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Resumen

La busqueda y estudio de efectos novedosos relacionados con la interaccion entre la luz
y la materia, asi como el deseo de ofrecer explicaciones mas completas sobre diversos
fenémenos relacionados con esta interaccién son los ejes sobre los que pivota esta tesis
doctoral. El desafio de abordar la interaccién de la luz no es nuevo, ya que el propio
concepto de la luz y la percepcién de los colores han atraido la curiosidad del ser hu-
mano desde tiempos antiguos a lo largo de la historia. Afortunadamente, y a diferencia
de los primeros investigadores, hoy en dia disponemos de un conjunto de complejas her-
ramientas matematicas que suponen el pilar de la ciencia moderna en lo que se ha dado
en llamar el método cientifico. Asi mismo, se dispone de dispositivos que nos permiten
ver objetos muy pequenos para la simple vista, e incluso acceden a objetos atn mas

pequenos que la longitud de onda de la luz visible que los ilumina.

Sin embargo, a pesar de la sofisticacién de los instrumentos a nuestra disposicién, con-
tinuamos tan fascinados por los colores brillantes de las plumas de los péjaros [1], la
iridiscencia de los caparazones de los escarabajos [2], y los colores vivos exhibidos por
ciertas especies de monos y de zarigiieyas [3], como lo estuvieron en su dia los pioneros de
la ciencia. Estos y muchos otros fenémenos 6pticos ocurren porque, mediante un proceso
de seleccién natural, la Naturaleza ha equipado a diversas especies de pajaros, mariposas,
escarabajos y, mdas sorprendentemente, también a ciertos mamiferos, con mecanismos
naturales para organizar complejas estructuras foténicas a partir de particulas de di-
mensiones menores de la longitud de onda. En un esfuerzo por comprender e imitar las
invenciones de la Naturaleza, muchos cientificos han estudiado los elementos que forman
estos sistemas, y de una manera directa o indirecta, han logrado descubrir las fascinantes
propiedades de los nanosistemas metalicos y dieléctricos, como unidades especialmente
efectivas para localizar la luz [4-7], manipular su flujo [8-13] y controlar su interaccién
con otro de los componentes bésicos de la naturaleza, las moléculas [14-18]. Los cuatro

capitulos de la tesis suponen una continuacién de estos esfuerzos, en los que se presentan
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Resumen

cuatro contribuciones que pueden facilitar el camino hacia la comprensién y el control

de la luz.

El primer capitulo de esta tesis describe nanosistemas disenados para concentrar la luz
mediante la excitacion de Resonancias Plasménicas de Superficie Localizadas (LSPRs
por sus siglas en inglés), un fenémeno segin el cual el campo eléctrico de una haz de luz
incidente induce oscilaciones coherentes de los electrones de conduccién del metal. Estos
sistemas se han estudiado ampliamente tanto en trabajos tedricos como experimentales,
en los que la capacidad de localizacién y aumento del campo electromagnético en la na-
noescala han dado lugar a muchas aplicaciones tecnolégicas, tales como las plataformas
senséricas para biologia [19, 20], los sistemas que intensifican la sefial de espectroscopias
6pticas, [5, 21-23], asi como para establecer conexiones entre las excitaciones electrénicas
y foténicas [24, 25]. Sin embargo, a pesar de los significativos avances logrados en la com-
prensiéon de su dindmica, las nanoparticulas metalicas contintian generando resultados

desconcertantes.

Un ejemplo de fenémeno dificil de explicar es la aparente inconsistencia en la posicién
y anchura espectral de los picos de las resonancias plasménicas al realizar una medida
espectroscépica de diferentes magnitudes: la extincién, la dispersion y el campo proximo
[26—29] inducidos por las nanoparticulas metdlicas. Este peculiar efecto se ha estudiado
parcialmente mediante modelos que describen los plasmones como osciladores arménicos
amortiguados forzados cuyas resonancias son excitadas en el rango espectral del infrar-
rojo (IR) [30-33]. Sin embargo, paraddjicamente, este simple modelo no es capaz de
reproducir las posiciones espectrales relativas de los correspondientes picos resonantes
en un caso paradigmatico de excitaciéon de plasmones localizados: una pequena particula
de oro de dimensiones inferiores a la longitud de onda, resonante en el espectro visible.
En el Capitulo 1 de esta tesis se estudia esta limitacién, que se debe a la existencia de
una importante contribucién de las transiciones interbanda del metal en el caso del oro,

que impiden una respuesta puramente plasmdnica de las particulas metalicas.

Para entender y resolver esta discrepancia en los diversos picos plasmoénicos, se ha de-
sarrollado un modelo alternativo que puede ser utilizado satisfactoriamente en el caso de
particulas metdlicas caracterizadas por una funcién dieléctrica arbitraria, que presente
fuertes contribuciones de transiciones interbanda. mediante la aplicacién de este modelo,
se demuestra y se explica la existencia de corrimientos espectrales en la comparacién de
los picos de resonancias obtenidos en la seccién eficaz de absorcion, en la seccién efi-
caz de dispersién, y en la intensidad del campo cercano. La metodologia desarrollada

en este capitulo permite analizar en detalle y reinterpretar el papel de las transiciones
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interbanda en el ensanchamiento y desplazamiento espectral de la respuesta optica de

nanoparticulas metalicas resonantes en el espectro visible.

Otro aspecto de interés en torno a la respuesta de nanosistemas metalicos estd rela-
cionado con la dinamica de los plasmones localizados. Los modelos méds comunes asumen
que, una vez excitados, los plasmones deberian exhibir oscilaciones con amortiguamiento
exponencial, estableciendo, por tanto, una relacién directa entre la tasa de decaimiento
del plasmén y la anchura espectral de la resonancia. Sin embargo, un estudio mas de-
tallado apunta que el decaimiento del plasmén no se limita en algunos casos a un simple
proceso exponencial [34]. Un andlisis numérico de la dindmica de las excitaciones plas-
monicas permite estudiar este aspecto, en el que, efectivamente, se encuentra que los
plasmones inducidos en pequenas nanoparticulas metdlicas pueden llegar a exhibir una
dindmica no trivial debido a su acoplamiento con las transiciones interbandas. Esta
prediccion podria ser verificada mediante la utilizacién de pulsos de laser ultracortos,
como los utilizados en estudios recientes de la dindmica de plasmones en escalas de

tiempo de femtosegundos.

Tras explorar los efectos de la naturaleza amortiguada de las excitaciones en nanoparticulas
metalicas, esta tesis aborda el estudio de otros materiales que no sufren tales limitaciones.
En concreto, el Capitulo 2 de la tesis estudia sistemas compuestos por resonadores de di-
mensiones microscopicas fabricados con materiales dieléctricos, que presentan un indice
de refraccion alto. La utilizacién de sistemas micrométricos de estos materiales ha
sido un elemento fundamental en el desarrollo experimental de la comunidad de éptica
cuantica. Las prestaciones de este tipo de configuraciones han sido llevadas al limite
submicrométrico recientemente en dos propuestas tedricas recientes de Aitzol Garcia-
Etxarri et al. [35] y Andrey Evlyukhin et al. [36], que indican la posibilidad de utilizar
esferas submicrométricas de silicio en un rango de frecuencias del infrarrojo cercano. En
estos trabajos se demuestra que dichas nanoantenas puedan dispersar y localizar la luz
de una manera muy eficiente mediante la excitaciéon de modos dipolares tanto eléctricos
como magnéticos. Las resonancias magnéticas podrian erigirse en una plataforma al-
ternativa respecto a los sistemas plasmoénicos, al presentar la ventaja de la ausencia de
pérdidas. Ademas, los sistemas plasmoénicos requieren un cuidadoso diseno que permita
obtener actividad magnética [37-39], mientras que los sistemas dieléctricos presentan

esta actividad de manera natural.

Las aplicaciones a las que dan lugar estos nuevos sistemas sin pérdidas son abordados en
el Capitulo 2, donde se estudian nanoantenas dieléctricas como plataformas tutiles para

aumentar la tasa de emisién espontanea de emisores dipolares eléctricos y magnéticos
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localizados en su proximidad. Se demuestra que estos sistemas pueden alcanzar presta-
ciones similares a las de sus andlogos plasménicos, mediante el acoplo de los emisores
con canales de decaimiento puramente radiativos, lo que permite mantener o incluso au-
mentar su eficiencia cudntica intrinseca. Ademés de analizar las cotas del rendimiento
que se puede alcanzar en las antenas dieléctricas, se propone una descripcion simplifi-
cada del aumento de la tasa de emisién espontanea, mediante un modelo que describe
la interaccién entre el emisor dipolar y la excitacion dipolar de la particula dieléctrica.
Esto puede hacerse gracias a la gran separacion espectral entre los modos dipolares y

los de orden superior que presentan las estructuras dieléctricas.

El modelo de interaccion dipolo-dipolo puede extenderse para analizar la respuesta de
una estructura de tipo dimero formada por dos particulas dieléctricas, caracterizadas
por una polarizabilidad eléctrica y magnética arbitrarias. Se analiza en detalle la hib-
ridizacién de los modos dipolares de las particulas individuales, y cémo esta hibridazién
da lugar a modos de tipo dimero que pueden ser clasificados de acuerdo a la simetria
que presentan. Es especialmente resenable que la energia de estos modos de tipo dimero
no se debe tnicamente a la interaccién entre pares homogéneos (eléctrico-eléctrico y
magnético-magnético) de los modos dipolares de las particulas individuales, sino que es
también necesario considerar la interaccion electromagnética entre pares heterogéneos de
dipolos (eléctrico-magnético). Este estudio analitico se compara con célculos numéricos,
lo que nos permite incorporar las modificaciones espectrales debidas a la forma y la
estructura de las nanoparticulas. Los resultados tedricos que explican las complejas hi-
bridaciones de los modos dieléctricos se han confirmado experimentalmente gracias a la
caracterizacion 6ptica de las estructuras de dimeros desarrolladas en colaboracién con

el Laser Zentrum Hannover e.V.

En el dltimo apartado del Capitulo 2 analizamos las prestaciones de los dimeros dieléctricos
como antenas que intensifican la emisién de emisores individuales eléctricos o magnéticos
situados en la cavidad formada en el centro del dimero. Encontramos que los modos de
esta estructura de dimero pueden inducir un considerable aumento de la tasa de emisién
espontanea de los emisores dipolares, fundamentalmente debido al acoplo con modos
radiativos, manteniendo al mismo tiempo las altas eficiencias cuanticas incluso cuando
se incluyen las pérdidas intrinsecas del silicio. Estos resultados permiten concluir que
los sistemas dieléctricos de dimensiones sub-micrométricas pueden ser utilizados como

elementos viables de una familia alternativa de antenas nanométricas y metamateriales.

Al derivar las expresiones que describen la intensificacién de la tasa de decaimiento de

xii



los emisores dipolares acoplados a nanoparticulas dieléctricas en el capitulo 2, se uti-
liza una metodologia sencilla: se expande el campo eléctrico originado por un emisor
dipolar eléctrico en una serie de arménicos esféricos vectoriales, y éstos son transforma-
dos, remplazando los campos eléctricos por campos magnéticos y, simultaneamente, el
emisor eléctrico por un emisor magnético (detalles indicados en el Apéndice A). Esta
trasformacion es un caso especifico de la transformacion dual mas general, que mezcla
las componentes eléctricas y magnéticas del campo electromagnético a medida que éste
se propaga en un medio homogéneo. Sin embargo, tal y como se discute en el Capitulo
3, esta transformacion también se puede aplicar a los campos electromagnéticos en un
medio inhomogéneo. Podemos diferenciar dos casos en la aplicacién de esta trasnfor-
macién. El primero, el caso macroscopico, requiere un medio homogéneo a trozos que
presente la misma relacién entre la permitividad y la permeabilidad en todo el sistema.
El caso microscopico, en cambio, concierne a configuraciones aleatorias de particulas dis-
persivas duales, es decir, particulas con idéntica polarizabilidad magnética y eléctrica.
En esta tesis, analizamos este segundo caso en detalle, y demostramos la validez de
la transformada dual para un campo que se propaga en una distribucién de particulas

duales de silicio con dimensiones submicromeétricas.

La transformacion dual puede ser formulada utilizando su generador, el operador de
helicidad. De manera més especifica, si el sistema dual es iluminado con luz de helicidad
bien definida (es decir, si el campo incidente puede ser descompuesto en una serie de
ondas planas polarizadas circularmente de quiralidad fija), en este caso la luz dispersada
preserva su helicidad y, por tanto, también la quiralidad de la ondas planas polarizadas
circularmente que constituyen el campo dispersado. Es efecto puede constituir una nueva

herramienta para la caracterizacién de medios aleatorios.

Por 1ltimo, en el Capitulo 4 se considera el efecto de dispersién Raman no-resonante en
moléculas situadas en cavidades plasmonicas. La motivacion de este estudio viene dada
por una serie de resultados e implementaciones recientes de este tipo de experimentos,
que han sido posibles como consecuencia de un mejor diseno de los substratos y soportes
para la realizacién de medidas de Dispersion Raman Aumentada por Superficie (SERS
por su acrénimo en inglés). Algunos de los resultados obtenidos con esta técnica de SERS
no pueden ser descritos mediante un tratamiento clasico del aumento de los campos
electromagnéticos dentro de las cavidades plasmonicas [40-42], y requieren el desarrollo

de una descripcién cuantica de los campos electromagnéticos .

En este capitulo presentamos un modelo méas fundamental de la interaccién no linear

entre los cuantos de excitacion de la cavidad plasmoénica y la estructura vibracional de
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la molécula, basada en la mecanica cuantica. Este modelo es capaz de describir efectos
que no pueden ser descritos por un tratamiento clasico y que detallamos a continuacién:
(i) emergencia de dispersién Raman estimulada por fonones debido a una alta poblacién
incoherente de los cuantos de vibracién de la molécula; (ii) la dispersién anti-Stokes
depende de manera sorprendente de la frecuencia de la luz incidente y de la temperatura
local. Cabe apuntar que estos efectos se dan para valores realistas de los diferentes

parametros.

Considerando las consecuencias de estos resultados para la interpretacién de los es-
tudios experimentales, la prediccién de la dispersiéon Raman estimulada en moléculas
individuales situadas en cavidades plasmoénicas puede tener una gran importancia, y
puede apuntar nuevas vias para intensificar la emisién Stokes y anti-Stokes, que son
intrinsecamente débiles. A nuestro entender, este efecto no ha sido demostrado todavia
en el laboratorio, pero los resultados presentados en esta tesis indican que algunos de
los experimentos actuales se realizan en condiciones muy similares a las expuestas aqui,

que permitirian, por tanto, poner de manifiesto estas observaciones.

Desde el punto de vista tedrico, nuestro formalismo es exacto y abre nuevas posibilidades
para estudiar correlaciones clasicas y cudnticas entre los fotones emitidos por la cavidad.
Debido a la equivalencia formal entre el Hamiltoniano analizado en esta tesis para tratar
la interaccion Raman y el usado en el estudio de sistemas optomecanicos cuanticos, el
esquema que presentamos en el ultimo capitulo de la tesis permite extender el estudio de
estos sistemas cudnticos a un nuevo régimen de valores de los parametros optomecanicos.
En un sistema optomecanico Raman se pueden alcanzar fuerzas de acoplamiento relati-
vamente elevadas, observadas con anterioridad solamente para atomos frios, y se pueden

encontrar de manera natural poblaciones térmicas muy pequenas.

En resumen, los siguientes capitulos de esta tesis presentan una serie de fenémenos
Opticos que rigen la respuesta y eficiencia de nanoantenas plasmonicas y dieléctricas.
Investigamos estos sistemas como posibles plataformas para estructurar y manipular el
flujo de la luz en la nanoescala, asi como para aumentar su interaccién con moléculas.
Los nuevos efectos que se predicen, tales como el decaimiento no exponencial de los
plasmones, la formacién de modos heterogéneos en dimeros dieléctricos, la conservacién
de la helicidad de la luz dispersada en un medio dual, o la emergencia de dispersién
Raman estimulada por fonones, puede encontrar aplicaciones directas en diversos sis-
temas nanofotonicos, y abrir nuevos caminos para un mejor control de la luz en escalas

inferiores a la longitud de onda.
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Introduction

At the very heart of this thesis, lies an effort to propose new effects related to the inter-
action of light with matter and to provide better explanations to a variety of reported
phenomena. The challenge we undertake is not a new one, as one could hardly imag-
ine a time in history where the very notion of light or the perception of colors, would
not trouble curious minds. Luckily, unlike the first discoverers, we are equipped with
an advanced mathematical framework, the cornerstone of modern science, the scientific
method, as well as with devices that allow us to see not only objects too small to be

observed with the sharpest sight, but even smaller than the wavelength of visible light.

And yet, despite all the sophistication of the available tools, we are still, just like the
pioneers of science, awed by the great show of bright coloring of the feathers of birds
[1], the iridescence of beetles’ shells [2] and vivid colors demonstrated by some species
of monkeys and opossums [3] (see Fig. 1). All these, and many other optical phenomena
occur because, through evolution, Nature has equipped birds, butterflies, beetles and,
somewhat surprisingly, certain mammals, with mechanisms to assemble subwavelength

particles into complex, photonics structures.

Therefore, in an effort to understand and mimic Nature’s inventions, scientists have been
studying building blocks of such systems, and uncovered the fascinating properties of
metallic and dielectric nanosystems that allow them to localize light [4-7], mold its flow
[8-13] and tune its interaction with another toy of Nature, molecules [14-18]. Following
their efforts, in the four chapters of this thesis we present four stepping stones, set up

to facilitate our progress towards an understanding and control over light.

The first chapter of this thesis describes nanosystems designed to focus light through the
excitations of localized surface plasmon resonances (LSPRs), a phenomenon in which the

electric component of incident illumination induces coherent oscillations of conduction
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FIGURE 1: Structural coloration in the animal kingdom. (a) Photographs of butterfly
species (adapted from Ref. [1]). (b) Abdominal plane of the body of a female Japanese
jewel beetle Chrysochroa fulgidissima (adapted from Ref. [2]). (c) Male mouse opossum
(Marmosa robinsoni) with blue scrotum (adapted from Ref. [3]). The bright colors and
iridescence demonstrated by these animals is a result of a coherent scattering in photonic
structures, rather than pigmentation.

electrons in the metal. Such systems have been extensively studied both through exper-
imental and theoretical efforts, and found many applications as platforms for biosensing
[19, 20], enhanced spectroscopies [5, 21-23], as well as opened avenues to interfacing
electronic and photonic excitations [24, 25]. However, despite the significant progress in
the understanding of their dynamics, metallic nanoparticles continue to deliver baflling

results.

One example of such curious effects is the apparent inconsistency in the spectral positions
and widths of resonant features found in measurements of the extinction, scattering and
near-field spectra [26—29] of metallic nanoparticles. This peculiar effect has been partially
addressed by modeling localized plasmons, resonant in the infra-red (IR) spectral regime
as damped, driven harmonic oscillators [30-33]. However, this model unexpectedly fails
to reproduce the shifts between the spectral characteristics of the flagship of localized
plasmons, a small, subwavelength-sized gold nanoparticle resonant in the visible spectral

range. As we discuss in Chapter 1 of this thesis, this shortcoming is caused by the onset
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FIGURE 2: Localization and enhancement of the electric field, Eg, of an incident
planewave by a dimer of silver spheres of 35 nm radii.
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of interband transitions in the metal, which hinder the purely plasmonic nature of gold

particles.

We therefore construct an alternative model which can be successfully applied to metallic
particles characterized by an arbitrary dielectric function, and develop it to demonstrate
and explain the spectral shifts between resonances observed in the absorption and scat-
tering cross sections, and in the spectra of the near-field intensity. This approach allows
us to dissect and understand the role of interband transitions in the broadening and
shifting of the optical response of metallic nanoparticles resonant in the visible spectral

range.

Another interesting aspect of the optical response of metallic nanosystems is related to
the dynamics of localized plasmons. Current models assume that, once excited, plasmons
should exhibit exponentially decaying oscillations, with the rate of the decay related to
the spectral width of the resonance. However, a more detailed study suggests that the
decay of the plasmon might not be a simple exponential process [34]. We explore this
possibility by analyzing numerically the dynamics of plasmon excitations and indeed find
that the plasmons induced in small metallic nanoparticles exhibit a non-trivial dynamics
due to their coupling to interband transitions. This prediction could be verified through
experiments, as ultrashort laser pulses have been recently employed to investigate the

dynamics of plasmons at femtosecond timescales.

Having explored the effects imposed by the lossy nature of the excitations in metallic
nanoparticles, we look towards other materials which would not suffer from such lim-

itations. As it turns out, systems comprising microscale resonators made up of high
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refractive index dielectrics have been a centerpiece of experimental setups in the com-
munity of researchers realizing quantum-optical microsystems. This type of design has
been recently proposed in the submicron regime by two publications from Aitzol Garcia-
Etxarri et al. [35] and Andrey Evlyukhin et al. [36], who hinted on the possibility of
using submicron silicon spheres as antennas operating in the near-infrared regime. They
found that such nanoantennas can efficiently scatter and localize light through the exci-
tation of both electric and, somewhat surprisingly, magnetic dipolar modes (see Fig. 3).
This last feature would stand out as a tremendous advantage of these lossless systems
over the plasmonic ones, which require careful structuring to exhibit any magnetic ac-

tivity [37-39).

FIGURE 3: Scattering of light by a submicron silicon sphere. The electric (Ep) and
magnetic (Hg) components of the incident planewave induce orthogonal electric (p)
and magnetic (m) dipoles.

To explore the applications enabled by these new lossless systems, in Chapter 2 we em-
ploy dielectric nanoantennas as platforms for enhancing rates of spontaneous emission
from electric and magnetic dipolar emitters. We show that such systems can match
the performance of their plasmonic counterpartners, efficiently coupling the emitters to
purely radiative decay channels, thus retaining or even boosting their intrinsic quantum

efficiency. Furthermore, taking advantage of the large spectral separation between the



dipolar and higher-order modes of the dielectric antennas, we propose a simplified de-
scription of the enhancement of the spontaneous emission rate by means of a model of

interaction between the dipolar emitter and the dipolar excitation in the particle.

An extension of this dipole-dipole interaction model can be further applied to understand
the response of a dielectric dimer structure, comprising two dielectric particles described
as scatterers with arbitrary dipolar electric and magnetic polarizabilities. We discuss
in detail how the dipolar modes of single spheres can hybridize, forming dimer modes
which are then classified through symmetry considerations. Interestingly, the energies of
these dimer modes are not governed exclusively by the interaction between homogeneous
pairs of single-particle dipolar modes (electric-electric and magnetic-magnetic), but also
by the interaction between heterogeneous pairs of dipoles (electric-magnetic). This an-
alytical work is compared with numerical calculations which allowed us to account for
the distortions of the shape and composition of the nanoparticles, and corroborated by

the experiments on dimer structures performed at the Laser Zentrum Hannover e.V.

In the last section of Chapter 2 we analyze the performance of dielectric dimers as an-
tennas for enhancing the emission from single dipolar electric and magnetic emitters
placed in the gap of the dimer. We find that the modes of the dimer structure dis-
cussed above can provide a significant enhancement of the rate of spontaneous emission
of dipolar emitters primarily through the coupling to radiation, while retaining high
quantum efficiencies even in the presence of intrinsic losses in silicon. We therefore con-
clude that dielectric submicron systems can serve as viable and robust building blocks

for alternative types of nanoscale antennas and metamaterials.

When deriving the expressions of the decay rate enhancement of dipolar emitters cou-
pled to dielectric nanoparticles in Chapter 2, we apply a simple trick: we expand the
electric field originated by an electric dipolar emitter into a series of vector spherical
harmonics, and transform it, replacing the electric fields with magnetic fields and, si-
multaneously, the electric emitter with a magnetic emitter (see Appendix A for details).
Such transformation is a special case of the general duality transformation which mixes
the electric and magnetic components of the electromagnetic field propagating in a ho-
mogeneous medium. However, as we discuss in Chapter 3, this transformation can be
also applied to electromagnetic fields in inhomogeneous media in two cases. The first,
macroscopic case, requires the piecewise-homogeneous medium to exhibit an identical
ratio of permittivity and permeability throughout the entire system. The second, mi-
croscopic case, applies to a random solution of dual scatterers, objects with identical

electric and magnetic polarizabilities. We analyze the microscopic case in detail, and
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demonstrate the validity of the duality transformation applied to a field propagating in

a distribution of dual submicron silicon particles.

non-dual medium
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FIGURE 4: Helicity in scattering on random media. If the medium is dual, (i.e. a
solution of dual nanoparticles with identical electric and magnetic polarizabilities), the
helicity is conserved in the single- and multiple scattering.

We also note that the duality transformation can be formulated through its generator,
an operator of helicity. Therefore, if a dual system is illuminated with light with a
well-defined helicity (i.e. the incident field can be decomposed into a set of circularly
polarized planewaves with identical handedness), then the scattered light will preserve
its helicity and, consequently, the handedness of the circularly polarized planewaves
making up the scattered field (see Fig. 4). This effect can be used as an additional tool

for characterizing random media.

Finally, in Chapter 4 we consider the effect of an off-resonant Raman scattering from
molecules placed in plasmonic cavities. This research is motivated by a recent surge of
novel results and implementations of such experiments, enabled by a better understand-
ing of the interaction between light and Raman-active molecules and the engineering of
efficient substrates for Surface Enhanced Raman Scattering (SERS). Among the variety
of reported results, some appear to escape the standard description based on the classical

treatment of the electromagnetic enhancement of fields inside the cavity [40-42].

We present a more fundamental, quantum-mechanical model of the non-linear interaction
between the quantized excitations of the plasmonic cavity, and the vibrational structure
of the molecule (see Fig. 5). This approach readily describes effects which are not en-

compassed by the classical framework: (i) we observe the onset of a phonon-stimulated

6
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FIGURE 5: (a) Schematic of a plasmonic cavity formed by a dimer of gold nanoparticles,
coupled to a molecule placed in the gap. (b) Schematic of the two-photon non-resonant
Stokes scattering between two vibrational states of a molecule (n = 0 — 1) mediated by
a virtual state |v) (dotted line). In a one-dimensional model discussed here, molecule
vibrates along an atomic coordinate X.

Raman scattering enabled by the large, incoherent populations of the quantized vibra-
tions of the molecule; (ii) we find an unexpected dependence of the anti-Stokes scattering

on the frequency of the incident laser and the local temperature.

From the experimental perspective, our prediction of the stimulated Raman scattering
from single molecules in plasmonic cavities should be of vital importance, as it opens a
new pathway to enhancing the intrinsically weak Stokes and anti-Stokes emission. While
this effect, to our best knowledge, has not been clearly demonstrated, our results indicate
that the experimental setups should be reaching the regime where such observations

would be possible.

On the theoretical side, our exact formalism opens avenues to studying classical and
quantum correlations of the photons emitted from the cavities. Furthermore, thanks to
the formal equivalence of our interaction Hamiltonian to that used for treating quan-
tum optomechanical systems, the theoretical scheme proposed takes the studies of such
systems to a novel parameter regime of relatively strong couplings, observed previously

only for cold atoms, and low thermal populations.

In summary, the following chapters of this thesis outline a set of optical phenomena
which govern the response and efficiencies of plasmonic and dielectric nanoantennas. We
investigate these systems as possible platforms for structuring and molding the flow of
light on the nanoscale, as well as for enhancing its interactions with molecules. Predicted
novel effects, such as the non-exponential decay of plasmons, formation of heterogeneous
modes in dielectric dimers, conservation of the helicity of light scattered in dual media,

or the onset of phonon-stimulated Raman scattering, should find applications in various
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nanophotonic systems, and open avenues to the enhanced control over light on the

subwavelength scale.



Chapter 1

Revisiting spectral properties of
plasmonic nanoparticles with

strong interband contribution

“The horse was willing and allowed the man to place bridle and saddle upon
him. The man mounted hunted down the wolf and killed him. The horse joyful
and relieved thanked the man and said ‘Now that our enemy is dead, remove
the bridle and saddle and restore my freedom.” Whereupon the man laughed
loudly and replied ‘The hell you say giddy-up Dobbin’ and applied the spurs

with a will.”

— Isaac Asimov, Foundation

A magnifying glass could easily be considered as one of the most fascinating devices
human kind has even invented. In the hands of a curious child it visibly increases
the sizes of investigated objects, making beetles grow tremendously, or shrinks them,
instantaneously moving insects beyond the hand’s reach. It can also darken paper, burn
skin on a sunny day or redirect light at a command. It appears that with just the right

magnifying glass, one could concentrate all the incoming light in an infinitely small spot.



Chapter 1. Spectral characteristics of plasmonic nanoparticles

And yet, as we learn in school, that dream can never be realized, no matter how big the
lens, or the aperture of our magnifying glass is. This daunting result, formally known as
the diffraction limit, forbids us from focusing light on scales smaller than its wavelength

A or, by reciprocity, discerning features smaller than .

Over the years and through some ingenuitive approaches, scientists have developed a
vast arsenal of tools that would help us to beat this limit, or at least to circumvent it.
Probably the most representative and timely examples of the latter approach are Stim-
ulated Emission Depletion (STED) [43] and Photoactivated Localization Microscopy
(PALM) [44].

Another path, that can be interpreted as an actual conquering of the diffraction limit,
stems from the remarkable ability of an object smaller than the wavelength of incident
light to act like an antenna, and transfer the energy and the information between the
propagating radiation and its immediate surroundings. Systems based on this principle
of operation are limited by the size of the nanoantennas, rather than the wavelength
of light, and can achieve resolutions which beat the diffraction limit in a spectacular

manner [45].

A particularly interesting implementation of this idea is found in metallic nanoparticles,
in which the electric component of the incident illumination can induce coherent oscilla-
tions of the free electron gas at the surface of the particles. Such excitations, dubbed as
localized plasmons, have been recognized as a versatile and tunable tool for engineering
of scattering and localization of light [4, 45, 46|, enhancing its interaction with matter
[16, 47, 48], and opening avenues to new field-enhanced spectroscopies [33, 42, 49, 50].
However, despite an extensive theoretical effort, the exact dynamics of the decay of lo-
calized plasmons, which determines their lifetimes and their spectral linewidths, remains

unclear.

In this chapter we attempt to contribute to the discussion of these fundamental proper-
ties of plasmons. In order to avoid framing it exclusively in phenomenological terms, we
derive an analytical model of the optical response of a metallic nanoparticle, and analyze
its consequences in detail. To do this, we first briefly review the material properties of
metals and formally introduce the concept of plasmon resonance. We then proceed to
derive and analyze our model of the polarizability of a non-spherical nanoparticle and

discuss its predictions.
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1.1 Macroscopic description of metals

In a first approximation, academic text-books [51-53] on solid state physics characterize
metal as a material with the optical, electrical and thermal properties determined by
the high density of conduction electrons', which form the so-called free-electron gas. To
the community of optical physicists, the crucial elements of this picture are encapsulated
by the Drude-Sommerfeld model, which states that the dielectric function of the metal
ep is characterized by the density of conduction electrons n, their charge e and effective

mass me through a simple relationship

w2

=1-—P 1.1

where 7, describes the damping term proportional to the rate of electron collisions. In

SI units, used throughout this thesis, the plasma frequency w, is given by

2
ne
=4/ : 1.2
“p MmeEQ ( )

where ¢ is the permittivity of vacuum. The real and imaginary parts of the dielectric

function can be separated by rewriting ep as

2 2
o‘jp . ’prp

- +1 .
w? —i—'yg w(w? —i—’yg)

ep(w) =1 (1.3)
We can thus expect that for the small collision rate, v, < w, the material behaves as a
good metal with predominantly real and negative ep(w) for w < w,. Before we analyze
the two typical choices for plasmonic systems, we briefly discuss two major corrections

to the Drude-Sommerfeld model.

