de excitación del sustrato. El 2TM tiene en cuenta la dinámica de
no equilibrio de las temperaturas electrónica y de la red cristalina tras la irradiación
láser. Los electrones absorben la energía del láser, aumentando rápidamente su
temperatura y transfiriendo energía a la red a través del acoplamiento electrón-
fonón. Más adelante, se examina la dinámica de los adsorbatos, centrándose en los
efectos no adiabáticos. En este capítulo se introduce la dinámica molecular con
fricción electrónica (MDEF) para modelar los procesos de transferencia de energía
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entre electrones excitados y núcleos de los adsorbatos, los cuales no son capturados
por la aproximación de Born-Oppenheimer. La aproximación local de fricción
electrónica (LDFA) se emplea para calcular coeficientes de fricción dependientes de
la posición de cada adsorbato, considerando el metal como un gas de electrones
libres homogéneo en cada punto de la superficie. La contribución de excitaciones
fonónicas se incorpora acoplando la red a un termostato, específicamente un ter-
mostato de Nosé-Hoover, para asegurar que la red siga la temperatura dependiente
del tiempo predicha por el 2TM. Esto permite incluir tanto las aportaciones elec-
trónicas como fonónicas en la dinámica del adsorbato. Se discute el cálculo de las
fuerzas adiabáticas, comparando AIMDEF y la MDEF mediada por PES. Si bien
AIMDEF provee gran exactitud al calcular fuerzas con DFT en tiempo real, la MDEF
mediada por PES reduce significativamente los costes computacionales al utilizar
una PES previamente calculada.

El Capítulo 4 aborda los desafíos computacionales en la simulación precisa
de procesos químicos fotoinducidos en superficies metálicas decoradas con gases.
Aunque AIMDEF ofrece un marco sólido y preciso para dichas simulaciones, su alto
coste computacional limita su aplicabilidad a intervalos de tiempo de pocos picose-
gundos y a pequeños conjuntos estadísticos de cientos de trayectorias. Para superar
estas limitaciones, se explora el desarrollo de PES basadas en redes neuronales (NN
PESs) como una alternativa eficiente a AIMDEF. Las redes neuronales ofrecen un
medio para aproximar la compleja PES del sistema adsorbato-sustrato, reduciendo
enormemente los costes computacionales y manteniendo, al mismo tiempo, una
alta precisión. El capítulo comienza con una introducción a las redes neuronales,
detallando sus características generales y el proceso de entrenamiento. Se describen
la arquitectura de redes de alimentación directa (feed-forward), el papel de las
neuronas y las funciones de activación, y los métodos para optimizar los pesos de
la red durante el entrenamiento. Se definen conceptos clave como las funciones de
coste, el sobreajuste (overfitting) y el criterio de parada temprana (early stopping),
destacando su importancia para asegurar la robustez de los modelos de NN.

Posteriormente, el capítulo se centra en los métodos para construir PES basadas
en NN. Se señalan las limitaciones de los primeros enfoques de redes feed-forward,
que carecían de transferibilidad y preservación de simetrías. La introducción de los
potenciales de redes neuronales de alta dimensión (HDNNP) por Behler y Parrinello
supuso un gran avance, al resolver estas limitacionesmediante el uso de funciones de
simetría centradas en átomos (ACSFs) que garantizan invariancia bajo traslaciones,
rotaciones y permutaciones de átomos. Se explican las ACSFs, incluyendo las
funciones de simetría radiales y angulares, y se discuten los desafíos en la selección
de parámetros apropiados para representar con precisión los entornos atómicos.
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También se comenta brevemente la evolución de los HDNNP hacia versiones más
sofisticadas.

A continuación, la atención se centra en el enfoque de redes neuronales de átomos
incrustados (EANN), inspirado en el método del átomo incrustado (EAM) aplicado a
sistemas metálicos. El modelo EANN utiliza orbitales de tipo gaussiano (GTO) para
construir densidades atómicas incrustadas que preservan de forma inherente las
simetrías requeridas. Este enfoque extiende la aplicabilidad del EAM, permitiendo
un modelado más preciso tanto de sistemas metálicos como no metálicos. En este
sentido, se discute la formulación matemática de EANN, incluida la construcción de
densidades incrustadas y el proceso de entrenamiento que incorpora tanto energías
como fuerzas derivadas de datos AIMDEF.
El Capítulo 5 se dedica al estudio concreto de la desorción inducida por láser

de femtosegundo de CO adsorbido en una superficie de Pd(111) con una cobertura
específica de 0.75 ML, utilizando una PES generada mediante el método EANN
(EANN PES). Los datos utilizados para entrenar la PES se obtuvieron de simula-
ciones AIMDEF previas del mismo proceso y sobre el mismo sistema gas-superficie,
cuyos detalles relevantes se describen al inicio del capítulo. Esta caracterización
incluye la configuración del sistema, los parámetros computacionales y las condi-
ciones experimentales simuladas. Se enfatiza que modelar reacciones inducidas
por láser requiere considerar múltiples adsorbatos, variaciones en la cantidad de
recubrimiento sobre la superficie y fluctuaciones significativas en la temperatura de
la superficie, aumentando la complejidad del espacio de configuraciones atómicas.
Posteriormente, se detalla el proceso de construcción de la EANN PES para el

sistema CO/Pd(111) a 0.75 ML. Se selecciona un conjunto representativo de datos
de entrada para el entrenamiento, clasificando las trayectorias según el número de
eventos de desorción observados. Se optimizan parámetros específicos de EANN,
como la arquitectura de la red neuronal y los parámetros presentes en los GTOs
dentro del modelo EANN, buscando un equilibrio entre exactitud y eficiencia com-
putacional. Se determina que una arquitectura con dos capas ocultas de 60 nodos
cada una (60-60) proporciona el mejor rendimiento en términos de precisión y
tiempo de cálculo. La calidad de la PES entrenada se evalúa, en primera instancia,
usando un enfoque estático, comparando las energías y fuerzas predichas por la
PES con resultados previos calculados con AIMDEF en un conjunto independiente
de configuraciones no utilizado en el entrenamiento. Se observa cómo los errores
máximos iniciales en las fuerzas atómicas se reducen tras identificar y añadir al
conjunto de entrenamiento aquellas configuraciones que contribuyen significativa-
mente a los errores antes de reentrenar la PES. Esta refinación también conduce a
una menor raíz del error cuadrático medio (RMSE) en energías y fuerzas atómicas.
Para incluir las fuerzas de fricción electrónica en las simulaciones, se desarrolla un
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método de ajuste numérico para modelar la densidad electrónica de la superficie
necesaria para calcular los coeficientes de fricción en el marco de la aproximación
LDFA. Se propone una función generadora de densidad (DGF) basada en una suma
de funciones exponenciales, con parámetros ajustados para reproducir los valores
de densidad electrónica obtenidos en las simulaciones AIMDEF.

A continuación, se llevan a cabo simulaciones de dinámica molecular con fricción
electrónica y termostatos [(Te,Tl) −MDEF], incluyendo interacciones tanto con
electrones calientes como con fonones, empleando la PES optimizada y la DGF
propuesta. Se generan dos conjuntos de datos, uno de 100 trayectorias con las
mismas configuraciones iniciales usadas en las simulaciones AIMDEF y otro de
2000 trayectorias. Ambos reproducen con gran precisión los datos de desorción de
CO proporcionados en las simulaciones AIMDEF originales, tales como las proba-
bilidades de desorción y las distribuciones de energía de las moléculas desorbidas.
Además, la mejora estadística lograda por la eficiencia computacional de MDEF
permite un análisis más detallado de los procesos dinámicos involucrados. Como
ejemplo preliminar, se estudian los estados rovibracionales de las moléculas de CO
desorbidas en la etapa inicial de la dinámica utilizando una aproximación semi-
clásica. Se determina que la mayoría de estas moléculas desorbidas se encuentran en
el estado vibracional fundamental y en niveles rotacionales bajos, proporcionando
información valiosa sobre cómo se excita el CO durante el proceso de desorción.
También se destaca cómo el uso de EANN PESs reduce significativamente los tiem-
pos de cálculo en comparación con las simulaciones AIMDEF —de varios días a
apenas segundos por trayectoria, bajo condiciones equivalentes— sin sacrificar
exactitud computacional.

ElCapítulo 6 presenta el estudio de la dinámica de fotodesorción de dos isotopól-
ogos de CO, 12C16O y 13C18O, con una cobertura de 0.75 ML bajo condiciones de alta
fluencia láser. Empleando nuestra PES para CO/Pd(111) con un recubrimiento igual
a 0.75 ML, realizamos MDEF extensiva para explorar posibles efectos isotópicos en
el proceso de desorción. Se llevan a cabo dos tipos de simulaciones: un conjunto de
(Te,Tl) −MDEF y otro que sólo incluye interacciones fonónicas (Tl −MDEF). Para
cada tipo de cálculo se generan 2000 trayectorias. Nuestros resultados muestran
pequeñas diferencias en las probabilidades de desorción entre los isotopólogos en
tiempos cortos (hasta 4 ps) en las simulaciones (Te,Tl) −MDEF, atribuibles a las
interacciones con electrones calientes. Sin embargo, estas diferencias se vuelven
insignificantes al extender las simulaciones hasta 50 ps, ya que ambos isotopólogos
presentan probabilidades y tasas de desorción similares, indicando que los mecanis-
mos mediados por fonones dominan la desorción a escalas temporales más largas.
Las tasas de desorción también respaldan este hallazgo, mostrando patrones casi
idénticos para ambos isotopólogos en cada tipo de simulación, con picos más tem-

xx



pranos y marcados en (Te,Tl)−MDEF debido a la influencia inicial de los electrones
calientes. Además, el análisis de los estados vibracionales de las moléculas de CO
desorbidas revela una excitación vibracional mínima, inducida principalmente por
interacciones con electrones calientes. Aunque se observa un ligero efecto isotópico
en la cola de alta energía de las moléculas desorbidas, favoreciendo la excitación
vibracional del isotopólogo más ligero, este efecto se limita a alrededor del 1% de
total de moléculas desorbidas. En consecuencia, nuestro estudio no encuentra un
efecto isotópico significativo en la fotodesorción de CO/Pd(111) y apunta a una
dominación de los fonones en la dinámica analizada.
El Capítulo 7 investiga la desorción inducida por láser de femtosegundo de

CO/Pd(111) bajo condiciones diferentes a las consideradas en AIMDEF. En primer
lugar, se examina la transferibilidad de nuestra PES a 0.75ML hacia un recubrimiento
de 0.33 ML y viceversa. Según nuestros resultados, incorporar datos de ambos
recubrimientos para entrenar una EANN PES resulta conveniente para solventar
las diferencias de energía entre recubrimientos y mejorar la precisión del análisis.
A continuación, se desarrolla una PES EANN para varios recubrimientos, con
datos AIMDEF tanto a 0.33 como a 0.75 ML anteriormente obtenidos a partir de
(Te,Tl) − AIMDEF y de simulaciones que solo permiten interacción electrónica
con adsorbatos (Te − AIMDEF). Esta PES multirrecubrimiento demuestra gran
exactitud y transferibilidad, permitiendo simular con éxito la desorción de CO
incluso a recubrimientos intermedios no incorporados en el entrenamiento, como
el de 0.60 ML.
Posteriormente, se calculan alrededor de 100 000 trayectorias MDEF bajo difer-

entes condiciones de fluencia láser absorbida y cobertura, para situaciones Te −
MDEF (solo excitación electrónica en adsorbatos) y (Te,Tl) − MDEF. Nuestras
simulaciones muestran que la probabilidad de desorción de CO aumenta con el
recubrimiento y que existe una relación superlineal entre la probabilidad de des-
orción y la fluencia láser absorbida, compatible con el régimen DIMET. Además,
encontramos que tanto los electrones calientes como los fonones contribuyen al
proceso de desorción, dominando el mecanismo fonónico a mayores fluencias y
escalas de tiempo más largas. Asimismo, observamos que las moléculas de CO
pueden desorber directamente o después de quedar temporalmente atrapadas en
la región de fisisorción, fenómeno más marcado a mayores coberturas. También
se verifica que el CO se mueve a lo largo de todo el plano superficial tras ser exci-
tado, y que las moléculas desorbidas no presentan un ángulo polar preferente para
desorberse.

Además, se simulan experimentos de correlación a dos pulsos (2PC) para adláy-
eres de 0.33 y 0.75 ML con el fin de estudiar con más detalle los mecanismos de
desorción y el papel relativo de electrones y fonones en estos procesos. Las simula-
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ciones reproducen cualitativamente las observaciones experimentales, sugiriendo
que la desorción es un proceso sinérgico impulsado por ambos subsistemas. Sin
embargo, se hallan algunas discrepancias con los datos experimentales, especial-
mente a bajos recubrimientos y retardos temporales negativos entre el pulso de
bombeo y el de medición, lo que indica la necesidad de llevar a cabo investigaciones
adicionales. A pesar de ello, nuestro estudio demuestra la eficacia de las PES basadas
en aprendizaje automático para simular complejos procesos de desorción inducida
por láser en superficies metálicas. La metodología MDEF desarrollada proporciona
una comprensión más profunda de la dinámica de desorción del CO en Pd(111) y
sienta las bases para futuros estudios en otros sistemas complejos y bajo diversas
condiciones experimentales.
El Capítulo 8 describe la desorción inducida por láser de femtosegundo y la

posible oxidación de CO en el sistema O+2CO/Pd(111). Mediante cálculos DFT con
el código vasp, primero determinamos la disposiciónmás favorable energéticamente
de los adsorbatos CO y O sobre la superficie Pd(111). Nuestros cálculos de relajación
energética muestran que la configuración de energía mínima para el sistema sin
perturbar corresponde a los átomos de O en sitios tipo fcc y a las moléculas de CO en
sitios top y hcp. Posteriormente, se termaliza el sistema a una temperatura inicial de
90 K para prepararlo para las dinámicas de fotodesorción. A continuación, se llevan
a cabo simulaciones AIMDEF bajo diversas condiciones, incluyendo dos fluencias
láser diferentes y distintos tipos de simulaciones (Te−AIMDEF y (Te,Tl)−AIMDEF).

Observamos que lasmoléculas de COy los átomos deO, al ser excitados, adquieren
una movilidad significativa tanto en el eje 𝑧, perpendicular a la superficie, como en
el plano 𝑥𝑦 paralelo a la misma, siendo esta movilidad mayor cuando se consideran
excitaciones electrónicas y fonónicas. En este sentido, los átomos de O ocasional-
mente se sumergen por debajo de la capa superficial de Pd, mientras que el CO se
desorbe ya sea directamente o tras permanecer atrapado transitoriamente, como se
observó para el CO/Pd(111). Nuestras simulaciones también revelan que tanto la
desorción de CO como la oxidación recombinativa para formar CO2 pueden ocurrir,
especialmente cuando se consideran excitaciones electrónicas y fonónicas, lo que
implica la existencia de un efecto cooperativo de ambos canales en la excitación
de las especies adsorbidas. Aunque la oxidación recombinativa ocurre con menor
frecuencia que la desorción, especialmente a mayor fluencia, se acerca a ser casi
tan frecuente como la desorción a menor fluencia. Sin embargo, la estadística de
las simulaciones (Te,Tl) − AIMDEF es por el momento demasiado limitada y no
es posible extraer conclusiones sólidas al respecto. Asimismo, hemos examinado
las probabilidades de desorción y reacción para cada sitio de adsorción. Llama la
atención que la mayor parte del CO desorbido, incluyendo la única desorción de
CO2 que se observa en cada fluencia, corresponde a moléculas que inicialmente
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estaban en sitios top, caracterizadas por una mayor energía de desorción que las
adsorbidas en sitios hcp. El análisis adicional de las energías cinéticas de los ad-
sorbatos evidencia que las moléculas en hcp adquieren inicialmente un poco más
de energía que las de sitios top. En conjunto, estos resultados muestran que la
dinámica inducida por láser en este sistema no puede interpretarse únicamente en
términos de la transferencia de energía bajo condiciones de equilibrio.
Finalmente, en el Capítulo 9 se presentan las principales conclusiones de esta

Tesis, junto con comentarios adicionales sobre posibles investigaciones futuras.
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0Eskerrak
Lehenik eta behin, nire esker onik sakonena adierazi nahi diet nire tesi-zuzendariei,
Maite Alducin eta Joseba Iñaki Juaristiri. Eskerrik asko hasieratik nigan konfi-
antza izateagatik eta Materialen Físika Zentroko (CFM) gas eta azal solidoen taldea
(Gas/Solid Interfaces) niretzat irekitzeagatik. Zuen gertutasuna, dedikazioa eta
pazientzia oinarrizkoak izan dira urte hauetan zehar nire garapen zientifikoan. Es-
kerrik asko irakasteagatik, gidatzeagatik eta hainbeste ikasteko aukera emateagatik;
zuen laguntza fase bakoitzean erabakigarria izan da. Baina, batez ere, bihotzez
eskertzen dizuet nirekin hartu duzuen konpromisoa eta inoiz bakarrik ez uztea.
Beti gogoratuko zaituztet maitasun bereziz, nire “guraso zientifikoak” bezala. Nire
eskerrik beroenak Ricardo Díez Muiñori ere, taldean hurbiltasun berberarekin hartu
ninduelako.
CFMko Gas/Solid Interfaces taldeko lankideei: Auguste Tetenoire, Alejandro

Rivero, Alberto P. Sánchez Muzas, Raúl Bombín, Oihana Galparsoro, Ivan Žugeč
eta Natalia Koval. Eskerrik asko urte hauetan guztietan eman didazuen adiskide-
tasunagatik, adeitasunagatik eta laguntzagatik. Giro paregabea sortu duzue bai
talde-bileretan bai CFMtik kanpoko topaketetan. Era berean, CFMn aldi baterako
egon diren beste ikertzaileei ere eskerrak eman nahi dizkiet, elkarrekin bizi izan
ditugun une ederrengatik. Bereziki, hiru lankide nabarmendu nahi ditut. Augusteri,
lau urtez nire bulegokide izateaz gain, VASP eta Python erabiltzen hasi nintzenean
laguntzeagatik. Alejandrori, sare neuronalak trebatzen irakasteagatik, geroago nire
ikerketan oso baliagarriak izan ziren irakaspenak eman zizkidalako. Eta bereziki
Albertorentzat, marruskadura elektronikoarekin dinamika molekularra (MDEF)
kodea eta kalkuluen analisi tresnak garatzeko egin zuen lanarengatik, tesi honetako
emaitza garrantzitsuenetako asko lortzeko oinarrizkoak izan zirelako. Eskerrik
asko zure adeitasunagatik, laguntzeko prestutasunagatik eta zurekin lan egitea es-
perientzia aberasgarria bihurtzeagatik. Era berean, beste ikerketa-talde batzuetako
lankideei ere eskerrak, haien ekarpena lan honetarako ezinbestekoa izan delako:
besteak beste, Yaolong Zhang, Ce Hu eta Bin Jiang, atomo txertatuen sare neuronal
(EANN) eredua eta kodea garatzeagatik; Juraj Ovčar eta Ivor Lončarić, MDEF simu-
lazioetan erabili den dentsitate-sorgailu enpirikoaren funtzioan egindako lanagatik.
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presente egoteagatik. Ich möchte mich auch bei Elisabeth für ihre Großzügigkeit
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1 Introduction

Palladium (Pd) is a transition metal with interesting features. Within the family of
platinum-group elements, to which Pd belongs with platinum, rhodium, ruthenium,
osmium, and iridium, it is the least dense element, and its melting point is the lower
one. This metal does not oxidize at ambient temperatures in contact with air, and
at room temperature it can absorb up to 900 times its volume of hydrogen and
form palladium hydride (PdHx) [1, 2]. In addition, Pd facilitates various chemical
reactions, for instance, hydrogenation and dehydrogenation [1, 3, 4] or carbon
monoxide (CO) and hydrocarbon oxidation [5, 6, 7]. Properties such as these
motivate its wide use for a number of applications. Perhaps the most popular are
related to gas-solid heterogeneous catalysis, as solid catalysts are involved in the
international production of more than 90 % of all chemicals in the industry [4]. Pd is
commonly used in motor vehicle catalytic converters, mainly in three-way catalytic
converters of car exhaust systems, where some dangerous gases are converted into
less life- and environmental-harmful substances [5]. In these catalysts, nitrogen
oxides (NOx) are reduced to N2, while CO and hydrocarbons are oxidized to CO2
and H2O. Recall in particular that CO in the gas phase is colorless, odorless, and
tasteless. It is also neurotoxic and highly flammable, so therefore its oxidation
as carbon dioxide (CO2) is crucial for a number of situations, particularly at low
temperatures due to the irreversibility of this process [8, 9]. In addition, its ability
to absorb large volumes of H2 and to catalyze hydrogenation and dehydrogenation
processes makes Pd suitable for hydrogen-related technologies such as hydrogen
storage, purification, or fuel cells, either alone or as part of metal alloys [2, 10].
Regarding fuel cells, Pd can be of great use to avoid poisoning of the catalyst with
gases like CO [11]. Furthermore, Pd-catalyzed reactions play a role in developing
agrochemical or pharmacological chemicals, or new materials, to list some other
examples [12]. Another interesting use of Pd is for gas sensing technologies, using
adsorption to detect and measure the environmental concentration of a given gas,
and also profiting from desorption to reset the sensors for new measurements [6,
13, 14, 15]. Examples such as these reveal the growing relevance of Pd for various
technological purposes, and hence a proper understanding of Pd dynamics under
different contexts is essential.
Among these, we are interested in learning more about adsorption and desorp-

tion. In general, in processes such as heterogeneous catalysis, photocatalysis, and
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Chapter 1 Introduction

nanochemistry on surfaces, to list some examples, adsorption and desorption of
atoms and/or molecules occur very frequently, so their characterization becomes
essential [16]. From a chemical perspective, any adsorbed species is able to change
the electronic properties or geometric structure of Pd when it is chemisorbed, and
hence its catalytic features may be modified as a result. Both chemical processes
may also be useful to search active adsorption sites on any surface and to gain
broader insights into reaction dynamics of the latter one. Consequently, a com-
prehensive knowledge of the interplay between any adsorbing and/or desorbing
species and a given substrate is of great theoretical and applied interest.

Now let us consider a Pd(111) substrate, with adsorbed CO gas, initially in isola-
tion (Chapters 5 to 7), and later accompanied by O atoms (Chapter 8). CO adsorbed
on Pd(111), denoted CO/Pd(111), is a system known for its intricate structural prop-
erties. Depending on coverage, from adlayers smaller than 0.33 ML to saturation
coverage at 0.75 ML, there are a minimum of 17 ordered structures [17]. CO binding
structures in Pd (111) transition from three-fold fcc site adsorption at coverages
of 0.33 ML and below, to a mixture of three-fold hollow sites (mainly bridge and
near-bridge) at coverages in the range [0.50,0.67] ML, plus top CO adsorption from
0.60 ML on, to another combination of top and three-fold hollow until reaching satu-
ration at 0.75 ML. This consensus was reached after different experimental works in-
volving various techniques, for instance low energy electron diffraction (LEED) [17,
18, 19], infrared reflection-absorption spectroscopy (IRAS) [20, 21, 22], sum fre-
quency generation spectroscopy (SFG) [23], photoelectron diffraction [24], high
resolution X-ray spectroscopy [25], and scanning tunneling microscopy (SFM) [26].
This also found support from different computational works [27, 28, 29]. There
exists a strong relationship between substrate–adsorbate energy coupling and ad-
layer –or, more precisely, on the specific adsorption sites– for CO/Pd(111), which
has been investigated experimentally with femtosecond laser-induced desorption
and two-pulse correlation (2PC) techniques, with subsequent phenomenological
proposals to explain it [30] and more elaborated theoretical works supported in
computational simulations of femtosecond CO photodesorption [31].
On the basis of the latter two works mentioned in the previous paragraph, the

work presented in this Thesis aims to gain a deeper insight on how CO desorbs from
Pd under femtosecond laser excitation conditions. Under irradiation of femtosecond
pulses in the ultraviolet, visible, and near-infrared ranges, a large fraction of the
light is absorbed by a metal surface [16, 32, 33]. When the latter is decorated with
adsorbates, these can undergo different chemical reactions, diffusion, and desorption
as a result. Photons interact with the metallic target and this leads to the emergence
of electron-hole pairs that may populate excited adsorbate-substrate states. These
initially nonthermal hot electrons scatter to other electrons, as well as to surface
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phonons, resulting in rapid electronic relaxation into a hot Fermi-Dirac distribution
and gradual heating of the substrate lattice. These excited electronic states and
excited phonons couple to the adsorbate degrees of freedom, leaving kinetically
excited adsorbates after relaxation. Interplay of both subsystems can either enhance
the reaction rates of some chemical processes undergone by adsorbates or even
give rise to new reaction channels [16, 30, 32, 33, 34, 35, 36, 37, 38].
Notably, a key parameter in femtosecond photoexcited adsorbate-substrate re-

actions is the fluence of the incoming laser. This affects the density of excited
substrate electron-hole pairs that adsorbed species can encounter. Particularizing
on desorption, two regimes can be distinguished [16, 32]. For fluences below some
cutoff that depends on the features of the adsorbate-substrate complex, desorption
induced by an electronic transition (DIET) takes place. Here, an adsorbate gains
kinetic energy after coupling a photoexcited electron-hole pair and either relaxes
back to its ground state rapidly or, if the energy input is larger than the adsorption
energy, the adsorbate surpasses its adsorption well and can desorb. On the contrary,
if the fluence is higher than a certain threshold, desorption induced by multiple
electronic transitions (DIMET) becomes the predominant reaction mechanism. In
this case, the adsorbate encounters a larger density of hot electrons than for DIET,
so each adsorbed species on the verge of relaxation can experience secondary
excitations with a larger probability than in DIET. Hence, adsorbates can undergo
several consecutive excitation-deexcitation cycles, preventing them to relax back
to their ground states, so they "ladder-climb" the desorption barriers and ultimately
overcome them instead. As a result, the reaction output experiences a dramatic
increase in the DIMET regime compared to DIET, as it becomes superlinear with
fluence instead of linear as for DIET. Furthermore, because of DIMET, the kinetic
energy becomes approximately linear with the incoming fluence, and reaction
yields may vary for different isotopes of the adsorbed species, i.e., isotope effects
may occur depending on the gas-solid system under study. Therefore, theoretical
proposals that characterize the DIMET regime well aim to reproduce these prop-
erties in accordance with experimental observations, while providing time- and
space-resolved insights into the photoinduced dynamics.

From the theoretical side, the DIMET mechanism can be efficiently modeled on
the basis of molecular dynamics with electronic friction (MDEF) [39, 40, 41, 42,
43, 44, 45, 46, 47, 48, 49]. Two main ingredients are involved in such approaches.
First, the interaction between the laser pulse and the surface is characterized
macroscopically according to the two-temperature model [50]. This yields two
time-dependent temperatures, one corresponding to the electron bath, excited first
after pulse absorption, and the other for the subsequently heated phonons. Addition
of an electron-phonon coupling constant ensures the thermal interplay between
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electronic and phononic subsystems during dynamics. Secondly, the response
of the adsorbates to the excited electrons is described by a Langevin equation of
motion. Adsorbates are considered to stay in the ground state potential energy
surface (PES), therefore experiencing adiabatic forces handled within the Born-
Oppenheimer approximation, while nonadiabatic effects due to hot electrons (i.e.,
the aforementioned "ladder-climbing") is simulated with stochastic and dissipation
forces, both due to electronic friction and proportional to the transient electronic
temperature.

However, modeling the adiabatic forces in MDEF simulations was a hard task due
to the large computational demand of density functional theory (DFT) calculations.
Hence, initially its inclusion in the mentioned simulations of femtosecond laser-
induced reactions and in more general gas-surface dynamics studies [51, 52] was
tackled with approximate methods. A common option employed in the mentioned
works was to generate the ground-state adiabatic PES for the adsorbate-substrate
of interest, but, again, the computational cost restricted this possibility to quite
simplified systems. Thus, it was possible to tackle six-dimensional PESs for single
diatomic adsorbates, but neither energy exchange with the surface nor coverage
effects could be treated with this dimensionally restricted PES. A further improve-
ment to incorporate surface temperature effects into six-dimensional gas-surface
dynamics consisted of using the generalized Langevin oscillator (GLO) model [53,
54, 55, 56], where all surface atoms are assumed to move synchronously. Exam-
ples of its application in photoinduced desorption simulations are the studies of
O2/Ag(110) [45, 46] and CO/Ru(0001) [47, 48]. Still, an important downside of GLO
is its inability to capture the surface deformations at the atomic level, which can be
particularly important at the high surface temperatures reached upon irradiating
the surface.
The development of ever more powerful computers during the last decade pro-

moted the use of ab initio molecular dynamics (AIMD) in many of the gas-surface
dynamics studies. In this type of simulations the adiabatic forces are calculated
on-the-fly with DFT along the whole trajectory and it is possible to incorporate
naturally surface temperature effects by including all the necessary degrees of
freedom in the equations of motion. Nonadiabatic effects due to the coupling of the
moving gas-species/adsorbates with the metal electrons were also introduced in the
ab initio molecular dynamics with electronic friction (AIMDEF) method developed
in Refs. [57, 58, 59, 60, 61, 62]. AIMD and AIMDEF are the most advanced and
reliable methods to use in gas-surface dynamics when extensive statistical sampling
of the initial conditions is not mandatory. In the particular case of femtosecond
laser-induced reactions, the effect of the laser-excited electrons, the electron-excited
phonons, and also interadsorbate interactions can be successfully described with
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(Te,Tl)−AIMDEF simulations [31] that will be described in more detail in Section 3.
Crucial insights into the strong coverage dependence of photoinduced desorption
of CO from Pd(111) [31] and into the competition between CO desorption and
oxidation on Ru(0001) with different coverages [63, 64, 65] have been obtained
thanks to (Te,Tl) − AIMDEF simulations. Also the laser-induced recombinative
desorption of different isotopologues that was observed in experiments preformed
in Ru(0001) with varying mixtures of H and D adsorbates [37] was reproduced
with simpler (Te,Tl) − AIMDEF simulations that only included the effect of the
laser-excited electrons [66].

The (Te,Tl) −AIMDEF framework provides an improved and reliable theoretical
description of complex processes involving adsorbates and substrates, but requires
substantial computational resources. Due to this shortcoming, (Te,Tl) − AIMDEF
simulations are typically able to describe intervals of only a few picoseconds after
photoexcitation, and statistical analysis is commonly limited to just a few hundred
trajectories in reasonable computational times. As an example, calculation of a
single trajectory of femtosecond laser excitation of CO/Pd(111) over a time range
of 4.0 ps and with an integration time step of the order of fs takes around 7 days to
complete when 24 cores are utilized. This circumstance also notably restricts the
amount of statistics one can obtain with (Te,Tl) −AIMDEF for a fixed set of initial
conditions to the order of hundreds of trajectories. Therefore, alternative methods
are required to study photoinduced reactions for a broader range of experimental
conditions and dynamical time spans. A powerful way to improve the scope that
is realistically reachable by (Te,Tl) − AIMDEF capabilities has been provided by
machine learning (ML), or more precisely, by neural networks (NNs).

Application of NN schemes for PES production began during the 1990s [67, 68].
Early examples refer to the vibrational spectrum of a polyethilene molecule in both
ground and excited states [69] and in the study of CO adsorption on Ni(111) and H2
recombinative desorption from Si(100) with very simple PESs [70]. The early NN
PESs involved functional expressions whose complexity could be reduced simply by
setting a different structure for NN, which allowed a straightforward evaluation of
energies and atomic forces. Moreover, these models do not require prior knowledge
of the chemical nature of the system, e.g., its chemical bonds. Unfortunately, usage
of plain atomic coordinates and/or angles as NN input parameters resulted in PESs
that were difficult to transfer to system atomic arrangements with different amounts
of atoms and atomic positions. A major advancement in this respect was achieved
in 2007, with the proposal of training NN PESs using translational, rotational, and
atom permutational-invariant descriptors and partitioning the energy of the atomic
arrangement as a sum of the contributions of the atomic species present in the
system [71]. This made it possible to extend the construction of NN PESs beyond
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low amounts of degrees of freedom to systems of arbitrary size. As a result, the
generation and use of NN PESs in molecular dynamics simulations have become
increasingly popular in recent years, as reflected in the increasing number of recent
works available in the literature involving solid-liquid water interfaces [72, 73, 74]
and gas-solid interfaces [75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86]. The work
performed in this Thesis demonstrates that it is also possible to develop accurate
NN PESs to study the complex dynamics and reactions induced by femtosecond
laser pulses. Its impressive accuracy and computational efficiency pave the way
to studies that would otherwise have been infeasible with (Te,Tl) − AIMDEF in
realistic times. The femtosecond laser-induced desorption of CO from Pd(111)
surfaces with different coverages that is studied in this Thesis and published in
Refs. [87, 88, 89] is a good example. By constructing an accurate multicoverage PES,
it has been possible to reproduce and understand many of the experimental findings,
such as the strong coverage dependence of the desorption probability for fixed laser
fluence and the different fluence dependence of the desorption probabilities that is
obtained for each coverage.
Another open question that could not be determined in experiments [30] and

we tried to answer along this Thesis was whether CO desorption from Pd(111)
was electron- or phonon-dominated and if the dominant mechanism changes with
coverage. There are different ways to answer this question. First, we can look
for potential isotope effects, as previously mentioned. In fact, its presence sig-
nals the predominance of the electron mechanism in the excitation of adsorbates.
Notable isotope effects for different systems have been reported in previous experi-
mental works. These include, for instance, the oxidative desorption of O+CO on
Ru(0001) [36, 90], the recombinative desorption of H2 in the H/Ru(0001) system [37],
and the recombinative desorption of O2 in the O/Pd(111) system [91]. In contrast,
there are also reports on systems without isotope effect such as the desorption
of CO from Ru(0001) [92]. In this Thesis we have developed a NN PES trained
on previous (Te,Tl) − AIMDEF calculations, which allowed us to determine the
absence of isotopic effects in the photoinduced desorption of CO/Pd(111) [88].

Another way to determine which mechanism dominates, electronic or phononic,
is provided by two-pulse correlation (2PC). In these experiments, an adsorbate-
substrate complex is irradiated with two short laser pulses separated by a certain
time interval [93]. The first pulse, known as pump pulse, excites the system and
initiates the dynamic processes under study. The second pulse, known as the probe
pulse, is used to measure the time-dependent dynamic properties of the system.
Depending on the full width at half maximum (FWHM) of the 2PC reaction yield
measured at different pump-probe delays, the predominant energy source can be
determined in the adsorbed species. If electrons govern this transfer, widths of
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∼ 1 ps or less are observed, while larger widths are compatible with both electron-
and phonon-mediated energy inputs. Experimentally, this technique has been
applied to systems such as NO/Pd(111) [34], CO/Ru(0001) [36, 92], H/Ru(0001) and
D/Ru(0001) [37], O2/Pd(111) [38], and CO/Pd(111) [30], among others. A theoretical
study of 2PC experiments based on AIMDEF was computationally unaffordable
because it requires to perform statistically meaningful simulations at many different
pump-probe delays. Fortunately, as will be shown in this Thesis, these simulations
can now be conducted with the help of accurate NN PESs.

A third possibility to determine the contribution of electrons and phonons con-
sists in performing different type of MDEF simulations that include or neglect
each of these mechanisms. In particular, one may study the process either when
substrate energy transfer to adsorbates mediated by both hot electrons and phonons
is enabled or when one of these mechanisms is not operating. Then, the reaction
probability under these three different conditions may be explored in order to
better understand the role of both electronic and phononic subsystems in adsorbate
dynamics. Previous AIMDEF works initiated this analysis exploring the initial
picoseconds after laser excitation, finding in particular a cooperation between elec-
trons and phonons in the desorption of CO from Pd(111) [31] and in the desorption
of CO and CO2 from mixed O+CO/Ru(0001) [64]. In this Thesis, the developed
multicoverage CO/Pd(111) NN PES has allowed us to extend the previous AIMDEF
study until 100 ps after laser pulse arrival on the metal substrate and confirm the
dominant role of the phonons [89]. Thus, a promising theoretical methodology to
understand the role of hot electrons and phonons of the substrate driving chemical
processes on adsorbed species has been opened. Trying this on other systems
should be straightforward.

Finally, having as inspiration recent AIMDEF andMDEF studies onO+CO/Ru(0001)
[63, 65, 94, 95], one may speculate whether the presence of atomic O together with
CO could open the chemical path of photoinduced CO oxidation and desorption in
the form CO2. In this respect, an initial AIMDEF characterization should shed some
light on the aforementioned questions and serve as a preliminary basis for a more
in-depth analysis with a suitable NN PES for this adsorbate-substrate complex.
This Thesis focuses on the topics mentioned previously with the following

structure. First, the theoretical foundations of this work are introduced in Part I. To
begin with, the framework to characterize a multiatomic system in its ground state
is introduced in Chapter 2. First, a crucial simplification for solving time-dependent
dynamics on such a system, the adiabatic approximation [96], is described. As
reasoned in the following Section, this is used in order to uncouple the electronic
and nuclear degrees of freedom and determine these dynamics theoretically on the
system ground state PES with Born-Oppenheimer approximation [97]. Next, it is
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explained from an introductory perspective howDFT is used to obtain the electronic
structure. Finally, some of the more popular exchange-correlation functionals in
DFT are reviewed, including those more suitable for describing interactions in
sparse systems like gas-solid systems, which are the focus in this Thesis.
Chapter 3 is devoted to the basics of femtosecond laser-induced desorption on

adsorbate-decorated surfaces. To start with, an overview of photoinduced des-
orption for a general adsorbate-substrate complex is provided. This includes a
description of how adsorbates can be excited directly by the incoming light or
indirectly by the substrate, as well as a brief explanation of some simple primitive
approaches to explain these chemical processes [98, 99]. The next Section focuses
on how femtosecond laser-induced desorption of adsorbed species on metal sur-
faces can be modeled theoretically. On one hand, the incoming laser effects are
modeled using a two-temperature model (2TM) [50] that describes the coupling
of electron and phonon subsystems. On the other hand, adsorbate and substrate
atom dynamics after photoexcitation are described from a microscopic perspective.
Adiabatic forces on atoms are calculated within Born-Oppenheimer approxima-
tion on the basis of the adsorbate-substrate ground state PES. Adsorbate motion
is governed by Langevin equations, with electronic friction forces and stochastic
forces that depend on the electronic temperature 𝑇𝑒 . Moreover, it is explained
how excitations driven by the hot surface lattice on the adsorbates were either
approximated with the GLO model [45, 46, 47, 49] or directly discarded in first
instance, but with different downsides and limitations. These are overcome in more
recent approaches that consider some substrate layers coupled to a Nosé-Hoover
thermostat, as discussed. Altogether, the cornerstones of ab initio molecular dy-
namics with electronic friction [31, 51, 52, 57, 58, 59, 60, 61, 62, 66] are explored in
some detail.

Then, Chapter 4 discusses how machine learning and neural networks appear as
a promising solution to overcome AIMDEF limitations. This chapter starts with a
conceptual introduction of what neural networks are, how they are trained, how
their accuracy is improved, and what risks one should avoid when training a neural
network. Next, an overview of neural network usage for training PESs is presented,
briefly explaining what has been the historic development of this very recent field,
the challenges encountered and the ways to solve them. Finally, one of the more
recent frameworks for neural network PESs training employed along this work,
the embedded atom neural network (EANN) model, is described with more detail.
Afterwards, Part II is devoted to the discussion of the research results yielded

during this work. To begin with, Chapter 5 details the study of CO desorption from
Pd(111) at a 0.75 ML coverage, using data from (Te,Tl) − AIMDEF simulations to
construct an EANN PES. The chapter outline includes the description of (Te,Tl) −

8



Introduction Chapter 1

AIMDEF simulations, the selection of the input data and the EANN parameters
for the construction of the PES, the numerical fitting for friction coefficients, and
the results from molecular dynamics simulations using the precalculated PES. As
discussed, these simulations reproduce the 0.75 ML CO/Pd(111) photodesorption
results with a remarkable level of accuracy and provide new insights into the early
stages of this chemical process.

Using the EANN PES obtained in Chapter 5, Chapter 6 shows a preliminary hint
of the (Te,Tl) −MDEF capabilities regarding the search of a possible isotopic effect
on 0.75 ML CO/Pd(111) photoinduced desorption. First, some theoretical basics
required for our analysis are explained. Next, the chapter focuses on the analysis of
the simulations performed for the light (12C16O) and heavy (13C18O) isotopologues
during a maximum time of 50 ps, ten times larger than the time ranges surveyed
within AIMDEF. Simulations including both surface electrons and phonons to
excite the adsorbates and simulations that only include phonon-mediated energy
input allow us to determine the role of electrons and phonons in quantities such as
desorption probabilities, desorption rates, and CO vibrational states.
Chapter 7 is devoted to a comprehensive MDEF study of CO/Pd(111) photodes-

orption under different conditions. First, the performance of previous 0.75 ML
CO/Pd(111) PES is checked against both 0.75 ML and 0.33 ML adlayers and com-
pared to the predictions of both coverages yielded by a PES trained with 0.33 ML
AIMDEF data. In particular, adsorption wells on both coverages are predicted with
each PES. Making use of the lessons taken from this analysis, the next Section
details the procedure for constructing a multicoverage PES, including parameter
selection, accuracy check, and some preliminary tests on intermediate 0.60 ML
adlayer not present in the EANN training data set. Subsequently, after running
MDEF under different conditions, it is analyzed how CO photodesorption varies
with initial laser fluence for 0.33, 0.60 and 0.75 ML coverages. Also, the experimental
strong coverage dependence of the desorption probability for fixed laser fluence is
reproduced and explained. The detailed analysis of the trajectories provide mean-
ingful information on diverse dynamical properties, such as diffusion on the surface,
existence of dynamics trapping in the physisorption region, as well as the angular
and rovibrational state distributions of the reflected molecules.
To conclude the results part, Chapter 8 presents an AIMDEF study of the pho-

toinduced desorption and oxidation of CO in Pd(111) covered with 0.25 ML O +
0.50 ML CO. The first Section contains details on the DFT calculations, including
determination of the energetically most favorable adsorption sites for O and CO and
thermalization of the system in order to produce a set of initial configurations to per-
form dynamics on. Subsequently, the results of the (Te,Tl) − AIMDEFsimulations
performed in the mixed adlayer under two different fluences are discussed and
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compared with the results obtained for 0.75 ML CO/Pd(111) with (Te,Tl) −AIMDEF
simulations also carry on in this chapter. Quantities such as desorption probabil-
ity, kinetic energy, and adsorbate movement along and over the Pd substrate are
determined, and, apart from CO desorption, CO recombinative oxidation is also
characterized.

Finally, Chapter 9 wraps up the main findings of this Thesis work and discusses
some ideas for future research.
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Part I

Theoretical background





2 Theory of molecule-
surface interactions

2.1 Adiabatic approximation

Studying how a quantum system behaves with time is usually a complex task. From
an analytic perspective, when the Hamiltonian of a system incorporates a time
dependence, its related Schrödinger equation cannot be solved exactly except for
very particular situations and systems. Therefore, approximation methods must be
considered in order to simplify this problem [100]. One of these strategies can be
tackled when a given Hamiltonian changes slowly enough compared to the natural
frequencies of the system under consideration. In such conditions, one can use the
adiabatic approximation, also called the adiabatic theorem.

The adiabatic theorem was first stated by Born and Fock for the case of systems
with discrete, nondegenerate eigenvalues of the Hamiltonian, i.e., for Hamiltonians
whose energy spectra ordering remains stable for all times. For this, originally
it was assumed that the eigenvalues of the energy must be separated sufficiently
between each other to prevent overlapping (gap condition) [96]. Later, Kato proved
its validity in the more general case of the existing degeneracy in the energy eigen-
values [101]. Afterwards, it was reformulated for situations with no gap condition,
such as quantized radiation fields acting on initially unexcited atoms [102]. Its
statement is quite intuitive. For an arbitrary quantum system, let us consider that
the corresponding time-evolving Hamiltonian �̂� (𝑡) has a set of instantaneous eigen-
states {|𝑛(𝑡)⟩} = {|0(𝑡)⟩ , |1(𝑡)⟩ , |2(𝑡)⟩ ...}, which are solutions of the Schrödinger
equation with eigenvalues 𝐸𝑛 (𝑡) only at the considered time instant 𝑡 , i.e., in Dirac
notation,

�̂� (𝑡) |𝑛(𝑡)⟩ = 𝐸𝑛 (𝑡) |𝑛(𝑡)⟩ for all 𝑛 . (2.1)

Now, given an initial state |𝜓 (𝑡 = 0)⟩ = |𝑛(0)⟩, if the Hamiltonian varies slowly with
time, 𝑑�̂�/𝑑𝑡 → 0, then the system evolution is synchronous with �̂� . Therefore,
it remains in its equivalent eigenstate for a given time 𝑡 , |𝜓 (𝑡)⟩ ∼ |𝑛(𝑡)⟩. In other
words, slowly changing conditions allow the system to adapt its configuration state
in response to these evolving conditions. The probability density changes for an
adiabatic system, |𝜓 (𝑡) |2 ≠ |𝜓 (0) |2, but the Hamiltonian eigenstate basis at any
arbitrary time 𝑡 is equivalent (not the same) to the eigenstate basis at 𝑡 = 0. The
slow evolution of the Hamiltonian should not be confused with a perturbative
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theory, as in the latter case the zero-order term of the expansion does not depend
on time, whereas in the adiabatic approximation the full Hamiltonian preserves its
time dependence (in a parametric way).

An adiabatic change of a quantum system has to be distinguished from a diabatic
one. In the latter case, the evolution of the system is fast enough to prevent it from
adapting to the new situation. The system continues under the former conditions,
so that its probability density does not change: |𝜓 (𝑡) |2 = |𝜓 (0) |2. However, its final
state becomes a linear combination of different eigenstates of �̂� (𝑡), which is likely
not as simple as applying an adiabatic transformation to the system.
In this respect, adiabaticity is related to the transfer of work to a quantum

system, in an analogous fashion to the usual thermodynamical definition of an
adiabatic process. When only work is plunged into a system, the spacing between
consecutive energy levels is altered, although their relative ordering does not
change. Furthermore, since no heat transfer is involved, the population of each
energy level or eigenstate remains unchanged because no particle of the system
is excited. In contrast, when heat is exchanged with the system (diabatic process),
energy of the system constituents can vary, and so can do their quantum states as
well, while no modification on the difference in energy between adjacent energy
eigenstates occurs.

But what is understood as fast and slow perturbations? An illustrative example
to distinguish between these situations is a particle trapped in an infinite potential
well, oscillating in a certain mode, i.e. eigenstate of the Hamiltonian. Let us assume
that one of the walls is free to move. If it moves too fast, the particle state cannot
adapt itself to the new well horizontal dimension; its probability density will not
change, but the final state will evolve into a more complex expression based on a
harmonic expansion with a Fourier series. This is an example of a fast or diabatic
process. Conversely, if the wall is displaced slowly enough, the state has enough
time to adapt itself to the new conditions. As a result, the probability density will
vary, but the particle will remain oscillating in the same mode, thus staying at a
time 𝑡 in the equivalent eigenstate of 𝑡 = 0 it was originally. A theoretical analysis
of this can be found elsewhere [103].

Let us prove the adiabatic theorem using the variation of constants method [100].
For simplicity, the eigenenergies 𝐸𝑘 (𝑡) are assumed to be nondegenerate for all
states |𝑘 (𝑡)⟩. We start from the time-dependent Schrödinger equation,

𝑖ℏ
𝑑

𝑑𝑡
|𝜓 (𝑡)⟩ = �̂� |𝜓 (𝑡)⟩ , (2.2)

where the state |𝜓 (𝑡)⟩ is its exact solution at a given 𝑡 . It can be expressed in terms
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of the instantaneous eigenstate basis {|𝑘 (𝑡)⟩} as follows,

|𝜓 (𝑡)⟩ =
∑︁
𝑘

𝑐𝑘 (𝑡)𝑒−
𝑖
ℏ

∫ 𝑡

0 𝑑𝑡
′𝐸𝑘 (𝑡 ′) |𝑘 (𝑡)⟩ , (2.3)

where the exponential term 𝑒−
𝑖
ℏ

∫ 𝑡

0 𝑑𝑡
′𝐸𝑘 (𝑡 ′) is the dynamic phase factor, and the

coefficients 𝑐𝑘 (𝑡) have to be fixed so that |𝜓 (𝑡)⟩ satisfies Eq. (2.2). Substituting this
state in the time-dependent Schrödinger equation and after some algebra, one gets:

𝑖ℏ
∑︁
𝑘

𝑒−
𝑖
ℏ

∫ 𝑡

0 𝑑𝑡
′𝐸𝑘 (𝑡 ′) [ ¤𝑐𝑘 (𝑡) |𝑘 (𝑡)⟩ + 𝑐𝑘 (𝑡)�� ¤𝑘 (𝑡)〉]+

+
∑︁
𝑘

𝑐𝑘 (𝑡)𝐸𝑘 (𝑡)𝑒−
𝑖
ℏ

∫ 𝑡

0 𝑑𝑡
′𝐸𝑘 (𝑡 ′) |𝑘 (𝑡)⟩ =

∑︁
𝑘

𝑐𝑘 (𝑡)𝑒−
𝑖
ℏ

∫ 𝑡

0 𝑑𝑡
′𝐸𝑘 (𝑡 ′)�̂� |𝑘 (𝑡)⟩ ,

(2.4)

where the dot notation stands for the time derivative and | ¤𝑘⟩ = (𝑑/𝑑𝑡) |𝑘⟩. From
Eq. (2.1) it is clear that the last term on the left part cancels with the right one. Now
let us project Eq. (2.4) on another arbitrary eigenstate of the Hamiltonian, ⟨𝑛 |. Then
we get the following expansion:∑︁

𝑘

¤𝑐𝑘 (𝑡)𝑒−
𝑖
ℏ

∫ 𝑡

0 𝑑𝑡
′𝐸𝑘 (𝑡 ′) ⟨𝑛(𝑡) | 𝑘 (𝑡)⟩ = −

∑︁
𝑘

𝑐𝑘 (𝑡)𝑒−
𝑖
ℏ

∫ 𝑡

0 𝑑𝑡
′𝐸𝑘 (𝑡 ′)〈𝑛(𝑡) �� ¤𝑘 (𝑡)〉 . (2.5)

By the orthonormalization condition for the eigenstate basis, ⟨𝑛(𝑡) |𝑘 (𝑡)⟩ = 𝛿𝑛𝑘 ∀ 𝑡 ,
one arrives to:

¤𝑐𝑛 (𝑡)𝑒−
𝑖
ℏ

∫ 𝑡

0 𝑑𝑡
′𝐸𝑛 (𝑡 ′) = −

∑︁
𝑘

𝑒−
𝑖
ℏ

∫ 𝑡

0 𝑑𝑡
′𝐸𝑘 (𝑡 ′)𝑐𝑘 (𝑡)

〈
𝑛(𝑡)

�� ¤𝑘 (𝑡)〉 , (2.6)

and then ¤𝑐𝑛 (𝑡) can be solved as

¤𝑐𝑛 (𝑡) = −
∑︁
𝑘≠𝑛

𝑐𝑘 (𝑡)𝑒−
𝑖
ℏ

∫ 𝑡

0 𝑑𝑡
′ (𝐸𝑘 (𝑡 ′)−𝐸𝑛 (𝑡 ′))〈𝑛(𝑡) �� ¤𝑘 (𝑡)〉−𝑐𝑛 (𝑡)⟨𝑛(𝑡) | ¤𝑛(𝑡)⟩ ∀𝑘 . (2.7)

The off-diagonal matrix elements ⟨𝑛(𝑡) | ¤𝑘 (𝑡)⟩ are unknown to us in principle.
But there is an elegant way of linking them with the Hamiltonian of the system in
order to transform them into more manageable terms. Differentiation with respect
to time on both sides of Eq. (2.1) for each |𝑘 (𝑡)⟩ brings us to:

¤̂
𝐻 (𝑡) |𝑘 (𝑡)⟩ + �̂� (𝑡)

�� ¤𝑘 (𝑡)〉 = ¤𝐸𝑘 (𝑡) |𝑘 (𝑡)⟩ + 𝐸𝑘 (𝑡)
�� ¤𝑘 (𝑡)〉 . (2.8)

15



Chapter 2 Theory of molecule-surface interactions

Following this, let us project on ⟨𝑛(𝑡) | ≠ ⟨𝑘 (𝑡) | Eq. (2.8). In the second term of
the left side, the hermiticity of the Hamiltonian allows us to make it act on ⟨𝑛(𝑡) |,
that is, ⟨𝑛(𝑡) | �̂� (𝑡) = 𝐸𝑛 (𝑡) ⟨𝑛(𝑡) |, while the first term on the right vanishes due to
orthonormality. Hence, one gets that,

〈
𝑛(𝑡)

�� ¤𝑘 (𝑡)〉 =
〈
𝑛(𝑡)

��� ¤̂𝐻 (𝑡)
���𝑘 (𝑡)〉

𝐸𝑘 (𝑡) − 𝐸𝑛 (𝑡)
. (2.9)

Once we substitute Eq. (2.9) into Eq. (2.7), we arrive at,

¤𝑐𝑛 (𝑡) = −
∑︁
𝑘≠𝑛

𝑐𝑘 (𝑡)𝑒−
𝑖
ℏ

∫ 𝑡

0 𝑑𝑡
′ (𝐸𝑘 (𝑡 ′)−𝐸𝑛 (𝑡 ′))

〈
𝑛(𝑡)

��� ¤̂𝐻 (𝑡)
���𝑘 (𝑡)〉

𝐸𝑘 (𝑡) − 𝐸𝑛 (𝑡)
− 𝑐𝑛 (𝑡)⟨𝑛(𝑡) | ¤𝑛(𝑡)⟩ .

(2.10)
Here, the adiabatic approximation is incorporated. A very slow change of the
Hamiltonian with time, ¤̂

𝐻 (𝑡) ≪ 1, implies the off-diagonal elements of Eq. (2.10) to
be much smaller that the diagonal matrix element of the instantaneous eigenstate
basis, i.e.,

1
𝜏
≡

〈
𝑛(𝑡)

��� ¤̂𝐻 (𝑡)
���𝑘 (𝑡)〉

𝐸𝑘 (𝑡) − 𝐸𝑛 (𝑡)
≪ ⟨𝑛(𝑡) | ¤𝑛(𝑡)⟩ ∼ 𝜔𝑛 =

𝐸𝑛

ℏ
, (2.11)

or, equivalently, the time scale 𝜏 over which �̂� changes becomes much longer that
the inverse of the natural frequency 𝜔𝑛 of the dynamic phase involved in the time
evolution of |𝑛(𝑡)⟩ [104]. The energy eigenstates can change with time fast enough
to adapt to the Hamiltonian evolution, and adiabaticity holds, so ¤𝑐𝑛 (𝑡) becomes
only proportional to the diagonal matrix element of the instantaneous eigenstate
basis. We recall that this situation corresponds to the one in which no degeneration
is assumed in any energy eigenstate [96]; the more general proof by Kato will not
be explored in this work [101].

It is interesting to go a little further in deriving the coefficients 𝑐𝑛 (𝑡) after using
the adiabatic approximation. Equation (2.10) is simply:

¤𝑐𝑛 (𝑡) ≈ −𝑐𝑛 (𝑡)
〈
𝑛(𝑡)

���� 𝑑𝑑𝑡 𝑛(𝑡)〉 ⇒ 𝑐𝑛 (𝑡) ≈ 𝑐𝑛 (0) 𝑒−
∫ 𝑡

0 𝑑𝑡
′⟨𝑛(𝑡 ′) | 𝑑

𝑑𝑡 ′ 𝑛(𝑡
′)⟩ , (2.12)

where the dot notation for the time derivative | ¤𝑛(𝑡)⟩ has been reverted to show the
independent variable of the equation. If we take 𝑐𝑛 (0) = 1 and use −1 = 𝑖2, we can
reexpress the integral term as 𝑐𝑛 (𝑡) = 𝑒𝑖𝛾𝑛 (𝑡) , where we are defining the geometric
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Adiabatic approximation Section 2.1

or Berry phase 𝛾𝑛 as [105]

𝛾𝑛 (𝑡) B 𝑖

∫ 𝑡

0
𝑑𝑡 ′

〈
𝑛(𝑡 ′)

���� 𝑑𝑑𝑡 ′𝑛(𝑡 ′)〉 . (2.13)

This term is actually a true phase, as it is purely real. This is easily demonstrated
by the normalization condition of the |𝑛(𝑡)⟩ eigenstate, ⟨𝑛(𝑡) |𝑛(𝑡)⟩ = 1 and its
derivative, (𝑑/𝑑𝑡) ⟨𝑛(𝑡) |𝑛(𝑡)⟩ = 0.

The notion of geometric phase was formulated independently first by Pancharat-
nam [106] and later by Longuet-Higgins [107] in some particular situations. For
a long time, this term did not evoke special interest in the scientific community
with regard to the adiabatic approximation and was consequently overlooked [108].
The main reason was that |𝜓 (𝑡) |2 is obviously not affected by the phase terms, and
hence there is no observable effect due to the phase of the wavefunction. Further-
more, Eq. (2.13) becomes zero if the integral is evaluated along a one-dimensional
variable following a closed path, which for the time variable would be the period,
and if the system eigenstates are purely real and have no imaginary part. However,
this picture changed in the 1980s, as Michael Berry generalized the concept of
geometric phase for quantum mechanics and pointed out its importance related to
the parameter space of the system [105]. This phase factor becomes very relevant
when the quantum state evolves adiabatically following a closed path, and some
examples of its manifestation at the quantum scale were previously stated, such as
the Aharonov-Bohm effect [109]. A simple macroscopic analogy of this geometric
phase appearance is the following. Given a Foucault pendulum at a starting posi-
tion in the equatorial plane oscillating in the same plane the North Pole is at, let
us displace it slowly enough towards that pole, then return it slowly to another
location in the Equator, and finally moving back along the equatorial circumference
to the starting position. Its oscillation frequency is preserved adiabatically along
the displacement path, and it ends the pathway oscillating normally to the Equator.
However, its oscillatory plane is no more the same as the original one but ends up
having been rotated a given phase angle due to the spheroid geometry of Earth
and its rotational movement. In other words, back at the beginning point the
pendulum describes a precession movement. This phenomenon, also called parallel
transportation, happens in the quantum scale as well, being the geometric phase
over a closed path, its measurable manifestation [110, 111].
More information on the Berry phase can be checked in references such as

Refs. [105, 108, 112]. Nevertheless, the work of this Thesis does not consider
the emergence of a Berry phase, and it is based strictly on both the adiabatic
approximation and on another popular approximation in atomic and condensed-
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Chapter 2 Theory of molecule-surface interactions

matter physics: the Born-Oppenheimer approximation. Let us now explore the
latter.

2.2 Born-Oppenheimer approximation
The aforementioned adiabatic approximation is a good starting point to try to char-
acterize the time evolution of a system with multiple degrees of freedom. Molecular
and Solid State Physics focus on the study of these kind of systems, with several
atoms and/or molecules, being the internal degrees of freedom of the system in the
form of dynamical parameters. Except for the hydrogen atom system, the rest of
multiatomic systems have no exact solution due to the electrostatic potential terms
on the Schrödinger equation. Therefore, one needs to look for approximate solu-
tions for these systems. A classic simplification is offered by the Born-Oppenheimer
approximation, proposed byMax Born and Robert Oppenheimer in 1929 [97], which
is described in the following lines.
We will stay on the atomic scale without considering subatomic particles. One

can approximate a given 𝑖-th atom as being formed by a positive-charged ion as the
atomic nucleus, at position R𝑖 , and a set of 𝑛𝑖 electrons with positions

{
rj
}
, where

𝑗 = 1, ..., 𝑛𝑖 . Extrapolation to a many-body system of 𝑁 atoms and 𝑛 =
∑𝑁
𝑖=1 𝑛𝑖

electrons implies that the corresponding wave function will depend on a set of
atomic and electronic positions or degrees of freedom, {Ri} and

{
r𝑖, 𝑗

}
. On this basis,

and assuming that the atomic system evolves with time, its quantum dynamics is
determined with the time-dependent Schrödinger equation,

𝑖ℏ
𝜕

𝜕𝑡

��𝜓 (
{R𝑖 (𝑡)},

{
r𝑖, 𝑗 (𝑡)

})〉
= �̂�

��𝜓 (
{R𝑖 (𝑡)},

{
r𝑖, 𝑗 (𝑡)

})〉
. (2.14)

The Hamiltonian operator for such multiatomic system is obtained as a sum of
different kinetic and potential operators, 𝑇 and 𝑉 , respectively,

�̂� = 𝑇𝑛 +𝑉𝑛−𝑛 +𝑇𝑒 +𝑉𝑒−𝑒 +𝑉𝑒−𝑛 . (2.15)

Here, subscripts 𝑛 and 𝑒 specify which operators act on the set of atomic nuclei
and/or on the electronic distribution, respectively. More precisely, these five opera-
tors have the following expressions:

• Kinetic energy operator for the nuclei distribution:

𝑇𝑛 = −ℏ2
𝑁∑︁
𝑖=1

∇2
R𝑖

2𝑀𝑖

, (2.16)
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where𝑀𝑖 is the mass of 𝑖-th nucleus.

• Repulsive electrostatic potential for the nuclei:

𝑉𝑛−𝑛 =
𝑒2

4𝜋𝜖0

𝑁∑︁
𝑖=1
𝑗>𝑖

𝑍𝑖𝑍 𝑗��R𝑖 − R 𝑗

�� , (2.17)

with 𝑍𝑖 being the atomic number of nucleus 𝑖 .

• Kinetic energy operator for the electrons:

𝑇𝑒 = −ℏ2
𝑛∑︁
𝑗=1

∇2
r𝑗

2𝑚𝑒

, (2.18)

being𝑚𝑒 the mass of the electron.

• Repulsive electrostatic potential for the electrons:

𝑉𝑒−𝑒 =
𝑒2

4𝜋𝜖0

𝑛∑︁
𝑖, 𝑗=1
𝑗>𝑖

1��r𝑖 − r 𝑗
�� , (2.19)

where 𝑒 is the electric charge of an electron.

• Attractive electrostatic potential between nuclei and electrons:

𝑉𝑒−𝑛 = − 𝑒2

4𝜋𝜖0

𝑁∑︁
𝑖=1

𝑛∑︁
𝑗=1

𝑍𝑖��R𝑖 − r 𝑗
�� . (2.20)

which obviously has a different sign than its only-nuclei or only-electronic
counterparts.

Notice that no spin contribution to the potential energies is considered here, as
they are much smaller than the Coulombian interaction terms. Nevertheless, it
plays a role in the symmetric or antisymmetric behavior of the total wavefunction,
but spin quantum numbers of each particle have not been written explicitly as part
of |𝜓

(
{R𝑖 (𝑡)},

{
r𝑖, 𝑗 (𝑡)

})
⟩ for simplicity [113].