Interband transitions

Let us step away for a moment from the classical model of free electrons oscillating in the
harmonic field of the incident light, and consider the effect of the excitation of a bound
electron to the conduction band due to the absorption of an incident photon. Naturally,
this process is only triggered if the photon carries sufficient energy. This phenomenon

can be analyzed by considering a damped, driven oscillations of an electron in a harmonic

!That is not true for astronomers who inexplicably define as metal any element different from hydro-
gen or helium.
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0 _ Johnson-Chiristy ¢;¢
/ 15 Drude ep with e =1
—20 yd .
N - Drude ep with e, = 9.5
3 , 310
o 40 S\
= —60 | E 5 \\/\
/
1 2 3 4 1 2 3 4
Energy fw [eV] Energy 7w [eV]

FIGURE 1.1: Real (left panel) and imaginary (right panel) part of the dielectric func-
tions of gold obtained by fitting the experimental tabulated data, 4.4, from Johnson
and Christy [54, 55] (blue solid line), by considering a perfect Drude-Sommerfeld model,
€p, with €6, = 1 (dot-dashed green lines) and assuming a realistic Drude-Sommerfeld
model ep with €5, = 9.5 (dashed red lines).

potential [56], allowing us to introduce interband transitions (ITs) as corrections to the

Drude-Sommerfeld dielectric function in the form of narrow Lorentzian profiles.

Background permittivity

If we consider a metal in which I'Ts occur at frequencies much higher than the region of
interest, they will simply yield an almost-constant, real and positive contribution to the
dielectric function. We can therefore expect that in the spectral regimes far from any
interband transitions, the dielectric function ¢ will be given by the Drude-Sommerfeld

model with a real offset, which we will be referring to as the background permittivity eo:

w2

p
. _ 14
ED(wasoo) Eco 2 Z'Yp ; ( )

Naturally, for the ideal Drude material, we have o, = 1.

In this chapter we will be focusing our attention on one of the most commonly used
plasmonic materials - gold - and we will attempt to identify the optical properties of
gold nanoparticles which arise due to the deviation of this material from the free-electron
gas model. In Fig. 1.1 we compare the response of a free electron gas characterized by
a plasma frequency w, = 2.15 X 10' Hz (using the reduced Planck constant h we
can write hw, = 8.89 eV) and collision rate v, = 16 x 10'2 Hz (Ay, = 0.066 eV),
with the experimental data for gold provided by Johnson and Christy [54] (£scq, solid
blue line) and fitted to a series of analytical functions by Hao et al. [55]. Within the
Drude-Sommerfeld model of the dielectric permittivity ep we consider two values of the

background permittivity: eo, = 1 (dot-dashed green lines), and e5, = 9.5 (dashed red

12



1.1 Macroscopic description of metals

lines). The latter parameter is fitted to provide the best match of the Drude-Sommerfeld
model to the experimental data. While this approach yields very good fit for energies
below 2 eV, it also allows us to dissect the contribution from the interband transitions

which dominate the dielectric function for energies above approximately 2 eV.

1.1.1 Surface Plasmon Polaritons

Our motivation for paying so much attention to the Drude-Sommerfeld model of the
dielectric function and the deviations from it in the case of gold, is that the conduction
electrons in metal are one of the building blocks of a central concept in nano-optics,
surface plasmons polaritons (SPPs) [57-61]. As the name suggests, SPPs are collective

oscillations of the surface charge density coupled to electromagnetic waves.

(a)

Z
dielectric € kSPP 2,
> 1 X
metal &,, \/ \|J i
(b)
hwp
6 light line ck, = w V2
Re(kspp); (ep; iyp= 0,600 = 1)
— D
> - ,,
E 4 s
o3 p hop  _ _hwp
g 7. Veitess  V10.5
Lﬁ 2 Re(kspp); (e1c)
P Im(kspp); (€3c)
1 e Re(kspp); (ep; Fryp= 0.066 eV, e00 = 9.5)
d Im(kspp); (ep; iyp= 0.066 eV, e = 9.5)
0 7 N ' ' L L L
0 1 2 3

Wavevector k, [107 m~!]

FIGURE 1.2: (a) Schematic for the analysis of dispersion relation of SPPs. (b) Dis-
persion relations of the SPPs propagating along the air-gold interface calculated with
various dielectric functions derived with the Drude-Sommerfeld model (e p with param-
eters given in the legend) and with the literature data (€504, Ref. [54]). Re(kspp) and
Im(kspp) denote the real and imaginary components of the SPP wavevector.
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More formally, SPPs are solutions of the Maxwell’s equations derived in the absence
of external excitation, and confined to the metal-dielectric interface. To get a firm,
mathematical grasp on the properties of SPPs, let us consider the Fresnel reflection
coefficients for an electromagnetic monochromatic planewave propagating in a dielectric
(characterized by a dielectric function 1), impinging on the surface of a metal (g,)
spanning the Zy plane, as shown schematically in Fig. 1.2(a). Let us assume that both
the wavevector of this planewave k() and the polarization of the electric field lie in the

22 plane. The Fresnel reflection coefficient of the p-polarized planewave, r;,, can be then

derived as
5mk3§1) — 81k£2)
Tp = ﬁ, (15)
emksy’ +e1ks
where k,(zi) is the z component of the wavevector (perpendicular to the interface) in the

dielectric (i = 1) or metal (i = 2). Subscript p denotes the p (or TM) polarization of

the incident field. Using the dispersion relation of the wavevector

() + () = (%) = (16

where c is the speed of light in vacuum and w is the frequency of the monochromatic
incident light, we can find that the reflection coefficient has a pole defined by the in-plane

component of the wavevector

kD — 12 = _v ﬂ_ 1.7
r r SPP =7 €1+ em (1.7)

For future reference, we can also write down the expressions for the normal (z) compo-

nents of the wavevectors:

Y e R i. (1.8)
z c\let+em F c\ er+em

Let us for a moment assume that the dielectric function of the metal is purely real. Then,
for the kgpp to describe the non-decaying electromagnetic modes propagating along the

surface, kspp has to be real, imposing the following conditions:
€1Em <0, e1+em <0, (1.9a)

or

€1€m >0, &1 +¢&m;, > 0. (1.9b)

We can winnow through these two cases by imposing yet another condition for the SPPs:

14



1.1 Macroscopic description of metals

they should be confined to the interface. In mathematical terms, this requirement calls
for a non-zero imaginary component of wavevectors k( ) and /-c,(f) defined in Eq. (1.8),
a condition only fulfilled if the sum of the dielectric functions is negative. We thus
discard the case presented in Eq. (1.9b) and consider the inequalities in Eq. (1.9a) as

the conditions for the presence of SPP modes.

It can be further shown that in the presence of weak losses in the metal (that is, the
dielectric function e, = £/, + ielh, follows |e/) | < |e),|) the complex wavevector kgpp is

approximately given by

Vi

[ €18m 1€
k = m . 1.10
SPP = €1+6m €1+€ r(e1+¢el, )) ( )

For a metal described by the Drude-Sommerfeld model introduced earlier and character-

ized by small intrinsic losses, the pole of kgpp can thus be found at the surface plasma

frequency
“p

WSpp X —F/——.
VE1 + €00

This feature is illustrated in Fig. 1.2(b), where we plot the dispersion relation of the

(1.11)

SPPs (Eq. (1.7)) induced at the interface between air (¢; = 1) and gold, calculated us-
ing different models of the dielectric function of gold. The simplest dispersion, marked
with the solid red line, can be found for the lossless Drude-Sommerfeld model ep, with
background permittivity eoc = 1 and plasma frequency w, = 2.15 x 10% Hz. In the small
k, wavevector limit the dispersion asymptotically converges to the light line (blue line),
which describes the dispersion relation of light propagating in air, with the wavevector
parallel to the interface. On the other hand, for large wavevectors, the SPPs asymptot-
ically converge to wspp (hwspp = hw,/v/2 ~ 6.3 eV in this model). The fact that the
dispersion of SPPs does not cross with the light line (and lies outside of the light cone
defined as ck, < w) implies that the SPPs cannot couple to free radiation in air, that
is, neither do they radiatively decay, nor can they be excited by the incident planewave
illumination. Various techniques have been proposed to circumvent this limitation, for
example relying on breaking the translational invariance of the interface by introducing

local scatterers or gratings on the surface [62, 63].

The dashed lines in Fig. 1.2(b) correspond to the more realistic Drude-Sommerfeld
model for gold with v, = 16 x 1012 Hz (or hy, = 0.066 eV) and o, = 9.5. Both the
real and imaginary components of kgpp (depicted with orange and green dashed lines,

respectively) exhibit the resonant behavior for the frequency wgpp defined in Eq. (1.11)
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Chapter 1. Spectral characteristics of plasmonic nanoparticles

(hwspp = hw,/+/10.5 ~ 2.8 eV in this model). Interestingly, the dispersion depicted
with the orange dashed line appears to have two branches, one laying outside of the
light cone, denoting the SPPs and bounded in energy by the surface plasmon frequency,
and a high-energy one, found inside the light cone. The latter branch describes the
bulk plasmons (although we should keep in mind that, as can be easily shown from
Eq. (1.1) and the following discussion, for w > w,/\/ex the dielectric function becomes

predominantly real and positive and the plasmonic nature of the excitations is lost).

Finally, with the dot-dashed lines we denote the SPP dispersion calculated with the use
of the dielectric function from the literature [54] which accounts for interband transi-
tions and thus yields a significantly broader spectrum of the imaginary part of kspp
(Im(kspp)). This difference between the Drude-Sommerfeld model and the realistic di-
electric function, which for gold becomes striking in the most interesting spectral region

near the surface plasmon frequency, will be the focus of this chapter.

1.1.2 Localized Surface Plasmons

The coupling between the electromagnetic field and the collective oscillations of the elec-
tron gas can be of course induced also in finite systems, which do not exhibit translational
invariance. The first example of such localized surface plasmon resonances (LSPRs), is
provided by considering the scattering of light by a small metallic sphere of radius a and
the dielectric function &,,, embedded in a homogeneous dielectric medium (e;) and illu-
minated by a monochromatic planewave with frequency w and wavenumber k = w/c,/€7.
Similarly as in the previous section, we will indirectly investigate the onset of LSPRs
by identifying resonant features in the mathematical formulas governing their scattering
and absorption properties. In this case, we consider the respective cross-sections of the

sphere which, in the quasi-static limit (denoted by superscript gs), ka < 1, are given by

o) = a2 (112
T s () = KIm[a® (w)]. (1.12b)

The dipolar polarizability of the sphere a®® is defined as

qs _ Em(w) — €1
a®(w) = 47ra376m(w) e (1.13)
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The usual definition of the LSPR frequency is based on the Rayleigh condition for the
pole of a®®
Relem(w)] + 261 =0, (1.14)

In the most elementary case of the Drude-Sommerfeld sphere with low losses and e, = 1,

in air, we arrive at the trivial solution for the dipolar resonance frequency

Wy
w = —=. 1.15
LSPR /3 ( )

As we increase the background permittivity or the permittivity of the medium, this

frequency will red-shift according to

Wp

= 1.16
SR e+ e 119

The polarizability of the sphere governs the amplitude and the phase of the oscillating
dipole p of the polarized particle, induced by the electric field of the incident illumination
Eo,

p = coe1aPEy. (1.17)

This dipole, associated with the oscillations of the electrons inside the entire volume of
the metal, can thus trigger an oscillating concentration of electrons at the boundaries of

the particle, and induce a significant enhancement of the electric field near its surface.

Examples of metallic nanostructures, such as a sphere, a dimer and an ellipsoid are
shown in Fig. 1.3, with their corresponding scattering and absorption spectra, calculated
using Lumerical FDTD software [83], and the distributions of electric fields at resonance
wavelengths. The three selected systems are a typical choice for plasmonic nanoantennas,
with numerous applications spanning from enhancing the incident field for field-enhanced
spectroscopies [21, 64], through sensing of changes in the dielectric response of the
medium, [65-67] to optical trapping and manipulation of other nanoscale objects [68, 69].
However, despite the extensive effort devoted to the study of these structures, only for
the first of the listed shapes an analytical model which would describe exactly the optical
response, has been proposed by Gustav Mie [70] (see Appendix A for a discussion of the
Mie theory). In the following section of this chapter, we discuss an approximated model
developed to describe the response of ellipsoidal particles. Furthermore, in Chapter 2

we discuss the dipole-dipole approach for the analysis of dielectric dimer structures.
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FIGURE 1.3: Scattering and absorption spectra (left) and distributions of the electric
fields (right) at the resonant wavelengths calculated for three plasmonic gold nanosys-
tems in vacuum: (a) a single sphere, (b) a dimer, (c) an ellipsoid. Radius of the spheres,
as well as the minor radius of the ellipsoid, is set to 35 nm, and the major radius of the
ellipsoid is 70 nm. The systems are illuminated with light polarized parallel to their
long symmetry axis. Calculations were performed using the Finite Difference Time
Domain (FDTD) method implemented in the Lumerical FDTD software [83], using
literature data on dielectric function of gold [54].
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1.2 Models of polarizability

As we have mentioned above, we attempt to find a model for the dipolar polarizability
of a non-spherical plasmonic scatterer, which considers all the aspects of the complex
interband structure in the radiative and nonradiative optical response. We will begin
by introducing the model in which plasmonic excitation in an arbitrarily shaped, small
metallic nanoparticle is described as a damped, driven harmonic oscillator, and discuss
its limitations. Afterwards, we will turn our attention to another approach, which also
describes the polarizability of ellipsoidal nanoparticles but, unlike the previous model,

does not require an extensive fitting of the parameters of the model.

1.2.1 Plasmon as a damped harmonic oscillator

In the contributions by Chen et al. [30] and Zuloaga et al. [31], the authors consider lo-
calized plasmons as driven damped harmonic oscillators (HOs) and relate the amplitude
of their oscillations to the frequency-dependent polarizability of a particle. The harmonic
oscillator, a workhorse of classical and, as we will discuss later, quantum physics, has
been successfully applied to model the hybridization in plasmonic nanosystems [71, 72],
exciton-plasmon coupling [73, 74] and numerous other effects related to plasmonic exci-
tations [32, 75, 76]. On the other hand, descriptions based on HO formalism often serve
merely as toy-models, since they require extensive a posteriori fitting of parameters to
describe experimental situations, and are therefore rarely seen as a proper tool to make
quantitative predictions. Below we derive a model based on HO which demonstrates

both of these characteristics.

Let us first follow the concept coined in Refs. [30, 31] and consider a driven, one-
dimensional, damped harmonic oscillator whose dynamics is governed by the simple
equation for the displacement x(t)
i (t) = —kx(t) — mD d (t) + Fpe™! (1.18)
m——uz(t) = —kx(t) —m — et .
d? NE 0
The HO is characterized by its mass m, spring constant k = w%m related to the natural
frequency of the oscillator wgy, an abstract damping parameter I'ygp and the external
iwt

harmonic force Fype** oscillating at generic frequency w. We should note that in this
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simplest model both the damping parameter and the spring constant are frequency-

independent. The usual ansatz
z(t) = D(w)e™, (1.19)

leads to the explicit expression for the response function D(w)

Fy 1
m w? —wi + il ypw’

D(w) = (1.20)
It can be easily shown that the amplitude of the oscillations given by |D(w)|? peaks at

a frequency lower, wamp, than wy

1‘*2
Wamp = {/WE — % (1.21)
which converges to wg for the vanishing damping parameter I'yg. In fact, in the regime
of very narrow resonances (I'yvgr < wp), we can approximate the response function D(w)

around the resonance wy by a Lorentzian profile, Dy (w), as

Fy 1

D ~D = .
() Lor () 2mwo w — wo + T NR/2

(1.22)

The time-averaged power absorbed by the oscillator, P(w), can be calculated as the real
part of the product of the first time derivative of the oscillator’s displacement and the

complex conjugate of the applied force, leading to
P(w) = mI' yrw?|D(w)[*. (1.23)

The friction term proportional to I'ygdx/dt, which we have introduced in the dynamics
equation of the harmonic oscillator (Eq. (1.18)), was meant to describe the internal
damping (Kats et al. [32]), intrinsic and radiative damping (Zuloaga et al. [31]) or
simply damping (Chen et al. [30]). We propose a more accurate description of this term
in the later part of this chapter, and for the purposes of this section, simply refer to
it, and to the dissipation introduced by it as non-radiative damping or absorption. To

reflect this interpretation, from here on we replace coefficient I'yr with I 4.
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1.2.1.1 Radiation reaction

While for small and lossy metallic particles the absorption is the dominant channel of
energy dissipation, the optical response of larger particles is partially determined by the
radiative dissipation channel. We can include this effect into the presented HO model
by adding an Abraham-Lorentz term [77, 78] as the force Fr

q2 d3 d3

Fr(t) = (t) = Tz(t) (1.24)

= 3%
67‘(’516003 dt3

to the right-hand side of Eq. (1.18). Note that here we have introduced the charge ¢,
since we need to specify that the energy loss is related to the oscillations of ¢. Following
the prescription used earlier, we can solve the new dynamical equation and arrive at the
modified response function

Fy 1
D(w) = -2 .
(@) m w? — w3 + i(T gw + Trw?)

(1.25)

If we now return to the physical picture of the dipole p(w) = gz(w) induced in a small
metallic particle illuminated by the electric component Ej of the incident light (so that
Fy = qEy), we obtain from Eqgs. (1.19) and (1.25)
q° 1

mw? — w? +i(Caw + T gw?)

p(w) = Ey = eoe10M10 () Ey, (1.26)

where we have introduced the polarizability of the particle a'©. We can thus interpret

the amplitude function |D(w)|? as the strength of the dipole, which is a real function

governing the intensity of the electric near-field of the dipolar mode of the particle.

The approximated spectral position of the peak of this new amplitude |D|?, which we

label as w!©, in the limit of naarrow profile (where T gw® ~ T gww?), is given as
r 2T'R)?
wHO %wo\/l— (A”;“;)R) (1.27)
“0

Having differentiated between the absorption and scattering decay channels, we can write
the expression for the power dissipation, split into the absorption, P4, and scattering,
Pgr powers

Pa(w) = mIaw?| D(w)]?, (1.28a)

Pr(w) = mIrw?|D(w)|?, (1.28b)
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and derive simple approximations to the spectral positions of the peaks of these func-

tions:

1

| _ Catefln)?
2wg

WA ~ W, WR =~ Wo ~ Wo

La+wilr)’
1 _ . 1.29
+ (g (1.20)

We can therefore predict, using relationships listed in Eqgs. (1.27) and (1.29) that if
the optical response of a plasmonic particle can be described by the HO model with
a friction term as in Eq. (1.18), and the radiation correction expressed through the
Lorentz-Abraham force (Eq. (1.24)), then the frequencies of the spectral peaks of the
o)

amplitude function |D|? (wl©), the absorbed power P4 (w4) and the scattered power

Pr (wgr) follow the inequalities
w0 < wy < wp. (1.30)

In previously mentioned references, Kats et al. [32], Zuloaga et al. [31] and Chen et al.
[30] listed a number of antennas which follow Eq. (1.30). An experimental illustration of
these properties was also provided by Alonso-Gonzalez et al. [33]. We should however
note that the last three reports only considered the shift between the extinction and the
amplitude peaks. Consequently, Ref. [32] is possibly the clearest theoretical demonstra-
tion of the inequality given in Eq. (1.30), illustrated by the calculations of the optical
response of gold nanowires resonant in the IR regime (4 — 10 pm). Importantly, the
authors also point out that this model should break down in the visible range. We will
pick up this issue later in this chapter to unveil the influence of the band structure on

the spectral response of nanoparticles.

1.2.2 Dynamic depolarization

We can wonder whether one could easily improve this simple HO model. The most
striking shortcoming of this description is the fact that so many of the parameters: wy,
I'4y and I'r (or q) need to be fitted, or otherwise estimated. Luckily, we can find a
less ambiguous description proposed in a seminal contribution by Meier and Wokaun
[79]. For a detailed summary of this work and the following contributions, we direct the

reader to the report by Moroz [80].
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1.2 Models of polarizability

Meier and Wokaun in a very short, but tremendously insightful paper, “Enhanced fields
on large metal particles: dynamic depolarization”, introduced the concept of the depo-
larizing field, Eqep, which, together with the electric field Eq of incident light, induces a

polarization in the metallic particle
P= 60(6 - 1)(EQ + Edep)- (1.31)

The depolarizing field Eqgep(r) at position r is calculated by assigning a dipolar moment
dp(r’) to each volume element dV, and integrating the electric field produced by dipoles
dp(r’) at position r, expressed through the Green’s function aE(r’ —r) (see Eq. (2.12)
for a definition and the discussion of the Green’s functions) [78]. A similar idea lies
at the center of the discrete dipole approximation (DDA) [77, 81]. However, unlike in
the DDA, we avoid the cumbersome self-consistent calculations of the dipolar moments
dp(r) by assuming that the polarization P is homogeneous throughout the volume V'
of the particle (arriving at dp(r) = PdV(r)), and we calculate the depolarization field
induced by the polarization P only at the geometric center of the particle. For the
incident harmonic illumination polarized along the Z axis we use the definition of the zz

component of the Green’s function in spherical coordinates,

= eikr ikr — 1Y 3 — 3ikr — k*r?
[GE(r, B r):|zz " dnr [(1 TR ) " k2r2 cos” (1:32)

with the coordinate origin at the center of the particle, and 6 and r denoting the az-
imuthal and radial coordinates, respectively [56]. By expanding the exponential etkr
up to the k% order, we arrive at the following expression for the z component of the
depolarizing field, Fgep ., at the center of the sphere, related to the z component of the

intergrated polarization P,dV (r)

1 1 k? 2
E = = 20— 1)+ = (cos®’ 0+ 1) +i-Kk*| P, : 1.
dep,z(T) pr— /V {7“3 (3cos®6 —1) + o (cos“0+ 1)+ 23k dv (r) (1.33)

This expression was first derived by Meier and Wokaun in Ref. [79], and the resulting
model was later dubbed as Meier-Wokaun Long Wavelength Approximation (MWLWA)
[80].

In Eq. (1.33) we can thus clearly identify the contributions from the near-, intermediate-

and far-field components of the Green’s functions, which will give rise to:

e Geometric static depolarization factor L.
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o Geometric dynamics depolarization factor D.

e Radiation reaction term proportional to the total induced dipole.

These three terms can be conveyed as:

2 3
KV ok V)PZ 1.34)

E =—A4x|L——D+i—— :
dep,z ™ < e +1 6 o
Let us for example consider a sphere of radius a. In the spherical coordinates the integral
fV dV is transformed into 27 foa Oﬂ r2sin @ dr df, and the integration of the second and
the third terms in Eq. (1.33) is straightforward. However, certain care needs to be taken

when calculating the static depolarization factor [80]. With that in mind, we arrive at

1

ga Dsphere =1 (135)

Lsphere =

We can consider now the sphere as a special case of a prolate (or oblate) ellipsoid with
the major and minor radii: a~ and a~, respectively, for incident light polarized along the

major axis of the particle. In this case the depolarization coefficients can be expressed

through the ellipticity parameter e = (a2 — a%)/a2 as

_1—62

L 2

1 —e2

1 2
[—e + arctanh(e)], D = 2 < Ty + 1> . (1.36)
e

We can now plug Eq. (1.34) back into Eq. (1.31) and, after some elementary algebra,
arrive at the expression for the microscopic polarizability &, P, = eo&Ep -, induced by

the z component of the incident electric field Fj :

a(w) = —¢ { [Lﬂ —¢ (L — Reg(w)l_lﬂ + i€ [—Img(w)l_ T+ kg:] }1 (1.37)

where ¢ = 4ma~c?/(DV). Applying again the assumption that the polarization is homo-

geneous within the volume of the particle, we can relate & to a more familiar polarizabil-
ity of the particle « = V&. In the following paragraphs we interpret the terms appearing
in this formula, and justify the somewhat artificial division of the term proportional to

(e — 1)1 introduced above.
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1.2 Models of polarizability

Restoring force and the Lamb shift
In the first square brackets of Eq. (1.37) we find the following term:

¢ (L - Res(w)1_1> : (1.38)

which quantifies the restoring force (which in the simplest harmonic oscillator model we
considered as a constant wp) given by the sum of the static depolarization factor L and
the dispersive correction, which we identify as the Lamb-shift. We plot this contribution
in Fig. 1.4 with a solid blue line, considering the experimental dielectric function [54],
Escay fitted with a series of Lorentzian profiles [55]. The other blue lines in Fig. 1.4
correspond to the Lamb shift calculated within the Drude model of permittivity ep(w)
given by Eq. (1.4) with background permittivities of 5, = 9.5 (dashed blue line) and
€00 = 1 (dotted blue line).

|—</‘_|3i _Re[ (w1)71:| -Im[s(wl) 1:|
o E=¢
E
1
— e =eplex =9.5)
Hé """"""
= 10 e =¢ep(toe = 1)
A

0.5 1 15 2 2.5
Energy [eV]

FIGURE 1.4: Lamb-shift (Re{[e(w) — 1]71}, blue lines) and loss function (—Im{[e(w) —
1]71}, orange lines) calculated using three prescriptions for the dielectric permittivity
e: Johnson-Christy [54] (£scq, solid lines), Drude with eo, = 9.5 (ep(e00 = 9.5), dashed
lines) and Drude with eoc = 1 (ep(exc = 1), dotted lines).

Radiative and non-radiative broadening

The second square bracket in Eq. (1.37),

1 BV

-1
¢ ms(w) 16 |

(1.39)

contains the previously recognized Abraham-Lorentz term which describes the radiation

reaction, and the non-radiative contribution. Let us consider on the former, less familiar

25
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term. Within the three models of dielectric function discussed above, we can calculate
the loss function —Im{[e(w) — 1]71}, and plot it in Fig. 1.4 for the three models of
permittivity: 5., (solid orange line), ep(eso = 9.5) (dashed orange line) and ep(e0e = 1)

(dotted orange line).

In the simplest case of the free-electron gas model (5, = 1), the Lamb shift and the loss

functions are given by

1 w2 wWYp
- = — L —-. 1.40
o (5) 140

This case was recently analyzed in detail by Zori¢ et al. [82], and led to simple expressions
for the frequency and width of the resonance. If we further simplify this model by
including the small Lamb shift into the natural frequency wgy, we will arrive at yet

another model of polarizability ap:

k3
ap(w) ! o w? — wl + i€ (“:Z%p n 6:) . (1.41)

This form of polarizability is reminiscent of the expression for the amplitude of a damped
harmonic oscillator, D(w), introduced in Eq. (1.25), derived originally by considering
the non-radiative friction-like damping term proportional to 7, (I'4 in the HO model
corresponds to £7,/w?) and the radiation reaction term (with I'r given by £V/(6mc?)).
In Fig. 1.4 we show that, while the approximation of € by the free electron gas yields a
good description of the polarizability for energies below 1 €V in the case of gold, for lower
frequencies, it dramatically underestimates both the Lamb shift and the loss function,
yielding narrower, blue-shifted resonances. The inclusion of the background permittivity

further allows to dissect the contribution from interband transitions in gold above 2 eV.

1.2.2.1 Scattering and absorption cross sections

To further examine the effect of the different contributions to the permittivity in the
optical response of plasmonic scatterers, we define the scattering og., and absorption

Oabs Cross-sections as

k4
Osca = 6fwyoé(w)ﬁ, (1.42a)
k 1
=—=—Im— 2, 1.42
Oabs % mE(CL)) 1 |Oé((/J)| ( b)

These definitions can be found by comparing the powers dissipated into absorption and

scattering with the intensity of the incident illumination. We note that if the metal
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1.2 Models of polarizability

is described solely by the free-electron gas, the above definitions of oy, and o,ps yield
expression proportional to the powers scattered (Pg, Eq. (1.28b)) and absorbed in the
nanoparticle (P4, Eq. (1.28a)), obtained from the HO model (Eq. (1.26)).

El
"c% (b) ‘ Oabs
. =,
(a) %
i | ,
Eo Sj ; Osca -
It o la|2 3 »‘042 "/\_/
© 0,
T 1 1.5 2 2.5 3 3.5

Y
' g O abs

O-SC&

FIGURE 1.5: (a) Scheme of plasmon excitation and decay channels in a generic metallic
scatterer. Light incident at the metallic nanoparticle, Eq, excites a dipolar charge
distribution within the metal p. The induced dipole then scatters its energy into
radiative channels (0gc,), or interacts with itself in a two-fold manner, yielding two
non-radiative effects: depolarization leading to the Lamb shift of the plasmon energy,
and Ohmic losses (0aps). The intensity of the electric field in the near-field region I, is
proportional to the amplitude function |a|?. (b,c) Scattering (blue lines) and absorption
(green lines) cross sections of a gold ellipsoid (radii (b) (a<,as) = (35,35) nm, (c)
(a<,as) = (35,80) nm) illuminated with light polarized along the major axis. The
cross sections were calculated using FDTD method [83] (solid lines) and the Maier-
Wokaun long wavelength approzimation (MWLWA) model [79] (dashed lines) with the
use of literature dielectric function €,.,. The red-shaded area depicts the profile of the
amplitude of the oscillations of the plasmon |«|? derived from the MWLWA.

We illustrate the applicability of the model based on the MWLWA in Fig. 1.5, where we
plot the scattering (ogca, solid blue line) and absorption (o,ps, solid green lines) cross
sections of gold ellipsoids with minor radii a« = 35 nm and aspect ratios of (b) 1 and (c)
2 calculated using FDTD Lumerical software [83] with the Johnson-Christy dielectric
function of gold. The dashed lines represent the profiles predicted by the analytical

model described above. The red-shaded profiles denote the amplitude function |al?.
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Interestingly, for both antennas analyzed in Fig. 1.5, the absorption peaks at a higher
energy than the scattering, in direct violation of the second inequality in Eq. (1.30). By
considering the elementary examples of gold nanoantennas, we will show below that this
is a general phenomenon characteristic of nanoantennas operating in the visible regime
(denoted by superscript vis), and that Eq. (1.30) should be replaced by a partially
reversed relationship:

WY < Wi < Wi (1.43)

1.2.3 Systematic study of gold nanorods

The results shown in Fig. 1.4, as well as the analysis of the Lamb shift and loss func-
tion given by Eq. (1.40) suggest that the reversal of the inequality between the peak
frequencies of the scattering and the absorption is related to the deviation of the dielec-
tric function of the metal from the free electron gas model. To analyze this process in
a systematic manner, in Fig. 1.6 we plot with solid lines the spectral positions of the
peaks of the polarizability |a(w)|? (red lines), scattering (solid blue lines) and absorp-
tion (solid green lines) cross sections for gold ellipsoidal nanoparticles with minor radii
of a« = 35 nm and major radii from a~ = 35 nm to a~ = 140 nm. The profiles were
obtained with the analytical model presented earlier, for three dielectric functions: (a)
the experimental 4.4, (b) the Drude-Sommerfeld model with background permittivity
ep(eoo = 9.5) and (c) the ideal free electron gas model described by Drude-Sommerfeld

model with background permittivity eso = 1.