Using Hartree atomic units [114], and replacing Eqs. (2.16)–(2.20) in Eq. (2.15),
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Chapter 2 Theory of molecule-surface interactions

this latter expression becomes:

�̂� = −12

𝑁∑︁
𝑖=1

∇2
R𝑖

𝑀𝑖

+
𝑁∑︁
𝑖=1
𝑗>𝑖

𝑍𝑖𝑍 𝑗��R𝑖 − R 𝑗

�� − 1
2

𝑛∑︁
𝑗=1

∇2
r𝑗

𝑚𝑒

+
𝑛∑︁

𝑖, 𝑗=1
𝑗>𝑖

1��r𝑖 − r 𝑗
�� − 𝑁∑︁

𝑖=1

𝑛∑︁
𝑗=1

𝑍𝑖��R𝑖 − r 𝑗
�� . (2.21)

For a system with 𝑛 > 1 electrons and/or with 𝑁 > 1 nuclei, Eq. (2.14) cannot
be solved exactly due to the inverse position dependencies 1/𝑟 and 1/𝑅 in the
electrostatic potential operators 𝑉 respectively [115]. This implies that the only
atomic system with an exact analytic solution is the hydrogen atom (𝑛 = 𝑁 = 1).
In addition, Eq. (2.21) depends on 3 (𝑁 + 𝑛) degrees of freedom. Consequently, a
considerable amount of computational power and capacity is required to solve it
numerically and to store the output, even for simple multiatomic systems. As a
result, resorting to approximate methods is a need.
Now, the following point is considered. For equal nuclei and electron kinetic

energies, 𝑇𝑛 = 𝑇𝑒 , and taking into account that the mass of any nucleus is much
larger than that of an electron𝑀𝑛 ≫𝑚𝑒 (at least 1836 times bigger), this implies
that the electrons move at much faster velocities than the nuclei, |v𝑛 | ≪ |v𝑒 |.
Therefore, the time scale for the change in nuclear positions is much longer than
that for electrons 𝜏𝑛 ≫ 𝜏𝑒 . Recalling the adiabatic approximation we have seen
in Section 2.1, we can distinguish between fast and slow degrees of freedom in
the multiatomic system. In a multiatomic system, because of the aforementioned
differences in velocities, the electronic distribution is able to adapt to the new
instantaneous positions of atomic nuclei, which move very slowly with respect to
the electrons. As a result, electrons can remain in their instantaneous eigenstates
at each given time 𝑡 while nuclei positions change, so the adiabatic approximation
is of application here. This grants us the possibility of uncoupling the electronic
and nuclei motions in such a way that we can solve the Schrödinger equation for a
multiatomic system in an approximate way, this statement being the essence of the
Born-Oppenheimer approximation.

Now let us explore formally how the movements of nuclei and electrons can be
separated [113]. As a starting point, we are interested in leaving the nuclear kinetic
energy operator aside from the remaining terms of �̂� (Eq. (2.21)), i.e.,

�̂� = 𝑇𝑛 + �̂�𝑒 = −12

𝑁∑︁
𝑖=1

∇2
R𝑖

𝑀𝑖

+ �̂�𝑒 , (2.22)

where we define the electronic Hamiltonian �̂�𝑒 as the operator containing the
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kinetic energy of the electron distribution and all potential terms,

�̂�𝑒 = −12

𝑛∑︁
𝑗=1

∇2
r𝑒

𝑚 𝑗

+
𝑁∑︁
𝑖=1
𝑗>𝑖

𝑍𝑖𝑍 𝑗��R𝑖 − R 𝑗

�� + 𝑛∑︁
𝑖, 𝑗=1
𝑗>𝑖

1��r𝑖 − r 𝑗
�� − 𝑁∑︁

𝑖=1

𝑛∑︁
𝑗=1

𝑍𝑖��R𝑖 − r 𝑗
�� . (2.23)

Considering the time independent Schrödinger equation (Eq. (2.1)), �̂�𝑒 verifies that:

�̂�𝑒
��𝜑𝑘 ({R𝑖 (𝑡)}, {r𝑖, 𝑗 (𝑡)

})〉
= 𝐸𝑒,𝑘 ({𝑅𝑖 (𝑡)})

��𝜑𝑘 ({R𝑖 (𝑡)}, {r𝑖, 𝑗 (𝑡)
})〉

, (2.24)

where |𝜑𝑘
(
{R𝑖 (𝑡)},

{
r𝑖, 𝑗 (𝑡)

})
⟩ is a wavefunction describing an electronic state𝑘 with

eigenenergy 𝐸𝑘 ({𝑅𝑖 (𝑡)}) for a fixed ensemble of nuclei positions at a given time.
Each energy depends on the nuclear positions. The set of electronic eigenstates
forms a basis for each collection of nuclear positions at a given time, which can be
taken as orthonormal, so ⟨𝜑𝑘 |𝜑𝑙⟩ = 𝛿𝑘𝑙 . By the completeness of the set of |𝜑𝑘⟩, we
can expand the total wavefunction in terms of the 𝑘 electronic states of the system:��𝜓 (

{R𝑖 (𝑡)},
{
rj(𝑡)

})〉
=

∑︁
𝑘

|𝜒𝑘 ({R𝑖 (𝑡)})⟩
��𝜑𝑘 ({R𝑖}, {rj(𝑡)

})〉
. (2.25)

where we are introducing a basis of nuclear wavefunctions {|𝜒𝑘⟩} as expansion co-
efficients of the electronic states. Let us remark that this latter set of wavefunctions
only depend on the position vectors of the nuclei distribution, entering as variables.
In contrast, for determining electronic states using Eq. (2.24), nuclear positions
are taken as constant parameters at each 𝑡 . This is consistent with the adiabatic
evolution of the electron distribution when nuclei rearrange their positions during
infinitesimal time scales.

At this point let us consider the time independent Schrödinger equation, Eq. (2.1)
for the full system wavefunction,

�̂�
��𝜓 (

{R𝑖 (𝑡)},
{
rj(𝑡)

})〉
= 𝐸𝑇

��𝜓 (
{R𝑖 (𝑡)},

{
rj(𝑡)

})〉
, (2.26)

where 𝐸𝑇 is the total energy. Substituting Eqs. (2.22) and (2.25) here, this leads to:(
𝑇𝑛 + �̂�𝑒

) ∑︁
𝑘

( |𝜑𝑘⟩ |𝜒𝑘⟩) = 𝐸𝑇
∑︁
𝑘

( |𝜑𝑘⟩ |𝜒𝑘⟩), (2.27)

where the dependence of each kind of wavefunction is omitted hereinafter for
convenience.
Not let us project Eq. (2.27) over an arbitrary electronic state |𝜑⟩𝑚 , so that we
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get: ∑︁
𝑘

⟨𝜑𝑚 |
(
𝑇𝑛 + �̂�𝑒

)
( |𝜑𝑘⟩ |𝜒𝑘⟩) =

∑︁
𝑘

⟨𝜑𝑚 | 𝐸𝑇 ( |𝜑𝑘⟩ |𝜒𝑘⟩) , (2.28)

and, considering the time independent Schrödinger equation for the electronic
distribution (Eq. (2.24)) and by orthonormality of {|𝜑⟩}, i.e., ⟨𝜑𝑚 |𝜑𝑘⟩ = 𝛿𝑘𝑚 , one
arrives to the following equation:∑︁

𝑘

⟨𝜑𝑚 |𝑇𝑛 ( |𝜑𝑘⟩|𝜒𝑘⟩) =
(
𝐸𝑇 − 𝐸𝑒,𝑚

)
|𝜒𝑚⟩ , 𝑚 = 0, 1, 2, ... , (2.29)

Now it only remains to evaluate the expected value of the nuclear kinetic energy
operator,∑︁

𝑘

⟨𝜑𝑚 |𝑇𝑛 ( |𝜑𝑘⟩|𝜒𝑘⟩) =

= −
∑︁
𝑘

𝑁∑︁
𝑖=1

ℏ2

2𝑀𝑖

⟨𝜑𝑚 |∇2
R𝑖
( |𝜑𝑘⟩|𝜒𝑘⟩) =

= −
∑︁
𝑘

𝑁∑︁
𝑖=1

ℏ2

2𝑀𝑖

(〈
𝜑𝑚

��∇2
R𝑖

��𝜑𝑘〉 |𝜒𝑘⟩ + 〈
𝜑𝑚

��∇R𝑖

��𝜑𝑘〉∇R𝑖
|𝜒𝑘⟩ +

+ ∇R𝑖
|𝜒𝑘⟩

〈
𝜑𝑚

��∇R𝑖

��𝜑𝑘〉 + 𝛿𝑚𝑘∇2
R𝑖
|𝜒𝑘⟩

)
.

(2.30)

At this point, we can invoke the Born-Oppenheimer approximation. As electrons
move much faster than nuclei, they remain approximately in the same electronic
eigenstates at any 𝑡 +𝑑𝑡 when the nuclear positions change during any infinitesimal
time scale 𝑑𝑡 . As a result, variation of electronic states with respect to nuclear
coordinates can be safely neglected. Applying this in Eq. (2.30), only the last term
of the last row survives. This effectively leads to a set of equations with uncoupled
spatial variables R and r, thus allowing one to solve the dynamics of the atomic
or molecular system. Summarizing, we can solve a multiatomic system with the
Born-Oppenheimer approximation as follows:

�̂�𝑒
(
{R𝑖},

{
r 𝑗 (𝑡)

}) ��𝜑𝑘 ({R𝑖}, {r 𝑗 (𝑡)
})〉

= 𝐸𝑒,𝑘 ({R𝑖})
��𝜑𝑘 ({R𝑖}, {r 𝑗 (𝑡)

})〉
, (2.31)[

𝑇𝑛 ({R𝑖 (𝑡)}) + 𝐸𝑒,𝑘 ({R𝑖})
]
|𝜒𝑘 ({R𝑖 (𝑡)})⟩ = 𝐸𝑇 |𝜒𝑘 ({R𝑖 (𝑡)})⟩ . (2.32)

The first step in determining the quantum state of the system consists in solving
Eq. (2.31) to obtain the electronic state for a fixed nuclear geometry. This yields
the energy for the configuration of electrons or electronic potential energy surface

22



Density functional theory Section 2.3

(PES) 𝐸𝑒,𝑘 ({R𝑖}) for that spatial arrangement of nuclei. Afterwards, Eq. (2.32) is
solved, and the nuclear quantum states are calculated. Then, this process would be
repeated for the successive new nuclei arrangements. In the following Section, let
us explore how the electronic PES, 𝐸𝑒,𝑘 , can be determined theoretically.

2.3 Density functional theory

Once we have described the Born-Oppenheimer approximation, the next straight-
forward task is to calculate the electronic PES. A priori, unveiling this information
from the different electronic configurations seems to be a challenge, especially
when considering that our many-body wavefunction has 3 𝑛𝑒 degrees of freedom
(DOFs) and the subsequent exponentially increasing computational cost in calcula-
tion time and required memory, as well as in output data size. But there is a neat,
popular framework on doing this in a computationally less demanding way, with
first principles (and great results!). This is density functional theory (DFT) and
depends on a set of key formulations. Let us introduce its main aspects.
DFT relies on some key functions. Let us consider a many-body system of

identical particles; in our case, a gas of 𝑛𝑒 electrons, each of them at one position of
the set {r𝑖} , 𝑖 = 1, 2, ..., 𝑛𝑒 . The electronic system is described by the wavefunction
|𝜑

(
r1, r2, ..., r𝑛𝑒

)
⟩. One defines the one-body density as the mean number of particles

per volume unit 𝑑r, where the number of particles is 𝑛𝑒 times the probability of
finding one of the particles in the differential volume element centered at a given
position r, 𝑝 (r) 𝑑r, without caring on the positions of the remaining 𝑛𝑒 −1 electrons,
i.e.,

𝑛(r) = 𝑛𝑒 𝑝 (r) 𝑑r
𝑑r

= 𝑛𝑒

∫
𝑑r2 ... 𝑑r𝑛𝑒

��𝜑 (
r, r2, ..., r𝑛𝑒

) ��2 . (2.33)

The total number of particles of the system is, obviously, the integral of the one-body
density on the whole space,

𝑛𝑒 =

∫
𝑑r 𝑛(r) . (2.34)

In addition to this, we can define a quantity related to having a pair of electrons
inside two different volume elements 𝑑r and 𝑑r′ centered at positions r and r′,
respectively, and regardless of the location of the remaining electrons. This can be
called two-body density 𝑛2(r, r′) and quantifies the number of pairs of particles in
the system inside the generic volume elements 𝑑r and 𝑑r′. Its formal definition is
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as follows:

𝑛2(r, r′) =
(𝑛𝑒
2
)
𝑝2(r, r′) 𝑑r 𝑑r′

𝑑r 𝑑r′
=
𝑛𝑒 (𝑛𝑒 − 1)

2

∫
𝑑r3 ... 𝑑r𝑛𝑒

��𝜑 (
r, r′, r3, ..., r𝑛𝑒

) ��2 ,
(2.35)

where 𝑝2(r, r′) =
∫
𝑑r3 ... 𝑑r𝑛𝑒 |𝜑 |2 is the probability density of finding simulta-

neously two particles, one inside 𝑑r and the other one inside 𝑑r′, no matter the
positions of the remaining ones in the system. Notice that, integrating both sides
with respect to 𝑑r′, one can get the relationship between both one- and two-body
densities as

𝑛(r) = 2
𝑛𝑒 − 1

∫
𝑑r′ 𝑛2(r, r′) . (2.36)

Eq. (2.35) can be split in two different contributions: one related to each particle
moving with no influence of the other ones in the system, 𝑛𝐼2(r, r′), and the other
accounting for the correlations or influence of the neighbor particles on the ones
in 𝑑r and 𝑑r′, 𝑛𝐶2 (r, r′), i.e.,

𝑛2(r, r′) = 𝑛𝐼2(r, r′) + 𝑛𝐶2 (r, r′) , (2.37)

where the contribution linked to the ideal particle system with no internal interac-
tions is [116]

𝑛𝐼2(r, r′) =
𝑛𝑒 − 1
2𝑛𝑒

𝑛(r) 𝑛(r′) , (2.38)

and the correlation term 𝑛𝐶2 (r, r′) accounts for the inner interactions between
particles and the Pauli exclusion principle.

In addition to these definitions, let us define one-body operators as those acting
on all the particles individually. For a discrete number of particles,

𝐴 =

𝑛𝑒∑︁
𝑖=1

𝐴𝑖 . (2.39)

Furthermore, one-body operators are said to be local if their expected values depend
on the position of the wavefunction they are acting at, i.e., in the r representation,〈

r𝑖
��𝐴𝑖 �� r′𝑖〉 = 𝑎(r𝑖) 𝛿 (r𝑖 − r′𝑖) . (2.40)

24



Density functional theory Section 2.3

For a system of 𝑛𝑒 particles, it is straightforward to see that〈
𝜑

����� 𝑛𝑒∑︁
𝑖=1

𝐴𝑖

�����𝜑
〉
=

∑︁
𝑗

𝑛𝑒∑︁
𝑖=1

〈
𝜑

�� r 𝑗 〉 𝑎(r𝑖) 𝛿 (r 𝑗 − r′𝑗 )
〈
r′𝑗

��𝜑〉
=

∑︁
𝑗

𝑛𝑒∑︁
𝑖=1

𝑎(r𝑖)
��𝜑 (

r 𝑗
) ��2 .
(2.41)

By the indistinguishability of the 𝑛𝑒 particles, Eqs. (2.40) and (2.41) do not depend
on which exact particle 𝑖 the operator is acting, but simply on its position. With
this in mind, and as the position basis {|r⟩} is continuous:〈
𝜑

��𝐴 ��𝜑〉
= 𝑛𝑒

∫
𝑑r2 ... 𝑑r𝑛𝑒

∫
𝑑r 𝑎(r)

��𝜑 (
r, r2, ..., r𝑛𝑒

) ��2 = ∫
𝑑r 𝑎(r) 𝑛(r) , (2.42)

where Eq. (2.33) has been substituted. Thus, local one-body operators depend on
the one-body density function when summing on the whole space.
An analog can be formulated for pairs of particles. So, two-body operators are

those acting on pairs of particles, or two-particle quantum states,

�̂� =

𝑛𝑒∑︁
𝑖=1

𝑛𝑒∑︁
𝑗>𝑖

�̂�𝑖 𝑗 , (2.43)

and the locality condition reads then:〈
r𝑖r 𝑗

�� �̂�𝑖 𝑗 �� r′𝑖r′𝑗 〉 = 𝑏 (r𝑖, r 𝑗 ) 𝛿 (r𝑖 − r′𝑖) 𝛿 (r 𝑗 − r′𝑗 ) . (2.44)

Reasoning analogously as for 1-particle case, Eq. (2.44) in the continuous limit
becomes:〈
𝜑

����� 𝑛𝑒∑︁
𝑖=1

𝑛𝑒∑︁
𝑗>𝑖

�̂�𝑖 𝑗

�����𝜑
〉
=

(
𝑛𝑒

2

) ∫
𝑑r3... 𝑑r𝑛𝑒

∫
𝑑r 𝑑r′ 𝑏 (r, r′)

��𝜑 (
r, r′, ..., r𝑛𝑒

) ��2 . (2.45)

Using Eq. (2.35), we find that the expected value of a given local two-body operator
is linked to the two-body density:〈

𝜑
�� �̂� ��𝜑〉

=

∫
𝑑r 𝑑r′ 𝑏 (r, r′) 𝑛2(r, r′) . (2.46)

Eqs. (2.42) and (2.46) have important implications, as one- and two-body operators
for systems of many (tending to infinite) particles can be modeled in terms of the
particle densities we have defined previously. Hence, any external potential 𝑉 (r)
acting on a particle is a one-body local operator, thus depending on the one-body
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density. Moreover, inner interactions affecting pairs of particles at generic positions
r and r′, �̂� (r, r′), are then two-body local operators and, as those, functions of the
two-body density.

This situation is a bit more complex for the kinetic energy operator𝑇 , which is not
a local operator as it depends on spatial derivatives instead of being a raw function
of the position. It can be shown that one- and two-body operators in general can be
written in terms of creation and annihilation operators in the space representation,
which are known as field operators. The creation and annihilation operators are
the antisymmetrizators (symmetrizators for bosonic many-body systems) we use
to produce an antisymmetric fermion (or symmetric boson) basis of 𝑛 + 1 or 𝑛 − 1
particles from a given 𝑛-particle basis. Or, in other words, these operators create or
annihilate a particle by putting it in or removing it from one of the single-particle
states of a 𝑛 + 1 or 𝑛 − 1-particle wavefunction, after acting on the 𝑛-particle
one. multiparticle states and the action of creation and annihilation operators
are central points of the second quantization formalism, which we will not move
further into as it lies beyond the scope of this work. So then, in general, one particle
operators in a general space basis can be written starting from a discrete general
basis, �̂�1 =

∑∞
𝛼=1,𝛽=1 ⟨𝛼 |𝑜1 |𝛽⟩ as:

�̂�1 =

∫
𝑑r1 𝑑r′1 𝜓

†(r1)
〈
r1

��𝑜1 �� r′1〉𝜓 (
r′1

)
, (2.47)

where𝜓 † and𝜓 correspond to the creation and annihilation spacial field operators,
respectively, and 𝑜1 is the differential operator that acts on a single particle state of
the system. If �̂�1 is diagonal on the space basis, obviously ⟨r′ | 𝑜1 | r⟩ = ˆ𝑜 (𝑟 ) 𝛿 (r′ − r).
For two-body operators �̂�2, conversely, one finds –being 𝑜2 the corresponding two-
particle differential operator– that:

�̂�2 =
1
2

∫
𝑑r1 𝑑r′1 𝑑r2 𝑑r′2 𝜓

†(r1) 𝜓 † (r′1) 〈r1r′1
��𝑜2 �� r2r′2〉 𝜓 (r2) 𝜓 (

r′2
)
. (2.48)

This is also valid for local operators if one defines operators linked to the one- and
two-body densities. So, using Eqs. (2.47) and (2.48), respectively, with the differential
density operators 𝑜1(�̂�(r)) = 𝛿 (r−r1) and 𝑜2(�̂�2(r, r′)) = 𝛿 (r−r1) 𝛿 (r′−r′1), one can
obtain the density operators �̂�(r) = 𝜓 †(r)𝜓 (r) and �̂�2(r, r′) = 𝜓 †(r)𝜓 †(r′)𝜓 (r)𝜓 (r′).
This allows us to reexpress in the second quantization formalism local operators,
in particular the potentials𝑉 and �̂� , and thus the full Hamiltonian. Anyway, let us
remark that knowledge of the one- and two-body density functions is enough to
obtain the potential operators with Eqs. (2.42) and (2.46).
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It is relevant to recall that in the above discussion the spin quantum number has
been omitted for simplicity.

Recapping, the full multiparticle Hamiltonian for our 𝑛𝑒 electronic system can be
expressed, in the space basis and with diagonalized kinetic and potential operators,
as:

�̂� = 𝑇 +𝑉 +�̂� =

∫
𝑑r𝜓 †(r)𝑡 (r)𝜓 (r) +

∫
𝑑r 𝑣 (r) 𝑛(r) +

∫
𝑑r 𝑑r′ �̂� (r, r′) 𝑛2(r, r′) .

(2.49)
At this point, we have introduced the basic ingredients of DFT. Instead of calculating
the quantum operators as usual, in terms of the wavefunction of the system of 𝑛𝑒
electrons, we have seen how to reformulate the operators in terms of one- and
two-body density functions. In doing so, we simplify their calculation, as we have
to deal with one or two DOFs to determine each operator instead of the 3 𝑛𝑒 ones.
However, we have not yet calculated the PES of the electronic subsystem (Eqs. (2.31)
and (2.32)) at a given time. As we shall see, the Hohenberg-Kohn (HK) theorem
marks the way to go next.

2.3.1 Hohenberg-Kohn theorem
Let us rename the wavefunction that describes our 𝑛𝑒-electron system as |𝜑0⟩.
For simplicity, electrons will be assumed to be spin-compensated, i.e., there is
the same number of spin-up and spin-down electrons in the system. As we are
dealing with a multifermionic system, we know that |𝜑0⟩ must be antisymmetric.
Its corresponding one-body density function can be calculated using Eq. (2.33), as
we have seen before.

As Pierre Hohenberg and Walter Kohn first stated in 1964 [117], there exists
a one-to-one correspondence between the external potential 𝑉 (r) and 𝑛(r), so
knowing the one-body density allows us to determine the potential energy surface
related to the system up to an arbitrary constant. In other words, 𝑉 becomes a
functional of the density, 𝑉 (r) = 𝜈 [𝑛0] (r), thereby giving meaning to the name of
this framework as Density Functional Theory. This statement is the HK theorem.
Its proof is done in two ways, as we need to show that there are bijections

linking the spaces of external potentials V and of ground states 𝜓0, on the one
side, and𝜓0 and the space of densities N , on the other. We will restrict ourselves
to nondegenerate, single ground states, even though this can be proved for the
degenerate case, for statistical mixtures of states or excited wavefunctions as well.
Let us first show the mappings N → 𝜓0 → V by reductio ad absurdum:

1. 𝜓0 → V: let us assume that there are two different potentials 𝑉 and 𝑉 ′ that
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come from the same ground state |𝜑0⟩. Then, time independent Schrödinger
equation (2.14) tells us that

�̂� |𝜑0⟩ =
(
𝑇 + �̂� +𝑉

)
|𝜑0⟩ = 𝐸0 |𝜑0⟩ ,

�̂� ′|𝜑0⟩ =
(
𝑇 + �̂� +𝑉 ′

)
|𝜑0⟩ = 𝐸′0 |𝜑0⟩ .

(2.50)

Fixing the total number of electrons in the system implies that 𝑇 and �̂� are
also fixed and equal in both cases. So, subtracting both equations (2.50):(

𝑉0 −𝑉 ′
0

)
|𝜑0⟩ =

(
𝐸0 − 𝐸′0

)
|𝜑0⟩ , (2.51)

or, in the position basis representation, as both external potentials are one-
body local operators,{

𝑛𝑒∑︁
𝑖=1

[
𝑣0(r𝑖) − 𝑣′0(r𝑖)

]}
|𝜑0⟩ =

(
𝐸0 − 𝐸′0

)
|𝜑0⟩ , (2.52)

As each of the 𝑣0(r𝑖), 𝑣′0(r𝑖) is a constant value, the subtractions 𝑣0(r𝑖) −𝑣′0(r𝑖)
are indeed constant, and thus both external potentials are equivalent. So, this
means that |𝜑0⟩ determines a unique external potential (up to a constant).

2. To show N → 𝜓0, we start by assuming that two ground states |𝜑0⟩ ≠
��𝜑′0〉

can be obtained from the same ground state density 𝑛0(r). As |𝜑⟩ and 𝑉
have become functionals of the one-body density, a variational principle can
be defined for them. In this way, if we consider the ground state energies
𝐸0 =

〈
𝜑0

�� �̂� ��𝜑0〉 and 𝐸′0 = 〈
𝜑′0

�� �̂� ′ ��𝜑′0〉, as these are the respective minimum
energies for �̂� and �̂� ′with eigenstates |𝜑0⟩ and

��𝜑′0〉 the following inequalities
actually hold:

𝐸0 <
〈
𝜑0

�� �̂� ′ ��𝜑0〉 = 〈
𝜑0

�� �̂� +𝑉 ′ −𝑉
��𝜑0〉 = 𝐸0 + ∫

𝑑r(𝑣′(r) − 𝑣 (r)) 𝑛0(r)
𝐸′0 <

〈
𝜑′0

�� �̂� ��𝜑′0〉 = 〈
𝜑′0

�� �̂� ′ +𝑉 −𝑉 ′ ��𝜑′0〉 = 𝐸′0 + ∫
𝑑r(𝑣 (r) − 𝑣′(r)) 𝑛0(r) .

(2.53)
By our initial hypothesis, if we add both equations (2.53), the potential terms
cancel and we arrive at a contradiction, 𝐸0 + 𝐸′0 < 𝐸′0 + 𝐸0. In sum, different
ground states (that is, ground states with different energies, 𝐸0 ≠ 𝐸′0) must
come from different densities 𝑛0(r) and 𝑛′0(r).

Now it remains to prove the injections V → 𝜓0 → N , which is a trivial task.
If we set an external potential 𝑉 , we can get �̂� , because 𝑇 and �̂� are determined
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simply by knowing howmany particles we have and the positions at which they are
located. Knowledge of �̂� means that we can solve the time-independent Schrödinger
equation (2.14) and obtain 𝐸0 and |𝜑0⟩. Then, Eq. (2.33) gives us 𝑛0(r). This com-
pletes the proof for the HK theorem. Notice that this holds not only for equivalent
potentials 𝑉 ′ = 𝑉 + const, but also we can get the same densities and potentials
regardless of the constant phase factor 𝛾 it carries, i.e., |𝜑0⟩ and |𝜑0⟩ 𝑒−𝑖𝛾 produce
the same results.

This theorem has powerful implications. First, as we can compute the external
potential from the one-body density, this implies a reduction of the calculation
degrees of freedom from 3𝑛𝑒 –corresponding to |𝜑0⟩– to 3, which implies a simplifi-
cation in the multielectronic PES calculation within the DFT framework. Moreover,
if we find 𝑛0(r) and thus gain complete knowledge of �̂� (except for a constant), we
are able to obtain the system ground state |𝜑0⟩[𝑛0] and all excited multiparticle
states

��𝜑 𝑗 〉 [𝑛0] and consequently characterize all its properties. Notice that the
functional dependence with the one-body density is being made explicit as [𝑛0] in
the following lines.

The HK theorem also implies the following corollary, also commonly called the
second HK theorem in the literature. In the same fashion as for 𝑉 [𝑛], the energy
of a many-body system –for some external potential– can be also defined as a
functional of the one-body density,

𝐸𝑉0 [𝑛] =
〈
𝜑 [𝑛]

��𝑇 + �̂� +𝑉0
��𝜑 [𝑛]〉 . (2.54)

As this functional dependence is linked to a subjacent variational principle, there
exists a global minimum of the energy, which corresponds to the exact ground
state density 𝑛0, 𝐸0 = 𝐸𝑉0 [𝑛0]. For densities 𝑛 ≠ 𝑛0, one obtains 𝐸𝑉0 [𝑛] > 𝐸0.
Mathematically stated,

𝐸0 B min
𝑛∈N

𝐸𝑉0 [𝑛] . (2.55)

This has an alternative expression. As the one-body density has to fulfill Eq. (2.34),
this can be introduced as a constraint of the system through a Lagrange multiplier
𝜇 when taking the Euler-Lagrange equation on 𝐸𝑉0 ,

𝛿

𝛿𝑛(r)

{
𝐸𝑉0 [𝑛] − 𝜇

(∫
𝑑r′𝑛(r′) − 𝑛𝑒

)}
= 0 , (2.56)

where the implicit assumption of a differentiable 𝑛(r) is made. Let us insist on
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Eq. (2.56) a bit more. The energy functional can be separated in two terms,

𝐸𝑉0 [𝑛] = 𝐹 [𝑛] +
∫

𝑑r′𝑣0(r′)𝑛(r′) , (2.57)

where 𝐹 [𝑛] B 𝑇 [𝑛] +𝑊 [𝑛] =
〈
𝜑 [𝑛]

��𝑇 + �̂�
��𝜑 [𝑛]〉 is called HK functional, is

usually of unknown exact shape and appears for every external potential acting on
the system (thereby being regularly referred as to universal in the literature). So
then, solving Eq. (2.56), we have

𝛿𝐹 [𝑛]
𝛿𝑛(r) + 𝑣0(r) = 𝜇 . (2.58)

This result means that the functional derivative of 𝐹 [𝑛], which is an unknown
function, differs from the external potential at r (a quantity initially fixed by us) in
a constant factor 𝜇. In addition, it can be shown that this Lagrange multiplier is
actually the chemical potential of the multiparticle system [118].
The application of the HK theorem brings to light a particular challenge that

merits a brief discussion [119, 120, 121]. The validity of Eq. (2.55) is limited solely
to electron densities 𝑛0(r) that can arise from some external potential in a nonin-
teracting system. Such specific densities are referred to as V-representable, and the
potential lack of correspondence between a given density and any 𝑉 from which
we can derive 𝑛 is called the V-representability problem. It is important to note that
this scenario also introduces the N-representability problem, consisting of whether
a density can be associated with any physically realizable many-body wavefunction.
Let us recall the mappings N ↔ 𝜓0 ↔ V . It is straightforward to realize that the
space of every existing 𝑛, N , contains a subset of all N-representable 𝑛’s, NN−repr,
which subsequently encompasses a smaller subset of V-representable densities,
NV−repr. Otherwise, NV−repr ⊂ NN−repr ⊂ N .
Taking advantage of this circumstance, an innovative approach for computing

Eq. (2.55) while bypassing the V-representability issue was proposed independently
by Mel Levy in 1979 [122] and Elliott H. Lieb in 1983 [123]. This procedure is valid
for either nondegenerate or degenerate ground states. They proposed to perform
the minimization process of Eq. (2.55) in two stages,

𝐸0 = min
𝑛

{
min
𝜑→𝑛

〈
𝜑

��𝑇 + �̂� +𝑉0
��𝜑〉}

= min
𝑛

{
𝐹LL [𝑛] +

∫
𝑑r′𝑣0(r′)𝑛(r′)

}
, (2.59)

with 𝐹LL [𝑛] B min𝜑→𝑛

〈
𝜑

��𝑇 + �̂�
��𝜑〉

being the Levy-Lieb redefinition of the HK
universal energy functional in terms of the minimizing wavefunction. In doing
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so, we first minimize the energy functional with respect to the wavefunctions
yielding one particular one-body density (by tuning, e.g., the parameters inside
each wavefunction accordingly). After that we minimize among the densities
obtained from all of the tried wavefunctions, which are thus N-representable. Both
Eqs.(2.55) and (2.59) bring us to the same ground-state energy value, but the method
due to Levy and Lieb (or Levy-Lieb constrained search) does not require 𝑛 to be
produced from its related 𝑉0 [𝑛]. The main disadvantage of this approach is the
difficulty in trying Eq. (2.59) for an infinite number of wavefunctions [124].
At this point a problem is still there. We are able to compute 𝑉0 [𝑛] from the

ground-state density. But the total energy 𝐸𝑉0 [𝑛] is still unknown to us, in particular
the HK functional part, 𝐹 [𝑛]. In addition, we have said nothing about how to
formally calculate the ground-state density. In the next subsection, we will see how
to perform this task in an approximate way.

2.3.2 Kohn-Sham equations

Taking the HK theorem as a basis, we know that the ground state of the system is
an unique functional of the density of the system 𝑛0. The following natural step
consists on calculating the full 𝐸 [𝑛0]. For that, one requires the kinetic and inner
potential interaction terms, 𝑇 [𝑛0] and𝑊 [𝑛0]. The main contribution of the latter
can be computed with the expression for the Coulomb repulsion term between
electronic densities at different points (for a semiclassical many body system we
are considering here), also called Hartree energy [121, 125],

𝐽 [𝑛0] =
1
2

∫
𝑑r1 𝑑r2

𝑛0(r1)𝑛0(r2)
|r1 − r2 |

, (2.60)

and the result of this functional is exact as for the external potential as it de-
pends on the one-body density. In contrast, the kinetic part is more challenging.
DFT-precursor frameworks such as the Thomas-Fermi model or the Weiszäcker
approximation yield expected values for the kinetic energy that do not satisfy the
virial theorem,𝑇 = −(𝑉0+𝑊 )/2 and 𝐸 = −𝑇 . Consequently, some way to accurately
evaluate the functional kinetic energy is required for DFT to work properly. This
practical difficulty of DFT was overcome thanks to the solution proposed by Kohn
and Lu Jeu Sham in 1965 [126].

The basis of the Kohn-Sham (KS) framework is to consider a toy system in which
there is no interaction between the electrons. The HK theorem holds regardless
of the features of the electron-electron interaction term considered, so that the
bijection between the external potential and the density (through the wavefunction)
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remains. This system without internal interactions is known as the KS system
and their quantities are represented with the subscript 𝑠 , so that we have �̂�𝑠 = 0.
From this follows that 𝐹𝑠 [𝑛] =

〈
𝜑𝑠 [𝑛]

��𝑇 ��𝜑𝑠 [𝑛]〉 = 𝑇𝑠 [𝑛], with 𝜑𝑠 [𝑛] being the
ground-state wavefunction for this system. In addition, the energy functional (2.54)
adopts the following form:

𝐸𝑉𝑠 [𝑛] = 𝑇𝑠 [𝑛] +
∫

𝑑r′𝑣𝑠 (r′)𝑛𝑠 (r′) (2.61)

where 𝑛𝑠 is the KS ground-state density. Now another key assumption enters:
we impose the ground-state densities of both systems without and with inner
interactions to be the same, so that 𝑛𝑠 = 𝑛0. Furthermore, the Euler-Lagrange
equation for this system is as follows:

𝛿𝐸𝑠 [𝑛]
𝛿𝑛(r) =

𝛿𝑇𝑠 [𝑛]
𝛿𝑛(r) + 𝑣𝑠 (r) = 𝜇 . (2.62)

As we have a system of 𝑛𝑒 noninteracting fermions, each of their wavefunctions
can be expressed in terms of a Slater determinant (which is obviously antisymmetric).
The electronic ground-state wavefunction is then written in terms of 𝑛𝑒 single-
particle states or orbitals |𝜙𝑖⟩ as

��𝜑 (
r1, ..., rne

)〉
=

1
√
𝑛𝑒 !

������ |𝜙1(r1)⟩ ...
��𝜙𝑛𝑒 (r1)

〉
... ...��𝜙1 (rne

)〉
...

��𝜙𝑛𝑒 (rne

)〉
������ . (2.63)

Taking into account that the Hamiltonian of the full system is

�̂�𝑠 = 𝑇𝑠 +𝑉𝑠 =
𝑛𝑒∑︁
𝑖=1

[
−12∇

2
𝑖 + 𝑣𝑠 (ri)

]
, (2.64)

it can be shown (see, e.g., Ref. [127]) that each orbital of the ground-state KS
wavefunction fulfills a Schrödinger equation with energy eigenvalue 𝜖𝑖 ,[

−12∇
2
𝑖 + 𝑣𝑠 (r)

]
|𝜙𝑖 (r)⟩ = 𝜖𝑖 |𝜙𝑖 (r)⟩ , (2.65)

being this expression valid only for nondegenerate states. Notice that we are assum-
ing that the orbital energies follow this ordering: 𝜖1 < 𝜖2 < ... < 𝜖𝑛𝑒 < .... Hence,
solving the 𝑛𝑒 one-particle equations, we can determine the orbitals the ground-
state KS wavefunction contains. Furthermore, this allows us to obtain complete
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knowledge of its associated ground-state density 𝑛𝑠 (r), as for a wavefunction of
the form (2.63) the one-body density adopts a very simple expression

𝑛𝑠 (r) =
𝑛𝑒∑︁
𝑖=1

|𝜙𝑖 (r) |2 . (2.66)

Now let us see how we can relate the energy components in the KS system and in
the real one that we actually want to solve completely. First, the kinetic energy in
the KS toy system also adopts a simple expression. Starting from Eq. (2.47), taking a
change of basis for the field operators from the spacial to the (discrete) one formed
by the one-body orbitals and applying the orthogonality of the Slater determinants,
we can arrive at

𝑇𝑠 [𝑛] =
𝑛𝑒∑︁
𝑖=1

〈
𝜙𝑖 [𝑛]

����−12∇2
𝑖

����𝜙𝑖 [𝑛]〉 . (2.67)

For the real many-body system with inner interactions, each single particle is
affected by the screening action of the other 𝑛𝑒 − 1 ones. This originates a kind of
correlated interaction, which also leads to a weakening of the Coulombic repulsive
inner interactions. This correlation produces an additional kinetic term 𝑇𝑐 [𝑛] that
is missing for the system in the absence of inner interactions, forcing us to add
it to the KS kinetic energy (2.67) to match the kinetic part of the real system,
𝑇0 [𝑛] = 𝑇𝑠 [𝑛] +𝑇𝑐 [𝑛].

Next, in terms of internal interactions, they have been set as zero in the KS
system. But in fact, only the electrostatic potential term (2.60) has been discarded
in this analysis; the real operator �̂� [𝑛] also includes a non-Coulombic exchange-
correlation inner potential contribution, which has to be added by hand to the toy
system. Thus,𝑊 [𝑛] = 𝐽 [𝑛] +𝑈𝑥𝑐 [𝑛].

After these comments, let us reexpress the energy functional defined in Eq. (2.54)
as:

𝐸𝑉0 [𝑛] = 𝑇 [𝑛] +𝑉0 [𝑛] +𝑊 [𝑛] = 𝑇𝑠 [𝑛] +𝑉0 [𝑛] + 𝐽 [𝑛] + 𝐸𝑥𝑐 [𝑛] , (2.68)

where we are defining the exchange-correlation energy 𝐸𝑥𝑐 [𝑛] as

𝐸𝑥𝑐 [𝑛] B 𝑇𝑐 [𝑛] +𝑈𝑥𝑐 [𝑛] = 𝑇 [𝑛] −𝑇𝑠 [𝑛] +𝑊 [𝑛] − 𝐽 [𝑛] . (2.69)

Now if we take the functional derivative of 𝐸𝑉0 [𝑛] with respect to 𝑛(r):

𝛿𝐸𝑉0 [𝑛]
𝛿𝑛(r) =

𝛿𝑇𝑠 [𝑛]
𝛿𝑛(r) + 𝑣0 [𝑛] (r) +

𝛿 𝐽 [𝑛]
𝛿𝑛(r) + 𝛿𝐸𝑥𝑐 [𝑛]

𝛿𝑛(r) = 𝜇 . (2.70)
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Keeping the number of electrons 𝑛𝑒 (and thus its associated Lagrange multiplier) to
be the same for both real and KS systems, this equation is equal to Eq. (2.62) if we
take the KS potential to be as follows:

𝑣𝑠 [𝑛] (r) = 𝑣0(r) +
∫

𝑑r′
𝑛(r′)
|r − r′| + 𝑣𝑥𝑐 (r) . (2.71)

As a result, each orbital of the ground-state KS wavefunction obeys a single-particle
Schrödinger equation of the form[

−12∇
2
𝑖 + 𝑣𝑠 [𝑛] (r)

]
|𝜙𝑖 (r)⟩ = 𝜖𝑖 |𝜙𝑖 (r)⟩ , (2.72)

and the ground-state density of the real system is the same as the KS one for non
interacting electrons,

𝑛0(r) = 𝑛𝑠 (r) =
𝑛𝑒∑︁
𝑖=1

|𝜙𝑖 (r) |2 . (2.73)

Eqs. (2.71), (2.72), and (2.73) conform the system KS equations. These are self-
consistent, so that one has to solve them iteratively [120]: one starts with a trial
density, solves the equations, and obtains new KS orbitals and a new density closer
to the ground-state one after each epoch. Only when the difference in energies or
densities before the previous and last iterations lies below a cutoff value (𝛥𝜖𝑐 and
𝛥𝑛𝑐 , respectively), the iterative part comes to an end. After this convergence of
the density to (almost) its ground-state value, one is able to calculate all density-
dependent parameters of the many-body systemwith a remarkable level of accuracy.
This self-consistent evaluation procedure of KS equations is summarized in the
flowchart of Fig. 2.1.

Regarding the meaning of the KS formalism, calculations of the DFT ground-state
energies for different atomic species help us to understand its importance [125]. Let
us have in mind Eq. (2.68). In fact, 𝑇𝑠 [𝑛] is equal to a large part of the total kinetic
energy and is of the same order of magnitude as the ground-state energy of the
atom. Recalling its definition (Eq. (2.67)), the KS kinetic energy is actually an exact
quantity. In addition, the Hartree energy is determined exactly in the KS system.
Given that the ground-state potential is known, only the exchange-correlation part
𝐸𝑥𝑐 [𝑛] remains to be exactly indeterminable in DFT, yet it is very small compared to
the total ground-state energy, and becomes comparatively smaller themore complex
the atomic species is. We will discuss exchange-correlation approximations in more
detail in Section 2.3.3.

Before that, let us progress a bit further. If we substitute Eq. (2.72) on Eq. (2.67),
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Figure 2.1: Flowchart of the self-consistent evaluation of the KS equations for a given
system. To begin with, some trial 𝑛𝑠 (r) is guessed. It is then used for evaluating the KS
potential (Eq. (2.71)), taking into account some exchange-correlation potential 𝑣𝑥𝑐 (r). For
this KS potential, the Schrödinger equations for the ground-state KS wavefunctions are
solved (Eq. (2.72)). As a result, one gets a new set of KS orbitals and, consequently, some
new electronic density (Eq. (2.73)) and associated total energy. At the end of each iteration
𝑡 , either the total energies of the system or the electronic densities are compared with their
counterparts at iteration 𝑡 − 1. If the differences

∑
𝑖

��𝜖𝑡𝑖 − 𝜖𝑡−1𝑖

�� ≥ 𝛥𝜖𝑐 or
��𝑛𝑡𝑠 − 𝑛𝑡−1𝑠

�� ≥ 𝛥𝑛𝑐 ,
being 𝛥𝜖𝑐 and 𝛥𝑛𝑐 some cutoff values for the energy and density, respectively, the iterative
process undergoes a new iteration. The cutoffs are chosen to be small enough to ensure
that the minimum energy of the system, or equivalently the ground-state density has been
reached (recall the variational principle of Eq. (2.55)). Only when the difference in energies
or densities lies below its corresponding cutoff, this self-consistent process is finished,
yielding approximately the ground-state electronic density 𝑛0(r) and energy of the system
𝜖0.
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we can reexpress the kinetic energy in the KS system for 𝑛0(r) as:

𝑇𝑠 [𝑛0] =
𝑛𝑒∑︁
𝑖=1

𝜖𝑖 −
∫

𝑑r 𝑣𝑠 [𝑛0] (r) 𝑛0(r) . (2.74)

Substituting this on Eq. (2.68), we get the following expression for the total energy
of the real system for the ground-state density, 𝐸𝑉0 [𝑛0]:

𝐸𝑉0 [𝑛0] =
𝑛𝑒∑︁
𝑖=1

𝜖𝑖 +
∫

𝑑r (𝑣0 [𝑛0] (r) − 𝑣𝑠 [𝑛0] (r)) 𝑛0(r) + 𝐽 [𝑛0] + 𝐸𝑥𝑐 [𝑛0] . (2.75)

The one-body potential difference integrand can be worked out using Eq. (2.71), so
that we get:

𝐸𝑉0 [𝑛0] =
𝑛𝑒∑︁
𝑖=1

𝜖𝑖 − 𝐽 [𝑛0] −
∫

𝑑r (𝑣𝑥𝑐 [𝑛0] (r)) 𝑛0(r) + 𝐸𝑥𝑐 [𝑛0] . (2.76)

As the ground-state energy in the KS system is obviously

𝐸𝑠 [𝑛0] =
𝑛𝑒∑︁
𝑖=1

𝜖𝑖 , (2.77)

this leads to the following relationship between the total ground-state energies of
both systems:

𝐸𝑉0 [𝑛0] = 𝐸𝑠 [𝑛0] − 𝐽 [𝑛0] −
∫

𝑑r (𝑣𝑥𝑐 [𝑛0] (r)) 𝑛0(r) + 𝐸𝑥𝑐 [𝑛0] . (2.78)

The latter relationship holds independently of how the correlation part is approxi-
mated. Straightforwardly, the smaller 𝐽 [𝑛0] becomes, the closer the noninteracting
KS system and the interacting ground state are to each other.

Another comment can be made on the meaning of the KS orbitals and their
energies. In principle, they are no more than a mathematical tool to get the ground-
state density of the real system and its energy, so that they mean nothing special
from a physical perspective. However, there is an actual physical quantity linked
to the highest energy among the occupied KS orbitals. This eigenvalue is identified
if we check how densities should become when one takes out an electron from the
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atomic or molecular system, i.e., exploring the asymptotic limit |r| → ∞ [120]:

Real system: 𝑛0(r) −−−−→
𝑟→∞

𝑐 𝑒−2
√
2𝐼 (𝑛𝑒 )) 𝑟

Kohn-Sham system: 𝑛𝑠 (r) −−−−→
𝑟→∞

𝑐 𝑒−2
√
2[−𝜖𝑛𝑒 (𝑛𝑒 )+𝑣𝑠 (𝑟 )] 𝑟 .

(2.79)

where 𝐼 (𝑛𝑒)) is the ionization energy for a system of 𝑛𝑒 electrons (and nuclei), and
𝑐 is a constant that is not so relevant here. If we set the KS potential minimum in
the asymptotic limit, 𝑣𝑠 (𝑟 → ∞) → 0, and by the equality of ground-state densities
of both systems we imposed before, we obtain that

𝜖𝑛𝑒 (𝑛𝑒) = −𝐼 (𝑛𝑒)) = 𝐸0(𝑛𝑒) − 𝐸0(𝑛𝑒 − 1) , (2.80)

where the rightmost equality is simply the usual definition of the ionization energy.
From this, we also come to the following relationship:

𝜖𝑛𝑒+1(𝑛𝑒 + 1) = −𝐼 (𝑛𝑒 + 1)) = −𝐴(𝑛𝑒) , (2.81)

where 𝐴(𝑛𝑒) is the electronic affinity. Additional conclusions we will not cover
here can be extracted by comparing both systems; more information on these can
be found elsewhere [120, 128].

Recall that here we have dealt with nondegenerate ground states. The KS method
with degeneracy entails some particularities that are covered in the DFT litera-
ture [116, 120]. Additionally, we have not considered the spin in our discussion,
which would enter into the KS equations as an additional degree of freedom in the
potential terms, in the orbital energies and in the ground-state wavefunction and
density. This is covered in the literature in references such as Ref. [129].

So far, we have used no approximations on DFT, which makes it an exact theory.
However, there is only one point that we must be careful about. In practice, the
quality of the determination of the one-body density for the real ground state
is clearly influenced by how one has previously tuned the interactive exchange-
correlation part of the system 𝐸𝑥𝑐 , or more precisely 𝑣𝑥𝑐 (r). This has given rise to
several approximations in the literature, a topic that we will cover in the following
subsection.

2.3.3 Exchange-correlation functionals
The next challenge is to find a good exchange-correlation functional in terms of
accuracy of the resulting computed energies. Such functionals encapsulate the
exchange and correlation effects of the electronic distribution and play a pivotal
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role in accurately determining the electronic properties of atoms, molecules, and
solids. In Section 2.3.2, we have mentioned that the exchange-correlation energy is
small in magnitude compared to other energy terms that contribute to the ground-
state energy (Eq. (2.68)), so one might underscore its importance in DFT. However,
exchange correlation plays an important role in determining quantities such as
binding energy, since its contribution to the latter reaches up to 100 % when van
der Waals interactions are present in the system [125]. Therefore, approximating it
accurately enough becomes crucial in DFT. Generally, the total exchange-correlation
functional 𝐸𝑥𝑐 [𝑛] is split as a sum of an exchange form, 𝐸𝑥 [𝑛], and a correlation
part, 𝐸𝑐 [𝑛], so 𝐸𝑥𝑐 [𝑛] = 𝐸𝑥 [𝑛] + 𝐸𝑐 [𝑛]. Nevertheless, it is not possible to find an
exact 𝐸𝑥𝑐 [𝑛], because this would mean that the many-body Schrödinger equation
can be exactly solved. Only exchange and correlation may be exactly determined
for the free electron gas (FEG) [130]. Moreover, we do not have classical analogues
as to how this functional should be.

Naively, one can try to construct an exchange-correlation functional in such away
that Hartree-Fock total energy 𝐸HF and electronic density 𝑛HF are reproduced [120].
It is important to recall that Hartree-Fock theory assumes each single electron
of a system to be described by orbitals and to move inside an average potential
created by the remaining electrons, i.e., a mean field approximation is involved.
Due to this last point, electronic correlations are neglected, so there is no Hartree-
Fock correlation functional (𝐸HF𝑐 [𝑛] = 0). Then, if only Hartree-Fock exchange is
assumed, the total energy functional in such situation would become:

𝐸only HF [𝑛] = 𝑇𝑠 [𝑛] +𝑉0 [𝑛] + 𝐽 [𝑛] + 𝐸𝑥 [𝑛] , (2.82)

where the condition 𝐸only HF [𝑛HF] = 𝐸HF is imposed. According to the HK theorem,
𝐸𝑥 [𝑛] must exist. One can try to determine it by solving Eq. (2.82) in the KS
system. However, this leads to KS energies and orbitals that are inconsistent with
their Hartree-Fock counterparts. Moreover, such an exact exchange functional is
impossible to be obtained exactly in terms of the electronic density or wavefunction,
and thus neither a virial relation nor a gradient expansion can be defined. In contrast,
an alternative exchange term incorporating ingredients from Hartree-Fock theory
can be defined [131, 132],

𝐸exact𝑥 [𝑛] = 𝑈𝑥 [𝑛] =𝑊 [𝑛] − 𝐽 [𝑛] , (2.83)

where, in the KS system, 𝑊 [𝑛] =
〈
𝜑 [𝑛]

���̂� ��𝜑 [𝑛]〉, with |𝜑 [𝑛]⟩ as defined in
Eq. (2.63). The electron-electron interaction operator corresponds to the usual
electrostatic repulsion, �̂� =

∑𝑛𝑒
𝑙>𝑘

(1/|r𝑘 − r𝑙 |) = (1/2)∑𝑛𝑒
𝑘≠𝑙

(1/|r𝑘 − r𝑙 |), whereas
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if we reexpress 𝐽 [𝑛] (Eq. (2.60)) in terms of the KS orbitals, one can see that the
terms corresponding to 𝑘 = 𝑙 (i.e., the interaction of an electronic state with itself)
are also contained in 𝐽 [𝑛]. Thus, 𝐸exact𝑥 needs to be defined in such a way that this
unphysical effect cancels.

Equation (2.83) can be solved exactly in the KS orbital basis, thus leading to an
exact, Hartree-Fock–kind contribution to the exchange energy in DFT,

𝐸exact𝑥 = −12
∑︁
𝜎

𝑛𝑒∑︁
𝑖=1

𝑛𝑒∑︁
𝑗=1

∫
𝑑r 𝑑r′𝜙∗

𝑖 (r, 𝜎)𝜙∗
𝑗 (r′, 𝜎) 𝑤 (r, r′) 𝜙 𝑗 (r, 𝜎)𝜙𝑖 (r′, 𝜎)

= −12
∑︁
𝜎

𝑛𝑒∑︁
𝑖=1

𝑛𝑒∑︁
𝑗=1

∫
𝑑r 𝑑r′

𝜙∗
𝑖 (r, 𝜎)𝜙∗

𝑗 (r′, 𝜎)𝜙 𝑗 (r, 𝜎)𝜙𝑖 (r′, 𝜎)
|r − r′| ,

(2.84)

where 𝜎 is the spin linked to each KS orbital and its related sum is over orbitals
with the same spin. Notice that 𝐸exact𝑥 as obtained in this way does not depend
explicitly on the density, but on the one-particle KS orbital, thus there arises an
implicit one-body density dependence for the exact exchange part. The structure of
𝐸exact𝑥 implies the description of nonlocal interactions, while the explicit presence
of KS orbitals poses an additional difficulty in calculating the exact exchange term.
We will return to this point in more detail in Section 2.3.3.4.

For now, as mentioned above, the exchange part (2.84) allows to suppress the
electronic self-interaction error for the terms 𝑖 = 𝑗 . Its related potential 𝑣𝑥 = 𝑑𝑈𝑥/𝑑𝑟
also verifies that 𝑣𝑥 −−−−→

𝑟→∞
−1/𝑟 , which is the expected behavior. To understand this,

let us introduce the so-called hole picture. Recall the two-body density decomposi-
tion (Eq. (2.37)) in terms of an independent part 𝑛𝐼2(r, r′) (Eq. (2.38)), accounting for
the system behavior with no inner interactions, and an exchange-correlation term
that we can define by

𝑛𝐶2 (r, r′) = 𝑛𝐼2(r, r′) ℎ(r, r′) =
𝑛𝑒 − 1
2𝑛𝑒

𝑛(r) 𝑛(r′) ℎ(r, r′) , (2.85)

wherewe introduce the exchange-correlation hole densityℎ(r, r′) accounting for the
exchange-correlation interactions in the system. Now, incorporating this definition
of 𝑛𝐶2 (r, r′), for a large number of particles 𝑛𝑒 → ∞, Eq. (2.37) becomes

𝑛2(r, r′) =
1
2 𝑛(r) 𝑛(r

′) [1 + ℎ(r, r′)] . (2.86)

Now let us integrate both sides with respect to 𝑑r′. Using Eq. (2.36) in the process,
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we are able to get that ∫
𝑑r′ 𝑛(r′) ℎ(r, r′) = −1 . (2.87)

This result makes sense if we think that the presence of a particle at a given point
has an effect of "pushing" the remaining 𝑛𝑒 − 1 particles slightly farther from the
remaining one. In this way, the given particle generates a density perturbation on
the neighbors equal to −1, as the particle needs to generate some room for being
inside the system, a "hole" that justifies the hole picture name. Now, remembering
that the only inner exchange-correlation potential in a system of two identical
particles is due to the exchange interaction, and due to the Coulombic nature
of the potential 𝑈𝑥 (i.e., proportional to 1/𝑟 ), we see that the asymptotic limit
𝑣𝑥 −−−−→

𝑟→∞
−1/𝑟 makes complete sense.

At this point, let us insist on the impossibility of finding 𝐸𝑥𝑐 [𝑛] exactly, as previ-
ously mentioned. Instead, at least part of the exchange and correlation functional
needs to be approximated, its quality depending on how close the DFT results are
to the experimental measurements in the atomic and molecular systems. In this
respect, the more intricate the exchange-correlation functional becomes, the higher
the computational cost it turns out to be. The wide inhomogeneity of features
present in real systems means that less exact but computationally less demanding
approximations may suffice for certain systems to accurately evaluate energies
and other quantities, whereas more complex exchange-correlation functionals may
be required for others. The available functional approximations can be sorted in
a paradigmatic categorization called Jacob’s Ladder [133], which is depicted in
Fig. 2.2. Let us "climb" this ladder from bottom to top.

2.3.3.1 Local density approximation (LDA)

The local density approximation (LDA) model was originally stated by Kohn and
Sham in their seminal paper in 1965 [126]. It is based on the features of an homoge-
neous electron gas (HEG), which is a system of infinite electrons placed uniformly
in space and under the action of a background positive charge density such that the
net charge of the entire ensemble is zero. The homogeneity of this system implies
the energy to be proportional to the volume, i.e., for a volume element 𝑑r,

𝑑𝐸HEG𝑥𝑐 = 𝑛HEG 𝑒
HEG
𝑥𝑐 (𝑛HEG) 𝑑r , (2.88)

being 𝑛HEG the constant-valued density for the HEG and 𝑒𝑥𝑐 (𝑛HEG) the exchange-
correlation energy density per particle for this uniform electron gas, also a constant.
Translating this expression into the real (inhomogeneous) system, we have to re-
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Figure 2.2: Jacob’s Ladder of exchange-correlation functionals in DFT. The ladder starts
from Hartree-Fock approximation floor or "Hartree hell", the least precise way of represent-
ing exchange and correlation. The higher the considered approximation is in the ladder,
the more precisely quantum chemical properties are predicted, with a larger computational
expense in time and resources. The ideal peak of the ladder represents discrepancies be-
tween the DFT computed and the actual energy density of the many body system below
1 kcal/mol. Moving towards the higher steps implies going from the local density approx-
imation, showed in green, to semilocal approaches exploring first or second derivatives
of the density at some point 𝑛(r) (blue) and afterwards to functionals describing nonlocal
or long-range effects, depicted in red. Central columns indicate the name of each family
of exchange-correlation functionals (left) and the key functions handled by each family
(right). Van der Waals approximations (step 3.5) did not exist before Jacob’s Ladder diagram
was first published in Ref. [133]; a discussion regarding its placement in the diagram is
given in Ref. [134].
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place 𝑛HEG with 𝑛(r) and 𝑒HEG𝑥𝑐 (𝑛HEG) with 𝑒HEG𝑥𝑐 (𝑛(r), r). The exchange-correlation
energy within LDA approximation is obtained then as:

𝐸LDA𝑥𝑐 [𝑛] =
∫

𝑑r 𝑛(r) 𝑒HEG𝑥𝑐 (𝑛HEG = 𝑛(r)) . (2.89)

As such, the exchange-correlation of the real, inhomogeneous system at r is ap-
proximated to the exchange-correlation energy density per particle of an HEG of
the same density, 𝑛HEG = 𝑛(r).

Let us now explore how both the exchange and the correlation parts are calculated
in LDA. The exchange energy has a quite simple analytical expression, as KS orbitals
(and also Hartree-Fock ones) become plane waves for the HEG. In this manner,
starting from Eq. (2.83), we can compute the exchange energy density for the HEG
as [116]:

𝑒HEG𝑥 = −34

(
3
𝜋

)1/3
𝑛
1/3
HEG . (2.90)

In the real system, we obtain:

𝐸LDA𝑥 [𝑛] = −34

(
3
𝜋

)1/3 ∫
𝑑r 𝑛4/3(r) . (2.91)

The correlation part depends on the HEG ground-state density. Initially, the correla-
tionmodel consideredwas the one proposed by EugeneWigner for the Hartree-Fock
model [135]. Starting with a work in 1980 on zero-temperature hydrogen gas, sev-
eral one-body densities have been evaluated numerically using quantum Monte
Carlo simulations, yielding values of 𝐸𝑐 of an arbitrary degree of precision [136].
However, its exact analytic characterization is not possible and only approximate
expressions are feasible in this respect. Only the limits of high and low density are
analytically described and its expressions can be found elsewhere [137]. They are
written in terms of the Wigner-Seitz parameter or radius 𝑟𝑤𝑠 , which is the radius of
a sphere whose volume is equal to the volume occupied by a single electron in a
region with local electronic density 𝑛(r),

𝑟𝑤𝑠 =

[
3

4𝜋𝑛(r)

]1/3
≈ 1.919

𝑘𝐹
, (2.92)

with 𝑘𝐹 (r) =
(
3𝜋2𝑛(r)

)1/3 being the Fermi wavevector. 𝑟𝑤𝑠 → ∞ in the low density
limit and 𝑟𝑤𝑠 → 0 in the higher one. Although there were previous proposals for
analytical approximations of the correlation part [138, 139], the most widely used
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analytical approximation for the correlation part is due to John P. Perdew and Yue
Wang [140]. They proposed an approximate correlation energy density in terms
of 𝑟𝑤𝑠 with 12 parameters fitted in agreement with several quantum Monte Carlo
calculations. Anyway, recalling Eq. (2.89), the correlation energy is obviously:

𝐸LDA𝑐 [𝑛] =
∫

𝑑r 𝑛(r) 𝑒HEG𝑐 (rws) . (2.93)

LDAworks remarkablywell in systemswith slow density variations, i.e.,∇𝑛(r) →
0, and breaks out with sudden variations of the density, e.g., close to a nucleus.
In fact, it gives good results when the following condition linked to the Fermi
wavevector holds:

|∇𝑛(r) |
𝑛(r) ≪ 𝑘𝐹 . (2.94)

LDA performs fairly well for Coulombic systems, e.g., giving total energies of atoms
and molecules with an error margin of 1 to 5% compared to experimental data [121].
Moreover, for large absolute values of 𝑟 (|r| → ∞) the exchange potential decays
exponentially, 𝑣𝑥 −−−−→

𝑟→∞
𝑒−𝑟 , thus diverging from the behavior of the exact Hartree

exchange potential, 𝑣HF𝑥 −−−−→
𝑟→∞

−1/𝑟 .

There exists also a spin-dependent version of LDA and local spin density approx-
imation (LSDA). For two possible spin orientations 𝜎1 and 𝜎2 in a multielectronic
system (and thus two different kind of one-body densities 𝑛4/3HEG, 𝜎1 and 𝑛

4/3
HEG, 𝜎2),

the exchange energy density per particle takes the form:

𝑒HEG𝑥

(
𝑛𝜎1, 𝑛𝜎2

)
= −34

(
3
𝜋

)1/3
21/3

𝑛
4/3
𝜎1 (r) + 𝑛4/3𝜎2 (r)

𝑛(r) , (2.95)

and, consequently, the exchange LSDA contribution in the real system is:

𝐸LSDA𝑥 [𝑛] =
∫

𝑑r 𝑛(r) 𝑒HEG𝑥

(
𝑛𝜎1, 𝑛𝜎2

)
. (2.96)

For the correlation part, analogous considerations as for LDA hold, i.e., this part is
determined numerically with quantum Monte Carlo simulations and then analyti-
cally fitted to the numerical results. This gave rise to functionals such as PW92 [140]
or VWN [138]. An overview of the available fittings can be seen in Ref. [141].
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2.3.3.2 Generalized gradient approximation (GGA)

The generalized gradient approximation (GGA) consists in incorporating some
inhomogeneity in the electron density without discarding one-point density for
computing the exchange-correlation part. Its original aim was to improve LDA
in nonhomogeneous density conditions. It takes its foundations on the weakly
inhomogeneous electron gas (WIEG) [117], a perturbative departure of the HEG
described by the Hamiltonian [120],

𝐻WIEG = 𝑇WIEG +𝑊WIEG +
∫

𝑑r 𝑛WIEG(r) 𝛿𝑣 (r) , (2.97)

where 𝛿𝑣 (r) is a weak external potential originated by a small positive charge
density in order to stay close to the charge neutrality of the homogeneous gas.
This creates a small nonhomogeneous perturbation on the one-body density of the
system.

Returning to the real system, the exchange-correlation energy of the real system
is handled as a perturbative expansion in terms of a reduced gradient of the one-
body density,

𝑠 (r) = 1
2

|∇𝑛(r) |
𝑘𝐹 (r)𝑛(r)

, (2.98)

which is a dimensionless term also related to the Fermi wavevector. In terms of
this factor, the following exchange-correlation expansion can be proposed:

𝐸GEA𝑥𝑐 [𝑛] =
∫

𝑑r 𝑛(r) 𝑒HEG𝑥𝑐

(
𝑛(r) + 𝑐 (2)𝑥𝑐 (𝑛(r)) 𝑠2(r) + ...

)
, (2.99)

with 𝑐 (2)𝑥𝑐 (𝑛(r)) being fitting parameters. Notice that the first term of the expan-
sion is obviously 𝐸LDA𝑥𝑐 [𝑛]. As the integrals of odd powers of ∇𝑛(r) are zero, only
even powers of 𝑠 (r) survive the integration. The first gradient-dependent attempt
truncated the expansion at 𝑠2 power and was called the gradient-expansion ap-
proximation (GEA). However, some sum rules related to the only-exchange and
only-correlation densities of the system were violated with that expansion, leading
to a more inaccurate performance of 𝐸GEA𝑥𝑐 [𝑛] than of 𝐸LDA𝑥𝑐 [𝑛]. Therefore, one
needs to consider either more terms in the power series of Eq. (2.99), or another
kind of dependence of 𝐸𝑥𝑐 on ∇𝑛(r). These approaches are designed to also fulfill
the referred summation rules GEA violates, and are encompassed under the name
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of GGA in the more generic expression,

𝐸GGA𝑥𝑐 [𝑛] =
∫

𝑑r 𝑛(r) 𝑓𝑥𝑐 [𝑛(r),∇𝑛(r) (r)] , (2.100)

being 𝑓𝑥𝑐 [𝑛(r),∇(r)] an appropriately defined exchange-correlation functional of
the density and its gradient. The sum conditions mentioned above are soft enough
requirements to allow formulation of many different GGA exchange-correlation
functionals, which usually rely on parameters (part of them of semi-empirical basis).

In this respect, among the more popular GGA functionals, one can find PBE [142,
143], PW91 [144] or BLYP [145]. But, as mentioned before, there is a remarkable,
currently growing variety of GGA functionals. Some lists collecting a number of
them can be found elsewhere in the literature [141, 146]. When there exists an
improvement of GGA with respect to LDA applied on a given system, the use of
density gradients implies some more computational cost than models based solely
on density.

Notice that spin-dependent GGA models can be formulated as well; these would
adjust to the following generic expression (again for two spin orientations 𝜎1, 𝜎2):

𝐸GGA𝑥𝑐

[
𝑛𝜎1, 𝑛𝜎2

]
=

∫
𝑑r 𝑛(r) 𝑓𝑥𝑐

[
𝑛𝜎1 (r), 𝑛𝜎2 (r),∇𝑛𝜎1 (r),∇𝑛𝜎2 (r)

]
. (2.101)

With respect to LDA, the exchange and correlation energies for a number of
atomic systems are predicted more exactly and very closely between different GGA
models [120]. Furthermore, compared to LDA, both exchange and correlation ener-
gies become closer to the exact values than LDA and thus more accurate. Additional
results related to molecular or metallic systems are accurately computed for differ-
ent molecular systems [120]. Among the downsides, the addition of gradient terms
leads to more complexity in the calculation of GGA exchange and correlation than
for LDA (recall Fig. 2.2). In addition, GGA functionals lead to worse computations
of parameters such as molecular bond lengths than LDA [121]. The exchange
potential continues to decay exponentially as for LDA and unlike the asymptotic
limit of Hartree exchange. In addition, although some nonlocality is incorporated
with density gradient terms in contrast to LDA, longer-range interactions are not
accurately described [120].

2.3.3.3 Meta-generalized gradient approximation (mGGA)

In order to further improve the description of exchange and correlation and to
overcome the limitations of GGA functionals, further extensions were developed
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under the collective name of meta-generalized gradient approximation (mGGA).
These functionals incorporate to the exchange-correlation energy the Laplacian of
the one-body density, ∇2𝑛(r), as well as a quantity proportional to the gradient of
the KS orbitals, the KS kinetic energy density (KED), defined as the kinetic energy
of the occupied KS orbitals per volume unit [147],

𝜏 (r) = 1
2

(occ)∑︁
𝑖=1

|∇𝜙𝑖 (r) |2 . (2.102)

These ingredients are incorporated to the mGGA exchange correlation energy
density, so that

𝐸mGGA
𝑥𝑐 [𝑛] =

∫
𝑑r 𝑛(r) 𝑓𝑥𝑐

[
𝑛(r),∇𝑛(r),∇2𝑛(r), 𝜏 (r)

]
, (2.103)

or, for its spin-dependent version,

𝐸mGGA
𝑥𝑐

[
𝑛𝜎1, 𝑛𝜎2

]
=

∫
𝑑r 𝑛(r)·

· 𝑓𝑥𝑐
[
𝑛𝜎1 (r), 𝑛𝜎2 (r),∇𝑛𝜎1 (r),∇𝑛𝜎2 (r),∇2𝑛𝜎1 (r),∇2𝑛𝜎2 (r), 𝜏 (r, 𝜎1), 𝜏 (r, 𝜎2)

]
.

(2.104)

Again, there are different choices for the exchange-correlation integrand, with
PKZB [148] and TPSS [149] the most popular mGGA models. A number of mGGA
functionals avoid incorporating ∇2𝑛(r) terms due to divergences in the vicin-
ity of atomic nuclei. There are references collecting various choices for mGGA
forms [141].

These kinds of functionals further improve the already good results computed
with GGA, and also make it possible to decrease self-interaction-related errors
as well as problematic behaviors of the exchange and correlation local potentials.
However, there is a higher computational cost due to the Laplacian evaluation and,
especially, to the KED term that explicitly depends on the KS orbitals. As KED does
not depend explicitly on density, the local exchange-correlation potential 𝑣𝑥𝑐 =

𝛿𝐸𝑥𝑐 [𝑛(r)]/𝛿r cannot be determined directly, in contrast to other explicit density
functionals. Moreover, mGGA functionals are frequently used after previously
performed self-consistent GGA calculations, and therefore they lead to modest
refinements to GGA [120]. Reasons like these explain why they are less commonly
used in quantum chemistry than GGA or LDA functionals.
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2.3.3.4 Hybrid functionals

Previous exchange-correlation approaches were called local or semilocal because
they involved the knowledge of the density at some r (local) or some of its derivatives
–gradient or Laplacian– implying some directionality, but evaluated at the same
point (semilocal). However, interactions of a longer range than the semilocal ones
require 𝐸𝑥𝑐 [𝑛] to incorporate some nonlocal part. As it is an exact functional,
it is particularly convenient to consider the Hartree-Fock exchange 𝐸HF𝑥 [𝑛] we
defined at the beginning of Section 2.3.3 in Eq. (2.84). We already mentioned that
each electron is affected by a potential because the remaining ones of a given
system in the Hartree-Fock framework are nonlocal, thus 𝐸HF𝑥 [𝑛]. Therefore, an
exchange-correlation functional incorporating the Hartree-Fock exchange can
handle interactions beyond the semilocal limit.
Now we can take advantage of the Hartree-Fock system, from which we know

exactly both the exchange (Eq. (2.84)) and correlation (𝐸HF𝑐 [𝑛] = 0) functionals. In
fact, one can mix a fraction of the Hartree-Fock regime with the real system whose
𝐸𝑥𝑐 [𝑛] needs to be approximated with methods such as the ones we have seen,
LDA, GGA and/or mGGA. Both regimes are mixed for these exchange-correlation
forms, which fall under the category of hybrid functionals.

The first hybrid form was proposed by Axel D. Becke in 1993 and combines GGA
exchange-correlation with the exact one [150]:

𝐸B93𝑥𝑐 = 𝑎𝐸HF𝑥 + (1 − 𝑎)𝐸GGA𝑥 + 𝐸GGA𝑐 , (2.105)

with a numeric parameter 𝑎 ∈ [0, 1] adjusted to fit a set of atomization energies. For
B93, 𝑎 ≈ 1/4. There are other hybrid functional proposals, such as the PBE0 [151]
andHSE functionals, that combine exact exchangewith the GGA type PBE exchange
correlation functional [152, 153]. But the most popular approach is a variation of
the B3PW91 functional [154], namely the B3LYP form [155],

𝐸B3LYP𝑥𝑐 = (1 − 𝑎)𝐸LSDA𝑥 + 𝑎𝐸HF𝑥 + 𝑏𝐸B88𝑥 + (1 − 𝑐)𝐸LSDA𝑐 + 𝑐𝐸LYP𝑐 , (2.106)

with 𝑎 = 0.20, 𝑏 = 0.72 and 𝑐 = 0.81. B3LYP adds to the exact Hartree-Fock
exchange energy the exchange-correlation contributions of LSDA as well as the
two GGA terms contained in the BLYP functional, namely Becke-88 (B88) for the
exchange [145] and LYP for the correlation [156].
Thanks to the addition of 𝐸HF𝑥 [𝑛] to 𝐸𝑥𝑐 [𝑛], quantities such as vibrational fre-

quencies, bond lengths, and atomization energies for a majority of molecular
species can be calculated more accurately than with mGGA or simpler functional
approaches [157]. Unlike semilocal and local forms, for hybrid functionals, the
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exchange local potential for long distances takes the asymptote 𝑣𝑥 −−−−→
𝑟→∞

−𝑎/𝑟 , so
the larger 𝑎, the closer the correct asymptotic behavior described in the beginning
of Section 2.3.3 approaches [121, 133]. These improvements come at the expense of
a higher computational cost due to the evaluation of the KS orbitals required to
obtain 𝐸HF𝑥 . Not only that, but Hartree-Fock limitations are transferred to hybrid
functionals, e.g., by sorting energies of spin states in metals incorrectly, or by failing
to describe noncovalent interactions [158].
More proposals exist regarding hybrid functionals. Some recent examples con-

sider highly parametrized forms as mixtures of hybrid-like and mGGA terms. These
belong to the family of the so-called Minnesota functionals [159]. Climbing to the
fifth step in Jacob’s Ladder (Fig. 2.2), there is an even more powerful refinement of
the hybrid functional approach in which unoccupied KS orbitals are incorporated,
with even better results but computationally more expensive than the aforemen-
tioned hybrid functionals. However, let us insist once more on the idea that there
exists no perfect 𝐸𝑥𝑐 [𝑛], but its quality depends on the system under study in DFT
and the compromise between complexity and accuracy reached for each choice of
functional.

Unfortunately, the inability of hybrid forms to handle noncovalent interactions
is an important obstacle when studying solid surfaces as we do in this work. In
particular, van der Waals interactions fall under this category, and its description
is paramount for surfaces. A different group of forms, namely van der Waals
functionals, can overcome this problem, as we are discussing next.

2.3.3.5 Van der Waals functionals

Due to their importance for the systems studied in this Thesis, and before advancing
to van der Waals functionals, let us briefly introduce van der Waals interactions.
These involve groups of electrically neutral molecular assemblies (i.e., molecules
with their electronic subshells filled). Two kinds of forces can arise: between
dipoles formed by polar molecules (dipole-dipole interactions) or between nonpolar
molecules whose instantaneous electronic distributions form different charge densi-
ties on each side of the molecule (London dispersion interactions) [160]. Dispersion
interactions are often regarded as the only van der Waals forces, overshadowing
polarization interactions between induced dipoles, which are typically weaker [161,
162]. These long-range interactions are responsible for the adsorption of many
molecules and other quantum chemical phenomena on surfaces, as well as for the
structural cohesion of van der Waals atomic and molecular systems, crystalline
solids, nanostructures, and different biomolecules such as DNA.

Van der Waals intermolecular interaction energy is modeled with the following
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decomposition,

𝑉 vdW = 𝑉 vdW,sh +𝑉 vdW,elec +𝑉 VDW,ind +𝑉 VDW,disp , (2.107)

being 𝑉 VDW,sh an exponential-decaying, short-ranged electrostatic repulsion term,
𝑉 VDW,elec the interaction between the electronic distributions of the molecules on
their ground states, and 𝑉 VDW,ind and 𝑉 VDW,disp the potentials for the aforemen-
tioned dipole-dipole and dispersion interactions. These terms can be encompassed
in the following multipole expansion [163],

𝑉 vdW = −
∞∑︁
𝑖=0

𝐶2𝑖+6

|r − r′|2𝑖+6
, (2.108)

with the𝐶2𝑖+6 coefficients being numerically-adjustable parameters. Equation (2.108)
shows how weak van der Waals interactions become compared to electrostatic
interactions. Although these interactions last for a short time with respect to
single pairs of particles, together they become strong enough to preserve the con-
sistency of systems such as surfaces and biomolecules [164, 165]. In fact, some
approaches to define the contribution of nonlocal correlation focus on fixing the
𝐶2𝑖+6 coefficients in different ways, also with the aid of reference results of quantum
chemical calculations. Among these, we can find proposals like PBE-D2 [166]
or TS-vdW [167], which truncate Eq. (2.108) in its first term and thus determine
approximate expressions for the coefficient 𝐶6.
At this point, and unlike semilocal families of forms (recall Fig.2.2), van der

Waals functionals are capable of describing long-range forces [168]. Regarding their
functional modeling for handling exchange and correlation, some initial proposals
based on first principles were developed [169, 170, 171]. Later, a key milestone was
achieved with van der Waals density functional (vdW-DF), first introduced by Dion
et al. [172]. Modeling nonlocal exchange-correlation effects with vdW-DF does not
require KS orbitals, thus avoiding the aforementioned theoretical complications
their introduction brings. Furthermore, it excels in sparse systems, within which
there are areas of high electronic density separated from each other by large empty
spaces. In contrast with electronically dense matter, not only strong local forces
inside each electron cloud but also nonlocal van der Waals interactions between
these electron distributions –weaker, yet collectively significant– play a crucial
role [173]. A particular example of a sparse system is a multilayered interface
of metallic atoms. Each individual atom layer is tightly bound by electrostatic
forces, whereas cohesion between separate layers occurs through van der Waals
forces. This vdW-DF exchange-correlation functional in particular and its family of
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functionals in general become particularly relevant for us as the vdW-DF exchange-
correlation functional is used in the DFT calculations performed during this Thesis.

However, let us return to the vdW-DF form. As van der Waals interactions come
from correlating, nonoverlapping distributions of electrons, they affect only the
correlation of the many-body system. Hence the way of incorporating them in the
exchange-correlation energy combines local exchange (LDA), semilocal correlation
(GGA) and a nonlocal correlation part 𝐸NL𝑐 :

𝐸vdW−DF
𝑥𝑐 = 𝐸GGA𝑥 + 𝐸LDA𝑐 + 𝐸NL𝑐 . (2.109)

In the original vdW-DF formulation by Dion et al. [172], the GGA form chosen to
evaluate 𝐸GGA𝑥 is the rev-PBE one [174], which is a variant of the PBE functional [142,
143]. This choice avoids one typical problem present in a number of GGA proposals,
namely that they overvalue the exchange contribution to van der Waals binding.
This behavior is wrong, according to calculations on some systems, such as the
benzene dimer, of exact Hartree-Fock exchange energy 𝐸HF𝑥 (Eq. (2.84)) [173]. Insist-
ing on this, although the bond lengths are slightly overestimated by rev-PBE, the
equilibrium energies are closer to the experimental results than when 𝐸HF𝑥 is taken
as the exchange part. Nevertheless, consideration of other modified exchange forms
may improve the accuracy of 𝐸vdW−DF

𝑥𝑐 , as has been verified for different sparse sys-
tems [175]. On the other hand, the correlation energy 𝐸vdW−DF

𝑐 is decomposed into
one local term calculated with LDA and a nonlocal part 𝐸NL𝑐 . The latter incorporates
the van der Waals force description in vdW-DF and is modeled as:

𝐸NL𝑐 [𝑛] = 1
2

∫
𝑑r 𝑑r′ 𝑛(r) 𝛷 (r, r′) 𝑛(r′) , (2.110)

where𝛷 (r, r′) is a function proportional to the difference |r − r′|. Details on the
derivation of an approximate expression for this kernel function involve the adi-
abatic connection formalism [173] and can be followed in Ref. [172]. This form
cannot be used together with the exact Hartree-Fock-based exchange energy, as has
been shown elsewhere [176]. Notice also that for short-range interactions LDA and
GGA contributions to exchange and correlation become dominant, thus making
vdW-DF treatment consistent also in shorter scales.

In the original vdW-DF, the nonlocal correlation energy 𝐸NL𝑐 is determined with
a model dielectric function, and it works as a nonlocal correction to the LDA
correlation 𝐸LDA𝑐 , as 𝐸NL𝑐 ≪ 𝐸LDA𝑐 [172, 173]. Later, a correlation potential incorpo-
rating the nonlocal effects was proposed, thus vdW-DF becoming a self-consistent
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framework [177],

𝑣NL𝑐 [𝑛] (r) = 𝛿𝐸NL𝑐 [𝑛]
𝛿𝑛(r) . (2.111)

Even though being a more complete approach than original vdW-DF form, in
general its self-consistent extension does not give rise to significant changes in
a number of quantum chemical quantities due to its rapid decay with growing
intermolecular distance as given in Eq. (2.108). Only in some specific applications,
incorporation of the self-consistently calculated correlation potential yields relevant
improved results, such as the evaluation of Hellmann-Feynman forces [177]. In
particular, because of this latter aspect, we use the self-consistent vdW-DF version
in our DFT calculations.

In addition to this, other proposals have emerged based on the original vdW-DF
approach, aiming to improve its features. This has been pursued by determining
the 𝐸GGA𝑥 exchange with a reparameterized version of PW86, rPW86 [178] (instead
of rev-PBE as in vdW-DF) and modifying an internal parameter of the vdW-DF
approach, leading to the vdW-DF2 form [179] or incorporating changes to the GGA
exchange part such as in rev-vdW-DF2 [180]. A more current vdW-DF generation,
called vdW-DF3 [181], adds a new empirical-like degree of freedom to the original
vdW-DF model. However, improvement of vdW-DF-based functionals is an ongoing
task to this day.
Although becoming reliable when treating van der Waals interactions, compu-

tational evaluation of this kind of nonlocal functionals has only a slightly higher
cost than GGA approximations [173, 182, 183]. With this in mind, the vdW-DF
family of functionals can be placed between mGGA and hybrid functional rungs
of Jacob’s Ladder (see Fig.2.2) [134], as part of the so-called nonlocal exchange ap-
proximations [184, 185]. The balance between accuracy and relative computational
cost motivates the use of vdW-DF for ab initio dynamical calculations in this work
(Chapters 5-8).
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3 Femtosecond laser-
induced photodesorption

The core of the work developed in this Thesis is the study of the dynamics con-
cerning a metal surface with molecules adsorbed on its top which is excited with a
femtosecond laser pulse. Such particular kind of excitation can affect the adsorbates,
which can desorb, dissociate, recombine, or just rotate, vibrate, and/or diffuse on
the surface. Understanding how to describe the femtochemical phenomena of
adsorbate-decorated surfaces is the main goal of this chapter.

3.1 Photoinduced desorption mechanisms

Femtochemistry is a relatively recent branch of quantum chemistry. Although
some theoretical background formulations appeared in the 1930s [186, 187, 188],
experimental tools for accessing smaller time scales had to wait some decades to
become available [189]. The first femtochemistry experiments had to wait until
the 1980s, once ultrashort laser pulses lasting subpicosecond times could first be
produced, as was reported by different groups [190, 191, 192, 193, 194]. The use for
the first time of a Ti-sapphire laser in 1991 [195] was crucial for the generalization
of femtosecond-scale experiments in a number of laboratories. More recently,
even laser pulses on the attosecond time scale were successfully produced [196,
197]. Returning to the femtoscale, in pioneering femtosecond laser experiments
the transition states of ICN breakage into I+CN products [198, 199] and later on
both NaI and NaBr dissociation [200] were observed for the first time, as well
as a transformation process from covalent to ionic bonds. But, above all, studies
like these paved the way for extensive research in diverse areas, including gas
and liquid systems, biological molecules, and interactions in solutes, solvents, and
polymers [189].

Different considerations require experimentally reaching a time resolution of the
order of 10−15 s (i.e., 1 fs). Elemental processes such as bond formation and rupture
occur within the femtosecond time scale. Moreover, vibrations in molecules elapse
in time periods on the order of 10 to 100 fs [189]. Additionally, transition states
of different reactions exist for times of the order of picoseconds or even shorter
(see, e.g., Refs. [201, 202, 203]). Reaching a femtosecond time resolution is crucial
in order to follow the movement of atoms and molecules in the angstrom (10−10 m)
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space scale in real time, and to monitor their behavior and interactions during
chemical reactions [204].
To explore the subpicosecond regime, the most common experimental tech-

nique is the usage of femtosecond pump-probe laser pulses, or femtosecond transi-
tion state spectroscopy as designed by Ahmed Zewail for the dissociation of gas
molecules [204]. A typical pump-probe experiment begins with the target in its
ground state being irradiated by a first femtosecond width pulse, the pump, and
thus gaining energy and going into an excited state in general [93]. Then, a second
pulse or probe is fired on the excited system to monitor it and measure some of its
properties. The probe laser wavelength is carefully set and its intensity is generally
smaller than the pump pulse one in order to provide to the excited state a minimal
energy input, thus not perturbing its pump-driven state one wants to investigate. In
a typical experimental set up, both pulses are generated at the same time, with the
probe being delayed from the pump by making it follow an optical path of variable
length according to the retardation time one wants to fix. Depending on the delay
time between both pulses, different stages of the chemical reaction intercourse
can be observed. Information on observables such as the atomic and molecular
positions, the energy distribution in translational and rovibrational components,
the vibration of atoms in a crystalline net and the spin orientation of ferromagnetic
atoms can be acquired. Notice that a pump-probe experiment can fail due to reasons
such as the pump pulse energy being insufficient to excite the target or the excited
system relaxing faster than the probe pulse arrival.

As highlighted earlier in the beginning of this Section, the scope of femtochemical
studies extends across various domains of applicability. However, from the begin-
ning, a specific category of systems posed particular challenges to comprehension:
surfaces with adsorbed atoms and/or molecules present a highly intricate dynamical
interplay [32]. This is motivated by the nonadiabatic coupling between the degrees
of freedom of the electrons and nuclei present in the system. At a PES level, this
coupling arises as conical intersections between the PESs of different electronic
configurations for a given arrangement of the system nuclei and intensifies with a
larger number of nuclear degrees of freedom, and the electronic configurations close
in energies to each other [205]. Between a metal surface and an atom or molecule,
nonadiabaticity can occur in the form of electron transfer from the surface to ionize
a free species or from the adsorbate to the substrate [206]. As a result of these
nonadiabatic couplings, adsorbates can experience a number of phenomenological
phenomena such as rotational and/or vibrational excitation, diffusion, dissociation,
recombination, or even desorption. These phenomena play a relevant role in ap-
plications such as heterogeneous catalysis, the process of speeding up a chemical
reaction by making some reactant or reactants interact with a catalyst in a different
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aggregation state. Usually, some atoms or molecules in the gas- or liquid-phase
adsorb on a solid surface, diffuse along it, and interact with each other, eventually
being able to easily recombine and desorb from the catalyst. Examples of heteroge-
neous catalytic reactions in real life are the synthesis of chemical compounds such
as NH3, the synthesis of fertilizers, oil refining, and the oxidation of CO and other
hydrocarbons in car exhaust systems [4]. Surface nanochemistry, electrochem-
istry, and materials science (for example, the hydrophobic effect [207]) are other
examples of practical applications of photoinduced processes in adsorbate-substrate
complexes [16, 32].
Let us focus on photoinduced desorption processes that can be triggered by

direct and indirect excitation of the adsorbate [16]. In the first case, photons are
absorbed by each adsorbate, which has either a permanent dipolar momentum or
a surface-induced transient dipolar momentum. If the photons transmit enough
energy to each adsorbate, then some of the latter are capable of overcoming the
potential barrier and desorb. The energy input does not necessarily need to be too
high. Adsorbates weakly bound to the surface can desorb even with environmental
black body radiation at ambient temperature as seen for H2 and D2 in Cu(510) [208]
and He on Pt(111) [209]. This type of excitation is influenced by the orientation of
light polarization and reaches maximum efficiency when aligned with the direction
of the transition dipole moment created by the bond between the adsorbate and
the substrate that is to be broken [16]. This behavior was observed, for example,
for H/Si(100)–(2 × 1) [210]. In general, photon-stimulated desorption is due to
infrared [211] or UV or visible light [212]. In terms of electronic conductivity, while
insulating and semiconducting substrates exhibit direct desorption upon UV/visible
light irradiation, metallic surfaces typically undergo this process when exposed to
infrared radiation [16].
Indirect photoinduced desorption is a process typically observed in metal sur-

faces as they have a high absorptivity for short-wavelength light (near-infrared,
visible, and UV) [16]. It is more complex due to the involvement of surface-driven
nonadiabatic mechanisms. First, the incident light is absorbed by the surface elec-
trons creating electron-hole pair excitations that can pump energy directly to the
adsorbates and indirectly by excitation of the surface phonons. Because of this
indirect mechanism, incident light polarization does not play a relevant role in the
indirect photoinduced desorption route, in contrast to the aforementioned direct
one [16]. This was verified experimentally, for instance, in NO desorption from
Pt(111), as reported elsewhere [213, 214]. In contrast, the laser energy absorbed per
unit area –i.e., the absorbed fluence, 𝐹– has a strong influence on the desorption
yield 𝑌 .
Whether directly or indirectly, two different regimes of desorption can arise
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depending on the nature and amount of excitations on an adsorbate. First, desorp-
tion induced by one electronic transition (DIET) occurs for low laser fluences. In
DIET, light absorption triggers eventual uncorrelated electronic excitations in the
adsorbate-substrate complex, which leads to subsequent stimulation of adsorbates
and to their potential desorption. Consequently, this process is characterized by
a relatively low desorption probability per absorbed photon and a linear depen-
dence between yield and fluence, 𝑌 ∝ 𝐹 . Second, desorption induced by multiple
electronic transitions (DIMET) arises after using intense light sources such as a
femtosecond laser [34, 35, 215, 216, 217]. The stream of incoming high-energy
photons either hits the adsorbed species directly or is absorbed by the substrate
and excites a high density of electrons and phonons to subsequently excite the
adsorbate. Either way, this leads to multiple, correlated excitations in the adsorbed
species in faster time scales than electronic and vibrational relaxation from the
excited state to the ground state. As a result, before an adsorbate fully damps its
excited energy after relaxation, it undergoes multiple excitation/deexcitation cycles,
each of them pushing it to a higher energy state in the potential well. In this way,
the adsorbed species can effectively "climb up" multiple energy states in just one
cycle until it eventually surpasses the adsorption energy barrier and desorbs.This
mechanism leads to an increase in desorption likelihood compared to DIET for
the same adsorbate-substrate complex, reflected in the superlinear enhancement
of the yield with fluence, 𝑌 ∝ 𝐹𝑛 . The exponent 𝑛 > 1 depends on the system
considered and can be of the order of 1 or 10. Additionally, translational and/or
rovibrational energy distributions of desorbed species and branching ratios become
fluence-dependent quantities. Notice that for a given system, different reaction
pathways can open depending on the emergence of DIET or DIMET. Let us mention
the CO+O2/Pt(111) system as an example. Here, DIET leads to slightly more CO
oxidation and desorption as CO2 than desorption of O2, while for DIMET the last
reaction channel prevails by a larger factor [218, 219].

Understanding of the fundamental mechanisms of electron-stimulated desorption
was originally sustained in some simple two-state theoretical approaches, among
which two of them gained the most popularity [220]. The first is the Menzel-Gomer-
Redhead (MGR) model [98, 221]. It is inspired by considerations about the ionization
and dissociationmechanisms in isolatedmolecules [222]. Either by direct absorption
of a photon or by interaction with an incoming electron, an adsorbate modifies its
electronic state and thus undergoes a vertical transition or Franck-Condon process
from its ground state to a repulsive excited state (Fig. 3.1). Then, the adsorbed
species remains in the excited-state PES for some brief residence time, during which
part of the electronic energy due to the excitation transforms into rovibrational
and/or translational kinetic energy. As a result, the adsorbate gains nuclear motion
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and evolves toward a growing reaction coordinate (often the distance between
the adsorbate center of mass (CM) and the substrate). Afterwards, the adsorbed
species relaxes to a bonding adsorbate-substrate potential with some excess kinetic
energy. Such potential can correspond either to the ground state S + A or to a state
of the form {S∗ + A}, where the adsorbate A is unexcited and the substrate S has
some excitation due to the remaining electronic energy coming from the adsorbate
after relaxation. Now, if its kinetic energy gain is larger than the ground-state
PES potential barrier, the adsorbate is able to desorb. This occurs if the residence
time has surpassed some critical value 𝑡 rel𝑐 . If the adsorbate remains excited for
a shorter time, its excess energy upon relaxation is insufficient to overcome the
barrier, leading to its recapture by the substrate. If the electronic energy that excites
the adsorbate is sufficiently large, or if electron transfer from the adsorbate occurs,
the species can not only gain enough kinetic energy to desorb but also become
ionized and desorb as an ion. If such situations do not occur, the adsorbate may
desorb as a neutral species.
MGR model offered a simple explanation of how adsorbed species can desorb

under the action of incoming photons or electrons. However, for some atoms
adsorbed on metallic surfaces, it was experimentally seen that after being excited
with photons or electrons with energies of 10 eV, lifetimes of the adsorbate excited
states were of the order of 10−16 s [223, 224]. That is two orders of magnitude shorter
than the time required for an average ion of 10 eV to move 1 Å [99]. Following
MGR framework, if an adsorbate is excited to an antibonding state with an energy
equal or larger than 10 eV, the lifetime of such an excited resonance would be
too short to allow for desorption. To overcome this inconsistency, Antoniewicz
provided an alternative two-state image for DIET process [99] (see Fig. 3.2). As
a starting point, let us consider an incident electron or photon interacting with
an adsorbate and exciting by a Franck-Condon transition to a positive ion. As a
result, an image charge arises in the surface and an attractive potential between it
and the adsorbed species (S + A+) establishes. Hence, the equilibrium position of
the adsorbate-substrate complex is shifted towards a smaller adsorbate-substrate
distance, so the adsorbate becomes accelerated towards the surface and approaches
the minimum of the excited adsorbate-substrate potential. The adsorbed species
not only gains kinetic energy when approaching the surface, but also its probability
of capturing a substrate electron by resonant tunneling or Auger neutralization
and hence becoming neutral increases. Reneutralization of this ionic resonance
leads to the disappearance of the attractive image potential and the electrostatic
repulsion of the adsorbate, which desorbs if the kinetic energy gain surpasses
the potential barrier 𝐸𝑏 . Furthermore, the adsorbed species may also desorb in
the form of a positive ion if the initial excitation brings the system to an excited
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Figure 3.1: Representation of the MGR model showing the energy versus the adsorbate-
surface distance 𝑟 . Starting from the adsorbate-substrate complex in the ground state A+S,
photoexcitation heats the electrons of the surface, and after them colliding the adsorbate
the latter is driven through a Franck-Condon excitation into an excited state A*+S. There,
excited adsorbate remains for some time in the excited PES until relaxing back to the ground
state with some kinetic energy gain, leading to it separating some 𝑟 from the substrate.
Two possible situations can arise depending of if time before quenching falls below or
reaches some critical value 𝑡 rel𝑐 . For relaxation times as 𝑡 relel,1 < 𝑡

rel
𝑐 the adsorbate gains not

enough energy to surpass the potential well 𝐸𝑏 , so that with an energy gain 𝐸1 < 𝐸𝑏 it
loses the kinetic energy gained after excitation and gets recaptures by the substrate. On the
contrary, if it remains longer of, at least, as long as some critical time, 𝑡 relel,2 ≥ 𝑡

rel
𝑐 , it gains

enough kinetic energy to surpass the potential barrier after quenching back to ground state,
𝐸2 ≥ 𝐸𝑏 , and becomes able to desorb.
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ionic state (S + A+)∗. After acceleration toward the surface and reneutralization of
the adsorbate, the latter may be reionized as the probability of electron hopping
from it to the substrate also increases with decreasing adsorbate-substrate distance.
If this positive ion has a kinetic energy greater than the potential barrier of the
ionic adsorbate-substrate complex S + A+, it may desorb as a non-neutral species.
Notice that this theoretical model can be applied to nonmetal substrates, parameters
such as the nature of the adsorbate interaction with its surface image charge and
reneutralization probabilities obviously varying with respect to metals.

Figure 3.2: Surface photodesorption mechanism as described by Antoniewicz. Considering
once more the energy dependence of the adsorbate with its distance to the substrate 𝑟 , and
starting again from the adsorbate-substrate system on ground state as in MGR proposal,
some photoexcited surface electrons are captured by the adsorbate orbitals, bringing the
adsorbate into a negative ionic state PES A− + S through a Franck-Condon process. Anionic
atom or molecule then approaches the surface before relaxing back to the ground-state PES
after some relaxation time 𝑡 relel . While approaching the surface and quenching back to it,
the adsorbate has an energy gain 𝐸 which, if it equals or surpasses the energy barrier of
the ground PES (𝐸 ≥ 𝐸𝑏 ), allows the adsorbed species to desorb.

Both MGR and Antoniewicz pictures yield analogous conclusions, basically
differing in the nature of the excited-state PES and the energetic reasoning of
how desorption originates. For DIET to occur, the average time interval between
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two different photon- or electron-induced Franck-Condon transitions 𝑡exc must be
large enough compared to both electronic and vibrational relaxation times, i.e.,
𝑡exc ≫ 𝑡 relel , 𝑡

rel
vib [16]. Moreover, properties of the desorbates such as branching

ratios between different reaction channels and translational energies do not depend
on the laser fluence in this case [219]. Conceptually, these two-state models are
compatible with DIMET as well [35]. In this regime, an adsorbate can undergo
more than one Franck-Condon excitation (and hence more than one relaxation to
the ground state), preventing it from being recaptured by the surface. As a result, it
is easier for it to gain enough kinetic energy to surpass a potential barrier.

Despite their simplicity, MGR andAntoniewiczmodels have helped to understand
how desorption due to electron and photon stimulation works, and can be used
to predict some properties of real systems which could be supported or not by
later experiments [220]. However, their simplicity involves some limitations. For
the MGR picture, there are challenges in rationalizing a number of features about
electron-stimulated desorption. This includes describing the sizes of high-energy
desorption barriers, differences between neutral and ion desorbates, the charge
state of the desorbing species, the smallness of the electron-stimulated desorption
cross section compared to its counterparts in the ionization of gas-phase species,
the absence of isotope effects for desorbed neutrals, and high kinetic energies of
the desorbing particles [225]. Regarding the Antoniewicz approach, the attractive
electrostatic interaction with the substrate image charge appears to be much less
relevant than proposed, according to experimental results on photon-stimulated
desorption of CO,CO+ andCO− from Pt [226]. Moreover, both models fail to explain
experimental results, such as the observed large isotope effect on nonthermal UV
photodesorption of NH3 from GaAs(100) surfaces [227]. In addition to this, these
approaches miss effects such as multidimensionality of the PESs involved and the
potential existence of more than one available excited state [220]. Although they
provide a simple basis to describe desorption from a theoretical perspective, aspects
such as the previous ones show that these two-statemodels are clearly insufficient or
even unsuccessful in characterizing the properties of different adsorbate-substrate
systems. The more complex the latter ones become (e.g., for adsorbates arranged in
multiple layers or complex surface geometries), the more evident the problems of
these simple models are.

Apart from the aforementioned ones, a notable limitation arises particularly in the
context of the MGR and Antoniewicz models, which assume the initial excitation is
concentrated around the adsorbed entities. This issue becomes especially relevant in
the case of DIMET on metal substrates under the influence of ultrashort laser pulses,
where an indirect excitation route may emerge. In this scenario, photon absorption
by the surface becomes predominant, energizing its electrons and lattice phonons,
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which in turn stimulate the adsorbates. Thus, a more comprehensive theoretical
framework is necessary for understanding desorption from metal surfaces, beyond
what the MGR or Antoniewicz models offer. This cornerstone of our work will be
explored in the next Section.

3.2 Photoinduced desorption on metallic surfaces
Adsorbate-decorated metallic surfaces have been attracting growing interest due to
two main reasons [32]. First, metals can create a beneficial energy environment
for reactions with adsorbed species, leading to, e.g., lower reaction barriers than
for free, gas-phase species. Secondly, positioning reactants closely together on a
metal surface enhances control over the dynamics of a chemical process, which
simplifies their set-up for a number of applications such as heterogeneous catalysis
(recall some additional examples mentioned in Section 3.1). Such reasons have led
to the growth of a research area that started in the 1990s [228] with experimental
work on NO-decorated Pd(111) substrates [34, 215, 217, 229].

Photoinduced chemical processes on metal surfaces cannot be characterized
as adiabatic processes, since they are the result of the coupling of the electrons
excited by the laser pulse with the nuclear DOFs of the adsorbates [230]. Hence,
this coupling of DOFs means a departure from the basic assumption of the Born-
Oppenheimer approximation. These nonadiabatic effects have also been theorized
to affect processes such as the vibrational relaxation of adsorbed molecules [231].
Furthermore, experimental observations have confirmed that this coupling can oc-
cur, leading to changes in the nuclear dynamics and the production of electron-hole
pairs and excitations such as phonons and plasmons in the substrate. Examples of
these nonadiabatic phenomena reported experimentally are the emission of surface
photons, electrons, and ions during the oxidation of alkali metal surfaces [232], the
scattering of molecules with highly excited vibrational motion and their related
energy dissipation [206] or the desorption of gas molecules from metal substrates
such as N2 (after recombination) from Ru(0001) [233] and CO from Pd(111) [30],
among many other examples in the literature.

Let us now focus on femtosecond laser-induced desorption on metal substrates.
Starting from the laser excitation, two distinct stages for the energy flow in the
system can be identified. First, incoming photons induce electronic excitations in the
surface, and second, these excitations couple to the lattice (phonons) and adsorbate
DOFs, which also couple among them, altogether leading the adsorbates to desorb.
From a theoretical perspective, the two-temperature model (2TM) is commonly
used to characterize substrate excitations [50]. Regarding the subsequent coupling
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of the latter ones to adsorbed species, several models have been proposed, but we
are considering one involving molecular dynamics with electronic friction [39, 40].
Let us explore both frameworks in more detail.

3.2.1 Substrate excitation: the two-temperature model
Let us assume that the adsorbate-metal system is initially thermalized at some
temperature 𝑇0. After irradiating the system with a femtosecond laser pulse, the
adsorbate-metal system is driven out of its initial thermal equilibrium state, as
shown in Fig. 3.3, left panel. Microscopically, metal electrons absorb the incoming
photons of energy 𝐸ph = ℎ𝜈 and become excited, thus producing a nonthermal
distribution of energy states. Therefore, right after the laser beam reaches the metal,
its electronic subsystem cannot be characterized by a well defined macroscopic
temperature [32, 234, 235]. However, the energy of the hot electrons is redistributed
after they scatter with each other and at a later times with the surface lattice and
adsorbed species. As a result, the very initial nonthermal distribution relaxes to a
Fermi-Dirac one with a certain electronic temperature𝑇𝑒 (𝑡) and a tail of states with
energies above the Fermi one, 𝐸𝐹 , as depicted in Fig. 3.3, right panel. Due to the low
heat capacity of the electrons 𝐶𝑒 , 𝑇𝑒 (𝑡) increases sharply above the initial surface
temperature and can reach peak values of several thousand K, even surpassing the
melting temperature of the surface species (see, e.g., Refs. [34, 216]). Moreover, as
electrons are much lighter and faster than the lattice atoms forming the metallic
substrate, the latter ones do not become directly excited in the first instance. This
leads to both electronic and lattice subsystems being out of thermal equilibrium
after the laser excitation. Hot electrons are considered to thermalize on time scales
of the order of ∼ 100 fs [32, 236, 237]. This has been observed with pump-probe
photoemission experiments [236, 238, 239, 240, 241, 242, 243, 244].
Once the hot electron distribution has thermalized, excited electrons continue

scattering with the atomic lattice of the metal. This leads to the coupling of the
electronic subsystem and the atomic lattice, and to the subsequent excitation of
phonons on the latter one. Hence,𝑇𝑒 drops and the lattice temperature𝑇𝑙 rises until
both electronic and phononic subsystems thermally equilibrate with a temperature
𝑇1 > 𝑇0. Due to the larger mass and smaller heat capacity of an atom with respect
to an electron, the lattice does not reach maximum temperatures as large as pho-
toexcited electrons, 𝑇𝑙,𝑚𝑎𝑥 < 𝑇𝑒,𝑚𝑎𝑥 . Depending on the atomic heat capacity and the
intensity of the electron-phonon coupling constant 𝑔, 𝑇𝑙,𝑚𝑎𝑥 can vary within the
scale of ∼ 100 to ∼ 1000 K. Thermal equilibrium in the metal is reached after a time
scale 𝜏𝑒−𝑙 ∼ 1/𝑔. Afterwards, both the electron distribution and the lattice continue
to cool until the metal substrate recovers its original temperature 𝑇0.
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Figure 3.3: Electronic density of states for a metal substrate that is excited with a fem-
tosecond laser pulse. (a) Right after the laser pulse reaches the substrate (𝛥𝑡 = 0), electrons
(black dots) are excited from lower energy states below the Fermi level 𝐸𝐹 to higher energy
states, creating a nonequilibrium distribution of electrons (orange area) that deviates from
the original, Fermi-Dirac one, part of which is shown in red. This hot electron distribution
cannot be characterized by an electronic temperature 𝑇𝑒 . (b) Subsequent relaxation process
of the electron distribution due to electrons redistributing their energy by scattering with
other electrons and the adsorbates, if present. This leads to the distribution thermalizing
to a Fermi-Dirac one with a tail of higher energy states above 𝐸𝐹 , depicted in orange,
with a well defined 𝑇𝑒 . Meanwhile, the system seeks to return to thermal equilibrium, and
the electronic density of states evolves towards regaining the Fermi-Dirac equilibrium
distribution (shaded region).
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The aforementioned thermodynamics of a metal surface was experimentally ob-
served in different metals such as Au and Cu [245, 246, 247]. Preliminary theoretical
work on this framework started in 1957, with the paper of Kaganov et al., but with
a more general scope [248]. It was not until 1974 when Anisimov et al. first consid-
ered the model by Kaganov et al. to describe incident laser-triggered diffusion of
heat flow between electronic and phononic subsystems during the nonequilibrium
stage under the name of 2TM [50]. This model is one of the possible solutions of the
Boltzmann transport equation for electrons, namely the parabolic two-step model,
as formally proved for the first time some time later by Qiu and Tien [249]. Other
possible solutions for describing the heat diffusion between electrons and phonons
after subpicosecond laser excitation can be derived from the transport equation as
well [249], but their description is beyond the scope of this Thesis. Returning to
Anisimov 2TM, thermodynamics of the nonequilibrium surface is encompassed in
two equations of state which describe the dynamics of the heat fluxes inside each
electronic (Eq. (3.1)) and phononic subsystem (Eq. (3.2)):

𝐶𝑒 (𝑇𝑒)
𝜕𝑇𝑒

𝜕𝑡
= ∇𝑧 [𝜅𝑒 (𝑇𝑒)∇𝑧 𝑇𝑒] − 𝑔(𝑇𝑒 −𝑇𝑙 ) + 𝑆 (𝑧, 𝑡) , (3.1)

𝐶𝑙 (𝑇𝑙 )
𝜕𝑇𝑙

𝜕𝑡
= 𝑔(𝑇𝑒 −𝑇𝑙 ) . (3.2)

Let us describe both equations. Positive and negative signs indicate heat flux
gains into and losses from the subsystem, respectively. 𝐶𝑖 (𝑖 ≡ 𝑒, 𝑙) is the heat
capacity of electrons and phonons, respectively. The right-hand side of Eq. (3.1)
contains three terms. The first describes the diffusion of heat from the surface
to the bulk of the solid and depends on electronic thermal conduction 𝜅𝑒 . The
middle term accounts for the electronic energy dissipation in the lattice and is
proportional to the electron-phonon coupling constant 𝑔 and the temperature
difference between the electron and phonon baths. 𝑆 (𝑧, 𝑡) is the source term, which
corresponds to the subpicosecond laser excitation power absorbed by the surface in
the time unit. Equation (3.2) is much simpler, as it only contains the photoexcited
electron-incoming energy contribution through electron-phonon coupling.

Source term takes the following expression:

𝑆 (𝑧, 𝑡) = 1 − 𝛤ref
𝛿

𝐼 (𝑡) exp
(
−𝑧
𝛿

)
, (3.3)

where the surface specific parameters 𝛤ref and 𝛿 are the reflectivity coefficient and
the optical penetration depth, respectively, whereas 𝐼 (𝑡) is the time-dependent
incident laser intensity. Here, the dependence of 𝛤ref and 𝛿 on 𝑇𝑙 is discarded [249],
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an approximation which breaks down for laser wavelengths shorter than visible
ones [250, 251]. 𝐼 (𝑡) contains laser pulse-specific parameters such as its shape,
wavelength, and fluence.

The following assumptions are made when solving Eqs. (3.1) and (3.2). First,
𝐶𝑙 is calculated from a Debye model and for a metal surface of constant volume
of Debye temperature 𝑇𝐷 ; this means that 𝐶𝑙 ∝ (𝑇𝑙/𝑇𝐷)3 for 0 < 𝑇𝑙 ≤ 0.1 𝑇𝐷 and
becoming a parameter, 𝐶𝑙 = 3𝑁𝑘𝐵 for 𝑇𝑙 ≫ 𝑇𝐷 (with 𝑁 the number of atoms in the
surface and 𝑘𝐵 the Boltzmann constant) [252, 253]. 𝐶𝑒 is taken to depend linearly
on 𝑇𝑒 , with a proportionality constant 𝑐𝑒 , so that 𝐶𝑒 (𝑇𝑒) = 𝑐𝑒 𝑇𝑒 [32]. The diameter
of the experimental laser beams is typically of the order of 10–100 𝜇m, which is
some orders of magnitude larger than the mean free path or penetration depth of
the electron into the surface, and the penetration depth of optical heat 𝛿 (both of
∼10–100 nm) [254]. Consequently, the metallic surface is assumed to be uniformly
irradiated, thus there exists isotropy in the temperature distribution in each plane
orthogonal to the vertical axis 𝑧 and no lateral heat diffusion in each of the 𝑥 and 𝑦
axis of the surface plane [249]. This means that the temperature gradients in 𝑥 and
𝑦 are neglected and the heat transfer problem becomes spatially one-dimensional
on the orthogonal axis 𝑧, therefore appearing only as a partial derivative with
respect to 𝑧, ∇𝑧 ≡ 𝜕/𝜕 𝑧. Moreover, Eq. (3.2) should actually have an extra right-
hand side summand: a phonon thermal diffusion term which incorporates the heat
transference by phonon-phonon scattering, ∇𝑧 [𝜅𝑙 (𝑇𝑙 )∇𝑧 𝑇𝑙 ], proportional to the
phonon conductivity 𝜅𝑙 . This contribution is neglected in the original 2TM [50],
as hot electron velocities are around ∼ 106 m/s, near the Fermi velocity value,
whereas phonons move at much smaller sound speed, ∼ 103 m/s, therefore being
phonon-phonon diffusion a non-existent process from the point of view of excited
electrons. In other words, the phonon-phonon thermal diffusion time scale is much
slower than the electronic energy input into the lattice. Electronic heat conductivity
depends linearly on the temperatures of each bath, that is, 𝜅𝑒 (𝑇𝑒) ≃ 𝜅0(𝑇𝑒/𝑇𝑙 ), where
𝜅0 is the electronic heat conductivity in thermal equilibrium; for this formula, the
Sommerfeld expansion up to first order has been taken into account [255, 256].
Examples of the electronic and lattice temperatures calculated with 2TM for a Pd
surface irradiated with laser pulses of different fluences are shown in Fig. 3.4.
Using Anisimov’s 2TM requires some caution to be taken. 𝐶𝑒 ∝ 𝑇𝑒 is valid in

the temperature range 0 < 𝑇𝑒 ≤ 0.1 𝑇𝐹 , with 𝑇𝐹 being the Fermi temperature of
the metal; for higher temperatures, 𝐶𝑒 approaches the constant value capacity of
an ideal electron gas. Moreover, the 𝜅𝑒 formula written in the previous paragraph
holds for temperatures 𝑇𝐷 < 𝑇𝑒 ≤ 0.1 𝑇𝐹 . In order to explore other temperature
ranges, more general expressions for 𝐶𝑒 and 𝜅𝑒 are required; a proposal for such
an extension takes the mean kinetic energy per electron, the chemical potential
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and the electronic density of states as a basis for a quantum model to analytically
evaluate these quantities [254]. Indeed, 2TM demands that each of the electronic
and phononic distributions of states be in local equilibrium, so that both subsys-
tems have well-defined temperatures. This means that the electron-electron and
phonon-phonon scattering times 𝜏𝑒𝑒 and 𝜏𝑙𝑙 (or equivalently the electron and phonon
relaxation lifetimes) need to be smaller than the electron-phonon scattering time 𝜏el,
in order to preserve the respective Fermi-Dirac and Bosé-Einstein distributions and
thus their well-defined temperatures. If this picture fails, energy transfer from hot
electrons to lattice would take place before the electron distribution having ther-
malized. As some experimental works point out, the electron-electron scattering
time scale 𝜏𝑒𝑒 could be comparable to the characteristic time for electron-phonon
scattering 𝜏el particularly for electrons close to the Fermi level in some systems,
which could be a scenario where the Anisimov formulation breaks down [257].
Anyway, this risk could be avoided by using enough high laser fluences, as hinted
for Au [239, 240], and could be even more difficult to happen for some metals with a
high density of electronic states close to the Fermi level [32], such as Pt, Pd, W and
Ru [258]. 2TM also does not cover the effect of nonthermalized electrons on the hot
electron distribution. Through resonance of these electrons with certain energy
levels of adsorbates, a wavelength dependence of a given photochemical reaction
outcome of the adsorbate-substrate system can be introduced. This phenomenon
was detected in some systems such asO2 + CO/Pt(111) [259, 260],O2/Pt(111) [219]
and D2 + O/Ru(001) [244]. In particular, in the latter referenced system, a lower
internal energy density of the Ru(001) substrate is observed compared to the the-
oretical calculation from Anisimov’s 2TM, motivating a proposal for refining the
2TM to address these types of theoretical inconsistencies. Apart from these consid-
erations, however, this formulation of 2TM with no extra complication has been
successfully applied for studying subpicosecond laser excitation of metal substrates
with and without adsorbed species in a number of systems, including the ones
studied in this Thesis.

As a final comment, the coupling of both surface-linked heat baths to the adsor-
bate prior to its desorption implies the existence of an additional thermal reservoir
within the adsorbate. Therefore, one can define an adsorbate temperature 𝑇𝑎𝑑𝑠 (𝑡),
and incorporate an additional equation into the macroscopic thermal description,
giving rise to a three-temperature model (3TM) [16]. Although our research re-
mains at the 2TM level, a simple proposal of this third equation for a system where
electronic coupling to the adsorbate kinetic DOFs dominates over the phononic
one is as follows [261]:

𝜕𝑇ads
𝜕𝑡

= 𝜂𝑒 (𝑇𝑒 −𝑇𝑎𝑑𝑠) , (3.4)
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Figure 3.4: Time evolution of the electronic temperature 𝑇𝑒 (solid curves) and lattice tem-
perature 𝑇𝑙 (dashed curves) calculated with 2TM for incident femtosecond pulses of sech
shape centered at 𝑡= 0.41 ps, full width at half maximum (FWHM) equal to 100 fs, wave-
length 𝜆= 780 nm, and surface absorbed fluences, 𝐹= 72 J/m2 (red curves) and = 130 J/m2

(blue curves).
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being 𝜂𝑒 the coupling constant between the adsorbate and electronic subsystems,
also called electronic friction (Section 3.2.2). Analogously, if the lattice contribution
to 𝑇𝑎𝑑𝑠 (𝑡) is to be considered, a lattice-adsorbate coupling 𝜂𝑙 would also need to
be taken into account. Anyway, as reasoned before, for the present Thesis the
macroscopic description given by 2TM is considered, and 3TM models are not
further considered. A schema of the photoinduced desorption process in metals
can be found in Fig. 3.5.

3.2.2 Dynamics on adsorbates
Now that we have seen how the surface reacts macroscopically to the incident
femtosecond laser pulse, let us explore how this process affects adsorbates, leading
them to desorb, among other chemical processes.

3.2.2.1 Classical approach for dynamics

Before we move on to adsorbate dynamics characterization, it is necessary to clarify
one point. As we are dealing with atoms, a straightforward way of thinking is
that their dynamics has to be determined only solving time-dependent Schrödinger
equation, thus requiring the quantum mechanics approach. Classical mechanics
would be ruled out as a valid framework at this scale. However, as we discussed
in Section 2.2, no exact quantum solution for any atomic or molecular dynamics
is available with the sole exception of the hydrogen atom. Therefore, one would
be interested in treating many-body systems with atoms and/or molecules with
several degrees of freedom using classical dynamics, so that no quantum effects
complicating their dynamical description would need to be taken care of. One can
look for some correspondence rules between quantum and classical regimes. A
good example of such a rule is provided by a well-known quantum mechanical
result, Ehrenfest theorem [262], as it links time derivatives of expectation values of
quantum observables to Newton classical equations of motion:

𝑑 ⟨R⟩
𝑑𝑡

=
1
𝑚
𝑑 ⟨P⟩ , (3.5)

𝑑 ⟨P⟩
𝑑𝑡

= −⟨∇𝑉 (R)⟩ , (3.6)

with R and P being, respectively, the position and momentum operators of a particle
of mass𝑚 in a potential 𝑉 (R). The key point is that, for atomic wavefunctions
localized enough at the corresponding atomic nucleus, solving quantum observables
as classical quantities is equivalent –up to some negligible error– to solve them
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Figure 3.5: Schematic summary of the femtosecond laser-mediated photodesorption pro-
cess on metal surfaces. It starts after a femtosecond laser pulse reaches an adsorbate-
decorated (grey and red atoms) metal surface (blue atoms). As a result metal electrons
become very hot, reaching temperatures of even thousands of K, and part of them produce
several electron-hole pairs and occupy valence energy levels. Hot electrons gradually lose
energy by colliding between them or the adsorbate, thus producing a hot Fermi-Dirac
distribution of some 𝑇𝑒 . When they return to the conduction band they keep losing energy
by collision, not only by colliding with other electrons, but also with energy metal atoms,
leading to a coupling between electronic subsystem and the metallic lattice ruled by a
coupling constant 𝑔. Electron energy input leads the surface phonons to heat, thus their
collective lattice temperature𝑇𝑙 rises, but not as high as for electronic subsystem due to the
smaller heat conductivity of the metal lattice. Both electronic and phononic subsystems
plunge energy into the adsorbates, which then become hotter –their temperature 𝑇𝑎𝑑𝑠
consequently increasing–, and if their kinetic energy grows enough they desorb from the
surface.
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with quantum mechanics, i.e., using time-dependent Schrödinger equation. The
heavier the atomic nucleus considered becomes, the more localized the atomic
wavefunction will be at its nucleus, and the smaller the associated quantum effects
will become. As even for H-decorated surfaces no significant differences between
classical and quantum-based characterizations have been found elsewhere [263,
264], this ensures the safeness of treating atomic nuclei such as the ones handled in
this Thesis (C, O and Pd) as classical particles from a microscopic perspective. As a
result, computational simulations can be used to solve dynamics of these quantum
systems treated as classical ones, with some time step one can set according to the
computational power available and looking for a certain accuracy requirement.

3.2.2.2 Adsorbate dynamics and the local density friction approximation

The question now is how to theoretically characterize the energy processes that
involve the adsorbate. If one considers DIMET, one needs to calculate the quantum
probability amplitudes of the transition between ground and excited PESs using
Fermi Golden Rule-like expressions, as determination of the full excited-state PES
of a given system is not feasible. Quantum effects such as state quantization,
including zero-point, interference, and tunneling can appear in such treatments.
Moreover, exiting adiabaticity means that each electronic configuration-linked PES
should be calculated [265]. Aspects like these difficult the way desorption process
can be handled theoretically, and more precisely with computational dynamics
simulations. Tully and collaborators provided a neat workaround for this using
a generalized Langevin model [266, 267, 268] to substitute unwanted degrees of
freedom in a classical formalism by stochastic and friction forces, which ended up in
the molecular dynamics with electronic friction framework [265, 269, 270]. Quantum
nonadiabaticity brought by electron-hole excitations can be replaced by a classical
molecular dynamics model where energy transfer from excited electron-hole pairs
to adsorbates transforms into a random force, while the converse is represented
by an electronic friction on the adsorbed nuclei (see Ref. [270] for the full proof).
Electron-driven transitions to the excited states for each adsorbate are modeled
only on the basis of the ground-state PES, as ladder-climbing processes, so that no
knowledge of the excited-state PES is required.

Adsorbed nuclei follow then generalized Langevin equations:

𝑀𝑖

𝑑2R𝑖
𝑑𝑡2

= −∇R𝑖
𝑉 ({R𝑚}) − 𝜂𝑒

𝑑R𝑖
𝑑𝑡

+ R𝑒,𝑖 (𝑡) , (3.7)

where each nucleus 𝑖 of mass𝑀𝑖 is located at R𝑖 . The first term on the right hand side
of Eq. (3.7) is the adiabatic force due to the internal potential𝑉 ({R𝑚}) of the ground
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state produced by the𝑁𝑚 atoms (adsorbates and substrate-constituent) of the system
at some time 𝑡 . The central right term is the dissipation force, proportional to the
electronic friction constant 𝜂𝑒 (which becomes a 𝑑 × 𝑑 tensor for 𝑑 > 1 degrees
of freedom). The rightmost term contains the random force R𝑒,𝑖 (𝑡), which is not
proportional to the atomic velocities. These stochastic forces, which are related to
the friction ones through the fluctuation-dissipation theorem, act in the system as
Gaussian white noise, so their average is

〈
R𝑒,𝑖 (𝑡)

〉
= 0 and their variance is [270],

Var[R𝑒,𝑖 (𝑡)] =
2𝑘𝐵𝑇𝑒𝜂𝑒
𝛥𝑡

. (3.8)

Here 𝑘𝐵 is the Boltzmann constant and 𝛥𝑡 is the integration time step.
Let us discuss how 𝜂𝑒 can be determined. Here we use the local density friction

approximation (LDFA) [51, 52]. This is a simple, computationally low-cost way of
evaluating the friction coefficient as a function of atomic position, and at the same
time able to accurately describe the main physical features of electronic excitations
incorporated into an adiabatic, multidimensional adsorbate-substrate PES. In this
respect, suppose that the electronic density at each point of the surface is known,
particularly at the position at which each adsorbed atom is located. Then, according
to LDFA the friction coefficient at a given position is taken as the one corresponding
to a homogeneous FEG of density equal to the local surface density at that point.
How is then friction evaluated in the homogeneous FEG framework? To begin

with, the idea is to picture the metal as a homogeneous gas composed by free-
moving electrons and a background positive charge density playing the role of
atomic nuclei. Let us consider a given positive ion or atomic nucleus (projectile or
adsorbate) of charge 𝑍 appearing in such system. It would enter as a perturbation
in the FEG, generating an attractive electrostatic potential in its vicinity and an
induced screening electronic density𝑛(R). These electrons exert a stopping force re-
tarding the ion movement per length unit. To evaluate exactly both time-dependent
screening electronic density and stopping force time-dependent density functional
theory (TDDFT) is required. However, if the adiabatic limit is taken and the surface
considered is metallic, TDDFT calculation of both parameters can be replaced by
simply solving the time-independent KS equations, as proved elsewhere [271]. Such
static DFT calculation poses an evident simplification to the description of friction
inside the HEG produced by metal atoms. Adiabatic scenario would correspond
to have enough small relative speed of the ion with respect to the surrounding
electrons, 𝑣𝑖𝑜𝑛−𝑒 , so that the potential it creates in the electron gas changes slowly.

Summarizing, an atomic nucleus moving inside a homogeneous FEG slow enough
with respect to the electrons surrounding it experiences a stopping force linearly
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proportional to its velocity, and related to the density of the FEG as follows:

FS(vi) = −𝑛𝐹𝐸𝐺 𝑘𝐹 𝜎𝑇 (𝑘𝐹 ) vi , (3.9)

where 𝑘𝐹 is the Fermi momentum of the FEG and 𝜎𝑇 is the transport cross section
of the nucleus at Fermi level, which contains the perturbative effect of the atom
on the FEG. 𝜎𝑇 is computed as an expansion of the quantum scattering phase
shift contributions at Fermi level 𝛿𝑙 (𝑘𝐹 ) to the FEG wavefunction in each order of
the orbital angular momentum 𝑙 . Its expression is as follows (more details on its
derivation can be found in well-known quantummechanics books such as Refs. [113,
272]):

𝜎𝑇 (𝑘𝐹 ) =
4𝜋
𝑘2
𝐹

∞∑︁
𝑙=0

(𝑙 + 1)2 sin [𝛿𝑙 (𝑘𝐹 ) − 𝛿𝑙+1(𝑘𝐹 )] . (3.10)

Phase shifts arise due to the scattering potential created by the atomic nucleus
inside the FEG that affects the electrons near the nucleus. Such shifts reflect the
change in phase on the radial part of each 𝑙-th partial wave due to entering and later
exiting the potential region, and do not appear in the radial part of a free spherical
wave due to the scattering potential being zero in the latter case [272]. Such a
potential is assumed to be radial, i.e., spherically symmetric around the external
nucleus. Only the first orders of 𝑙 in Eq. (3.10) have noticeable contributions to the
transport cross section, and higher order terms can be safely neglected [273].
Phase shifts at the Fermi level are calculated from a DFT atomic scattering po-

tential considering frequently LDA for the exchange and correlation part. This is
valid for most atoms embedded in a FEG. It is equally true that atoms with not com-
pletely filled valence orbitals (i.e., open-shelled) inside low-density regions of a FEG
experience spin polarization effects, so that whether the DFT scattering potential
determination of such atoms is done with LDA or LSDA, some differences appear
in the local electronic friction on these atoms. Such spin-mediated corrections to
LDA are very small and therefore often neglected for the usual atoms considered in
surface femtochemistry. In the case of C atoms there is a sizable effect on the local
friction at low densities, whereas for O atoms the friction coefficients calculated
with either LDA and LSDA are basically equal [274]. In this Thesis we have indis-
tinctively employed both approaches, the LDA values in the molecular dynamics
with electronic friction (MDEF) simulations of Chapters 5 to 7 and LSDA values in
the ab initio molecular dynamics with electronic friction (AIMDEF) simulations of
Chapter 8.

It is clear that FS(vi) can be interpreted as a friction force due to the substrate elec-
tronic subsystem on each atom 𝑖 , FS,i(vi) = −𝜂𝑒,𝑖 (𝑅𝑖)vi, with a position-dependent
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electronic friction coefficient as follows [271, 275, 276]:

𝜂𝑒,𝑖 (𝑅𝑖) =
4𝜋 𝑛𝐹𝐸𝐺 (Ri)

𝑘𝐹

∞∑︁
𝑙=0

(𝑙 + 1)2 sin (𝛿𝑙 (𝑘𝐹 ) − 𝛿𝑙+1(𝑘𝐹 )) . (3.11)

If adsorbed or projectile molecules are involved, correlation effects between their
constituent atoms are neglected, which is achieved by treating them as independent
atoms. This additional simplification is called independent atom approximation
(IAA) [51].