The results shown in Fig. 1.6(a) identify an anomalous blue-shift of the absorption
peak with respect to the scattering maximum in gold nanoparticles resonant in the blue
part of the visible range. In the left inset of Fig. 1.6(a) we zoom in on the region of
parameters where a crossing between the scattering and absorption peak frequencies
occurs. Surprisingly, this effect is identified at around 1.7 eV, far below that of the
dominant interband transition (2.5 eV), suggesting that the resonant contribution from
this IT is not the only factor that promotes the blue-shifting of the absorption cross-
sections. In fact, as we show in Fig. 1.6(b), the same anomalous, albeit significantly
weaker, shift occurs for gold described by the Drude model with e5 = 9.5 (see the left
inset in Fig. 1.6(b)). For metal described with an ideal Drude model (with e, = 1),
we retrieve the results reported previously for nanoantennas operating in the near-IR

regime, which follow Eq. (1.30).
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FIGURE 1.6: Spectral positions of the maxima of the amplitude function (|a|?, red
lines), scattering (osca, blue lines) and absorption cross sections (oaps, green lines), for
gold ellipsoids with minor radii of 35 nm and major radii from 35 to 120 nm. The
solid and dashed lines of scattering and absorption peaks correspond to the results
of the MWLWA model and the values of wg, wa predicted by the simple analytical
formulas given in Egs. (1.48b) and (1.48a), respectively. The three panels correspond
to various dielectric functions of gold used for calculations: (a) the experimentally
measured permittivity es., [54, 55], (b) Drude model with background permittivity
ep(eco = 9.5), (c) Drude model of a pure free electron gas ep (e = 1).

1.2.3.1 Spectral shifts - analytical model

To estimate the spectral shifts between the spectral positions of the amplitude, scattering
and absorption peaks, we first consider the Taylor expansion of the amplitude |a|? around
its resonance frequency w, defined as
d 2
—|a(w =0, 1.44
(o) (144)
arriving at
X
la@)” & fer(wa)[* = 5 (w = wa)?, (1.45)
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where y = — (%\a(w)ﬁ) . We can also expand the prefactors found in the expres-

sions for the absorption (Eq. (1.42b)) and scattering (Eq. (1.42a)) cross sections, faps

and fsca, respectively, as

k
faps(w) = _Vlmg(w)l_l ~ fabs(Wa) + (W — wa)Babss (1.46a)
k‘4
fsca(w) = 6771' ~ fsca(woz) + (w - woc)/Bsca- (146b)

Then, by writing the conditions for the peak of either cross section as

|a(w)|2fabs(wx4) =0, |a(w)|2fsca(wR) =0, (1-47)

inserting the expansions listed above and dropping the quadratic term o (w — wq)?, we

can find the approximated solutions

Babs|a(wa)|2

Xfabs (wa) (1 .48a)

WA R Wqo +

Bsca|a(wo¢)|2

WR = Wq +
“ stca(wa)

(1.48Db)
The peak energies calculated with the equations above are depicted in Fig. 1.6 with
dashed lines, and reveal a remarkable agreement with the predictions of the analytical
model of polarizability. Interestingly, if the shifts were dependent on the prefactors fops
and fsca solely through their derivatives (Baps and Ssca, respectively) and not their values
(fabs(wa) and fsca(wa ), respectively), as was suggested in earlier reports, the crossing
point between blue and green lines in Fig. 1.6(a) would be found for higher energies,

around 2 eV.

1.2.4 Tracing the decay of plasmons in time

Let us now consider the time-dynamics of the plasmon excitation. In the simplest
picture, plasmons are assumed to decay in an exponential manner, with the decay rate
related to the full width at half mazimum (FWHM) of the amplitude profiles |a|? [84].
This framework has been widely accepted and applied in the analysis of the attosecond
streaking spectroscopy [85-87] and recently explored in experiments with femtosecond
pulses [88]. In this subsection we attempt to question this assumption by accessing the

dynamics of the plasmon by Fourier transformation of the polarizability «. As a side
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FIGURE 1.7: Polarizability profiles of gold ellipsoids (Ja|?, left panels) and the evolution
of electric fields of the plasmons FE(t) (blue line in right panels) obtained by Fourier
transformation of the spectral profiles. The minor radii of the ellipsoids is 35 nm and
the aspect ratios are (a) 1 and (b) 2. Orange lines in right panels represent the function
exp(—iwot)exp(—vt/2), with the parameters: frequency wy and decay rate ~ (listed in
the left panels), determined by a fit to E(¢) in the region where it exhibits exponentially
decaying oscillations. Parameters I'|,2 listed in left panels denote the FWHM of the

polarizability profiles |a|?.

note, we should point out that without an analytical model for «, the theoretical analysis

would require accessing the response function by cumbersome numerical calculations of

the dipolar polarizability of the particle. While in practice difficult, this approach is

definitely feasible, and in fact we apply a related method in Chapter 2 of this thesis to

investigate the hybridization scheme in dielectric scatterers.

For the polarizability given by a Lorentzian profile anc}r X (w — wp + i7), with arbitrary

width FWHM of |ag,o|?: Llape. 2 = 7, the dynamics of the electric field intensity can be
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described as an exponentially decaying function
|E(t)]? o exp(—t). (1.49)

However, the expression for the polarizability « given in Eq. (1.37) suggests a devia-
tion of the general response from the simple lorentzian profiles. Indeed, plots of the
polarizabilities |a|? of gold ellipsoids shown in the left panels of Fig. 1.7(a) (sphere with
a<« = a~ = 35 nm) and (b) ((a<,a=) =(35 nm, 70 nm)) are strongly asymmetric. In
the right panels, we plot with blue lines the time dependence of the electric field, calcu-
lated by the Fourier transformation of the polarizabilities a(w) derived from MWLWA
(using a(—w) = [a(w)]*). In both cases, the dynamics of the electric field over the
first oscillation period exhibits a very fast decay, and then settles as damped oscilla-
tions E(t) o< exp[—(iwo + v/2)t], plotted with orange lines. The resonant frequencies
wo, FWHM of |a|? profiles Iz, and the phenomenological decay rates v obtained from
fitting of E(t) to the exponentially decaying oscillations, are given in the left panels.
Interestingly, and unlike in the case of Lorentzian resonances, the latter two quantities
are dramatically different for the shorter ellipsoid (a), reflecting the breakdown of the
association between the width of a resonance line and the decay rate of the plasmon

excitation.

1.2.5 Phenomenological estimations of the plasmon dynamics

In Fig. 1.8 we compare the decay rates 7 (orange line) obtained from the fitting of the
respective Fourier-transformed polarizabilities, with the FWHMs of polarizability I'|,2,
scattering ['sca and absorption I, cross sections for ellipsoids with varying major ra-
dius. The FWHM of absorption cannot always be determined since the relevant cross
section does not exhibit a clear resonant profile (see for example green line in Fig. 1.5(b)).
However, for aspect ratios around 4, I',,s becomes consistent with the remaining esti-
mations of the plasmon decay. In this regime the resonance becomes very narrow, and

the absorption and scattering profiles differ only in intensity.

In the more interesting regime of low aspect ratios, the FWHMs of the polarizability
and scattering, as well as the decay rates obtained from the time dependencies of the
field of the plasmon -y, remain in rather good agreement. Interestingly however, the
matching between I'sca and I',2 appears to be a rather accidental effect, since neither
one of the respective profiles exhibits a narrow Lorentzian profile (see Fig. 1.5(c)). The

deviation from the exponential decay of the plasmon in the regime denoted by an orange
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FiGUure 1.8: Comparison of different phenomenological estimations of the decay rate
of the localized plasmon in ellipsoids with increasing major radius a~ and fixed minor
radius a< = 35 nm: A(w) = Im[a(wy)*]/wo (green line), the FWHMs of the ampli-
tude function |a|? (I'aj2, blue line), absorption (I'aps, red filled dots) and scattering
cross sections (Tgca, violet empty dots) with the decay rate v extracted from the time
dependence of the induced field E(t) o« exp[—(iwg + 7/2)t]. Orange area denotes the
range of parameters in which the decay becomes strongly non-exponential and dashed

vertical lines marked as (a) and (b) indicate the major radii of ellipsoids analyzed in
Fig. 1.7(a) and (b), respectively.

background, originates from the onset of the IT in the metal in a two-fold manner: first
the large losses broaden the resonance, and then the strongly dispersive loss function
—Im{[e — 1]7'} distorts the shape of the polarizability, enabling the non-exponential
evolution of the plasmon. Interestingly, this effect occurs also when the I'T in the metal
is partially addressed with the use of the Drude model with background permittivity
oo = 9.5.

Finally, the green line in Fig. 1.8 depicts yet another estimation of the decay rate, given

by the imaginary part of the denominator in the definition of a:

1 Vv
A(wp) = < —Im———— + k> —

wo g(wp) — 1 6| (1.50)

This estimation, while relevant for the resonances with large quality factor Q = wgy/A(wp),
for which A(w) is almost constant throughout the width of the profile, yields a sig-
nificantly overestimated decay for shorter ellipsoids, and a rather good estimation for

high-aspect ratio scatterers.
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Chapter 1. Spectral characteristics of plasmonic nanoparticles

1.3 Summary

In conclusion, building on a well-established theory of MWLWA, we have designed a
simple model of dipolar plasmon resonances which accurately predicts the position and
the relative shifts of the scattering and absorption spectra of metallic nanoparticles. Our
model addresses the most appealing, yet difficult regime where the interband transitions
break down the description based on the simple Drude model, and additionally predicts
the onset of non-exponential dynamics of the plasmon excitations in particles resonant
in the visible range. The detailed studies of the time dependence of the decay of the
plasmon excitation is particularly interesting in light of the recent experiments on gen-
eration and coherent manipulation of plasmons with few-femtosecond pulses [88, 89].
We explore this effect to identify the transition to the exponential decay regime and
investigate the relationship between the plasmon decay rate and the widths of different

spectral profiles.
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Dielectric nanoantennas

Over the last two decades a vigorous debate, conducted in the community of optical
physicists, on novel designs of devices for the manipulation of light on the nanoscale,
has been predominantly focused on utilizing the collective oscillations of the free electron
gas in noble metals. With silver, gold and, recently, aluminium nanoparticles occupying
the center of attention of numerous works, less attention has been given to the dielectric

counterparts of such scatterers.

At the same time, in a neighboring, but slightly detached scientific community of
quantum-optical physicists, dielectric micro-cavities are considered the quintessential
photonic resonators that can be efficiently populated [90, 91], coupled to nearby atoms
[92], or even coupled to their own vibrations [93]. These applications are possible thanks
to the intrinsic properties of dielectric materials, which exhibit low intrinsic losses in
the spectral ranges of interest, and the suppression of radiation by utilizing high-order
whispering gallery modes (WGMs) [94]. Between those two effects, the dielectric micro-
cavities improve on two of the most appealing properties of plasmonic scatterers: (i) the
WGMs localize light in a very small region near the edge of the dielectric cavity and (ii)
the linewidths of these resonances are very small, implying that the photons released

into the cavity mode remain in it for a significant time.

Unfortunately, the straightforward transfer of the properties of dielectric micro-structures
from the few-THz regime to the near-IR or visible region of the spectrum calls for a con-
trollable method of manufacturing dielectric sub-micron particles with very few defects

- a serious challenge which has not been fully addressed to this day.
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Chapter 2. Dielectric nanoantennas

With the benefit of hindsight, one could ask the following questions: can we trade away
some of the radiation suppression offered by the WGMs and focus on lower order modes
of attainable sub-micron nanoparticles? How would such scatterers perform as antennas
for redirecting, absorbing or localizing incident light? Finally, how would they couple

with nearby emitters?

These questions were prompted a few years ago in two independent studies reported by
Aitzol Garcia-Etxarri et al. [35] and Andrey B. Evlyukhin et al. [36]. Their calcula-
tions of the near-IR light scattering by sub-micron silicon spheres showed that dielectric
nanoparticles of high refractive index can efficiently scatter light through dipolar geo-
melric resonances and, even more surprisingly, scatter it also through strong magnetic
excitations. This discovery led to a number of fascinating studies and designs which
make use of both the magnetic activity of dielectric scatterers [8, 10, 15, 95, 96] and
their low-loss properties [7, 97].

In this chapter, we discuss in details two of such concepts investigated during the course
of this doctoral study: the use of dielectric spherical nanoantennas as platforms for
enhancing the spontaneous decay rate of electric and magnetic dipolar emitters and the

hybridization of dipolar modes in pairs of such dielectric nanoparticles.

2.1 Mie theory

The process of light scattering on nanoparticles lies at the very center of classical nanoop-
tics. Its importance has assured a considerable attention in the last century, which in
turn provided numerous analytical, and - thanks to the rapid development of computa-
tional techniques - numerical tools to address this problem. One of the most fundamen-
tal, and possibly the most elegant analytical methods for describing the light scattering
process was proposed by Gustav Mie [70]. In Appendix A we outline the derivation and
some of the results obtained within the Mie theory of scattering of light by spherical

particles.

The elementary result of the Mie theory is the formulation of the closed, analytical for-
mulas for the scattering oy, and extinction eyt cross sections of a homogeneous sphere
of radius @ and dielectric permittivity €2, immersed in a homogeneous lossless medium
with dielectric permittivity €1, as shown schematically in Fig. 2.1(a). If the particle is il-
luminated by a planewave with frequency w and wavevector kg = —kZ = —w/ c@é,

its cross sections are given by a weighted sum of the so-called Mie coefficients a,, and by,

36



2.1 Mie theory
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FIGURE 2.1: (a) Schematics of the canonical geometry for introducing Mie theory. A
homogeneous sphere of dielectric permittivity €2 and radius a is immersed in a lossless
medium with dielectric function £; and illuminated by a linearly polarized monochro-
matic planewave incident along the £ axis. (b, ¢) Electric (left plots) and magnetic
(right plots) field distributions in the cross-sections of the sphere corresponding to the
(b) dipolar electric (a1, upper panel) and dipolar magnetic mode (b, lower panel) and
(¢) quadrupolar electric (ag, upper panel) and quadrupolar magnetic mode (b, lower
panel). The labels denoting the spherical harmonics, M(c/o)mn and N(c/o)mn, shown in
the plots, are defined in Appendix A.



Chapter 2. Dielectric nanoantennas

which describe the contributions from the dipolar (n = 1), quadrupolar (n = 2), etc.,
vector spherical harmonics of electric (a,) and magnetic (b,) nature (see schematics in

Fig. 2.1(b,c) and the derivations in Appendix A):

2T — 2T —
Osca = 15 Z(Qn + 1) (|anl? + [bnl?), Cext = = Z(Qn + DRe(ay, + by). (2.1)
n=1 n=1

2.1.1 Optical response of a submicron dielectric sphere

With this elementary knowledge of Mie theory presented above, we can reproduce the
results reported by Aitzol Garcia-Etxarri et al. [35], who found the strong and spec-
trally separated electric and magnetic dipolar resonances in the near-infrared scattering
cross sections of a high-permittivity sub-micron sphere. For convenience, instead of the
relevant cross sections, we analyze the scattering and extinction efficiencies, defined as
the respective cross sections normalized to the geometrical cross section of the scatterer.

For spherical particles we get:

Coca = 755, Coxt = 5. (2.2)
In Fig. 2.2 we plot the planewave scattering efficiency spectrum (blue line) of a silicon
sphere of radius a = 230 nm, in air (relative refractive index M = \/% = 3.5).
By separating the contributions to the scattering efficiency, according to Eq. (2.1), we
can extract the scattering due to the electric dipolar (red area, Csca(a1)) and magnetic
dipolar (green area, Csca(b1)) Mie modes. The spectral feature resonant at A = 1160 nm

represents the scattering by the quadrupolar magnetic b2 mode.

Note that for lossless materials, the scattering and extinction efficiencies are identical,
since for real M the Mie coefficients fulfill |a,|? = Re(a,) and |b,|?> = Re(b,). In this
section we assume that for the IR energies of the incoming photons below 1 eV this

descriptions applies to silicon.

2.1.2 Scattering of radiation from a dipolar emitter

Mie theory offers more interesting results than those captured by the simple equations
for the scattering and extinction cross sections. Specifically, it provides tools to cal-
culate the scattered and absorbed powers for any physical illumination (described by

the electromagnetic fields which fulfill the vector wave equation in the homogeneous,
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FIGURE 2.2: Scattering efficiency of a 230 nm radius Si nanosphere in air (M = 3.5)
illuminated by a plane wave. The schematics of the illumination setup and the induced
electric and magnetic dipolar modes are shown in the boxes on the right. The scattering
efficiency Csc, is separated into contributions from the electric dipolar (red area, a)
and magnetic dipolar modes (green area, by).

lossless medium). One of such illuminations that is of particular interest is the radiation
from a dipolar emitter placed in the vicinity of the scatterer. This case is discussed in
Appendix A, and the explicit expressions for the power of the outgoing radiation (Pyca)
and the power absorbed by the scatterer (P,ys), originated by the classical electric (e) or
magnetic (m) dipolar emitters are also derived. Comparing these powers to the power
Py emitted by the dipole in the absence of the scatterer, we can draw a parallel to
the process of enhancing the rate of spontaneous emission 'y from a quantum dipolar
emitter [56], and formulate the radiative and total decay rate enhancement factors of an
emitter as

Fsca o Psca Lot _ Psca + Paps

2.3
Iy Py’ Ty Py (23)

respectively. For the spherical homogeneous particle characterized by the Mie coefficients
an and b, and an electric (e) dipolar emitter positioned at a distance z from the center
of the sphere (z > a), oriented either radially (L) or parallelly (||) to the surface of the

particle, the expressions for the decay rate enhancements for each case are:

2
Tk 38 G (kz) — anhl) (k2)
T, ~2 n§:1(2n + 1)n(n+1) e , (2.4a)
rle 3 , W (k2) — an( (k2) |2
=2 on+1) |4, — b, hM) 2 n non 2.4
Ty 47?1( n+1) |jn(kz) — bphy,’ (k2)|° + = , (2.4b)
FtL0’5—1—3Re§0(2 + Dn(n +1) W) | (2.4¢)
FO — 2 Z n nn (079 k‘Z 9 .
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Il.e 00 ()12
FIEZt =1- 22(271 + 1)Re {an [Cn]ilz )} + bn[hg)(kz)ﬁ} ’ (2.4d)

n=1

while for the magnetic (m) dipolar emitter

2
o' 3w in(kz) — buh$Y (k
= 5227~L+1 n—i—l)j(z) - (k)| (2.52)
=1

/ / 2
n(k2) — anh® (k)] + | Lnlk2) = bun(k2)

I‘H,m 3 0
sca _ Z(2n+1)

] . (2.5b)

FO Zn 1 kz
rlm 3. & WO k)]
||7m oo ! 2
Loy 3 Cn(k2) (1) 2
T = -5 ;(Qn + 1)Re {bn [kz + an[MV (k)] 3, (2.5d)

(1)

where we have made used of the spherical Bessel j, and Hankel hy,
Riccati-Bessel functions (,(p) = ph,(ll)(p) and ¥y, (p) = pin(p).

functions and a

2.2 Single dielectric-particle nanoantennas

Having introduced the mathematical framework for the description of light scattering on
spherical particles in the previous section, let us now proceed to exploring the concept of
coupling dielectric submicron antennas with electric and magnetic dipolar emitters [15].
To this end, we develop the description now presented in subsection A.3 of Appendix
A, and presented in the above Egs. (2.4a-2.5d). Within this framework, we perform a
detailed study of the dependence of the decay rate enhancement of dipolar emitters on

their distance z to the surface of the spherical antenna, and its polarization.

To place these results in the context of the current research, we note a recent surge in the
interest of the scientific community in controlling magnetic transitions in lanthanide ions
embedded in nanocrystals. We should especially mention the experimental contributions
by S. Karaveli and R. Zia [98], who have shown that the rate of spontaneous emission
from trivalent europium (Eu3*) exhibiting a magnetic dipolar transition can be modified
by carefully placing it near a flat gold mirror. Their work can be acknowledged as a
successful realization of the simpler experiments reported almost 35 years earlier by K

Drexhage [99], and later by R.E. Kunz and W. Lukosz [100], who studied the rates of

primarily electric transitions of europium ions placed on dielectric mirrors.
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In the following subsections, we first analyze the decay rate enhancements for dipolar
emitters placed near a submicron silicon antenna with spectrally well-separated electric
and magnetic dipolar resonances [35] (see Fig. 2.2). Later, we present a simple dipole-
dipole interaction model which accurately describes the interaction between the dipolar

emitters and the lowest-order Mie modes of dielectric nanoparticles.

2.2.1 Radiating dipoles in the presence of a high-index dielectric par-
ticle (Si sphere)

In Fig. 2.3 we show the spectra of the enhancement of the decay rates for the electric
(red lines) and magnetic (green lines) emitters positioned at a distance of 50 nm from
the surface of a 230 nm radius silicon sphere. The enhancement factors are shown
for the two orientations of both types of emitters - perpendicular (a) and parallel (b)
to the closest surface of the nanoparticle. The calculations were performed using the

appropriate formulas listed in Egs. (2.4a-2.5d).

For the dipole oriented radially (Fig. 2.3(a), Eqgs. (2.4a,2.4¢,2.5a,2.5¢)), it is possible to
dissect the contributions originating from each of the Mie modes in the sphere to the
decay rates. We illustrate this in Fig. 2.3(a) by marking with red and green areas the
contribution from the dipolar electric modes to the electric dipolar emission (aj, red

area) and magnetic dipolar mode to the magnetic dipolar emission (by, red area).

We observe in Fig. 2.3 that both the orientation of the emitter as well as its electric or
magnetic nature determine which modes of the sphere are excited. An electric emitter
oriented parallelly (Fig. 2.3(b), red line) excites the magnetic dipolar b; (at A = 1680
nm), quadrupolar by (at A = 1160 nm) and - although very weakly - the electric dipo-
lar a; (at A = 1350 nm) resonance, while the same emitter aligned perpendicularly
(Fig. 2.3(a), red line) couples exclusively to the broad electric dipolar a; mode, peaking
at A = 1350 nm. The complementary behavior is observed for the magnetic emitter:
for perpendicular orientation (Fig. 2.3(a), green line), only the magnetic by, by modes
are excited, while in the parallel orientation (Fig. 2.3(b), green line) the emitter cou-
ples to both the magnetic and electric modes. In principle, this effect can be used to

discriminate between the two types of emitters.

To further investigate the selectivity of the emission, we plot in Fig. 2.4 the enhancements
of the decay rates of the electric (pemi) and magnetic (menyi) dipolar emitters as a

function of the emission wavelength of the emitter A and the radius a of the dielectric
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FIGURE 2.3: Decay rate enhancements of an electric (red lines) or magnetic (green
lines) emitters positioned in the vicinity of the particle. The emitter is oriented either
perpendicularly (a) or parallelly (b) with respect to the closest surface of the sphere.
Spectra of the radiative rate enhancements shown are calculated using Egs. (2.4a-2.5d).
Contributions to the decay rates from the electric (a;) and magnetic (b1) dipolar modes
of the sphere can be isolated for the perpendicular orientation of the dipole, and are
denoted in (a) red and green areas, respectively. The refractive index of the silicon
nanosphere is 3.5, while the distance from the emitter to the surface of the sphere is
set to 50 nm.

nanosphere. Since Egs. (2.4a-2.5d) depend on the parameter ka oc A~'a through the
Mie coefficients, the spectral positions of the Mie resonances follow straight lines as
marked in the decay rate maps of Fig. 2.4 by dashed lines defined by a o« A. The
dependence of Egs. (2.4a-2.5d) on the distance from the dipole to the center of the
sphere z does not affect significantly the spectral features of the enhancements, but
governs the relative strength of the resonances. Furthermore, for the largest sphere,
many high-order resonances appear clearly in the high-energy region of spectra, as these

modes can be efficiently activated for small values of (z — a)/a.

Similarly to Fig. 2.3(a), for the perpendicular orientation, the electric emitter (Fig. 2.4(a))
couples only to the electric modes (marked as a,), and excites mostly magnetic contri-
bution when oriented parallelly (Fig. 2.4(b)). In the latter case however, an electric
contribution is also present, which is mostly visible for the high order modes. Similarly,

the perpendicular magnetic emitter excites magnetic modes exclusively (Fig. 2.4(c)),
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FIGURE 2.4: Spectra of the decay rate enhancements I' /Ty of electric (Pemi, (a,b)) or
magnetic (mem;i, (c,d)) nature near the silicon sphere of varying radius @ in vacuum.
Dipoles are oriented either perpendicularly (a,c) or parallelly (b,d) to the surface of the
antenna, positioned at fixed distance of 50 nm from its surface. Dashed lines correspond
to the Mie resonances a,, and b,, as displayed in each of the plots. Geometries of the
setups are shown in the schematics.

whereas in parallel orientation it couples to the electric and to the magnetic modes
(Fig. 2.4(d)). Thus, the orientation and the nature of the emitters allows for a selective

excitation of the modes of the dielectric sphere.

This modal selectivity can be understood by tracing the presence of Mie coefficients in
Egs. (2.4a-2.5d) for each case. For the emitter perpendicular to the surface of the antenna
(Egs. (2.4a,2.4¢,2.5a,2.5¢)), only one type of Mie coefficient is present: electric a,, terms
for the electric emitter and magnetic b,, terms for the magnetic emitter. On the other
hand, since the equations for the emitter oriented parallelly (Egs. (2.4b,2.4d,2.5b,2.5d))

include both electric and magnetic coefficients, both types of resonances are excited.

We can further confirm the identification of the contributions from the electric and
magnetic modes to the enhancement of the decay rates (Fig. 2.3) by plotting the dis-
tributions of the fields induced in the system. In Fig. 2.5 the induced electric (a,c,e,g)

and magnetic field (b,d,f,h) distributions are shown for two resonances of the Si sphere:
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FIGURE 2.5: Distribution of the electric (upper row) and magnetic (lower row) induced
field amplitude enhancements by an electric (pPemi) and magnetic (meyn,;) dipole at a
distance of the 50 nm from the surface of a 230 nm radius silicon sphere. Shown cross-
sections contain the dipole and the center of the sphere. Plots (a-d) correspond to
the dipolar electric mode induced at A = 1350 nm, with the induced dipole denoted
as Pind, excited by the perpendicular electric (a,b) or parallel magnetic (c,d) emitter.
(e-h) illustrate the field distributions at the dipolar magnetic mode A = 1680 nm
(mjpnq), induced by the parallel electric (e,f) or perpendicular magnetic (g,h) emitter.
Schematics of the exciting and induced dipoles are shown at the top of the figures.
Intensities of the induced fields F;,q and Hi,q are normalized to the values of the fields
Ey and Hy produced by the dipolar emitter in the absence of the particle and evaluated
at distance of 280 nm from the emitter in the direction perpendicular to its axis. The
position of the normalization point is marked by a white cross in each case.

electric a1 ((a-d), denoted in the schematics as the induced electric pi,q) and magnetic
b1 ((e-h), induced magnetic m;,q) dipolar modes. These excitations are induced by
the emitter of the electric (Pemi) or magnetic (mepyi) nature, oriented as shown in the
top schematic of each panel in Fig. 2.5. The fields have been obtained from a vector
harmonic decomposition (see Appendix A for details). Dipolar electric resonances at
A = 1350 nm are excited by the perpendicularly oriented electric emitter (Fig. 2.5(a,b))
or parallelly oriented magnetic emitter (Fig. 2.5(c,d)). The dipolar magnetic resonance
at A = 1680 nm is induced both by the electric emitter oriented parallelly (Fig. 2.5(e,f))
and by the magnetic emitter oriented perpendicularly (Fig. 2.5(g,h)) to the surface of
the sphere. The distributions of the fields shown in Fig. 2.5 clearly indicate the dipolar
nature of the induced resonances and qualitatively agree with the field distributions of

the resonances obtained with excitation of the Si sphere by a plane wave [35].
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In Ref. [15] we provided a detailed comparison of the decay rate enhancement factors
with the case of a dipolar emitter coupled to a silver nanoparticle. We concluded that
the performance of silicon nano-antennas coupled to electric emitters matched that of
the plasmonic systems, and showed some improvements over their metallic counterparts

when applied to controlling the emission from magnetic emitters.

2.2.2 Dipole-dipole interaction

The electromagnetic coupling in the previous examples was often dominated by the
dipolar modes induced in the sphere. By limiting the sum in Eqs. (2.4¢, 2.4d, 2.5¢, 2.5d)
to the n = 1 terms and taking the explicit form of the spherical Hankel function hgl),
we obtain the following expressions for the enhancement of the decay rates within the

dipole-dipole approximation:
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where the electric ap and the magnetic aj; dipolar polarizabilities are associated with

the first order Mie coefficients according to

o6

Ebl, (27)

67 .
Eal, apr =1

ap =1

respectively.
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Out of the four equations above, only Eqs. (2.6b) and (2.6d) depend on both magnetic
(apr) and electric (ag) contributions. The perpendicular electric (magnetic) emitter
couples only with the electric (magnetic) dipolar mode. In the cases when a single
dipolar mode of the sphere, either electric or magnetic, dominates the response at a
given wavelength, it is possible to describe the coupling at that wavelength as a simple

dipole-dipole interaction.
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FIGURE 2.6: Distance dependence of the decay rate enhancements calculated using
the exact formulas (solid lines) and the dipolar interaction approach (dashed lines). In
plots (a-d), the emitter is positioned near a 230 nm radius silicon sphere and for (e-f)
- near a 50 nm radius silver sphere. The wavelength of radiation matches the dipolar
modes of the silicon particle: (a-b) electric at 1350 nm and (c-d) magnetic at 1680 nm,
and the electric dipolar mode of the silver sphere at 420 nm (e-f). In each case, only the
dominant induced dipole is considered for the dipolar approximation, while the mode
of the complementary nature (magnetic or electric) is neglected. The insets show the
orientation and the electric of magnetic nature of both the emitter (pPemi Or Mepm;) and
the induced dipolar mode (pinq or mj,q) in the antenna. The distance is measured
between the dipolar emitter and the center of the antenna.

To illustrate this property, we show in Fig. 2.6 the enhancement of the decay rate as a
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2.2 Single dielectric-particle nanoantennas

function of the distance between the dipole and the center of the nanoparticle. Results
were obtained with the use of the exact formulas given by Eqs. (2.4c-2.4d) (solid black
lines) as well as with the dipolar-interaction approximation (dashed red lines). We
consider a 230 nm radius silicon particle and, for the sake of comparison with a common
plasmonic systems, a 50 nm silver sphere described by a dielectric function from the
literature [101]. To extract the dominant contributions, we choose the wavelengths
corresponding to the dipolar electric a; and dipolar magnetic b; resonances, and set the
polarizabilities of the complementary nature to 0 in Egs. (2.4c-2.4d). Namely, in the
case of the Si sphere, ap is neglected for A = 1680 nm (corresponding to b; resonance)
and ajy is ignored for A = 1350 nm (a;). For the Ag sphere, we put the magnetic dipolar

polarizability ap; = 0 for A = 420 nm (coinciding with the electric dipolar resonance

al).

The dipole-dipole interaction model very accurately reproduces the exact results in all
the considered dielectric antennas. In Fig. 2.6(a), we plot the decay rate enhancements
of an electric emitter, perpendicular to the surface of the silicon sphere, radiating at
A = 1350 nm (dipolar electric antenna resonance). The disagreement between the curves
can be attributed to the influence of the quadrupolar electric mode, not considered in
the dipole-dipole approximation. In the analogous situation of an identically oriented
magnetic emitter at the magnetic dipolar resonance (A = 1680 nm, Fig. 2.6(d)), the
agreement with the analytical solution is almost perfect, as no higher-order magnetic
modes contribute in this spectral range. Small differences due to the neglected dipolar
polarizabilities can be seen for emitters oriented parallelly to the surface of the sphere:
the magnetic emitter coupled to the silicon antenna at its electric dipolar resonance
(A = 1350 nm, Fig. 2.6(b)) and the electric emitter at the magnetic dipolar resonance
(A = 1680 nm, Fig. 2.6(c)).