On the basis of the original MDEF proposal of Tully’s group as in Eq. (3.7) [270],
it has become clear that LDFA provides a powerful enhancement to that approach.
Adsorbate dynamical description in a MDEF model with LDFA can be further
refined in order to provide amore accurate description of femtosecond laser-induced
phenomenology. This is achieved by incorporating to the random force of (3.7) a
dependence with the instantaneous electronic temperature R𝑒 ∝ 𝑇𝑒 (𝑡). The random
force is now calculated at each time step according to the 𝑇𝑒 (𝑡) provided by the
2TM for the system under study (Section 3.2.1) [66]. In this MDEF framework, on
each 𝑖-th adsorbate the following Langevin equations hold,

𝑀𝑖

𝑑2R𝑖
𝑑𝑡2

= −∇R𝑖
𝑉 ({R𝑚}) − 𝜂𝑒,𝑖 (R𝑖)

𝑑R𝑖
𝑑𝑡

+ R𝑒,𝑖 [𝑇𝑒 (𝑡), 𝜂𝑒,𝑖 (R𝑖)] , (3.12)

where the effect of hot electrons on the adsorbed species comes from the electronic
friction term of Eq. (3.11). As before, both electronic friction and random forces
are related through the fluctuation-dissipation theorem, and R𝑒,𝑖 is modeled by a
Gaussian white noise with variance,

Var
{
R𝑒,𝑖 [𝑇𝑒 (𝑡), 𝜂𝑒,𝑖 (R𝑖)]

}
=
2𝑘𝐵𝑇𝑒 (𝑡)𝜂𝑒,𝑖 (R𝑖)

𝛥𝑡
. (3.13)

3.2.2.3 Contribution of phononic excitations

It remains to be clarified how surface phonons affect the adsorbates in MDEF.
In the context of simple six-dimensional PESs for single diatomic adsorbates, a
preliminary proposal suggested modeling the effects of surface temperature on
the adsorbates with the generalized Langevin oscillator (GLO) thermostat [53, 54,
55, 56]. In this respect, adsorbates undergo Langevin dynamics and experience
thermal fluctuation and friction forces due to the coupling to the lattice atoms,
which are assumed to move synchronously. This method was employed to study the
photoinduced desorption of O2/Ag(110) [45, 46] and CO/Ru(0001) [47, 48]. However,
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this approach carries an important limitation with, as distortion of the surface at
the atomic level is not adequately covered. Such effects can noticeably affect the
outcome of chemical reactions undergone by adsorbates, as found, for instance, in
the dissociation of N2 on W(110) [277, 278] at 800 K and, therefore, are expected
to be particularly relevant at the high temperatures reached by the surface after
laser excitation. As a result, describing each surface atom movement independently
from its slab neighbors becomes necessary to provide a more accurate dynamical
description of the system.

An alternative strategy requires the surface to be at thermal equilibrium. This is
achieved with thermalization of the surface to some initial temperature prior to
laser excitation, i.e., at 𝑡 = 0, from which a set of initial velocities for the substrate
atoms is determined. Then, part of the slab is coupled to a thermostat that keeps
its temperature at a constant, nonfluctuating value for each time. Controlling the
temperature of the involved substrate layer(s) so that it follows accurately a 2TM
provides the energy transfer channel to adsorbates due to the substrate lattice,
which also contributes to chemical processes such as their desorption [62]. Among
different thermostats one can choose according to their features (see, e.g., Ref. [279]
for some examples), a true canonical ensemble can be reproduced coupling at
least part of the surface slab to the Nosé-Hoover (NH) thermostat, first proposed
by Nosé [280] and later reformulated in a simpler way by himself and Hoover
separately [281, 282]. Ensuring the canonicity of the atomic system implies that the
surface layers coupled to the NH thermostat have a well-defined, nonfluctuating
temperature at each time, given by the 2TM.

The idea is to extend the subsystem of the mentioned surface layers to an ad-
ditional, artificial degree of freedom: the thermal reservoir coupled to them. The
thermostat is then represented by a fictitious dynamical variable 𝑠 > 0 acting as a
time-scaling quantity, which stretches the ordinary time scale 𝑡 into a fictitious one
𝑡𝑠 as 𝑑𝑡𝑠 = 𝑠 𝑑𝑡 . There is also a fictitious velocity ¤𝑠 = 𝑑𝑠/𝑑𝑡 , as well as a fictitious
reservoir "mass" 𝑄 > 0, with units [𝑄] = [𝐸] × [𝑡]2. Positions of the surface
atoms are the same for real and fictitious times, but remaining time-dependent
quantities such as velocity get modified in terms of 𝑠 for the thermostat. From
a Lagrangian or Hamiltonian approach, and in NH formulation, one can arrive,
for a subsystem of 𝑁 𝑗 surface atoms coupled to the thermostat, at the following
dynamical equations [279]:

𝑀 𝑗

𝑑2R 𝑗

𝑑𝑡2
= −∇R𝑗

𝑉 ({R𝑚}) −𝑀 𝑗

𝑑R 𝑗

𝑑𝑡
𝜉

[
𝑇𝑙 (𝑡),

𝑑R 𝑗

𝑑𝑡

]
, (3.14)
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𝑑𝜉

𝑑𝑡
=

1
𝑄

(∑︁
𝑗

𝑀 𝑗

����𝑑R 𝑗

𝑑𝑡

����2 − 3𝑁 𝑗𝑘𝐵𝑇𝑙 (𝑡)
)
. (3.15)

Here, each atom 𝑗 has a mass 𝑀 𝑗 and is placed at R 𝑗 , and 𝜉 = 𝑠𝑝𝑠/𝑄 is the ther-
modynamic friction coefficient of the NH thermostat, proportional to the artificial
mass, the time-stretching parameter and the fictitious momentum 𝑝𝑠 = 𝑄 𝑑𝑟𝑠/𝑑𝑡𝑠 .
In Nosé formulation, time evolution of 𝑠 is described with a second order equation
analogous to a harmonic oscillator [279]. As a consequence of this, nearly periodic
fluctuations in the kinetic temperature of the thermostat-coupled surface atom

⟨𝑇 ⟩ =
(
3𝑁 𝑗𝑘𝐵

)−1〈∑
𝑗 𝑀 𝑗

���𝑑R𝑗

𝑑𝑡

���2〉 occur around the thermostat temperature, equal to

the macroscopic surface temperature 𝑇𝑙 (𝑡) computed with 2TM. The size of the
thermal fluctuations depends on how small or large is 𝑄 ; its positivity implies
that the atomic ensemble considered is canonical, but some care needs to be taken
when choosing its value. So, too small values of 𝑄 (strong coupling) originate too
ample high-frequency temperature oscillations , whereas for large 𝑄 values (weak
coupling) a canonical distribution for the system is attained only after very long
simulation times. In the limit case𝑄 → ∞ one recovers a microcanonical ensemble.
A reasonable choice to fix 𝑄 is to choose a value such that the temperature oscilla-
tion frequency is approximately the same as the characteristic resonance frequency
of surface atomic species (see Ref. [279] for more details).
If we look at the right hand side of Eq. (3.15), action of the thermostat on the

surface layers can be easily identified according to the sign of 𝑑𝜉/𝑑𝑡 . If ⟨𝑇 ⟩ < 𝑇𝑙 (𝑡),
that is, the average kinetic temperature of the thermostat-coupled atoms is below
the thermostat temperature, then (𝑑𝜉/𝑑𝑡) < 0 and the rightmost force term of
Eq. (3.14) becomes bigger with time, so heat is extracted from the NH thermal bath
and plunged into the surface atoms. This raises the average temperature of the
latter. Reversely, when the topmost layers surface atoms become hotter than the
thermostat, ⟨𝑇 ⟩ > 𝑇𝑙 (𝑡), so (𝑑𝜉/𝑑𝑡) > 0 and its force contribution to Eq. (3.14)
decreases with 𝜉 , thus heat being removed from the surface atoms into the reservoir
and atoms becoming colder.
Both Eqs. (3.14) and (3.15) are then solved for each time step of the dynamics

simulation. This can be done in the stretched time scale in uneven time intervals𝛥𝑡𝑠
following original Nosé approach [281], or in a simpler, equally sized, even time in-
terval 𝛥𝑡 formulation as done above following Nosé and Hoover simplification [280,
282].
At this stage, the MDEF surface representation is completed by introducing a

transition region consisting of one or more layers between the hotter, thermostat-
coupled upper layers and the unheated inner bulk. These intermediate 𝑁𝑘 lattice
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atoms are described just adiabatically so that they evolve according to classical
Newton equations of motion:

𝑀𝑘

𝑑2R𝑘
𝑑𝑡2

= −∇R𝑘
𝑉 ({R𝑚}) , (3.16)

for each atom 𝑘 of mass𝑚𝑘 and position vector R𝑘 . The innermost layers are kept
frozen all the time, hence modeling a thermal gradient towards the inner bulk.

3.2.2.4 Calculation of adiabatic forces: ab initio molecular dynamics with
electronic friction

As we have seen, nonfrozen atoms experience, in all cases, adiabatic forces. If they
are evaluated on-the-fly at each integration time step, one talks about AIMDEF [57].
Ab initio force calculation is carried out within DFT using the Hellmann-Feynman
theorem [283, 284]. According to this theorem, the energy derivatives with respect
to a given parameter are equal to the expected value of the derivative of the Hamil-
tonian with respect to that parameter. In other words, at each 𝑡 adiabatic forces
acting on atom 𝑖 are computed from electronic Hamiltonian 𝐻𝑒 (recall Section 2.2)
as follows:

F𝑎𝑑,𝑖 (𝑡) = −∇R𝑖
𝑉 ({R𝑚})

= −
〈
𝜑
(
{R𝑚, },

{
rj(𝑡)

}) ��∇R𝑖
𝐻𝑒

(
{R𝑚},

{
rj(𝑡)

}) ��𝜑 (
{R𝑚},

{
rj(𝑡)

})〉
.

(3.17)

As a reminder,
��𝜑 (

{R𝑚},
{
rj(𝑡)

})〉
is the electronic wavefunction obtained at a given

time by solving the KS equations. This wavefunction depends on a set of occupied
KS orbitals (Eq. (2.63)). The system electrons are located in the set of positions

{
rj
}

and the atomic nuclei positions {R𝑖} enter as time-independent parameters.
Now, the notion of AIMDEF can be further enhanced according to which kind of

energy transfer mechanisms to the adsorbate are incorporated in the simulations.
Three possible methodological scenarios can be contemplated. If the phononic
energy input is suppressed by imposing all surface atoms to remain frozen, we can
talk of Te − AIMDEF. Next, leaving aside the electronic contribution by setting the
friction coefficients on the adsorbates equal to zero and thus accounting solely the
lattice-driven energy input through a thermostat happens inTl−AIMDEF. Finally, in
(Te,Tl) −AIMDEF both nonadiabatic effect of laser-heated metal electrons through
the Langevin equation (3.12) and the lattice contribution of the atoms coupled to
a thermostat to the adsorbate excitation are considered. The allowance of both
energy channels into the adsorbates, or the hindrance of one, is highly valuable
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for determining how significant is the contribution of each energy channel to the
femtochemical processes on surfaces [31, 63].
In this respect, the next pertinent question is how to evaluate the surface elec-

tronic density 𝑛𝑠𝑢𝑟 (R) in order to determine the electronic friction (recall that in
LDFA, 𝑛𝑠𝑢𝑟 (R) = 𝑛𝐹𝐸𝐺 (R)). In AIMDEF, bare surface electronic density was origi-
nally approached to the self-consistent DFT calculation of the electronic density
produced by the bulk of frozen surface atoms at each position, 𝑛𝑠𝑢𝑟 (R) = 𝑛𝐹𝑆𝑠𝑢𝑟 (R),
with the superscript FS standing for frozen surface [57]. This approximation works
properly in the case where surface atoms move negligibly with respect to their
respective equilibrium positions or remain at them directly during dynamics [57,
58]. In this case, neither remarkable surface profile deformation nor a subsequent
large electronic charge redistribution on the surface arises. Such a frozen sur-
face scenario does not happen in general. Instead, surface atoms do not remain
close enough to their equilibrium positions during whole dynamics and therefore
non-negligible electronic charge redistribution effects can happen, so 𝑛𝐹𝑆𝑠𝑢𝑟 (R) is no
more time-constant, i.e., 𝑛𝑠𝑢𝑟 (R) → 𝑛𝑠𝑢𝑟 (R, 𝑡). For this usual scenario, two valid
approaches for evaluating time-dependent surface electronic density have been
formulated in the AIMDEF context [60]:

• Superposing density: Within AIMDEF, the first proposed simpler improve-
ment to evaluate the electronic density of moving surface atoms is additive
on the basis of a superposition principle [60]. More precisely, we start from
the ground-state electronic density each individual atom of the substrate
𝑗 would create at a given 𝑡 and R𝑖 if being isolated from the rest of lattice
atoms at some position R 𝑗 . Total density contribution of the atomic sum
𝑛𝐴𝑆𝑠𝑢𝑟 (R𝑖, 𝑡) then comes from superposing all individual densities created by
the 𝑁𝑠 surface atoms, i.e.,

𝑛𝐴𝑆𝑠𝑢𝑟 (R𝑖, 𝑡) =
𝑁𝑠∑︁
𝑗=1

𝑛atom𝑗 (R𝑖, 𝑡) . (3.18)

This definition better characterizes the evolution of the electronic charge
density formoving lattice atoms interactingwith single adsorbate or projectile
atoms. However, such method comes with a limitation. The method does not
consider the charge redistribution that occurs when surface atoms form bonds
between each other. When atoms bond together, electrons may be transferred
or rearranged, leading to changes in the electron density around each of the
bonded surface atoms. Plain superposition of surface atom densities just
misses this charge redistribution effect.
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• Hirshfeld partitioning: An alternative approach that overcomes the latter
limitation [59, 60, 61], thus being used for the systems considered in this The-
sis. Among the different available schemes for decomposition of molecules
into their constituent atomic subsystems by the electronic density (e.g., the
proposals of Politzer [285] and Bader [286, 287]), this way of calculating the
density takes as a basis the Hirshfeld partitioning scheme [288]. The key
idea is to subtract from the DFT self-consistent calculation of the density of
the adsorbate-surface system 𝑛𝑆𝐶𝐹 (R𝑖, 𝑡) the contribution solely due to the
electronic density around the adsorbate atoms at each time. Hence, electronic
density computed in the dynamics becomes:

𝑛𝐻𝑠𝑢𝑟 (R𝑖, 𝑡) = 𝑛𝑆𝐶𝐹 (R𝑖, 𝑡)
[
1 −

𝑁𝑎∑︁
𝑛=1

𝑤𝑛 (R𝑖, 𝑡)
]
, (3.19)

𝑤𝑛 (R𝑖, 𝑡) =
𝑛atom𝑛 (R𝑖, 𝑡)∑𝑁
𝑚=1 𝑛

atom
𝑗

(R𝑖, 𝑡)
. (3.20)

Here, 𝑁 is the total number of atoms in the system, while 𝑁𝑎 is the number of
adsorbate atoms. Moreover, Hirshfeld weighting factor 𝑤𝑛 (R𝑖, 𝑡) ponderates
the contribution of the 𝑛-th adsorbed or projectile atom-associated electronic
density with respect to the total superposition of electronic densities of all
system atoms, running 𝑛 along each of the gas-phase adsorbate atoms. The
index𝑚 goes along all the atoms in the system.

The three proposals for evaluating the surface bare electron density are studied
comparatively in Ref. [60]. For the systems this work focuses on, involving CO
and/or O adsorbed in Pd(111), there are non-negligible displacements of Pd atoms
during femtosecond laser-driven dynamical processes and charge redistributes
inside the lattice and also between adsorbate and substrate. For the latter, the
influence of adsorbed species can even produce local distortions in the atomic
arrangement of the topmost slab layers [60], as it happens in fact for Pd(111).
Together, these factors motivate the use of the Hirshfeld approach in the AIMDEF
calculations performed in Chapter 8.

To close this subsection, let us remark something about the computational eval-
uation of the AIMDEF dynamics equations and key parameters. In them, atomic
positions and velocities have to be obtained as well, which is done by solving clas-
sical Newton equations of motion numerically by integration algorithms. Different
integrators have been proposed, such as the Runge-Kutta [289, 290] and Verlet [291]
algorithms. In this Thesis, a variation of the Verlet algorithm has been used, which is
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the Beeman algorithm [292]. Instead of explicitly determining atomic positions and
implicitly computing their velocities, Beeman integrator allows explicit evaluation
of both quantities (recall that friction forces are proportional to atomic velocities
and therefore their determination is also crucial). In its standard formulation, at a
given time 𝑡 the positions and velocities of the time 𝑡 + 𝛥𝑡 , with 𝛥𝑡 being a given
time step, are calculated as follows:

r(𝑡 + 𝛥𝑡) = r(𝑡) + v(𝑡) 𝛥𝑡 +
(
2
3a(𝑡) − 1

6a(𝑡 − 𝛥𝑡)
)
𝛥𝑡2 +𝒪

(
𝛥𝑡4

)
, (3.21)

v(𝑡 + 𝛥𝑡) = v(𝑡) +
(
1
3a(𝑡 + 𝛥𝑡) + 5

6a(𝑡) − 1
6a(𝑡 − 𝛥𝑡)

)
𝛥𝑡 +𝒪

(
𝛥𝑡3

)
. (3.22)

being a the acceleration of the atom. Beeman approach reaches an overall precision
of 𝒪

(
𝛥𝑡3

)
, which is one order of magnitude larger than the one achieved for both

positions and velocities with Verlet (𝒪
(
𝛥𝑡2

)
). Therefore, the Beeman algorithm is

more computationally costly, but also more accurate than its Verlet counterpart. In
the simulations of this work, a time step of 𝛥𝑡 = 1 fs has been considered.

3.2.2.5 PES-mediated molecular dynamics with electronic friction

Considering all its ingredients, the AIMDEF methodology provides an accurate
characterization of femtosecond laser-induced desorption on adsorbate-covered
substrates. However, this comes at the expense of long computation times and large
computational resource requirements. As an example, simulating a dynamic of 4 ps
on CO/Pd(111) takes of the order of one week to complete. These hardships can be
drastically reduced if an accurate PES is available for the system, as the evaluation
of adiabatic forces simplifies greatly. As the PES-mediated evaluation of adiabatic
forces is not performed ab initio as in Section 3.2.2.4, in this case we just talk about
MDEF. Regarding the adiabatic forces, as system PES is now known, Eq. (3.17) is
replaced by the more straightforward expression,

FPES
𝑎𝑑,𝑖

= −∇R𝑖
𝑉 PES({R𝑚}) , (3.23)

which saves a considerable amount of computational time.
As for AIMDEF, according to which energy channel contribution/s, electron-

or phonon-mediated, one wants to incorporate to dynamical simulations, one can
classify the MDEF methodology into different subcategories [87, 88]. Thus, in
Te-MDEF only energy transfer due to the hot electronic subsystem is considered,
whereas in Tl-MDEF electronic friction is neglected and adsorbates gain energy
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only from phononic subsystem excitations. Finally, in (Te,Tl)-MDEF both the
electronic and phononic energy inputs on the adsorbed species are considered.

Direct fitting of a PES using neural networks (NNs) also brings a change in how
the electronic density is determined. In the AIMDEF procedure, evaluation of 𝑛(Ri)
is performed on-the-fly in the same way as the Hellmann-Feynman adiabatic forces.
Here, in contrast, forces are simply derived from the precalculated PES, so that the
electronic density still needs to be obtained somehow in order to determine the
friction coefficients. As data of AIMDEF electronic densities are available for a large
amount of atomic configurations of the system at different times, this information
can be interpolated to get an accurate, additive-like electronic density strictly due
to the surface atoms, as in Eq. (3.18) [87]. To this end, an appropriate function or a
combination of functions may be searched by trial-test. Afterwards, the electronic
friction coefficients can be evaluated accordingly. This approach becomes a key
aspect of the (Te,Tl) −MDEF methodology and will be described more thoroughly
in Section 5.3.

Now we have to deal with one of the central questions in this Thesis work: how
one can generate a PES using NN-like approaches and check its accuracy describing
photoinduced dynamics of the adsorbate-substrate system under study. To get
to this point, it is necessary first to understand aspects such as what a PES is or
which methods are being utilized to produce accurate PESs in chemical physics.
The following chapter is devoted to clarify the latter aspects more thoroughly.
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4 Machine learning
and surface science

As we have seen in the previous chapter, AIMDEF provides us with powerful
tools to theoretically describe accurately photoinduced chemistry on gas-decorated
surfaces. This includes particularly photodesorption from metal surfaces, such
as the case of the CO desorption from Pd(111) studied in this Thesis. However,
this comes with the downside of a large computational expense. For example, a
3.5 ps dynamics (hereafter also called as trajectory) elapses approximately 7 days
when computed with 24 cores of a cluster node. This means that no statistically
significant AIMDEF data can be produced in reasonable times: e.g., a sample of
100 dynamics requires some months in the cluster used during this Thesis. In
Section 3.2.2.5 it has been explained how this bottleneck can be solved, replacing
AIMDEF scheme with another valid methodology where a dynamic of 3.5 ps can
be determined in a few minutes. This can be achieved with a working PES that
gives the potential energy of the adsorbate-substrate photoexcited complex at each
time according to previously calculated AIMDEF data, so that the latter step is
unavoidable in principle. In order to determine such a PES, NN-based methods are
considered; a deeper insight on this topic of increasing interest will be the main
goal of this chapter.

4.1 Neural networks: general features and training
process

NNs are clearly among themost popular advances in computation nowadays, as well
as a cornerstone of what is known asmachine learning (ML). Quite simply, according
to their definition, NNs are groups of highly interconnected nodes called neurons or
perceptrons, which form a structure that processes some input information to give
an output. Artificial NNs are called that because they mimic the interconnection
of neurons in the brain and the transmission of information occurring inside it.
Here is a daily life example: let us suppose that someone is looking at a soccer
ball. The process of figuring out that the object we are watching is a ball is not
as straightforward as one may naively think. Some input information enters our
brain through different sensory channels, e.g., its shape or colors through our eyes
or its texture and material through our touch. Now this information is processed
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by a given arrangement of neurons in the brain –the neural network– until the
object with the mentioned features is determined to be a soccer ball as the output
of this cognitive process. Such kind of processes can be replicated mathematically,
arranging a number of nodes or neurons in different layers that are interconnected
and allow transmission of numerical values between them. Once a neuron receives
some output, certain mathematical operations are applied on its value and the final
output is sent to neurons on the next layer until a desired output is achieved at the
end of the process. This includes the generation of NN-based PESs, as we will see
shortly, as some function of pure mathematical origin, as no physical first principles
are involved in its construction, but just a fit of parameters.
Among other kinds of structures, the simpler ones or feed-forward NNs have

a linear, single-oriented arrangement. They start with an input layer and move
rightward until they reach some output layer. During this process, they traverse one
or multiple intermediate layers. Each of them is composed by some not necessarily
equal number of neurons that have no physical meaning, but instead give the NN
more or less flexibility to fit the input-output mathematical link to a more or less
complicated functional form. Each NN structure of nodes and layers, also called
the NN architecture, globally describes it. For example, given a NN with 10 input
nodes, two hidden layers of 15 and 40 nodes in that order, and a single output node
would form a 10-15-40-1 NN or simply a 15-40 NN if we omit the input and output
nodes. NN architecture has to be explored carefully according to the amount of
degrees of freedom or dimensionality that one wants to fit, as choosing not enough
hidden nodes or layers can result in the NN not being able to describe in detail
features such as the corrugation of a PES.
Now, the way each neuron works is very interesting. Mathematically, a given

target neuron 𝑥𝑘𝑖 labeled with a number 𝑖 and belonging to a layer 𝑘 receives input
information of the 𝑗 neurons of previous layer 𝑘 − 1 in a nested way as follows [68,
293]:

𝑥𝑘𝑖

(
{𝑥𝑘−1𝑗 }

)
= 𝑓 𝑘𝑖

(
𝑏𝑘𝑖 +

∑︁
𝑗

𝑤
𝑘−1,𝑘
𝑗,𝑖

𝑥𝑘−1𝑗

)
. (4.1)

More precisely, 𝑥𝑘𝑖 receives a linear combination of the previous layer neurons
multiplied by some numerical coefficient or weights 𝑤𝑘−1,𝑘

𝑗,𝑖
. This sum of values

or incoming signals is afterwards shifted by addition of a bias value 𝑏𝑘𝑖 that is
nonzero and constant for all layers 𝑘 . This constant is provided by a bias node
connected to all neurons of the system, hidden or output, except the ones in the input
layer. A mathematical transfer function 𝑓 𝑘𝑖 , referred to as the activation function, is
subsequently applied to this linear combination. The activation function can modify
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Figure 4.1: Example of a feed-forward NN with two hidden layers of 4 and 3 nodes,
respectively. Such NN has a 2-4-3-1 architecture, or, if one regards only the hidden layers,
a 4-3 one. Input layer contains two functions G1 and G2 and, after the input is processed by
all 𝑥𝑘𝑖 nodes, some energy 𝐸 is yielded as an output. Some of the weights𝑤𝑘−1,𝑘

𝑗,𝑖
, represented

by black arrows, are pictured as an example. Here, superscript 𝑘 relates to the layer number,
and subscripts 𝑗 and 𝑖 denote the number of nodes providing some input value and receiving
it, respectively. This includes the bias weights 𝑏𝑘𝑖 pictured with green dashed arrows, which
are fed into each non-inputting node by the bias node, also pictured in green. Bias node
adds a value of 1 to each node.
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the incoming numerical information by enhancing, reducing or even suppressing
it (again, making use of the analogy with biological neurons, artificial ones fire
or not) [69]. It can be of different types, from a simple linear function to more
elaborate combinations of nonlinear functions, making it possible to obtain complex
arbitrary expressions of the NN function. Hidden layers typically use activation
functions presenting some nonlinear region and saturating for very large positive
and negative input values [68], so the NN becomes capable of performing nonlinear
functional fits [70, 294]. Instead, for output layer, a linear activation function is the
usual choice to avoid restrictions in the output values brought by the nonlinear
functions. Some typical examples of activation functions are as follows (Fig. 4.2):

𝑓 𝑘
𝑖,(1) = 𝑥 linear function

𝑓 𝑘
𝑖,(2) =

1
1+𝑒−𝑥 logistic function

𝑓 𝑘
𝑖,(3) = tanh𝑥 = 1−𝑒−2𝑥

1+𝑒−2𝑥 hyperbolic tangent
𝑓 𝑘
𝑖,(4) = 𝑎 tanh𝑏𝑥 + 𝑐𝑥 tanh + linear twist, with a, b, c ≡ constants .

(4.2)
At this point, we may better understand the importance of adding a constant bias to
the sum of input signals. Addition of a nonzero bias shifts the activation function,
so that it is not always forced to become zero if the incoming sum of neuron signals
equals zero. This provides the target neuron with an additional degree of freedom
to fit the incoming data more flexibly. To better understand this, suppose that we
want to fit a set of input data points on the 𝑥𝑦 plane, among which the origin (0,0)
is not included, to a linear function. If no bias was applied, the fitted line would
always pass through the origin, hence becoming inaccurate.

Furthermore, Eq. (4.1) in vector form becomes,

x𝑘
(
x𝑘−1

)
= 𝑓 𝑘

(
Wkx𝑘−1

)
, (4.3)

where Wk is the weight matrix containing all individual weights. Fitting the set of
different weights according to the input and output data leads to the construction of
a mathematical function that gives the expected output for some input information.
This function is something totally arbitrary, whose form is unknown to us apart
from the weights. Interestingly, full knowledge of this functional form is not needed,
as the only relevant thing is the input and output parts. Therefore, the NN works
as a black box in this context.

Now comes the key question of how these coefficients can be determined in an
appropriate way. At the beginning, the set of weights is initialized either randomly
or in a directed manner [68]. Then, some input data {x0} is chosen in a way de-
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Figure 4.2: Examples of commonly used activation functions of Eq. (4.2) in the range
𝑥 ∈ [−3, 3]. In this case, 𝑓 𝑘

𝑖,(4) has the parameters 𝑎 = 3/2, 𝑏 = 2/3 and 𝑐 = 1/4.
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pendent on the main system features that one wants to describe through a NN.
If their actual outputs {y0} are known beforehand, they can be incorporated into
the NN training, which falls under the category of supervised training, whereas
their absence in the process leads to non-supervised training scenarios. Particu-
larly for NN PES generation, supervised trainings are the rule. After this, weight
optimization begins. This involves an iterative process in which input parameters
are passed through the NN function to generate an output, which is then compared
to the expected output parameters. One iteration or, as called in the literature,
one epoch involves the full set strictly devoted to the NN iterative process or NN
training. During training, a minimization is performed on a quantity proportional
to a function of the differences between the prediction and the expected output
values across the entire training set of input parameters, commonly referred to as
the error function 𝑒 (y𝑁𝑁 − y0). Such magnitude is, known as cost function 𝛤 , has
the following general expression:

𝛤 =
1

𝑁conf
𝛾𝑦

𝑁conf∑︁
𝑗=1

𝑒 (y𝑁𝑁 − y0) . (4.4)

Here 𝑁𝑐𝑜𝑛𝑓 is the amount of configurations or data points involved in the NN
training, understanding each configuration as containing some specific, scalar or
vector-form input and/or output information. 𝛾𝑦 is a scalar parameter that weighs
the output data 𝑦 according to its nature. To clarify its role, let us take the example
of PES training yielding a set of output energies {𝐸} and forces on moving atoms
{F}. In this case, 𝛾𝐸 = 1 whereas for forces it would be 𝛾𝐹 = 𝑎/𝑁for, where 𝑁for is
the total amount of force coordinates in the system considering the three spatial
directions (i.e., three times the output force vectors available) and 𝑎 is a constant
balancing the error contributions of energies and forces in 𝛤 [68].

Training process continues until 𝛤 reaches a value below some prefixed threshold
close to zero [293]. This happens gradually, as a result of an iterative process during
which all weights (also the biases) are corrected or updated after each epoch by
adding to each of them some factor proportional to the gradient of the cost function
with respect to the weights ∇𝛤 . One talks about a backward error propagation
procedure, because weight update relies on the output errors 𝑒 (y𝑁𝑁 − y0) being
propagated through the NN layer by layer towards the input layer, as the mentioned
derivatives of 𝛤 are computed with the chain rule. Backward propagation of errors
can be performed with algorithms such as gradient descendent [295, 296], conjugate
gradient method [297], Broyden-Fletcher-Goldfarb-Shanno (BFGS) method [298,
299, 300, 301] or its limited-memory variant [302], or Levenberg-Marquardt (LM)
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algorithm [303, 304]. In the end, the result of the iterative process is a mathematical
NN function that can be used to predict accurate outputs for input data not used
during training.
A relevant remark is that the evolution with respect to the iteration of a given

𝛤 used for some NN training can be difficult to interpret. In this case, quality of
the fitted NN function can be tracked with other cost functions easier to interpret.
Particularizing again for NN PES training, it is usual to consider some cost functions
called mean absolute error (MAE) and root mean square error (RMSE) for both
energies or forces. Here, a configuration or data point is referred to a particular
arrangement of atoms in the system, each of them characterized by its position
r𝑖 = (𝑥𝑖, 𝑦𝑖, 𝑧𝑖), as well as by a DFT-computed potential energy value 𝐸 of the full
atomic arrangement and a force vector on each 𝑖-th atom F𝑖 = (𝐹𝑥,𝑖, 𝐹𝑦,𝑖, 𝐹𝑧,𝑖) due to
the potential created by the other system atoms. Considering atomic positions as
inputs and energy and forces as outputs, each configuration 𝑗 characterized by its set
of atomic coordinates at a fixed time 𝜎 𝑗 ≡ {r𝑖, 𝑗 } has an individual error contribution
to both energy MAE and RMSE. Summing up to the 𝑁conf configurations of a
given set and dividing by the amount of configurations involved yields the final
expressions for both MAE and RMSE parameters:

𝛥𝐸MAE =
1

𝑁conf

𝑁conf∑︁
𝑗=1

��𝐸𝑁𝑁𝑗 (
𝜎 𝑗

)
− 𝐸𝐷𝐹𝑇𝑗 (𝜎𝑖)

�� , (4.5)

𝛥𝐸RMSE =

√√√
1

𝑁conf

𝑁conf∑︁
𝑗=1

(
𝐸𝑁𝑁
𝑗

(𝜎𝑖) − 𝐸𝐷𝐹𝑇𝑖
(𝜎𝑖)

)2
, (4.6)

and analogous expressions can be formulated straightforwardly for each of the
single force coordinates. In addition, dividing each energy value by the number
of atoms 𝑁atom one can determine the MAE and RMSE error values per atom.
Whether they are expressed per atom or not, such kind of cost functions act as
"easily interpretable" proxies of the quality of the fitted NN function.

An additional crucial step during the training process is the one shown in Fig. 4.3.
The NN function is validated on-the-fly against some additional input information
not used for training in order to ensure the correctness of the training process.
The extra input set is of much smaller size than the one devoted for training (e.g.,
around 10 % of the train+test set sums). It enters into the so-called test or validation
process, in which no weights are updated, but outputs are predicted simply with
the NN function at each iteration from test input data. As for the training process,
𝛤 and/or some easier-to-interpret error parameter –RMSE, MAE– are evaluated
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after each iteration for the test data points. If the training process improves the
functional fit, this is also reflected in the test error parameter values. But after some
iteration, test set errors begin to grow and diverge from the still decreasing training
ones. At this point, the NN is able to reproduce not only the training data points
but also its random noise and statistical errors. This phenomenon of overfitting
implies that the functional fit describes the training set in too much detail, losing,
at the same time, its ability to accurately predict features of data not present in the
training set, giving rise to large prediction errors in the latter case (see the black
insets in Fig. 4.3). To avoid such a scenario, one common-use solution is to abort
the training right before overfitting appears and keep the weights in that last epoch
(early stopping procedure).

Afterwards, the NN function can be used to predict data points not present in
the training set. This stage reveals regions of the configurational space (i.e., the
space to which all available data points belong) not properly described by the fit.
To improve the quality of the fit, an additional training can be performed, either
incorporating more points of the poorly covered region of the configurational space
or adding certain points calculated with first principle methods, e.g., DFT to obtain
those configurations or points for a NN PES generation. The latter situation also
includes the extrapolation of the PES dynamics to situations not covered in the ab
initio calculations, e.g., when considering longer time scales or different amounts of
atoms or arrangements of the system. The iteration of this training process allows
the quality of the NN fit and its ability to describe progressively larger regions of
the configurational space. As a result, one obtains a NN fitting function that, in
particular for us, is a PES capable of accurately describing the femtochemistry of
adsorbed gas molecules on a metal surface much faster than with first-principle
methods like DFT. The different steps of the training process are summarized in
Fig. 4.4. Now, let us dig deeper into the details of NN PESs production.

4.2 Methods for constructing neural network
potential energy surfaces

As we have stated in the previous section, NN PESs –which are purely physically
motivated potentials because of the DFT data they are trained from– offer a faster
way to evaluate energies and specially forces (following (3.23)) than on-the-fly.
The latter methods allow to explore small gas-solid systems, but their range of
applicability is severely limited by the computational cost regarding the dynamics
time interval and the complexity of the multiatomic system. As an example of
the main system treated in this Thesis, 100 AIMDEF trajectories or dynamical
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Figure 4.3: Schematics of the overfitting problem. In initial iterations or epochs, the NN
function is trained according to some input data, and at the same time is validated against
some test data missing from the training set. Weight update after each epoch leads to a
decrease in the error functions for both train (blue) and test (red) sets, which also implies a
better predictive ability of the NN function curve (showed in blue in the insets) to fit known
data points (black dots in the insets), as shown in the left inset. After some given iteration,
weight update fits training input data points with increasing accuracy as shown in the right
inset in the black dots, thus its related error still decreases. However, test set description
starts to become increasingly poorer, as shown for the NN function in the right inset, and
its related error begins to increase. As a result, the NN function is said to be overfitted,
being such region pictured in grey in the figure. Consequently, optimal NN training lasts
as many epochs as required for error decrement, but are stopped prior to overfitting with
the help of some early stopping mechanism.
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Figure 4.4: Flowchart of the full NN training process. It begins with a set of initial
configurations of atomic positions, energies and forces that is used as the input of a NN
with some architecture. Then, a PES function is trained in a NN with some architecture,
where the errors or differences in PES-predicted energies and atomic forces with respect to
the input reference values are minimized during a number of iterations. The output PES
is made to undergo a validation process consisting of different steps. First, NN training
has to be stopped early enough to prevent overfitting. In addition, in order to validate its
quality, the NN PES is used to predict energies and forces of some set of configurations
not present among the training data, and those configurations that have larger errors in
predicted energy and force values can be incorporated to the training step. Not only this,
but also poorly described regions of the configuration space may be encountered during
this process, this motivating the calculation of some selected data points to further enhance
the training set. Afterwards, additional training and validation cycles can be performed on
the PES until getting a final NN PES robust and accurate enough.
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computations of the 4 ps time range after femtosecond laser peak incidence on the
Pd(111) surface decorated with CO required around 3 months to complete with
the computational settings available to us. Instead, NN PESs allow a dramatic
decrease of the costs, as completion of one trajectory on the same time interval
and computational conditions required approximately 10 s of computational time.
Replacing an electronic structure-based calculation with the evaluation of some
available NN function clearly paves the way for more complex dynamics simulations
over longer time scales, with modified initial conditions, and significantly larger
dynamics statistics, leading to much smaller statistical errors.
Development of ML-inspired PESs began during the 1990s [67, 68], although

science on NN appeared decades earlier, when studying how signals are processed in
the nervous system of biological organisms. In this context, the first mathematical
description of an artificial neuron or perceptron was suggested in 1943 [305],
while its first computational realization of neural network formulation was due to
Rosenblatt in 1958, by building a simple structure after connecting artificial neurons
arranged in two layers, input and output [306]. Such NN could not reproduce certain
logical functions, which motivated the addition of hidden layers in a work in 1969
to overcome this problem [307]. The first reports on NN usage to produce PESs
had to wait until the 1990s. In this respect, in 1992 a NN approach was proposed to
link ground- and excited-state vibrational spectral information of a polyethylene
molecule with some parameters of an anharmonic PES [69]. But the first actual NN
PESs were reported in 1995 by Doren’s group to describe the adsorption of CO on
a Ni(111) substrate and the adsorption and the recombinative desorption of H2 on
Si(100) [70]. For the first system, two input parameters were initially considered (a
coordinate 𝑥 for the position of the CO center of mass along the line connecting
two adsorption sites, and an angle 𝜃 of the molecular axis with the surface normal),
and later the center of mass 𝑧 coordinate above the surface was incorporated. In the
second one, they chose as inputs the positions of two H and two Si atoms relevant in
the recombinative reaction pathway located on the topmost layer of a 2×1 cell, thus
the input layer containing 12 nodes. For both systems PESs were calculated with
simple feed-forward NNs of a single hidden layer. They were able to identify some
key aspects of the NN PES training such as the speed up in dynamics description
they offer, the need for a comprehensive enough input data set, and the PES ability
to predict configurations close to the training set ones more accurately.

First-generation PESs were trained mainly with feed-forward NNs profiting from
the simplicity and flexibility provided by such logical structures. Feed-forward PESs
have simple functional expressions due to the NN structure, so that the analytical
calculation of their first derivatives becomes affordable and, with this, the evaluation
of forces and error gradients for error function minimization. Moreover, hidden
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layers of variable node amount can be easily incorporated to the NN structure, and
so the complexity of the functional form of the fit is easy to tune, such feed-forward
architectures being very flexible in this respect. In addition, no knowledge about
the chemistry of the system is needed (e.g., about the nature of the chemical bonds
involved).

However, some major drawbacks arise regarding these primitive PESs. The main
one is that such kind of NN PESs lacks transferability to other systems due to
two reasons. First, taking plain atomic coordinates and/or angles as NN input
parameters implies that the computed feed-forward PES cannot work properly for
the same chemical system having different amounts of atoms, as the number of
input nodes would change forcibly. Secondly, using atomic coordinates as input
does not preserve in general the three symmetries a well-constructed PES requires:
invariances under rotations, translations, and permutations of atoms. To illustrate
this point, for example, positioning of a given adsorbate atom in the same kind of
adsorption site would require different NN trainings depending on the coordinates
of such adsorbed atom, although such situations are equivalent. Moreover, exchange
of two atoms of the same species would lead to a modification of the NN to use
due to the absence of invariance under permutations, thus giving different output
energies for equal configurations. This would hold only in very simple concrete
systems, e.g., certain frozen surfaces with the same adsorbed species. Additionally,
the more complicated the NN architecture, the higher the computational cost
becomes to determine the NN PES. Several strategies were suggested to overcome
such challenges without managing to solve all the drawbacks (see Ref. [68] for a list
of proposals). For instance, to achieve permutational invariance, symmetrization
of input coordinates for molecules [308] and gas-solid systems [309], as well as
symmetrization of the NN structure, have been proposed. However, symmetrized
quantities become increasingly complex and computationally challenging to handle
as the number of atoms grows. Another choice could be to use internal coordinates
as NN inputs, which would work for some low-dimensional systems but would
imply a large number of input coordinates for higher-dimensional ones, while
violating permutational symmetry, as the ordering of the input vector of internal
coordinates would modify the total energy [68, 310].
As a result, feed forward NN PESs with spatial coordinates as inputs work

properly for simple, low-dimensional systems, understanding simplicity as the
existence of a small number of degrees of freedom in the form of atoms allowed to
move and thus under the effect of PES force fields. Such kind of systems are small
molecules and small molecules interacting on frozen metal substrates (see, e.g.,
Ref. [67] or Ref. [68] for references on such studies). As a result, although the PESs
determined for different low-dimensional chemical systems seemed promising, a
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paradigm change was definitely required to make the NN pathway truly work for a
vast majority of systems containing large amounts of degrees of freedom. Such a
change arrived in 2007 –with the seminal work of Behler and Parrinello– supported
by three key points [71]:

• Most of the internal system interactions are supposed to occur between
a given atom and its local chemical environment rather than at a global
configurational level. The interatomic interactions that the central atom of
a given cutoff sphere experiences with atoms outside that sphere are safely
neglected due to their smallness.

• The required invariances (rotational, translational, and permutational) are
ensured by the introduction of some atom-centered symmetry functions as
NN inputs.

• Active learning is considered in order to extend the configurational space
and thus improve the PES predictive performance, a crucial step for systems
of many degrees of freedom.

Such is the high-dimensional neural network potential (HDNNP) framework,
or more precisely, the "second generation" HDNNPs following Ref. [68]. Let us
explore their features in more detail. Here, a local environment centered at each
atom is defined, which contributes to the total energy of the system. Contribution
of each atom depends on the size of the atomic environment, which is considered
to be a sphere of cutoff radius 𝑟𝑐 , or cutoff sphere. Atoms inside the cutoff sphere
interact non-negligibly with the atom at its center and thus contribute to the local
environment energy; atoms outside the sphere are assumed to have negligible inter-
actions with the central atom of the order of 1 meV/atom and their contributions do
not enter in the environmental energy. As only nearest neighbors affect the energy
contribution of each environment, each atom-centered cutoff sphere contributes to
the total energy with a short-range kind of energy [68]. Let us assume that there
are 𝑁elem atomic elements in the system, with 𝑁 𝑖

atom atoms of each element 𝑖 . With
this partitioning, total short-range-like energy of the system 𝐸𝑠 becomes as follows:

𝐸𝑠 =

𝑁elem∑︁
𝑖=1

𝑁 𝑖
atom∑︁
𝑗=1

𝐸𝑖𝑗 . (4.7)

The value of 𝑟𝑐 is defined prior to the NN training. The values of 𝑟𝑐 in the range
[6,10] Å suffice to describe all main forces on the center atom in each environ-
ment for several systems, including the long-range electrostatic and dispersion
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forces (although the NN PES does not discern the physical nature of each force,
but yields total forces on each atom) [68]. NN PESs obtained become thus very
accurate, although the smallness of the prediction errors can be comparable to some
physical magnitudes in certain systems [311]. Such errors can be further reduced
as needed by adding more information of the configurational space to training
with later specific DFT calculations, which is part of the aforementioned active
learning procedure. Also, one can hint that Eq. (4.7) does not change whenever the
ordering of each of the atomic terms changes, thus ensuring the preservation of
the permutational invariance.

The next ingredient in this model involves replacing the raw position and/or
angular coordinates of the atoms as input parameters for NN that do not preserve
the system invariance under translations and rotations in general. Instead, the
NN input is a set of invariant coordinates obtained after transforming the atomic
positions and angles of atoms inside the cutoff sphere R𝑖𝑗 ≡

{
r𝑖𝑗

}
(notice the change

of notation with respect to Chapters 2 and 3 adopted here for convenience) into
a set of arrays containing invariance-preserving coordinate values (one array per
atom in the local environment), G𝑖

𝑗 ≡
{
g𝑖𝑗

({
r𝑖𝑗

})}
. Such invariant coordinate

values are the output of certain suitable functional descriptors. The order in which
atomic coordinates enter such functions does not alter the output, so permutational
symmetry is then conserved. Afterwards NN training is performed on the set of
invariant coordinate arrays G𝑖

𝑗 for the atom 𝑗 of element 𝑖 on a NN of prefixed
architecture and the atomic contribution 𝐸𝑖𝑗 to the sum in Eq. (4.7) is determined.
Mathematically,

𝐸𝑖𝑗 = NN𝑖
(
G𝑖
𝑗

)
, 𝑖 ∈ [1, 𝑁elem], 𝑗 ∈ [1, 𝑁 𝑖

atom] , (4.8)

where NN𝑖 is the NN function for each element 𝑖 . The reason why NN𝑖 is equal for
all atoms of the same element is to ensure the chemical equivalence of all atoms of
the same element, as well as the transferability of this NN to systems with the same
elements but distinct amounts of them. As each atomic environment undergoes a
NN calculation for its energetic contribution, graphically this means that we are
describing the system with as many low-dimensional NNs as non-frozen atoms
available in the training, which motivates the adoption of the HDNNP terminology
for such kind of PESs. Figure 4.5 shows a schematic example of how 𝐸𝑠 is determined
within the HDNNP framework for a system of three elements a, b, and c. As an
additional remark, since these "second generation" HDNNPs rely on an atomwise
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sum of NN-computed energies, these HDNNPs are also often referred to in the
literature as atomistic NN potentials.

Preserving the required invariances implies that the NN input arrays G𝑖
𝑗 , though

being strictly numerical, actually carry some physical meaning about the local atom
environment with them, and their modifications are linked to physical variations
in the atomic environment. To illustrate this point, for example, equivalent atomic
environments can be obtained if a gas-solid system is rotated from some start-
ing position around a given axis; this will modify the atomic coordinates, which
enter the NN of a given atom, but still the same output atomic energy has to be
regained. In this way, equal environments must correspond to the same energy
value, whereas different energies imply different local configurations around the
atom under consideration. Moreover, since inside the cutoff spheres for different
atoms there are also diverse amounts of neighbor atoms, the amount of descriptors
used must be independent of the quantity of atoms in a cutoff sphere [71]. As a
further requisite, as one wants to determine forces or first derivatives of the PES,
functional descriptors need to be differentiable for the whole domain of the radial
coordinate and to go smoothly to zero at the cutoff sphere limit in its value and
first derivative in order to avoid discontinuities. When possible, the smooth decay
requirement can be extended to higher-order derivatives [310].

Among the different functional descriptors, the atom-centered symmetry func-
tions (ACSFs) first proposed in 2007 [71] are actually a predominant choice in the
HDNNP generation science [68]. In order to construct them, the first crucial step
is to mathematically define the cutoff sphere. For that, a cutoff function 𝑓𝑐 (𝑟𝑖 𝑗 ) is
defined, which acts on 𝑟𝑖 𝑗 , the norm of the vector that links the positions of the
central atom 𝑖 and some neighbor inside the cutoff sphere 𝑗 of radius 𝑟𝑐 . The first
proposed, and perhaps more popular form of cutoff function contains a decaying
cosine (Fig. 4.6) [71]:

𝑓𝑐 (𝑟𝑖 𝑗 ) =
{
0.5

[
cos

(
𝜋
𝑟𝑖 𝑗
𝑟𝑐

)
+ 1

]
, 𝑟𝑖 𝑗 < 𝑟𝑐

0 , 𝑟𝑖 𝑗 ≥ 𝑟𝑐
. (4.9)

Such 𝑓𝑐 is derivable at first order, but presents a discontinuity at 𝑟𝑖 𝑗 = 0 for its
second derivative. The latter does not become problematic with a large enough
value choice for 𝑟𝑐 [310]. Other variants of 𝑓𝑐 do not produce discontinuities in
the second derivative (using some hyperbolic tangent) or even in no higher-order
derivatives (with an exponential) [310, 312]. Whatever form is taken, any descriptor
contains a product of one or more symmetry functions times one or more cutoff
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Figure 4.5: General schema of a "second generation" HDNNP model (also called atomistic
NN model) for a system of three atomic species 𝑗 = a (red), b (grey) and c (blue). Given
a set of atomic positions r𝑖𝑗 , where 𝑖 refers to the specific atom of element 𝑗 considered,
a cutoff sphere can be defined around each of them, characterized by a set of positions
R𝑖
𝑗 ≡

{
r𝑖𝑗

}
corresponding to the central atom position r𝑖𝑗 and the position vectors of its

neighbors. Participation of central and neighbor atoms is represented with the multiple
out- and ingoing colored arrows between the two first columns. Cutoff sphere coordinates
are then transformed into sets of symmetry functions fulfilling the required invariances,
G𝑖

𝑗 ≡
{
g𝑖𝑗

({
r𝑖𝑗

})}
. Each of these sets of functions enter a NN as input and this yields some

energy 𝐸𝑖𝑗 for the given local atomic environment. In the end, total energy of the atomic
configuration 𝐸𝑠 is a sum of the individual environmental energies of the atom-centered
cutoff spheres, subscript 𝑠 standing for short-range to further address the local feature of
each 𝐸𝑖𝑗 .96
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functions, so that they are strictly nonzero inside each atom environment and go
to zero at the cutoff boundary.

Figure 4.6: Plot of the cutoff function 𝑓𝑐 (𝑟𝑖 𝑗 ) defined in Eq. (4.9) in terms of 𝑟𝑖 𝑗/𝑟𝑐 .

The next step consists of properly defining the ACSFs. There are of two types:
radial, involving two-body summands, and angular, proportional to three-body
terms. Starting with the radial ones, the first straightforward choice is to take a
sum of cutoff functions,

𝐺 rad
𝑖,1 =

𝑁at∈𝑉𝑐∑︁
𝑗≠𝑖

𝑓𝑐
(
𝑟𝑖 𝑗

)
, (4.10)

where 𝑉𝑐 is the volume of the cutoff sphere and 𝑁at is the total number of atoms in
the system. Apart from them, more elaborated radial symmetry functions can be
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considered:

𝐺 rad
𝑖,2 =

𝑁at∈𝑉𝑐∑︁
𝑗≠𝑖

𝑒−𝜂(𝑟𝑖 𝑗−𝑟𝑠)
2
𝑓𝑐
(
𝑟𝑖 𝑗

)
. (4.11)

Here, 𝜂 defines the width of the Gaussians, whereas 𝑟𝑠 is the radial coordinate of
the Gaussian center, being 0 ≤ 𝑟𝑠 ≤ 𝑟𝑐 . Tuning 𝜂, one changes the spatial extension
explored inside the cutoff sphere by the 𝐺 rad

𝑖,2 ’s: for increasing positive values of
𝜂, the Gaussians become narrower and vice versa (Fig. 4.7, upper part). Notice
that, in fact, (4.10) is the particular case of (4.11) with 𝜂 = 0. Adjusting 𝑟𝑠 allows to
map different spherical shells around center atom 𝑖 inside the atomic environment
(Fig. 4.7, lower part). In all cases, the maximum height of the Gaussians cannot
exceed 𝑓𝑐

(
𝑟𝑖 𝑗

)
at a given distance. Other radial functions rely on cosine sums,

𝐺 rad
𝑖,3 =

𝑁at∈𝑉𝑐∑︁
𝑗≠𝑖

cos
(
𝜅𝑟𝑖 𝑗

)
𝑓𝑐
(
𝑟𝑖 𝑗

)
, (4.12)

where 𝜅 is an adjustable period linked to a length scale. The sum of terms as given
in Eq. (4.12) allows to describe the different radius regions of the cutoff sphere.
However, they are advised to be used in combination with other radial functions
𝐺 rad
𝑖,1 or𝐺 rad

𝑖,2 due to the appearance of negative values of𝐺 rad
𝑖,3 that can cancel positive

summands in Eq. (4.12) [310].
To this picture, angular symmetry functions need to be incorporated so that

atoms of equal 𝑟𝑖 𝑗 but different positions in the cutoff sphere can be correctly
distinguished. Such are three body terms that characterize the relevant angles. To
this end, two kind of angular ACSFs are defined:

𝐺
ang
𝑖,4 = 21−𝜁

𝑁at∈𝑉𝑐∑︁
𝑖, 𝑗≠𝑖,𝑘≠𝑖

(
1 + 𝜆 cos𝜃𝑖 𝑗𝑘

)𝜁
𝑒
−𝜂

(
𝑟 2𝑖 𝑗+𝑟 2𝑖𝑘+𝑟

2
𝑗𝑘

)
𝑓𝑐
(
𝑟𝑖 𝑗

)
𝑓𝑐 (𝑟𝑖𝑘) 𝑓𝑐

(
𝑟 𝑗𝑘

)
, (4.13)

𝐺
ang
𝑖,5 = 21−𝜁

𝑁at∈𝑉𝑐∑︁
𝑖, 𝑗≠𝑖,𝑘≠𝑖

(
1 + 𝜆 cos𝜃𝑖 𝑗𝑘

)𝜁
𝑒
−𝜂

(
𝑟 2𝑖 𝑗+𝑟 2𝑖𝑘

)
𝑓𝑐
(
𝑟𝑖 𝑗

)
𝑓𝑐 (𝑟𝑖𝑘) . (4.14)

Here, 𝜃𝑖 𝑗𝑘 is the angle subtended by the vectors originating from center atom 𝑖 , rij
and rik, and arises from their scalar product. 𝜆 = 1 or −1 can invert the shape of the
cosine function by shifting their maxima at angles 𝜃𝑖 𝑗𝑘 = 0 or 𝜋 , respectively, and
it is included so that for the equivalent angles 𝜃𝑖 𝑗𝑘 and 2𝜋 − 𝜃𝑖 𝑗𝑘 the same values
of 𝐺ang

𝑖,4 and 𝐺ang
𝑖,5 are obtained. 𝜁 is the angular resolution parameter that sets the

width of the cosine sums of Eqs. (4.13) and (4.14) (the strictly angular parts of 𝐺ang
𝑖,4
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Figure 4.7: 𝜂 (upper graph) and 𝑟𝑠-dependencies (lower graph) of radial functions
𝑒−𝜂(𝑟𝑖 𝑗−𝑟𝑠)

2
𝑓𝑐 (𝑟𝑖 𝑗 ) in terms of interatomic distance 𝑟𝑖 𝑗 . For all functions plotted, 𝑟𝑐 = 7 Å.

For upper graph, 𝑟𝑠 = 0 Å, whereas for the lower one 𝜂 = 0.5. Cutoff function 𝑓𝑐 is pictured
in dashed black lines in both graphs.
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and𝐺ang
𝑖,5 ); the larger 𝜁 , the smaller the range of angles probed by the angular ACSFs.

The sums are normalized by the factor 21−𝜁 so that the angular symmetry function
values are balanced regardless of the 𝜁 considered [68]. However, such operation
is not required because the range of values the symmetry functions can take are
normalized prior to training, thus avoiding too large, positive, or negative input
symmetry function values to heavily influence the node outputs in the first NN
layer compared to the smaller symmetry function values [310, 313]. 𝜂 plays the
same role as for radial ACSFs, delimiting spherical slices of the atom environment;
for complex environmental settings, symmetry functions with different 𝜂’s can be
utilized. Figure 4.8 shows some examples of the angular functions depending on
the values of 𝜁 and 𝜆 considered.
Furthermore, the cutoff functions included in the product of 𝐺ang

𝑖,4 force the
three interatomic distances involved to be smaller than 𝑟𝑐 , including the distance
between the atoms 𝑗 and 𝑘 , 𝑟 𝑗𝑘 . This condition is less restrictive for 𝐺ang

𝑖,5 , as 𝑟 𝑗𝑘
does not enter the latter functions, allowing the description of atom triplets 𝑖 𝑗𝑘
with 𝑟𝑐 ≤ 𝑟 𝑗𝑘 ≤ 2𝑟𝑐 . For this last reason 𝐺ang

𝑖,5 often reach larger values than 𝐺ang
𝑖,4 .

Alternative radial ACSFs have been proposed in other works [314, 315]. In addition,
element-specific information can be incorporated in the ACSFs, as suggested and
tried elsewhere [316, 317, 318].

Combinations of radial and angular ACSFs with different parameters are chosen
to probe different regions of the atomic environments, and their output values are
subsequently processed by the NN. Setup of parameters can be performed either
unbiased –selecting some given amount of descriptors, taking equidistant values
of, e.g., 𝑟𝑠 or 𝜂, selecting some "promising" values of 𝑟𝑐 or 𝜁 ...– or following some
educated guesses from the features of the system [68]. An unbiased approach is
advised at the beginning of the HDNNP production, and it can evolve to a more
directed methodology as one gains information about, e.g., the system configura-
tional setup, PES predictions or holes in the configurational space. Considering that
the system contains 𝑁elem elements, an orientative amount of symmetry functions
𝑁sym can be considered in the early training stages [68],

𝑁sym = 𝑁sym,rad + 𝑁sym,ang = 𝑁elem + (𝑁elem + 1) 𝑁elem
2 , (4.15)

and can be increased for later retraining processes according to the system one
studies. In fact, Eq. (4.15) gives a hint of how computationally demanding HDNNP
generation can become for a system with a large number of species. This downside
could be mitigated by reducing the cutoff radius, and consequently, the cutoff
sphere size. However, this adjustment might compromise the accuracy of the PES

100



Methods for constructing neural network potential energy surfaces Section 4.2

Figure 4.8: 𝜁 and 𝜆 dependencies of the angular functions 21−𝜁
(
1 + 𝜆 cos𝜃𝑖 𝑗𝑘

)𝜁 with the
angles 𝜃𝑖 𝑗𝑘 subtended between the central atom 𝑖 of a cutoff sphere and two neighbor atoms
𝑗 and 𝑘 . Each curve corresponds to a certain choice of parameters (𝜆, 𝜁 ), so that reddish
curves share 𝜆 = −1, whereas bluish ones have 𝜆 = 1. Selected values for 𝜁 exponent are 1,
2, 5, 10 and 20.
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in predicting energies and forces. Anyway, it is almost needless to say that research
on the ACSF topic remains an ongoing task as deduced from recent proposals for
its improvement (see, e.g., Ref. [319]).
Even though the main part of the short- and particularly long-range forces is

typically accounted for by the cutoff sphere approximation, there are cases where
interactions with ranges longer than 𝑟𝑐 –specifically electrostatic and/or dispersion
interactions– are significant enough to be included in the training process [68, 313].
This motivated an evolution of the HDNNPs to a third generation in which not
only energies, but also local charge distributions inside the atomic environments
are fitted with another family of NNs also taking symmetry function values as
inputs [320, 321]. As fitting local charge distributions in a PES does not prop-
erly describe neither long-range transfer of charge, nor global charge distribution
modifications brought to the global system being in a different ionization state, a
further evolution of this latter framework was proposed years later, to give the
fourth-generation HDNNPs [322]. Such recent refinements of the original HDNNP
framework exceed the purpose of this Thesis, but the reader is advised to check,
e.g., Ref. [68] and the corresponding references therein for a deeper insight.
Another way to improve the HDNNPs is to consider alternative input descrip-

tors from ACSFs suitable enough to generate improved PESs while also ensuring
symmetry conservations. Several alternative suggestions have been done in this
respect (see Ref. [68] for some examples). In principle, there does not exist a family
of descriptors above the others, but descriptors are simply a tool whose success
is measured through the quality of the PESs they serve to fit. With the increasing
availability of diverse descriptors, the number of possible combinations of them
as PES input has also grown. Among them, local density-like descriptors have
proven to be valuable inputs regarding HDNNP production, as checked for the
PESs produced in this Thesis. Now let us focus on the particular approach we
have considered for NN PES generation of CO/Pd(111): the embedded atom neural
network (EANN) framework.

4.3 Embedded atom neural network (EANN)
approach

The NN framework considered in this Thesis is the EANN one, first proposed by Bin
Jiang’s group in 2019 [323]. It takes as inspiration the embedded atom model (EAM),
valid for metallic systems, which is built on the basis of quasiatom theory [324]
–also called effective medium theory [325]–, a theory devoted to the description of,
e.g., impurities, fractures, or dislocations in metal systems. Consider an impurity
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atom 𝑖 located at position r𝑖 within a host composed of metallic atoms that generate
an electron gas. In the absence of the impurity, both the potential and the energy of
the system are functionals of the electron density of the system without impurity, as
the HK theorem told us (Section 2.3.1). The presence of an impurity atom introduces
an atomic potential that is added to the potential of the host, which remains being
a functional of the pure system electron density. As the impurity potential only
depends on the charge and position of the impurity atomic nucleus, the potential
of the host with the impurity is a functional of the pure system electron density.
Consequently, the energy of the full system, and in particular of the impurity, is
a functional of the density 𝑛host that the pure electron distribution of the metal
would create at r𝑖 [324]. This key corollary of the quasiatom theory is expressed
mathematically for the impurity energy as follows:

𝐸
quas
𝑖

= F [𝜌host(r)] . (4.16)

In this case, F is a functional of some generally unknown, likely complicated shape,
which is also independent of the host atomic species present in the metal. As both
the energy of the impurity and the one of the full system depend on the electron
density before adding the impurity, this corollary is not exactly to be compared to
the HK theorem, which relates the energy and electron density of a system in the
same "stage".