For the silver antenna (Fig. 2.6(e-f)), we show the distance dependence of the total
decay rate enhancement for the radiation wavelength of 420 nm, which corresponds to
the excitation of the dominant dipolar electric mode of the Ag particle. Almost perfect
agreement between the exact solution and the results of the dipole-dipole interaction
model is obtained both for the electric (Fig. 2.6(e)) and the magnetic emitter (Fig. 2.6(f))
oriented perpendicularly or parallelly to the surface of the antenna, respectively. The
slight deviations are mostly due to high order non-radiative contributions that become
more significant for very short separation distances. However, we emphasize that the
agreement between the simple model and the complete analytical solution is very good

in all the considered cases.
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2.2.3 Conclusion

We have presented a detailed analysis of the radiative and non-radiative decay rates of
both dipolar electric and magnetic emitters positioned in the vicinity of a high-refractive
index spherical dielectric particle. Thanks to their strong magnetic dipolar resonances
in the near infrared, such antennas provide a canonical example of dielectric antennas
that can be used to selectively enhance magnetic dipolar emission. Interestingly, the
resonant coupling between a dipolar (electric or magnetic) emitter and the dipolar Mie
resonances in a particle is well described by the dipole-dipole interaction approach at

certain wavelengths even when the emitter is in close proximity to the sphere surface.

Near the magnetic resonance, we found a strong enhancement of the decay rate of
magnetic emitters which resembles the enhancement of electric dipole emission near
a resonant plasmonic particle. However, while the total decay rate in plasmonic nano-
antennas is often dominated by non-radiative channels, the total emission rate in lossless
silicon antennas is purely radiative. These results show that nanosphere dielectric anten-
nas are excellent platforms to enhance and manipulate magnetic dipolar emission with

important possible applications as elements of infrared and telecommunication devices.

2.3 Optical response of dielectric dimers

Considering the content of the previous section, it might be natural to wonder what
the optical response of the system discussed above would be, if we replaced the dipolar
emitter by another dielectric nanoparticle. Could one design an appropriate dipole-
dipole interaction model that would accurately describe the optics of a dielectric dimer?
How good of an approximation would it be in the regimes where the spheres exhibit

contributions from the higher modes?

In this section we attempt to answer these questions by presenting a detailed derivation of
an analytical model of hybridization in dimers of electric and magnetic dipolar scatterers,
and illustrating this concept by considering the optical response of a dimer of dielectric
spheres. Afterwards we discuss the optical response of dielectric dimers obtained from
experiments, and interpret them by means of numerical analysis, relating them to the
predictions of the analytical model. Finally, we attempt to answer the question whether
dimer structures can provide a more effective platform for enhancing the emission from

dipolar emitters compared to the single spheres.

48



2.3 Optical response of dielectric dimers

For other interesting aspects of silicon dimer structures, such as their ability to enhance
the electric and magnetic fields, as well as the comparison between the performance of

dielectric and metallic nanoantennas, we direct the reader to Ref. [7].

2.3.1 Hybridization of dipolar modes in a dielectric dimer

Let us consider a dielectric dimer antenna shown schematically in Fig. 2.7. Spherical
nanoparticles of radii a are separated by the dimer gap d, and are centered on the g
axis, equally spaced from the coordinate origin. The two panels of Fig. 2.7 depict the (a)
transverse electric TE and (b) transverse magnetic TM polarizations of the planewave
incident along axis Z, with wavevector kg, and incident electric Eg and magnetic Hy
fields.

FIGURE 2.7: Schematic representation of a particle dimer showing the orientation of
the incoming radiation with electric field Eq polarized (a) perpendicular and (b) parallel
to the dimer axis in TE and TM configurations, respectively.

Since each of the constituent nanoparticles exhibits both electric and magnetic reso-
nances, we expect that the response of strongly coupled dimer structures will be governed
by hybridized modes, composed of the homogeneous pairing of electric dipoles similar to
those observed in plasmonic dimers [71, 72], the less explored pairs of magnetic dipoles
[37, 102], and also novel heterogeneous pairs comprising one electric and one magnetic

dipole.

To study the formation of these modes in detail, we develop a simple model in which
the spheres (numbered as 1 and 2, and centered at ry and ry, with the center-to-center
separation D = d 4 2a = |r; — rg|), immersed in environment with relative permittivity

€1 and permeability u;, are represented as point-polarizable dipolar scatterers with the
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electric (a) and magnetic (a,y,) polarizabilities given by the first (dipolar) Mie coeffi-
cients as in Eq. (2.7). In general, this model can be identified as a realization of the

coupled electric and magnetic dipole method [103-105].

The induced electric p; and magnetic m; dipoles in the jth sphere are proportional to

the total fields at the position of the point scatterer, E¢o(r;) and Hyot(r;):
pj = soslaeEtot(rj), mj = amHtot(rj)' (2.8)

The total electric and magnetic fields at any point r are given by the sum of the incident
fields: Eg and Hy and the electric and magnetic field scattered by the two particles,

Es.. and Hg., respectively. For the plane wave illumination, the former are given by:

(TE) Eo(r) = Eoe'™ %, Hy(r) = 7%“% § = Hoe'™* 3, (2.9a)
(TM) Eo(r) = Ege’™* 3,  Hy(r) = —7062’“ % = —Hye'* %, (2.9b)

where Z = \/puop1/(g0e1) is the impedance of the medium. % and § are the unit vectors

along the & and g axes, respectively.
/ scatterer | / scatterer |
no.1 _|I I ho.2

GE(I‘1 - 1‘2)

=== e = = ===

FIGURE 2.8: Schematics of the interaction between the electric (red arrows, p1, p2)
and magnetic (green arrows, mp, ms) dipoles induced in the particles positioned at rq

<~ <~
and ro, mediated by the electric (G g, orange arrows) and magnetic (G s, blue arrows)
Green’s functions.

The scattered fields at any position r are given by

J AN 28
Eqa(r) = Z —GEg(r—rj) -p; +iZk*Gu(r —rj) - mj|, (2.10)
j=1,2



2.3 Optical response of dielectric dimers

3 >
Hg,(r) = [—GM(r—rj)‘pj+k2GE(r—rj) -m]} , (2.11)
j=1,2

<~ nd
where Gg(r) and Ga(r) denoted the free-space Green’s functions which, acting on an

arbitrary vector v give [56, 106]:

Cr(r) v= [(1 + é - k;) v+ <—1 - % + k;) (- v)f} g(r),  (2.12)
Conr(r) v = (F x v) (z _ klr) g(r). (2.13)

# is the unit vector along r = #r and g(r) = ¢*" /(47nr) the scalar Green’s function. The

two Green’s functions are related to each other by

<~ 1 s
Gy = %V X Gp. (2.14)

In the following chapter, we will attribute a physical interpretation to the operator
E=1Vx.

We can thus write down the self-consistent equations for the coupled dipoles:

p1 goe10eEo(r1)
m | | apHo(rr)
P2 goe1aEo(r2)
mo amHo(rz)
«(12) ) —(12)
0 0 a.Gg 1€0€10e Z G p1
i (—)(12) (—)(12)
+ k2 0 0 ~ Zeoea Gum amGEg mj
«(21) «~(21) )
aeGg *7;60610£€ZGM 0 0 P2
io £ (21) «(21) m
—zem-Gy amGg 0 0 2
(2.15)
where
(—)(12) AN (—)(12) RN
Gg = GE(I'l — I'Q), Gy = GM(rl — 1'2)7 (2.16&)
and
(—)(21) PR (—)(21) RN
Gg =Gg(ra—r1), Gy =Gu(ra—ry). (2.16D)
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FIGURE 2.9: Schematic representation of the dipolar system used to model the elec-
tromagnetic response of the silicon sphere dimer. Red (green) arrows on the spheres
correspond to the induced electric (magnetic) dipoles. For the TE polarization in (a)
(TM in (b)) the magnetic (electric) dipoles along the z-axis are the secondary dipoles
induced by the field of the primary electric (magnetic) dipoles p, (m,), and are not
directly excited by the incoming plane wave.

2.3.1.1 Transverse-magnetic illumination

The general equation shown above can be solved without any incident illumination,

offering the description of the eigenmodes of the system. Such approach has been re-

cently used to find the fundamental modes of strongly coupled trimers [107, 108] and

quadrumers [109] of dielectric scatterers. Here however, we will arbitrarily assume a

TM illumination scheme, shown schematically in Fig. 2.9(b), to simplify the calcula-

tions and learn about the polarization-selectivity of the system. In such setup, the only

non-vanishing components of the induced dipoles are shown in Fig. 2.9(b) with red (py,

p») and green (my) arrows. Equation (2.15) can be then rewritten using the properties

of the Green’s functions:

H ~
Gg(ri—rg) - % =

H A~
Gu(ri—rg)-% =

<~

GEg(r; —rg) -

N
|

H ~
Gu(ri—re) -z =

>

Gg(ri—rg)-y =

H ~
Gu(ri—rg) -y =

52

(2.17)
(2.18)
(2.19)
(2.20)

(2.21)

(2.22)



2.3 Optical response of dielectric dimers

yielding the following equations

ply
p2y
D1z

D2z

mig

may

We have marked the

2
= egoc10e by + ack®gyyDay,
2
= eoc10e by + ack GyyP1y;
2 : 2
= —Qck“grap2. + 1E0E1 0 LK Gz Moy

2 . 2
= —ock GrxPl1z — ieg€1 e Lk GzzMlz

« QK2
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VA Z E0€1
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- ZmEO B ZmSOE'ilgzmplz _amkzgxxmlﬂf'

(2.27)

(2.28)

terms of particular interest, which describe the heterogeneous

electric-magnetic interactions between the pj, and mj, dipoles (j # j’). Note that

these modes are enabled by the coupling of the incident light to the m ., dipoles, which

4
in turn (through the magnetic Green’s function Gjs) excite the secondary p;. dipoles.

Furthermore, the terms proportional to g, and g,, describe the interaction between par-

allel dipoles of homogeneous nature and, finally, the terms proportional to Ey correspond

to the single-particle excitations induced directly by the incident light.

The solution to the above set of equations can be elegantly expressed by introducing

dressed polarizabilities &, defined as

~ Qe ~ Qe ~ Qm
Oy = ——5—, Q= ———, Oy = ——o——
v 1- aekQny7 “ 1- O‘ekzgmc7 1+ amkgga::c
S~ 192
& _ OmaQek s
e—m, M = ~ ~ )
1 - amxaezk4gzx
and relating
Py = D2y :5051deyE07
Plz = —P2. = —1€0E10e—m,TMED,
Qg ~ 2 Qg
Miz = M2x = |— - (ae—m,TMk gzac) —— | Eo.

A A

(2.29)

(2.30)

The respective dressed polarizabilities tvez, Gy, and &e—m 7E can be found for the case

of TE polarization of the incident light and the induced components of the dipoles p,,

my, and m, (see Fig. 2.9(a)).
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2.3.1.2 Dimer symmetry group Dy,

S
N
———— e, ————————

_______________________________________

—l_ A

P1XGpr-mo

P2XGps-my
N — 7

F1GURE 2.10: Schematic representation of the irreducible representations of the Dap,
dimer symmetry group and their coupling to the incident planewave. (a) Modes Bz,
and B, are directly excited by the incident TM-polarized light as they exhibit non-
vanishing total dipoles parallel to the respective components of the incident light. (b)
Similarly, modes By, and Bs, couple to the incident TE-polarized light. While the
remaining homogeneous modes shown in (c¢) do not directly couple to light in any of
those polarizations, the By, and By, can be excited indirectly due to the coupling
between the scatterers. (d) Schematic of the coherent homogeneous modes in which
the magnetic dipoles are induced in the 71”7 (left) or ”2” (right) sphere by the incident
And

magnetic field Hy. The magnetic Green’s function Gj; then couples this dipole to the
perpendicular, electric dipole in the other sphere. The coherent sum of these two modes
can be rewritten as the coherent sum of two modes By, and Bag.

In a slightly more pictorial manner, we can consider the modes of the dimer as irre-
ducible representations of the dimer symmetry group Ds,. While this approach allows
for a detailed analysis of the symmetries of the modes, we will use it predominantly to
simplify the description presented above. For an interesting example of a more elaborate

analysis, we note the recent contributions in Refs. [107,109]. We have gathered these
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2.3 Optical response of dielectric dimers

representations in Fig. 2.10. and grouped them by their ability to couple directly to the
normally incident (a) TM- or (b) TE-polarized planewave.

The remaining modes, depicted in (c), cannot couple directly to normally incident,
linearly-polarized light. However, as we discuss below, two of them - By, and By, -
will contribute to the extinction cross-section of the dimer through the mechanics shown
schematically in Fig. 2.10(d) for the former case of mode Bi4: in the scheme on the
left, the incident magnetic field of TM polarization induces a magnetic dipole in one of
the spheres (m;) which in turn, through the Green’s function 8, M, induces the electric
excitation in the other sphere (p2). Similarly, the magnetic mode msy in the second
sphere can induce the electric excitation p; in the first sphere. As a result, the two
coherently excited dimer modes can be decomposed into a sum of Bi, and By, as

depicted in the bottom schematics of Fig. 2.10(d).

In a similar manner, under TE polarization, the coherent sum of heterogeneous modes

leads to the excitation of complementary modes By, and Biy,.

The expressions for the extinction cross-sections of such dimers have been derived in
Ref. [7] from the optical theorem by considering the scattering amplitude in the forward
direction by the induced dipoles in the Zy plane (dipoles p;, and m;, do not radiate

along the z axis):
(TE) 0upr = 2kIm [dmy + Gy + (de_m,TEngm) &px] (2.34a)

(TM) s = 2kIm [aey T Gy (ae,m,mk?gm)dm} . (2.34b)

In Fig. 2.11 we plot the extinction cross sections of a dimer of dielectric spheres with 150
nm radii, calculated with Eq. (2.34b) (solid blue lines) and using the exact FDTD method
[83] (dashed blue lines) for two dimer gaps of 10 nm and 50 nm, respectively and normally
incident TM polarization. The two methods yield very similar results for both separation
distances, except for the presence of the quadrupolar peak around a wavelength of 800
nm. Within the analytical model, the contributions to the extinction can be separated,
displaying the extinction due to the homogeneous electric Bs, (dashed red lines) and
magnetic By, (dashed green lines) homogeneous modes. The significant contribution
from the heterogeneous modes is marked with black lines which is particularly relevant

in the case of the small gap (Fig. 2.11(b)), exhibiting a double-peak structure. This
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(a) Interparticle distance d=50 nm (b) Interparticle distance d=10 nm
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FIGURE 2.11: Extinction spectra of a dimer of silicon particles of 150 nm radii under
TM polarization (see Fig. 2.9(b) for schematics) with the gap separations of (a) 10 nm
and (b) 50 nm, calculated using the dipole-dipole model (solid blue line) and compared
with numerical results obtained from FDTD calculations [83] (dashed blue line). Our
model (Eq. (2.34b)) allows us to dissect the contributions from the Bs, (red dashed
line), By, (green dashed line) and B, (black solid line) modes, displayed in Fig. 2.10.

shape stems from the fact that, as we have noted above, the coherent excitation of

heterogeneous modes leads to the simultaneous excitation of both By, and By.

We have thus developed a simple dipole-dipole interaction model to address the optical
far-field response of a dimer of dielectric particles. Within this model, we have pre-
dicted the onset of the heterogeneous electric-magnetic modes, induced indirectly by an
incident planewave, and quantified their contribution to the extinction spectra of the
dimer structure. Considerations based on the theory of symmetry groups can help to
design and guide the engineering of magnetic models in high-refractive index photonics

materials.

2.3.2 Experimental realization of scattering of light on dielectric dimers

The experimental confirmation of the theoretical predictions described in the previous
section of this thesis has been, until recently, hampered by the shortage of methods
for generation and positioning of spherical Si nanoparticles. One of the few methods
which addresses these problems was developed in the group of Prof. Boris Chichkov in
Laser Zentrum in Hannover (LZH), who proposed to apply the laser printing technique,
used previously for generating metallic nanoparticles, to dielectric systems [110]. This
technology relies on femtosecond laser printing of Si nanoparticles onto a glass receiver

substrate using silicon-on-insulator (SOI) wafers as laser targets.
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(a) Silicon nanoparticle Receiver substrate (glass)

N —
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FIGURE 2.12: (a) Schematic illustration of femtosecond laser printing of nanoparticles.
A silicon-on-insulator (SOI) wafer was used as a target to transfer spherical Si nanopar-
ticles from a 50 nm crystalline Si layer onto the transparent glass receiver substrate.
(b) To print Si nanoparticle dimer structures, one can displace either the target mate-
rial or the receiver substrate. (c) SEM-images of the Si nanoparticle dimer structures
obtained on a glass substrate. Experimental implementation at the Laser Zentrum in
Hannover.

2.3.2.1 Experimental details

A schematic illustration of the generation of nanoparticles and nanoparticle dimer struc-
tures in LZH is shown in Fig. 2.12. First, silicon nanoparticles are transferred by single
femtosecond laser pulse irradiation of an SOI substrate toward a glass receiver substrate
(Fig. 2.12(a)). Subsequently, the SOI substrate is shifted relative to the receiver sub-
strate. By repeating the printing process, silicon nanoparticle dimer structures with
varying interparticle distances are realized (Fig. 2.12(b)). Initially, these structures are
in the amorphous phase (a-Si). By additional single-pulse laser irradiation, the amor-
phous nanoparticles can be controllably transformed into crystalline particles (c-Si). The
resulting silicon nanoparticle dimer structures consist of two identical nanoparticles, as

shown in the SEMS images of Fig. 2.12(c).

In Fig. 2.13 we show the polarization-resolved dark-field scattering spectra of the dimer
structures with a gap separation of 375 nm (a,b) and 5 nm (c,d), illuminated by light
polarized perpendicularly (a,c) or parallelly (b,d) to the long axis of the dimer. These

two setups correspond to the TE and TM polarization schemes, respectively, discussed in
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FIGURE 2.13: Scattering spectra of crystalline silicon nanoparticle dimer structures for
incident light polarized perpendicular (a,c) and parallel (b,d) to the axis of the dimer
structure, as displayed in the insets. The distance between the nanoparticle surfaces
is 375 nm (a,b) and 5 nm (c,d) and was measured using SEM image analysis software
with a standard deviation of 0.8 nm. Insets show the dark scattering images of the
corresponding dimer structures. Measurements were carried out at the Laser Zentrum
in Hannover.

the previous section. Measurements of the Si nanoparticle dimer structure with an inter-
particle distance of about 375 nm reveal no significant difference in the spectral position
of the scattering peaks for different polarizations (see Fig. 2.13(a) and (b)) indicating
a weak electromagnetic interaction between the nanoparticles in well-separated dimers.
In contrast, scattering measurements for the case of a small interparticle distance (5
nm) demonstrate a significant difference between the two types of polarization (see Fig.
2.13(c) and (d)).

scattering peak emerges (Fig. 2.13(d)) between the two resonant features observed for

For light polarized parallel to the major dimer axis a single broad

perpendicular polarization (Fig. 2.13(c)).

The exact shape and geometries of the nanoparticles cannot be read out from the SEM
images exclusively, as the nanoparticles suffer deformation during the impact against the
SOI wafer. Furthermore, as pointed out in Refs. [111] and [8], the outer layer of silicon
oxidizes, forming a SiO9 coating. To address these effects, below we present a detailed

discussion of how the flattening and oxidation of Si nanospheres influence the position of
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the electric and magnetic dipolar resonances, deriving a protocol to determine the most

suitable parameters to describe the morphology of the experimentally obtained sample.

2.3.2.2 Numerical analysis of single nanoparticle scattering

The optical response of a single c-Si scatterer can be influenced by many different factors
such as the presence of the substrate, the oxidation of the outer layer of the particle or
its departure from the spherical shape. Therefore, before we attempt to unravel the
optical response of the dimer structures shown in Fig. 2.13, let us consider a single c-Si
nanoparticle. To this goal, in Fig. 2.14 and in the following paragraphs we present a
careful numerical analysis of the effects listed above. The dielectric function of crystalline

silicon was taken from the literature [112].

Presence of the substrate

The black solid line in Fig. 2.14(a) denotes the scattering cross section of a ¢-Si nanopar-
ticle of 97 nm radius in air, with two dominant contributions: electric and magnetic
dipolar modes marked with the green and red lines, respectively. As previously reported
[111], the spectral positions of the lowest-order Mie resonances in dielectric spheres are
rather insensitive to the presence of a substrate (dashed line). This is mostly due to the
localization of the displacement currents inside the dielectric material. We observe this
effect in Fig. 2.14(a), where both the dipolar electric and magnetic resonances of a 97
nm radius c-Si nanosphere peak at 600 nm and 750 nm independently of the presence

of the silica substrate.

Oxidation of the particle

Silicon nanoparticles undergo oxidation of their outer layers, a process that leads to
the formation of a core-shell nanoparticle with a shrunken c-Si core and a silica shell.
Since the refractive index of silica is significantly lower than that of the ¢-Si, the optical
response of the nanoparticle is primarily determined by the c-Si core. In Fig. 2.14(b)
we show how the optical features blue-shift with the shell thickness h increasing from 0
nm (black line) to 8 nm (blue line), and simultaneously decreasing the core radius from

97 nm to 89 nm.

Distorting the shape of nanoparticle

Silicon nanoparticles formed in the printing process are not ideally spherical, but rather
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FIGURE 2.14: Calculated scattering cross sections of single dielectric scatterers. (a)
Scattering by a ¢-Si nanosphere of 97 nm radius (black solid line) dominated by the
electric dipolar (green line) and magnetic dipolar (red line) contributions. Spectral
positions of these resonances are largely insensitive to the presence of the silica substrate
(dashed line). (b) Oxidation of the outer layer of the nanoparticle of thickness h
significantly blue-shifts all of the spectral features. (c) Contraction of the c-Si scatterer
along the Z axis selectively blue-shifts magnetic resonances. See definitions of 7, and
r, in the inset. (d) By modifying the illumination angle, it is possible to selectively
tune the strength of higher order resonances. Here, calculations for the oblate spheroid
described by (rz,7.) = (97,75) nm are shown.
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take on a form of oblate spheroids. As shown in Fig. 2.14(c), such lowering of the
symmetry of the scatterers influences the electric and magnetic dipolar modes slightly
differently. Specifically, contracting the nanoparticle along the illumination direction
(changing r,) shifts the low-energy magnetic and high-energy electric modes by 70 nm
and 20 nm, respectively. This is clearly a very different behavior with respect to the
homogeneous shift induced by the formation of the oxide layer. A similar analysis of
the geometrical parameters of nanodisks and their effect on the optical response can be
found in Ref. [95].

Angled incidence

To model the dark-field scattering microscopy scheme, we present the spectra obtained
for varying illumination angles. As observed in Fig. 2.14(d), changing the angle of
illumination modifies the relative intensity of the resonances. For instance, it is possible
to eliminate the scattering from the 525 nm mode (quadrupolar magnetic) for grazing

incidence.

Considering all the effects reported above, we have estimated the optimal parameters
that correctly describe the spectral features of the optics of the single scatterers prepared
by laser printing. This will set up the morphology of the system to further study the
interaction in the dimer structure. We will hence describe the nanoparticles as ellipsoidal
core(c-Si)-shell(SiO3) structures with major and minor core radii of 95 and 78 nm,

respectively, and a 4 nm oxide layer.

2.3.2.3 Numerical analysis of the dimer scattering

Let us now proceed to analyze the optical response of dimer structures and its depen-
dence on the separation between the scatterers and on the polarization of the incident
light. In Figs. 2.15(b) and 2.16(b) we present the experimental (black lines) and cal-
culated (solid red lines) scattering intensities of dimer structures with varying dimer
separations d ranging from 320 nm (tops) to 5 nm (bottom plots), illuminated by the
normally incident light with TM (Fig. 2.15) and TE (Fig. 2.16) polarizations. For
each spectrum we have also calculated numerically the strengths of the dipoles induced
in each of the nanoparticles (p;, m; for ¢ = 1, 2) by integrating the polarization P

(pi = f‘/i PdV) and polarization currents J (m; = %fVZ r x JdV') inside the volume of
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the i-th particle V;. Having obtained these quantities, we have calculated the contribu-
tion to the scattering intensity from the different dimer modes, which were introduced

in the discussion of the analytical model, in Section 2.3.1.1.

For example, for the TM polarization (Fig. 2.15) the scattering from the bonding mode
of the electric dipoles Bs,, (dashed green line) is dominant for all the dimer separations d,
and it red-shifts with decreasing d, similarly to the electric bonding modes of plasmonic
dimer antennas. Simultaneously, the magnetic mode Bs,, denoted with a dashed orange
line, blue-shifts and decreases significantly in intensity. We should note here that this
shift is not monotonous and might point to a more complex near-field interaction not
described within this model. Finally, we can consider the Bi, mode which, as shown
earlier, can couple to light (blue dashed line) through the excitations of the heteroge-
neous modes, each comprising one electric and one magnetic dipole. Similarly as in the

analytical spectra shown in Fig. 2.11, this last mode exhibits a double-peak structure.

The resulting hybridization scheme shown in Fig. 2.15(a), which - unlike the correspond-
ing schemes drawn for electric-only excitations in plasmonic nanoparticles - contains the
homogeneous magnetic mode By, and the heterogeneous modes which give rise to the

B14 mode.

The numerical calculations reveal a remarkable agreement with the experimental results
(see comparison in Fig. 2.15(b)). Importantly, this close correspondence allows us to
identify the small contribution in the experimental results around 570 nm, for a small
d = 5 nm separation, as due to the effects of the excitation of the heterogeneous modes.
The slight deviation in the intensities of the features most likely stems from the particular
situation of the setup of the dark-field microscope, i.e., the finite aperture and the non-

normal incidence of light.

A similar analysis can be conducted for the TE polarization of the incident light (electric
field normal to the dimer axis). The hybridization scheme shown in Fig. 2.16 reveals
the emergence of two homogeneous modes: electric By, and bonding magnetic Bsg,
both induced directly by the incident light, as well as the pair of heterogeneous modes
which give rise to the excitation of the magnetic By, mode. The decomposition of the
scattering intensity in Fig. 2.16(b) reveals the evolutions of the modes as indicated by
the hybridization scheme (Fig. 2.16(a)), with the red-shifting B, (dashed blue) and Bs,
(dashed orange) and blue-shifting Bs, (dashed green) modes. As in the previous case,

the agreement between the experimental and numerical results is very good, including

62



2.3 Optical response of dielectric dimers
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FIGURE 2.15: Scattering of normally incident light with electric field along the axis of
a dimer of silicon scatterers. (a) Energy-level diagram describing the hybridization of
electric (red arrows) and magnetic (green arrows) dipolar resonances of single scatterers
with the representations of the Dyj, symmetry group: Bs,, Big and Bag. (b) Calculated
scattering intensities of dimer structures (solid red line) for separations of d = 320, 100,
50 and 5 nm (top to bottom) compared to the experimental results (black line). The
spectra are decomposed according to the hybridization scheme of electric and magnetic
modes: Bs, (green dashed line), Byy (blue dashed line) and Byg (orange dashed line).
Each single scatterer is an oblate ellipsoidal core(c-Si)-shell(SiOg) structure with major
and minor external radii of 95 and 78 nm, respectively, and a 4 nm oxide layer.

an emergence of the heterogeneous mode at around 710 nm for the smallest separation

(blue dashed line contribution in the bottom spectrum).

The additional resonant feature at a wavelength of 510 nm (see Figs. 2.15 and 2.16)
is weakly dependent on the separation of the dimers for both polarizations of light,

pointing to the multipolar character of this excitation.

2.3.2.4 Conclusion

As a summary, we have investigated dimers of sub-micrometer crystalline silicon nanopar-

ticles with different interparticle distances, ranging from 5 nm to 375 nm. The dimers
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FIGURE 2.16: Scattering of normally incident light with electric field perpendicular
to the axis of a dimer of silicon scatterers. (a) Energy-level diagram describing the
hybridization of electric (red arrows) and magnetic (green arrows) dipolar resonances
of single scatterers with the representations of the Dgj symmetry group: Bs,, Bsg
and Bi,. (b) Calculated scattering intensities of dimer structures (solid red line) for
separations of d = 320, 100, 50, and 5 nm (top to bottom) compared to the experimental
results (black line). The spectra are decomposed according to the hybridization scheme
of electric and magnetic modes: Bs, (green dashed line), Bi, (blue dashed line) and
Bsg (orange dashed line). Scatterers are identical to those used in Fig. 2.15.

have been fabricated on a glass substrate by a laser printing method which has been

recently developed for Si nanoparticles with resonant optical responses.

For small interparticle distances the electric and magnetic dipolar modes of single scat-
terers hybridize and form homogeneous electric-electric, magnetic-magnetic, and more
complex heterogeneous electro-magnetic modes, following the hybridization scheme dis-
cussed herein. These findings are reproduced very accurately by numerical simulations,
which further allowed us to access information about the exact shape and composition
of the scatterers. We conclude that tunable and strongly interacting dielectric dimers

are a versatile tool for studying the coupling of light in dielectric nanostructures.
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2.3 Optical response of dielectric dimers

2.3.3 Control of single emitters

As we have shown in the Section 2.2, single dielectric nanoparticles can serve as efficient
platforms to enhance the electric and magnetic emission from dipolar emitters. Below
we briefly describe how such systems can be improved by adding a second nanoparticle,
thus effectively placing the emitter in the gap of a dielectric dimer. We should note that
these results include the description of non-radiative processes, which we have neglected
when considering lossless single particle nanoantennas. To account for this effect, the

real constant refractive index of silicon was replaced with the dispersive function from
Palik [112].

In Fig. 2.17 we show the spectra of the radiative decay rate enhancement I'sc, /T’ and

the quantum efficiency @ defined as

. I‘sca
Ftot

Q

(2.35)

for (a) electric and (b) magnetic dipolar emitters, placed at the center of 10 nm (red
lines), 50 nm (green lines) and 200 nm (blue lines) gaps between two silicon spheres of
150 nm radii each. The emitters are oriented either along (left panels) or perpendicularly

(right panels) to the symmetry axis, as shown in the corresponding insets.

Spectra of the radiative enhancement rates of the electric dipolar emitter shown in
Fig. 2.17(a) exhibit selective coupling to the modes of the dimer structure, which we have
described earlier. For an orientation of the electric dipolar emitter along the symmetry
axis (left panel in Fig. 2.17(a)) the spectrally broad and strong enhancement is due
to coupling with the bonding Bs, mode of the dimer (see schematics in Fig. 2.10).
For perpendicular orientation (right panel in Fig. 2.17(a)) the enhancement is given
predominantly by the magnetic mode By, although we can expect from the symmetry
considerations a contribution from the electric Bo, resonance. For the smallest gap
widths (red lines), at resonance wavelengths, the radiative decay rate is enhanced by up
to 300 (left panel in Fig. 2.17(a), A = 1300 nm) and 12 (right panel in Fig. 2.17(a), A =
800 nm), depending on the emitter’s orientation, while retaining quantum efficiencies

over 0.1.

For the magnetic emitter oriented along the symmetry axis of the dielectric dimer an-
tenna (left panel in Fig. 2.17(b)), we obtain the strongest enhancement of the radiation
rate (up to 250 for 10 nm separation) due to coupling to the quadrupolar magnetic mode

at a wavelength of 810 nm, and a large enhancement (up to 100, around a wavelength
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FIGURE 2.17: Enhancement of the radiative decay rate and quantum efficiency of an
(a) electric and (b) magnetic dipolar emitter positioned at the center of a gap of a
silicon dimer formed by two spheres of 150 nm radius. For the electric emitter, the
enhancement is given predominantly by the coupling to the electric Bs, mode for the
orientation of the emitter along the axis (left panel in (a)) or the interplay of the
dominant magnetic mode B;, and a weak electric By, for the perpendicular dipole
(right panel in (a)). Similarly, the magnetic emitter couples to the Bz, mode when
oriented along the axis (left panel in (b)) and both B;, and Bsy modes. Orientations
of the emitters are shown in the schematics. Gap widths are given in the legends.

of 1150 nm) from the B3, mode of the dimer. Significantly weaker enhancements (up

to 25) are obtained for the emitter oriented perpendicularly to the dimer axis (right
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2.4 Summary

panel in Fig. 2.17(b)), as a result of the interplay of the electric Bi, and magnetic By,

excitations.

The quantum efficiency of the emitter is primarily governed by the extinction coefficient
of silicon, which grows steadily for energies above around 1 eV. Furthermore, significant
dips in the quantum efficiency can be qualitatively assigned to the dips in the radiative

rate enhancement.

It is worth to mention that, in some frequency ranges, the emission rates, for both electric
(Fig. 2.17(a)) and magnetic (Fig. 2.17(b)) emitters, are strongly reduced. For very small
gap widths, this suppression of radiative decays coincides with a low quantum efficiency.
However, inhibition of spontaneous emission does not necessarily correlate with quantum
efficiency as it can be seen from our results for large gap widths. Notice that emission
rates are constrained by specific sum rules derived from the Kramers-Kronig relationship
[113, 114]. In particular, any reduction in spontaneous emission rate over some range of
wavelengths must necessarily be compensated by as increase over some other range of
frequencies. Dips in the emission rates observed in all the cases considered in Fig. 2.17
could also be found even for a single lossless sphere, where quantum efficiency is 1, as
discussed in Ref. [15] and Section 2.2. While such effects can be found in the radiative
decay rate enhancement near plasmonic nanoparticles, they are often masked by the
enhancement of the non-radiative decay rates. These effects can avoided by embedding
the emitters into photonics crystals with the bandgap matched to the emission energy
of the emitters [115, 116]. Our significantly simpler systems can be thus seen as a an

intriguing alternative to these complex setups.

2.4 Summary

In this chapter we have analyzed the optical response of two elementary systems com-
prising dielectric dipolar nanoantennas: a single spherical nanoparticle, serving as a
platform for enhancing the emission from electric or magnetic dipolar emitters, and a
dimer of subwavelength particles, either illuminated by an incident planewave or coupled
to a dipolar emitter. In order to provide a physical interpretation to the spectral char-
acteristics of these structures, we have designed simple analytical models which explain
the observed spectral features in terms of the dipolar modes induced in the dielectric
scatterers. We have thus observed an interaction between homogeneous pairs of two

electric dipoles, commonly discussed in the literature, as well as the more exotic pairs of
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magnetic dipoles and, finally, the heterogeneous pairs comprising electric and magnetic

dipoles.

These models can be further developed by removing their dependence on the external
illumination, thus obtaining the description of the eigenmodes of the system, or by
including additional, dipolar scatterers and forming trimer or quadrumer structures. In
another interesting extension of this study, one could introduce a rigorous analysis of
the coupling between the bright and dark modes which would go beyond the quasi-static

limit already studied for the coupling in plasmonic nanosystems.
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Chapter 3

Helicity and random media

“It’s a poor sort of memory that only works backwards,” says the White Queen

to Alice.”

— Lewis Carroll, Through the Looking-Glass

Classical electrodynamics is endowed, as any elegant theory, with numerous intrinsic
symmetries and associated conservation laws which, if used properly, can greatly sim-
plify derivations and provide novel results with just a bit of ingenuity. However, the
revelation about the symmetries underlying certain physical phenomena often comes

from hindsight.

In this chapter, we present two complementary paths to finding a new physical effect:
the conservation of helicity in light scattering processes. The first approach, perhaps
the more elegant one, is based on arguments of conservation principles and symmetries
of Maxwell’s equations. It provides the necessary and sufficient macroscopic conditions
to preserve helicity when light propagates through a piecewise-homogeneous medium.
The second approach is more phenomenological, and is based on the description of the
multiple scattering of helical light in a solution of dipolar scatterers. Before we report

on these findings, let us first introduce the formalism that will sustain our results.
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Chapter 3. Helicity and random media

3.1 Operators, symmetries and transformations

For future reference, let us write down Maxwell’s equations in a linear, non-dispersive,
source-free and homogeneous medium for monochromatic harmonic fields in the fre-

quency domain:

V-E=0, (3.1a)
V-H=0, (3.1b)
V x E = iwpopH, (3.1c)
V x H = —iweopeE, (3.1d)

where g9 (o) and e (u) are the vacuum and relative permittivities (permeabilities) of

the medium and w is the frequency of the harmonic fields E and H.

In Appendix A we discuss how, by considering the intrinsic symmetries of a system, one
can find a convenient basis to solve Maxwell’s equations. Specifically, for the derivation
of light scattering on spherical particles [70], the choice was particularly simple. The
basis for the components of the electromagnetic fields was spanned by the vector spherical

harmonics defined as

_ V x M(r)

M(r) =V x [r¥(r)], N(r) PR

(3.2)
where r is the position vector and ¥ a solution of the scalar wave equation. We note
that, while this choice of basis allows for a particularly simple description of scattering
on a system with spherical symmetry, it is rather inconvenient for the expansion of a

planewave or dipolar illumination.

A more sensible choice of the basis, that would yield a simple description of the planewave

illumination, is provided by functions

 VxMT™E(r)

MTE(r) = V x [0 ()], M™(x) T

(3.3)

where & is a constant unitary vector dubbed as the guiding or pilot vector [117]. With
the choice of
U(r) = exp(ik - r), (3.4)

functions MTE and M™ themselves represent planewaves with wavevectors k, and

orthogonal polarizations.
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We can now pose the following question: Is it possible and, if it is, how to construct a
basis of functions that would exhibit an arbitrary set of symmetries, e.g. a symmetry
with respect to the spatial translation along Z axis, rotation around Z and temporal
translation? Before we answer these questions, we need to formalize our considerations

a bit further.

3.1.1 Complete set of commuting operators

Let us consider two properties (or observables) of the electromagnetic field represented

by operators F and G. If the operators commute, that is

then one can find an eigenbasis formed by the electromagnetic fields denoted as & =
{®; = (E;, H;) }i=1,...» (the eigenbase does not have to be finite), which fulfill Maxwell’s

equations, and are simultaneously eigenfunctions of both operators:
Fo; = ¢ ¥, (3.6a)

GO; = ¢7 ®;. (3.6b)

This property can be then extended to a larger set of operators F = {Frtr=1,..N,
until they fully characterize the field (so that no two modes ®; and ®; have identical
eigenvalues of all the operators F). F is then called the complete set of commuting

operators.

3.1.2 Operators and symmetries

Let us consider a set of operators which are the generators of symmetries of interest.
Below we present the short list, assembled by Xavier Zambrana-Puyalto [118], of the

operators which we will be making use of later:

1. Linear momentum operator defined as

P=-iV, (3.7)
in the Cartesian coordinates has three commuting components: P, = —i0,, P, =
—i0y, P, = —i0,, and is a generator of the spatial translation Ts, = exp(—iP - dr).
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2. Hamiltonian defined as

0

o=—iZ
‘ot

(3.8)

is a generator of the time evolution Ts; = exp(—iHdt), and commutes with P.

3. Angular momentum operator defined as

J=L+S8, (3.9a)
where L is the orbital angular momentum OAM
L=rxP, (3.9b)

and S - the spin angular momentum SAM, expressed in Cartesian coordinates as

S = —i(Xejk + Feak + Zesjn), (3.9¢)
with the Levi-Civita symbol €;;:
1 if (4,4,k) is (1,2,3), (2,3,1), (3,1,2)
Cijk = -1 if (iaja k) is (3’251)7 (1’372)3 (27173) (39d)

0 ifi=jorj=kori=k%.

J is the generator of rotation around vector fi: Ry (¢) = exp(—iJ - ). Therefore,

unlike in the linear momentum case, the components of J do not commute

[Ji, Jj] = ieiijk. (3.96)

Interestingly, neither one of the two operators constituting J: OAM nor SAM is

a generator of proper rotations. Furthermore, if we apply those operators to the

fields fulfilling Egs. (3.1), the resulting fields do not fulfill Maxwell’s equations.

4. Casimir operator
JP= T2+ T+ J2 (3.10)

commutes with all the components of J,

5. Helicity operator I P S.p
A== (3.11)
P |P|
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3.1 Operators, symmetries and transformations

is the generator of the duality transformation defined as
E Ecos¢ — cBsing
D = 3.12
¢ <B> <E sin ¢ + ¢B cos gb) ’ (312)
where B = pouH. For monochromatic fields (|P| = k), we can rewrite it as

VX

A== (3.13)

Almost all of the above operators commute with the rest, with the following exceptions:
o [P, Jj| = i€y P,
® [JZ, Jj] = 7:67;ij]€.

With this last remark, we are ready to answer the first part of the question posed earlier:

yes, it is possible to find an eigenbasis of the set of commuting operators:
{Pa, Ja, H}. (3.14)

By definition, such eigenbasis will be invariant with respect to the spatial translation

along i (T34 ), rotation around i (Ry) and temporal translation (Tys;).

In the following section we try to answer the natural follow-up question: how to derive

such a basis.

3.1.3 Fields and modes

Let us analyze the modes which we have introduced earlier: M™ and M™. For the
sake of simplicity, we assume that these modes were defined with the pilot vector & = Z

- a unit vector along axis 2, yielding
MTE(r) = £5(r)¥(r), M™(r) = P(r)¥(r), (3.15)

with the two orthogonal vector fields

§(r) = —(kyX — k), (3.16a)
kp
() = T [hu(hak + ky9) + k23] (3.16b)
12
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where k = (kg, ky, k2) and k, = \/k? — k2 was introduced into the definitions of £&* and
&P to properly normalize the fields. Both planewaves are eigenvectors of the Hamiltonian

H and the linear momentum operator P.

The helicity operator acting on these modes gives
A[E%(r) exp(ik - r)] = &P(r) exp(ik - 1), (3.17a)

A[EP(r) exp(ik - r)] = £°(r) exp(ik - ). (3.17b)

Thus, in a manner reminiscent of the construction of the Jones wvectors for circular

polarizations, we can introduce two new modes with well-defined helicities

1

_ S_|_ §4 k , th A = s 318
= €+ el or). with Acy = et (3.180)

1 S
e = —(& —)exp(ik-r), with Ae_ = —e_, 3.18b
(€~ ) expile- ) (3.18b)
We can also express these modes through the circular polarization vectors of a planewave

propagating along 2: 64 = %(f{ +1iy) as

1 k:\ B2\ o, - 2k, . ,
=3 [(1 F k:) PG — <1 + k:) e G, + \/; pz] exp(ik - r), (3.19)

where ¢, is the azimuthal component of wavevector k. The resulting modes are eigen-

functions of the linear momentum P, helicity A and the Hamiltonian H operators.

3.1.3.1 Bessel beams

Let us now consider another class of electromagnetic fields characterized by

1. symmetry under temporal translations (eigenfunctions of H),

2. well-defined helicity (eigenfunctions of A),

3. symmetry under spatial translations along a (eigenfunctions of Pj),
4. symmetry under rotations around & (eigenfunctions of J3),

Without the loss of generality, we again assume & = Z and consider beams composed of

modes
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3.1 Operators, symmetries and transformations

1. with identical |k| (monochromatic),

2. with identical and well-defined helicities, either e, or e_,

3. with identical Z component of linear momentum P,.
To address these constrains, we write the sought-after beam as a superpositions of €,
(e—) modes with k vectors distributed on a cone with aperture 6 around the axis z, such
that k, = k cos 0y (denoted by superscripts +,% and —,Z). The aperture angle and the

distribution function of the wavevectors on the cone f(¢y), where ¢y is the azimuthal

angle, are denoted in the subscript:
P 2m
z .
Bo, = /0 dow f(dr)ex exp(ik - r). (3.20)

The function f(¢x) needs to be selected to ensure that the resulting field ijfk is an
eigenstate of J,. Choosing f(¢r) = exp(igrm) yields the field with the required prop-

erties:
P.B."% =kB."% (3.21a)
+3 +.3
J.B, % =mB.% | (3.21b)
+ +,2
ABf, =+B % (3.21¢)

where we have replaced the subindex f with the eigenvalue of operator J,: m. Expanding

the integrals and the definitions of modes é+ we can write

Z k o ikez | k. i(m A
B..6, = \ il et [\/5 (1 + k) Jns1 (kpp)e " D061

Z‘ k'z (m— ~ k imeg
+E (1 + k) Im—1(kpp)e (m=1)e¢5, + ?me(kpp)e %z . (3.22)

Functions J,, used in this definition are the Bessel function of the first kind, and they
originate from the expansion of the transversal components of the momentum in exp(ik-

r). Therefore, we will be referring to this class of beams as Bessel beams.

3.1.3.2 Circularly-polarized light

We should note that for vanishing aperture angle 6, — 0 (and k, — k) we obtain

Brin,zk_)o o imHetkez 1 (0)eimFDSs (3.23)
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In this limit the normalization scheme needs to be changed, since the coefficient 4/ %” —
0. With the Bessel function .J,, non-vanishing at k£, = 0 only for the Bessel function of

the Oth order, the only meaningful B functions are

+,z ikoz A
B i1, 0 X €04, (3.24)

and describe the circularly polarized (CP) light. The argument for choosing a certain
sign (+ or —) of o to denote the right-hand circularly polarized (RCP) or left-hand
circularly polarized (RCP) light depends on whether we observe the beam from behind
the source, or heading towards us. In the former case the real component of the electric
field described by the vector field B;i 1,050 X O+ is performing a counter-clockwise
rotation, identifying it as the LCP light. Accordingly, vector field Br_n’iflﬁk o X O-
describes clockwise rotation of the electric field, and the RCP light:

(observer behind the source), LCP: oy, RCP:o_. (3.25)

—.Z

Conversely, if the observer is facing the incoming light, B;i 410,50 a0d B 5

appear to be describing the clockwise (RCP) and counter-clockwise rotation (LCP),
respectively.

(observer facing the source), LCP:o_, RCP: 0. (3.26)

The first convention is typically used in the community of quantum physics, while the

second one in that of optics. Throughout the rest of the chapter we will follow the latter.

We can also generalize this result to any helical field and interpret the field with positive
helicity A = +1 as that which can be decomposed into right-hand circularly polarized
planewaves, and the field with negative helicity A = —1 as that which can be decomposed

into left-hand circularly polarized planewaves.

3.1.3.3 Constructing the electric and magnetic fields

The abstract derivation provided above deserves some clarification regarding the con-
struction of the electric E and magnetic H fields of a beam with a well-defined helicity
(helical beam). The two fields are related to each other through the Faraday’s equa-
tion (Eq. (3.1c)), which can be rewritten using the definition of the helicity operator

(Eq. (3.13)) as an eigenvalue equation

H= - AE= " AE. (3.27)
Hoc Hoc
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Therefore, by choosing the electric field as a superposition of the Brin’r;k modes with
various orders m and aperture angles 0 around an arbitrary axis i, we automatically
define the corresponding magnetic field H as a superposition of all those beams with

the appropriate sign determined by their helicity.

3.2 Helicity preservation in an inhomogeneous medium

In this section we discuss two complementary results published recently, both of which
report the conservation of helicity of the electromagnetic field in an inhomogeneous

medium, but treat the problem with very different tools.

The first report deals with the scattering of helical electromagnetic fields on arbitrarily-
shaped, homogeneous scatterers, described solely by their permittivities and permeabili-
ties. This result allows us to formulate the conditions under which the light propagating

in a piecewise-homogeneous medium retains its helicity [119].

The second result describes the preservation of helicity in the scattering on a solution
of dipolar, resonant scatterers which behave like point electric and magnetic dipoles
with equal polarizabilities [120]. In this approach the induced dipoles can be seen as
the microscopic building blocks of a macroscopic medium with equal permittivity and

permeability.

3.2.1 Macroscopic approach

Let us consider a homogeneous medium characterized by permittivity €1 and permeabil-
ity w1, and a distribution of electric E; and magnetic H;y fields which fulfill Maxwell’s
equations (Eq. (3.1)). If this medium is unbound, then in the absence of charges and
currents, Maxwell’s equations are invariant in the entire system with respect to the
duality transformation Dy, that is, the fields transformed according to Eq. (3.12) will
fulfill the Maxwell’s equations. This description can be extended to include sources, as
we demonstrate in Appendix A when deriving the electromagnetic fields generated by a

magnetic dipole.

We can now complicate the system, by dividing it into two regions (£2; and €s9) char-
acterized by the material properties (g1, p1) and (g2, p2), respectively. The electric and

magnetic fields {E;, H;};—1 2 fulfill (i) the Maxwell conditions inside the homogeneous
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media, and (ii) the boundary conditions on the interface between ©; and Qg:
n x (E1 — Eg) =10 x (H1 — Hg) = O, (328&)

n- (€1E1 — 62E2) =1n- (,ulHl — /,LQHQ) = O, (328b)

where 1 is a unitary vector normal to the boundary between two media. If we apply the

duality transformation to both sets of fields in the two media

(EZ) — D, <fl> (3.29)

7

we arrive at the obvious question whether these fields fulfill both Maxwell’s equations

and the boundary conditions.

In their work, Fernandez-Corbaton et al. [119] prove that these conditions are fulfilled
if and only if the ratios of the permittivities and permeabilities of each material are

identical:

€1 £9

M1 _,uz'

Importantly, this result, trivially expanded to a system comprising more homogeneous

(3.30)

media, holds independently of the geometric properties of the homogeneous domains (2;.

An important implication of this conclusion is that in the piecewise-homogeneous medium
fulfilling the generalized condition formulated in Eq. (3.30), the response of the system
(or, equivalently, Maxwell’s equations and the boundary conditions describing the sys-
tem) is invariant with respect to the dual transformation Dy. Furthermore, since this
helicity is the generator of the dual transformation, the system preserves the helicity of

the field with which it interacts.

A convenient illustration of this effect is given in Fig. 3.1, where we plot the value of scalar
function introduced in Ref. [119] to locally measure the helicity of the electromagnetic
field

As = |E £ icuoH|?. (3.31)

For a helical field {E, H} which follows the helicity eigenvalue equation (Eq. (3.27)) we
get
A = |EPP1+1)% (3.32)

The system €2, shown in Fig. 3.1(c), comprises a two-dimensional homogeneous scatterer

Q; with material properties: €1 = 2.25 and 1, immersed in vacuum Qg (g2 = ug = 1).
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3.2 Helicity preservation in an inhomogeneous medium

(b)81 =1 = &2

1 M2

o - N W » o

FIGURE 3.1: Helicity of the field scattered on a pan flute-like object composed of infinite
cylinders, immersed in air (€2 = po = 1) and illuminated by a circularly polarized light.
Functions Ay are calculated in the plane denoted in green in (c), and the permeability
of the scatterer (£21) was chosen either not to fulfill (a) or to fulfill (b) the condition
for helicity preservation given in Eq. (3.30). Ilustrations inspired by Ref. [119]

The incident helical field is a monochromatic, left-hand circularly polarized planewave
(LCP) incident along the black arrow. In (a) we plot the A, and A_ functions, calculated
for g3 = 1 # €1, in the plane schematically depicted with light green color in (c¢). Neither
of those functions vanish, indicating that the system 2 does not preserve helicity of the
incident LCP. On the other hand, function A_ shown in (b), where p; = 2.25 = ¢y,
vanishes in the whole system (), demonstrating that the helicity of the scattered field is
identical to that of the incident LCP (A = —1). The calculations were performed using
the FDTD software [83], and the shape of the scatterer, although not the illumination,

was chosen to mimic the structure investigated in Ref. [119].

3.2.2 Microscopic approach

In this section we analyze the scattering of helical beams on a random medium compris-
ing identical particles with strong electric and magnetic activity. These particles can be
similar to those studied in Chapter 2, made of high-refractive index dielectric material.
In parallel to the study of macroscopic structures discussed earlier, we formulate a clear

criterion for the scattering process to conserve the helicity of the electromagnetic fields.
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3.2.2.1 Random media and polarization

Although the study of the statistical properties of complex, irregular distribution of
electromagnetic fields known as speckle patterns [121, 122] has been a topic of high
interest during the last decades, the statistics of the polarization of electromagnetic
vector waves is still not well understood. The depolarization of light in a random medium
is the basis of an increasingly broad range of applications from remote sensing [123],
enhanced backscattering phenomena [124-127], to biomedical imaging and diagnostics
[128-130]. Even for static samples, the polarization of the scattered field is far from being
isotropic [123] and the polarization of the speckle pattern may exhibit rapid changes from
one speckle grain to another [131] with a nontrivial statistical distribution of polarization
singularities [132, 133]. It is generally assumed that multiple scattering of light from
inhomogeneities in optically dense media randomizes the state of polarization of light.
A wave propagating in such a medium becomes rapidly depolarized in a characteristic
length scale that depends on the properties of both the scattering medium and the
illuminating light [134-136].

Therefore, if we could show that a solution of particles (which can be readily obtained)
exhibits an isotropic conservation of the polarization state of the incident illumination,
we could add an important contribution to the research of scattering of light in random
media. To this end we first analyze the scattering of helical light by particles in the
dipolar approximation, with identical electric and magnetic polarizabilities (so-called
dual particles). This case is then expanded to treat multiple scattering processes in

systems comprising dimers and random ensembles of such dual nanoparticles.

3.2.2.2 Degree of helical polarization

Figure 3.2 depicts the process of the scattering of helical light on a single nanoparticle.
For illustrative purposes, throughout this section we use a special form of the helical
beam Biil,ekzw /4 with the axial symmetry around the propagation direction Z defined
in Eq. (3.22). We should stress that all of the results discussed in this section are general
and hold true for any given helical incident beam, for instance for Bessel beams of order
m # 1, or circularly polarized planewaves. In fact, the only property of the incident
fields {E, H} which we will make use of is that they are the eigenfunctions of the helicity

operator (see Eq. (3.27)).
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3.2 Helicity preservation in an inhomogeneous medium

FI1GURE 3.2: Schematic of the scattering process of helical light on a dielectric nanopar-
ticle. The incident helical light is a Bessel beam of m = 1 order with aperture 6, = 7/4
and helicity A = —1, given by Eq. (3.22). The panel shows the cross section of the
intensity of the beam with characteristic Bessel function-like radial oscillations. The
scattered light contains right- and left-handed circularly polarized components mea-
sured by the differential scattering cross sections Irc and Iy ¢, respectively.

The measurements of the scattered light are always performed in the far-field regime,
and can therefore only access the components of scattered fields carried by a very narrow
distribution of wavevectors. In the limit of vanishing detector aperture, this distribu-
tion becomes singular and thus, as we have shown before, the helical beam simplifies to
a circularly-polarized planewave. Consequently, the two functions Irc and Irc which
describe the intensity of the right- and left-hand circularly polarized scattered light, re-
spectively (see Fig. 3.2), can be used to define a degree of helical polarization n € [—1,1]:

- IRC(Soa 9) — ILC(Soa 9)

10:0) = T c(0.0) T T1c(0.0)

(3.33)

Integrating 1 over the polar and azimuthal angles, we define the total degree of helical

polarization
1 /2

2
ot = /smmmmwwaLu (3.34)
0

pEsy
As an example of dipolar scatterers with strong electric and magnetic polarizabilities
we choose submicron silicon spherical nanoparticle, such as the ones analyzed in detail
in the previous chapter. We should note that some unusual scattering properties of
such particles associated with their overlapping electric and magnetic polarizabilities
(e.g. the strongly asymmetric angular distributions of scattered intensity), have been

recently reported in the literature [8, 10, 137-139].
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FIGURE 3.3: (a) Square moduli (top panel) and phases (bottom panel) of the electric
(ce, blue line) and magnetic (o, red line) polarizabilities of a 230 nm radius silicon
sphere in the near-IR. Scattering cross section (osarsk~? shown with a black line) is
dominated by the contributions from these dipolar terms. Dashed vertical lines indicate
wavelengths at which the polarizabilities are equal both in magnitude and phase. (b)
Integrated circular polarization factors 7. for the sphere positioned on the axis of a
helical beam as the introduced in Fig. 3.2 (top panel), displaced by 2 um from the beam
axis (middle panel) and 4 pm (bottom panel) from the axis, as shown in the insets with
a blue dot denoting the particle.
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3.2 Helicity preservation in an inhomogeneous medium

In Fig. 3.3(a) we plot the electric a and magnetic a,, polarizabilities of a 230 nm radius
silicon (n = 3.5) sphere in air. The two polarizabilities are identical for wavelengths of
A = 1844 nm and 1160 nm, which we have marked with vertical dashed blue lines. Note
that for the latter case, the scattering spectrum is dominated by higher-order modes,
and we cannot consider the spheres as dipolar scatterers. Furthermore, the spectra
of |ae|? and |ay,|? cross also at A = 1520 nm, but for this wavelength the phases of
the polarizabilities are different (i.e. Re{a.} = —Re{a;,}, which corresponds to the
almost-zero-forward condition [10, 137, 138]). The polarizabilities and the scattering

cross section plotted in Fig. 3.3(a) have been calculated with Mie theory.

It should be noted that these scatterers are not dual in terms of the ratio of their permit-
tivity and permeability being equal to that of the surrounding medium (the macroscopic
case we discussed in Section 3.2.1). Instead, as we prove below, the duality arises when

the electric and magnetic polarizabilities are identical [140].

3.2.2.3 Scattering on a single nanoparticle

In the spectral range where the scattered fields can be described by dipolar electric and
magnetic responses, the previously introduced polarization-resolved intensities of the

scattered light are given by the following analytical form [78]
I.(h) o |€" - p+ (A x €) -m/c|?, (3.35)

with subindex e and vectors € corresponding to the left- (LC, € = e¢_) and right-hand
(RC, € = e4) circular polarization of the scattered light (see the definition of e1 in
Eq. (3.18) and the discussion of circular polarizability in Section 3.1.3.2), and p and m
denoting the electric and magnetic dipolar momenta induced in the particle, respectively.
Unit vector i describes the direction of scattering, and was previously determined by
the polar and azimuthal angles 6 and ¢. This expression can be obtained by considering
the far-field components of the electric field originating from p and m. These electric

and magnetic dipolar momenta are induced by the incident fields {E, H}:
p =cpa.E, m=q,,H. (3.36)
For the dual nanoparticle (e = oy, = ), using the relationship Eq. (3.27), we obtain:
Ic(n)  |egafBE* - [e +iA 1 x €]]?. (3.37)
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For any scattering direction fi, it can be shown from the definition Eq. (3.18) that
N xe_ = —ie_ and 1 X €1 = je;. Thus, the squared expression in the scattering cross

section (Eq. (3.37)) is proportional to

(rec) < (5) (52

indicating that for A = 1(—1) incident beams the RC (LC) polarization of the scattered

2
: (3.38)

light vanishes. Therefore, for the dual nanoparticle and the incident helical field, n(f)
for every direction should be equal to 1, giving 7ot = 1(—1) for the incident A = —1(1)
light.

We illustrate this scattering invariance in Fig. 3.3(b). In the panels we present the spec-
tra of the total degree of helical polarization 7., calculated for the scatterer positioned
on the axis of the beam (top panel), shifted away from it by d = 2 pum (middle panel)
or by d =4 pm (bottom panel), as shown schematically in the insets by the position of
the blue dot. For the two wavelengths at which the two polarizabilities match (A = 1160
nm and 1844 nm), 7 reaches its maximum value 1, indicating an isotropic circular

polarization of the scattered light.

Interestingly, the scattering of a dual nanoparticle preserves the helicity everywhere,
and is not only limited to the far-field, as we have shown above. Since the scattered
near-field, composed primarily of evanescent waves, is essential for the understanding of
systems comprised of many scatterers, below we will investigate in detail the helicity of

all the components of the field scattered on a dual particle.

Let us consider the relationship between the electric p and magnetic m dipoles induced
in a dual nanoparticle by a helical light. Inserting Eq. (3.27) into definitions given in
Eq. (3.36), we arrive at

m = —icAp. (3.39)

The scattered electric field from such a pair of dipoles can be expressed through the

Green’s functions as

2 2

k< N o o
Escatt = gGEp +i1ZE°Gym = (GE +A GM)p (340)

0
To calculate the action of the helicity operator on Egcatt, we use the following property

of the Green’s function:

i nd <> A d <>
AGE=Gum, AGu = GeE, (3.41)

84



3.2 Helicity preservation in an inhomogeneous medium

which can be derived by taking the definition of the helicity operator for monochromatic
fields (Eq. (3.13)). We then have

2

k* < <
AEscatt - (GM + AGE)p (342)

£
Since the eigenvalues of the helicity operator follow A? = 1, we can further rewrite the

above equation as
2

k > PR
AEscatt — A:(AGM + GE)P = AEscatt- (343)
0

Therefore, the scattered field inherits the helicity of the incident field.

3.2.2.4 Scattering on a dimer of particles

Since the helicity of the electromagnetic field is conserved in the process of scattering on
a single dual scatterer, it should also be conserved in the subsequent scattering events
on other dual scatterers. To illustrate this helicity invariance, we consider the scattering
of the helical beam on a dimer of silicon spheres, recalling the system analyzed in the
previous chapter and in Ref. [7]. We arbitrarily place on of the particles is positioned
at the origin of the coordinate system, while the other is centered at (z,y,z) = (1 pm,
0 pm, 0.5 pm) (see schematics in Fig. 3.4). As previously, we address the problem by
using the coupled electric and magnetic dipole method, that is, by solving a set of self-
consistent equations for the set of four dipoles {p;, m;};—; 2 illuminated by the Bessel
beam. The central panels in Fig. 3.4 show the distribution of two scalar fields defined
as

A = |Bgeare * icpoHscare (3.44)

calculated in the transverse plane defined by z = 3 um. This function differs slightly
from the previously introduced A4, which we have defined to study the field in Fig. 3.1,
and which included both incident and scattered field (Eq. (3.31)), but carries identical
information. Two wavelengths of the incident light are considered: (a) A = 1844 nm,
for which the scatterers are dual, and (b) A = 1679 nm, at which the scatterers have
a dominating magnetic dipolar response. For a helical beam with A = —1 interacting
with a dual dimer, the scattered intensity into modes with A will be zero as shown
in Fig. 3.4(a). In contrast, for the non-dual scatterers (Fig. 3.4(b)), neither one of
the two fields Ay vanishes, indicating the mixing of the two helicities in the scattering
process. For both wavelengths, we also investigate the far-field properties of the scattered

light, plotting its differential scattering cross section I(¢p, 6) in the top plots of the right
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FIGURE 3.4: Light scattering by a dimer of spheres. The incident helical (A = —1)
light of (a) 1844 nm or (b) 1679 nm wavelength is scattered on a dimer of two (a)
dual and (b) non-dual silicon spheres. One of the spheres is positioned at the origin
of the coordinates system and the other is shifted from it 0.5 pm along the axis 2
and 1 pm in the transverse direction Z. In the near field (calculated at z = 3 pm) the
helicities of the scattered light can be measured by calculating distributions Ay (central
panels). Vanishing distribution of Ay in (a) indicates that the scattered light retains
the negative helicity of the incident light, while the non-vanishing distributions in (b)
indicate mixing of the A = —1 and A = 1 components of light. Right panels represent
the differential scattering cross sections of the scattered light I(p, ) (upper plots) and
of the polarization degree n(p,6) (lower panel). For the dual spheres (a) n(p,0) = 1
is a constant function, indicating that the scattered light is fully circularly polarized

(Mot = 1).