Now, the next challenge consists of hinting the form of F . A first step is to
take approximations, such as assuming that the impurity energy is dependent
on its surrounding environment [326] or equivalently that at the position of the
impurity r𝑖 the electron density is locally uniform [324]. The latter is called the
uniform-density approximation and can be seen as a local approximation or the
lowest-order contribution in a perturbative expansion of the density. To guide
the next steps, a set of DFT calculations performed for all atomic species in the
first three rows of the Periodic Table is considered [327]. Each of these atoms was
considered as a single impurity inside a HEG in order to determine its energy as a
function of the HEG electron density. Some common features could be observed
for the graph of each atom, namely a linear behavior between both quantities at
high densities and either vanishing or concave up (i.e., with an energy minimum)
profiles for densities approaching to zero. Energy minima appear for chemically
active elements and are not present for the rare gases investigated. Linear energy
ranges correspond to the chemically inactive regimes of each atomic species and
can be represented by pairwise potential terms between the atom 𝑖 and its closest
neighbors. However, low-density, nonlinear regimes, especially for active impurity
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atoms, are ill behaved under description with pair potentials, but are instead better
characterized by quasiatom energy terms [328].
Taking into account these aspects, EAM was proposed [328, 329]. Based on the

quasiatom approach, each atom can be considered as an impurity for the remaining
atoms of a system of 𝑁 atoms. Aforementioned locality approximation is also used
here, i.e., each atom 𝑖 feels a local uniform electron density at its position r𝑖 . The
total energy of such a system in the EAM framework is as follows:

𝐸EAM,tot =
𝑁∑︁
𝑖=1

[
𝐹𝑖

(
𝜌host𝑖 (r𝑖)

)
+ 1
2
∑︁
𝑗≠𝑖

𝜙𝑖 𝑗
(
r𝑖 𝑗

) ]
. (4.17)

Here 𝐹𝑖 is the so-called embedding energy function, which is defined as the energy
variation that an impurity atom experiences inside a uniform electron gas with
respect to its value outside the gas. This embedding energy describes the nonlinear
energy dependence of atom 𝑖 with the total host electron density created by the
whole system at r𝑖 , 𝜌host𝑖

(r𝑖). Finally, 𝜙𝑖 𝑗 is the short-range pair potential term
that accounts for the linear dependence between energy and electron density on
atom 𝑖 , which is proportional to the interatomic distances to the other nearby
atoms r𝑖 𝑗 = r𝑖 − r 𝑗 within some cutoff sphere. An additional approximation can be
made by decomposing 𝜌host𝑖 (r𝑖) into a superposition of the local electron density
contributions generated by each of the surrounding atoms 𝑗 ≠ 𝑖 near r𝑖 ,

𝜌host𝑖 (r𝑖) =
∑︁
𝑗≠𝑖

𝜌atom𝑗

(
r𝑖 𝑗

)
, (4.18)

so that, substituting Eq. (4.18) in Eq. (4.17), the latter equation becomes simply a
function of the interatomic distances between the atom 𝑖 and the rest of atoms in its
vicinity 𝑗 . All of this simplifies the problem of determining each impurity energy
and, therefore, the total energy, but the question of how to obtain the embedding
functions remains. Although semiempirical expressions have been suggested in
accordance with experimental properties [328] or electron gas calculations [273],
the exact expressions of 𝐹𝑖 are unknown, which affects the accuracy of theoretical
calculations. This fact also limits the applicability of EAM to metallic systems.

To improve and generalize the EAM framework to nonmetal systems as well, one
has to explore more appropriate forms of the functions 𝐹𝑖 and 𝜌atom𝑗 . To this end, an
evolution of EAM, known as the EANN model, was proposed [330]. The first step
consists of looking for a set of functions that can describe atomic environments
around each atom optimally enough to improve the expression of the electronic
density due to each atom. Original EANN considers the Gaussian-type orbital
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(GTO) functions centered at each atom [331],

𝜑
𝛼, 𝑟𝑠
𝑙𝑥 𝑙𝑦𝑙𝑧

(r) = 𝑥𝑙𝑥𝑦𝑙𝑦𝑧𝑙𝑧 exp
(
−𝛼 |𝑟 − 𝑟𝑠 |2

)
, (4.19)

By squaring the GTOs, the embedded local atomic densities 𝜌𝑖 are generated,
analogous to how the electron density is obtained by squaring the wavefunction.
For each embedded atom 𝑖 an embedding density vector 𝜌i can be defined, being
each of its components the local electron density due to each of the nearby atoms 𝑗
at the position of the atom 𝑖 . For atom 𝑖 one has,

𝜌𝑖𝐿,𝛼,𝑟𝑠 =

𝑙𝑥+𝑙𝑦+𝑙𝑧=𝐿∑︁
𝑙𝑥 ,𝑙𝑦,𝑙𝑧

𝐿!
𝑙𝑥 !𝑙𝑦!𝑙𝑧!

(
𝑛at∑︁
𝑗=1

𝑓𝑐
(
𝑟𝑖 𝑗

)
𝑐 𝑗𝜑

𝛼, 𝑟𝑠
𝑙𝑥 𝑙𝑦𝑙𝑧

(𝑟𝑖 𝑗 )
)2
. (4.20)

Here 𝑐 𝑗 are element- and orbital-dependent weights [317] for the atoms 𝑗 in the
environment of atom 𝑖 and whose values are adjusted during the NN training;
𝑟𝑖 𝑗 =

��r𝑖 − r 𝑗
��, and 𝑛at is the total number of atoms that are at a distance 𝑟𝑖 𝑗 < 𝑟𝑐

from atom 𝑖 , i.e., inside a cutoff sphere centered at r𝑖 and with a cutoff radius 𝑟𝑐 .
Each weight 𝑐 𝑗 can be seen as the expansion coefficient of each atom 𝑗 in the orbital
𝜑
𝛼, 𝑟𝑠
𝑙𝑥 𝑙𝑦𝑙𝑧

. The effect of the cutoff sphere is incorporated through the cutoff function 𝑓𝑐
as defined in Eq. (4.9) [71].
It is interesting to notice that (4.20) can be expressed using the multinomial

theorem as [332]:

𝜌𝑖𝐿,𝛼,𝑟𝑠 =
∑︁
𝑗,𝑘≠𝑖

𝑐 𝑗 𝑓 (𝑟𝑖 𝑗 )𝑐𝑘 𝑓 (𝑟𝑖𝑘)𝑟𝐿𝑖 𝑗𝑟𝐿𝑖𝑘
(
cos𝜃𝑖 𝑗𝑘

)𝐿
, (4.21)

where 𝑓 (𝑟𝑖 𝑗 ) = exp−𝛼 ( |𝑟𝑖 𝑗 − 𝑟𝑠 |)2. The equality of (4.20) and (4.21) has some crucial
implications. It is clear that the embedded density expressed in (4.20) implicitly
includes the two-body terms 𝑟𝑖 𝑗 and 𝑟𝑖𝑘 (𝐿 = 0), and the three-body contribution
cos𝜃𝑖 𝑗𝑘 for 𝐿 > 0, even though it depends only on the Cartesian coordinates of the
neighbors of atom 𝑖 . This leads to a computational ease in terms of cost, as the
sums over the two- and three-body information are avoided. Such circumstance is
particularly important when computing the system forces as first derivatives of the
EANN PES. In addition, (4.21) shows that the 𝜌𝑖 densities preserve the symmetries
to transitions, rotations and permutations of equivalent atoms, so that the PESs
generated with them are universal instead of specific of the particular setting of
atoms and their positions. Full EANN schema is represented in Fig. 4.9.
The total energy 𝐸 of a system composed of 𝑁at atoms is then evaluated with
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Figure 4.9: Schema of the EANN framework for the same system of three atomic species
𝑗 = a (red), b (grey) and c (blue) considered in Fig. 4.5 (see its description). One starts from
a given set of atomic positions R𝑖

𝑗 ≡
{
r𝑖𝑗

}
inside a cutoff sphere around the 𝑖-th atom of

element 𝑗 , r𝑖𝑗 . Then, one determines the set of GTOs centered at r𝑖𝑗 , 𝜑
𝛼, 𝑟𝑠
𝑙𝑥 𝑙𝑦𝑙𝑧

(r𝑖𝑗 ) ≡ 𝜑 (r𝑖𝑗 ).
Depending on their proximity to each of the system atoms 𝑖 , the GTOs linked to each
centering atom feed or not –therefore the multiple colored arrows between the third and
fourth column of the graph– the embedding atomic densities 𝜌𝑖

𝐿,𝛼,𝑟𝑠
≡ 𝜌𝑖 , which preserve

the required spacial and permutational invariances. The latter are processed into NNs
as corresponds for a HDNNP schema and yield the individual energies 𝐸𝑖𝑗 , and their sum
equals to the short-range energy 𝐸𝑠 ≡ 𝐸 of Eq. (4.22).
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NN-trained functions following the atomistic representation, i.e., in the same spirit
as the HDNNP framework [71] (Section 4.2). This means 𝐸 is the sum of the energy
contributions provided by each atom of the system, 𝐸𝑖 ({r𝑖}), as follows:

𝐸 =

𝑁at∑︁
𝑖=1

𝐸𝑖 ({r𝑖}) =
𝑁at∑︁
𝑖=1

NN𝑖
(
𝝆𝑖

)
. (4.22)

Here NN𝑖 is the atomic neural network function of embedded atom 𝑖 , which has
some specific form for each atom species in the system. It is a function of 𝝆𝑖 ,
an input set that contains the embedded densities coming from atoms inside the
cutoff sphere of the 𝑖-th atom. These EANN functions replace the aforementioned
embedding energy functions 𝐹𝑖 of the EAM model and also contain the repulsive
short-range electrostatic potential terms between the atom 𝑖 and each atom 𝑗 in
its vicinity, 𝜙𝑖 𝑗 (𝑟𝑖 𝑗 ). As EANN functions do not require any other simplification
because of their pure mathematical nature, the EANN framework naturally extends
EAM to cover metal and nonmetal systems with greater accuracy.

The EANN methodology takes into account not only the positions, but also the
energies and forces determined with AIMDEF for each configuration considered in
the training process. In order to improve the NN calculation of energies and forces,
both physical quantities enter the mean-squared cost function 𝑆 (w). The latter
is minimized in the backward error propagation done after each EANN training
iteration:

𝑆 (w) = 1
𝑁conf

𝑁conf∑︁
𝑖=1

𝜂𝐸
(
𝐸EANN𝑖 − 𝐸AIMDEF

𝑖

)2
+ 𝜂𝐹

𝑁moving∑︁
𝑗=1

3∑︁
𝜏=1

(
𝐹EANN𝑗𝜏 ,𝑖

− 𝐹AIMDEF
𝑗𝜏 ,𝑖

)2 .
(4.23)

In this expression, w is the set of NN weight parameters, which contains AIMDEF
energies 𝐸AIMDEF

𝑖 and forces 𝐹AIMDEF
𝑗𝜏 ,𝑖

of the training set configurations and their
EANN counterparts, 𝐸EANN𝑖 and 𝐹EANN𝑗𝜏 ,𝑖

, respectively, being 𝜏 the index signalling
the spacial component of the force (x, y or z). Next, 𝑁conf is the total number
of configurations that are used for training and 𝑁moving is the number of atoms
allowed to move at the beginning of AIMDEF dynamics (i.e. non frozen), which
therefore experience the effect of system’s internal forces. Finally, 𝜂𝐸 and 𝜂𝐹 are
parameters weighing the energy or the force contribution in the 𝑆 (w) minimization
(recall Eq. (4.4) and its explanation).

Let us conclude with some final remarks on EANN and its evolution. It is inter-
esting to mention that the EANN model has also been used to predict the tensorial
properties of many body systems such as the electronic friction tensor [333] or the
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dipole momenta or polarizability tensor [334]. Furthermore, based on the original
EANN model, some recent proposals have been made to improve its features. One
of them introduces a different type of orbital proportional to a piecewise function
that defines shells with outer and inner radii, 𝑟out and 𝑟in, respectively. This modi-
fication leads to a faster version of the EANN, known as thepiecewise embedded
atom neural network (PEANN) model [335].
However, a limitation of the EANN model is that, in certain atomic systems,

different environments can share identical sets of interatomic distances and an-
gles, which can incorrectly result in identical EANN-predicted values for physical
quantities, such as their energies (see, for instance, the example of CH4 discussed
in Ref. [336] for clarification). To overcome this problem, the 𝑐 𝑗 coefficients of
Eq. (4.20) can be made environmentally dependent on the cutoff sphere centered
at each atom 𝑗 entering the sum as a neighbor of atom 𝑖 , in the same spirit as
the embedded densities. Assuming that the procedure is carried out for 𝑇 > 0
iterations, if we focus on Eq. (4.20), each of the 𝑐 𝑗 coefficients at some iteration 𝑇
carries the embedding density information of the cutoff sphere centered at 𝑗-th
atom in the iteration𝑇 − 1, 𝝆𝑇−1𝑗 , and this process repeats recursively until reaching
the original environmental settings𝑇 iterations before. Environmental information
is transmitted between some atom 𝑗 and its neighbors and spreads iteration after it-
eration reaching farther atoms. In fact, since the calculation of each 𝑐𝑇𝑗 is performed
recursively using the 𝑐 𝑗 ’s from earlier iterations, this motivates the naming of this
evolution of EANN as recursive embedded atom neural network (REANN) [336,
337].

In any case, neither PEANN nor REANN are included in the calculations of this
work and are mentioned here solely to illustrate the evolution of the EANN model.
This decision is justified by the accurate results already provided by the PESs trained
with the original EANN framework for characterizing the photodesorption of CO
on Pd(111). A more detailed explanation and discussion of this topic are presented
in the following chapters of this work.
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5 0.75 ML CO/Pd(111) po-
tential energy surface

As discussed in Chapter 4, NN-generated multidimensional PESs are emerging
as a computationally faster, versatile, and accurate alternative to traditional ab
initio methods for studying gas-surface processes. In particular, HDNNP-based
approaches have become particularly promising, enabling the accurate modeling
of complex interactions and energy exchange between surfaces and molecules of
variable sizes. This explains the steadily increasing number of studies that are
appearing in different areas, such as solid-liquid water surfaces [72, 73, 74] and gas-
solid interfaces [75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 338]. However, modeling
femtosecond laser-induced reactions with NN PESs can be more demanding than
other gas-surface processes. Reasons for this are the need to account for multiple
adsorbates and, hence, more surface atoms, a possible time-changing adsorbate
coverage caused by the desorption events, and a large surface temperature variabil-
ity. Therefore, multiple degrees of freedom and a large configurational space have
to be accurately described by the PES. The results in this chapter and in Chapter 7
will show that the EANN method [323, 339, 340] can successfully account for this
complex task.
In this chapter, we study the photoinduced desorption dynamics of CO from

Pd(111) at a specific coverage of 0.75 ML, employing an EANN PES that is obtained
using data extracted from existing (Te,Tl) − AIMDEF simulations of the same
process [31]. The outline of the chapter is as follows. The first section provides
relevant details of the (Te,Tl) − AIMDEF simulations. Section 5.2 is devoted to the
construction of the 0.75 ML CO/Pd(111) EANN PES. This process involves choosing
suitable input data for EANN training (Section 5.2.1), optimizing EANN-specific
parameters for our system (Section 5.2.2), and a static evaluation to determine the
more accurate PES trained and its accuracy predicting the CO/Pd(111) energies
and forces (Section 5.2.3). In Section 5.3 we detail the numerical fitting procedure
that is used to calculate the surface electronic density, which is needed to calculate
within the LDFA the friction coefficients on the adsorbate species, as accurately as
in (Te,Tl) − AIMDEF. Subsequently, Section 5.4 discusses the molecular dynamics
simulations performed using the precalculated PES. The results of these calculations
reproduce accurately the 0.75 ML CO/Pd(111) photodesorption results obtained
from the aforementioned (Te,Tl) − AIMDEF simulations [31] and even permit us
to learn more about this chemical pathway in its early stages. Finally, Section 5.5
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summarizes the principal conclusions and potential implications drawn from this
research.

5.1 Description of the system in the reference
(Te, Tl) − AIMDEF simulations

In the (Te,Tl) − AIMDEF study performed in Ref. [31], the adiabatic forces were
calculated with DFT and the vdW-DF exchange-correlation functional proposed
by Dion et al. [172], using version 5.4 of Vienna Ab initio Simulation Package
(VASP) [341, 342] and the AIMDEF module developed in our group [57, 58, 59, 60,
61, 62, 66]. The 0.75 ML CO/Pd(111) system was described using a periodic supercell
composed by six CO adsorbates placed pairwise on the top, hexagonal close packed
(hcp), and face-centered cubic (fcc) adsorption sites on a (4 × 2) four-layer slab
containing eight Pd atoms per layer, as shown in Figure 5.1. Periodic boundary
conditions in all spatial directions were considered for the system. This means
that dimensions of the working supercell had to be defined with particular care in
the 𝑧 direction, as some vacuum size above the adsorbate-substrate complex had
to be left to avoid fictitious iterations of desorbing CO with the upper periodic
slab. Calculation of the Pd bulk lattice constant yielded a value 𝑎 = 4.0 Å, which
corresponds to an initial interlayer spacing of 2.31 Å along the [111] direction.
Although after relaxing the two topmost Pd layers, the bulk interlayer spacing was
slightly modified between the two topmost layers (2.33 Å) and between the second
and third topmost ones (2.30 Å), the average interlayer spacing in the 4-layer slab
remains to be of 2.31 Å. Therefore, an empty space equivalent to 8 layers was set on
the upper part of the supercell. All this considered, the supercell had dimensions
𝑠 (a1, a2, a3), with a dimensionless scale factor 𝑠 = 2.83 and the lattice vectors of the
supercell, in Å and in Cartesian coordinates, being: a1 = (4, 0, 0), a2 = (1, 1.7321, 0),
and a3 = (0, 0, 9.7980).
The electronic friction coefficient describing the coupling of adsorbates to the

laser-excited hot electrons were calculated with LDFA, using the Hirshfeld parti-
tioning scheme to calculate the surface electronic density at the position of each
atom conforming the adsorbates (see Section 3.2.2.4). Furthermore, the hot Pd(111)
surface created by the laser-excited electrons was described by coupling the two
topmost Pd layers to a Nosé-Hoover thermostat (Eqs. (3.14) and (3.15)), while Pd
atoms in the third topmost layer followed adiabatic dynamics (Eq. (3.16)) to recreate
a thermal gradient that decreases with the surface depth. Lastly, the bottom surface
layer was kept frozen.

The (Te,Tl) − AIMDEF simulations were performed following the experimental
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conditions of Ref. [30]. Specifically, the system, which is initially thermalized at 90 K,
is irradiated with a laser pulse of sech2 profile, wavelength 𝜆 = 780 nm and FWHM
of 100 fs. Because of the high computational cost, only the experimental absorbed
laser fluence 𝐹 = 13.0 mJ/cm2 was considered. Using a time step of 1 fs, sets of 100
trajectories lasting 3.5–4.0 ps were generated for each type of dynamics simulation,
namely: (i) (Te,Tl) −AIMDEF that accounts for both hot electrons and hot phonons
in the adsorbate dynamics, (ii) Te − AIMDEF that only incorporates hot electron
effects by keeping all Pd atoms frozen, and (iii) Tl − AIMDEF that only includes
hot phonon effects by neglecting the friction and random forces in the adsorbate
dynamics. In all cases the incident laser peak reaches the adsorbate-substrate
complex at 𝑡 = 410 fs. In the present chapter, only data from (Te,Tl) −AIMDEF are
used to generate the EANN PES.

5.2 Construction of a 0.75 ML CO/Pd(111) EANN
PES: computational details

5.2.1 Input data selection

When it comes to generating a EANN PES, it is beneficial to initiate the process by
examining specific characteristics of the system under investigation. This approach
helps to streamline the training process, ensuring that the selected input data is truly
representative of the entire system. In the case of the 0.75 ML CO/Pd(111) adsorbate-
substrate system, we consider the potential energy 𝐸DFT, 𝑗0 of each configuration 𝑗
explored during each of the 100 (Te,Tl) − AIMDEF trajectories. Unless otherwise
stated, each configuration 𝑗 will be hereafter characterized by the atomic positions
{r 𝑗
𝑖
} and forces {FDFT, 𝑗

𝑖
} on each atom 𝑖 and the corresponding system potential

energy 𝐸DFT, 𝑗0 . Additionally, we categorize the trajectories based on the number
of CO desorption events (0, 1, and 2). Other previous works considered, e.g., the
force distribution [83] and the distance of the gas molecule from the surface [77]
as characteristic quantities. In our case, categorizing the available trajectories in
terms of the desorption events will assure us to provide the EANN PES meaningful
information about how the system atoms interact with each other at variable
coverages. Subsequent analysis of the system potential energy {𝐸DFT, 𝑗0 } for each
subset, as well as for the entire combined data set, will serve as a reference to check
the representativeness of the data chosen for training.

Now, let us proceed by selecting the input data for EANN training. The complete
data set comprises 352 505 configurations. Forces for the bottom-layer Pd atoms,
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Figure 5.1: Schematic illustration of our 0.75 ML CO/Pd(111) 4×2 simulation cell, composed
by O (red) and C atoms (grey) forming CO adsorbates, and a 4-layer slab of Pd atoms (blue).
(A) Orthogonal top view, highlighting the CO top, hcp, and fcc adsorption sites, as well
as, the topmost (blue) and second topmost (blurred blue) surface layers. (B) Perspective
view. In (Te,Tl) −AIMDEF and (Te,Tl) −MDEF, each adsorbate dynamics is modeled with
a Langevin equation. Regarding the surface, Pd atoms in the two topmost Pd layers are
coupled to the Nosé-Hoover thermostat, Pd atoms in the third layer undergo adiabatic
evolution and Pd atoms in the bottom layer remain frozen throughout the simulation [31,
87].
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whichwere kept fixed in the simulations, are not considered. As trajectories yielding
different number of CO desorbing events conceivably provide information on the
interaction at variable coverages, we choose to construct an initial data set with
4500, 6000, and 4500 configurations that are randomly selected from the set of
trajectories with zero, one, and two desorption events, respectively. After plotting
the 𝐸DFT, 𝑗0 histograms associated with the input data set of 15 000 configurations
(Fig. 5.2, bottom) and comparing them to the full (Te,Tl)−AIMDEF data set (Fig. 5.2,
top), one can observe that the configuration selection method accurately reproduces
the behavior of the entire system, both within each desorption event category and
across the combined data set. Note that the range of the system potential energy in
the whole data set is as large as ≈12 eV.

Regarding the specifics of the training process, a subset of 13 500 configurations,
which constitutes 90% of the data set, is randomly chosen during each run of the
EANN code for each single PES, so that different EANN PESs can be generated
in the same run. The remaining 10% of each run is reserved for testing each PES,
hence, this partitioning serves the purpose of assessing convergence of the PESs
and preventing them from overfitting. Optimization of the element- and orbital-
dependent weights 𝑐 𝑗 involved in the embedded atomic densities 𝜌𝑖

𝐿,𝛼,𝑟𝑠
(Eq. (4.20))

forming the EANN input layer is carried out with an efficient hybrid extreme
machine learning and Levenberg-Marquardt (EML-LM) algorithm [330]. Training
process entails the minimization of the cost function 𝑆 (w), defined in Eq. (4.23),
which is constructed from both energies and atomic forces. Therefore, some values
for the energy and force weights, 𝜂𝐸 and 𝜂𝐹 , respectively, must be given prior to the
PES generation. It has to be remarked that 𝜂𝐹 has to incorporate some normalization
of the three spatial coordinates and of the number of force vectors (one per moving
atom in the calculation). This is reflected in the summation terms of the force
contribution to 𝑆 (w) in Eq. (4.23). Actually, the force weight is provided in the
EANN program through a parameter𝑊𝐹 , which is related to 𝜂𝐹 as follows [343]:

𝜂𝐹 =

√︄
𝑊𝐹

3 𝑁moving
, (5.1)

so that for 𝑁moving = 36, 𝜂𝐹 ≈ 0.096
√
𝑊𝐹 . Once both weights are set, minimization

of 𝑆 (w) leads to EANN convergence if the cost function between consecutive
iterations hits some cutoff value 𝛥𝑆𝑐 we can prefix. More precisely, EANN training
finishes when, at some iteration 𝑡 , 𝑆𝑡 (w) − 𝑆𝑡−1(w) < 𝛥𝑆𝑐 for both train and test
data sets. Moreover, we consider as overfitting criterion to have six consecutive
iterations with 𝑆𝑡 (w) (𝑡) > 𝑆𝑡−1(w) for the test set. In that case, the cost function
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value is taken as the value obtained in the last epoch previous to these six epochs
that serve to identify EANN overfitting. It is noteworthy, as discussed in Ref. [323],
that the EANN PESs usually converge within few iterations. This will also be a
common feature in all the EANN PESs constructed in this Thesis. Taking advantage
of the aforementioned random separation into training and validation subsets, we
train five distinct PES from which we will select the most accurate one.

5.2.2 EANN parameter optimization
Next, let us turn our attention to the selection of the EANN input parameters,
already detailed in Chapter 4. These parameters have to be chosen properly to
maximize accuracy while minimizing computational calculation times. They are
the following ones:

• NN architecture

• Total angular momentum 𝐿, for which 𝑙 = 0, 1, ..., 𝐿

• Number of GTOs, 𝑁𝜑

• Energy and force weights, 𝜂𝐸 and 𝜂𝐹 (in Eq. (4.23)), the latter one through𝑊𝐹

as defined in Eq. (5.1)

• Cost function cutoff for PES training convergence, 𝛥𝑆𝑐

• Cutoff radius 𝑟𝑐

The selection is performed in two stages. First, we aim to determine an appropriate
NN architecture tailored to our system, using a specific and well-motivated set of
values for the remaining parameters (i.e., 𝐿, 𝑁𝜑 ,𝑊𝐹 , 𝛥𝑆𝑐 , and 𝑟𝑐 ). Next, these latter
parameters will be adjusted for the chosen architecture, if necessary. All these tests
are performed with the input data set of 15 000 configurations that is described in
the previous section.
Our strategy being clear, we begin assigning values to all EANN parameters

except for the architecture. In EANN training it is convenient to set either 𝜂𝐸 or 𝜂𝐹
equal to 1 and tune the other weight depending on how much we want the energy
and force contributions to influence 𝑆 (w). For simplicity we choose 𝜂𝐸 = 1 and
𝜂𝐹 ≈ 0.096 (i.e.,𝑊𝐹 = 1) so that energy and forces contribute approximately equally
to the cost function minimization. As above mentioned, each input configuration 𝑗
only contains information on the 36 moving atoms (i.e., 12 atoms contained in the
six CO adsorbates and 24 Pd atoms forming the three topmost moving layers of
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Figure 5.2: Normalized histograms of potential energies 𝐸DFT0 obtained from (Te,Tl) −
AIMDEF (filled blue bars) [31]. Superimposed empty bars distinguish energy distributions
from trajectories with zero (yellow), one (green) or two CO desorption events. (Top) Full
(Te,Tl) − AIMDEF data set histograms (352 505 configurations). (Bottom) Distributions
for the 15 000 configurations accounted first for the EANN parameter optimization and
afterwards for the first EANN PES training.
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the surface). Therefore, 36 atomic force vectors per configuration enter the cost
function evaluation in each EANN training iteration. Based on our experience, the
remaining EANN parameters are chosen as follows: 𝐿 = 3 corresponding to the
allowed orbital angular momentum values 𝑙 = 0, 1, 2, 3 (or, in spectroscopic notation,
the possible atom orbitals 𝑠, 𝑝, 𝑑, 𝑓 , respectively); 𝑁𝜑 = 15 GTOs; 𝛥𝑆𝑐 = 10−2; and
𝑟𝑐 = 6.5 Å. As 𝑁𝜑 = 15, this also means that there are 15 different values of the GTO
center 𝑟𝑠 (Eq. (4.19)) starting from 𝑟𝑠 = 0. As highlighted in Ref. [323], achieving a
high spatial resolution relies on ensuring robust overlap among neighboring GTOs.
To this end, we establish an evenly spaced grid of 𝑟𝑠 values within the interval
[0, 𝑟𝑐] for simplicity. With 15 GTOs and the 𝑟𝑐 we have chosen, this grid results in
14 equidistant intervals, each with 𝛥𝑟𝑠 ≃ 0.4643 Å. The recommended relationship
between 𝛥𝑟𝑠 and the GTOs width 𝛼 is 𝛥𝑟𝑠 =

√︁
𝛽/𝛼 , where 𝛽 = 0.2 is an empirical

constant [323]. The latter leads to 𝛼 ≃ 0.93 Å−2 in our training context. Figure 5.3
depicts the exponential part of the GTOs corresponding to these settings, multiplied
by the cutoff function 𝑓𝑐 as defined in Eq. (4.9). Besides, we choose to have the same
amount of GTOs for each value of 𝑙 , this meaning that each PES of the tests has 60
embedded atomic densities 𝜌𝑖

𝐿,𝛼,𝑟𝑠
(Eq. (4.20)) in the EANN input layer.

Table 5.1 presents the results obtained from these initial assessments. For each
NN architecture, we consider the following key quantities:

• The average computation time per iteration 𝑡 comp

• The mean number of iterations required during the EANN PES training, 𝑁 iter,
and its standard deviation 𝜎𝑁iter

• The average of the minimum cost function values for both the training and
test data sets, denoted as 𝑆 train(w) and 𝑆 test(w), respectively

As we want to obtain accurate PESs, our main criterion is the minimization of
the cost functions. Additionally, we note that the mean number of iterations
encompasses the initial six iterations that may involve overfitting when it arises,
after which the corresponding PES training is finished in the EANN code. However,
for those cases the provided cost function values correspond to the final iteration
just before overfitting starts.

The results in Table 5.1 show that an improvement in accuracy (i.e., a reduction
in 𝑆 (w)) may come at the cost of longer computational times for each iteration.
Therefore, some compromise between computational cost and accuracy has to be
reached. Regarding the accuracy, it is reasonable to exclude architectures simpler
than 60-60, either containing two or three hidden layers. Compared to 60-60, the
more complex architectures 70-70, 60-80, 80-80, 60-60-60, and 70-70-70 yield only
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Figure 5.3: Representation of the exponential part of the GTOs, exp
[
−𝛼

(
𝑟𝑖 𝑗 − 𝑟𝑠

)2]
(Eq. (4.19)), multiplied by the cutoff function 𝑓𝑐

(
𝑟𝑖 𝑗

)
(Eq. (4.9)), for 15 GTOs with equal sepa-

ration intervals between consecutive orbitals of 𝛥 𝑟𝑠 = 0.4643 Å, equal widths 𝛼 ≃ 0.93 Å−2

and 𝑟𝑐 = 6.5 Å. First GTO is centered at 𝑟𝑠 = 0 Å and last one is centered at 𝑟𝑠 = 𝑟𝑐 = 6.5 Å.
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marginal reductions in the cost function minima. In this subset, the smallest mean
iteration time is for 70-70 with 31.31 minutes, even though it is quite similar to that
for 60-60 (32.40 min); for 60-80, 80-80, 60-60-60, and 70-70-70, the mean iteration
time is clearly longer than for 60-60 and 70-70. Regarding the number of iterations,
60-60 has the lowest average value among the more complex architectures. Alto-
gether, this analysis indicates that the 60-60 architecture provides the best overall
performance in terms of accuracy and computational time, thus being chosen for
PES training hereinafter.

CO/Pd(111) EANN PES, architecture tests

NN
architecture

𝒕comp
(min/iter.)

𝑵 iter ± 𝝈𝑵iter

(iteration) 𝑺
train

(w) 𝑺
test

(w)

10-10 4.12 90.2 ± 114.8 115.76 5122.80
20-20 5.44 24.8 ± 27.1 91.22 6844.00
30-30 6.67 122.0 ± 214.5 68.85 221.98
40-40 14.37 11.6 ± 4.7 67.64 164.32

40-40-40 31.44 14.7 ± 8.5 69.48 197.67
50-50 20.61 14 ± 10.1 62.13 147.19

50-50-50 40.59 7 ± 0 60.65 200.88
60-60 32.40 38.4 ± 7.5 5.1380 6.0188
60-80 43.12 39.0 ± 0.7 4.8860 5.8566

60-60-60 77.02 37.0 ± 6.6 4.7520 5.8410
70-70 31.31 42.2 ± 6.1 4.8160 5.7426

70-70-70 118.72 42.3 ± 5.9 4.5740 5.6460
80-80 66.81 40.2 ± 1.3 4.6568 5.6772

Table 5.1: Results of the tests for EANN PES training regarding the selection of an opti-
mal NN architecture. For each set of architectures, five PES have been generated. Four
parameters have been evaluated: the computational time elapsed per iteration 𝑡 comp, the
average amount of training steps𝑁 iter with its standard deviation 𝜎𝑁iter , and the average cost
function values for both train and test/validation sets, 𝑆 train(w) and 𝑆 test(w), respectively.
For all tests, the following set of EANN parameters is chosen: 𝜂𝐸 = 1, 𝜂𝐹 ≈ 0.096 (𝑊𝐹 = 1),
𝐿 = 3 (𝑙 = 0, 1, 2, 3), 𝑁𝜑 = 15 GTOs, 𝛥𝑆𝑐 = 10−2 and 𝑟𝑐 = 6.5 Å (see text for the values of
other EANN quantities related to this choice).

Next, we fix the 60-60 architecture and search for optimum values of the re-
maining EANN parameters aligned with the features of our system. As before, five
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PESs are generated for each trial set of parameters (𝐿, 𝑁𝜑 ,𝑊𝐹 , 𝛥𝑆𝑐 , and 𝑟𝑐 ). Results
are collected in Table 5.2 together with those obtained previously for the 60-60
architecture with 𝐿 = 3, 𝑁𝜑 = 15,𝑊𝐹 = 1, 𝛥𝑆𝑐 = 10−2 and 𝑟𝑐 = 6.5 Å, which will
be considered as the benchmark against which the performance of the new trial
sets will be evaluated. In general, modifications to 𝐿, 𝑁𝜑 ,𝑊𝐹 , and 𝛥𝑆𝑐 result in
less accurate PESs than the reference data, in particular, when increasing 𝐿, 𝑁𝜑 or
𝑊𝐹 with respect to benchmark values. However, we observe some notable excep-
tions. Perhaps the more remarkable one comes from setting𝑊𝐹 = 0.1 (𝜂𝐹 = 0.030),
for which 𝑆 (w) for both train and test sets decreases significantly compared to
the reference. However, this setting results in approximately a third of the force
weight used in reference data, while the same weight in energy is preserved in
both cases. The risk that the energy term could influence more strongly 𝑆 (w) than
the force ones can compromise the accuracy in the dynamical description of the
(Te,Tl) −AIMDEF forces. Such an imbalance could potentially degrade the dynam-
ical characterization more so than a marginally less precise energy fit. In essence,
a higher precision in energy estimation might be achieved at the cost of force
accuracy when compared to our reference parameters. This remark is supported by
comparison of the average energy and force RMSE values for each parameter choice.
We get RMSEtrain𝐸 = 0.149 and 0.438 meV/moving-atom for𝑊𝐹 = 0.1 and reference
parameters in training set, respectively, while for test data set RMSEtest𝐸 = 0.890
and 0.897 meV/moving-atom, in the same order. However, RMSE results for all
force components altogether indicate the opposite trend. We obtain average RMSEs
for the training set equal to RMSEtrain𝐹 = 58.536 and 51.018 meV/Å for𝑊𝐹 = 0.1
and reference parameters, respectively, while for test set the respective results are
RMSEtest𝐹 = 60.544 and 53.629 meV/Å. Hence, error minimization of EANN training
where energy and force data enter with the same proportional weights seems to be
the most advantageous choice, particularly looking forward to performing accurate
dynamics with the PES.
Regarding the choice of 𝑁𝜑 , the cost function values are slightly smaller when

taking 𝑁𝜑 = 13 instead of 15. However, this is accompanied by minor changes in
the number of iterations and a slight increase in the time per iteration. Therefore,
setting 𝑁𝜑 = 15 seems to offer a more balanced trade-off between computational
efficiency and accuracy. A similar argument serves to reject the use of the cutoff
value, 𝛥𝑆𝑐 = 10−4.

Another parameter that shows margin for model improvement is the cutoff
radius 𝑟𝑐 , which defines the size of atomic environments. In fact, for 𝑟𝑐 = 7.5 Å
we see slightly improved cost function averages than for 𝑟𝑐 = 6.5 Å, and also
shorter iteration times, likely due to a larger variety of atomic environments been

121



Chapter 5 0.75 ML CO/Pd(111) potential energy surface

captured while maintaining the spatial overlap of the set of 15 GTOs. However,
the mean number of iterations for 𝑟𝑐 = 6.5 Å is somewhat lower, which may seem
counterintuitive when considering other cutoff radii. This observation could be
related to the limited sample size of five PES trained per parameter set, so a larger
sample might offer a clearer trend relative to 𝑟𝑐 . Nevertheless, this specific remark
falls apart from the focus of this preliminary study. Even though a more optimal
choice of 𝑟𝑐 in terms of accuracy can be found, these do not result in substantial
differences in the cost functions. All in all, we conclude that the initial set of EANN
parameters shown in the first line of Table 5.2, performs consistently well across
the four quantities of interest. Therefore, we proceed with these parameters and
continue the EANN PES training until reaching an optimal accuracy, as detailed in
the next section.

5.2.3 PES quality assessment: static approach
Once the previous tests have been completed, let us summarize our choice of EANN
parameters to proceed with the 0.75 ML CO/Pd(111) PES training. A set of five
PESs is trained using a 60-60 architecture, 𝜂𝐸 = 1 and 𝜂𝐹 ≈ 0.096 (i.e.,𝑊𝐹 = 1),
𝐿 = 3 (𝑙 = 0, 1, 2, 3), 𝑁𝜑 = 15 (being the same amount for each 𝑙), 𝛥𝑆𝑐 = 10−2, and
𝑟𝑐 = 6.5 Å. The GTO centers 𝑟𝑠 are uniformly distributed within the range [0, 𝑟𝑐]
by intervals 𝛥𝑟𝑠 = 0.46 Å being the first GTO center at 𝑟𝑠 = 0 and the width of the
15 GTOs, 𝛼 = 0.93 Å−2. Our choice implies an EANN input layer of 60 embedded
atomic densities 𝜌𝑖

𝐿,𝛼,𝑟𝑠
.

Convergence of the five PESs generated with these parameters using as input
data the 15 000 configurations described in Section 5.2.1 was already done in the
previous section. It took between 27 and 48 iterations, thus further proving the
efficiency of the EANN training as mentioned earlier [323]. No overfitting was
observed in any of these training cycles. Cost function values lie between 4.976 and
5.473 for the training configurations and between 5.850 and 6.276 for the validation
ones (test set). The corresponding mean values were already given in Table 5.2.
The energy RMSEs vary from 0.393 to 0.528 meV/moving-atom for the training set
and between 0.821 and 0.964 meV/moving-atom for the test one.
Due to the already indicated extreme conditions involved in the photoinduced

desorption of our system –high surface temperatures, highly excited adsorbates,
and varying surface coverage–, it is key to evaluate how accurately our PESs can
predict not only energies, but, critically, atomic forces. To this end, we build a
new data set containing 87 382 configurations not present in the EANN training
process. Configurations for this predict data set are also chosen from the subsets
of trajectories with none, one, and two CO desorption events as done for the
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CO/Pd(111) 60-60 PES, 𝜼𝑬 = 1, EANN parameter tests

L N𝝋 W𝑭 ∆S𝒄
r𝒄
(Å)

𝒕comp
(min/it.)

𝑵 iter ± 𝝈𝑵iter

(iteration) 𝑺
train

(w) 𝑺
test

(w)

3 15 1 10−2 6.5 32.40 38.4 ± 7.5 5.1380 6.1740
2 15 1 10−2 6.5 29.39 52.5 ± 8.3 5.9880 6.9565
4 15 1 10−2 6.5 103.09 23.2 ± 8.3 42.19 201.70
3 13 1 10−2 6.5 38.99 41.5 ± 0.7 5.0750 5.9455
3 17 1 10−2 6.5 45.97 15.7 ± 14.2 57.69 114.00
3 15 0.1 10−2 6.5 30.55 44.3 ± 2.1 1.8620 3.6040
3 15 10 10−2 6.5 18.79 59.8 ± 4.4 14.39 15.58
3 15 100 10−2 6.5 27.15 55.7 ± 24.3 44.97 47.86
3 15 1 10−1 6.5 37.27 21.7 ± 1.2 5.2590 6.0377
3 15 1 10−4 6.5 49.02 117.5 ± 0.7 4.7375 5.6870
3 15 1 10−2 4.0 44.18 49.2 ± 2.6 6.9866 8.2256
3 15 1 10−2 5.5 33.75 47.2 ± 8.9 5.2718 6.1268
3 15 1 10−2 7.5 21.76 45.4 ± 4.6 4.9594 5.8336

Table 5.2: Results of the tests for different values of the EANN parameters fixing 60-60
architecture and 𝜂𝐸 = 1. For each test, five PES have been generated. Evaluated quantities
are the maximum angular momentum 𝐿 –for which admissible angular momenta values
are 𝑙 = 0, 1, ..., 𝐿–, the number of GTOs 𝑁𝜑 , the factor𝑊𝐹 (see Eq. (5.1)) related to the
force weight prefactor 𝜂𝐹 in the cost function 𝑆 (w) (Eq. (4.23)) and the cutoff radius of the
embedded atom environments 𝑟𝑐 . Reference values we try changes on are 𝐿 = 3, 𝑁𝜑 = 15,
𝑊𝐹 = 1,𝛥𝑆𝑐 = 10−2 and 𝑟𝑐 = 6.5Å. Four parameters have been evaluated: the computational
time elapsed per iteration 𝑡 comp, the average amount of training steps 𝑁 iter with its standard
deviation 𝜎𝑁iter , and the average cost function values for both train and test/validation sets,
𝑆
train(w) and 𝑆 test(w), respectively. Number of moving atoms for 0.75 ML CO/Pd(111) is
𝑁moving = 36.
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initial input data set of 15 000 configurations (see Section 5.2.1). The results of our
evaluation demonstrate the accuracy of the obtained PESs, showcasing remarkably
low RMSE values in energy, ranging from 0.865 to 0.948 meV per moving atom.
Furthermore, all RMSEs in the Cartesian components of the forces take values
between 0.05 and 0.06 eV/Å. However, it is noteworthy that in some cases, the
maximum errors in the forces are relatively large, varying between 1.039 and 5.839
eV/Å, depending on the specific coordinate and the trained EANN PES considered.
This justifies our attempt to improve the quality of our PESs by increasing the
initial training set of 15 000 data points.

The procedure for selecting new configurations to be added to the training data
set is as follows. For each trained PES we calculate the absolute error in each force
component of each of the 36 moving atoms, |𝛥𝐹𝛾 |𝑖 = |𝐹EANN𝛾 − 𝐹DFT𝛾 |𝑖 and identify
the 10 largest values for each component 𝛾 = 𝑥,𝑦, 𝑧 and moving atom 𝑖 . Among the
five trained PES, we choose the one displaying small maximum errors for the three
force components. Such selection is performed by comparing the force coordinate
error histograms among the trained PESs and by examining the larger maximum
errors each of them shows for each component. The |𝛥𝐹𝛾 | distributions for the
selected PES are shown in Fig. 5.4 (black histograms). The corresponding energy
and force error values are given in Table 5.3 (first PES column). It is useful to
determine the mean absolute error for such distributions, hereafter referred to as
maximum error set mean absolute error (MESMAE),

��𝛥𝐹𝛾 �� = 1
𝑁me,𝛾

1
𝑁moving

𝑁me,𝛾∑︁
𝑖=1

𝑁moving∑︁
𝑗=1

��𝛥𝐹 𝑗,𝛾 ��𝑖 = 1
𝑁me,𝛾

1
𝑁moving

𝑁me,𝛾∑︁
𝑖=1

𝑁moving∑︁
𝑗=1

���𝐹EANN𝑗,𝛾 − 𝐹DFT𝑗,𝛾

���
𝑖
,

(5.2)
where 𝛾 = 𝑥,𝑦, 𝑧; 𝑁moving is the number of moving atoms in the system and 𝑁me,𝛾
is the amount of maximum errors taken for each atom and force component, which
we have chosen to be equal to 10 for all components. In total, the nominal 1080
force errors are provided by 883 configurations in this case (as errors in different
force coordinates and different atoms can stem from the same configuration), which
are next incorporated into our training data set. Subsequently, five new EANN PESs
are trained from scratch under the same optimal conditions of architecture and
parameter choice used in the initial training. Now 14 383 configurations randomly
chosen for each PES shape the training set, while the remaining 1500 ones remain
for validation. As a result, we obtain five new PESs, which take between 40 and 47
iterations for convergence. Average cost function values are slightly smaller than
for first trained PESs, i.e., 𝑆 train(w) = 5.1588 and 𝑆 test(w) = 5.9092, thus hinting at
certain accuracy improvement of the new set of PESs. This becomes more apparent
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looking at the energy RMSEs, ranging between 0.410 and 0.461 meV/moving-atom
(train) and between 0.811 and 0.869 meV/moving-atom (test). Subsequently, we
repeat the prediction process as described before.
Recall that the 883 configurations that were added in this second training are

not excluded from the original predict set of 87 382 configurations. Some of these
may not be among the training configurational set for a given PES, thus potentially
contributing to the maximum force and/or energy errors set and increasing RMSEs.
Nevertheless, such contribution would be negligible, as the 883 configurations
constitute only the 1.01% of the predict set, and the configurational space for
training is representative of full (Te,Tl) − AIMDEF and detailed enough to yield
already small errors in energies and forces prediction. Aforementioned comparative
determination of the more accurate PES among a bunch of candidates does the rest
to avoid such risk.
Our new candidate PESs demonstrate impressive quality in both energies and

forces as indicated in Table 5.3, first column under final PES category. We need to
ensure as much accuracy as possible in atomic forces, as this is crucial for faithful
system dynamics representation and proper physical behavior characterization.
Therefore, following the comparative procedure already mentioned, we choose as
our final PES that with the smallest maximum errors in atomic forces. It converged
in 40 iterations and has an energy RMSEs per moving atom of 0.412 meV for
training and 0.869 meV for validation set. PES-predicted energies for the predict
data set align closely with (Te,Tl) −AIMDEF data, as depicted in Fig. 5.5, left panel.
Although the maximum error in energies is of 8.274 meV/moving-atom, the small
energy RMSE of 0.852 meV reflects the minor discrepancies between EANN and
AIMDEF for most of the data points, as becomes evident in the distribution of the
energy error shown in the right panel of Fig. 5.5.
When we assess the accuracy of atomic force predictions, RMSE values persist

within the range of 0.05 to 0.06 eV/Å as for the first five PESs, so no significant
improvement is obtained in this regard. However, a closer look at maximum
force errors and MESMAEs documented in Table 5.3 reveals an enhancement in
predictive accuracy for all coordinates, specially regarding the maximum error
in |𝛥𝐹𝑧 |. Compared to our PES selected from the first PES group, the maximum
error reduction is twofold in |𝛥𝐹𝑥 | and |𝛥𝐹𝑦 |, and fourfold in |𝛥𝐹𝑧 |. When it
comes to MESMAE values, improvements are more modest due to the already high
accuracy reached in our previous and final PES selection, although a slightly bigger
enhancement is noticeable in |𝛥𝐹𝑧 |. A broader inspection reveals clear distinctions
when comparing the maximum force error distributions of our final PES (red bars
in Fig. 5.4) against our initial training choice (black bars). Overall, our final PES is
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Figure 5.4: Cartesian coordinate-wise histograms depicting, for each of the 36 mov-
ing atoms of the 0.75 ML CO/Pd(111) system, the 10 maximum force errors |𝛥𝐹𝛾 | =���𝐹DFT𝛾 − 𝐹EANN𝛾

���, with 𝛾 = 𝑥,𝑦, 𝑧. Black (red) histogram bars correspond to errors for the
predict set in the EANN PES having the smaller maximum force errors of the first (final)
training. Green histogram bars correspond to the whole (Te,Tl) − AIMDEF data set of
352 505 configurations and were obtained with the final EANN PES. For each error distribu-
tion, MESMAEs,

��𝛥𝐹𝛾 ��, are given as well.
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0.75 ML CO/Pd(111), (Te,Tl)-AIMDEF,
PES energy and force errors

First PES Final PES
Predict configurations 87 382 87 382 352 505
𝐸/𝑁moving
(meV)

Max. error 12.614 8.274 8.318
RMSE 0.943 0.852 0.842

𝐹𝑥
(eV/Å)

Max. error 1.134 0.665 0.676
MESMAE 0.390 0.374 0.348
RMSE 0.0527 0.0512 0.0511

𝐹𝑦
(eV/Å)

Max. error 1.039 0.578 0.581
MESMAE 0.374 0.314 0.345
RMSE 0.0509 0.0496 0.0495

𝐹𝑧
(eV/Å)

Max. error 2.563 0.624 0.628
MESMAE 0.510 0.345 0.378
RMSE 0.0580 0.0558 0.0555

Table 5.3: Maximum absolute-valued errors and RMSEs per moving atom in energies
and forces, and maximum errors set mean absolute errors (MESMAEs) of all moving
atoms in forces predicted by the first and final PESs (see text) for 0.75 ML CO/Pd(111)
(Te,Tl) − AIMDEF configurations selected from Ref. [31]. First and second data columns
corresponds to the energy and force errors linked to PES predictions on a set of 87 382
configurations following the (Te,Tl) − AIMDEF representativeness criteria as described
in Section 5.2.1. Last column shows the energy and force errors after predicting energies
and atomic forces on all 352 505 (Te,Tl) − AIMDEF available data points. In all cases
𝑁moving = 36.
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Figure 5.5: Left: Comparison of the potential energies per moving atom computed as
determined by the (final) EANN PES against their corresponding DFT values, for a set of
87 382 configurations absent from the training data. Right: Error distribution for the energy
per moving atom, 𝛥𝐸/𝑁moving = (𝐸DFT − 𝐸EANN)/𝑁moving, for the same ensemble of predict
configurations.
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accurate in forces as well, as we can see in the force convergence examples pictured
in Figs. 5.6 and 5.7 for one fcc C and one hcp O atom, respectively.
Taking a step further, we examine the accuracy of our PES in predicting the

energies and forces of all 352 505 configurations comprising the (Te,Tl) −AIMDEF
set (Table 5.3, last column under final PES category). As shown in this table, the
maximum errors in energy and forces increase very subtly compared to the previ-
ous predict set of 87 382 configurations, thus highlighting the degree of accuracy
achieved for our final PES. The slight increments and decrements in MESMAE
values, which depend on the coordinate explored, reinforce this remark. Finally,
all RMSEs experience marginal diminutions, caused by the larger data set we are
predicting on, the representativeness of (Te,Tl) −AIMDEF present in training con-
figurational choice and the accuracy of our EANN PES. Maximum error histogram
depicted in Fig. 5.4 in empty green bars is quite similar to the predict set of 87 382
configurations (red bars), further demonstrating our confidence in the accuracy
shown by this final PES.

5.3 Determination of friction: numerical fit

Once we have our 0.75 ML CO/Pd(111) EANN PES, whose accuracy in predicting
energies and forces has been assessed for (Te,Tl) − AIMDEF data, it is time to
perform (Te,Tl)−MDEFwith it. Thus, adiabatic forces of Eq. (3.23) can be evaluated
straightforwardly, hence avoiding the more lengthy step of Hellmann-Feynman
theorem usage (Eq. (3.17)). But (Te,Tl) −MDEF still misses a crucial ingredient:
we have not established the methodology for modeling the surface electron density
that is necessary to calculate within LDFA the electronic friction coefficients for
each adsorbate (and specifically, for each atom forming an adsorbate –IAA–). Let
us first discuss how friction coefficients can be determined in an efficient way; then
we will be ready for proper (Te,Tl) −MDEF calculations.

For an efficient application of the EANN PES in (Te,Tl) − MDEF, it is crucial
to calculate the friction coefficients with a speed that matches or surpasses the
computation of the potential energy. We propose a numerical fit of the surface
electron density values {𝑛(rC), 𝑛(rO)}, which were calculated and saved for each
position of each C and O atom in the (Te,Tl) − AIMDEF simulations, for checkup
purposes. Interpolation of the surface electron density or the friction coefficients is
feasible with NNs as referenced in the literature [344], and has been applied to more
complex objects such as the electronic friction tensor [333, 345, 346]. Nevertheless,
our method (useful within the LDFA context) favors a simpler, yet precise, approach,

129



Chapter 5 0.75 ML CO/Pd(111) potential energy surface

Figure 5.6: Cartesian component-wise comparison of the forces acting on a fcc carbon
atom within the 0.75 ML CO/Pd(111) system [31], 𝐹EANN

𝛽
versus 𝐹DFT

𝛽
, 𝛽 = 𝑥 (red), 𝑦 (blue)

and 𝑧 (green). Left column EANN forces come from the initially trained PES, while the
right panels correspond to the final PES. Maximum error and RMSE for each plot are also
presented.130
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Figure 5.7: Same as Fig. 5.6 for an hcp O atom.
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which we demonstrate to be both faster and more stable compared to the NN-based
ones.
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Figure 5.8:Comparison of the LDFA friction coefficients calculatedwith the fitted electronic
density function 𝑛(r) (Eqs. (5.3) and (5.4)) against the data set of friction coefficients from
(Te,Tl) −AIMDEF [31]. Coefficients are given in atomic units (a.u.). (Taken from Ref. [87])

In this point, let us explore in more detail some ideas already mentioned in
Section 3.2.2.5 [87]. The surface electron density at a certain position r from the
surface is written as a sum of the electronic densities contributed by individual Pd
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atoms at this position:
𝑛(r) =

∑︁
Pd
𝑛( |r − rPd |) . (5.3)

Next, we postulate that 𝑛( |r − rPd |) can be effectively modeled by a superposition
of two exponentially decaying functions,

𝑛( |r − rPd |) = 𝑎 exp(−𝑏 |r − rPd |) + 𝑐 exp(−𝑑 |r − rPd |) , (5.4)

that depends on four parameters numerically fitted to the whole set of densities
{𝑛(rC), 𝑛(rO)} that were stored during the (Te,Tl) − AIMDEF simulations. Their
values are 𝑎 = 3.15975 a.u. (atomic units), 𝑏 = 4.25214 Å−1, 𝑐 = 0.29080 a.u.,
and 𝑑 = 2.52252 Å−1. Alternative functions, such as Gaussian ones and their
combinations with exponential functions, were also examined; however, the dual
exponential model yielded optimal results with minimal complexity and parameter
count. Equations (5.3) and (5.4) constitute the density generator function (DGF) of
our system.

Upon establishing how to calculate the surface electron density 𝑛(r), the friction
coefficients on C and O atoms 𝜂 (r) are calculated via the LDFA [51, 52], as also
done in (Te,Tl) − AIMDEF. Specifically, the LDFA friction coefficients at a certain
position r in terms of the surface electron density at that position are given by the
following (fitted) expression:

𝜂 (r) =
2∑︁
𝑖=1

𝐴𝑖 𝑟𝑠 (r)𝐵𝑖 exp (𝐶𝑖𝑟𝑠 (r)) , (5.5)

where 𝑟𝑠 (r) = [3/(4𝜋𝑛(r)]1/3 is the mean electron radius and the parameters
(𝐴𝑖, 𝐵𝑖,𝐶𝑖 ) are atom specific. In particular, (𝐴1=22.654, 𝐵1=2.004,𝐶1=-3.134,𝐴2=2.497,
𝐵2=-2.061,𝐶2=0.0793) for C and (𝐴1=1.36513, 𝐵1=-1.8284,𝐶1=-0.0820301, 𝐴2=50.342,
𝐵2=0.490785, 𝐶2=-2.70429) for O.

In Fig. 5.8, the friction coefficients obtained with the surface electron density
calculated with Eq. (5.3) are compared to their (Te,Tl) −AIMDEF counterparts. The
results demonstrate a maximum error of 0.0086 a.u. and a RMSE𝜂 (r) = 0.0017 a.u.
Such discrepancies are notably minimal, particularly when compared to the larger
errors typically encountered in alternative embedding density calculations [60].
Therefore, the proposed method to calculate 𝑛(r) (and hence 𝜂 (r)) can be safely
incorporated to the (Te,Tl) −MDEF framework to accurately and quickly evaluate
the friction and stochastic forces in Eq. (3.12).
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5.4 (Te, Tl) − MDEF on 0.75 ML CO/Pd(111):
dynamical quality tests

Up to this point, we have demonstrated that both our optimally trained EANN PES
and our density generator function accurately reproduce the 0.75 ML CO/Pd(111)
(Te,Tl) − AIMDEF data. Despite this being a reasonable quality check, it is not
sufficient to prove that using both functions in (Te,Tl) −MDEF simulations will
reproduce the (Te,Tl) − AIMDEF results. This is due to two possible undesirable
situations [313]. Firstly, (Te,Tl) −MDEF trajectories may sample regions of the con-
figurational space that, in spite of being close to the EANN PES training set and the
DGF data set, can be inaccurately described by the optimized parameters. Secondly,
these trajectories might enter regions of the configurational space different from
the (Te,Tl) −AIMDEF data set, where extrapolation of the EANN PES and the DGF
function could produce odd or even unphysical dynamics results. Moreover, due to
the large amount of DOFs in our system, up to 108, the likelihood of encountering
these issues increases.
In order to rule out these sources of error and further address the precision of

our EANN PES and DGF, we perform (Te,Tl) −MDEF simulations of the ultrafast
photoinduced CO desorption in the 0.75 ML CO/Pd(111) system for exactly the same
experimental conditions simulated with (Te,Tl) − AIMDEF [31] (see Section 5.1).
This includes using the same simulation cell, same desorption criteria (CO CM
height greater than 6 Å and positive CO CM momentum along the 𝑧-axis), and
the same time-dependent electronic and lattice temperatures that were used in
Ref. [31] to describe the laser-induced excitations. In particular, we perform two
sets of dynamics calculations independent of each other:

• (Te, Tl) − MDEF-1: The first set contains the same 100 initial configurations
of Ref. [31]. This allows (Te,Tl) − AIMDEF and (Te,Tl) −MDEF trajectories
to be compared step by step, thus allowing for the detection of possible major
discrepancies in the potential energy and electronic friction values that could
lead to strong deviations of (Te,Tl) − MDEF from the (Te,Tl) − AIMDEF
results.

• (Te, Tl)−MDEF-2: This second set consists on 2000 configurations randomly
chosen from a set of 10 000 structures obtained after leaving the initial 100
(Te,Tl) −AIMDEF configurations evolve over 1 ps at a constant temperature
𝑇0 = 90 K. This broader set serves to evaluate how well (Te,Tl) − MDEF
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trajectories behave when they commence from data points not contained in
the training data sets.

We observe that the (Te,Tl) −MDEF-1 trajectories closely follow their (Te,Tl) −
AIMDEF counterparts, especially during the early stage of dynamics. As an example,
we compare in Fig. 5.9 the time evolution of the friction coefficient experienced by
each C atom between a typical (Te,Tl) −MDEF-1 trajectory and its corresponding
(Te,Tl) − AIMDEF trajectory. For all adsorption sites, the correlation of friction
coefficients during the first 400–500 fs is striking, and for some C atoms it is almost
perfect. After 500 fs, the friction coefficients start to diverge as trajectories start
to follow different pathways due to cumulative differences in the dynamics. This
behavior is shared among all (Te,Tl) −MDEF-1 simulations and reflects that the
quality of our fitted EANN PES and DGF is good enough to keep (Te,Tl) −MDEF
trajectories close to their (Te,Tl) − AIMDEF analogues in a very detailed way for
several hundred femtoseconds. This is a remarkable quality achievement as the
agreement was attained despite the possible dynamical instability, the stochastic
nature of the Langevin equations of motion, and the different integration time step
used in the simulations (𝛥𝑡 = 0.2 fs in MDEF, 𝛥𝑡 = 1 fs in AIMDEF) for an amount
of time in which the electronic temperature of the 2TM changes from 90 K (𝑡 = 0
fs) to 5500 K (𝑡 = 500 fs).

Next let us analyze the CO desorption probability, which is calculated as follows:

𝑃CO,des(𝑡) =
𝑁CO,des(𝑡)
𝑁CO,tot =

𝑁CO,des(𝑡)
𝑛
CO,cell
0 𝑁traj

, (5.6)

being 𝑁CO,des(𝑡) the cumulative sum of CO molecules desorbed from the surface
within the simulated trajectories at a given time and 𝑁CO,tot the total initial amount
of CO molecules in the full ensemble of simulations. The latter is calculated as
the product of the initial number of CO molecules in a single simulation supercell,
𝑛
CO,cell
0 (for our 0.75 ML (4× 2) cell, 𝑛CO,cell0 = 6) and the total number of trajectories
𝑁traj. Moreover, a site-dependent version of 𝑃CO,des(𝑡) can be defined,

𝑃CO,site,des(𝑡) =
𝑁CO,site,des(𝑡)
𝑛
CO,site
0 𝑁traj

, (5.7)

where 𝑁CO,des(𝑡) and 𝑛CO,cell0 of Eq. (5.6) are replaced by the cumulative amount of
CO adsorbates desorbed from a specific initial adsorption site, 𝑁CO,site,des(𝑡), and
the number of CO molecules initially adsorbed on that site in a single cell, 𝑛CO,site0 ,
respectively. For our system, 𝑛CO,site0 = 2, while site ≡ top,hcp,fcc. Furthermore,
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Figure 5.9: Time evolution of the friction coefficients 𝜂𝑒 for C atoms along a representative
trajectory. Orange lines depict the (Te,Tl) − AIMDEF results for a specific trajectory of
Ref. [31]. Blue lines represent the results obtained from (Te,Tl) −MDEF-1 –i.e., performing
molecular dynamics with our final EANN PES and the density generation function–, for a
trajectory initiated under identical (Te,Tl) − AIMDEF conditions. Each graph shows the
results for a different C atom in the simulation model, whose initial positions are labeled in
the figures and correspond to the top (upper row), fcc (middle), and hcp sites (lower).
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these definitions imply that the desorption events follow a binomial distribution
(desorbed or not desorbed) with 6 𝑁traj independent events and 𝑃CO,des(𝑡) as the
success probability. In order to obtain a detailed statistical picture, we want to
determine the standard deviation associated with each desorption probability with
some confidence level. Due to their advantages in maximizing accuracy of the
uncertainty interval, particularly when dealing with small sample sizes and proba-
bilities very close to 0 or 1, from here on Wilson score intervals with a confidence
level 𝑧 = 99% [347] will be used. Let us note that, for this study on CO photodesorp-
tion at early times, we have considered as desorbed those molecules whose CM 𝑧

position, 𝑧cm,CO, verifies that 𝑧cm,CO ≥ 𝑧surf + 6 Å at any given time, being 𝑧surf the
CM of the first layer Pd atoms, and with its velocity on 𝑧 coordinate 𝑣z,cm,CO > 0.

Figure 5.10: Total CO desorption probabilities in the interval [1.0, 3.5] ps for the three
ensembles of dynamics calculations considered in this work: (Te,Tl) − AIMDEF (orange),
(Te,Tl) − MDEF-1 (blue) and (Te,Tl) − MDEF-2 (red). Here, (Te,Tl) − AIMDEF results
are extracted from the simulations performed in Ref. [31]. Both (Te,Tl) − MDEF-1 and
(Te,Tl) −MDEF-2 stand for results obtained from simulations performed with our best
trained EANN PES using, respectively, the same 100 initial conditions than in (Te,Tl) −
AIMDEF, and 2000 random initial conditions. Standard deviations are depicted for multiples
of 500 fs to give an idea of the uncertainty intervals while maintaining the clarity of the
exact curves.