86



3.2 Helicity preservation in an inhomogeneous medium

panels of Fig. 3.4. For neither of the wavelengths the intensity distribution exhibit a
clear scattering pattern, although in the case of dual spheres (Fig. 3.4(a)) we observe a
predominant scattering in the forward direction. This effect is related to the complete

suppression of the backward scattering we expect from a single dual scatterer [119].

On the other hand, the maps of the degree of helical polarization n(p,6) shown in the
bottom plots of right panels in Fig. 3.4 corroborate our analytical modeling, demon-
strating that the scattered light is fully circularly polarized for the dual sphere (Fig.
3.4(a)). In the case of non-dual scatterers (Fig. 3.4(b)), no such property is observed.

3.2.2.5 Scattering in a random medium

We can also extend our considerations to the random medium, modeled as a distribution
of dual scatterers, where each one preserves the helicity in every single scattering event.
By using again the coupled electric and magnetic dipole method [103-105], we illustrate
this conservation principle in Fig. 3.5, where we investigate the scattering of incident
helical light on a distribution of 80 nanoparticles positioned randomly in a cubic volume
of 60 um edge length. Similarly as in Fig. 3.4, we consider two wavelengths of incident
light: (a) 1844 nm, at which the scatterers are dual, and (b) 1679 nm where they are not.
In the former case, the circular polarization degree 7 is constant and equal to 1 for any
scattering direction (right bottom panel in (a)), indicating the conservation of helicity in
the multiscattering process. For the non-dual scatterers, the polarization degree shown
in the bottom right panel in (b) does not exhibit preservation of helicity, and function
n(¢, 0) reveals a speckle pattern similar to that found in the intensity distribution I(p, )
(top right panels).

It is worth noting that the intensity distribution for dual particles (top right panel
in Fig. 3.5(a)) presents a clear asymmetry between forward and backward scattering.
Due to the conservation of angular momentum and helicity, a complete suppression of
backscattering (at § = 0) is expected [119] for dual and axially symmetric samples. The
partial (statistically averaged) axial symmetry of the particle distribution explains the
observed results. Such an asymmetry is not observed for the non-dual medium (top
right panel in Fig. 3.5(b)).
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FIGURE 3.5: Light scattering by a random medium. The incident helical (A = —1)
light of (a) 1844 nm or (b) 1679 nm wavelength scatters on an ensemble of 80 randomly
distributed (a) dual and (b) non-dual silicon spheres. The scatterers were randomly
distributed in a cubic box with edges of 60 pm length, centered on the axis of the
beam as shown to the left of the figure. Panels on the right represent the differential
scattering cross-section I(ip,8) (upper plots) and of the polarization degree n(ip,0) for
each case.

3.2.2.6 Kerker conditions

As a side note, we would like to point out that studies of the relationship between the Mie
coefficients, or material properties of the scatterers and the emergence of asymmetric
scattering can be traced back to the seminal paper by M. Kerker et al. [141], to whom

we owe two critical observations:
1. The first Kerker condition states that the backscattering from a spherical particle

can be completely suppressed if the permittivity and permeability of the particle’s

material are equal (e = p).
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3.2 Helicity preservation in an inhomogeneous medium

2. The second Kerker condition states that the forward scattering from a small (dipo-
lar) spherical particle can be completely suppressed if the dipolar Mie coefficients

describing the particle are opposite (a; = —by).

Recently these conditions have been related to the discussion of the helicity and gen-
eralized to describe the scattering of helical light on objects with cylindrical symmetry
[142, 143].

3.2.2.7 Inhomogeneous solution

Finally, we briefly discuss the effect of a non-homogeneous distribution of scatterers in
a random medium on the conservation of helicity. We calculate the effect that a fixed
dispersion of sizes centered around the dual condition has on the duality of the random

medium.

Let us first consider a single scattering event. For convenience, we will define the Kerker

wavelength, Ak, through the duality condition

ae(AK) = am(Ak). (3.45)

This magnitude exhibits a parametric dependence on the radius of a silicon nanoparticle
a, as illustrated in Fig. 3.6(a). We thus observe that by changing the radius of the
nanoparticle by around 13% (0.23 pm + 0.03 pm), we shift the Kerker wavelength from
1.844 pm by around 0.2 um. Note that the exact magnitude of this detuning depends

on the actual material of the scatterer through the refractive index.

Another measure of how rapidly the detuning from the Kerker wavelength Ai renders a
non-dual medium is the deviation from the duality condition, quantified as the relative
difference between electric and magnetic polarizabilities

= |mAK) = ac(hr) | (3.46)

am(AK) + ae(Ak)

shown in Fig. 3.6(b) as a function of the radius of the scatterer at A\ = 1.844 pm.

To place the above results in the proper context of experimentally feasible systems, in
Fig. 3.6(c) we plot Gaussian functions which represent normal distributions of nanopar-
ticle radii around ag = 0.23 pym. The standard deviation of these distributions is fixed

as 1% (blue area), 2% (red area) and 5% (green area) of the mean radius ag.
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FI1GURE 3.6: Effect of size distribution of scatterers on the duality of a random medium.
(a) Kerker wavelength defined by equal electric and magnetic dipolar polarizabilities,
as a function of the radius of the Si nanoparticle. (b) Deviation from the duality of
a single scatterer defined through the parameter k, as in Eq. (3.46), calculated at the
incident light wavelength of 1.844 pm, which corresponds to the Kerker wavelength
of a ap = 0.23 pm radius Si sphere. (c¢) Normal distributions used in the simulations,
centered at ag with standard deviations of 1% (blue area), 2% (red area) and 5% (green
area) of ag. In all the plots horizontal and vertical thin dashed lines correspond to the
Kerker conditions analyzed in the manuscript.

How does this deviation from the duality of scatterers deteriorate the helicity conserva-
tion in the scattering by a realistic random medium? To analyze this effect we performed
a series of simulations of such scattering on random distributions of scatterers, assuming
that the radii of scatterers are normally distributed around 0.23 pm, with the distribu-
tion as shown in Fig. 3.6(c). The spectra of the integrated polarization degree 7 for
each simulation are given in Fig. 3.7. Note that, as previously, the calculations are done
in the dipolar approximation, and thus they do not account for higher order modes,
which dominate the optical response below A = 1.2 um, and quench the effect of helicity
conservation in this region. Nevertheless, the simulations reveal that for an increasing

deviation of sizes, the integrated polarization degrees drop to 0.95, 0.85 and 0.60, for
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FIGURE 3.7: Spectra of integrated polarization degrees 7, calculated for random
solutions nanoparticles with radii given by normal distributions centered at 0.23 pm,
with standard deviations of (a) 0, (b) 0.0lag, (c) 0.02ap and (d) 0.05a9. For each
distribution of sizes, we performed simulations of light scattering in 5 random media
comprising 80 nanoparticles. In the calculations the nanoparticles are considered as
point scatterers with dipolar polarizabilities, accurately describing their optical response
for wavelengths above A = 1.2 um. The shaded regions correspond to the spectral range
(A < 1.2 pm) where higher order modes dominate the optical response of medium,
effectively quenching the helicity conservation.

the dispersions of 1%, 2% and 5%, respectively, around A\ = 1.844 pm.

The largest assumed standard deviation of radii (5%) is close to the inhomogeneities
found in realistic solutions of dielectric nanoparticles generated nowadays [144]. While
weakening of helicity conservation appears to be considerable for these widths, we stress
that the polarization degree of 0.6 signifies that only about 20% of the scattered light

exhibits polarization opposite to that of the incident illumination.

For each of the distributions shown above, we plot in Fig. 3.8 the polarization degree 7
(upper panel) and intensity patterns I of the helical light scattered on representative ran-
dom samples. The wavelength of incident light is 1.844 pum. The increasing distribution
of widths triggers an increasingly inhomogeneous and asymmetric polarization degree
and intensity patterns, with higher intensity and more significant helicity conservation

in the forward scattering (6 = 0).
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(a) bid 1

FIGURE 3.8: Patterns of polarization degree n (upper panels) and scattering intensity
I (lower panels) for representative random samples of 80 scatterers with the standard
deviations of radii ((a) 0, (b) 0.01lag, (b) 0.02a0, (d) 0.057¢) as discussed in Fig. 3.7.

3.3 Summary

In conclusion, we have investigated the problem of scattering of helical light in a piecewise-
homogeneous medium and in a solution of dipolar scatterers, and formulated simple con-
ditions for the preservation of the helicity in such systems. Specifically, in the latter case,
we showed that if both electric and magnetic dipolar polarizabilities of scatterers are
equal, then the electromagnetic field in the system is symmetric with respect to the du-
ality transformations. We further discussed in details an implication of this phenomenon
- an anomalous conservation of the circular polarization of light in the scattering on a
single nanoparticle, a dimer and in a random solution of dielectric nanoparticles. Our

results open a pathway to exploit novel properties in random scattering media, including
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intriguing applications in random lasing [145, 146], as well as provide new possibilities

to characterize magnetic optical properties of nanoscatterers [147].
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Chapter 4

Quantum plasmonics

“ “You were about to run into a tree, and I stopped you.’ ‘No I wasn’t.” She
looks off after the squirrel, now safely up a bigger tree on the other side of the

yard, ‘Because of quantum.’ ”

— Chad Orzel, How to Teach Quantum Physics to Your Dog

Previous chapters of this thesis were devoted entirely to the description of physical phe-
nomena which, at the surface, appear to be purely classical effects. By classical we
should understand that they have been successfully described and understood within
models based on the description of electromagnetism offered by the Maxwell’s equa-
tions and the macroscopic formulation of dielectric functions, rather than the Quantum
Physics. To arrive at such models, we have had to sacrifice the more fundamental,
quantum-mechanical description of the contribution from the d electrons to the dielectric
properties of gold, the band structure of silicon, or the coherent dynamics of molecules
serving as dipolar emitters. We have made sure to only apply those approximations
when their fragile quantum-mechanical nature did not play a role in the investigated
phenomena. In this way, we have been carefully following the path that plasmonic and
nanophotonics have been trudging on until approximately a decade ago. Around that

date, which we have arbitrarily identified with the publication of the seminal contribution
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by Akimov et al. [148], the methods for manufacturing elements of nanosystems capa-
ble of generating, transferring and emitting single photons, have reached the qualities
which would allow us to foresee the feasibility and realizations of quantum-mechanical

nanosystems.

In this chapter we describe a contribution to this effort, a quantum-mechanical descrip-
tion of Raman scattering from a molecule placed in a plasmonic cavity. The phenomenon
itself has been demonstrated and studied in great detail, as illustrated in a long list of
reports [5, 40, 42, 149, 150] and alternative models [151-154] that would follow every
major experimental contribution. Interestingly, most of the theoretical formalisms suffer
from a clear dichotomy, as they describe the plasmonic systems through the classical
electromagnetism, and apply the quantum-mechanical framework to handle the dynam-
ics of the molecule. This way, one effectively simplifies the role of the cavity to a mere
concentrator of the incident light. Our model lifts this limitation, and allows us to study
the coherent interaction between quantized plasmons populating the plasmonic cavity

and the quantized vibrations of the molecule.

Before we introduce the model and present its predictions, we provide a brief introduction
into the formalism used to describe the interactions of the molecule and the plasmon

with the environment - the theory of open quantum systems.

4.1 Brief introduction to open quantum systems

4.1.1 Von Neumann equation

The elementary approach to addressing the coherent dynamics of a closed quantum
system, defined as a quantum-mechanical system which does not interact in any way with

elements external to the system, or environment, is through the Schrédinger equation
L d A
ih— 19(t)) = H (1)), (4.1)

where H is the Hamiltonian of the system and |¢(t)) describes its quantum state, which

corresponds to a vector in the Hilbert space H.

For a so-called pure quantum state of a system, which can be described by a single state

vector |¢), we can construct a projection operator

ps = 9) (¢l (4.2)
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to which we will be referring to as the density matriz of the pure state |¢). We can also

consider a state defined as a statistical mixture of pure states:
p=> pildi) (¢il, (4.3)
i

where p; (0 < p; < 1, > ,p;i = 1) is the probability of finding the system in the
pure quantum state |¢;). Such statistical ensembles can be viewed as mixtures of the
elements from the Hilbert space. The von Neumann equation governing the evolution
of the density matrix can be derived from Eq. (4.1) as

d T, A

—p(t) = —=[H, 4.4

Solt) = — 5, ), (4.4)
and the information about any subsystem A can be extracted from the reduced density

matriz p4 defined as

pa=Trg/ap, (4.5)

where Trg/4 denotes the partial trace over the elements of the system .S not included in
A (S/A).

4.1.2 Open quantum system

One might wonder why we would sacrifice the exact description of the system provided
by Eq. (4.1) and complicate the formalism by introducing density matrices. The answer

is twofold:

e Often we do not have sufficient knowledge about the initial state of the whole
system to formulate its description in terms of a vector state, but instead we know

that the system is in a particular vector state |¢;) with given probability p;.

e We are only interested in the observables related to some part of the system, and

the remaining elements are not relevant.

An elementary example of a setup which can be effectively described through the density
matrix formalism, is a two-level system (TLS) coupled to a thermal photon bath. While
we are interested in the exact dynamics of populations and coherences of the TLS, we

are not, concerned with the exact state and dynamics of the continuous, large bath.

Let us be a bit more general and consider an abstract quantum system S coupled to

a bath of modes, which we will denote as a reservoir R. The dynamics of these two
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elements is given by the Hamiltonian of the system Hg, reservoir Hi and a term which

describes their interaction H. SR:
ﬁzﬁs+ﬁ3+ﬁ53. (4.6)

Since the system and reservoir together form a closed quantum system, its dynamics
will be given by the von Neumann equation for the evolution of the density operator
p (Eq. (4.4)). In the interaction picture, the density matrix of the system and its

Hamiltonian are defined as
o1 (t) _ ei(I:I5+I:IR)tp(t)efi(fIS+fIR)t, (4.73)

and

~ L

Hgp(t) = ei(HsJrHR,)tHSRe*i(lﬁlerl‘AIR)t7 (4.7b)
respectively, and we can rewrite the von Neumann equation (Eq. (vonNeumann)) as

©or(t) =~ () pr (1)) (1)

A formal solution of Eq. (4.8) is given as

i) = pr(0) = 5 [ (). (7 (19

Inserting this solution back into the right-hand side of Eq. (4.8) and taking the partial

trace over the reservoir Trr on both sides, we arrive at

Gpsi(®) = =3 ol (®).pr(0) = 35 [ Tenlfnlt) [Hsn(r).pr(r)r,  (410)

where pg1 = Trr(pr) is the reduced density matrix of the system in the interaction
picture. We will now make a number of approximations that will lead to a simpler form

of the above equation:
1. The system and the reservoir are not correlated at ¢ = 0, and thus p(0) = pgs(0) ®
pr(0), where ® denotes the tensor product.

2. Within the Born approximation, the once-uncorrelated setup of the system and
reservoir (at t = 0) does not build up correlations over time, meaning that its

complete density matrix can be still factorized p(t) = pg(t) ® pr(t) = ps(t) @ pr.
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4.1 Brief introduction to open quantum systems

This approximation holds if the interaction between the system and the reservoir

is weak and the influence of the former on the latter is small.

3. We apply the Markov approzimation by replacing the integrand p;(7) by pr(t),
and thus stating that the evolution of the system depends solely on its current
state and not on its history. This approximation relies on the short memory of the
reservoir, which will dissipate any information about the system in a time much

shorter than the characteristic time scale of the evolution of the system.

4. To remove the term Trp[Hgp(t), pr(0)], we redefine the Hamiltonian of the system
by including the term Trgr[Hsg(t), pr(0)] into the system’s Hamiltonian Hg and

removing it from the interaction Hamiltonian H SR-

Having applied these approximations, we arrive at the Redfield equation

Grs(®) = =75 [ Tenlfion(). () u (0] (.11)

Note that this is not yet a Markovian equation, as it exhibits an explicit dependence on
the arbitrary initial time parameter ¢ = 0 through the lower limit of the integral. We
can correct that problem by introducing a new parameter s, substituting 7 in Eq. (4.11)
by t — s and, recalling our argument about the short reservoir memory, extending the

integration limit to oo.

Finally, going back to the Schrédinger picture, we obtain a general form of the master
equation for the density matrix of the system pg

& ps(t) = —[Hs(0) ps(1)] ~ 7 /0 " Teg{Hsn(t), sn(t — ). ps() @ pllds. (412

The approximations listed above deserve a more careful analysis, and such has been
given to them in the extensive literature on the subject (see Refs. [155, 156] for the
discussion and Refs. [157-160] for examples and applications). Of particular interest is
the Markov approximation, which holds if the memory time of the reservoir is much
shorter than the time-scales of the evolution of the system. The deviation from this
condition could lead to some very interesting dynamics [157-160]. However, usually the
division of the setup of interest into the system and reservoir is done in such a way that
these conditions are fulfilled. We briefly discuss this problem, and provide canonical

examples, in the following subsection.
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Chapter 4. Quantum plasmonics

However, before we do that, let us rewrite Eq. (4.12) in its final, elegant form

< ps(t) = —[As(0), ps(0)] + Llps]. (113
The first term on the right-hand side describes the coherent evolution of the system,
while the second one, L[pg], called the Lindblad-Kossakowski super-operator describes
the influence of the time-independent reservoir on the dynamics of the system. Its exact
form will depend on the interaction we describe in ﬁSR, so that it can represent the
decay of the excitation from the system into the reservoir, the incoherent excitation of
the system by a thermal bath, or the dephasing of the system. Either way, we will be
referring to the system S, its coherent dynamics and the interaction with the reservoir

as the open quantum system.

4.1.3 Designing the open quantum system - case study

Let us consider a physical setup in which an atom, modeled as a 2-, 3- or 4-level system,
is placed in an unstructured (non-resonant) large environment (the energy transferred
from the atom to the environment does not significantly affect the reservoir’s state)
modeled as a continuous bath of free-space photons. In this case, the choice of the
system and reservoir is rather natural, therefore we will consider the atom as the sole

element of the open quantum system, and the bath as the reservoir (see Fig. 4.1).

In the simplest case of a 2-level atom with the resonant frequency of the atomic transition

wat, the relevant Hamiltonian of the system is defined as
ﬁS = Hatom = hwaté'za (414&)
where &, is the Pauli matrix. The reservoir is modeled as a collection of free-space

photons with momenta k, the corresponding frequencies wy and governed by the bosonic
T

creation a, and annihilation ay operators.
Hp=h / wied} . (4.14b)
Kk

Furthermore, the system-environment interaction is described through a familiar Jaynes-

Cummings Hamiltonian

ﬁSR = h/ gkaxoy + h.c., (4.140)
k
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4.1 Brief introduction to open quantum systems

where h.c. denotes the hermitian conjugate of the respective terms, gy’s are the coupling
coefficients and the spin raising and lowering operators are defined by the Pauli matrices

Gi =6, +i6,.

system reservoir

| atom \ Hsp | \
5 ; | = |
: Hs = Hytom ﬁ PR = Pbath :
: PS = Patom | o Ps : %W |
' (T & | ! N
I 4 | |
I (L) . (4Lls) | | AN |
I e " I free-space :
' GLs) s \__photonbath

FIGURE 4.1: Division of the elements of the setup into the system and reservoir. The
former contains the atom described by the density matrix patom, while the latter is a
free-space photon bath.

We can now plug this explicit form of the interaction Hamiltonian into Eq. (4.12). If
we assume that the photon bath is in a thermal equilibrium state at temperature 7', we

can use the following properties of the averages of the bath operators

(axaq) = (aLal) =0, (4.15a)
(afaq) = N (wi)dk g, (4.15D)
(ncal) = (N(wi) + 1)diq; (4.15¢)

where N(w) = (e"/k8T —1)~1 defined through the Boltzmann constant kg, is the Bose-
Einstein distribution that governs the thermal population of the photon bath modes.
After some algebra we arrive at the following form of the master equation:
d (AP . . Y g
giPs(t) = =2 [Hs(8), ps ()] + iBar[ps, 6] + S [N (war) + 1 Ls_[ps] + 5 N(wat) Lo [ps],
(4.16)
where the Lindlblad-Kossakowski operator [161, 162] £ 4[ps] for an arbitrary operator
O is defined as
Lslpl = 20p0" — OTOp — pO1O. (4.17)

The terms on the right-hand side of Eq. (4.16) describe, in the order of appearance:

e The coherent evolution of the atom.
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e The Lamb shift arising due to the interaction with the modes of the bath, renor-

malizing the energy of the atom by

Ay = P/ v P/ wat(_i}“), (4.18)

where J(w) is the spectral density of the bath defined as J(w) = >, |gk|?6(w — wy)

and P denotes the principal value.

e The decay of the atom from the excited state to the ground state at a rate
Y[V (wat) + 1], where 7 = 27J(wat). The two terms in the sum N(wat) + 1 de-
scribe the stimulated emission dependent on the thermal population of the bath

and the spontaneous emission, respectively.

e The excitation of the atom by the energy from the bath. Note that this term,
similarly to stimulated emission, will vanish if the thermal population of the bath,

N (wat), is equal to 0.

Having presented the description of this elementary model in the formalism of open
quantum systems, we can complicate it slightly by including a cavity into the system,
thus bringing it closer to the actual setup that we will consider in this chapter. A

schematic of such expanded system and reservoir is shown in Fig. 4.2. Independently

system - reservoir
e eeeccceeaa- ~, Hsr  _—----- -
/ atom + cavit / Hr = H \
y \ L, [ps]i HR = Hbam

ﬁS = ﬁatom + ﬁcavity +f{int < PR = Phbath

|

|

PS = Patom+-cavity | £&+ [PS] : “%W :
|

[ : :

- |

|

|

T §i Lelps] | A\ AW
(2-LS) (4-Ls) < 7
A cavity | Letlps]1 free-space
\ (318) y ‘\ photon bath

- e e e e e e e e e e - e - - - - -—— - —— -

FIGURE 4.2: Division of the elements of the setup into the system and reservoir. The
former contains the atom and the cavity, described together by the density matrix
Patom-cavity; While the latter contains all the free-space photon bath modes.

of the form of the cavity-atom interaction that is chosen, this framework will yield
the coherent dynamics of the system, encapsulated by the [lﬁI s, ps| term in the master
equation (Eq. (4.16)). We can thus focus on the interaction of the cavity (described

by the creation ¢ and annihilation é operators) with the reservoir, which defines the
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4.2 Raman scattering from molecules in plasmonic cavities

Lindblad-Kossakowski operators (denoted by L:[ps]|, Ls[ps], Ls_[ps] and Ls, [ps] in
the schematic in Fig. 4.2) added to account for the interaction of the cavity and the
atom with the reservoir. If we choose to describe the state of the cavity, resonant at

frequency w. with bosonic operators, the Hamiltonian of the cavity should be given as
I;[cavity = théTé, (419)
and its coupling to the reservoir should be described by a proper term in the Hamiltonian

ﬁSR,cavity = h/ gﬁ&kéT + h.c., (4.20)
k

with the coupling coefficients gi.. Therefore, we will finally arrive at the master equation

%ps(t) - _%[ﬁg(t),ps(t)]

+ilat|ps, 0. + 1A [ps, &T&]
+%MW%Q+U£LMQ+%Nw%M@mg
+5 (N (we) + 1) Lalps] + SN (we) Larlps]. (4.21)

The new quantities related to the cavity-reservoir interaction: A, (Lamb shift arising

from the interaction of the cavity with the bath)

A_P/ P/ S (Nw) + 1), (4.22)

where J.(w) = [, |gg|?, as well as k = 27Jc(w.), and k (decay of the cavity), are defined

in a smular way as At and 7, respectively.

4.2 Raman scattering from molecules in plasmonic cavities

In this section, we apply the framework of open quantum systems to describe the co-
herent interaction between plasmons and molecular vibrations in typical configurations
of Surface Enhanced Raman Scattering (SERS). SERS is a spectroscopic technique in
which the inelastic scattering from a molecule is increased by placing it in a hotspot of
a plasmonic cavity, where the electric fields associated with the incident and the scat-

tered photons are strongly enhanced (see the schematic in Fig. 4.3) [17]. The difference
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Chapter 4. Quantum plasmonics

between the energy of those two photons provides a fingerprint of the molecule, i.e., de-
tailed chemical information about its vibrational structure. Over the last decades, con-
siderable advances in designing efficient SERS configurations [163] have resulted in the
observation of Raman scattering from single molecules [149], and recently, even reaching
sub-nanometer resolution image of the vibrational modes of a molecule [42]. These re-
sults suggest that some experimental realizations of SERS have reached a regime where
the quantum-mechanical nature of both the molecular vibrations and the plasmonic
cavity emerges [41], calling for an adequate theoretical description that goes beyond the

classical treatment of the electric fields inside plasmonic cavities [17, 22, 164].

Energy

>

Atomic coordinate X

FIGURE 4.3: Schematic of the two-photon non-resonant Stokes scattering between two
vibrational states of a molecule (n = 0 — 1) mediated by a virtual state |v) (dotted
line). A harmonic potential (solid line) approximates the energy landscape of the ground
electronic level (dashed line).

4.2.1 Quantization of excitations

The model presented in this section addresses the underlying quantum-mechanical na-
ture of Raman scattering processes by describing both the vibrations of the molecule
and the electromagnetic field of a plasmonic cavity through quantized bosonic modes. In

the following subsection we discuss this framework in details.

4.2.1.1 Quantized vibrations of a molecule

Let us consider a simplified one-dimensional model of the energy landscape of the ground

electronic state of a molecule as a functions of the generalized atomic coordinate (e.g.,
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4.2 Raman scattering from molecules in plasmonic cavities

the length of a molecular C=0 bond [41, 164]). Such potential, described with a dashed
line in Fig. 4.3, can be approximated as a displaced harmonic potential depicted with a
solid line. Therefore, the vibrations characterized by the vibrational frequency wy, [165],
can be quantized following the usual prescription for the quantization of a harmonic
oscillator [166]. We thus introduce the creation and annihilation operators b and bt
which describe the creation and annihilation of a quantum of vibrations, which we will
be referring to as phonons. We next define a linear polarizability of the molecule along
this coordinate &, as [17]

&, = R,Q(b+ b, (4.23)

where R, is the element of the Raman tensor and QY = \/h/(2wy,) is the zero-point
amplitude of the vibrations. For the sake of simplicity, we neglect the component of
the linear optical polarizability of the molecule independent of @), which describes the
elastic scattering. Furthermore, we should note that by using the free-space Raman
tensor R,,, which describes interaction of a molecule with an incident planewave in free
space, we will focus our attention on the electromagnetic enhancement mechanism, and
neglect any contribution from the chemical enhancement. Finally, we stress that this
approach is limited to the off-resonant Raman scattering, for which the virtual state
mediating the Raman transition (dotted line in Fig. 4.3) is strongly detuned from any

excited electronic state.

A detailed description of the quantization protocol of vibrations of a molecule can be
found in Ref. [17].

4.2.1.2 Quantization of a plasmonic cavity

Due to the lossy and dispersive character of the metal forming the plasmonic cavity,
the canonical prescription for the quantization of the electromagnetic fields cannot be
applied to the quantization of plasmons [167]. An alternative path is described in the
contributions listed as Refs. [168-170], where the formalism of macroscopic QED was
presented. Within this framework, the fields inside the metal are quantized as local
operators f) (w,r), dependent on the position r and frequency w, describing modes with

polarization A = 1,2, obeying the canonical commutation relations

[ (wn, ), B (w1,0)] = 0(wr = w2)aer = r2)dx, 0o (4.24)
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and yielding the following Hamiltonian of the cavity:
Hopoer. QED = Z/d3r/ dwhwf';t(w,r) . f'/\(w,r) (4.25)
X 0

This description is derived by diagonalizing the Hamiltonian of the more elementary
system comprising radiation modes coupled to a reservoir of localized harmonic oscilla-
tors which represent the Ohmic losses of the material. For a detailed summary of this

formalism and its numerous implications, we direct the reader to Ref. [170].

The electric field inside the cavity, with which our molecule will be interacting, can be

e
then expressed through the classical electric Green’s function Gg(r,r’,w)

N how? 5
BE(w, ') =i/ 7%2 / Bry/Imfem (@) Ge(r, v, w)b (W, ), (4.26)
TTEQ C
A
where &,,(w) is the dielectric function of the metal and the integration is carried out

over the volume of the metal.

Pseudomodes of the cavity

While the quantization procedure sketched above might be exact, in practice it proves
very difficult to apply in realistic setups, and provides little information about the phys-
ical phenomena governing the dynamics of the system. We therefore choose to consider
the more familiar problem of the spontaneous decay of a two-level system (TLS) in a
structured environment. The TLS is characterized by the transition frequency wg and
the transition dipole d, and is placed in the medium described by a g, at position r’. Tt
can be easily shown [167, 171, 172] that the amplitude c.(¢) of the excited state of the
molecule is given by an oscillating function c.(t) = &.(t)e™°f, where &.(t) is governed by

the integro-differential equation

Colt) = — /0 drK (t — 1) (7). (4.27)

Memory kernel K is defined as
K(t) = / o] (1) i)t (4.28)
0

J(w) is the spectral density, which we have defined earlier as the sum of the squared

coupling coefficients between the elements of the open quantum system and the bath.
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4.2 Raman scattering from molecules in plasmonic cavities

In the formalism of Green’s functions, the spectral density is defined as

2

J(w) = d-Im [EE(r', r/,w)} ., (4.29)

meghc?

Note that, following this approach, we effectively remove the cavity from the system,
and formulate the dynamics of the TLS solely in terms of the spectral density J, or
the memory kernel K of the environment. This formalism can be adopted to describe
numerous interesting effects, such as the non-Markovian dynamics of the excitons in

structured environments [157, 160]. In Fig. 4.4 we plot an exemplary normalized spectral

2 25 3 35 4 45
Energy hw [eV]

FIGURE 4.4: Spectral density J(w) normalized by the decay rate of free-space decay
rate of a dipolar quantum emitter, calculated for an emitter (red arrow in the inset)
placed 50 nm from the center of a 30 nm radius silver nanoparticle. The dashed red area
corresponds to the contribution from the dipolar mode of the sphere, which we identify
with the cavity mode resonant at iw., with decay rate fix defined by the FWHM of the
profile.

density J(w)/vo calculated for a dipolar emitter characterized by a free-space decay rate
~0, positioned over a silver nanoparticle (described by the Drude model with e, = 4.6,
hw, =9 eV and hy, = 0.1 meV) as shown schematically in the inset. The spectral
density was calculated by noting that, in the so-called weak-coupling limit (when the
decay of the emitter is an irreversible process [166, 167, 172, 173]), J(w)/7o is related

to the enhancement factors which we have discussed in Chapter 2 (FtLOf /70):

Jw) 1 Tuf
Y%  2m Ty’

(4.30)
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We make use of the additive nature of the contribution to J(w) from the Mie modes
and separate the contribution from the radiative, dipolar mode and mark it with a red-
shaded area. We now take an informal step and identify this quasi-lorentzian profile
with the dominant cavity mode, characterized by the resonant frequency w. and the
decay rate k given by the peak frequency and the FWHM of the plasmonic profile,
respectively. Similar approach has been implemented in other studies, where authors
have been analyzing the coupling of quantum emitters with a pseudomode of a metallic
interface [171] or with a pseudomode formed by the set of higher-order modes (peaking
around 3.7 eV in Fig. 4.4) of a silver particle [174, 175].