Figure 5.10 shows the total CO desorption probability over time, while Figure 5.11
depicts this probability decomposed by the initial adsorption sites. Three sets of data
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Figure 5.11: Site-specific CO desorption probabilities in the interval [1.0, 3.5] ps for the
three ensembles of dynamics calculations considered in this work: (Te,Tl) − AIMDEF
(orange), (Te,Tl) −MDEF-1 (blue) and (Te,Tl) −MDEF-2 (red). Here, (Te,Tl) − AIMDEF
results are extracted from the simulations performed in Ref. [31]. Both (Te,Tl) −MDEF-1
and (Te,Tl) −MDEF-2 stand for results obtained from simulations performed with our best
trained EANN PES using, respectively, the same 100 initial conditions than in (Te,Tl) −
AIMDEF, and 2000 random initial conditions. Standard deviations are depicted for multiples
of 500 fs to give an idea of the uncertainty intervals while maintaining the clarity of the
exact curves. Here, desorption probabilities correspond to CO initially adsorbed at top
(upper), hcp (middle) and fcc (lower panel) sites.
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are shown in each panel for both figures, namely (Te,Tl)−MDEF-1 (blue) , (Te,Tl)−
MDEF-2 (red), and (Te,Tl) − AIMDEF (orange). Since no desorption event occurs
during the first ps of the dynamics, the desorption probabilities are shown in the
interval 1.0 to 3.5 ps –the latter time coincidingwith the (Te,Tl)−AIMDEF final time.
For the sake of clarity, the Wilson score intervals are plotted only for multiples of
500 fs in all cases. Desorption probabilities for both (Te,Tl) −MDEF-1 and (Te,Tl) −
MDEF-2 are in close agreement with (Te,Tl) − AIMDEF, particularly, for the total
and the fcc site-specific CO desorption probabilities. Regarding the site-resolved
desorption probabilities, (Te,Tl) − MDEF-1 diverges a bit more from (Te,Tl) −
AIMDEF than (Te,Tl) −MDEF-2, as (Te,Tl) −MDEF-1 shows a higher desorption
probability for top-site CO, while it underestimates the hcp-site CO desorption.
Nevertheless, (Te,Tl) − AIMDEF results are contained in almost all specific data
points depicted for (Te,Tl) − MDEF-1, and their respective standard deviation
intervals for a 99% confidence level overlap in all cases. Therefore, discrepancies
arise simply from the statistical variability inherent in the 100-trajectory ensembles
of each method, and (Te,Tl) − MDEF-1 is anyway consistent compared to the
(Te,Tl) − AIMDEF reference. Furthermore, the (Te,Tl) − MDEF-2 probabilities
match closer (Te,Tl) − AIMDEF ones overall, with only some underestimation of
hcp-CO desorption more subtle than for (Te,Tl) −MDEF-1. Despite originating
from a distinct set of initial configurations, this concordance endorses the reliability
of our EANN PES and DGF in accurately characterizing the dynamic energy barriers
faced by CO molecules during laser-induced desorption, comparable to the original
(Te,Tl) − AIMDEF findings. And, importantly, the improved statistics of (Te,Tl) −
MDEF-2 over the original (Te,Tl) − AIMDEF simulations allows us to describe the
different desorption properties with higher precision.

Taking advantage of the enhanced statistics provided by (Te,Tl) −MDEF-2, a
more precise determination of the desorption process timeline is enabled. Recalling
that the laser pulse peak arrives at 𝑡 = 410 fs in our simulations, the first desorption
events are recorded 0.6 ps later. Such occurrences involve predominantly top-
site CO, with CO desorption from hcp and fcc sites requiring approximately an
additional 500 fs to commence.

Having demonstrated the accuracy of ourmethodology to reproduce the (Te,Tl)−
AIMDEF trajectories for the first few hundred femtoseconds and the final result
in terms of CO desorption probabilities, we now focus on the time evolution of
the kinetic energy of CO molecules, which is more sensitive to the subtle details
of the paths followed on the PES. The left panel of Fig. 5.12 shows, in full thick
lines, the time evolution of the mean translational (⟨𝐸transkin ⟩) and mean rovibrational
(⟨𝐸rovibrkin ⟩) kinetic energy of adsorbed CO molecules averaged over trajectories.
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Figure 5.12: Mean center of mass translational kinetic energy, ⟨𝐸transkin ⟩, (left panel, full
thick lines) and mean rovibrational kinetic energy, ⟨𝐸rovibrkin ⟩, (right panel, full thick lines) of
adsorbed CO molecules as a function of time. Corresponding dotted thin curves above and
below each ⟨𝐸trans(rovibr)kin ⟩ curve show the mean values plus and minus associated standard
deviations, respectively. For both panels, (Te,Tl) − AIMDEF stands for results extracted
from Ref. [31] calculations, (Te,Tl) −MDEF-1 stands for dynamics results obtained from
our best trained EANN PES using the same 100 (Te,Tl) − AIMDEF initial conditions, and
(Te,Tl) −MDEF-2 stands for dynamics results obtained with the same EANN PES using
2000 random initial conditions.
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Figure 5.13: Empirical cumulative distribution functions (ECDFs) of desorbed CO for the
center ofmass translational kinetic energy (left panel) and rovibrational kinetic energy (right
panel). Shaded areas mark 99% Dvoretzky-Kiefer-Wolfowitz confidence intervals [348].
For both panels, (Te,Tl) − AIMDEF stands for results extracted from Ref. [31] calculations,
(Te,Tl) −MDEF-1 stands for dynamics results obtained from our best trained EANN PES
using the same 100 (Te,Tl) − AIMDEF initial conditions, and (Te,Tl) −MDEF-2 stands for
dynamics results obtained with the same EANN PES using 2000 random initial conditions.
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Let us clarify that ⟨𝐸transkin ⟩ refers to the kinetic energy of the CO CM, whereas
⟨𝐸rovibrkin ⟩ is calculated as the mean of C and O total kinetic energy minus 𝐸transkin , i.e.,
⟨𝐸rovibrkin ⟩ = ⟨𝐸kin(CO) −𝐸transkin ⟩. Examining ⟨𝐸transkin ⟩, we observe that the results from
both (Te,Tl)−MDEF-1 (in blue) and (Te,Tl)−MDEF-2 (in red) align closely with the
(Te,Tl) −AIMDEF values (in orange). This similarity indicates that our EANN PES
effectively reproduces the mean translational kinetic energies. Following the same
color code as in the left panel of Fig. 5.12, rovibrational energies for both (Te,Tl) −
MDEF-1 and (Te,Tl) −MDEF-2 also reflect analogous behaviors with respect to the
(Te,Tl) − AIMDEF ⟨𝐸rovibrkin ⟩ results. Together with the mean kinetic energies, the
instantaneous energy distributions of the adsorbed species constitute an additional
and even more stringent test to assess the accuracy of our PES. To this end, we
can compare the kinetic energy standard deviations for each data set and for each
kinetic contribution 𝛥𝐸trans(rovibr)kin . For the sake of clarity, in Fig. 5.12 two additional
sets of thin dotted curves represent the values ⟨𝐸trans(rovibr)kin ⟩ ±𝛥𝐸trans(rovibr)kin in order
to delimit the standard deviation regions linked to each distribution average. The
figure demonstrates a notable consistency between (Te,Tl)−AIMDEF instantaneous
standard deviations and their (Te,Tl)−MDEF-1 and (Te,Tl)−MDEF-2 counterparts,
thereby underscoring the accuracy of our EANN PES.

As for adsorbed CO species, a similar check can be performed for the kinetic
energy of the desorbed molecules. Notice that, in our current analysis, a molecule
is considered as desorbed if its CM height from the surface plane is greater than
6.0 Å and the 𝑧-component of its CM momentum is positive at the end of the simu-
lation (3500 fs). Fig. 5.13 displays the empirical cumulative distribution functions
(ECDFs) for both kinetic terms in solid lines. Let us briefly recall that a cumulative
distribution function CDF(𝑥) represents the probability of some random variable
𝑋 to take on values equal to or smaller than a given value 𝑥 , CDF(𝑥) = 𝑃 (𝑋 ≤ 𝑥).
Furthermore, CDF(𝑥) does not decrease along its domain, hence only increasing
or remaining constant as 𝑥 grows, and takes values within the interval [0, 1]. In
this case, we are evaluating the cumulative distribution function for the kinetic
energy values we have calculated for all desorbed CO molecules at each time step
they were desorbed at, for all trajectories of each ensemble. Along with the ECDFs,
we plot their related Dvoretzky-Kiefer-Wolfowitz confidence intervals [348] for a
confidence level of 99% (shaded colors). Latter ones represent the ranges where
the exact ECDF for a given kinetic energy distribution can be found with a 99%
probability. As for Fig. 5.12, translational and rovibrational mean kinetic energies
are represented in the left and right panels, respectively, under the same colors
assigned for each dynamics set. Firstly, one can notice that both mean kinetic
energy contributions of the desorbed molecules (solid lines) for (Te,Tl) −MDEF-1
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and (Te,Tl) −MDEF-2 fall within the confidence intervals of (Te,Tl) − AIMDEF,
thus (Te,Tl) −MDEF curves matching (Te,Tl) −AIMDEF trends substantially. Such
a conclusion is supported by the proximity of all exact kinetic energy distribution
trends and by the overlapping of their respective confidence intervals. In partic-
ular for (Te,Tl) −MDEF-2, its larger sample size leads to significantly narrower
confidence intervals, therefore reflecting a closer approximation to the exact distri-
bution. These findings further corroborate the consistency of the rovibrational and
translational behaviors of the CO molecules described in Ref. [31], both when they
are adsorbed on the surface and after desorption has taken place.
Taking advantage of the improved statistics provided by (Te,Tl) − MDEF-2,

we can now reliably determine the final rovibrational state of the desorbed CO
molecules (𝜈, 𝑗), an analysis that cannot be performed in (Te,Tl) −AIMDEF due to
the poor statistics. Following the quasiclassical action-angle variable approach [349],
the vibrational state number 𝜈 is defined as the closest integer value that satisfies
the condition,

𝜈 =
𝛼𝜈

ℎ
− 1
2 , (5.8)

with ℎ being the Planck constant and 𝛼𝜈 the vibrational action, defined as follows,

𝛼𝜈 =

∮
𝑑r p =

∮
𝑑𝑟 𝑝𝑟 =

1
𝜋

∫ 𝑟out

𝑟in

𝑑𝑟

√√√
2𝜇

(
𝐸CO −𝑉 (𝑟 ) −

𝐿2cl
2𝜇𝑟 2

)
, (5.9)

where p = 𝑝𝑟 𝑟 is the desorbed CO vibrational momentum, 𝜇 is its reduced mass,
𝑟out and 𝑟in are the outer and inner turning points of the CO vibrational motion,
𝐸CO is its total internal energy,𝑉 (𝑟 ) is the CO vibrational potential in vacuum (here
provided by our PES) and 𝐿cl is the classical total angular momentum. Furthermore,
the rotational quantum number 𝑗 is computed from the classical angular momentum
𝐿cl as the closest integer that verifies

𝑗 =
1
2

(√︂
1 + 4 𝐿

2

ℏ2

)
, (5.10)

where ℏ is the reduced Planck constant.
The vibrational profile of the desorbed CO is plotted in Fig. 5.14, whereas its

probability distribution of rotational quantum numbers is depicted in Fig. 5.15. As
shown in Fig. 5.14, most of the desorbed molecules (83.3%) are in the vibrational
ground state 𝜈 = 0. There is a significantly smaller probability for 𝜈 = 1, and
even smaller probabilities for 𝜈 = 2 and 𝜈 = 3. The rotational state distribution is
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Figure 5.14: Probability distribution of the vibrational quantum number 𝜈 of desorbed
CO in the (Te,Tl) − MDEF-2 data set, determined from Eq. (5.8) after the quasiclassical
approach of Ref. [349]. All CO molecules considered in this distribution have rotational
states 𝑗 ≥ 0.
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Figure 5.15: Probability distributions of the rotational quantum number 𝑗 for each of the
vibrational states observed among the desorbed CO in (Te,Tl) −MDEF-2 set, 𝜈 = 0, 1 (blue
and red bars of top panel, respectively) and 𝜈 = 2, 3 (green and orange bars of bottom panel,
respectively). Rotational states were determined from Eq. (5.10) following the quasiclassical
approach of Ref. [349].
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analyzed in Fig. 5.15 for each vibrational state. For the vibrational ground state, the
histogram shows a wide range of populated rotational states, with a distribution
that peaks at low values ( 𝑗 = 4–7) and progressively decreases within the range
𝑗 ≲ 20). For 𝜈 > 0 more limited conclusions can be drawn due to the poorer
statistics, specially for 𝜈 = 3. Nevertheless, we observe that for 𝜈 = 1 and 𝜈 = 2
rotational state distributions also peak at lower 𝑗 values ( 𝑗 < 10) and their tails
lie below 𝑗 = 20. Overall, we conclude that desorption predominantly leaves CO
molecules in the vibrational ground state and rotationally excited ( 𝑗 ≤ 20).

5.5 Conclusions
The research presented in this chapter builds upon the theoretical framework
outlined in previous chapters, focusing on the femtosecond laser-induced desorption
of CO from Pd(111) surfaces. This is a complex phenomenon, where the coupling
of electronic and phononic subsystems plays a crucial role, influencing adsorbate
dynamics and potentially leading to enhancement of desorption yields [31]. Our
approach has focused on simulating these dynamics using molecular dynamics
with electronic friction and thermostat [(Te,Tl) −MDEF], which rely on recently
developed ML techniques [87].
A central aspect in the (Te,Tl) − MDEF simulations discussed in this chapter

was the construction of a multidimensional PES. Using the embedded atom neural
network (EANN) framework, we have performed such a process to describe the
photoinduced desorption of 0.75 ML CO from Pd(111). Such a PES needs to account
for some challenges linked to the complexity of our system: multiple adsorbates
and moving surface atoms –this leading to 108 degrees of freedom in our simulation
cell–, time-varying adsorbate coverages, and large surface temperature variability
(90–1000 K). For this, a correct description of the configurational space visited by the
adsorbate-substrate complex is required. Therefore, we have conducted a detailed
survey of the whole (Te,Tl) −AIMDEF data of Ref. [31] according to its distribution
of potential energies and the different number of desorption events occurring in
the same trajectory. This has resulted in a set of 15 000 configurations ensuring a
balanced representation of dynamics trajectories according to the number of CO
desorption events (none, one, or two) following the ratio 3:4:3, respectively. Using
these (Te,Tl) −AIMDEF data points, we have optimized our choice of EANN model
parameters following the criteria of accuracy, required computational time per
iteration, and number of iterations for error convergence. Quality of our first set of
candidate PESs trained has been validated against almost 87 382 (Te,Tl) −AIMDEF
data points absent from the training phase. From these preliminary checks and to
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improve the quality of our final PES, the size of the training set has been increased to
nearly 16 000 configurations, among which the PES showing the smaller maximum
force errors has been selected for (Te,Tl) − MDEF. The results are remarkably
accurate, with RMSEs as small as 0.85 meV per moving atom for the potential
energy and as ∼0.05 eV/Å for forces.

To describe the coupling of the laser-induced hot electrons with the adsorbates
in (Te,Tl) −MDEF, we have fitted the available (Te,Tl) − AIMDEF surface density
data to a density generator function (DGF). The latter will allow us to determine the
friction coefficient on each adsorbate within the local density friction approximation
as also done in (Te,Tl) − AIMDEF. With subsequent (Te,Tl) −MDEF simulations,
(Te,Tl) − AIMDEF results have been reproduced with notable precision across
different quantities. This replicationwas not only based on the original 100 (Te,Tl)−
AIMDEF initial data points, but was also extended to an additional ensemble of
2000 new trajectories, thereby reproducing (Te,Tl) − AIMDEF calculations with a
smaller statistical uncertainty. Such results support the strength of our (Te,Tl) −
MDEF methodology and, particularly, the efficacy of our EANN PES covering
the aforementioned complexity of our system under ultrafast photodesorption
conditions. Furthermore, the extensive statistical data set afforded by (Te,Tl) −
MDEF has provided us with new information on the initial stages of desorption
and the rovibrational states of the desorbed CO molecules.
As a result, (Te,Tl) −MDEF with a EANN PES has opened a promising way to

simulate CO/Pd(111) femtosecond laser-induced desorption under varied initial
conditions. This allows us to overcome the main shortcoming of (Te,Tl) −AIMDEF,
namely the large computational demands, which severely limit the amount of
statistics and dynamical scenarios that are approachable in reasonable times. With
(Te,Tl) −MDEF one can reproduce (Te,Tl) −AIMDEF results orders of magnitude
faster (from one week to a few seconds for the same computational and dynamics
settings) and produce larger statistical sets in reasonable times. This opens the
way to investigate beyond (Te,Tl) − AIMDEF limits; let us give some examples.
(Te,Tl) −MDEF capabilities allow us to extend the dynamics times beyond 3.5 or
4.0 ps, allowing to observe saturation of desorption probabilities, or make it possible
to expand the simulation cell size to mitigate finite-size effects. The response of
CO/Pd(111) under distinct incident laser fluences or adsorbate coverages becomes
also feasible from a theoretical standpoint, among other several experiments. In
this respect, the calculations we have performed hitherto are detailed in Chapters 6
and 7. To conclude with, it is also important to remark that our findings support
the EANN framework to be used in the development of precise EANN PESs for
other complex gas-solid interfaces.
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on 0.75 ML CO/Pd(111)

In the last chapter, we have developed our MDEF methodology with a EANN
PES trained from the (Te,Tl) − AIMDEF data on the femtosecond laser-induced
photodesorption of 0.75 ML CO adsorbed on Pd(111) [31]. Making use of that PES
and our numerically fitted DGF function, some sets of (Te,Tl) −MDEF simulations
have been performed. Benchmark (Te,Tl) − AIMDEF results are mimicked with
remarkable precision, and even some insights about the first 3.5 ps of desorption
photochemistry have been gained [87]. At this point we are ready to overcome
AIMDEF limitations safely and study other properties of interest in the femtosecond
laser-induced desorption on CO-covered Pd(111), as, for example, understanding
how different CO isotopologues behave when desorbing from Pd(111).

The search for isotope effects has been used as an additional tool to disentangle
if electronic or phononic excitations dominate ultrafast photoinduced desorption,
their presence being interpreted as a fingerprint of electron-mediated interactions
[32, 36, 90, 91, 92]. In this context, experiments have been conducted in various
adsorbate-surface complexes. To list some examples, notable isotope effects have
been observed in the recombinative desorption of CO2 in O+CO/Ru(0001) [36, 90],
the recombinative desorption of different H2 isotopologues in (H,D)/Ru(0001) [37]
and the recombinative desorption of O2 from O-decorated Pd(111) [91]. Neverthe-
less, systems without an isotope effect have been reported as well, as, e.g., the CO
desorption from Ru(0001) [92].
Actually, the AIMDEF methodology already demonstrated its effectiveness in

describing the isotope effect of photoinduced H2, HD, and D2 desorption from
Ru(0001) [66]. In this system, because of the small mass of H and the low to
medium lattice temperatures, only coupling to the electronic systemwas considered,
thus omitting the lattice energy input into the adsorbates. For heavier adsorbates,
inclusion of the phononic channel becomes necessary. However, up to now, due
to AIMDEF aforementioned limitations no AIMDEF-based approach for studying
different adsorbate isotopes accounting for both excitation channels has been
feasible in a reasonable time frame. Instead, once we have an EANN PES able to
accurately predict atomic energies and forces, as shown in the previous chapter and
corresponding publication [87], we can then look for any isotope effect in realistic
times using PES-mediated MDEF. Therefore, in this chapter photoinduced CO
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desorption processes on Pd(111) has been simulated from a theoretical viewpoint
for two different CO isotopologues, the light 12C16O and the heavy 13C18O [88].
Contents of this chapter are arranged in the following way. First, the main

theoretical details and relevant quantities involved in this study and not introduced
in previous chapters are covered in Section 6.1. Next, MDEF results and findings
for both CO isotopologues are presented in Section 6.2. Finally, a summary of the
key results and future implications of our research is provided in Section 6.3.

6.1 Theoretical background
Our starting point is the same system thoroughly detailed in Section 5.1 of Chapter 5,
a Pd(111) surface covered by 0.75 ML CO that is simulated with a (4 × 2) supercell.
To investigate potential isotope effects in the 0.75 ML CO/Pd(111) system, we
consider two different adlayers, each formed by a different CO isotopologue: 12C16O
and 13C18O. The atomic masses of these isotopologues are m(12C) = 12.011 a.u.,
m(13C) = 13.000 a.u., m(16O) = 15.999 a.u., and m(18O) = 17.999 a.u. Regarding
the Pd atoms, the same isotope 106Pd is taken for both CO variants, with an atomic
massm(106Pd) = 106.421 a.u. for each surface atom. As done in our study presented
in Chapter 5, a laser pulse of sech2 profile, wavelength 𝜆 = 780 nm and FWHM of
100 fs will irradiate each of the CO/Pd(111) systems under study. In both cases,
incident laser peak reaches the adsorbate-substrate complex at 𝑡 = 410 fs and
its total fluence is F = 13.0 mJ/cm2. Therefore, the corresponding electronic and
lattice temperatures𝑇𝑒 (𝑡) and𝑇𝑙 (𝑡) calculated with 2TM are the same as in (Te,Tl)−
AIMDEF [31] and in the (Te,Tl) −MDEF simulations discussed in Chapter 5 and
in Ref. [87]. Energies and forces will be described by the EANN PES derived in the
previous chapter.
For each CO isotopologue we perform 2000 (Te,Tl) −MDEF calculations with

an integration time step of 0.2 fs. These initial atomic configurations are randomly
chosen from an ensemble of 10 000 configurations generated by thermalizing the
100 (Te,Tl) − AIMDEF starting data points [31] at 𝑇0 = 90 K for 1 ps and using a
time step of 1.0 fs. Besides (Te,Tl) −MDEF, we aim to determine the contribution
of both hot electrons and hot phonons in the photoinduced desorption of each
CO isotopologue. To this end, starting from the same set of 2000 initial conditions
used in (Te,Tl) − MDEF, we additionally perform Tl − MDEF simulations (see
Section 3.2.2.5), in which only the effect of the hot surface lattice is included in the
adsorbate dynamics.

In this study, we take advantage of MDEF capabilities by significantly extending
the duration of our dynamic simulations to 50 ps, thus surpassing the (Te,Tl) −
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AIMDEF final time by a factor of 12. Such an extension, while beneficial for a
comprehensive analysis, raises the possibility of PES extrapolation errors. As
mentioned in Section 5.4, our new trajectories may venture into configurations
beyond the confidence zone of the trained EANN PES, as it was trained with
(Te,Tl) − AIMDEF data of the first 4 ps of photoinduced desorption. A rigorous
check was performed in Ref. [88] comparing how different are all the 2000 data
points explored every 100 fs from all their (Te,Tl) − AIMDEF counterparts, which
showed no remarkable differences between (Te,Tl) −MDEF and (Te,Tl) −AIMDEF
visited configurational spaces. Such check supports the safe applicability of our
EANN PES in the range [0, 50] ps with no need of further retraining it with more
configurations.

Now, let us define some relevant quantities to describe the statistics of the
(Te,Tl) −MDEF and Tl −MDEF ensembles. Some of them were already defined
in Chapter 5, namely, the CO desorption probability 𝑃CO,des(𝑡) (Eq. (5.6)) and the
semiclassical vibrational quantum number 𝜈 (Eq. (5.8)) [349]. In this chapter two ad-
ditional quantities will be studied, the coverage occupation 𝜉 (𝑡) and the desorption
rate 𝑅(𝑡). The first one is defined as,

𝜉 (𝑡) =
𝑛
CO,cell
0 − 𝑛CO,des(𝑡)

𝑛Pd0
, (6.1)

where 𝑛CO,des(𝑡) = 𝑁CO,des(𝑡)/𝑁traj is the cumulative number of desorbed CO at
instant 𝑡 (𝑁CO,des(𝑡)) averaged over all the trajectories (𝑁traj). In our case, 𝑁traj =
2000 in both (Te,Tl) −MDEF and Tl −MDEF. It also involves the initial number
of CO molecules in our 0.75 ML (4 × 2) simulation cell, 𝑛CO,cell0 = 6 –as defined in
Section 5.4, Eq. (5.6)–, and the amount of Pd atoms in the topmost surface layer,
𝑛Pd0 = 8.

Using Eq. (5.6), the usual text-book definition of desorption rate𝑅(𝑡) = −𝑑𝜉 (𝑡)/𝑑𝑡
(see, e.g., Ref. [350]) is expressed as:

𝑅(𝑡) = 𝜉0
𝑑𝑃CO,des(𝑡)

𝑑𝑡
, (6.2)

where 𝜉0 ≡ 𝜉 (0) = 𝑛CO,cell0 /𝑛Pd0 = 0.75, as it is obvious for our adsorbate-substrate
complex. Once these quantities have been defined, let us discuss the results from
the (Te,Tl) −MDEF and Tl −MDEF simulations.
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6.2 MDEF results for both CO isotopologues

To begin with, let us analyze the time evolution of 𝑃CO,des(𝑡) during the first 4 ps
for both the light and heavy CO adlayers. As observed in Fig. 6.1, there are minor
differences in the time evolution of 𝑃CO,des(𝑡) between both isotopologues when
considering either (Te,Tl) −MDEF trajectories (full lines) or Tl −MDEF (dashed
lines). Red and blue full lines correspond to the (Te,Tl) − MDEF evolutions for
the light 12C16O and heavier isotopologue 13C18O, respectively, while purple and
orange dashed lines show the respective Tl −MDEF results for 12C16O and 13C18O.
Surrounding each curve, there are shaded regions representing statistical uncer-
tainty intervals, which were calculated as 99% confidence Wilson score intervals
(see Section 5.4) [347]. On a closer look, although these differences are small, the
desorption probability of 12C16O at a given instant is always higher than for 13C18O
in the whole 4 ps interval. The difference becomes more apparent at 𝑡 ≳ 1.75 ps
for (Te,Tl) − MDEF and at 𝑡 ≳ 3.25 ps for Tl − MDEF. This result is consistent
with the overall larger acceleration experienced by the lighter CO due to the mass
dependency in the equations of motion (Eq. (3.12)). As a result, 12C16O molecules
are able to achieve kinetic energies 𝐸kin larger than the desorption barrier in shorter
average times than 13C18O molecules. Notably, when the interaction of adsorbates
with the hot electrons is ruled out in Tl −MDEF, the differences in 𝑃CO,des(𝑡) for
each CO isotopologue diminish, as expected from the theoretical prediction that
isotope effects do not appear in scenarios where phonon-mediated desorption is
the primary mechanism. Therefore, we can conclude that within the initial 4 ps
of dynamics, the slightly larger differences between both CO isotopologues in the
(Te,Tl) −MDEF desorption probabilities arise mainly from their interactions with
laser-excited electrons, rather than from the coupling to the surface DOFs.
However, at this point, no conclusive remark on the potential existence of an

isotope effect for CO/Pd(111) can be made yet because the 𝑃CO,des(𝑡) results in
Fig. 6.1 represent a very early stage of photodesorption dynamics process. As
all 𝑃CO,des(𝑡) graphs seem to keep growing for 𝑡 > 4 ps, it is desirable to extend
our (Te,Tl) − MDEF simulations beyond 4 ps. The idea is to either reach or, at
least, closely approach the saturation point of all desorption probabilities, to see
whether the apparent isotope effect observed for (Te,Tl) −MDEF persists or not.
Figure 6.2 shows the corresponding 𝑃CO,des(𝑡) curves extended until 50 ps, instant
at which all the curves are basically saturated. As observed in the figure, the
desorption probabilities of both isotopologues saturate to similar values, which are
𝑃CO,sat ≈ 0.35 for (Te,Tl) −MDEF (solid lines) and ≈ 0.34 for Tl −MDEF (dashed
lines). This means that the little differences observed in (Te,Tl) −MDEF during
the initial time interval [0, 4] ps, not only do not increase but become negligible at
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longer times. Furthermore, the fact that 𝑃CO,sat for Tl −MDEF is only 1% smaller
than for (Te,Tl) −MDEF supports the phonon-mediated desorption mechanism
dominating over the electron-mediated one after the initial stages of the dynamics.
The reason can be the very high lattice temperatures𝑇𝑙 (𝑡) reached for the absorbed
laser fluence 𝐹 = 130 J/m2 that varies from ≈ 1200 to 700 K in the interval 4–50 ps.
Therefore, even if during the first stages of the dynamics the electron-mediated
desorption mechanism is important, as reflected in the high difference in desorption
probability found between (Te,Tl) −MDEF and Tl−MDEF in Fig. 6.1 and the subtle
isotope effect, at later times the lattice temperature is high enough to dominate the
desorption process regardless of whether the interaction with the electronic bath is
present or not.

Figure 6.1: Time evolution of 12C16O (Te,Tl) −MDEF (full blue) and Tl −MDEF (dashed
purple), and 13C18O (Te,Tl) −MDEF (full red) and Tl −MDEF (dashed orange) desorption
probabilities in the interval [1, 4] ps. Shaded areas correspond to Wilson score intervals of
99% confidence level [347].

Further insights into the desorption dynamics can be achieved by studying the
time evolution of the desorption rate 𝑅(𝑡), which was defined in Eq. (6.2). The
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results for the two types of simulations and for the light and heavy CO adlayers
are shown in Fig. 6.2 (bottom panel). Raw noisy data (translucent lines) have been
interpolated with spline polynomials of fifth order to obtain smooth functions for
(Te,Tl) −MDEF (solid lines) 12C16O (blue) and 13C18O (red) as well as for Tl−MDEF
(dashed lines) 12C16O (purple) and 13C18O (orange). We can notice that the time
interval considered allows us to fully appreciate the characteristic functional form
of each 𝑅(𝑡). Maximum values for (Te,Tl) −MDEF and Tl −MDEF are reached at
approximately 3 and 5 ps, respectively. In agreement with the previous analysis
of CO desorption probabilities, for each type of dynamics, the desorption rates
for both isotopologues are nearly identical. Regarding the differences between
(Te,Tl) −MDEF and Tl −MDEF, it is apparent that the (Te,Tl) −MDEF desorption
rate reaches higher values in a shorter amount of time, exhibiting a narrower profile
than in the case of Tl −MDEF rate. This difference reinforces our conclusion that
despite the absence of any relevant isotope effect in the desorption of CO molecules,
interaction with substrate electrons is still important for the description of the
desorption dynamics during the first 15 ps, as one can check in the inset graph
drawn for the first 10 ps interval.
To further clarify the relevance of the interactions of each CO isotopologue

with the hot electronic subsystem, let us study their distribution of quasiclassical
vibrational states according to Eq. (5.8). Figure 6.3 shows the normalized distribution
of desorbed molecules in the vibrational ground state (𝜈 = 0) and in vibrationally
excited states (𝜈 > 0). Blue and red bars represent 12C16O and 13C18O (Te,Tl) −
MDEF simulations, respectively (upper panels), whereas purple and orange bars
depict their respective Tl −MDEF counterparts (lower panels). Error bars indicate
the standard deviation of 𝜈 as for a binomial distribution. When examining the
complete sets of desorbed CO molecules (left panels), for both isotopologue species
their related (Te,Tl) −MDEF sets reach almost the same probabilities for zero and
positive 𝜈 𝑓 values. In the case of Tl −MDEF, all desorbed CO isotopologues remain
in the vibrational ground state, their distributions being then identical. These
results suggest that phonons do not efficiently couple to molecular vibrational
motion, whereas hot electrons do. Quantitatively, in the case of (Te,Tl) −MDEF,
we observe that 5% of the desorbed CO for both the light and heavy isotopologues
ends in vibrational excited states, so this vibrational excitation is not only subtle
among all species that desorb, but also appears to be isotopologue-independent.
Nevertheless, it is interesting to focus on molecules in the higher translational

kinetic energy tail (𝐸transkin ≥ 0.67 eV (Fig. 6.3, right panels). This situation would
correspond to adsorbates at temperatures 𝑇 ≥ 5200 K. For this subset of dynamics,
Tl−MDEF results do not vary from overall desorption ensemble data, so no isotopic
effect is found in this dynamical situation. On the contrary, under (Te,Tl) −MDEF
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Figure 6.2: (Top) Time evolution of the desorption probability along the time interval
[0, 50] ps. (Te,Tl) − MDEF (solid lines) data sets for 12C16O (blue) and 13C18O (red) and
Tl−MDEF ones (dashed lines) for 12C16O (purple) and 13C18O (orange) are depicted. Shaded
areas show the uncertainty intervals for 99% confidence level according to Wilson score
intervals framework [347]. (Bottom) Corresponding desorption rate obtained during 50 ps.
Raw noisy desorption rates (translucent lines) were obtained from desorption probabilities
by numerical differentiation. Smooth desorption rates (thick lines) were obtained after
applying a fifth order noise-reduction spline interpolation over raw desorption probabilities.
Desorption rates during the first 10 ps are depicted in the inset.
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Figure 6.3: Quasiclassical vibrational state distribution of 12C16O and 13C18O. Upper graph
row corresponds to (Te,Tl) − MDEF 12C16O (blue) and 13C18O (red) while bottom ones
stand for Tl −MDEF 12C16O (purple) and 13C18O (orange) data sets. For each smaller graph,
a distinction between molecules in their vibrational ground state (𝑣 = 0) or after undergoing
vibrational excitation (𝑣 > 0) is made. Error bars reflect the standard deviation as for
binomial distributions. Left column of panels display vibrational state probabilities with
respect to total amounts of desorbed CO species. Right column shows results for the CO
molecules that desorbed with the larger translational kinetic energies, 𝐸transkin ≥ 0.67 eV –or,
alternatively, 𝑇 ≥ 5200 K– (see text).
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conditions there is a small but observable isotope effect that must hence be caused
by the laser-induced hot electrons. As observed in the figure, the probability of
vibrational excitation for 12C16O is 6% higher than that for 13C18O. We have to
stress the subtlety of this effect, as it is experienced by only around 1% of the total
number of CO molecules that desorb in the (Te,Tl) − AIMDEF simulations.

6.3 Conclusions
In this chapter, we have explored the dynamics of photoinduced desorption of
two CO isotopologues, namely light 12C16O and heavy 13C18O, from a Pd(111)
surface at 0.75 ML coverage in the high laser fluence regime. Using the EANN
PES described in Chapter 6, which was shown to reproduce with remarkable
fidelity previous (Te,Tl) − AIMDEF simulations [31], photodesorption dynamics
for both adlayers, each conformed by a different CO isotopologue, have been
performed computationally. Sets of 2000 trajectories along a longer-than-AIMDEF
time interval [0.0, 50.0] ps have been calculated for each isotopologue using two
different types of simulations, (Te,Tl) − MDEF and Tl − MDEF. In the former,
adsorbates were allowed to interact with both femtosecond laser pulse-excited
electrons and phonons, whereas in the latter, only the interaction with the hot
surface lattice was included. The comparative analysis of the results obtained
with both types of simulations permits us to identify the role of the laser-excited
electrons in the adsorbate dynamics. Furthermore, in order to look for potential
isotope effects, we have evaluated CO desorption probabilities, desorption rates,
and quasiclassical vibrational states of the desorbed species.
Our comprehensive analysis points out the absence of isotope effects in the

desorption probabilities for the 0.75 ML CO/Pd(111). It is true that minor differ-
ences between 12C16O and 13C18O desorption probabilities appear at early times of
(Te,Tl) −MDEF, more precisely in the interval [0, 4] ps. However, they become
negligible over extended times (up to 50 ps), when lattice-mediated desorption
mechanism dominates over its electronic counterpart. The prevalence of interac-
tions between adsorbates and excited phonons also leads to both (Te,Tl) −MDEF
and Tl − MDEF desorption probabilities for each CO isotopologue saturating at
constant and almost identical values. However, the electronic interactions may
play some relevant role at early desorption times, as desorption rate peaks for
(Te,Tl) −MDEF are sharper and occur earlier than for Tl −MDEF. Focusing on
this point, when examining the vibrational excitation of desorbed molecules, we
observe that such excitations are minimal and predominantly originated by the hot
electronic subsystem. Only for desorbed molecules in the high translational kinetic
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energy tail (𝐸transkin > 0.67 eV), a little isotope effect has been detected, favoring the
vibrational excitation of light 12C16O over the heavy 13C18O by 6%. However, it is
necessary to remark that these excited molecules represent a mere 1% of the total
desorption yield.
Our findings show that the CO photodesorption process from a highly covered

CO/Pd(111) surface at high laser fluence, 130 J/m2, is dominated by a phonon-
mediated mechanism and that the complete photodesorption process takes several
tens of picoseconds to finalize. These results extend our understanding of pho-
todesorption dynamics beyond previous experimental observations made at lower
fluences (50 to 80 J/m2) for the same system [30]. Interestingly, in that reference a
further phenomenological three temperature model analysis of two-pulse correla-
tion (2PC) results suggested that CO femtosecond laser pulse-induced desorption
is primarily driven by an electron-mediated energy transfer to adsorbates for CO
coverages ranging from 0.24 ML to 0.75 ML, which contrasts with our molecular dy-
namics simulations at higher fluence. This leads us to study how different incident
laser fluences could affect desorption, as well as to simulate 2PC on CO/Pd(111),
in order to explore in deeper detail whether hot electrons or phonons rule over
desorption. Looking at our results in this chapter, MDEF appears to be the way
to go to respond to those questions in reasonable time from a theoretical point of
view and overcoming former AIMDEF limitations.
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CO/Pd(111) with MDEF

In the previous Chapter 5 we have developed in detail the MDEF methodology
with a EANN PES, and verified that some previous (Te,Tl) − AIMDEF results
for 0.75 ML CO/Pd(111) [31] were closely reproduced [87]. Not only that, but
(Te,Tl) −MDEF calculations anticipated some preliminary new details about early
stages of ultrafast photodesorption dynamics. Continuing with this newly opened
pathway, we searched for a potential isotope effect in that adsorbate-substrate
system, as detailed in Chapter 6, but no remarkable isotope-conditioned variation
was found in general [88]. Overall, we have seen that MDEF approach works
to go beyond AIMDEF from a theoretical point of view. Now we are interested
in unveiling the CO/Pd(111) desorption dynamical mechanism in more depth by
investigating its dependence with the initial CO coverage decorating the surface, the
incoming laser fluence, and the delay time between the arrival of a pump and a probe
pulse as in the 2PC experiments. Having as a reference some previous experiments
and their corresponding results [30], we want to gain a deeper insight on the
aforementioned three issues using MDEF. During this chapter we are reporting
and discussing our current comprehensive findings on femtosecond laser-induced
desorption of CO from Pd(111), part of which have been recently published [89].

This set, our first goal is to advance towards an improved EANN PES description
of CO/Pd(111) photodesorption. As a preliminary step, in Section 7.1 we analyze
how our 0.75 ML EANN PES predicts energies, adiabatic forces or adsorption site-
specific minimum energy paths for a different coverage from the one it was trained
on, namely 0.33 ML. To this end, previous (Te,Tl) − AIMDEF data for this latter
adlayer is considered [31]. This procedure is complemented with the training of a
new EANN PES on 0.33 ML (Te,Tl) − AIMDEF data and its application to 0.75 ML
adlayer characterization. With the lessons learned from this process, in Section 7.2
we tackle the construction of a multicoverage EANN PES incorporating previous
0.33 and 0.75 ML (Te,Tl) − AIMDEF and Te − AIMDEF configurations [31]. Its
robustness is verified across different tests, not only limited to aforementioned low
and high coverages, but also involving 0.60 ML CO coverage. The startling accuracy
of our newly trained PES across different quantities validates its usage for the more
advanced MDEF research we want to do with it. First, different calculations are
run for single pulse excitation scenario taking an extensive duration of 100 ps, as
detailed in Section 7.3. Next, we investigate the CO photodesorption dependence
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with incident laser fluence, with size of simulation cell and with coverage for a
single fluence, and compare it with previous experimental results [30]. Moreover,
we advance in our understanding on the relative role played by hot electrons and
phonons in desorption mechanism, as well as in the CO behavior during desorption
and how it can be either direct or preceded by some residence time in a physisorption
well. Afterwards, in Section 7.4 we simulate 2PC experiments with (Te,Tl) −MDEF
and compute the desorption yield dependence on the relative delay between pump
and probe, and compare it with the experimental work of Ref. [30]. To end the
chapter, our procedures, main findings and concluding remarks are summarized in
Section 7.5.

7.1 Preliminary studies on multicoverage PESs
Hitherto we have trained an EANN PES for 0.75 ML CO/Pd(111) system [87]. As
a preliminary approach, we can investigate how accurate are the predictions of
our PES on a different coverage that was not included in the training data set. One
straightforward choice is the 0.33 ML coverage, as it was previously examined
using the AIMDEF approach [31]. To broaden our analysis, we have also trained a
new EANN PES using 0.33 ML 3×3 (Te,Tl) − AIMDEF data (light green region of
Fig. 7.1, top panel), and we have evaluated its proficiency in predicting energies
and forces on 0.75 ML 4×2 data points (light red region of Fig. 7.1, bottom panel).

Let us provide an overview of the 0.33 ML 3×3 supercell considered in AIMDEF
(Fig. 7.1, top panel). It is composed of three CO molecules adsorbed at fcc sites on
a 4-layer Pd surface with 9 atoms per layer. Dynamical description of adsorbates
and each Pd layer is the same as for the 0.75 ML system (see Section 5.1), resulting
in a supercell with 𝑁moving = 33 moving atoms or 99 DOFs. The dimensions of
the supercell are represented by 𝑠 (a1, a2, a3), with 𝑠 = 8.49 and the lattice vectors,
in Å and in Cartesian coordinates, are a1 = (1, 0, 0), a2 = (0.5, 0.866, 0) and a3 =

(0, 0, 3.266). As for 0.75 ML coverage, we conducted a thorough analysis of the
configurational space in terms of the potential energies with varying numbers of
CO desorption events (see Section 5.2.1). This yields a training data set of 12 750
configurations for trajectories without desorption and 2250 for those with a single
CO desorption early in the dynamics. Notably, in this case, no trajectories with two
CO desorption processes were present in the AIMDEF simulations. Furthermore,
we kept the same EANN-specific parameters as for the 0.75 ML PES, detailed in
Section 5.2.2 [323]. As done for 0.75 ML (Chapter 5), we begin training an initial set
of five PESs with 15 000 data points (13 500 for training and 1500 for validation). For
the one with smaller maximum force errors, we report its energy and maximum
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Figure 7.1: Top view of minimum energy configurations obtained with the multicoverage
EANN PES for 0.33 ML (top) and 0.75 ML (bottom panel). The supercells considered in our
(Te,Tl) − MDEF simulations are represented in solid lines. Grey dashed lines show the
smallest pattern that is repeated within supercells.
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force errors and RMSEs, together with force MESMAEs in Table 7.1, left error
data column. Then, those configurations yielding larger force errors per atom and
coordinate for our first batch PES choice are incorporated into the previous training
set, adding up to 15 882 data points (14 382 for training and 1500 for validation). The
errors for our final PES are presented in the right error data column of Table 7.1.
This allows us to confirm the enhanced accuracy of the final 0.33 ML PES relative
to our first choice, as we observed for 0.75 ML PES in Table 5.3.
We aim to assess how accurately each PES describes a coverage different from

the one on which it was trained. A straightforward test involves examining the
minimum energy desorption paths for each adsorption site and coverage as modeled
by each potential. These paths are determined using DFT by stimulating the
desorption of a single CO molecule under equilibrium conditions. This consists
of driving the molecule away from the surface along the normal and studying
how its interaction with the remaining CO/Pd(111) system changes with distance.
These minimum energy path configurations were not included in the training
sets for any of the PESs. Desorption minimal potential energy curves for each
PES are shown in Figs. 7.2 and 7.3 in solid lines and compared to DFT+vdW-DF
reference calculations of Ref. [31]. From these comparisons, we derive several
insights. For the 0.33 ML CO/Pd(111) coverage, the 0.33 ML PES accurately predicts
the size of the desorption barrier, although an oscillatory pattern is observed as the
molecule approaches the desorption energy. However, for the 0.75 ML coverage,
the potential energy curves diverge significantly from the DFT+vdW-DF reference
results. Nevertheless, when examining our 0.75 ML PES predictions, we find that
the match between the data sets improves. For 0.75 ML coverage, the top site
minimum energy path closely resembles that of DFT+vdW-DF in terms of shape
and well depth, while the fcc and especially hcp sites, although not diverging much
in shape from the reference, are predicted to be deeper by our PES. The ordering of
the desorption energies is correct, with the top site being the lowest, and the hcp
and fcc sites being closer to each other than the DFT+vdW-DF-calculated values.
Interestingly, the 0.33 ML potential energy curve predicted by the 0.75 ML PES
closely matches the reference curve shape, despite predicting a larger desorption
energy.
The superior predictive accuracy of the 0.75 ML PES for both 0.75 and 0.33 ML

coverage scenarios, compared to its 0.33 ML counterpart, can be attributed to
the more comprehensive atomic environmental data on which the former PES
was trained. This set involved not only adsorbed and desorbing CO molecules
from a wider range of sites, but also captured the dynamics of one or even two CO
molecules desorbingwithin the first 3.5 ps of dynamics. This diversity in the training
data allowed the 0.75 ML PES to explore a broader array of atomic environments,
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Figure 7.2: Potential energy 𝐸0 in terms of the CO CM height 𝑧cm,CO for one CO species
desorbing along its site-specific minimum energy path from a 0.33 ML CO/Pd(111) adsorp-
tion site –fcc, in blue– and the three possible adsorption sites in 0.75 ML, namely top (black),
hcp (red) and fcc (green). Solid lines represent the 0.33 ML EANN PES energy calculations
while dashed lines stand for the energies obtained with DFT+vdW-DF of Ref. [31]. For both
sets of plots, solid dots correspond to the data points used. In each curve, the energy and
the height are referred to the values obtained at the bottom of the corresponding well, 𝐸well0
and 𝑧wellcm,CO respectively. A close-up of the plot in the range [0.0, 1.7] eV is also depicted in
the inset for a clearer comparison between the 0.33 ML potential energy curves.
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enabling it to more accurately characterize the configurational space for its own
coverage level and simpler coverages such as the 0.33 ML one. By simpler, we refer
to the narrower variety of atomic environments explored in 0.33 ML coverage,
or to fewer things happening inside the atom-centered cutoff spheres, from an
interatomic perspective. This explains the poor description of 0.75 ML coverage by
the 0.33 ML PES.

In conclusion, the effectiveness of an EANN PES is intrinsically linked to the di-
versity and complexity of the atomic environments encountered during its training.
Our analysis reveals that a PES trained with 0.75 ML coverage data offers a more
comprehensive and accurate representation of various coverage scenarios than its
0.33 ML counterpart. This superior performance is attributable to its extensive
exploration of the configurational space during the training process. Nevertheless,
when applied to 0.33 ML, our 0.75 ML PES energy predictions differ from DFT
values, thus predicting a clearly deeper potential well. In contrast to our previous
observations of the negligible difference in well depths between EANN and DFT
for 0.75 ML hcp and fcc sites, this energy discrepancy is significant and merits
consideration in the training of multicoverage PESs. To solve this, and using the
wealth of AIMDEF data available for both 0.33 and 0.75 ML cases, we propose the
development of a new EANN PES that incorporates data points from both coverages.
This approach is expected to produce a more robust and universally applicable
PES, ensuring more accurate simulations across a range of adsorbate coverages.
The subsequent section will detail our methodology to construct and validate this
enhanced multicoverage CO/Pd(111) PES.

7.2 Multicoverage EANN PES training and quality
assessment

To develop a multicoverage EANN PES for CO/Pd(111), we first select the training
data for both 0.33 and 0.75 ML coverages. AIMDEF available data configurations
involve surface lattice distortion ((Te,Tl)−AIMDEF) as well as scenarios with frozen
surface conditions (Te − AIMDEF). This results in four distinct data sets among
whichwe prepare sets of configurations following the criteria of Section 5.2.1 to train
the multicoverage PES. However, note that our different adsorbate coverages do not
share the same energy minimum values. Before we have indicated howmany atoms
contain our supercells for both coverage scenarios: 3 C, 3 O and 36 Pd atoms for
0.33 ML, and 6 C, 6 O and 32 Pd 0.75 ML, the Pd species arranged as 4-layered slabs
in both cases. Naively, one might initially think to equalize the energy baselines
by simple addition or subtraction of the energy contribution of each individual
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Figure 7.3: Potential energy 𝐸0 in terms of the CO CM height 𝑧cm,CO for one CO species
desorbing along its site-specific minimum energy path from a 0.33 ML CO/Pd(111) adsorp-
tion site –fcc, in blue– and the three possible adsorption sites in 0.75 ML, namely top (black),
hcp (red) and fcc (green). Solid lines represent the 0.75 ML EANN PES energy calculations
while dashed lines stand for the energies obtained with DFT+vdW-DF of Ref. [31]. For both
sets of plots, solid dots correspond to the data points used. In each curve, the energy and
the height are referred to the values obtained at the bottom of the corresponding well, 𝐸well0
and 𝑧wellcm,CO respectively.
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0.33 ML CO/Pd(111), (Te,Tl)-AIMDEF,
PES energy and force errors

First PES Final PES
Predict configurations 116 927 116 927
𝐸/𝑁moving
(meV)

Max. error 10.448 7.147
RMSE 0.847 0.797

𝐹𝑥
(eV/Å)

Max. error 0.755 0.496
MESMAE 0.315 0.279
RMSE 0.0480 0.0470

𝐹𝑦
(eV/Å)

Max. error 0.907 0.626
MESMAE 0.312 0.282
RMSE 0.0479 0.0469

𝐹𝑧
(eV/Å)

Max. error 0.700 0.680
MESMAE 0.322 0.291
RMSE 0.0486 0.0472

Table 7.1: Maximum absolute-valued errors and RMSEs in energies per moving atom and
forces, and maximum errors set mean absolute errors (MESMAEs) of all moving atoms
in forces predicted by the first and final PESs (see text) for 0.33 ML CO/Pd(111) (Te,Tl) −
AIMDEF configurations selected from Ref. [31]. Both error data columns correspond to
the energy and force errors linked to PES predictions on a set of 116 927 configurations
following the (Te,Tl) − AIMDEF representativeness criteria as described in Section 5.2.1.
Here, 𝑁moving = 33.
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atom in vacuum times the difference in atoms for each species. Nevertheless, this
approach misses additional contributions to the total energy linked to the atomic
arrangements, so a straightforward comparison based solely on atom count becomes
insufficient to address the disparity between coverages. To align these minimum
energies, we use the retrained 0.75 ML CO/Pd(111) PES to evaluate the energies of
the 350 000 available 0.33 ML (Te,Tl) − AIMDEF configurations (Fig. 7.4). Then a
linear fit with the slope𝑚 = 1 is applied to the predicted energies, thus producing
an offset energy of 𝑏 = −22.04651 eV. Such is subsequently added to the 0.33 ML
AIMDEF energies in order to match the energy minima of both coverages.

Once the energy mismatch between the two coverages is solved, we train an
initial batch of PESs containing two hidden layers of 60 nodes per layer, having
as input 60 embedded density descriptors per atom element (15 Gaussian-type
orbitals (GTOs) for allowed angular momentum values of 𝐿 = 0− 3). The remaining
EANN-model parameters on GTO geometry, cutoff radius, and energy and force
weights for the cost function are chosen as in Section 5.2.2. The first training
data set comprises 34 283 configurations, with 90 % of them derived from the
(Te,Tl) − AIMDEF data (the 15 883 of the previous retrained 0.75 ML CO/Pd(111)
PES plus the 15 000 starting configurations for 0.33ML coverage). The remaining
10 % of the training configurations are obtained from Te − AIMDEF and include
1700 configurations for each coverage. We begin by constructing five PESs, each of
them trained with a random selection of 90% of the 34 283 configurations, while the
remaining 10% is used to check that the PES has not been overfitted. All PESs achieve
convergence with less than 45 iterations and yields for the energy RMSEs values of
0.55–0.65 meV and 0.84–0.92 meV per moving atom for the training and validation
data sets, respectively. Notably, as each coverage contributes approximately equally
to the total training set, the error values for the energy per moving atom have been
obtained by dividing the total energy error values by 34.5 –the average of moving
atoms for both coverages (33 for 0.33 ML and 36 for 0.75 ML).

These starting PESs are validated afterwards against four predict sets of 140 766
(0.33 ML Te − AIMDEF), 116 297 (0.33 ML (Te,Tl) − AIMDEF), 140 692 (0.75 ML
Te − AIMDEF) and 87 382 configurations (0.75 ML (Te,Tl) − AIMDEF) not present
among the training inputs. Validations are performed separately for each data set
due to the differences in the amounts of moving and total atoms in each ensemble.
We study the 10 absolute-valued maximum force errors for each moving atom and
component, |𝛥𝐹𝛾 |max, 𝛾 = 𝑥,𝑦, 𝑧, as we did in Section 5.2.3, and choose the PES with
the overall lower error values. By predict set, maximum force errors correspond to
945 (0.33 ML Te − AIMDEF), 863 (0.33 ML (Te,Tl) − AIMDEF), 877 (0.75 ML Te −
AIMDEF) and 1004 data points (0.75 ML (Te,Tl) − AIMDEF). These configurations
are subsequently added into the initial training set, increasing it to 37 972 data
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Figure 7.4: Linear fit of the energies of the configurations in the 0.33 ML CO/Pd(111)
surface predicted by the 0.75 ML CO/Pd(111) PES of Ref. [87] versus their (Te,Tl) −AIMDEF
counterparts taken from Ref. [31]. The slope of the fitting line has been fixed as𝑚 = 1 and
only the value of the y-intercept "b" has been fitted.
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points. Using the latter ones as input, five new PESs are retrained not from scratch,
but using the EANN weights from the previously selected multicoverage PES as
initial parameters that are updated during training. All second batch PESs achieve
convergence within seven iterations before showing overfitting. This remarks the
degree of accuracy already achieved for our first batch PES choice. Following a
comparative analysis of the retrained PESs, we select the one with lower maximum
force errors for the four predict subsets overall. This meticulous process ensures
the refinement and validation of an accurate and reliable PES for multicoverage
simulations.

Multicoverage CO/Pd(111) PES energy and force errors

𝑻e-AIMDEF (𝑻e, 𝑻l)-AIMDEF
0.33 ML 0.75 ML 0.33 ML 0.75 ML

Predict configurations 140 766 140 692 116 927 87 382
𝐸/𝑁moving
(meV)

Max.err. 1.407 2.441 6.093 9.311
RMSE 0.210 0.312 1.014 0.954

𝐹𝑥
(eV/Å)

Max.err. 0.1735 0.2331 0.9800 0.5073
MESMAE 0.0867 0.1212 0.2980 0.3103
RMSE 0.0146 0.0167 0.0488 0.0536

𝐹𝑦
(eV/Å)

Max.err. 0.1617 0.3138 0.5683 0.5045
MESMAE 0.0865 0.1194 0.2835 0.3136
RMSE 0.0144 0.0161 0.0488 0.0519

𝐹𝑧
(eV/Å)

Max.err. 0.3067 0.3492 0.6356 0.5938
MESMAE 0.1109 0.1752 0.2938 0.3444
RMSE 0.0187 0.0230 0.0498 0.0589

Table 7.2: Maximum absolute-valued errors and RMSEs in the energies per moving atom
and in the atomic forces, and MESMAEs for all moving atoms in forces predicted by the
final multicoverage EANN PES on predict AIMDEF data points. Two distinctions are
made, the first one between the type of dynamics simulations, namely Te − AIMDEF and
(Te,Tl) − AIMDEF, and the subsequent second one among the two CO coverages we have
AIMDEF data for, 0.33 ML and 0.75 ML. The number of AIMDEF configurations of each
predict subset are given explicitly. Total number of moving atoms 𝑁moving is 33 for 0.33 ML
and 36 for 0.75 ML.

Our final multicoverage PES demonstrates its robustness when calculating the
energies and atomic forces of the 485 137 predict set data points distributed into the
aforementioned four categories (Te − AIMDEF and (Te,Tl) − AIMDEF for 0.33 ML
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Figure 7.5: Comparison of the potential energies per moving atom, 𝐸EANN/𝑁mov, computed
as determined by the multicoverage EANN PES against their corresponding DFT values,
𝐸DFT/𝑁mov, for a set of 116 927 0.33 ML (Te,Tl) − AIMDEF configurations missing from
the training data.
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Figure 7.6: Comparison of the potential energies per moving atom, 𝐸EANN/𝑁mov, computed
as determined by the multicoverage EANN PES against their corresponding DFT values
𝐸DFT/𝑁mov, for a set of 87 382 0.75 ML (Te,Tl) − AIMDEF configurations missing from the
training data.
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and 0.75 ML). This can be confirmed with the maximum and RMSE values in
energies and forces and in the atomic force MESMAEs collected in Table 7.2. Let us
remark that, while energy errors and force RMSEs were calculated considering all
configurations of each subset, the maximum errors and MESMAEs in forces were
determined based on the top 10 larger errors per moving atom and spatial coordinate.
Comparing the central column of Table 5.3 with 0.75 ML (Te,Tl) −AIMDEF column
of Table 7.2 we notice close error values overall, with subtly larger errors in energies
and in atomic force RMSEs but marginally smaller maximum errors and MESMAEs
of forces. A similar trend is observed for 0.33 ML (Te,Tl) − AIMDEF (Table 7.1), as
the error magnitudes from the multicoverage PES fluctuate slightly compared to
the 0.33 ML PES predictions. Moreover, as only adsorbates are allowed to move for
Te − AIMDEF, Te − AIMDEF errors for each coverage are a few times smaller than
their (Te,Tl) −AIMDEF counterparts. This reason led to undergo energy and force
predictions for each predict subset in the initial PES batch separately, ensuring
Te −AIMDEF errors to be not masked by the larger errors from (Te,Tl) −AIMDEF.
Following such an approach, configurations with the most significant maximum
force errors could be identified for each dynamical situation and coverage. This
predictive quality of this multicoverage EANN PES can be further assured if we plot,
e.g., the EANN energies against the DFT ones for 0.33 and 0.75ML (Te,Tl)−AIMDEF
predict configurations (Figs. 7.5 and 7.6, respectively).
It is particularly interesting to study the CO desorption minimum energy path-

ways provided by this enhanced PES. In this respect, Fig. 7.7 presents a comparison
between the multicoverage EANN PES predictions and the DFT-vdW-DF refer-
ence data. Taking into account both Figures 7.2 and 7.3, it is evident that there
is a significant improvement in capturing the minimum energy paths accurately.
For the four adsorption sites across both investigated coverages, the desorption
energies are approximately correctly predicted by the PES, particularly for 0.75 ML
top and hcp sites. Moreover, the potential energy curves align closely with the
reference calculations for the four CO desorption possibilities, despite some slightly
oscillating pattern for 0.33 ML minimum energy path that was observed for 0.33 ML
PES prediction as well (Fig. 7.2). Notably, this alignment is achieved without incor-
porating data points for desorption under equilibrium conditions in the training
set for either coverage. Also, the appearance of physisorption wells for 0.75 ML
hcp and fcc adsorption sites for both compared data sets may also be pointed out,
despite chemisorption being the CO adsorption mechanism on the Pd surface in
each of the sites considered. In this respect, CO chemisorption was also reported in
Ru(0001) [94], whereas in Au(111) physisorption was found to be CO adsorption
mechanism [84].
Another test we can undergo involves predicting the desorption energies for
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Figure 7.7: Potential energy 𝐸0 against the CO CM height 𝑧cm,CO for one CO species des-
orbing along its site-specific minimum energy path from a 0.33 ML CO/Pd(111) adsorption
site –fcc, in blue– and the three possible adsorption sites in 0.75 ML, namely top (black), hcp
(red) and fcc (green). Solid lines represent the multicoverage EANN PES energy calculations
while dashed lines stand for the energies obtained with DFT+vdW-DF of Ref. [31]. In all
cases, solid dots correspond to the data points used. In each curve, the energy and the
height are referred to the values obtained at the bottom of the corresponding well, 𝐸well0
and 𝑧wellcm,CO respectively.
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Site-specific desorption energies

Coverage
(ML)

Desorption site
top bridge hcp fcc

0.33 — — — 1.55 / 1.58
0.60 — 0.85 / 0.95 — 0.78 / 0.87
0.75 0.75 / 0.74 — 0.81 / 0.83 0.88 / 0.94

Table 7.3: Comparison of site-specific desorption energies, in eV, calculated with the
CO/Pd(111) multicoverage EANN PES and with DFT+vdW-DF, shown with the format
𝐸EANNdes /𝐸DFTdes . Such energies are defined as the ones required to desorb one CO from Pd(111)
for 0.33 ML, 0.60 ML, and 0.75 ML adlayers. Previously estimated experimental desorption
energies for 0.24 ML, 0.64 ML, and 0.75 ML (top site) were equal to 1.38, 0.78, and 0.50 eV,
respectively, as reported elsewhere [30].

Test on random 0.60 ML CO/Pd(111) configurations

F (J/m2) 85.0 95.0 115.0
Number of configurations 114 120 1 212
𝐸/𝑁moving
(meV)

Max. error 4.804 5.532 3.524
RMSE 1.048 1.540 1.612

𝐹𝑥
(eV/Å)

Max. error 0.3321 0.3537 0.3195
MESMAE 0.1475 0.1328 0.1084
RMSE 0.0480 0.0521 0.0525

𝐹𝑦
(eV/Å)

Max. error 0.3129 0.3822 0.3434
MESMAE 0.1486 0.1343 0.1066
RMSE 0.0478 0.0528 0.0523

𝐹𝑧
(eV/Å)

Max. error 0.4402 0.4148 0.3459
MESMAE 0.1877 0.1579 0.1323
RMSE 0.0671 0.0678 0.0685

Table 7.4: Maximum absolute-valued errors and RMSEs in the energies per moving atom
and forces, andMESMAEs of all moving atoms in forces predicted by our final multicoverage
PES on three sets of (5 × 2

√
3)rect 0.60 ML CO/Pd(111) (Te,Tl) − AIMDEF configurations

randomly chosen from previous (Te,Tl) −MDEF calculations. For all sets, 𝑁moving =84.
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each adsorption site, 𝐸EANNdes , and compare those to previous DFT-vdW-DF results,
𝐸DFTdes [31]. Desorption energies are calculated by comparing the energy of a given CO
desorbed along the minimum energy path, i.e., normal with respect to the surface,
with the minimum energy configuration corresponding to a previously relaxed
adsorbate-substrate complex. Alternatively stated, the CO desorption energy for
a given site is, by definition, the one needed to desorb one CO adsorbed at such
site on the surface. Table 7.3 collects these results for comparison in the format
𝐸EANNdes /𝐸DFTdes . As we can check, our multicoverage PES predicts desorption energies
very close to the DFT-vdW-DF benchmark values for all sites of both 0.33 and
0.75 ML adlayers, the differences among values being of between ∼0.01 to 0.06 eV.
For 0.75 ML, it also orders the site-specific desorption energies correctly. As for
minimum energy paths, specific configurations with a CO desorbed perpendicularly
to its adsorption site were missing from the multicoverage PES training set, hence
this being another quality test our PES succeeds at. To end with, note in passing
that the latter calculations accurately describe the arrangements of CO adsorbed to
Pd(111), even though the experimental adsorption energy was overestimated by
about 0.2 eV, as discussed in detail in Ref. [31]. For further reference, a previous
experimental estimation of desorption energies yielded the values of 1.38 and 0.50 eV
for 0.24 ML and top site of 0.75 ML, respectively [30].

At this point, let us get a first impression of our PES predictive capabilities beyond
the data incorporated into its training. The fact that interaction energies are learned
additively from atomic environments in EANN enables our multicoverage PES to
flexibly model intermediate coverages between 0.33 and 0.75 ML, as discussed
elsewhere [339]. To see this, we can evaluate the energies and forces of randomly
chosen 0.60 ML configurations previously computed with (Te,Tl) − MDEF and
compare them to their corresponding DFT values. Here, we consider a supercell
of dimensions (5 × 2

√
3) rect containing 12 CO adsorbates and a 4-layer slab of 20

Pd atoms per layer, with 𝑁moving =84 moving atoms (Fig. 7.9, top panel). To do this
test in under a broader variety of conditions, we consider three different incoming
laser pulse fluences, namely 85, 95 and 115 J/m2, and perform the tests on sets of
114, 120 and 1212 configurations, respectively. As seen in Table 7.4, for each set,
maximum error, MESMAEs and RMSEs for energies and atomic forces are very
similar to the 0.33 and 0.75 ML calculations, thus underscoring the transferability
of our multicoverage PES. This is also verified after determining the desorption
energies for both adsorption sites present in a 𝑐 (5×

√
3)rect 0.60 ML cell, where one

and two CO adsorb at fcc and bridge sites in equilibrium, respectively. Comparison
of desorption energies (Table 7.3)) shows differences of ∼0.09 and 0.1 eV for fcc and
bridge, respectively, its relative ordering being correctly captured as well. Following
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Figure 7.8: Comparison of the potential energies per moving atom, 𝐸EANN/𝑁mov, computed
as determined by the multicoverage EANN PES against their corresponding DFT values
𝐸DFT/𝑁mov, for a set of 1446 0.60 ML (Te,Tl) − AIMDEF configurations. Among the latter
ensemble, 114, 120, and 1212 data points have been obtained under incident laser fluences
of 85, 95, and 115 J/m2, respectively.
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the aforementioned remark about 𝐸des overestimation by DFT+vdW-DF contrasted
to experiments, the closer experimental desorption energy available for reference
is equal to 0.78 eV for 0.64 ML adlayer [30]. Equally impressively, the predicted
energies per moving atom by our PES for the 1446 data points for 0.60 ML (Fig. 7.8)
differ from their respective DFT values as little as those energies coming from 0.33
or 0.75 ML configurations (Figures 7.5 and 7.6, respectively).

Overall, with the 0.75 ML and 0.33 ML PESs as previous references, our multicov-
erage PES seems to behave astonishingly solidly regarding the available AIMDEF
data, and even beyond it as seen for 0.60 ML tests. Now we are confident enough
to deal with more comprehensive studies about how femtosecond laser-induced
desorption of CO from Pd(111) changes under distinct conditions. More precisely,
let us analyze its dependence with incident laser fluence, under different CO cover-
ages and in terms of the delay between a pump and a probe pulse in the case of
2PC dynamics.

7.3 Coverage dependence of the desorption of CO
from Pd(111) induced by a single femtosecond
laser pulse

Now that we have a properly working multicoverage EANN PES to perform MDEF
on CO/Pd(111), we may proceed with more complex studies on its femtosecond
laser-induced desorption dynamics. In fact, we want to analyze how such pro-
cess varies in this adsorbate-substrate complex with respect to the CO coverage.
CO/Pd(111) is a suitable candidate for such a study, as CO can take no less than 17
different stable adlayer arrangements as found using low-energy electron diffrac-
tion [17], thus remarking its complexity from a structural perspective. According
to the latter work, CO adsorbs on Pd only at three-fold hollow sites for coverages
equal to or below 0.33 ML, at both bridge and three-fold hollow sites for 0.50 ML,
at a mixture of mainly bridge or close-to-bridge sites in the interval [0.50,0.67] ML,
also involving top and three-fold hollow sites above 0.60 ML, and the mixture of
top and three-fold hollow sites near saturation at 0.75 ML. Linked to this struc-
tural complexity, another later experimental work pointed out how sharply CO
desorption varies with the Pd(111) coverage [30]. As reported there, single pulse
experiments at different fluences in DIMET regime showed that desorption yield
can change up to two orders of magnitude as the initial CO coverage increases from
0.33 ML to 0.75 ML. Furthermore, their 2PC experiments also reveal how distinct
the role played by electrons and lattice phonons is in terms of the coverage. Such
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Figure 7.9: Top view of minimum energy configurations obtained with the multicoverage
EANN PES for 0.60 ML of CO coverage. Top structure corresponds to a local minimum
higher in energy than the bottom structure. The supercells used in our (Te,Tl) −MDEF
simulations are represented in solid lines. Grey dashed lines indicate the smallest pattern
that is repeated within supercells.
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observation comes not only from the variability in 2PC desorption yield widths
for the different adlayers, but also because the results are consistent either with
a weak hot electrons-adsorbate or a strong phonons-adsorbate coupling. The lat-
ter aspect will be covered more thoroughly in Section 7.4. Further analysis with
an empirical friction three temperature model of CO desorption from substrates
such as Cu(100) [351] or Ru(001) [92] rules out a significant impact of phonons
on the resulting 2PC desorption yields, despite of the large lattice temperature
predictions by the model [32]. Previously, MDEF was unable to study questions
such as the effect of adlayer structure on laser-initiated DIMET or the relative
role played by hot electrons and phonons on this chemical process. However, our
(Te,Tl) −MDEF methodology with the multicoverage PES opens the way to such
theoretical analysis, which we have done for CO/Pd(111) with an unprecedented
level of depth [89].

Figure 7.10: Time evolution of the electronic temperature, 𝑇𝑒 , (left panel) and the lattice
temperature for the three topmost Pd surface layers, 𝑇𝑙 , (right panel), as determined with
2TM (solid lines) for different pulse laser fluences. Dashed lines show the mean temperature
of the three topmost mobile Pd layers in (Te,Tl) −MDEF calculations. The incoming laser
pulse is assumed to reach its peak intensity at time zero, and its FWHM is represented as
the gray shaded region.

As we explained in Chapter 3, one of the particular features of DIMET regime
is the superlinear dependence of the yield on the laser fluence. To explore how
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Figure 7.11: Electronic heat capacity coefficient 𝑐𝑒 in palladium as a function of the
electronic temperature. The 𝑐𝑒 (𝑇e) considered in our calculations is shown as the solid
green line. This result is obtained from a fit to previous experimental data of Shimizu
et al. (1963) [352] (orange line), Miiller et al. (1968) [353] (black dots), and Miiller et
al. (1971) [354] (red dots). For reference, a previous fit of 𝑐𝑒 (𝑇e) due to Szymanski et al.
(2007) [38] is also depicted with a dashed blue line. 𝑐𝑒 (0) has been derived from the heat
capacity low temperature measurements in Veal et al. (1964) [355] (dotted pink line).

Fitting parameters for Pd 𝒄𝒆 (𝑻e)

Parameter Value Units
𝑎0 273 J K−2 m−3

𝑎1 2 702 J K−2 m−3

𝑎2 214 J K−2 m−3

𝑎3 98 180 J K−2 m−3

𝑇1 -96 K
𝑇2 213 K
𝑇3 -2 085 K
𝜎1 50 K
𝜎2 103 K
𝜎3 634 K

Table 7.5: Fitting parameters used for Pd 𝑐𝑒 (𝑇e) (Eq. (7.4)) according to previous experi-
mental data of Refs. [352, 353, 354].
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DIMET works across different CO/Pd(111) coverages, we perform (Te,Tl) −MDEF
calculations on 0.33, 0.60, and 0.75 ML coverages. We use the same initial conditions
of the experiments reported in Ref. [30], in order to subsequently contrast our
calculations with those experimental results. As a result, each laser pulse we
employ has a FWHM of 130 fs, wavelength of 780 nm and sech2 profile, and their
fluences vary along three distinct ranges. Specifically, we take multiple-of-five
fluences between the intervals [100,130], [85,115] and [50,80] J/m2 for 0.33, 0.60 and
0.75 ML, respectively. Time evolution of the surface electronic and phonon bath
temperatures according to 2TM (Section 3.2.1) for these incoming pulses along the
range of fluences [50,130] J/m2 is plotted in Fig. 7.10. In this respect, the macroscopic
thermal coefficients 𝜅𝑒 (𝑇𝑒,𝑇𝑙 ) and 𝐶𝑙 (𝑇𝑙 ), the electron-phonon coupling constant 𝑔
and the laser source term 𝑆 (𝑧, 𝑡) are taken as defined in Ref. [356]. Electron heat
capacity is written as a function of 𝑇𝑒 as 𝐶𝑒 = 𝑐𝑒 (𝑇𝑒) 𝑇𝑒 . Here, the proportionality
factor 𝑐𝑒 (𝑇𝑒) has been fitted for Pd according to previous experimental results [352,
353, 354] to the equation,

𝑐𝑒 (𝑇𝑒) = 𝑎0 + 𝑎1 exp
(
−𝑇𝑒 −𝑇1

𝜎1

)
+ 𝑎2 cosh−2

(
𝑇𝑒 −𝑇2
𝜎2

)
+ 𝑎3 cosh−2

(
𝑇𝑒 −𝑇3
𝜎3

)
(7.1)

with the fitting constants 𝑎𝑖 , 𝑇𝑖 , and 𝜎𝑖 parameterized as shown in Table 7.5. Our fit
is contrasted with the aforementioned experimental results and other previous fits
in Fig. 7.11.

Regarding the dynamical description of the system atoms, adsorbates are attached
to a Langevin thermostat (Eq. (3.12)), as done for previous AIMDEF and MDEF
works on CO/Pd(111) [31, 87, 88]. In this respect, friction coefficients for C and O
atoms are obtained using LDFA, where electronic densities created by Pd atoms
on the surface are evaluated on-the-fly from the DGF according to Eq. (5.4) [87].
Noteworthy, there is a key distinction in the form in which substrate atoms are
described dynamically in the following simulations. In previous (Te,Tl) −AIMDEF
or Tl − AIMDEF calculations, the two topmost layer substrate atoms were coupled
to a NH thermostat, according to Eqs. (3.14) and (3.15). Third topmost layer atoms
were modeled with adiabatic dynamics (Eq. (3.16)) and bottom layer ones were
taken to be frozen. While for the current calculations the bottom layer atoms are
kept motionless, surface atoms of the three topmost Pd layers are instead described
with Langevin equation,

𝑀𝑖

𝑑2R𝑖
𝑑𝑡2

= −∇R𝑖
𝑉 ({R𝑚}) − 𝜂Pd𝑖 (R𝑖)

𝑑R𝑖
𝑑𝑡

+ R𝑒,𝑖 [𝑇𝑒 (𝑡), 𝜂Pd𝑖 (R𝑖)] , (7.2)

so neither NH thermostat nor the exact𝑇𝑙 (𝑡) are involved in the moving Pd dynam-
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ical treatment. Here, each Pd friction coefficient 𝜂Pd𝑖 is calculated after assuming it
to be linearly proportional to the electronic density surrounding each Pd atom, i.e.,
𝜂Pd𝑖 ∝ 𝜌 (R𝑖). From Eq. (5.4), one can obtain that:

𝜂Pd𝑖 (𝑅) =
(
𝑅0
𝑅

)3
𝜂Pd(𝑅0) , (7.3)

where 𝑅 represents the Wigner-Seitz radius corresponding to the electronic density
𝜌 (R𝑖) at Pd atom 𝑖 , and 𝑅0 is a predefined Wigner-Seitz radius at which 𝜂Pd(𝑅0) is
determined. We fix 𝜂Pd(𝑅0) according to the electron-phonon coupling constant
𝑔 of 2TM. These two quantities fulfill the following relationship as discussed in
Ref. [357]:

𝜂Pd(𝑅0) ≈
𝑚Pd
3𝑘B𝑑Pd

𝑔 = 1.6223 a.u. , (7.4)

being𝑚Pd and 𝑑Pd the Pd atomic mass and density, respectively. We consider the
latter quantity to be 4 atoms per 64 Å3. As the constant 𝑔 is a property of the
bulk, 𝑅0 can be taken as the Wigner-Seitz radius corresponding to the embedding
electronic density of a Pd atom in the bulk. Based on our DFT bulk calculations,
we set 𝑅0 = 4.38 a.u. . To verify the validity of these approximations on friction,
it is essential to check whether this Langevin thermostat, coupled to the moving
Pd surface atoms, accurately provides the desired surface temperature, as with
NH thermostat in earlier studies. To this end, we may compare the 𝑇𝑙 (𝑡) curves in
the right panel of Fig. 7.10 observed in our (Te,Tl) −MDEF trajectories (dashed
lines) with the theoretical 2TM calculations (solid lines). As we can observe, our
dynamics results align very well with the latter curves, specially from 12 ps after
the arrival of the laser pulse maximum on, this supporting our methodology and
friction description for substrate Pd atoms.
Prior to perform (Te,Tl) −MDEF, we thermalize coverage-specific sets of 100

(Te,Tl) − MDEF trajectories to 𝑇e = 𝑇l = 90 K, in order to match the initial Pd
surface temperature of the experimental work of Ref. [30]. All trajectories of each
thermalized ensemble start from the minimum energy configuration corresponding
to each CO coverage considered, using randomized atomic initial velocities, and
last 50 ps. All configurations sampled before reaching a Boltzmann distribution
(from 0 to 15 ps, approximately) were discarded. Then, from the remaining ones,
random configurations are chosen as the initial arrangements to do subsequent
(Te,Tl) − MDEF under femtosecond laser initial excitation. Let us briefly make
some remarks about this thermalization stage. First, let us adopt the notation
fcc:hcp:bridge:atop to denote the proportion of CO adsorbed at each site in the
simulation cell. For both 0.33 and 0.75 ML coverages, and for all configurations
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visited during their thermalizations, no CO molecule diffuses along surface, no
matter the dimensions of the respective supercells. This implies that the proportions
of CO adsorbates in each site remain constant. In other words, the adsorption ratios
are constant for the full 50 ps span and, in particular, equal to 1:0:0:0 for 0.33 ML
and 1:1:0:1 for 0.75 ML.

Exponents 𝒏 in 𝑷des ∝ 𝑭 𝒏

Theory: (Te, Tl) − MDEF
Coverage

(ML) 0.33 0.60 0.75

𝒏th
(3 × 3): 11.6 ± 1.5
(6 × 6): 12.0 ± 1.0 (5 × 2

√
3)rect: 7.1 ± 0.5

(2 × 2): 7.6 ± 0.4
(4 × 2): 7.1 ± 0.3
(4 × 4): 7.0 ± 0.3

Experiments (Hong et al.) [30]
Coverage

(ML) 0.24 0.64 0.75

𝒏exp 9.3 ± 0.5 10.3 ± 0.4 6.9 ± 0.3

Table 7.6: Computed (Te,Tl) −MDEF theoretical (𝑛th) and experimental [30] (𝑛exp) values
of the exponent 𝑛 in the power law 𝑃des ∝ 𝐹𝑛 for CO/Pd(111) femtosecond laser-induced
desorption. Values are provided for various CO coverages. Among theoretical calculations,
cross products indicate the dimensions of the particular supercell considered.

On the contrary, at 0.60ML adlayer, the proportion of CO adsorbed at the different
sites changes during thermalization dynamics, even at a goal temperature as low
as 90 K, hence showing how mobile CO adsorbates become at this intermediate
coverage. Following previous experimental works [17, 30], we set all 0.60 ML
trajectories to begin from a 𝑐 (5×

√
3)rect structure decorated by three COmolecules

that adsorbed at sites 1:0:2:0 after relaxation. Nonetheless, after analyzing the
configurations sampled during these thermalization trajectories, our multicoverage
PES predicts a more stable, yet more complex structure, namely (5×2

√
3)rect-12CO,

with site proportions of 2:1:3:0. Figure 7.9 depicts a comparison of both atomic
arrangements. Amazingly, DFT calculations support this observation, which is also
consistent with a previous report on the broad amount of stable structures observed
between 0.50 and 0.60 ML using low energy electron diffraction (LEED) [17]. Let us
remind once more that no data from this intermediate coverage was incorporated
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to the multicoverage PES training. Altogether, these remarks further support the
accuracy and transferability of our multicoverage PES, from which we already
gained some insights at the end of Section 7.2.

Figure 7.12: CO desorption probability against the absorbed fluence for different initial
coverages. Reddish, bluish, and greenish full circles stand for (Te,Tl) −MDEF theoretical
results for 0.75, 0.60, and 0.33 ML coverages, respectively, with varying simulation cell size.
Darker red, blue, and green triangles correspond to the experimental results of Ref. [30] for
0.75, 0.64, and 0.24 ML coverages, respectively. Each set of data points has been fitted to a
log-linear function (solid lines).

After obtaining for each coverage a set of thermalized configurations, it is time
to perform (Te,Tl) −MDEF with them along the fluence spans previously indicated.
Each trajectory is integrated in time with the Beeman algorithm using a time step
of 0.2 fs until reaching a time of 100 ps. Depending on the fluence and coverage,
an amount of trajectories between 6750 and 60 000 has been calculated in order
to reduce the statistical uncertainty for each data point of Fig. 7.12. This figure
shows, in log-log scale, the fluence dependence of the CO desorption probability,
𝑃𝑑𝑒𝑠 , after reaching saturation, and in terms of the laser fluence 𝐹 absorbed by the
surface. Coverages are distinguished from each other by greenish (0.33 ML, or
0.24 ML for experiment), blueish (0.60 ML, or 0.66 ML for experiment) and reddish
colors (0.75 ML). Experimental reference data and (Te,Tl) − MDEF data points
are displayed with triangles and full circles, respectively. For both sets, log-linear
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fits are performed in order to determine the exponent 𝑛 characteristic of DIMET
mechanism, as 𝑃des ∝ 𝐹𝑛 . All 𝑛 values are collected in Table 7.6. Furthermore, we
have analyzed how 𝑃des varies with the supercell size for 0.33 and 0.75 ML. In
fact, properties of chemical processes may be affected by the size of the simulation
cell considered, as reported, e.g., for the energy exchange in the scattering of CO
on Au(111) [358], the photoinduced recombinative desorption probability of H2
on Ru(0001) [359], and the relaxation of hot O atoms after O2 dissociation on
Pd surfaces [360]. In our system, we have also simulated CO photodesorption on
0.33 ML 6×6 and on 0.75 ML 2×2, 4×4 and 6×6 supercells (Fig. 7.1). According to our
results, 𝑃des increases with increasing cell sizes. Particularly for 0.75 ML, we see that
for bigger supercells than a 4×4 one this increment starts to become negligible, as
hinted from contrasting 6×6 and 4×4 results at 80 J/m2. As a result, in the following
we are restricting ourselves to the theoretical results of the bigger cell sizes tried
for each coverage for discussion purposes. All this said, and despite its influence
on desorption probability, cell size does not affect the exponent 𝑛 (Table 7.6). For
0.60 ML, instead, (Te,Tl) −MDEF has been done only on a (5 × 2

√
3)rect supercell.

Now let us discuss in more detail the nonlinear exponent results of Table 7.6.
One can see that 𝑛 decreases as the coverage increases, being 𝑛th(0.33 ML) >

𝑛th(0.60 ML) ≳ 𝑛th(0.75 ML). In a DIMET process, 𝑛 can be interpreted as the
effective number of energy jumps that the adsorbate undergoes before escaping
its adsorption well and desorbing [47, 361]. At this point, let us look at the des-
orption energies 𝐸d for each site and each coverage (Table 7.3). If we compute the
average desorption energy for each adlayer 𝐸d, we obtain the following sequence:
𝐸d(0.33 ML) > 𝐸d(0.60 ML) ≳ 𝐸d(0.75 ML). This means that the orderings of both
𝑛th values and 𝐸d for each adlayer correlate with each other. An analogous, site-
specific trend was already determined theoretically for femtosecond laser-induced
desorption of O2 from Ag(110) [45]. Now, if we compare each 𝑛𝑡ℎ with its ex-
perimental counterpart [30], we see a reasonably good level of coincidence. For
0.75 ML, the only coverage coincident for both (Te,Tl) −MDEF and experiment,
the agreement is impressive between our calculation (𝑛th(0.75𝑀𝐿) = 7.0± 0.3) and
the experimental value (𝑛exp = 6.9 ± 0.3). For both 0.33 and 0.60 ML, our results are
compared to the experimental values for 0.24 and 0.66 ML, respectively, yielding in
both cases a difference of ∼ 3 units between exponents. Such discrepancies make
sense given how much 𝑛 may vary for slight changes in the CO coverage. Never-
theless, the ordering of 𝑛exp is nonmonotonic with coverage, i.e., 𝑛exp(0.64 ML) ≳
𝑛exp(0.24 ML) > 𝑛exp(0.75 ML). Following Ref. [30], the latter circumstance may
be argued to happen due to the presumed high mobility of CO in adlayers below
0.33 ML, this leading to potentially smaller desorption energies than the one for
0.33 ML.

185



Chapter 7 Multicoverage studies on CO/Pd(111) with MDEF

Figure 7.13: CO desorption probability as a function of coverage for fixed absorbed fluence
77.6 J/m2. Theoretical data points for each adlayer, depicted as red crosses, have been
computed from log-linear extrapolation at the required fluence of left graph data fit for the
larger supercell size considered. Experimental data points, shown as blue dots with their
respective uncertainty intervals, are taken from Ref. [30].

186



Coverage dependence of the desorption of CO from Pd(111) induced by a single
femtosecond laser pulse

Section 7.3

Another conclusion we can draw from Fig. 7.12 is that our theoretical results of
𝑃des are clearly smaller than their experimental counterparts, namely by factors of
∼32, ∼3.5, and ∼2 for 0.33, 0.60, and 0.75 ML, respectively. Discrepancies for the
intermediate- and large-size coverages may be explained by the somewhat overesti-
mated DFT desorption energies compared to experimental measurements [31], yet
they can be seen as minor considering the complexity of femtosecond photoinduced
CO desorption. Another source of discrepancy may be the differences between
low and intermediate coverages handled in (Te,Tl) −MDEF and in the experiment.
In particular, this may explain the larger underestimation of 0.33 ML desorption
probabilities compared to 0.24 ML experimental data. For coverages below 0.33 ML,
values of 𝑃des could increase due to the formation of 0.33 ML stability islands, as an
uniform 0.33ML coverage could not be prepared experimentally. At the island edges,
presence of CO adsorbed at bridge sites would then enhance the experimental 𝑃des
due to its lower adsorption energy than at fcc sites, as mentioned earlier [26, 30]. To
verify this, such a large 0.33 ML island would need to be simulated, this requiring
an accordingly much larger supercell (bigger than 0.33 ML 6×6) and becoming very
expensive computationally, so such simulations have not been tackled.
Furthermore, we can analyze the coverage dependence of CO desorption for

a fixed fluence, as experimentally done for a fluence 𝐹 = 77.6 J/m2 in Ref. [30].
Figure 7.13 depicts the comparison between our (Te,Tl) −MDEF calculations for
that laser fluence, in red crosses, and the experimental results, shown as blue dots
with their respective uncertainty intervals. It should be noted that the theoretical
desorption probability values for each coverage have been determined by extrap-
olating our calculated log-linear functions 𝑃des(𝐹 ) (Table 7.6 and Fig. 7.12) to the
aforementioned specific fluence. Most of the experimental data points were also ob-
tained by extrapolating to the same fluence [30]. Our calculations align closely with
the experimental trend, also reproducing the increase in 𝑃des with coverage and,
particularly, the sharp increase from intermediate (∼0.50 ML) to high (∼0.75 ML)
adlayers. Our previous reasoning on CO desorption energies and their dependence
on coverage may also explain this latter trend.

Making use of our multicoverage PES, we can further unravel the relative effect
of hot electrons and phonons on CO photodesorption. This can be done with
MDEF either after exciting the system with one pulse or studying 2PC (Section 7.4).
Focusing on the former, we aim to perform Te −MDEF and Tl −MDEF calculations
(see Section 3.2.2.5 for more details) complementary to previous (Te,Tl) −MDEF
simulations, which start from the same initial configurations and are integrated
under the same conditions up to 100 ps. As our multicoverage PES included Te −
AIMDEF configurations for both 0.33 and 0.75 ML, we choose both adlayers. Among
them, we choose some fluences covering the respective intervals previous (Te,Tl) −
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MDEF calculations are available for, hence we do simulations at fluences 100 and
130 J/m2 for 0.33 ML and 60, 70, and 80 J/m2 for 0.75 ML. Figure 7.14 shows the
comparison of Te −MDEF (dotted lines), Tl −MDEF (dashed lines) and (Te,Tl) −
MDEF (full lines) calculations for each combination of coverage and laser fluence
considered, along the full integration time. For all combinations, it can be seen
that 𝑃des(𝑡) for (Te,Tl) −MDEF is larger throughout the entire integration time
than for Te −MDEF and Tl −MDEF separately. Consequently, when adsorbates
are excited by both electronic and phononic mechanisms cooperatively, more CO
desorption occurs than if either one or the other operates individually. Not only
this, but this synergy also triggers the desorption process at earlier times than for
Te−MDEF and Tl−MDEF in all cases, as seen along the interval [0,20] ps (Fig. 7.15).
Hence, the combined effect of both excitation channels leads to a faster and more
substantial photodesorption of CO on Pd, in agreement with the findings of an
earlier AIMDEF work [31]. Not only that, but this synergistic view holds for longer
time ranges than those reachable by (Te,Tl) − AIMDEF, i.e., as long as 100 ps after
laser irradiation.
Now let us compare Te −MDEF and Tl −MDEF results. For each combination

of adlayer and fluence, we can see in Fig. 7.15 how CO desorption begins earlier
for Te − MDEF than for Tl − MDEF. This is consistent with 2TM, since laser
absorption by the surface leads to electron heating to very high temperatures in
the first instance, as verified earlier in Fig. 7.10. At later times, 𝑃des(𝑡) becomes
very similar for Te −MDEF and Tl −MDEF for 0.75 ML at F = 60 J/m2 (Fig. 7.14).
However, with this sole exception, some picoseconds after the desorption starts,
the phonon-only desorption probability becomes larger than the electron-only
one in the other cases considered. The crossing happens within the first 15 ps,
and arises earlier the higher the incident laser fluence is. Furthermore, we can
see that the phonon contribution becomes increasingly important as the fluence
increases. Note in passing that 2TM peak lattice temperatures for 𝐹 = 60, 70, 80,
100, and 130 J/m2 are equal to 638, 718, 797, 952, and 1180 K, respectively (Fig. 7.10).
The Pd surface is able to heat so sharply due to its large electron-phonon energy
exchange coupling constant of 𝑔 = 8.95 × 1017 W K−1m−3 [356]. Therefore, hot
electrons drive the CO desorption process during the first picoseconds after the
surface interacts with the laser, while at later times subsequently heated phonons
become the dominant desorption mechanism in a nonnegligible way due to the
high transient temperatures they reach.

Furthermore, and in contrast to previous kinetic models, (Te,Tl) −MDEF allows
us to elucidate additional details about how CO desorbs. First, we can observe
that CO molecules diffuse uniformly along the entire Pd surface while they are
desorbing, also supporting a previous remark obtained with (Te,Tl) −AIMDEF [31].
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Figure 7.14: Time evolution of the average CO desorption probability 𝑃des(𝑡) along the full
dynamics integration time of 100 ps. (Te,Tl) −MDEF, Te −MDEF and Tl −MDEF results
are depicted in full, dotted, and dashed lines, respectively. Left: MDEF results obtained for
the 0.33 ML adlayer and fluences 100 J/m2 (blue, bottom left), and 130 J/m2 (red, top left).
Right: MDEF results obtained for the 0.75 ML adlayer and fluences 60 J/m2 (blue), 70 J/m2

(green), and 80 J/m2 (red).
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Figure 7.15: Close-up of the time evolution of the average CO desorption probability
𝑃des(𝑡) (Fig. 7.14) along the early stage of photodesorption process ranging the initial 20 ps.
(Te,Tl) −MDEF, Te −MDEF and Tl −MDEF results are plotted in full, dotted, and dashed
lines, respectively. Left: MDEF results for the 0.33 ML adlayer and fluences 100 J/m2 (blue),
and 130 J/m2 (red). Right: MDEF results obtained for the 0.75 ML adlayer and fluences
60 J/m2 (blue), 70 J/m2 (green), and 80 J/m2 (red).
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Figure 7.16: Distribution of the CO CM coordinates for the CO/Pd(111) system over the Pd
surface for all dynamics times and different ranges of heights, centered at the values 𝑧cen
written in the top left part of each subplot, and measured from the Pd topmost layer. For
each panel, CO positions are contained within the intervals [𝑧cen−0.5, 𝑧cen+0.5) Å. Current
results correspond to an incident laser fluence F = 80 J/m2 and an adlayer of 0.75 ML.
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Figure 7.17: Probability density map of CO CM height, 𝑧cm,CO, computed from the topmost
Pd layer, 𝑧surf, as a function of time. From top to bottom, results are shown in increasing
coverage order: 0.33 ML (top), 0.60 ML (middle), and 0.75 ML (bottom). From left to right,
results are sorted in increasing incident laser fluence, which varies between coverages:
100 J/m2 (top left), 130 J/m2 (top right), 85 J/m2 (middle left), 115 J/m2 (middle right), 60 J/m2

(bottom left), and 80 J/m2 (bottom right). White and cyan full lines mark examples of direct
CO desorption and desorption after transient trapping, respectively.
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An example of this is shown in Fig. 7.16 for 0.75 ML adlayer and F=80 J/m2. Here, the
CM 𝑥 and 𝑦 coordinates of all CO molecules present in all the simulated trajectories,
𝑥cm,CO and 𝑦cm,CO, have been plotted for all simulation times after laser irradiation
and different heights

(
𝑧cm,CO − 𝑧surf

)
± 𝛿𝑧cm,CO. In the latter expression, the CO

heights are taken with respect to the average of the surface topmost Pd atom
𝑧 coordinates, 𝑧surf. As represented in particular at a distance 2.5 ± 0.5 Å, CO
positions (𝑥cm,CO, 𝑦cm,CO) are initially well found at the top, hcp and fcc points (blue
dots) and after excitation they spread uniformly along the 𝑥𝑦 plane and fill the
entire region of study (red points). This highlights how mobile CO becomes in
this photoexcitation context. Interestingly, Fig. 7.16 also shows how part of the
excited CO becomes trapped in the physisorption wells. This has been further
analyzed in Fig. 7.17 for 0.33, 0.60 and 0.75 ML at the smaller and larger fluence of
the interval for each adlayer. Here we show the normalized probability distributions
for finding CO CMs at any height 𝑧cm,CO − 𝑧surf. From the graph, we see that CO
may desorb either directly or after remaining trapped for several picoseconds before
completing desorption, as indicated for some arbitrary CO desorbates in white and
cyan lines, respectively. For all combinations of adlayer and fluence, the trapping
region is located at distances

(
𝑧cm,CO − 𝑧surf

)
∈ [5.0, 7.5] Å, or, equivalently, at a

distance of
(
𝑧cm,CO − 𝑧cm,CO,ads

)
∈ [2.5, 5.0] Å from the plane formed by the mean

CM positions of CO adsorbates in the adlayer, 𝑧cm,CO,ads. Another aspect is that
such a trapping mechanism is more preponderant the larger the coverage is, this
hinting at the possibility that CO-CO van der Waals interactions may be causing
such phenomenonology.

Additionally, we can study the distribution of angles subtended by the desorbing
CO molecules with respect to the axis normal to the surface for different coverage
and fluence combinations. For each coverage, we consider the lowest and highest
fluences for which we have performed (Te,Tl) −MDEF simulations. The results
have been represented in Fig. 7.18. The rather broad distributions obtained for the
molecules that follow direct desorption (green bars) remark the complexity of the
desorption process that does not follow the minimum energy paths in which the CO
simply desorbs along the surface normal. Equally, transiently trapped molecules are
characterized by broader polar angle distributions (red bars), as expected. Notice
that for each individual plot, the joint distributions of both direct and transiently
trapped desorbed CO are represented in blue bars.
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Figure 7.18: Polar angle distributions of the desorbing CO calculated for the combination
of coverage and laser fluence indicated on top of each plot (blue histograms). For each
graph, the angular distribution of the molecules that desorb directly (green) and after being
transiently trapped in the physisorption region (red) are depicted separately. Dashed lines
mark the mean polar angle for each distribution, where the same color code is utilized.
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7.4 Simulations of two-pulse correlation
experiments of CO desorption from Pd(111) at
different coverages

Now, let us turn our attention to the 2PC experiments on adsorbate-decorated
surfaces. Although some remarks on femtosecond laser pump-probe spectroscopy
were previously given in Section 3.1, let us briefly recall its basics. This experimental
technique consists of irradiating an adsorbate-substrate complex with two short
laser pulses. The first one, the pump pulse, is used to excite the system and to
initiate its dynamical processes that one wants to study. Some time after excitation,
a second pulse or probe also irradiates the system to measure how its dynamical
properties vary over time. This experimental technique has been used to analyze
different adsorbate/surface systems such as NO/Pd(111) [34], CO/Ru(0001) [36],
CO/Ru(001) [92],H/Ru(0001) andD/Ru(0001) [37],O2/Pd(111) [38] or CO/Pd(111)
[30].

In 2PC experiments, both laser pulses have fixed fluences and energies. The time
delay between both pulses is then tuned and the yield of the reaction undergone
by the adsorbed species is then determined in terms of different delay times [32].
Using this technique, one is able to resolve short time scales of dynamics from an
experimental side, so that particularly subpicosecond time ranges may be explored
explicitly and hence photoinduced surface reactions such as desorption can be
tracked. The time resolution reached depends on the duration of the laser pulses. As
a result, 2PC experiments can also clarify how the transfer of energy from the surface
to the adsorbed species occurs and, in particular, which subsystem (electronic or
phononic) dominates the reaction mechanism. This latter circumstance is reflected
in the shape of the 2PC desorption probability curve as a function of the time
delay. More precisely, the process is considered to be electron-driven if the 2PC
desorption probability curve exhibits a narrow peak centered on zero delay, with
FWHMs of the order of ∼ 1 ps or less. The reason is that such narrow peaks indicate
an energy transfer from the substrate to the adsorbates faster than the electron-
phonon thermalization time scale after laser action, and only electrons can react
in subpicosecond time scales to the pulses. In other words, hot electrons couple
to the adsorbates and induce the subsequent chemical process on the adsorbed
species before transferring their energy gains to the lattice. The combined action
of both pulses significantly increases the electronic temperature. On the contrary,
wider 2PC desorption probability profiles have an ambiguous meaning [30, 32].
FWHMs longer than a few picoseconds, and therefore longer than the electron-
phonon thermal equilibration time, may hint at a phonon-driven process with a
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strong phonon-adsorbate coupling. Consequently, phonons require long time scales
to collect energy from hot electrons and to couple to adsorbate DOFs. However,
these wider FWHMs may also be compatible with electron-dominated reactions,
in scenarios of weak coupling of electrons to adsorbates and no phonon-driven
energy input into the DOFs of the adsorbates. Therefore, in the latter case, further
information is needed in order to clarify the reaction-driving mechanism. This
further information can be gained from the examination of other experimental
characteristics or from theoretical modeling.

It is interesting to note one particular fact of the 2PC desorption probability curve
versus the time delay for scenarios where hot phonons are observed to contribute to
the excitation of the adsorbate. In these situations, the 2PC desorption probability
curve presents a dip around zero delay [92]. It is a consequence of the 2TM linked
to the competition between thermal diffusion of hot electrons and electron-phonon
coupling [32]. To clarify this point, recall the heat diffusion equation for the
electronic bath in 2TM, Eq. (3.1). As we discussed in Section 3.2.1, electrons diffuse
heat towards the bulk proportionally to the electronic thermal conductivity 𝜅𝑒 ,
∇𝑧 [𝜅𝑒 (𝑇𝑒)∇𝑧 𝑇𝑒], and to the lattice through the electron-phonon coupling constant
as −𝑔(𝑇𝑒 − 𝑇𝑙 ). For delays close to or equal to zero, the second pulse increases
𝑇𝑒 before the hot electrons have thermally equilibrated with the lattice. Due to
the nonlinear behavior with 𝑇𝑒 of the diffusion term, heat diffusion into the bulk
dominates over electron-phonon coupling at high 𝑇𝑒 . Consequently, the energy
transfer to the surface lattice atoms is briefly reduced, this being reflected in a
reduction of 𝑇𝑝ℎ when 𝑇𝑒 peaks, which has as a consequence the aforementioned
dip in the desorption probability curve at zero delay.

Now, let us focus on the results obtained in 2PC experiments on the desorption of
CO from Pd(111) as reported in Ref. [30]. Fluences of incident pulses were chosen
differently for each coverage in order to obtain similar desorption probabilities for
delay zero for the three investigated coverages (0.24, 0.64 and 0.75 ML). Furthermore,
in the three cases the stronger, p-polarized pulse was chosen to have a fluence
2.4 times higher than the weaker, s-polarized one. Time delays were considered
positive when the strong pulse arrived later than the weak pulse and negative
otherwise. 2PC desorption probability curves showed different half widths at half
maximum (HWHMs) depending on the coverage. Regarding the numerical values,
only the HWHM at negative delays for 0.24 ML (1.1 ps) may be consistent with
electron-dominated desorption. In contrast, the remaining HWHMs for 0.24, 0.64
and 0.75 ML take values between 6.7 and 25.5 ps. Therefore, experiments do not
clarify whether the electrons or phonons dominate the process.
On this basis, let us recall that single pulse (Te,Tl) − AIMDEF simulations in

CO/Pd(111) support the collective effect of both hot electrons and phonons on
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desorption [31]. Unfortunately, AIMDEF-based simulation of 2PC experiments
was practically unaffordable due to the previously referred high computational
expenses. However, now we are able to simulate 2PC in the (Te,Tl) − MDEF
framework. Calculations have been performed for both 0.33 and 0.75 ML coverages.
For both coverages, simulations have been run for positive and negative time delays
with absolute values equal to 0.0, 0.1, 0.3, 0.6, 1.0, 5.0 and 20.0 ps. The features of
the laser pulse are the same as used for the aforementioned experiments [30]: for
0.33 ML, fluences for the strong and weak laser pulses are equal to 93 and 38 J/m2,
respectively, while for 0.75 ML they are 51 and 21 J/m2. Consequently, at zero delay
the total laser fluences are 131 and 72 J/m2 for 0.33 and 0.75 ML, respectively. For
each coverage, both pulses have equal wavelengths (780 nm), FWHMs of 130 fs and
a sech2 profile. For each time delay value, 2500 trajectories have been generated.
For each of them, atomic positions and forces have been computed every 0.2 fs
for a time span of 200 ps after excitation of the first laser pulse in order to obtain
CO desorption probabilities converged with respect to time. In this way, large
enough statistics are obtained for each time delay value. Besides, we need to be
aware that some regions of the configurational space of CO/Pd(111) may be more
poorly described by our PES, this leading to physically inconsistent results, such as
reaching potential energy values 𝐸0 smaller than the equilibrium values at initial
times. Such circumstances may become more likely to be found when we perform
dynamics in conditions very different from those involved in the (Te,Tl) −AIMDEF
configurations used for training. For 0.75 ML, these odd-behaving trajectories were
less than 0.25 % of the generated trajectories for each time delay value, while for
0.33 ML they were a 6.88 % in the worst case.

Half widths at half maximum for different coverages

Coverage
(ML)

Fsum

(J/m2)

Fstrong

(J/m2)
Fweak

(J/m2)
HWHM−

(ps)
HWHM+

(ps)
Exp
Th

0.24 131 93 38 1.1 10.4
0.33 15.9 22.1

Exp
Th 0.75 72 51 21 6.7 17.0

14.7 35.6

Table 7.7: Fluences of the strong laser pulse, Fstrong, weak laser pulse,Fweak, their sum,
Fsum, and the half width at half maximum for negative (HWHM−) and positive (HWHM+)
time delays obtained in the 2PC measurements of CO desorption from Pd(111) by Hong et
al. [30] and in our (Te,Tl) −MDEF simulations (Fig. 7.19)
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Figure 7.19: Two-pulse correlation measurements [30] (blue) and the results of (Te,Tl) −
MDEF simulations with the corresponding Wilson error bars (green) of the CO desorption
probability against the time delay between the two pulses. The initial coverage is 0.24 ML
in the experiments and 0.33 ML in the theoretical calculations. The theoretical probabilities
are multiplied by 17.27, the average of the ratio 𝑃expdes (𝛥𝑡)/𝑃

(Te,Tl ) − MDEF
des (𝛥𝑡).
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Figure 7.20: Two-pulse correlation measurements [30] (blue) and the results of (Te,Tl) −
MDEF simulations with the corresponding Wilson error bars (green) of the CO desorp-
tion probability against the time delay between the two pulses. The initial coverage is
0.75 ML. The theoretical probabilities are multiplied by 2.44, the average of the ratio
𝑃
exp
des (𝛥𝑡)/𝑃

(Te,Tl ) − MDEF
des (𝛥𝑡).
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The desorption probability curves as a function of the time delay obtained from
the (Te,Tl) − MDEF simulations are depicted in green in Figs. 7.19 and 7.20 for
0.33 and 0.75 ML CO/Pd(111), respectively. In order to compare the results with
the experiments on the same scale, we have multiplied the theoretical curves by
the average of the ratio 𝑃expdes (𝛥𝑡)/𝑃

(Te,Tl) −MDEF
des (𝛥𝑡). The values of these ratios

are 2.44 and 17.27 for 0.75 and 0.33 ML coverages, respectively. As it was stated
previously in Section 7.3, in the case of the high coverage, the quantitative difference
between the theoretical and experimental desorption probabilities must be linked
to the overestimation of the theoretical desorption energy. The much larger scaling
factor required for the low coverage was also explained in Section 7.3. Namely, the
experimental coverage (0.24 ML) is different from the theoretical one (0.33 ML),
and at this coverage the desorption probability increases due to the presence at
the surface of CO adsorbates, located at the edges of 0.33 ML islands, with a
much lower desorption energy. From these curves, one can calculate the HWHM
values for the (Te,Tl) −MDEF simulations. The corresponding results are collected
in Table 7.7. As a first remark, for both coverages, the theoretical HWHMs for
both negative and positive delays, HWHM−, and HWHM+, have values larger
than ∼1 ps, therefore being inconsistent with an scenario dominated by electronic
excitations. According to our previous discussion, they agree either with a weak
electron-adsorbate coupling in the absence of phonon coupling or with a strong
phonon-adsorbate coupling along with electron-adsorbate coupling. Note that these
results are consistent with those obtained in Section 7.3 in the case of a single pulse
excitation. In that case, we found that both electronic and phononic excitations
contribute efficiently to the CO desorption probability, but that in the majority of
cases, when considered individually, the contribution of phononic excitations was
more important, particularly for large laser fluences (see Figs. 7.14 and 7.15, and
the accompanying discussion).

Moreover, wemay obtain information from themaximum electronic and phononic
temperatures reached in the (Te,Tl)−MDEF simulations. With this aim, in Figs. 7.21
and 7.22 we plot the maximum electronic and phononic temperatures reached at
each given time delay according to the 2TMmodel for 0.33 and 0.75 ML, respectively.
For comparison, in these figures the desorption probability curves are also plot-
ted. Interestingly, for both coverages the theoretical 2PC desorption probabilities
present a higher resemblance to the maximum 𝑇𝑙 curve than to the maximum 𝑇𝑒
one, which constitutes an additional indication of the dominant role played by
phononic excitations. Finally, it is worth mentioning that, as expected, both the
calculated desorption probabilities and the maximum 𝑇𝑙 values exhibit a dip in the
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region around zero delay, which, as discussed above, is a characteristic of the 2TM
model.

Figure 7.21: (Left y axis) Two-pulse correlation measurements [30] (blue) and the results
of (Te,Tl) −MDEF simulations with the corresponding Wilson error bars (green) of the
CO desorption probability against the time delay between the two pulses. The theoretical
probabilities are multiplied by 17.27, the average of the ratio 𝑃expdes (𝛥𝑡)/𝑃

(Te,Tl ) − MDEF
des (𝛥𝑡).

(Right y axis) Maximum 𝑇𝑒 (orange) and maximum 𝑇𝑙 (violet) as obtained from the 2TM as
a function of the time delay. The initial coverage is 0.24 ML in the experiments and 0.33 ML
in the theoretical calculations.

At this point, let us compare our results with the experimental measurements
of 2PC yield. Although the theoretical HWHMs are consistently wider than the
experimental ones, semiquantitative agreement can be invoked in all cases ex-
cept for the value of HWHM− at low coverage. With this notable exception, both
the measured and calculated HWHMs are consistent with a phonon-dominated
scenario, with the theoretical HWHMs around a factor two larger than the ex-
perimental ones. Moreover, the large asymmetry of the experimental curves is
qualitatively reproduced. More precisely, in agreement with the measurements,
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the theoretical HWHM+s are wider than the HWHM−s. As noted above, the main
shortcoming of the theoretical results constitutes their inability to reproduce an
electron-dominated scenario (HWHM− around 1.1 ps) at low coverage and negative
delay (when the strong pulse arrives before the weak pulse). As in previous cases,
this disagreement may be related to the different adsorption characteristics of the
experimental (0.24 ML) and theoretical coverages (0.33 ML) discussed above.

Figure 7.22: (Left y axis) Two-pulse correlation measurements [30] (blue) and the results
of (Te,Tl) −MDEF simulations with the corresponding Wilson error bars (green) of the
CO desorption probability against the time delay between the two pulses. The theoretical
probabilities are multiplied by 2.44, the average of the ratio 𝑃expdes (𝛥𝑡)/𝑃

(Te,Tl ) − MDEF
des (𝛥𝑡).

(Right y axis) Maximum 𝑇𝑒 (orange) and maximum 𝑇𝑙 (violet) as obtained from the 2TM as
a function of the time delay. The initial coverage is 0.75 ML.

Finally, it is worth mentioning the apparent differences obtained between theory
and experiments in the region of small time delays <∼ |1| ps. More precisely,
we observe that the theory overestimates the dips at around zero delay of the
experimental desorption probability curves. Similar disagreements between theory
and experiment have also been reported in the photoinduced CO desorption from
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Ru(0001) [92] and in the recombinative desorption of H and D from Ru(0001) [37].
As discussed above, the theoretical dips are a characteristic of the 2TM. In this
respect, it should be stated that although 2TM successfully describes the behavior
of a photoexcited surface, it is still an approximate model that may miss some subtle
effects.

7.5 Conclusions
In this chapter, we have made a more comprehensive usage of the capabilities
of (Te,Tl) −MDEF methodology in order to theoretically study the femtosecond
laser-induced desorption of CO from a Pd(111) surface with an unprecedented
level of depth. As a preliminary step, we have investigated the performance of our
preliminary 0.75 ML CO/Pd(111) EANN PES when describing a coverage different
from that handled in its training set, namely 0.33 ML. For this, we have predicted
the minimum energy paths for desorption from the adsorption sites of both 0.33
and 0.75 ML adlayers and we have compared them to those obtained with (Te,Tl) −
AIMDEF. In addition, the same test has been run in both coverages after training a
new CO/Pd(111) EANN PES using previously obtained 0.33 ML (Te,Tl) − AIMDEF
configurations [31]. Our analysis has demonstrated that the 0.75 ML EANN PES
describes the desorption energy curves on both 0.33 and 0.75 ML adlayers more
accurately than its 0.33 ML counterpart. This occurs because 0.75 ML training
set encompasses a wider variety of atomic environments and desorption events,
thus providing a superior predictive ability for simpler environments and reaction
dynamics such as those 0.33 ML. From these preliminary tests, we have concluded
that incorporating information about both adlayers to a new EANN PES can allow
us to perform reliable MDEF calculations across coverage scenarios beyond 0.33
and 0.75 ML.
After these tests, we have subsequently trained a multicoverage EANN PES

using 37 972 configurations corresponding to (Te,Tl) −AIMDEF and Te −AIMDEF
trajectories for both 0.33 and 0.75 ML. Here, the energies of the 0.33 ML training
data points have been subtracted by some offset value previously determined by
0.75 ML EANN PES when predicting energies of 0.33 ML configurations. Next, we
have verified the outstanding quality of this multicoverage PES. Its quality has
been evaluated against 485 767 data points missing from its training set and taken
from 0.33 and 0.75 ML Te − AIMDEF and (Te,Tl) − AIMDEF trajectories. Both
energies and adiabatic forces on moving atoms are predicted by this PES with
remarkable accuracy, at a level comparable to the previous single coverage EANN
PESs or even better. Next, it provides both site-dependent desorption energies and
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minimum energy paths for desorption very close to DFT+vdW-DF results, although
no minimum energy path configurations were provided during its training. More
strikingly, it has successfully yielded very accurate predictions of an intermediate,
0.60 ML coverage absent from its training knowledge. In this respect, it can predict
energies and forces of 1446 configurations randomly chosen across three different
single pulse fluences with a similar level of accuracy as for the other two coverages,
as well as its site-dependent desorption energies. But, more surprisingly, it has been
able to predict the DFT equilibrium structure for this coverage. Hence, our multi-
coverage EANN PES has demonstrated its transferability by effectively handling
coverages not explored during its training, thereby validating its robustness for
studies involving, for instance, different coverages, laser fluences or pump-probe
delays for 2PC experiments.
Our next natural step has involved conducting sets of between 6750 and 60 000

MDEF simulations to investigate single laser pulse photoinduced CO desorption
on Pd(111) over an integration time of 100 ps after the pulse reaches the surface.
More precisely, we have studied the fluence dependence of the desorption yield
for the three adlayers. We have fitted our results to compute the nonlinear expo-
nents characterizing DIMET regime, and our values compare well with previous
experimental results on 0.24, 0.64 and 0.75 ML [30]. Our results capture the strong
dependence between desorption probability and adlayer coverage, including the
particularly remarkable increase in the desorption probability when going from
intermediate to high CO coverages. Such a trend is consistent with the decrease
in the average of the site-specific desorption energies for each coverage as the
latter increases. Besides, the effect of the supercell size on the desorption yield
is investigated, revealing a progressive convergence of the yield to a maximum
value at a given fluence as the simulation cell size increases. Complementarily,
we have gained further insights into the role of surface electronic and phononic
subsystems in CO photodesorption. To this end, we have calculated Te −MDEF
and Tl − MDEF trajectories where only hot electrons or phonons, respectively,
were allowed to couple the CO adsorbates for different combinations of fluence
and adlayer. Our calculations demonstrate that the synergy of both electronic and
phononic channels leads to larger desorption yields than each of them by separate
along at least 100 ps after laser irradiation, thus extending the scope of this conclu-
sion reported in a previous (Te,Tl) − AIMDEF work [31]. Also, comparing each of
the two channels, the electronic one dominates during the initial picoseconds after
laser irradiation, this shifting to a phonon-mediated predominance afterwards that
becomes more pronounced the larger the laser fluence is. Next, we have tried to
unveil additional details on CO dynamical features after laser irradiation for all
coverages and different fluences by analyzing the CO CM positions at different
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distances from the topmost surface layer. During photodesorption, we have seen
how mobile the molecules become along the surface, and how the majority of des-
orbed ones complete this process directly, while another fraction remains trapped in
physisorption wells for some picoseconds before completing this reaction. Trapping
may be influenced by CO-CO attractive van der Waals forces, as the fraction of
CO desorbed after residing in the physisorption well grows for higher coverages.
For both fractions of CO desorbates, we have checked how their desorption polar
angle distributions are very wide instead of peaking along some preferred vertical
directions, this further underlining the complexity of the chemical process they
undergo.
Finally, we have simulated 2PC experiments on the CO/Pd(111) system by gen-

erating (Te,Tl) −MDEF trajectories for a fixed combination of adlayer coverage
(0.33 and 0.75 ML) and laser fluences, and different pump-probe time delay values,
following the settings of previous experiments [30]. Then, we have calculated the
dependence of the CO desorption probability on this relative time delay. The scale
of the calculated HWHMs –of tens of picoseconds– is consistent with our previous
findings on both electrons and phonons driving the CO desorption process. That
order of magnitude, together with the shape of the 2PC yield, clearly aligns with our
remarks about the importance of the lattice-driven excitations. Comparison with
experiments shows semiquantitative agreement for both low and high coverages
except at low coverage and negative delay (strong laser pulse arriving before the
weak laser pulse). In this case, the experiments suggest an electronically driven
process, whereas the simulations are consistent with a phonon-driven process. The
discrepancy may be related to the different coverage in experiments and theory
(0.24 vs 0.33 ML). We have also observed that for time delays of ±1 ps or less, the
theoretically obtained dip in the desorption probability curve is much smaller in
the experiments, which could be due to limitations of the 2TM.

Overall, we have conducted a theoretical study on the femtosecond laser-induced
desorption of CO from Pd(111) at a degree of comprehensiveness previously un-
available by precedent theoretical models, particularly (Te,Tl) − AIMDEF among
them. We have explored the intricacies of this chemical process by making use of
the multicoverage EANN PES possibilities, hence demonstrating the performance
of our (Te,Tl) −MDEF methodology for CO/Pd(111) adsorbate-substrate complex.
From our results follows the future application of (Te,Tl) − MDEF not only to
study CO photodesorption on Pd(111) varying other parameters of the process, but
also to generalize its usage to investigate a number of chemical processes on other
distinct adsorbate-substrate complexes. Following this goal, we may subsequently
work on another system involving the same three atomic species as CO/Pd(111) for
simplicity, in order to make use of the element-specific fittings we have used for,
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Chapter 7 Multicoverage studies on CO/Pd(111) with MDEF

e.g., atomic friction calculation. Moreover, this would open the path to comparison
with the results detailed along this chapter. Hence, let us turn our attention to a
somewhat different adsorbate-substrate complex, namely, O and CO coadsorbed
on Pd(111) or O+2CO/Pd(111).
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8
Photoinduced desorption
on O+2CO/Pd(111) stud-
ied with (T𝒆,T𝒍)-AIMDEF

In this chapter we perform (Te,Tl) − AIMDEF simulations to study the CO des-
orption and CO oxidation induced in the O+2CO/Pd(111) system by femtosecond
laser pulses. Additional simulations that only include the effect of the laser-excited
electrons will allow us to determine the role of electrons and phonons in both
processes, CO desorption and CO oxidation (i.e., the recombinative formation and
desorption of CO2). The results of CO desorption will also be compared to those
obtained in the 0.75 ML CO/Pd(111) system.

8.1 The O+2CO/Pd(111) system: computational
settings

8.1.1 Relaxation

The Pd(111) surface is considered to be covered with a mixed adlayer of 0.50 ML
CO and 0.25 ML O. Following Ref. [362], adsorption sites on Pd are going to be
the same as for CO/Pd(111) with 0.75 ML, that is, top, hcp, and fcc positions. As a
first step, we start by optimizing the structure of the O+2CO/Pd(111) surface and
confirming that in the mixed adlayer the O atoms occupy fcc sites, as suggested in
Ref. [362].

In order to facilitate the comparison of the photodesorption simulations between
the mixed O+2CO adlayer and the CO saturated adlayer, all DFT calculations and
AIMDEF simulations are performed using the same computational settings that
were used for 0.75 ML CO/Pd(111) [31]. In particular, we use VASP [341, 342]
(versions 5.4 and 6.3) and the vdW-DF exchange-correlation functional proposed
by Dion et al. [172]. The electron-core interaction is treated with the projector
augmented-wave (PAW) method [363] implemented in VASP [364]. The PAW
potentials for C, O, and Pd have four, six, and ten valence electrons, respectively.
Electron wave functions are expanded in a plane-wave basis set with an energy
cut-off of 400 eV. Integration in the Brillouin zone is done with a 𝛤 -centered 3×6×1
Monkhorst-Pack grid of special k-points [365, 366]. Fractional occupancies are
determined through the Methfessel and Paxton broadening scheme of first order
using a width of 0.1 eV [367]. The energy criterion for total energy self-consistency
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is 10−6 eV. The covered Pd(111) surface is described by a 4 layer-slab of Pd atoms
and the overlayer that contains four CO molecules and two O atoms in the large
(4 × 2) surface cell. The latter is selected to better describe the interadsorbate
interactions, including out-of-phase movements of equivalent adsorbates. The
overlayer is separated along the 𝑧-axis from the bottom of the periodic Pd-slab by
about 8 layers of vacuum. The specific dimensions of the supercell in Cartesian
coordinates and in Å are: a1 = (11.32, 0, 0), a2 = (2.83, 4.90, 0) and a3 = (0, 0, 27.73).

Using these computational settings, the O+2CO/Pd(111) surface is relaxed until
the forces on each atom of the overlayer and the two topmost Pd layers are smaller
than 10−2 eV/Å (the two Pd bottom layers are not relaxed to leave part of the surface
as a rigid bulk). Table 8.1 summarizes the results of the relaxation for the following
three possible adsorption site choices for O and CO: (i) O on top and CO on fcc
and hcp, (ii) O on hcp and CO on top and fcc, and (iii) O on fcc and CO on hcp and
top. In agreement with Ref. [362] the equilibrium configuration corresponds to O
adsorbed on a fcc site, while CO molecules equally occupy top and hcp sites. This
equilibrium configuration is pictured in Fig. 8.1.

O+2CO/Pd(111), relaxation energies

O and CO adsorption sites Relaxation energy Eads−surf
0 (eV)

O (top)+CO (fcc,hcp) -92.199
O (hcp)+CO (top,fcc) -93.814
O (fcc)+CO (hcp,top) -94.113

Table 8.1: Energy of the optimized 0.75 ML O+2CO/Pd(111) surface calculated with vasp
for different adsorption site arrangements of CO and O. Note that the energy that vasp
provides is the system cohesive energy with respect to spherical non spin-polarized atoms.
The minimum energy arrangement corresponds to placing the O atoms at fcc sites.

8.1.2 Thermalization
As in the case of the (Te,Tl) − AIMDEFsimulations for 0.75 ML CO/Pd(111), the
system is considered to be at 𝑇0 = 90 K before being irradiated with a femtosecond
laser pulse with characteristics similar to those of Chapters 5 to 7.

Thermalization of the O+2CO/Pd(111) surface is done with our modified version
of VASP that allows us running a canonical molecular dynamics simulation in
which only the three topmost Pd layers are coupled to the NH thermostat, while
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Figure 8.1: Top, perspective, and side views of the optimized O+2CO/Pd(111) surface. The
4×2 surface cell is depicted by the yellow parallelogram.
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Figure 8.2: Normalized adsorbates temperature distributions for the configurations ex-
plored during thermalization. Histograms are plotted for the total configurational set (solid
blue bars) and for selected subsets (empty bars) corresponding to time intervals [0,3.5] ps
(red), [3.5,7.0] ps (green) and [7.0,10.0] ps (cyan). All histograms adjust approximately in
shape to the theoretical Maxwell-Boltzmann distribution for 𝑇0 = 90 K and 𝑁at = 10 atoms
(orange, solid line), but the nominal temperature is only reached during the last 3 ps.

adsorbates move following the adiabatic forces and the bottom Pd layer remains
frozen (see Section 3.2.2.3 for more details). Thermostat mass is chosen to be
𝑄 ≃ 664.05 eV/s2 [31]. A single thermalization trajectory is calculated that lasts
10 ps and uses a time integration step 𝑑𝑡 = 1 fs. During this long simulation time,
adsorbates, which are not connected to thermostats, will heat and approach the
target temperature by exchanging energy with the surface layers coupled to the
thermostat.

The quality of the thermalization run is confirmed by analyzing the distribution
of the instantaneous temperature 𝑇𝑖 (𝑡) for each subset of atoms 𝑖 in the system,
which is defined from their corresponding total kinetic energy as

𝐸𝐾,𝑖 (𝑡) =
3
2 𝑁𝑖 𝑘𝐵𝑇𝑖 (𝑡) , (8.1)

where 𝑘𝐵 is the Boltzmann constant, 𝐸𝐾,𝑖 (𝑡) is the sum of the kinetic energies
of all atoms in the subset 𝑖 at instant 𝑡 , and 𝑁𝑖 is the number of atoms in the
corresponding subset. Figures 8.2 and 8.3 show the instantaneous temperature
distribution obtained for the adsorbates and nonfrozen surface Pd atoms, respec-
tively. As adsorbates temperature is far from 𝑇0 = 90 K in the initial stage of the
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Figure 8.3: Normalized temperature distributions for the configurations explored during
thermalization by the Pd atoms connected to the thermostat. Histograms are plotted
for the total configurational set (solid blue bars) and for selected subsets (empty bars)
corresponding to the time intervals [0,3.5] ps (red), [3.5,7.0] ps (green) and [7.0,10.0] ps
(cyan). All histograms follow rather well the shape of the theoretical Maxwell-Boltzmann
distribution for 𝑇0 = 90 K with 𝑁at = 24 atoms (orange, solid lines).

thermalization, discarding configurations from this initial time interval allows us
to select a subset of configurations whose temperatures are closer to 𝑇0 than if the
whole configurational set in [0.0,10.0] ps is taken. To this end, we have divided the
10 000 configurations into three subsets, the first two of 3500 and the remaining
one of 3000 corresponding to the last 3 ps of thermalization. Figure 8.2 shows that
the distribution of the adsorbates temperature in the last 3 ps is clearly closer to the
theoretical Maxwell-Boltzmann distribution for 𝑇0 = 90 K than the distributions
obtained for the previous intervals [0.0,3.5] ps and [3.5,7.0] ps. For surface Pd
atoms (Fig. 8.3), the temperature distributions calculated for each time interval
nicely follow the theoretical distribution, but the agreement is even better for the
interval accounting for the last 3 ps. Consequently, the initial conditions for the
AIMDEF simulations (i.e., initial positions and velocities of all the moving atoms)
are selected from the instantaneous configurations proven during the last 3 ps
of the thermalization run. In particular, a set of 100 configurations is randomly
selected from a total of 3000 configurations.
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8.2 (Te, Tl) − AIMDEF and Te − AIMDEF on
O+2CO/Pd(111)

Photoinduced reactions on O+2CO/Pd(111) are simulated with (Te,Tl) − AIMDEF
for two absorbed laser fluences, 𝐹 = 72 and 130 J/m2, assuming the same laser
pulse employed in previous chapters, i.e., a pulse of sech shape centered at 𝑡 =

0.4 ps, wavelength equal to 780 nm, and FWHM equal to 100 fs that follows the
settings of the experimental pulse used in Camillone’s group to study photoinduced
reactions on O2/Pd(111) [38, 356] and CO/Pd(111) [30], for instance. Its effect on
the Pd surface is modeled with the time-dependent electronic𝑇𝑒 (𝑡) and lattice𝑇𝑙 (𝑡)
temperatures shown in Fig.3.4 that were calculated with 2TM for a Pd substrate
and the laser pulse described above. As detailed in Section 3.2.2.2, in the (Te,Tl) −
AIMDEF simulations, the effect of the laser-excited electrons in each adsorbate
is described through a Langevin equation of motion, using in our case the LDFA
and the Hirshfeld partitioning scheme to calculate at each integration step the
corresponding electronic friction coefficient. In addition, the effect of the excited
lattice is described by coupling the Pd surface atoms to a NH thermostat that
follows the lattice temperature 𝑇𝑙 (𝑡). In particular, the two topmost Pd layers were
coupled to the thermostat, while the third one was left to evolve adiabatically and
the bottom layer remained fixed. To investigate the role of electrons and phonons
on the photoinduced reactions, we also carry out Te − AIMDEF simulations that
only include the effect of the hot electrons. This is done by solving the Langevin
equation of motion for the adsobates, while the surface atoms are kept fixed during
the whole dynamics simulation.
All Te − AIMDEF and (Te,Tl) − AIMDEF simulations were performed using

our modified version of VASP [31] using a time integration step of 1 fs and a
final propagation time 𝑡 𝑓 = 4 ps in each trajectory. The initial conditions for
(Te,Tl) −AIMDEF are the aforementioned 100 random configurations chosen after
thermalizing the system to 90 K, while for Te − AIMDEF each trajectory (100 in
total) starts with the minimum energy configuration obtained after relaxation of
O+2CO/Pd(111) with O atoms at fcc sites.