We should admit that by following this prescription we ignore the limitations which
we have been discussing in Chapter 1 of this thesis, regarding the approximation of the
dipolar polarizability profiles by Lorentzian functions. Most notably, the quasi-lorentzian
profile of the dipolar polarizability of the sphere, calculated with Mie theory, can have a
non-vanishing real component at resonance frequency, which could lead to a significant
Lamb shift. Nevertheless, our approach is a good first step to the characterization of

the plasmonic system to further explore its interaction with the vibrations.

4.2.2 Cavity-vibrations interaction Hamiltonian

Having addressed the problem of quantization of the plasmonic cavity, and the vibrations
of the molecules, let us consider the coupling between these elements. The electric field,
E, of the cavity mode characterized by the resonant frequency w., decay rate x and the

effective volume Vg [176, 177], can be expressed by the plasmon annihilation (a) and

. hw,
E=iy| = (a—al). 4.31
i 250Veﬁr(a a') (4.31)

The induced Raman dipole [17]
PR =G E (4.32)

creation (a') operators as

will be therefore interacting with the cavity field E, yielding the interaction Hamiltonian

o hwe
Y 2e0Vert

hg

;= —prE = R,Q (a—a(b+b) = T'[a* +(a)* —aa’ —ala)(b+D1). (4.33)

where we have introduced the bare or single-photon coupling

= R,Q%- % 4.34
9=FRQu_— (4.34)
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Within the so-called rotating wave approzimation (RWA) [166, 178] the counter-propa-
gating terms proportional to (a7)? and (&)?, which yield rapid oscillations at frequencies

of 2w, > w,, are removed. Furthermore, using the commutation relation
4,07 =1, (4.35)
we can rewrite the remaining part of the interaction Hamiltonian as
Hi = —hyg <aTa + ;) (b+0b"). (4.36)

The second term in the first parentheses describes the interaction between vibrations
and the vacuum field of the cavity g/ 2((3 + BT) We can remove it by properly displacing

the equilibrium position of the vibrations, arriving at the final form of the interaction

Hamiltonian
H; = —hgata(b + ). (4.37)
incident scattered
photon Stokes
photon
vibrations
— 'C=0
______________________________________ HTH

FIGURE 4.5: Schematic description of Raman scattering from a molecule placed in a
plasmonic cavity.

In a direct analogy to the description of optomechanical systems, Roelli et al. [179]
considered a plasmonic cavity coupled to a Raman-active molecule characterized with
the amplitude of vibrations Q, = Qg(l; + BT) In this picture, a Hamiltonian identical to
that derived above can be found by noting that the frequency of the cavity w,. coupled
to a Raman-active molecule is a function of Q,,. Expanding it around the equilibrium

position defined as Q, = 0:

we(Qu) = we(0) + Qu [gg“ ] = we(0) — g(b+b). (4.38)
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4.2.2.1 Estimation of the coupling parameter

To estimate the coupling parameter g, we can compare it to the coupling parameter
gjc, which governs the interaction in a resonant emitter-plasmon system. Such setup,
described by the Jaynes-Cummings Hamiltonian, has been thoroughly analyzed in the
literature in different variations (with the emitter described through bosonic [180] or
spin [181] operators) and parameter regimes [182, 183]. In its simplest form, gj¢ is
defined as [183]:

We

2e0 Vet

lgsc|=d (4.39)

where d is the dipolar moment of the emitter. As we have mentioned earlier, in the weak
coupling regime, the interaction of the emitter with the single-mode lossy cavity modifies

the rate of the spontaneous decay of the emitter by the Purcell factor Fp determined as

2
Fp—144l97c (4.40)

K70

where g is the decay rate of the uncoupled emitter. Therefore, by comparing the
definitions of the two coupling parameters: ¢ (Eq. (4.34)) and gjo (Eq. (4.39)), we

arrive at a simple relationship

_ R,Q)

e gacl (4.41)

Expressing now the right-hand side of the above equations with Eq. (4.40) in the limit of
large Purcell factors (Fp > 1) and plugging in the explicit definition vy = wd?/(3weoc®)
[56], we get

3
g=R,Q\Fp —— (w—) . (4.42)
6meg \ ¢

We can therefore find an estimate of the absolute values of the coupling coefficient g for
illustration, by recalling some of the reported Purcell factors Fp [184, 184-186], and an

exemplary value of the Raman tensor R,,.

The values of the elements of the Raman tensor R, and the zero-point amplitude QY
vary significantly for different molecules and each vibrational degree of freedom. The
estimates of these values have been provided from theoretical and experimental studies
for numerous molecules, including rhodamine 6g (R6G) [188] or various peptides [189],
as well as cluster structures of e.g., silicon [190]. To provide conservative estimates of
the values of g we consider the specific values of Raman activity of rhodamine 6g. The

non-resonant Raman spectra of the R6G molecules exhibit vibrational energies in the
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Type of cavity Fp hw, [eV] | Bk [eV] | hg (R6G)
[eV]

plasmonic patch 5 x 10° 0.45 0.45 3x 1071

antenna [184]

plasmonic particle [185] | 8 x 10° 1.5 0.1 4x107°

on a dielectric substrate

plasmon mode 5 x 103 2.2 0.07 1077

in nanorod [186]

plasmonic dimer [187] 3 x 10° 3.5 0.2 6 x 1077

TABLE 4.1: Values of the Purcell factors Fp for various types of cavities with resonant
energies iw, and widths Ak. In the last column we provide the estimates of the coupling
coefficient g calculated for the coupling with the specific transition of a rhodamine 6G
molecule (see text below for details).

range of hundreds of meV and, in the strong-vibrations end of the parameters spectrum,
a Raman activity (which, in the one-dimensional model of vibrations used throughout

o4
this chapter, is equal to R2) close to 5 x 10 €3A amu~'.

Including this parameter
into Eq. (4.42), we arrive at the upper estimate of the coupling parameter of around

hg =~ 6 x 107 eV for a molecule placed in a plasmonic dimer nanoantenna [187].

We should note that, except for the dark plasmon mode in a nanorod, the structures
listed above are designed to provide large Purcell factors while retaining high quantum
efficiency and avoiding quenching of emission from the resonant two-level systems. This
limitation can be removed when designing systems for SERS or TERS, since the Raman
scattering does not suffer from quenching, and we can consider other setups, e.g. metal-
lic dimers with subnanometer gaps and significantly reduced mode volumes. A lower
limit for such structures was recently obtained by Barbry et al. [191] from TDDFT
calculations of the dimer of sodium clusters as Vinin =~ 10728 m? for the mode energy of
hw. = 3.3 eV.

To estimate the coupling parameter observed in such systems, we can apply the definition
of the coupling given in Eq. (4.34). Taking a more conservative value of the mode
volume of Vog = 10726 m?, and considering the Raman activity of rhodamine 6g, obtain

hg =~ 1 meV, which we will be using throughout the rest of this chapter.

4.2.2.2 Coherent pumping

The Hamiltonian of the system can be formulated as

H/h = wmb'd + weala — gata(db’ + b) + Hyump/ I, (4.43)
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with flpump describing the coherent illumination, or pumping of the cavity
Hppump = ihQ(aTe™™0t — ettty (4.44)

Throughout this chapter Q2 will be referred to as a pumping power proportional to the

power density of the input laser and the intrinsic parameters of the cavity mode. € itself

is defined as [183]
K [eoVesr
Q=— E? 4.4

where |E$ | is the maximum of the scattered fields. We can define the field enhancement

of the plasmonic system as K = |E3 |/|Fo|, where |Ep| is the amplitude of the incident
coherent illumination. Since K is an intrinsic physical property of the cavity and the
geometric setup of the illumination, the driving parameter €2 can be re-written as a

product of a term depending solely on the cavity properties and the amplitude |Ey|

Kk |eoVer

2=3 2w,

K|Ey. (4.46)

To provide some exemplary values of the parameter 2, we consider an optical plasmonic
cavity with plasmon resonance energy fuww. = 2.5 eV, quality factor @ = 10 (hx =
0.25 eV), the effective volume given above Vg = 1072 m3 and enhancement factor
K = 10%. Thus, for the strong laser intensity I = 10° W/cm?, which yields |Eg| ~
6 x 107 V/m, we obtain AQ = 0.25 eV.

For the strongest laser intensities used throughout this chapter, we approach the regime
where 2 and w. become comparable. Nevertheless, even for those strong pumping coef-
ficients, the pumping Hamiltonian (Eq. (4.44)) is written in the rotating wave approxi-
mation. We expect that the inclusion of the counter-rotating terms ihQ(ae ="t 4+ afe«it)
will not change significantly the dynamics of the system, as they will result mainly in

energy shifts that can be corrected with appropriate laser detuning.

In the following, the phonon energy is set to Aw,, = 0.1 eV and the phonon decay rate
is set to Ay, = 1 meV, in agreement with the literature data (see Ref. [192]). The
plasmonic cavity with quality factor of @) = 10 is chosen to be resonant at hw., = 2.5
eV and therefore decaying with rate ik = hw./Q = 0.25 eV. The coupling parameter
is taken as hg = 1 meV in accordance with the reported characteristics of the resonant

plasmon-emitter systems discussed above.
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4.2.3 Master equation

Before we write down the master equation for the dynamics of the density matrix of the
system to which, from now, we will be referring to as p, let us consider the populations
of the thermal bath, given by the Bose-Einstein distribution function N(w), for the
energies corresponding to the cavity photon w, and the vibration of the molecule w,,, at

ambient temperature 7' = 300 K:

N(hwe=25eV;T =300 K) =~ 1072 ~ 0, Al = N(hwy, = 0.1 eV;T = 300 K) ~ 0.02.

(4.47)
Thus, in the master equation we can neglect the terms that describe the stimulated emis-
sion and excitation of the cavity by the environment (analyzed previously in Eq. (4.21)),

and write
(2 + Dvm

R Ym
) b

] + 5

Oup= 1o, H] + 5 Lalp] + . (@)

h
4.2.4 Numerical solution

To analyze the dynamics of the system, we solve directly the master equation in Eq. (4.48)
by representing both the state of the cavity, and of the molecule in the basis of Fock

states

{|nVib7 mC&V) }nvib:0v1:~~~7NmaX7 Meav=0,1,...,Mmax (449)

which spans a truncated Hilbert space H [193]. Such approach is usually not practical
for optomechanical systems comprising high-quality cavities, as the number of states
in the Fock basis representing its state would be too large. However, thanks to the
weak coupling with vibrations and the low quality factor of the optical cavity, the latter
remains very close to a coherent state. We can therefore displace the cavity operators
by the complex number which corresponds to the amplitude of this coherent state and

truncate the Fock space to a relatively small dimension (see Appendix B for details).

Spectra of emission from the cavity are calculated, following the Glauber’s photodetec-
tion theory [194], as I(w) = agetS(w), where the frequency-independent parameter et

describes the properties of the detection system [164] and

S(w) = w? /_ h dte™ ™ (aT (£)a(0))ss. (4.50)

Subscript ss denotes the steady-state of the system. The two-time correlator is calculated

by applying the quantum regression theorem (QRT, see Appendix B for details) [156]. In
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Chapter 4. Quantum plasmonics

Fig. 4.6(a) and (b) two of such spectra are shown, with removed elastic Rayleigh scatter-
ing contributions, calculated for the weak ((7€2)? = 1072 eV?) and strong illuminations
((R€2)? = 0.5 eV?), respectively, and for the laser tuned to the cavity (A = w. —w; = 0).
In the inset of Fig. 4.6(a) we zoom in on the anti-Stokes emission calculated with the
environment at 7' = 0 K (dashed line) and 7" = 300 K (solid line). The difference be-
tween these plots illustrates the effect of thermal pumping of the vibrational levels by the
environment [153, 195]. While a difference in the intensity of the anti-Stokes peak can
be appreciated for different temperatures at low pumping (see the inset in Fig. 4.6(a)),

it disappears for high pumping power (Fig. 4.6(b)).
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FIGURE 4.6: Spectra of Raman scattering S(w) of a molecule in a plasmonic cavity at
pumping (a) (h2)%? = 1072 eV? and (b) (h2)? = 0.5 eV? at T = 0 K (dashed lines) and
T =300 K (solid lines). All the cases assume A = 0.

To further explore this effect and to trace the evolution of the signal with the pumping
power, we plot in Fig. 4.7(a) the maxima of the Stokes emission (blue solid line) which
is independent of temperature 7', and of the anti-Stokes emission (orange dashed line
for T = 0 K and orange solid line for 7' = 300 K), for the increasing Q2. In the weak
pumping regime ((h2)? < 1072 eV?), for non-zero temperature (solid lines), both the
Stokes S(wg) and anti-Stokes S(w,s) emission depend linearly on Q2 indicating that
the anti-Stokes transition originates from the thermally excited vibrational state. For
higher driving powers (1072 eV?2 < (h2)? < 0.5 eV?) the anti-Stokes intensities become
independent of the temperature, as the phonons are provided primarily by the Stokes

transitions (vibrational pumping) [195].

The transition between the thermal and the vibrational pumping of phonons [195] is
illustrated in Fig. 4.7(b), where we plot the populations of the phonons (green line) and
plasmons (red line) for 7' = 0 K (dashes lines) and 7" = 300 K (solid lines).
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FIGURE 4.7: Dependence of the Raman scattering on the excitation power and temper-
ature. (a) Emission intensities of the Stokes (S(wg), blue lines, calculated at T = 300 K)
and anti-Stokes photons (S(w,s), orange dashed and solid lines for T = 0 K and
T = 300 K, respectively) as a function of the driving intensity Q2; (b) populations of
plasmons (red line) and phonons (green lines) in the steady state for 7= 0 K (dashed
lines) or T = 300 K (solid lines). All the cases assume A = 0.

Finally, for the largest considered pumping powers ((h£2)2 > 0.5 eV?) the Stokes intensity
S(wg) visibly surpasses the expected linear dependence on Q% (marked with a dotted
gray line in the top-right corner of Fig. 4.7(a)). To understand this effect, we have
developed an analytical solution to the dynamics of the system, which we briefly present

in the following subsection. The detailed derivation can be found in Appendix B.

4.2.5 Linearized Hamiltonian

To design an analytical description of the system, let us take a step back and consider
the Hamiltonian of the system given in Eq. (4.43) with the coherent pumping (Eq. 4.44).
If we decouple the cavity from the molecule (putting g = 0) the plasmonic system will be
driven into a steady coherent state with amplitude as = Q/(§ +iA), where A = w. —w;
is the detuning between the frequency of the pumping laser and the resonant frequency
of the cavity. We can therefore redefine the cavity operators, excluding the coherent
amplitude:

i — a+ s, (4.51)

and write
H/h=Ad'a + wnb'b — glag|?(b+ b1) — glasal + afa)(b+ b1) — gata(b+ bh). (4.52)

115



Chapter 4. Quantum plasmonics

The last, nonlinear term in the above Hamiltonian is proportional to the incoherent
population of the cavity, and will be small provided that the interaction with the molecule
g is weak. Thus, in the regime usually discussed in optomechanics, characterized by the
weak coupling g, the last non-linear term can be neglected, allowing us to write down

the linearized Hamiltonian
H'/h = Aala + wnb'd — glag|?(b + b)) — g(asal + aZa)(b+ bh), (4.53)

which yields a purely quadratic dynamics and linear quantum Langevin equations for
operators @ and b [180, 181].

It should be noted that, when solving the linearized Hamiltonian, we do not map the
quantum Langevin equation to the classical dynamics equations, as is often done in the
analysis of the optomechanical systems [196]. Consequently, our approach provides a
complete characterization of the classical and quantum correlations within the system,
and allows us to reproduce the proper dependence of Stokes and anti-Stokes signal on

the pumping strength 2.

As we discuss in detail in Appendix B, the linearized Hamiltonian can be solved exactly
for the specific case of the laser tuned to the cavity resonance, A = 0, by applying the
quantum regression theorem (QRT), yielding a simple expression for the intensity of the

Stokes emission:

2 4
S(ws) = 228 5,02 <1 +ath 4 5292“) : (4.54)
m Tm
where
so ~ [4g/(K|k — 2iwm|)]% (4.55)

Let us analyze terms in the brackets of Eq. (4.54):

e The first term can be recognized as the conventional two-photon cavity-assisted
Stokes transition, linearly dependent on 92, as demonstrated in the Appendix B.
This term yields the expected S(wg) o< K* dependence on the enhancement of the
incident field by the cavity K [49].

e The sum of the second and the third terms in brackets represents the incoherent

population of the phonon mode

A~

nineoh — (pih) o — (b1 s (B s, (4.56)

m
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4.2 Raman scattering from molecules in plasmonic cavities

arising from (i) the thermal pumping and (ii) the coupling to the plasmon cav-
ity. Brackets (...)ss denote the steady-state expectation values. These two terms
together describe a process of phonon-stimulated Raman scattering, in which the
population of vibrations enhances the rate of Stokes scattering. We can easily
check that Eq. (4.56) represents the incoherent population of phonons by noting
that the addition of a coherent contribution to b (I; — B+ I;) does not change the
covariance on the right-hand side of Eq. (4.56).

We note that phonon-stimulated Raman scattering has been reported in experiments
on ensembles of Raman-active centers, for example in hydrogen gas (see Refs. [197, 198]

and references therein).

Similarly, we can derive the expression for the anti-Stokes emission

2“’35 _th()2 4
S(was) = —22 (897, Q° + 5407), (4.57)

Tm

which describes the thermal pumping regime (first term in the brackets, proportional to
the thermal population of phonons 7t") and the vibrational pumping regime (propor-

tional to Q4).

The intensity of Stokes and the anti-Stokes emission, given by these equations, is shown

in Fig. 4.8 with solid blue and orange lines, respectively.

4.2.6 Breakdown of the linearization

As a side note, we remark that in the regime where the coupling parameter g and cavity
width & are similar [199, 200], this linearization scheme breaks down. To estimate the
error induced by dropping the non-linear interaction term for our set of parameters, in
Fig. 4.8 we have compared the intensities of the Raman peaks calculated numerically
using Hamiltonians listed in Eqs. (4.52) (empty squares) and (4.53) (full circles), for
different values of the coupling strength g: (a), g = go = /250, (b) g = 10gp and (c)
g = 30gg. These results indicate that in the regime of realistic parameters discussed
in this chapter (¢ = go, Fig. 4.8(a)) both Hamiltonians give identical strengths of the
Stokes and anti-Stokes scattering. However, with increasing coupling parameter (by a
factor of 10 in Fig. 4.8(b) or 30 in Fig. 4.8(c)), the linearized Hamiltonian begins to

over-estimate the inelastic scattering.
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FIGURE 4.8: Dependence of the Raman scattering on the excitation power and coupling
parameter g, calculated numerically using full (empty squares, Eq. (4.52)) or linearized
(full circles, Eq. (4.53)) Hamiltonian or analytically (solid lines) from the quantum
regression theorem (QRT) using Eqs. (4.54) and (4.57) for Stokes (solid blue lines)
and anti-Stokes (solid orange lines), respectively. Coupling coefficients are given as
multiples of the coefficient used throughout the manuscript go = £/250: (a) g = go, (b)
g = 10gg and (¢) g = 30gg. Dashed lines denote the linear dependence of the Stokes
signal on 2 expected from the classical theories, as obtained by taking the first term
of Eq. (4.54) exclusively.

4.2.7 Dependence on the laser detuning A

To further explore the effects of thermal and vibrational pumping of phonons on the
Raman scattering, let us consider the dependence of Raman scattering on the detuning
A = w. —w; of the incident laser w; from the cavity resonance w.. In the typical classical
models of SERS [49] the dependence of the Stokes (S9%%(wg; A)) and the anti-Stokes
(8925 (1,55 A)) emission is determined by the enhancement of the electric field of both
the incoming (|E(w;)/Eo(w;)|?, where w; is the frequency of the incident illumination)

and outgoing (|E(ws/es)/Eo(ws/qs)|?) photons at the position of the molecule:

E(w) Ews/as) |”
Eo(wi) Eo(ws/as)

Sclass(ws/as; A) x wé/aS (4.58)
Assuming that the enhancement is given by a lorentzian profile centered on the cavity
resonance w. with width s (gray curves in the bottom panels of Fig. 4.9), one can
expect that the calculated Raman emission spectra S(wg/qg; A) will depend on the laser
frequency wy, as depicted with the blue dashed curves in the bottom panels of Fig. 4.9.
In particular, the Stokes signal should be the strongest for the incident laser blue-

detuned from the cavity. This general result for the Stokes scattering is supported by
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(a) Stokes intensity

(b) Anti-Stokes intensity
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FIGURE 4.9: Dependence of the (a) Stokes and (b) anti-Stokes emission on the fre-
quency of the incident laser w;. In the top panels we show the numerically calculated
intensities (a) S(wg; A = w. — w;) and (b) S(was;A) for the pumping power from
(h2)? = 1072 eV (red lines) to (hQ2)? = 0.25 eV (green lines) and environment temper-
ature T'= 0 K (dashed lines) and T' = 300 K (solid lines). The bottom panels show the
predictions of classical models (Eq. (4.58)) for (a) S°%5(wg; A) and (b) S8 (w,g; A)
(dashed blue lines) and the cavity amplitude in gray.

our calculations performed for various pumping power ((h§2)? = 1073 eV? to 0.25 eV?,
depicted in the top spectra from red to green lines) and different temperatures (7' =0 K
and 300 K in dashed and solid lines), as shown in the upper panels of Fig. 4.9(a). We
also note that, as a result of the nonlinearity in Stokes emission, the profile of S(wg; A)
narrows with increasing pumping. On the other hand, Eq. (4.58) fails to explain the
dependence of the anti-Stokes scattering (Fig. 4.9(b)). For the weakest driving powers
(red lines, (h2)? = 1073 eV?), the S(was;A) intensity is the largest for the laser on
resonance or red-detuned from the cavity resonance both in the absence or presence of
thermal pumping of phonons (at 7' = 0 K and 7' = 300 K), respectively. For stronger
driving powers the intensity plots for 7' = 0 K and 300 K start to merge and peak at

increasingly blue-shifted frequencies, notably crossing the cavity resonance w.

This surprising property stems from the transition between the thermal and vibrational

pumping of the vibrational levels. Classical Eq. (4.58) for the anti-Stokes S8 (w,g; A)
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Chapter 4. Quantum plasmonics

intensity does not account for the origin of the phonons in the molecule, and therefore
can only be applied when these are provided by the heated reservoir (it should be noted,
however, that a suitable correction to S(wsg;A) introducing the vibrational pumping
has been proposed by Kneipp et al. [153]). If the environment is cooled down, or the
coherent driving dominates over the thermal phonons, the populations of the vibrations
can only originate from the Stokes transition, forcing the blue-detuning of the intensity

dependence, as observed in Fig. 4.9(b).

4.2.8 Correlations of the emitted light
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FIGURE 4.10: Two-photon frequency-resolved correlators gy (ws,was) are calculated

by adding two lossy (I') weakly coupled (eg, €,s < /TmI'/2) two-level sensors and
calculating their intensity correlations [201].

We can further characterize the photon emission by calculating the time- and frequency-
resolved photon correlations [202-204] between the Stokes and the anti-Stokes photons
emitted from the cavity. This technique was proven successful in showing quantum
correlations that are otherwise hidden in normal spectroscopy or standard photon corre-
lations [205]. The correlations can be accessed experimentally either by inserting filters
in a standard Hanbury-Brown-Twiss setup [204] or through a streak camera set-up [203]

that allows for ps detection resolution required for the plasmonic setup.

Theoretically, these time and frequency-resolved photon correlations are computed through
intensity-intensity correlations:
(AL, r, (DAl

t 4 7)Auyry (t+7) Ay, 1, (
o o) = i o Oy 04 D (4 7) A, )

500 (Al 1 A r ) O)N(AL 1, Ay, (E+ 7))
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4.2 Raman scattering from molecules in plasmonic cavities

where

t .
Auur ()= [ dnelt TR0 ag) (4.60)

—o0
is the output field after passing through a Lorentzian frequency filter with central fre-
quency w;, and width I';, at time ¢. In principle, in order to compute these correlations
one must apply the quantum regression theorem three times and perform the integrals
afterwards. Instead, we use the method recently proposed in Ref. [201], which avoids
this complication by coupling the mode of interest, i.e., @ in our case, to two-level sys-
tems that will play the role of sensors (see the schematic of the concept in Fig. 4.10),

with frequencies w; and lifetimes I';, through the following Hamiltonian:
ﬁsens = Z 67,(6”5'_1) + d&f:)), (461)

(@)

where &+ and &(Z)

are spin raising and lowering operators of the ith sensor. The coupling
€; must be sufficiently weak so that the dynamics of the sensors does not perturb the
system., i.e., 462/T; < s, where ~5 is the smallest transition rate of interest (here
¥s = Ym)- Notice that this condition can always be imposed as ¢; is a free non-zero
parameter that we can choose at will in our simulation. Under this assumption it can
be shown that:

. N O N SS
9O (w1, 7) = lim (1(0)712(7))ss

€;—0 <ﬁ1>ss<ﬁ2>ss ’ (462)

(4)

with f; = 6,6

Q)

. This simplifies the calculation at the cost of a small increase in the
dimension of the Hilbert space. For example, in the case of coincidences, i.e., 7 = 0, that
we are mainly interested in, we only need to compute one-time correlators, avoiding the

need of the quantum regression theorem.

For simplicity we consider I'y = I's = I' and place the Lorentzian filters at w; = wg and
wo = wys. The photon correlations 91(“21“) (wg,wqes; T = 0), are plotted in Fig. 4.11(a) as a
function of the driving parameter Q2 for T' = 0 K (dashed lines) and T = 300 K (solid
lines) environment temperature. The coupling parameters g are taken as multiples of
go = k/250: g = go (blue lines), g = 2go (orange lines), g = 4go (green lines), and
the filter linewidth AI' = 0.1 meV. As shown in Fig. 4.11(b), for these parameters the
spectrum Sﬁl)(w) = <AL’F(O)AW7F(O)> is formed by three peaks: the elastic Rayleigh

scattering and the inelastic Stokes and anti-Stokes contributions.

We clearly observe that for the weak coherent pumping and in absence of thermal pump-
ing, the system exhibits strong bunching statistics, which is a signature of strongly cor-

related emission [206, 207]. The physical origin of the strong correlation is that, in the
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FIGURE 4.11: (a) Two-photon frequency-resolved Stokes-anti-Stokes correlators
91(*21“) (ws,was) and (b) physical spectra of emission Slgl)(w) = (AL’F(O)AW,F(O» calcu-
lated for the temperatures T' = 0 K (dashed lines) and 7" = 300 K (solid lines), coupling
parameters chosen as multiples of gg = k/250: g = go (blue lines), g = 2go (orange

lines), g = 4go (green lines), and laser tuned to the cavity A = 0.

absence of other source of excitations, the Raman photons are emitted by exchanging
a single phonon and therefore they are strongly correlated. Interestingly, the regions of
strongly bunched frequency correlations have been linked to the violation of classical in-
equalities [208] and can be optimized though proper filter engineering [209], potentially
providing access to producing a quantum correlated emission in this setup. The depen-
dence of the correlations on the coupling parameter stems from the fact that for small
g (and weak anti-Stokes emission), the filters detect primarily the elastically scattered
photons (Fig. 4.10(b)). For larger coherent driving or increased thermal pumping, the
anti-Stokes photons are increasingly created through the absorption of phonons which
originate either from thermal excitation or are created by an uncorrelated, earlier Stokes
transition. Thus, the correlation between the anti-Stokes and the simultaneously de-
tected Stokes photon decreases. We note these results are consistent with those recently
reported by Kasperczyk et al. [210] from measurements of the Stokes and anti-Stokes

pairs emitted from a thin layer of diamond.

4.3 Optomechanical cavities

As we have mentioned earlier, the Hamiltonian describing the interaction between the
cavity plasmons and the vibrations is reminiscent of that used to describe the dynamics
of optomechanical system. In this section, we briefly comment on this resemblance and

compare our system to common optomechanical setups.
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4.3 Optomechanical cavities

In a typical optical cavity, formed by two highly reflective mirrors, the circulating pho-
tons exert a radiation pressure on the mirrors. In optomechanical cavities, this force is
harnessed, by allowing one of the mirrors to move. The mechanical motion then shifts
the resonance frequency of the cavity, modifying the intensity of the circulating light and,
therefore, the radiation pressure force. This backaction [93, 196, 211] can be understood
as a coherent feedback mechanism that provides paths to cool or amplify the vibra-
tions of the mirror. For example, when the cavity is illuminated by a laser red-detuned
from its resonance, the backaction cools the mechanical vibrations by transferring their
energy to the optical cavity (significantly below the thermal population). Conversely,
under a blue-detuned illumination, the amplification or heating of the mirror vibrations
is achieved. A few realizations of optomechanical cavities, exhibiting a range of mechan-
ical frequencies and qualities of the optical cavities, are schematically shown in panels
(a)-(c) of Fig. 4.12.

(a) (b)

@ Ly

L= N
Suspended mirror Cold atoms
wm = 104 Hz wm = 10% Hz
F =10 Q=10°

(c) (d) 7

v (

Toroidal resonator Plasmon-enhanced Raman
wm= 10%® Hz wm = 1013 Hz
F=10° Q=10

FIGURE 4.12: Schematics of typical optomechanical systems: (a) suspended trampoline
mirror [212], (b) cold atoms [213] and toroidal resonator [211]. Optical and mechanical
modes are marked, together with the relevant parameters for each case: the mechanical
frequency (wy,) and the quality factors (Q) or finesse (F) of the optical cavities. (d)
The plasmon-enhanced Raman system exhibits much larger mechanical frequencies and
significantly lower quality factors of the optical plasmonic cavities.

We can therefore consider plasmon-enhanced Raman scattering as a realization of an
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optomechanical system (Fig. 4.12) in a novel regime of very high mechanical frequencies,
large single-photon coupling parameters (g ~ 7,,) and low-Q optical cavities. This last
characteristic is usually unwelcome, since it implies very low population of the optical

cavity n, and, consequently, weakens the effective coupling coeflicient

Geff = \/Nag (463)

(see Appendix B for details on the linearization scheme). Nevertheless, the large single-
photon coupling in SERS systems can, even in the case of very small n,, trigger the

onset of interesting, non-linear effects.

Finally, the extraordinarily high mechanical frequency, significantly larger than the fre-
quency of the thermal bath, removes any need for cooling of the vibrations, and opens

avenues to implementing room-temperature quantum cavity optomechanics.

As mentioned before, this correspondence between Raman scattering and optomechan-
ical systems was also identified and analyzed in an independent contribution from
Christophe Galland and Tobias Kippenberg and colleagues at the Ecole Polytechnique
Fédérale de Lausanne [179]. Their classical model suggests that the vibrations of a
molecule can be amplified by illuminating a plasmonic cavity with a blue-detuned laser,
just like the heating of mirror vibrations in an optomechanical cavity can be induced
by a similarly detuned laser. Under these conditions, a significant increase of the Ra-
man signal intensity is expected. This effect appears to be reminiscent of that discussed
in detail above, where the process of Stokes emission is stimulated by the incoherent
population of phonons. There are however some critical differences between the results
offered by the two frameworks. Most significantly, when the laser is tuned to the reso-
nant frequency of the cavity, our formalism predicts the onset of the stimulated emission,

while in the classical model, neither cooling now amplification of vibrations occurs.