Inspection of the adsorbates heights along all the trajectories allows us to deter-
mine that at the end of our simulations the adsorbates may have remained adsorbed
on the surface or have experienced one of the three following processes, namely, CO
desorption, CO trapping, and CO2 desorption. A molecule is classified as desorbed
if its CM height 𝑧cm,CO, measured from the topmost Pd layer, is greater than 9.0 Å. A
molecule is considered trapped if its CM height verifies 4.5 Å≤ 𝑍cm,CO but without
having reached at a later instant the distance that defines desorption.
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As in previous chapters, the desorption probability of molecule 𝐴 (𝐴 stands for
CO or CO2 in our case) at a certain instant 𝑡 is evaluated as,

𝑃A,des(𝑡) =
𝑁A,des(𝑡)
𝑁CO,tot , (8.2)

where 𝑁A,des(𝑡) is the cumulative sum of 𝐴 molecules desorbed up to instant 𝑡
and 𝑁CO,tot is the total number of CO molecules in the simulations (i.e., 𝑁CO,tot =
𝑛
CO,cell
0 𝑁traj, with 𝑛CO,cell0 = 4 for O+2CO/Pd(111) and 𝑁traj being the total number

of trajectories in each type of simulation). As final desorption probabilities we take
the values at the end of the simulations, i.e., 𝑃A,des(𝑡 𝑓 ).
In our analysis, we are also interested in studying the dependence of the des-

orption probability on the adsorption site (top and hcp). Thus, we calculate the
fraction of molecules desorbed from each specific site at 𝑡 as,

𝜒siteCO,des(𝑡) =
𝑁CO,site(𝑡)
𝑁CO,des(𝑡)

, (8.3)

where𝑁CO,site(𝑡) is the total amount of CO desorbed up to 𝑡 from a given adsorption
site.

8.2.1 Insights into adsorbate dynamics

In this Section, we analyze the adsorbate displacements and their dependence on the
laser fluence. Figure 8.4 shows the adsorbate height as a function of time obtained in
each set of simulations. Comparing the (Te,Tl) −AIMDEF results at laser-absorbed
fluences F = 72 and 130 J/m2, it is clear that all adsorbates become more excited,
i.e., they experience larger displacements, at the largest laser fluence as expected.
At both fluences, the kind of processes that occur are: (i) CO desorption, which
starts at 𝑡 ≳ 1.5 (2.5) ps for F = 130 (72) J/m2, (ii) CO trapping, which refers to
those molecules that momentarily leave the surface but without desorbing because
they are attracted backwards to the surface at a later instant, (iii) absorption of
part of the fcc O atoms, which dive inside the surface at heights lower than 𝑧surf ,
and (iv) CO oxidation, i.e., recombination of one CO with one O atom to desorb
as CO2. Interestingly, there is one single CO oxidation event at each laser fluence,
but recombination starts at 𝑡 ≳ 1.6 ps for the largest fluence and more than 2 ps
later for the smallest. Nonetheless, it is important to remark that the statistics of
our (Te,Tl) − AIMDEF simulations are very limited, making it difficult to draw
general conclusions about this process. Except for CO oxidation, the other three
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Figure 8.4: Probability density map of COCMheights 𝑧cm,CO and O heights 𝑧O respect to the
topmost Pd layer 𝑧surf (dashed black line) as a function of time. Different panels correspond
to results obtained in (Te,Tl) − AIMDEF with F = 72 J/m2 (top), (Te,Tl) − AIMDEF with
F = 130 J/m2 (middle), and Te−AIMDEFwith F = 130 J/m2 (bottom). CO heights are shown
in colors from dark blue to dark red, while the color palette for O ranges from cyan to pink.
White full lines correspond to those CO molecules that undergo recombinative oxidation
with one fcc O atom. Trapping region is considered to be between the dotted white and
light green lines, while CO surpassing the dotted green line is counted as desorbed.
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processes are clearly more abundant when the system is irradiated with a laser
fluence F = 130 J/m2.

Figure 8.5: Density plots of the (𝑥,𝑦) coordinates of the CO CM (left column) and O
adsorbates (right column) when reaching the height 𝑧0 ± 𝛥𝑧 at any instant along the
trajectory in the (Te,Tl) − AIMDEF simulations at F = 72 J/m2. The 𝑧0 value is written in
the top left part of each subplot, with 𝛥𝑧 = 1 and 0.5 Å for CO and O, respectively. For
reference, topmost subplots in each column show initial CO and O positions as blue and
yellow dots, respectively.

The importance of the electron-excited phonons in the O+2CO(Pd(111) system
becomes evident when comparing the previous results to those obtained in the
Te − AIMDEF simulations for F = 130 J/m2. Except for the few CO that desorb,
the height of the rest of adsorbates hardly varies in more than 0.5 Å. There is a
reduction of CO trapping and complete absence of CO oxidation. Neither do we
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observe O absorption, but this process is already forbidden in the Te − AIMDEF
simulations because the surface atoms are fixed and therefore it is not possible to
determine the contribution of hot electrons and phonons in this case.

Figure 8.6: Same as Fig. 8.5 but for (Te,Tl) − AIMDEF simulations at F = 130 J/m2.

Additionally, it is meaningful to investigate the adsorbate displacements over the
surface plane. Figures 8.5 and 8.6 show the results obtained with (Te,Tl) −AIMDEF
for F = 72 J/m2 and F = 130 J/m2, respectively. In each figure, initial CM positions(
𝑥cm,CO, 𝑦cm,CO

)
of CO and (𝑥O, 𝑦O) of O are shown for reference purposes as blue

and yellow dots, respectively. For the two considered laser fluences, adsorbed CO
and O gain enough energy to diffuse beyond their adsorption sites. In particular,
CO is less bound to the surface than O and can move over the whole 𝑥𝑦 plane, as
clearly seen in the plots at 𝑧0 = 2.0 and 4.0 Å in both figures. At the high fluence,
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also the O adsorbates move all over the surface (see plot at 𝑧0 = 0.5 Å in Fig. 8.6) and
even inside the surface in the case of the absorbed O (see plot at 𝑧0 = −0.5 Å in the
same figure). At low fluence, the O movement is localized within the interatomic
space close to the fcc adsorption sites, as seen in Fig. 8.5.

Figure 8.7: Same as Fig. 8.5 but for Te − AIMDEF simulations at F = 130 J/m2.

The results shown in Fig. 8.7 for the Te − AIMDEF simulations remark that the
adsorbate mobility on the surface is highly reduced when only the effect of the
laser-excited electrons is included. Specifically, there is some subtle CO diffusion
that can be identified in the plot at 𝑧0 = 2.0 Å, but the O adsorbates remain mainly
localized around their initial adsorption sites.
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8.2.2 CO desorption and oxidation probabilities on
O+2CO/Pd(111)

O+2CO/Pd(111) total probabilities

(I) Desorbed CO
Te − AIMDEF (Te,Tl)-AIMDEF

O+2CO/Pd(111) O+2CO/Pd(111) 0.75ML CO/Pd(111)
F (J/m2) 130 72 130 130
NCO,tot 400 400 400 396

PCO,des(t)(%) 0.25 0.50 5.00 9.56
PCO2,des(t)(%) 0.00 0.25 0.25 —

rCO,CO2 (t) — 2.0 20.0 —

(II) Trapped CO
Te − AIMDEF (Te,Tl)-AIMDEF

O+2CO/Pd(111) O+2CO/Pd(111) 0.75ML CO/Pd(111)
F (J/m2) 130 72 130 130

PCO(t)(%) 0.50 1.00 1.50 4.56

Table 8.2: Total probabilities at 𝑡 = 4.0 ps obtained for O+2CO/Pd(111) with different
AIMDEF simulations and absorbed laser fluence. 𝑁CO,tot is the total number of initially
adsorbed CO in each simulation type; PCO,des(t) and PCO2,des(t) are the CO and CO2 desorp-
tion probabilities, respectively; rCO,CO2 (t) is the branching ratio between CO desorption and
oxidation; and PCO(t) is the CO trapping probability. For comparison, the (Te,Tl)−AIMDEF
results for 0.75 ML CO/Pd(111) and a laser fluence of 130 J/m2 are written as well.

The CO desorption, oxidation, and trapping probabilities obtained at the end
of the simulations (4 ps) for O+2CO/Pd(111) are summarized in Table 8.2. CO
desorption increases by a factor 10 when increasing the fluence from 72 to 130 J/m2,
while CO trapping is rather similar (1.0 and 1.5%, respectively). As mentioned
in the previous section, the CO oxidation probabilities are surprisingly the same
at both fluences. Note, however, that the statistics are insufficient to extract any
meaningful conclusion in this respect. Let us remark that oxidation probabilities
measured at zero delay (total fluence 𝐹 ≃ 180 J/m2) in 2PC experiments performed
by Camillone and co-workers in a mixed overlayer of similar characteristics are
larger than the ones obtained here [362]. Therefore, further theoretical simulations,
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including the construction of a O+2CO/Pd(111) NN PES will be new directions to
develop in the future.

Considering that the surface total coverage is 0.75 ML it is interesting to compare
the CO desorption probabilities between the present mixed overlayer of 0.25 ML O
+ 0.50 ML CO and a pure CO overlayer of the same total coverage (0.75 ML CO),
which was already studied in previous chapters with NN PESs and in Ref. [31] with
(Te,Tl) −AIMDEF. Nonetheless, in making this comparison the results in Table 8.2
correspond to new (Te,Tl) − AIMDEF simulations performed for CO/Pd(111) with
a coverage of 0.75 ML, a laser fluence 𝐹 = 130 J/m2, and the same computational
settings that were used for the O+2CO overlayer (see Section 8.1). The main
difference respect to the (Te,Tl) −AIMDEF simulations by Alducin et al. is that the
zero point energy is not included in the new simulations discussed in this chapter.
As done for O+2CO/Pd(111) and in order to make a meaningful comparison between
the two overlayers, we did a first inspection of the COCMheights 𝑧cm,CO to establish
the desorption and trapping criteria. In particular, a molecule is considered desorbed
if it reaches a height 𝑧cm > 9.5 Å with positive velocity along the surface normal
and trapped if at any instant gets further than 5.0 Å but without desorbing at a later
time. As shown in Table 8.2, CO desorption (per adsorbed CO) is more probable
in 0.75 ML CO/Pd(111) by about a factor 2. And there is also more trapping (4.5%
against 1.5% in the O+2CO overlayer). These results are not easily explained in
terms of the desorption energies calculated for the equilibrium conditions, since,
in general, desorption from the mixed overlayer seems energetically favored (see
Table 8.4). We will discuss this point again in Section 8.2.2.1, when analyzing the
site-resolved desorption probabilities.

Regarding the role of hot electrons and phonons in the CO photodesorption on
O+2CO/Pd(111), we see that for Te − AIMDEF at fluence 𝐹 = 130 J/m2 there is
clearly less CO desorption than for (Te,Tl)−AIMDEF at the same fluence. As shown
in Table 8.2, the CO desorption probability is only 0.25% when neglecting the effect
of the hot lattice, a much smaller value than the 5% obtained in (Te,Tl) − AIMDEF
simulations that include both excitation mechanisms (electrons and phonons). Note
also that even for (Te,Tl) − AIMDEF with 𝐹 = 72 J/m2 more CO desorption is
observed compared to that obtained in Te − AIMDEF at 𝐹 = 130 J/m2. All these
comparisons suggest that the hot phonons created by the laser-excited electrons
are very important in this system, similarly to what is observed and discussed for
CO/Pd(111) in Chapter 7.
Concerning the photooxidation process, we neither observe CO oxidation in

Te − AIMDEF, whereas there is a single event in (Te,Tl) − AIMDEF. Still, the
statistics for this process is very poor in all the simulations and, as already argued,
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insufficient to extract meaningful conclusions about the importance of electrons
and phonons for this specific reaction.

Figure 8.8: Time evolution of the CO desorption probability 𝑃des(𝑡) from the
O+2CO/Pd(111) surface as obtained in the (Te,Tl) − AIMDEF simulations for F = 70 J/m2

(orange) and F = 130 J/m2 (blue). Results for Te −AIMDEF and F = 130 J/m2 are plotted in
green. For comparison, also the desorption probability from 0.75 ML CO/Pd(111) calculated
with (Te,Tl) −AIMDEF for F = 130 J/m2 is shown in red. Data points with their respective
Wilson score intervals [347] are plotted every 500 fs.

Additional information on the desorption dynamics can be extracted by analyzing
the time evolution of the CO desorption probability 𝑃des,CO(𝑡). These results are
shown in Fig. 8.8 for the different simulations performed in O+2CO/Pd(111) and
also for the (Te,Tl) − AIMDEF simulations in 0.75 ML CO/Pd(111). For simplicity,
only data points every 500 fs with their Wilson uncertainty intervals [347] are
represented. It is convenient to remark that the oxidation probability is not shown
because there is only a single CO2 desorption event within the simulation time of
4 ps for each laser fluence. As already anticipated when analyzing the time evolution
of the CO CM heights 𝑧cm,CO(𝑡), the first desorption events in O+2CO/Pd(111) start
to occur at about 1.5 ps after irradiating the surface for the high laser fluence
and at about 3.5 ps for the low laser fluence. It also takes about 1.5 ps to observe
CO desorption in the 0.75 ML CO overlayer at high laser fluence. However, the
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evolution of CO desorption seems different between both overlayers. While in
0.75 ML CO, desorption is still increasing at the end of the simulation time (as
actually confirmed with the (Te,Tl) −MDEF simulations in Chapter 5), 𝑃des,CO(𝑡)
seems to start a kind of saturation in the interval 3.5 to 4.0 ps. However, it will be
necessary to continue the dynamics for a few more ps to confirm that this is the
case.

8.2.2.1 Reaction probabilities by sites

O+2CO/Pd(111), probabilities by sites

(I) Desorbed CO
(Te,Tl)-AIMDEF

O+2CO/Pd(111) 0.75ML CO/Pd(111)
F(J/m2) 72 130 130
Site top hcp top hcp top hcp fcc

NCO,site 2+1* 0 14+1* 6 18 11 9
𝝌 site

CO,des(t) (%) 100.00 0.00 70.00 30.00 47.37 28.95 23.68

(II) Trapped CO
(Te,Tl)-AIMDEF

O+2CO/Pd(111) 0.75ML CO/Pd(111)
F (J/m2) 72 130 130

Site top hcp top hcp top hcp fcc
NCO,site 12 6 20 38 10 5 3

𝝌 site
CO,des(t) (%) 66.67 33.33 34.48 65.51 55.56 27.78 16.67

Table 8.3: Adsorption site-resolved probabilities at 𝑡 = 4.0 ps obtained for O+2CO/Pd(111)
with different AIMDEF simulations and absorbed laser fluence. 𝑁CO,site is the total number
of desorbed CO that were initially at this specific site, superscript * indicates how much
CO desorbed after recombining with an fcc O atom and forming CO2, but this has not
been accounted for calculation of the desorption probability fraction per site 𝜒siteCO,des due to
the different chemical process they undergo. For comparison also the (Te,Tl) − AIMDEF
results for 0.75 ML CO/Pd(111) and a laser fluence of 130 J/m2 are also written. Results are
provided for desorbed (I) and trapped CO (II).

The contribution of each adsorption site to the total CO desorption probability
is given in Table 8.3 for both the O+2CO and 0.75 ML CO adlayers. In this analysis,

221



Chapter 8 Photoinduced desorption on O+2CO/Pd(111) studied with (T𝑒 ,T𝑙 )-AIMDEF

we focused on the results from the (Te,Tl) − AIMDEF simulations that include
both the effect of electrons and phonons. Notice that in the tables, an asterisk is
written next to COmolecules that come from a given adsorption site to indicate that
these molecules undergo recombination and desorb as CO2. For 𝐹 = 130 J/m2, CO
desorption in the mixed adlayer is clearly dominated by molecules initially adsorbed
at the top site. This is also true for the low fluence but in this case the statistics is
limited and the results obtained have to be interpreted with more caution. At first
sight, the fact of top-dominated CO desorption is surprising because desorption
from this site would require about 100 meV more than desorption from hcp (see
Table 8.4). However, the desorption energies do not provide information of the
possible existence of additional energy barriers between the adsorbed and desorbed
state that would make desorption from hcp energetically less favorable. The larger
number of trapped molecules from hcp sites than from top sites that is obtained
for 𝐹 = 130 J/m2 would agree with this idea, but not for 𝐹 = 72 J/m2. Neither
the analysis of the kinetic energy gained by each type of adsorbate helps much to
understand the results obtained. As seen in Fig. 8.9, the molecules in hcp sites gain
initially (during the first 1–1.5 ps) a bit more kinetic energy than those adsorbed at
top, among other reasons because the coupling with the hot electrons is slightly
stronger in the former than in the latter site. The same behavior is observed in
Fig. 8.10, where the total energy is separated into translational and rovibrational
contributions. In view of all these observations, we have to conclude that the
desorption dynamics in the highly excited system is not well explained by the
energetics calculated at the equilibrium configurations. Something along this line is
found, for instance, in the photoinduced oxidation of CO on Ru(0001) covered with
0.25 ML O+ 0.375 ML CO [65]. Desorption from the 0.75 ML CO/Pd(111) surface can
in contrast be easily interpreted in terms of the CO desorption energies, with the
contribution from top, hcp, and fcc following the order from less to more bound.

Site-specific desorption energies

System Desorption site
top hcp fcc

O+2CO/Pd(111) 0.78 0.67 —
0.75 ML CO/Pd(111) 0.74 0.83 0.94

Table 8.4: Site-specific desorption energy 𝐸DFTdes for desorbing one CO from O+2CO/Pd(111)
and 0.75 ML CO/Pd(111), calculated with DFT+vdW-DF using the computational settings
described in Section 8.1. All energies are in eV.
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Figure 8.9: Site-resolved average kinetic energy ⟨𝐸kin⟩ of the CO molecules that remain
adsorbed on O+2CO/Pd(111) as obtained in the (Te,Tl) − AIMDEF simulations for the two
different laser fluences.

8.3 Conclusions

In the present chapter we have discussed the femtosecond laser-induced desorption
and oxidation dynamics of CO on Pd(111) covered with 0.25 ML O + 0.50 ML CO.
As a first step, a 4×2 cell of this system has been relaxed, showing that in the most
stable configuration the O atoms adsorb at fcc sites and the COmolecules are equally
distributed in top and hcp sites. Next, the system has been thermalized at𝑇0 = 90 K.
Afterwards, AIMDEF simulations have been performed on the O+2CO-coadsorbed
Pd(111) in order to study the chemical processes undergone by the adsorbates after
being irradiated with a femtosecond laser pulse. Different conditions regarding
the absorbed laser fluence (72 and 130 J/m2) and the kind of AIMDEF simulations
–i.e., Te − AIMDEF, which include only the effect of the laser-excited electrons,
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and (Te,Tl) − AIMDEF, which include both the effect of the excited electrons and
phonons– have been probed.

The analysis of the adsorbates dynamics along the surface normal (z axis) allows
us to identify the following processes: CO desorption, CO trapping, CO2 desorp-
tion, and absorption of O adatoms below the Pd topmost layer. Analysis of their
movement on the 𝑥𝑦 plane at different 𝑧 heights from the surface remarks the high
degree of mobility they gain because of their coupling to the excited hot electrons
and phonons. CO can move along the entire surface, while the absorbing O tends to
displace all over the region centered at the fcc site and limited by the three nearest
bridge sites, but with enough excitation energy it can explore the entire surface as
well. The reduced adsorbate mobility observed in Te − AIMDEF compared to that
in (Te,Tl) − AIMDEF shows the importance that both electrons and phonons have
in this system.

Figure 8.10: Site-resolved average translational and rovibrational kinetic energies, ⟨𝐸transkin ⟩
and ⟨𝐸rovibkin ⟩ of the CO molecules that remain adsorbed on O+2CO/Pd(111) as obtained in
the (Te,Tl) − AIMDEF simulations for the two different laser fluences.
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The CO desorption probability evaluated at the end of the simulations (4 ps)
shows a strong dependence on the laser fluence, as also observed for CO/Pd(111)
in previous chapters and expected for the DIMET regime appearing at intense
laser fluence. Interestingly, most of the desorbed CO, including the single CO2
desorption occurring at each fluence, are molecules that were initially at top sites,
which are characterized by a higher desorption energy than those adsorbed on hcp
sites. Furthermore, analysis of the adsorbate kinetic energies evidences that the
latter molecules initially gain slightly more energy than those at top. Altogether,
these results showing more desorption from top sites remark that the laser-induced
dynamics in this system cannot be interpreted in terms of the energetics under
equilibrium conditions.
This study has provided limited understanding of how photodesorption in

O+2CO/Pd (111) works due to the shortcomings of the AIMDEF simulations. In
general, all results clearly lack sufficient statistics to draw deeper and broader
conclusions. Furthermore, the time interval of a few ps we can probe with AIMDEF
might be insufficient to capture desorption and oxidation events that could be
occurring at a later time. Motivated by the previous success of NN PES-based
dynamical approach on CO/Pd(111) [87, 88, 89], a more thorough analysis with
NN PES-mediated MDEF seems to be the way forward. This would provide better
statistics and allow us to explore broader time intervals and many different initial
conditions in reasonable computational times. Consequently, we would be able to
study not only CO desorption and oxidation in this system in more detail, but also
to understand why most molecules desorb from top sites and why there is more
desorption in the 0.75 ML CO adlayer, in which the molecules are in principle less
bound.
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The aim in the present Thesis has been to get a more profound understanding of
the femtosecond laser-induced chemistry of different adsorbates (CO alone and CO
mixed with O atoms) on a Pd(111) metal surface from a theoretical perspective. Both
systems have different applications, but the main ones are related to heterogeneous
catalysis. Understanding the dynamics in the CO/Pd(111) adsorbate-substrate com-
plex has been the focus of several previous works. Most of them come from the
experimental side, involving infrared and X-ray spectroscopy, scanning tunneling
microscopy (STM), and LEED, among other techniques [17, 18, 19, 20, 21, 23, 24,
25, 26, 30]. This system also received attention from various previous computa-
tional studies [27, 28, 29]. More recently, another computational work offered a
comprehensive theoretical view of the photodesorption process on this system [31].
The strong coverage dependence of CO desorption previously reported [30] was
reproduced and explained in terms of the reduction of desorption barriers with in-
creased coverage. Also, a synergy between hot electrons and phonons in desorption
mechanism, a relevant interadsorbate energy exchange for high CO coverages and
a high dependence of desorption probabilities with the adsorption site were found.
To obtain those results, the authors calculated a few hundreds of trajectories with
their newly proposed (Te,Tl) − AIMDEF framework, which involves electron- and
phonon-mediated excitation on adsorbates through time-dependent electron and
lattice temperatures calculated with 2TM. The (Te,Tl) − AIMDEF model allows to
include both excitation channels in the adsorbates while incorporating all relevant
DOFs of the system under study. However, this model comes with an expensive
computational cost, as a limited statistics of no more than a few hundreds of tra-
jectories can be obtained in realistic times, under a fixed set of initial conditions,
and for simulation times no longer than a few picoseconds. These limitations
have motivated the search for some alternative methodology that, preserving the
accuracy and flexibility of (Te,Tl) − AIMDEF, allows to surpass these limitations.
It is in this context that the (Te,Tl) −MDEF framework (i.e., MDEF with both

electronic and phononic time-dependent temperatures𝑇𝑒 (𝑡) and𝑇𝑙 (𝑡), respectively)
has been developed, being this work the first one covered in this Thesis [87]. Two
key ingredients are required for this framework. The main one is to replace the
evaluation of the adiabatic forces "on the fly" after determining the instantaneous
ground state PES for each time done in AIMDEF. This has been replaced by a
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plain derivation of forces from a precalculated NN PES, trained within the EANN
model [83] using previous (Te,Tl) − AIMDEF data [31]. We have explained the
process of construction of such a PES, from the random selection of the set of
atomic configurations in such a way that ensures the representativeness of the
total ensemble to the fitting of EANN-specific parameters to reach a compromise
between accuracy and time required to train the PES. Its accuracy has been verified
by calculating the energies and forces of configurations not used to train the PES,
these predictions being very close to the (Te,Tl) − AIMDEF-calculated values.
Next, we have simplified the way the electronic density created by the surface
atoms at each point is calculated using a numerically fitted DGF. This simplifies
the determination of the friction coefficients for each adsorbate atom, thereby
speeding up the process of computing nonadiabatic electronic friction forces on
the adsorbates. Subsequently, (Te,Tl) −MDEF has been used to replicate (Te,Tl) −
AIMDEF results. Such has been achievedwith two ensembles, one of 100 trajectories
starting from the same initial data points used in (Te,Tl) −AIMDEF, and the second
one of 2000 trajectories that yields very similar results to (Te,Tl)−AIMDEF but with
smaller statistical uncertainty. Quantities such as the CO desorption probability
and the kinetic energy of the adsorbed CO have been reproduced with remarkable
closeness with these new ensembles. Moreover, new insights have been gained
from the larger (Te,Tl) −MDEF set regarding the initial stages of photodesorption
and the rovibrational state distribution of CO desorbates.
As each trajectory requires some seconds or minutes instead of some days, de-

pending on the simulated time interval, this work has opened the pathway to
explore CO photodesorption for larger computation times, with more statistical
reliability, and under different initial conditions. As a first application of the efficient
(Te,Tl) −MDEFmethod, we have investigated the potential existence of an isotopic
effect in the femtosecond laser-induced desorption of 0.75 ML CO from the Pd(111)
surface [88]. To this end, we have carried out (Te,Tl) −MDEF simulations using
two CO isotopologues, the light 12C16O and the heavier 13C18O. Using ensembles of
2000 (Te,Tl) −MDEF and Tl −MDEF (i.e., MDEF with only phononic excitations)
simulations, this study has extended the analysis of desorption dynamics over
50 ps. This analysis has revealed that CO photodesorption from a Pd(111) surface
at high laser fluence is governed by the phonon-mediated mechanism, challeng-
ing previous experimental results that suggested electron-mediated desorption at
lower fluences. After analyzing CO desorption probabilities and rates, as well as
desorbed CO vibrational states, no isotope effect has been found. Nevertheless,
slight vibrational excitation differences have been noted between isotopologues at
higher translational energies, though they represent a small fraction of the total
desorption events.
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These findings have further emphasized the potential of the MDEF approach
for exploring more complex desorption scenarios in subsequent researches, such
as varying laser fluences and two-pulse correlation studies. Our next goal has
been to perform a more comprehensive multicoverage study of photodesorption on
CO/Pd(111). Before tackling this challenge, it was important to gain knowledge of
what happened when our 0.75 ML PES was used for a different coverage. Making
use of previous (Te,Tl) −AIMDEF calculations [31], we have explored how our PES
predicts energies and atomic forces for more than 100 000 data points corresponding
to 0.33 ML. Conversely, we have trained another PES using information of this
latter coverage, and explored its predictions on 0.33 and 0.75 ML data points, as
well as the minimum energy path descriptions of both PESs on both adlayers. As
we have learned, 0.75 ML PES provides a more accurate description of 0.33 ML data
due to the larger variety of atomic environments explored than on the converse
case, although the energies predicted on the low coverage data points differ from
(Te,Tl) −AIMDEF by some consistent value. After fitting this offset and adding it to
the set of 0.33 ML configurations used for training, we have trained a multicoverage
EANN PES using (Te,Tl) − AIMDEF and Te − AIMDEF data coming from both
coverages. Its robustness has been checked with accurate energy predictions on
almost 500 000 data points of 0.33 and 0.75 ML adlayers in both types of MDEF
simulations. Moreover, it has also yielded accurate predictions on more than 1000
configurations for 0.60 ML, a coverage missing from multicoverage PES training.
Afterwards, using several sets of thousands of trajectories, we have investigated the
nonlinear dependence of desorption probability on laser fluence and coverage –for
a fixed fluence value–, and the relative contributions of hot electrons and phonons
in the desorption mechanism. Our results show that as CO coverage increases,
the desorption probability becomes more significant, in agreement with DIMET
mechanism, and allow to determine the nonlinear exponents ruling the relationship
between desorption probability and fluence. Moreover, we have observed that the
desorption process is primarily driven by phonons, particularly at higher fluences,
although the larger desorption probabilities arise due to the cooperation of both
electrons and phonons in exciting CO adsorbates. The simulations have also
provided insights into how mobile CO becomes along the surface 𝑥𝑦 plane and
the 𝑧 axis orthogonal to it, this allowing to see that CO desorbs either directly
or after residing some time trapped in the physisorption region. The influence
of different adsorption sites on desorption trajectories has been observed as well.
Finally, 2PC experiments have been simulated, revealing a strong phonon-mediated
desorption mechanism and some discrepancies with experimental data, especially
at lower CO coverages, possibly due to differences in coverage and adsorption
characteristics. The study has underscored the effectiveness of the multicoverage
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EANN PES in advancing the understanding of photoinduced surface reactions and
it has highlighted the need for further refinement in theoretical models to fully
capture the complexities of these processes.
Ultimately, we have considered a 0.75 ML mixed coverage containing 0.25 ML

O and 0.50 ML CO adsorbed on Pd(111). On this complex, we have simulated
femtosecond induced desorption. Preliminary settings have involved relaxing the
system in order to locate the more stable adsorption site for O atoms, the fcc
one resulting to be it, and thermalizing the system in order to select an ensemble
of 100 configurations (each configuration includes the positions and velocities
of all atoms in the system) that subsequently have served us as our simulation
initial conditions. Afterwards, we have performed (Te,Tl) − AIMDEF simulations
for two laser fluences (72 and 130 J/m2) and Te − AIMDEF simulations for the
highest fluence. Additionally and for comparative purposes, one set of calculations
has also been performed for CO/Pd(111) at the latter laser fluence. From the
sets of dynamics on both O+2CO/Pd(111) and CO/Pd(111), properties such as the
adsorbates position distribution along the surface 𝑥𝑦 plane and the 𝑧 axis, the time
evolution of desorption probability, the total reaction probabilities at the end of
the simulations (4.0 ps), and the kinetic energy distribution of adsorbed species
have been analyzed. It has been seen that CO and O adsorbates in O+2CO/Pd(111)
exhibit different behavior regarding their mobility, as CO can either desorb directly
or become trapped in the physisorption region, while O atoms may penetrate into
the surface topmost layer and destabilize it due to its movement across. On the
𝑥𝑦 plane, CO and O tend to visit regions close to their adsorption sites, but when
enough energy is provided to them, they can explore the full 𝑥𝑦 plane. Using the
𝑧 height distribution, some criteria for each system have been defined in order to
identify which CO are trapped and which other one has desorbed, and this has
been used to calculate CO desorption probabilities and time evolution of desorption
probabilities. Our study has shown that desorption probabilities are higher at
increased fluences, as well as the adsorbates kinetic energy and mobility. In the
(Te,Tl) − AIMDEF simulations at both fluences not only CO desorption, but also
CO recombinative oxidation with fcc O atoms have been obtained. Such process
happens very unlikely against desorption for larger fluence, but could be not as
infrequent for lower fluence. Also, site-specific desorption probabilities show that
more desorption occurs for top than for hcp CO in O+2CO/Pd(111). This result
is surprising because CO adsorption on top sites is characterized by a higher
desorption energy than CO adsorbed on hcp sites. The additional analysis of the
adsorbate kinetic energies evidences that the latter molecules gain initially slightly
more energy than those at top. Altogether, these results showing more desorption
from top sites than from hcp sites remark that the laser-induced dynamics in the
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O+2CO/Pd(111) system cannot be interpreted in terms of the energetics under
equilibrium conditions. Compared to CO/Pd(111), less CO desorption probability
has been obtained in the mixed O and CO adlayer. Finally, it is important to remark
that as these results have been obtained from sets of 100 trajectories and for a
time span of 4 ps, they contain the aforementioned statistics and time limitations
characteristic of AIMDEF.

To close with, let us briefly discuss potential future insights on the research topics
here covered. For instance, more studies with our multicoverage EANN PES could
be performed for CO/Pd(111), exploring in greater depth the coverage dependence
of the desorption probability and the relative role of electron- and phonon-mediated
excitation mechanisms for additional adlayers, such as 0.60 ML. Furthermore, inves-
tigations could focus on the fluence dependence and CO mobility using Te −MDEF
or Tl −MDEF simulations, as well as on performing 2PC simulations for a wider
range of adlayers. Regarding O+2CO/Pd(111), perhaps the more straightforward
step is to train a suitable EANN PES in order to do a deeper study on this system for
longer simulation times and under more diverse conditions, such as those investi-
gated for CO/Pd(111) in our multicoverage study [89] and already mentioned in this
Section. In addition, the choice to make more detailed comparisons between both
O+2CO and CO-coadsorbed Pd(111) complexes would be open. And finally, follow-
ing the promising and robust results (Te,Tl) −MDEF methodology has provided
for CO/Pd(111), its application to other adsorbate-substrate complexes becomes
straightforward. A very recent example on this aspect is a (Te,Tl) −MDEF work
on 2O+CO/Ru(0001) with a suitable EANN PES [95]. In summary, highly promis-
ing opportunities for advancing the understanding of femtosecond laser-induced
chemical processes in gas-metal systems are clearly emerging for the near future.
Opportunities to which, it is hoped, the work presented in this Thesis has made a
humble contribution.
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2.1 Flowchart of the self-consistent evaluation of the KS equations
for a given system. To begin with, some trial 𝑛𝑠 (r) is guessed.
It is then used for evaluating the KS potential (Eq. (2.71)), taking
into account some exchange-correlation potential 𝑣𝑥𝑐 (r). For this
KS potential, the Schrödinger equations for the ground-state KS
wavefunctions are solved (Eq. (2.72)). As a result, one gets a new
set of KS orbitals and, consequently, some new electronic density
(Eq. (2.73)) and associated total energy. At the end of each iteration 𝑡 ,
either the total energies of the system or the electronic densities are
compared with their counterparts at iteration 𝑡−1. If the differences∑
𝑖

��𝜖𝑡𝑖 − 𝜖𝑡−1𝑖

�� ≥ 𝛥𝜖𝑐 or
��𝑛𝑡𝑠 − 𝑛𝑡−1𝑠

�� ≥ 𝛥𝑛𝑐 , being 𝛥𝜖𝑐 and 𝛥𝑛𝑐 some
cutoff values for the energy and density, respectively, the iterative
process undergoes a new iteration. The cutoffs are chosen to be
small enough to ensure that the minimum energy of the system,
or equivalently the ground-state density has been reached (recall
the variational principle of Eq. (2.55)). Only when the difference in
energies or densities lies below its corresponding cutoff, this self-
consistent process is finished, yielding approximately the ground-
state electronic density 𝑛0(r) and energy of the system 𝜖0. . . . . 35
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2.2 Jacob’s Ladder of exchange-correlation functionals in DFT. The
ladder starts from Hartree-Fock approximation floor or "Hartree
hell", the least precise way of representing exchange and correla-
tion. The higher the considered approximation is in the ladder, the
more precisely quantum chemical properties are predicted, with
a larger computational expense in time and resources. The ideal
peak of the ladder represents discrepancies between the DFT com-
puted and the actual energy density of the many body system below
1 kcal/mol. Moving towards the higher steps implies going from
the local density approximation, showed in green, to semilocal ap-
proaches exploring first or second derivatives of the density at some
point 𝑛(r) (blue) and afterwards to functionals describing nonlocal
or long-range effects, depicted in red. Central columns indicate the
name of each family of exchange-correlation functionals (left) and
the key functions handled by each family (right). Van der Waals
approximations (step 3.5) did not exist before Jacob’s Ladder dia-
gram was first published in Ref. [133]; a discussion regarding its
placement in the diagram is given in Ref. [134]. . . . . . . . . . . 41

3.1 Representation of the MGR model showing the energy versus the
adsorbate-surface distance 𝑟 . Starting from the adsorbate-substrate
complex in the ground state A+S, photoexcitation heats the elec-
trons of the surface, and after them colliding the adsorbate the latter
is driven through a Franck-Condon excitation into an excited state
A*+S. There, excited adsorbate remains for some time in the excited
PES until relaxing back to the ground state with some kinetic en-
ergy gain, leading to it separating some 𝑟 from the substrate. Two
possible situations can arise depending of if time before quenching
falls below or reaches some critical value 𝑡 rel𝑐 . For relaxation times
as 𝑡 relel,1 < 𝑡

rel
𝑐 the adsorbate gains not enough energy to surpass the

potential well 𝐸𝑏 , so that with an energy gain 𝐸1 < 𝐸𝑏 it loses the
kinetic energy gained after excitation and gets recaptures by the
substrate. On the contrary, if it remains longer of, at least, as long
as some critical time, 𝑡 relel,2 ≥ 𝑡

rel
𝑐 , it gains enough kinetic energy to

surpass the potential barrier after quenching back to ground state,
𝐸2 ≥ 𝐸𝑏 , and becomes able to desorb. . . . . . . . . . . . . . . . . 58
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3.2 Surface photodesorption mechanism as described by Antoniewicz.
Considering once more the energy dependence of the adsorbate
with its distance to the substrate 𝑟 , and starting again from the
adsorbate-substrate system on ground state as in MGR proposal,
some photoexcited surface electrons are captured by the adsor-
bate orbitals, bringing the adsorbate into a negative ionic state
PES A− + S through a Franck-Condon process. Anionic atom or
molecule then approaches the surface before relaxing back to the
ground-state PES after some relaxation time 𝑡 relel . While approaching
the surface and quenching back to it, the adsorbate has an energy
gain 𝐸 which, if it equals or surpasses the energy barrier of the
ground PES (𝐸 ≥ 𝐸𝑏), allows the adsorbed species to desorb. . . . 59

3.3 Electronic density of states for a metal substrate that is excited with
a femtosecond laser pulse. (a) Right after the laser pulse reaches
the substrate (𝛥𝑡 = 0), electrons (black dots) are excited from lower
energy states below the Fermi level 𝐸𝐹 to higher energy states,
creating a nonequilibrium distribution of electrons (orange area)
that deviates from the original, Fermi-Dirac one, part of which is
shown in red. This hot electron distribution cannot be characterized
by an electronic temperature 𝑇𝑒 . (b) Subsequent relaxation process
of the electron distribution due to electrons redistributing their
energy by scattering with other electrons and the adsorbates, if
present. This leads to the distribution thermalizing to a Fermi-Dirac
one with a tail of higher energy states above 𝐸𝐹 , depicted in orange,
with a well defined 𝑇𝑒 . Meanwhile, the system seeks to return to
thermal equilibrium, and the electronic density of states evolves
towards regaining the Fermi-Dirac equilibrium distribution (shaded
region). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.4 Time evolution of the electronic temperature 𝑇𝑒 (solid curves) and
lattice temperature 𝑇𝑙 (dashed curves) calculated with 2TM for in-
cident femtosecond pulses of sech shape centered at 𝑡= 0.41 ps,
FWHM equal to 100 fs, wavelength 𝜆= 780 nm, and surface ab-
sorbed fluences, 𝐹= 72 J/m2 (red curves) and = 130 J/m2 (blue curves). 67
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3.5 Schematic summary of the femtosecond laser-mediated photodes-
orption process on metal surfaces. It starts after a femtosecond laser
pulse reaches an adsorbate-decorated (grey and red atoms) metal
surface (blue atoms). As a result metal electrons become very hot,
reaching temperatures of even thousands of K, and part of them
produce several electron-hole pairs and occupy valence energy lev-
els. Hot electrons gradually lose energy by colliding between them
or the adsorbate, thus producing a hot Fermi-Dirac distribution of
some 𝑇𝑒 . When they return to the conduction band they keep los-
ing energy by collision, not only by colliding with other electrons,
but also with energy metal atoms, leading to a coupling between
electronic subsystem and the metallic lattice ruled by a coupling
constant 𝑔. Electron energy input leads the surface phonons to heat,
thus their collective lattice temperature 𝑇𝑙 rises, but not as high as
for electronic subsystem due to the smaller heat conductivity of
the metal lattice. Both electronic and phononic subsystems plunge
energy into the adsorbates, which then become hotter –their tem-
perature 𝑇𝑎𝑑𝑠 consequently increasing–, and if their kinetic energy
grows enough they desorb from the surface. . . . . . . . . . . . . 69

4.1 Example of a feed-forward NN with two hidden layers of 4 and
3 nodes, respectively. Such NN has a 2-4-3-1 architecture, or, if
one regards only the hidden layers, a 4-3 one. Input layer contains
two functions G1 and G2 and, after the input is processed by all 𝑥𝑘𝑖
nodes, some energy 𝐸 is yielded as an output. Some of the weights
𝑤
𝑘−1,𝑘
𝑗,𝑖

, represented by black arrows, are pictured as an example.
Here, superscript 𝑘 relates to the layer number, and subscripts 𝑗
and 𝑖 denote the number of nodes providing some input value and
receiving it, respectively. This includes the bias weights 𝑏𝑘𝑖 pictured
with green dashed arrows, which are fed into each non-inputting
node by the bias node, also pictured in green. Bias node adds a
value of 1 to each node. . . . . . . . . . . . . . . . . . . . . . . . . 83

4.2 Examples of commonly used activation functions of Eq. (4.2) in the
range 𝑥 ∈ [−3, 3]. In this case, 𝑓 𝑘

𝑖,(4) has the parameters 𝑎 = 3/2, 𝑏 =

2/3 and 𝑐 = 1/4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

236



List of Figures Chapter 9

4.3 Schematics of the overfitting problem. In initial iterations or epochs,
the NN function is trained according to some input data, and at
the same time is validated against some test data missing from the
training set. Weight update after each epoch leads to a decrease in
the error functions for both train (blue) and test (red) sets, which
also implies a better predictive ability of the NN function curve
(showed in blue in the insets) to fit known data points (black dots
in the insets), as shown in the left inset. After some given iteration,
weight update fits training input data points with increasing accu-
racy as shown in the right inset in the black dots, thus its related
error still decreases. However, test set description starts to become
increasingly poorer, as shown for the NN function in the right inset,
and its related error begins to increase. As a result, the NN function
is said to be overfitted, being such region pictured in grey in the
figure. Consequently, optimal NN training lasts as many epochs as
required for error decrement, but are stopped prior to overfitting
with the help of some early stopping mechanism. . . . . . . . . . 89

4.4 Flowchart of the full NN training process. It begins with a set of
initial configurations of atomic positions, energies and forces that
is used as the input of a NN with some architecture. Then, a PES
function is trained in a NNwith some architecture, where the errors
or differences in PES-predicted energies and atomic forces with
respect to the input reference values are minimized during a number
of iterations. The output PES is made to undergo a validation
process consisting of different steps. First, NN training has to be
stopped early enough to prevent overfitting. In addition, in order
to validate its quality, the NN PES is used to predict energies and
forces of some set of configurations not present among the training
data, and those configurations that have larger errors in predicted
energy and force values can be incorporated to the training step.
Not only this, but also poorly described regions of the configuration
space may be encountered during this process, this motivating the
calculation of some selected data points to further enhance the
training set. Afterwards, additional training and validation cycles
can be performed on the PES until getting a final NN PES robust
and accurate enough. . . . . . . . . . . . . . . . . . . . . . . . . . 90
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4.5 General schema of a "second generation" HDNNPmodel (also called
atomistic NNmodel) for a system of three atomic species 𝑗 = a (red),
b (grey) and c (blue). Given a set of atomic positions r𝑖𝑗 , where 𝑖 refers
to the specific atom of element 𝑗 considered, a cutoff sphere can be
defined around each of them, characterized by a set of positionsR𝑖𝑗 ≡{
r𝑖𝑗

}
corresponding to the central atom position r𝑖𝑗 and the position

vectors of its neighbors. Participation of central and neighbor
atoms is represented with the multiple out- and ingoing colored
arrows between the two first columns. Cutoff sphere coordinates
are then transformed into sets of symmetry functions fulfilling
the required invariances, G𝑖

𝑗 ≡
{
g𝑖𝑗

({
r𝑖𝑗

})}
. Each of these sets of

functions enter a NN as input and this yields some energy 𝐸𝑖𝑗 for
the given local atomic environment. In the end, total energy of the
atomic configuration 𝐸𝑠 is a sum of the individual environmental
energies of the atom-centered cutoff spheres, subscript 𝑠 standing
for short-range to further address the local feature of each 𝐸𝑖𝑗 . . . 96

4.6 Plot of the cutoff function 𝑓𝑐 (𝑟𝑖 𝑗 ) defined in Eq. (4.9) in terms of 𝑟𝑖 𝑗/𝑟𝑐 . 97

4.7 𝜂 (upper graph) and 𝑟𝑠-dependencies (lower graph) of radial func-
tions 𝑒−𝜂(𝑟𝑖 𝑗−𝑟𝑠)

2
𝑓𝑐 (𝑟𝑖 𝑗 ) in terms of interatomic distance 𝑟𝑖 𝑗 . For all

functions plotted, 𝑟𝑐 = 7 Å. For upper graph, 𝑟𝑠 = 0 Å, whereas for
the lower one 𝜂 = 0.5. Cutoff function 𝑓𝑐 is pictured in dashed black
lines in both graphs. . . . . . . . . . . . . . . . . . . . . . . . . . . 99

4.8 𝜁 and 𝜆 dependencies of the angular functions 21−𝜁
(
1 + 𝜆 cos𝜃𝑖 𝑗𝑘

)𝜁
with the angles 𝜃𝑖 𝑗𝑘 subtended between the central atom 𝑖 of a cutoff
sphere and two neighbor atoms 𝑗 and 𝑘 . Each curve corresponds to
a certain choice of parameters (𝜆, 𝜁 ), so that reddish curves share
𝜆 = −1, whereas bluish ones have 𝜆 = 1. Selected values for 𝜁
exponent are 1, 2, 5, 10 and 20. . . . . . . . . . . . . . . . . . . . . 101
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4.9 Schema of the EANN framework for the same system of three
atomic species 𝑗 = a (red), b (grey) and c (blue) considered in Fig. 4.5
(see its description). One starts from a given set of atomic positions
R𝑖𝑗 ≡

{
r𝑖𝑗

}
inside a cutoff sphere around the 𝑖-th atom of element 𝑗 ,

r𝑖𝑗 . Then, one determines the set of GTOs centered at r𝑖𝑗 , 𝜑
𝛼, 𝑟𝑠
𝑙𝑥 𝑙𝑦𝑙𝑧

(r𝑖𝑗 ) ≡
𝜑 (r𝑖𝑗 ). Depending on their proximity to each of the system atoms
𝑖 , the GTOs linked to each centering atom feed or not –therefore
the multiple colored arrows between the third and fourth column
of the graph– the embedding atomic densities 𝜌𝑖

𝐿,𝛼,𝑟𝑠
≡ 𝜌𝑖 , which

preserve the required spacial and permutational invariances. The
latter are processed into NNs as corresponds for a HDNNP schema
and yield the individual energies 𝐸𝑖𝑗 , and their sum equals to the
short-range energy 𝐸𝑠 ≡ 𝐸 of Eq. (4.22). . . . . . . . . . . . . . . . 106

5.1 Schematic illustration of our 0.75 ML CO/Pd(111) 4 × 2 simulation
cell, composed by O (red) and C atoms (grey) forming CO adsor-
bates, and a 4-layer slab of Pd atoms (blue). (A) Orthogonal top view,
highlighting the CO top, hcp, and fcc adsorption sites, as well as, the
topmost (blue) and second topmost (blurred blue) surface layers. (B)
Perspective view. In (Te,Tl) − AIMDEF and (Te,Tl) −MDEF, each
adsorbate dynamics is modeled with a Langevin equation. Regard-
ing the surface, Pd atoms in the two topmost Pd layers are coupled
to the Nosé-Hoover thermostat, Pd atoms in the third layer undergo
adiabatic evolution and Pd atoms in the bottom layer remain frozen
throughout the simulation [31, 87]. . . . . . . . . . . . . . . . . . 114

5.2 Normalized histograms of potential energies 𝐸DFT0 obtained from
(Te,Tl) − AIMDEF (filled blue bars) [31]. Superimposed empty
bars distinguish energy distributions from trajectories with zero
(yellow), one (green) or two CO desorption events. (Top) Full
(Te,Tl) − AIMDEF data set histograms (352 505 configurations).
(Bottom) Distributions for the 15 000 configurations accounted first
for the EANN parameter optimization and afterwards for the first
EANN PES training. . . . . . . . . . . . . . . . . . . . . . . . . . . 117
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5.3 Representation of the exponential part of the GTOs, exp
[
−𝛼

(
𝑟𝑖 𝑗 − 𝑟𝑠

)2]
(Eq. (4.19)), multiplied by the cutoff function 𝑓𝑐

(
𝑟𝑖 𝑗

)
(Eq. (4.9)),

for 15 GTOs with equal separation intervals between consecu-
tive orbitals of 𝛥 𝑟𝑠 = 0.4643 Å, equal widths 𝛼 ≃ 0.93 Å−2 and
𝑟𝑐 = 6.5 Å. First GTO is centered at 𝑟𝑠 = 0 Å and last one is centered
at 𝑟𝑠 = 𝑟𝑐 = 6.5 Å. . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

5.4 Cartesian coordinate-wise histograms depicting, for each of the 36
moving atoms of the 0.75 ML CO/Pd(111) system, the 10 maximum
force errors |𝛥𝐹𝛾 | =

���𝐹DFT𝛾 − 𝐹EANN𝛾

���, with 𝛾 = 𝑥,𝑦, 𝑧. Black (red)
histogram bars correspond to errors for the predict set in the EANN
PES having the smaller maximum force errors of the first (final)
training. Green histogram bars correspond to the whole (Te,Tl) −
AIMDEF data set of 352 505 configurations and were obtained with
the final EANN PES. For each error distribution, MESMAEs,

��𝛥𝐹𝛾 ��,
are given as well. . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

5.5 Left: Comparison of the potential energies per moving atom com-
puted as determined by the (final) EANN PES against their cor-
responding DFT values, for a set of 87 382 configurations absent
from the training data. Right: Error distribution for the energy per
moving atom, 𝛥𝐸/𝑁moving = (𝐸DFT − 𝐸EANN)/𝑁moving, for the same
ensemble of predict configurations. . . . . . . . . . . . . . . . . . 128

5.6 Cartesian component-wise comparison of the forces acting on a fcc
carbon atom within the 0.75 ML CO/Pd(111) system [31], 𝐹EANN

𝛽

versus 𝐹DFT
𝛽

, 𝛽 = 𝑥 (red), 𝑦 (blue) and 𝑧 (green). Left column EANN
forces come from the initially trained PES, while the right panels
correspond to the final PES. Maximum error and RMSE for each
plot are also presented. . . . . . . . . . . . . . . . . . . . . . . . . 130

5.7 Same as Fig. 5.6 for an hcp O atom. . . . . . . . . . . . . . . . . . 131

5.8 Comparison of the LDFA friction coefficients calculated with the
fitted electronic density function 𝑛(r) (Eqs. (5.3) and (5.4)) against
the data set of friction coefficients from (Te,Tl) − AIMDEF [31].
Coefficients are given in atomic units (a.u.). (Taken from Ref. [87]) 132
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5.9 Time evolution of the friction coefficients 𝜂𝑒 for C atoms along a
representative trajectory. Orange lines depict the (Te,Tl)−AIMDEF
results for a specific trajectory of Ref. [31]. Blue lines represent the
results obtained from (Te,Tl) −MDEF-1 –i.e., performing molec-
ular dynamics with our final EANN PES and the density genera-
tion function–, for a trajectory initiated under identical (Te,Tl) −
AIMDEF conditions. Each graph shows the results for a different C
atom in the simulation model, whose initial positions are labeled in
the figures and correspond to the top (upper row), fcc (middle), and
hcp sites (lower). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

5.10 Total CO desorption probabilities in the interval [1.0, 3.5] ps for the
three ensembles of dynamics calculations considered in this work:
(Te,Tl) −AIMDEF (orange), (Te,Tl) −MDEF-1 (blue) and (Te,Tl) −
MDEF-2 (red). Here, (Te,Tl) − AIMDEF results are extracted from
the simulations performed in Ref. [31]. Both (Te,Tl) − MDEF-1
and (Te,Tl) −MDEF-2 stand for results obtained from simulations
performed with our best trained EANN PES using, respectively, the
same 100 initial conditions than in (Te,Tl) − AIMDEF, and 2000
random initial conditions. Standard deviations are depicted for
multiples of 500 fs to give an idea of the uncertainty intervals while
maintaining the clarity of the exact curves. . . . . . . . . . . . . . 137

5.11 Site-specific CO desorption probabilities in the interval [1.0, 3.5] ps
for the three ensembles of dynamics calculations considered in this
work: (Te,Tl) − AIMDEF (orange), (Te,Tl) − MDEF-1 (blue) and
(Te,Tl) − MDEF-2 (red). Here, (Te,Tl) − AIMDEF results are ex-
tracted from the simulations performed in Ref. [31]. Both (Te,Tl) −
MDEF-1 and (Te,Tl) − MDEF-2 stand for results obtained from
simulations performed with our best trained EANN PES using, re-
spectively, the same 100 initial conditions than in (Te,Tl)−AIMDEF,
and 2000 random initial conditions. Standard deviations are de-
picted for multiples of 500 fs to give an idea of the uncertainty
intervals while maintaining the clarity of the exact curves. Here,
desorption probabilities correspond to CO initially adsorbed at top
(upper), hcp (middle) and fcc (lower panel) sites. . . . . . . . . . . 138

241



Chapter 9 List of Figures

5.12 Mean center of mass translational kinetic energy, ⟨𝐸transkin ⟩, (left
panel, full thick lines) andmean rovibrational kinetic energy, ⟨𝐸rovibrkin ⟩,
(right panel, full thick lines) of adsorbed CO molecules as a func-
tion of time. Corresponding dotted thin curves above and be-
low each ⟨𝐸trans(rovibr)kin ⟩ curve show the mean values plus and mi-
nus associated standard deviations, respectively. For both panels,
(Te,Tl) −AIMDEF stands for results extracted from Ref. [31] calcu-
lations, (Te,Tl)−MDEF-1 stands for dynamics results obtained from
our best trained EANN PES using the same 100 (Te,Tl) − AIMDEF
initial conditions, and (Te,Tl) −MDEF-2 stands for dynamics re-
sults obtained with the same EANN PES using 2000 random initial
conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

5.13 Empirical cumulative distribution functions (ECDFs) of desorbed
CO for the center of mass translational kinetic energy (left panel)
and rovibrational kinetic energy (right panel). Shaded areas mark
99% Dvoretzky-Kiefer-Wolfowitz confidence intervals [348]. For
both panels, (Te,Tl) − AIMDEF stands for results extracted from
Ref. [31] calculations, (Te,Tl)−MDEF-1 stands for dynamics results
obtained from our best trained EANN PES using the same 100
(Te,Tl) −AIMDEF initial conditions, and (Te,Tl) −MDEF-2 stands
for dynamics results obtained with the same EANN PES using 2000
random initial conditions. . . . . . . . . . . . . . . . . . . . . . . . 141

5.14 Probability distribution of the vibrational quantum number 𝜈 of
desorbed CO in the (Te,Tl) −MDEF-2 data set, determined from
Eq. (5.8) after the quasiclassical approach of Ref. [349]. All CO
molecules considered in this distribution have rotational states 𝑗 ≥ 0. 144

5.15 Probability distributions of the rotational quantum number 𝑗 for
each of the vibrational states observed among the desorbed CO
in (Te,Tl) −MDEF-2 set, 𝜈 = 0, 1 (blue and red bars of top panel,
respectively) and 𝜈 = 2, 3 (green and orange bars of bottom panel,
respectively). Rotational states were determined from Eq. (5.10)
following the quasiclassical approach of Ref. [349]. . . . . . . . . 145

6.1 Time evolution of 12C16O (Te,Tl) −MDEF (full blue) and Tl−MDEF
(dashed purple), and 13C18O (Te,Tl)−MDEF (full red) andTl−MDEF
(dashed orange) desorption probabilities in the interval [1, 4] ps.
Shaded areas correspond to Wilson score intervals of 99% confi-
dence level [347]. . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
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6.2 (Top) Time evolution of the desorption probability along the time
interval [0, 50] ps. (Te,Tl) −MDEF (solid lines) data sets for 12C16O
(blue) and 13C18O (red) and Tl − MDEF ones (dashed lines) for
12C16O (purple) and 13C18O (orange) are depicted. Shaded areas
show the uncertainty intervals for 99% confidence level according
toWilson score intervals framework [347]. (Bottom) Corresponding
desorption rate obtained during 50 ps. Raw noisy desorption rates
(translucent lines) were obtained from desorption probabilities by
numerical differentiation. Smooth desorption rates (thick lines)
were obtained after applying a fifth order noise-reduction spline
interpolation over raw desorption probabilities. Desorption rates
during the first 10 ps are depicted in the inset. . . . . . . . . . . . 155

6.3 Quasiclassical vibrational state distribution of 12C16O and 13C18O.
Upper graph row corresponds to (Te,Tl) −MDEF 12C16O (blue) and
13C18O (red) while bottom ones stand for Tl−MDEF 12C16O (purple)
and 13C18O (orange) data sets. For each smaller graph, a distinction
between molecules in their vibrational ground state (𝑣 = 0) or after
undergoing vibrational excitation (𝑣 > 0) is made. Error bars reflect
the standard deviation as for binomial distributions. Left column of
panels display vibrational state probabilities with respect to total
amounts of desorbed CO species. Right column shows results for
the COmolecules that desorbed with the larger translational kinetic
energies, 𝐸transkin ≥ 0.67 eV –or, alternatively, 𝑇 ≥ 5200 K– (see text). 156

7.1 Top view of minimum energy configurations obtained with the
multicoverage EANN PES for 0.33 ML (top) and 0.75 ML (bottom
panel). The supercells considered in our (Te,Tl)−MDEF simulations
are represented in solid lines. Grey dashed lines show the smallest
pattern that is repeated within supercells. . . . . . . . . . . . . . . 161
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7.2 Potential energy 𝐸0 in terms of the CO CM height 𝑧cm,CO for one CO
species desorbing along its site-specific minimum energy path from
a 0.33 ML CO/Pd(111) adsorption site –fcc, in blue– and the three
possible adsorption sites in 0.75 ML, namely top (black), hcp (red)
and fcc (green). Solid lines represent the 0.33 ML EANN PES energy
calculations while dashed lines stand for the energies obtained
with DFT+vdW-DF of Ref. [31]. For both sets of plots, solid dots
correspond to the data points used. In each curve, the energy and
the height are referred to the values obtained at the bottom of the
corresponding well, 𝐸well0 and 𝑧wellcm,CO respectively. A close-up of
the plot in the range [0.0, 1.7] eV is also depicted in the inset for a
clearer comparison between the 0.33 ML potential energy curves. 163

7.3 Potential energy 𝐸0 in terms of the CO CM height 𝑧cm,CO for one CO
species desorbing along its site-specific minimum energy path from
a 0.33 ML CO/Pd(111) adsorption site –fcc, in blue– and the three
possible adsorption sites in 0.75 ML, namely top (black), hcp (red)
and fcc (green). Solid lines represent the 0.75 ML EANN PES energy
calculations while dashed lines stand for the energies obtained
with DFT+vdW-DF of Ref. [31]. For both sets of plots, solid dots
correspond to the data points used. In each curve, the energy and
the height are referred to the values obtained at the bottom of the
corresponding well, 𝐸well0 and 𝑧wellcm,CO respectively. . . . . . . . . . 165

7.4 Linear fit of the energies of the configurations in the 0.33MLCO/Pd(111)
surface predicted by the 0.75 ML CO/Pd(111) PES of Ref. [87] versus
their (Te,Tl) − AIMDEF counterparts taken from Ref. [31]. The
slope of the fitting line has been fixed as𝑚 = 1 and only the value
of the y-intercept "b" has been fitted. . . . . . . . . . . . . . . . . 168

7.5 Comparison of the potential energies permoving atom, 𝐸EANN/𝑁mov,
computed as determined by the multicoverage EANN PES against
their corresponding DFT values, 𝐸DFT/𝑁mov, for a set of 116 927
0.33 ML (Te,Tl)−AIMDEF configurations missing from the training
data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

7.6 Comparison of the potential energies permoving atom, 𝐸EANN/𝑁mov,
computed as determined by the multicoverage EANN PES against
their corresponding DFT values 𝐸DFT/𝑁mov, for a set of 87 382
0.75 ML (Te,Tl)−AIMDEF configurations missing from the training
data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
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7.7 Potential energy 𝐸0 against the CO CM height 𝑧cm,CO for one CO
species desorbing along its site-specific minimum energy path from
a 0.33 ML CO/Pd(111) adsorption site –fcc, in blue– and the three
possible adsorption sites in 0.75 ML, namely top (black), hcp (red)
and fcc (green). Solid lines represent the multicoverage EANN
PES energy calculations while dashed lines stand for the energies
obtained with DFT+vdW-DF of Ref. [31]. In all cases, solid dots
correspond to the data points used. In each curve, the energy and
the height are referred to the values obtained at the bottom of the
corresponding well, 𝐸well0 and 𝑧wellcm,CO respectively. . . . . . . . . . 173

7.8 Comparison of the potential energies permoving atom, 𝐸EANN/𝑁mov,
computed as determined by the multicoverage EANN PES against
their corresponding DFT values 𝐸DFT/𝑁mov, for a set of 1446 0.60ML
(Te,Tl) −AIMDEF configurations. Among the latter ensemble, 114,
120, and 1212 data points have been obtained under incident laser
fluences of 85, 95, and 115 J/m2, respectively. . . . . . . . . . . . . 176

7.9 Top view of minimum energy configurations obtained with the
multicoverage EANN PES for 0.60ML of CO coverage. Top structure
corresponds to a local minimum higher in energy than the bottom
structure. The supercells used in our (Te,Tl) −MDEF simulations
are represented in solid lines. Grey dashed lines indicate the smallest
pattern that is repeated within supercells. . . . . . . . . . . . . . 178

7.10 Time evolution of the electronic temperature, 𝑇𝑒 , (left panel) and
the lattice temperature for the three topmost Pd surface layers, 𝑇𝑙 ,
(right panel), as determined with 2TM (solid lines) for different
pulse laser fluences. Dashed lines show the mean temperature of
the three topmost mobile Pd layers in (Te,Tl) −MDEF calculations.
The incoming laser pulse is assumed to reach its peak intensity at
time zero, and its FWHM is represented as the gray shaded region. 179

7.11 Electronic heat capacity coefficient 𝑐𝑒 in palladium as a function of
the electronic temperature. The 𝑐𝑒 (𝑇e) considered in our calcula-
tions is shown as the solid green line. This result is obtained from
a fit to previous experimental data of Shimizu et al. (1963) [352]
(orange line), Miiller et al. (1968) [353] (black dots), and Miiller et
al. (1971) [354] (red dots). For reference, a previous fit of 𝑐𝑒 (𝑇e) due
to Szymanski et al. (2007) [38] is also depicted with a dashed blue
line. 𝑐𝑒 (0) has been derived from the heat capacity low temperature
measurements in Veal et al. (1964) [355] (dotted pink line). . . . . 180
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7.12 CO desorption probability against the absorbed fluence for different
initial coverages. Reddish, bluish, and greenish full circles stand
for (Te,Tl) −MDEF theoretical results for 0.75, 0.60, and 0.33 ML
coverages, respectively, with varying simulation cell size. Darker
red, blue, and green triangles correspond to the experimental results
of Ref. [30] for 0.75, 0.64, and 0.24 ML coverages, respectively. Each
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