Given that in their contribution Kippenberg and his colleagues apply the usual mathe-
matical framework to describe the dynamics of optomechanical systems (they linearize
the interaction Hamiltonian and solve classical Langevin equation), the differences high-

lighted above need to be properly identified and understood.
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4.4 Summary

In this chapter we have presented a fundamental, quantum-mechanical model of the
non-linear interaction between the quantized excitations of a plasmonic cavity, and the
vibrational structure of a molecule. This approach readily describes effects which are not
encompassed by the classical framework: (i) the onset of stimulated Raman scattering
due to the interaction with the cavity plasmons, (ii) an unexpected dependence of the

anti-Stokes scattering on the frequency of the incident laser and the local temperature.

From the experimental perspective, our prediction of the stimulated Raman scattering
from single molecules in plasmonic cavities should be of vital importance, as it opens a
new pathway to enhancing the intrinsically weak Stokes and anti-Stokes emission. While
this effect, to our best knowledge, has not been demonstrated, our results indicate
that the parameters of the experimental setups, i.e., the qualities of the plasmonic
cavities, could reach the regime where such observations are possible. The second major
prediction (point (ii)) can serve as a guideline for optimizing the experimental setups to
enhance the anti-Stokes scattering, and can contribute to the debate over the use of the

Stokes/anti-Stokes intensity ratio as a local temperature probe.

On the theoretical side, our exact formalism opens avenues to studying classical and

quantum correlations of the photons emitted from the cavities.

Finally, thanks to the resemblance of our interaction Hamiltonian to that used for treat-
ing optomechanical systems, the framework presented here takes the studies of such
systems to a novel parameter regime characterized by relatively strong couplings, pre-

viously observed only for cold atoms, and low thermal populations.
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Final remarks and outlook

In this thesis we have presented a few phenomena related to nanoscale optics, repre-
sentative of the rapidly developing front of research in this field. While some of the
effects discussed here, such as the shifts between different far-field optical properties of
plasmonic resonances, or the magnetic response of dielectric nanoparticles, have been

already verified in experiments, others are still calling for empirical verification.

One might wonder whether, should such confirmations arrive, these effects will actually
lead to further work, or will be otherwise placed in a, already cluttered, repository
of intriguing, but otherwise useless inventions. To try to answer this question, let us
briefly look into possible directions or research that the four pillars of this thesis might

contribute to.

Firstly, let us consider the results assembled in Chapter 1 and the future of research into
the dynamics of plasmons using femtosecond laser pulses. On the one hand, to study the
dynamics of processes occurring at the fs scale, one would ideally wish for probes that
would provide a higher time resolution. However, the very fundamental wave nature
of light would render such pulses as spectrally broad probes. Nevertheless, working
at this limit of the trade-off between spectral- and time-resolutions, we should be able
to identify the non-exponential dynamics of plasmons induced in metals and coupled
to interband transitions. Furthermore, one could extend this study and consider more
complex plasmonic or hybrid structures that exhibit Fano-like spectral resonances due
to the coupling between bright and dark modes. Therefore, the future of this direction

of research is bright, and will hopefully be aided by this contribution.

In the case of dielectric nanoparticles, which we describe in Chapter 2, the research
path for the next few years appears to have been laid out by previous efforts to guide
plasmonic nanosystems towards applications. Despite serious experimental challenges,

high-refractive index nanoantennas of various shapes: single spheres [10, 35, 36], dimers
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[7, 214, 215], trimers or oligomers [107, 109], nanorods [216, 217] or even metasurfaces
[218] have been theoretically and, in some cases, also experimentally characterized, and
reportedly form a rather significant competition for their plasmonic counterpartners.
The natural next step would be to couple those systems with quantum emitters, such
as molecules, quantum dots or perhaps even ions with a complex level structure, and
optimize them to match, or even outperform their conceptual ancestors, the microres-

onators.

The future of research into helicity conservation in scattering on random medium (Chap-
ter 3) most likely lies in the hands of optical physicists who have been working over the
last few years to boost the information capacity of optical fibers by implementing proto-
cols based on the angular momentum of light. While their efforts are primarily focused
on the orbital angular momentum, the helicity of light was also pointed out as an impor-
tant and promising candidate for implementing such protocols. Therefore, research into
scattering processes that could conserve this property might be crucial for the develop-
ment of novel optical fibers or adapters for interaction with other devices with little loss

of information.

From a more fundamental perspective, one should point out that the understanding of
symmetries of Maxwell’s equations, formulated over 150 years ago, and their realizations

in macroscopic and microscopic inhomogeneous media seems to be a long-overdue effort.

The final chapter of this thesis is devoted to developing a quantum-mechanical descrip-
tion of the coupling between plasmonic cavities and molecular vibrations. As such, it
is built on a concept which has been introduced in the field of plasmonic very recently
(i.e. quantization of the cavity modes), and serves as a example of phenomena that
can be described if one goes beyond the traditional, classical image of nanoantennas as
a concentrator of energy. On the other hand, we are slowly entering into a regime of
parameters of plasmonic systems which should offer the possibility to glimpse into the
internal structure of molecules and ions. Soon, we will hopefully learn how to access
and control their dynamics or, at the very least, exploit the intrinsically quantum na-
ture of molecules and ions to design novel hybrid devices based on, otherwise classical,

plasmonic building blocks.

In summary, we expect that the results reported in this thesis will influence a broad
field of immediate research in various areas of nanophotonics and, perhaps, contribute

to the development of new devices and uncovering exciting novel phenomena.
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Appendix A

Mie theory

A.1 Vector spherical harmonics

In this appendix we briefly introduce the elementary theory used in the description of the
scattering of light on spherical particles, the so-called Mie theory, named after German
physicist Gustav Mie [70]. We will not make an effort to introduce to the reader the
details of this framework, as those are discussed at length in many publications, but

rather strip it down to the core and most interesting, in our subjective view, elements.

To begin, let us consider the simplest non-trivial three-dimensional system which com-
prises a linearly polarized planewave illuminating a spherical nanoparticle. Without the
loss of generality, we can assume that, as illustrated in Fig. 2.1, the incident illumination
wavevector kg is parallel to the axis Z and its electric field Eq is polarized along axis Z.
The scatterer, a homogeneous sphere of radius a and dispersive dielectric permittivity
€2, is centered at the origin of the coordinate system. The homogeneous environment in
which the sphere is embedded, is characterized by a dispersive, lossless dielectric permit-
tivity €1. Thus, the wavevector kg and the wavelength A of the incident monochromatic

planewave with frequency w are related as

27 w

ko= —2k = A=A e1(w), (A.1)

where c is the velocity of light in vacuum.

In Mie theory, the incident and scattered fields, as well as the field inside the spherical

scatterer, are defined in the complete and orthonormal basis of the so-called spherical
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Appendix A. Mie theory

harmonics. We define this basis by considering the intrinsic spherical symmetry of the
scatterer (note that this symmetry does not extend to the incident illumination) and

following the ingenuitive prescriptions:

1. First, consider two vector fields M, N with vanishing divergence, defined through

a scalar function ¥ as

V xM

M=Vx(r¥), N= o (A.2)
Let ¥ be a solution of the scalar wave equation:
VAU 4 k20 = 0. (A.3)

It can be then shown that both the M and N vector fields satisfy the vector wave

equations
M M
2 2 _
\Y% <N> +k <N> =0, (A.4)
and
M = %V x N. (A.5)

Thus, if in the above equations we put k = w,/e1/c, then M and N defined in
Eq. (A.2) are the general solutions for the electric E and magnetic fields H. in the

homogeneous medium of permittivity e;.

2. To choose a specific form of a set of functions ¥ which will define the simplest set
of vector spherical harmonics, we denote the spherical symmetry of the scatterer

and consider ¥ as:

U(r,0,¢) = R(r)0(0)®(¢), (A.6)

where (r,0, ¢) are the spherical coordinates with 6 and ¢ denoting the polar and
azimuthal angles, respectively. With this separation of variables, the scalar wave
equation in spherical coordinates breaks into three independent equations for R(r),
©(0) and ®(¢). Solving them separately, we find two families of solutions, Wep,pn

and Y., defined as

<\I]mn> = (COS m(b) P (cos 0) z, (kr), (A7)

Yomn sin mao

where the radial function z,(kr) is any of the four spherical Bell’s functions: jy,

UYns hg), hﬁf) and P" are the associated Legendre polynomials. The respective
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A.1 Vector spherical harmonics

vector functions Mgy, and Nepmpn (Mo, and Ngp,y) are defined by introducing
the above formulations of Weppn (Womn) into Eq. (A.2). An explicit representation

of these harmonics in spherical coordinates can be found in Ref. [117].

This very general and mathematical definition of the Mie modes, Memn, Momn,
Nemn and Ny, might appear arduous at first glance. Therefore, to familiarize
the reader with its more appealing, physical interpretation, in Fig. 2.1(b) and (c)
we have plotted the vector fields and intensity distributions of the two lowest-order
electric (a1 and ag) and magnetic (by and by) Mie modes. The dipolar modes (b)
have the simplest form, as they are characterized by the electric and magnetic fields
constant for a; and by, respectively, throughout the volume of the nanoparticle,

and the complementary fields circulating around these directions.

. Expand the incident field illuminating the scatterer (Eg, Hy), the field inside the
particle (E;, H;) and the scattered field (Es, H) in the basis of the Mie modes

defined above:

o0 oo
Eo= % > (B Mjun + 48" Njn), (A.8a)

n m=n j=o,e

E; = i i > (BI"" M + A" Njn), (A.8D)

n m-=n j:()’e

n m=n j=o,e

The respective magnetic fields are defined by Eqgs. (A.2) and (A.5).

. Apply the boundary conditions to find the relationship between the fields on the

boundary of the scatterer
(E(] + ES — Ez) X ér = (Ho + Hs — Hz) X ér = 0, (Ag)

where &, is the radial vector on the surface of the sphere defined as |r| = a.

Thanks to the completeness of the vector spherical harmonics defined above, any elec-

tromagnetic field which satisfies the vector wave equations can be expanded in this basis.

In the following section, we discuss two specific cases which are of interest to the work

presented in this thesis: the illumination of the sphere by a planewave and by a radiating

dipolar emitter.
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Appendix A. Mie theory

A.2 Scattering of a planewave

The expansion of the fields of a planewave incident on the particle as in the schematics
in Fig. 2.1(a) into a series of vector spherical harmonics is, as Bohren and Hufman
phrased it ”somewhat like trying to force a square peg into a round hole” [117]. Literary
value aside, this picture reflects very well the dissimilar symmetries of the field and the

selected basis.

Nevertheless, since the basis is complete, it allows us to expand the incident electric and

magnetic fields into a slowly converging series [117],

2n +1 .
Eo = Eo Z’L nln+1) (M), —iN{)), (A.10a)
[e e}
om+ 1
_ ——E S ”+ Mg?n +iND Y, (A.10b)
n=1

Superscripts (1) denote the choice of spherical Bessel functions, j,, in the definition of

the spherical vector harmonics M and N.

By plugging in the general form of the electric fields E; (Eq. (A.8b)) and E; (Eq. (A.8c))
into the boundary condition (Eq. (A.9)), the electric field scattered from and inside the

sphere can be derived as

_ g S 2L N ®)
ES—EOZZ n(n+1 anNS — b, M)y, (A.11a)

1
E = EOZ 2n+ M(l) —Zd N(l)

oln eln)

(A.11b)

Superscripts (3) denote the choice of spherical Hankel functions, hg). The Mie coeffi-

cients a, and b, are defined as

o = Mn(kra)iy(ka) = P (ka)iy, (kra)
" T My (kra)Cl (ka) — Co(ka)yl, (kra)

Un(kra)iy, (ka) — My (ka)iy, (k1a)

Un(k1a)C,(ka) — MGy (ka)yy, (kra) °
where k1 = ky/e2/e1 = kM is the wavenumber inside the sphere, and M = /ey /e is
the relative refractive index of the sphere. The Ricatti-Bessel functions ¢(x) = xjn(z)

(A.12)

by = (A.13)

and ((x) = xh,(ll)(x) are introduced to simplify the notation. The coefficients for the
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A.2 Scattering of a planewave

fields inside the particle (often referred to as the transmitted fields), ¢, and d,, are

My (ka)G, (ha) — MG (ka)(ka)
" Ya(kia)¢, (ka) — MGy (ka)yy, (kia)’

d = M (ka)G (ka) — MG (ka)yy, (ka)
" My (ka)(,(ka) — Cu(ka)i), (kia)

The denominators of ¢, and b, are identical, as are those of the d,, and a,, coefficients.

(A.14a)

(A.14b)

Therefore, any resonant behavior of the scattering coefficients a, and b, should be

associated with a resonance observed in the intensity of the field inside the particle.

We should note that we adopt here the definitions of the Mie coefficients by Bohren and
Huffman in Ref. [117], which differ from those used by Ruppin [219] and, more recently,
Mertens et al. [220] by interchanging a,, <> —b,, and ¢, <> —d,.

Knowing the exact expressions for both the incident and scattered fields (as well as the
magnetic fields, given by Eq. (A.2)), we can now calculate the scattering and extinction
cross sections of the sphere ogcatt and oext, respectively. This is done by integrating
the flow of the respective time-averaged elements of the Poynting vectors formed by the
scattered field, Sy, and the combinations of the incident and the scattered fields, Sqxt
[117):

S, — %Re(Es K HY), Sext = %Re(EO « H' + E, x H) (A.15)

through a large imaginary sphere S encompassing the scatterer, and normalizing it by

the energy density of the incident illumination Iy:

Osca = Iy ! / Ss-ds, Oexy =Ig" / Sext - ds. (A.16)
S S

Plugging in the expressions for the incident (Eq. (A.10)) and scattered fields (Eq. (A.11)),
centering S at the origin of coordinate system for simplicity, and performing the inte-

gration, we arrive at the following expressions:

2 27
Tsca = 75 D @n+ D(lanl* + [bol?), ext = = > (@n+ DRe(an +bn),  (A17)

n=1 n=1
Where Re(z) denotes the real part of z. The cross sections are often related to the
geometric cross sections of the scatterer - in the case of spherical particles ma® - by

introducing the scattering and extinction efficiencies:

3 (2n + 1)Re(an + by). (A.18)

n=1

2
(ka)?

2

D @n+D(lanf + Bul’), Cox = o

n=1

Csca =
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A.3 Scattering of radiation of a dipolar emitter

A.3.1 Electric dipolar emitter

Following a similar path as briefly presented above, we can describe the field distribution
in a system comprising a spherical scatterer illuminated by the field from a radiating
dipolar emitter. This problem was analyzed in detail by Kerker et al. [221] to whom we
owe the expansion of the field originating from an electric dipole into vector spherical

harmonics.

Let us consider an electric dipole positioned at rqgip = (0,0, zgip) in the Cartesian coor-
dinate system, and, as before, a homogeneous sphere of radius a < zq;p. Without loss of
generality, we can consider two orientations of the dipole: radial (along the % axis) and
polar (along the 2 axis). The expansion of the incident field originated by the dipole at

point r depends on whether r lies within an imaginary sphere of radius zgip:

S, D, oMY + NP s g
E) = ) ) , (A.19)
ZV D, |s, My’ +t,Ny’|, r < Zdip

where the summation is performed over indices >7, = > _, . >72, >0, which can
be identified with subscripts identifying the vector harmonics discussed above. The

amplitude coefficients are given by D, = 0,,(2n+1)(n—m)!/(4n(n+1)(n+m)!), where

1, =0
O = " (A.20)
2, m > 0.
The expansion coefficients are given by
sy = Z*1\/11(,1)(161‘&;)) p, b= Z*1\11(/1)(7f1f”dip) P, (A.21a)
s s
k,S 'k3
Py = —MP(krap) - p, gy = — NP (krap) - p. (A.21D)
T

The scattered field and the field inside the sphere are expanded as

E, _ZD [u )(kr) + 0, N <>(k1r)}, (A.22a)
E; _ZD [fy )(kir) + g, N <Vl>(/<;1r)}. (A.22b)
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A.3 Scattering of radiation of a dipolar emitter

Applying the boundary conditions, Eq. (3.28), to the expansions of the electric fields
given in Eqs. (A.19) and (A.22), we obtain

Uy = —bppy, Vy = —anqy, (A.23a)
fu = —CnpPv, Gv = —dnqy (A23b)

where a,, and b, are the Mie coefficients given by Egs. (A.12) and (A.13).

We can now calculate the power scattered from the system by integrating the flux of
Poynting vector, Sext, defined in Eq. (A.15) over the sphere S, which now encapsulates
both the particle and the dipole. Using the orthogonality of the M and N basis, we can

express this quantity as

(2n+1 m)! 9 9
Psca: Sex ~ds = v v t, R A.24
[ sen- = o S A e ). (A28

The power lost into the other decay channel, related to the losses inside the scatterer,

can be calculated as

1
Pyps = 5 /wIm(52)|E1(r)\2dr =

= ;/0|E1(r)]2dr =
o (2n+1)(n —m)!

8 6mn(rH— 1)(n+m)! .

a 2
X/o {'f”‘z'j"<’“”">|2+ 9 [(”+1)|jn—1(k17“)\2+n\jn+1(k1r)|2]}7"2dr,

2n+1

where o is the conductivity of the material of the scatterer and Im(z) denotes the imag-
inary part of z. The integrals of the spherical Bessel functions can be solved analytically
[222].

Plugging in the explicit forms of the expansion coefficients listed in Eq. (A.23) into the
above equations, and normalizing the scattered power by the radiative energy loss of the
dipole in the absence of the sphere, Py, we arrive at explicit expressions for the normalize

power scattered by an electric dipolar emitter:

2

Jnlk) = enle () (A.25)

kz

Pl 3
= — 2 1 1
B 5 nZ::l( n+ 1n(n+1)
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‘ ‘?e
PSCa,
Py

Y (k2) — ang,(k2)
kz

= % D @n+1) ||jnlkz) — buhlD (k2)]* +
n=1

2
] . (A.25b)

Here the superscripts L and || denote the radial and polar orientation of the dipole,
respectively, and e stresses the electric nature of the dipole. Similarly, we can calculate
the sum of the powers emitted into radiation and lost through the absorption in the

scatterer as Piot = Psca + Paps and write

2
P 3. & i) (k=)
Ttot _q 2 1 Day, |2 A.
2 2Re;(2n + 1)n(n+ 1)a, [ T , (A.26a)
ple 3 & ¢ (kz)]?
# =1-- ZI(Qn + 1)Re |ay, [ liz q + by [RD (k2)]? | (A.26b)

A.3.2 Magnetic dipolar emitter

We can now derive the respective quantities for magnetic dipolar emitters. To achieve
this goal, we make use of the invariance of Maxwell’s equations in a homogeneous medium

under the transformation

1
E—-ZH, H- _E, p- m (A.27)

)
C

1o
g0€1

where Z is the impedance of the medium with dielectric permittivity e;: Z =
We can thus rewrite the expansion of the magnetic field of the magnetic dipole by

applying the above transformation to the electric field of the electric dipole (Eq. (A.19)):

o g ) 2D P M) + NG > g (A.28)
0 S, Dy |soMY + NS e < gy '

where the expansion coefficients, marked with the superscript m to denote the magnetic

nature of the source, are given by

m ik? (1) m ik? (1)
st = —M,/(krgip) -m, ) = —N,/(krqip) - m (A.29a)
cm cm
ik? ik?
m = = M) (krgpp) - m— = NG (krgp) - m. A.29b
by cr v ( r'q p) m, gq, cr v ( I'q P) m ( )

The transformation defined in Eq. (A.27) cannot be extended to the problem of scatter-
ing on arbitrary objects (although it can be applied for arbitrarily-shaped objects with
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A.3 Scattering of radiation of a dipolar emitter

specific macroscopic material properties, as we discuss in Chapter 3), and therefore we

cannot readily apply it to the scattered fields.

To address this problem, let us take a slightly less direct approach and represent the

electric field of the magnetic dipole as a sum of vector spherical harmonics,
14

B=—2 3 D, [N )] (A.30)

With the help of the Mie theory, we can now readily write the expansion coefficients of the

scattered electric field by multiplying the s)* and ¢]' by the respective Mie coefficients:

E" = Z€Z1 zy: D, {ansl’bel@ + bntf,”Ml(,?’)} . (A.31)

The magnetic fields HE}, and H]" can thus be written as

- —ZZD [u M® (kr) + va(3)(k1r)] : (A.32a)
Hi= -2y D, [f7M{) (kir) + g N{D (k) | (A.32D)
where
uyt = —appy, v = —bnq, (A.33a)
f;n = _dnprtn7 g:;n = _quy' (A33b)

These equations reveal a remarkable symmetry similarity to those obtained for the scat-
tering coefficients of the radiation from electric dipoles, given in Eq. (A.23). Even more
importantly, they indicate that the expressions for the power scattered from the mag-
netic dipole into radiation and lost to absorption in the scatterer are identical as those

for the electric dipole, with the exchange of the electric (a,) and magnetic (b,) Mie

coefficients:
2
P 3 & Jn(kz) = bahl) (k2)
=>N"2n+1 1 A.34
5 znzl( n+1n(n +1) s : (A-34a)
Pl _ §§: 2+ 1) ||jn(kz) — anh D (k2)? + W (k2) = baG(k2) | (A.34b)
Py 2 Z In(Rz n z Lz ) .
pLm 3. & A (k2)
Ttot g2 1 Db, |22 .
o 2ReZ(2n+ yn(n + )bn[ o : (A.35a)
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P 3% G (k2)]? () ()2
}’521_4;(2”“)% bn[ s } +anlhy) (k2)]? | (A.35D)
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Linearization of the

optomechanical Hamiltonian

B.1 Analytical treatment of the system

In the following section we present an analytical treatment of the dynamics of an off-
resonant Raman scattering in plasmonic cavities, based on the quantum regression theo-
rem (QRT) [156]. To readily apply this method, we first consider a linearized version of
the optomechanical Hamiltonian and verify numerically that this approximation is well-
suited for describing the system in the range of parameters discussed in Chapter 4. We
then proceed to solve the linearized Hamiltonian analytically and present a solution for
the case of incident coherent illumination with frequency tuned to that of the plasmon

cavity.

Since we have already introduced all the parameters of the system with proper units
in Chapter 4, to simplify the notation we will from now follow the tradition celebrated
in academic books on quantum optics, and skip the reduced Planck constant A in the

following equations.
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B.1.1 Quantum Langevin equations of the original Hamiltonian

Consider the optomechanical Hamiltonian in the frame rotating with the frequency of

the laser w; (A = w. — wy):
H = Adta+ wnb'd +iQ(a" — a) — gala(b+ bh), (B.1)

where all the parameters and operators are properly defined in Chapter 4. With the
inclusion of a vacuum noise aj, and thermal noise b;, terms, which are taken to have

zero mean value and arise from d-correlated thermal baths [196]:

(al,(Dain(t)) =0, (B.2a)
(ain(t)al, (t)) = 8(t — 1), (B.2b)

(bl (Dbin () = atha(t — ), (B.2c)
(bin ()b, () = (AR + 1)3(t — ¢), (B.2d)

The dynamics equations for operators a and b are:

a=—(r/24iN)a+Q+iga(b+ b)) + Veain(t), (B.3a)
b= (/2 + iwm)b — iga'a + \/Ambin(1). (B.3b)

B.1.2 Analytical solution to the linearized Hamiltonian

The linearized form of the above Hamiltonian was derived in Section 4.2.5:
H' = Adta+ wnb'd — glas2(b+b1) — g(asa’ + aza)(b+ bh). (B.4)
For reference we remind that to derive it, we have redefined the cavity operators
a— a+ o, (B.5)

removing the coherent amplitude of the cavity field o, = Q/(%§ +4A). The third term in
this linearized Hamiltonian can be interpreted as the effective coherent driving (o g|a|?)
of the phonon mode.

A redefinition of the phononic operators in a similar manner (by removing the coherent

amplitude of vibrations) leads (via the linear coupling term) to a new linear driving of
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B.1 Analytical treatment of the system

the cavity (and a renormalized A), and so on, successively. We can capture all orders
of this feedback by defining displacements o/, and [, through the condition that in the
displaced basis the transformed Hamiltonian does not contain any linear (driving) terms,

so that it can be written as
H" = Aa'a + wnb'b — gloal + (a))*a] (b + b1), (B.6)

where displacements o/, and . are defined as

Q

- B.7

YT %/2+iA — 2igRe(B))’ (B-7)
/ g|0‘;|2

S L — B.8

R (B3

Inserting Eq. (B.7) into (B.8), we arrive at a cubic equation

gwm 2

4°[Re(BL)]® — 4gA[Re ()] + {(;)2 + AQ} Re(@) + T

0. (B.9)
The leading order of Eq. (B.9) gives the approximations to . and «, which can be
otherwise derived as the coherent amplitudes of the undisplaced operators (I;) and (a),
respectively, as we discuss in the following section. The subsequent corrections decrease
in value very quickly and are quantitatively negligible for our parameters. However, the
presence of these terms, and in particular the appearance of higher powers of Q? is a

clear evidence of the fundamental non-linearity of the system.

B.1.2.1 Numerical solution

In our numerical calculations, we have implemented the non-linear Hamiltonian with the
displaced cavity operators (Eq. (4.52)) and solved the corresponding master equation,
describing the vibrational and photonic degrees of freedom in the basis of Fock states
(Eq. (4.49)). For the strongest pumping and coupling parameters, the calculations were
ensured to converge by using up to 15 and 10 Fock states for the description of the

vibrational and photonic state, respectively.

B.1.3 Steady state of the linearized Hamiltonian

From here on, we will focus our attention on the dynamics of the system given by the

linearized Hamiltonian H’ and the master equation given in Eq. (4.48). We can thus
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rewrite the Heisenberg equations given in Eq. (B.3a, B.3b) using the displaced photonic
operator a as

i = —(r/2+iA)a + igos(b + bY) + vraw(t),

(B.10)
b= —(Ym/2 + iwm)b — ig(ata + asal) — iglas|® + /Ambin(t). (B.11)
Denoting by A a column vector with expectation values of operators
(af)
a=| @ (B.12)
(b7)
(b)
and by I'yp the correlation matrix
af
a A
Ta= (| (a o b bt )>, (B.13)
b
we can rewrite Egs. (B.10) and (B.11) as
d
aA =MA+ D, (B.14)
%Fab = MU+ LM+ AD' + DAT + E, (B.15)
where
D =igla,[*(0,0,1,-1)", (B.16)
E = diag([0, &, vy, vm(1 + 23)]), (B.17)

for superscript T denoting matrix transpose and diag - a diagonal matrix and M defined
as the dynamical matriz

—(k/2 —iA) 0 —igal —igal
M | 0 —(/{/.2 +1iA) igas | iga  (B1s)
igas iga’k —(Ym /2 — iwm) 0
—iga —iga 0 —(ym/2 + iwm)
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B.1 Analytical treatment of the system

Denoting by Ly = Ty — AAT the covariance matriz we get a simple equation of motion
without terms depending on A. For simplicity we neglect the thermal population of

phonons 7t = 0 and arrive at

d ~ ~ ~
%Fab = Mrab + FCLbMT + dlag([()? K, 07 7m]) (Blg)

Computations can be simplified by vectorizing these equations. To this goal, we denote
by fab the vector formed by stacking the columns of Ty, and by M the 16 x 16 matrix
M®1+1® MT [193]. Then Eq. (B.19) reads

d = - .

%Fab =MDy + F, (BQO)

where E is a vectorized matrix E. The displacements and covariances at time t are then

given by

Alt)=-M"'D+ ™M (A(0) + M'D), (B.21)

Top(t) = —MLE 4 M (fab(()) + M—IE) : (B.22)

and, consequently, the steady-state (denoted by subscript ss) displacements and covari-

ances are

Ay =—M"1D, (B.23)

~ —

Topss = —M'E. (B.24)

B.1.4 Quantum regression theorem

Equation (B.14) is a closed form of equations of motion (Egs. (B.10, B.11)) for the
operators making up vector A: af, a, BT, l;, and allows us to calculate the expected values
of these one-time operators in the steady state Ass (Eq. (B.23)), where the subscript ss
denotes the steady-state. The quantum regression theorem (QRT) allows us to calculate
the two-time correlators (af(t)a(0))ss which determine the spectrum S(w) of emission

from the cavity -
S(w) = / dte= ! (51 (1) (0) ) (B.25)

—0o0
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More generally, from the QRT, the equation of motion for (X (¢)Y (0)) is the same as
that for (X (t)). Therefore, for matrix of correlations C(¢) defined as

C(t) = { a(t) (d(O) at(0) b(0) bt(0) >>857 (B.26)

we can write an evolution equation
C(t) = MC(t) + DAT, (B.27)

with formal solution
C(t) = —M DAL + e™MT 4 o, (B.28)

for the steady-state covariance matrix f‘ab’ss = Lgpss — ASSA;rS.

We then find that the two-time correlator (af(t)a(0))ss used to calculate the spectrum
S(w) of emission from the cavity (Eq. (B.25)) is given by the first element of the vector
defined by a product of exp(tM) and the first column of the steady-state covariances

matrix I'gp -

For the resonant case (A = 0) and without thermal pumping (7" = 0 K) the exponent
of M can be found analytically, and we can rewrite the above product as a series of

expressions with exponential factors given by the eigenvalues of M:
{er/2, = Com/2im) . (B.29)

From those, we choose the terms oscillating at frequencies +w,, and decaying at a rate
Ym/2, as they govern the strengths of Stokes and anti-Stokes scattering. After some
algebra, we obtain the explicit expressions for the Stokes and anti-Stokes emission as

second order polynomials of Q?:

2“?@ 2 4
S(wg) = T(SQQ + 540%), (B.30)
9 4
S(was) = M%Q‘l, (B.31)

where wg and wyg are frequencies of the Stokes and anti-Stokes emission, respectively.

The exact formulas for s; and a4 are somewhat lengthy, but take a simpler form in the
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B.1 Analytical treatment of the system

limit v, <K K, Wp:

4 2
S9 R~ <g> , (B.32a)

K|k — 2iwpn|
84 R~ (49)4 BN BAR (B.32b)
Klk — 2iwm| ) Ym Y
ay = s4. (B.32c)

The first term in expression for S(wg), proportional to 2, is dominant for low pumping
power. For larger €2 the second term becomes dominant, and yields the non-linear
dependence discussed in Chapter 4. Note that the coefficients of the terms proportional
to Q% are equal both for Stokes and anti-Stokes, and thus for larger pumping powers,

the Stokes/anti-Stokes ratio becomes independent of €.

If T' > 0, additional terms appear in the expressions for the Stokes and anti-Stokes emis-
sion, reflecting (i) the thermal pumping of the molecule, which effectively changes the
strength of the anti-Stokes scattering and (ii) the enhancement of the Stokes scattering
by stimulated phonon emission. Specifically, we find that Eq. (B.30) can be rewritten

4
2w5

S(ws) = [so(1 4+ A0 + 5,01, (B.33)

Y
and the anti-Stokes emission (Eq. (B.31)) becomes

2035 | _they2 4
S(was) = —* (a2, ¥ + a4Q"), (B.34)

m

with coefficient as = s3. Thus, in the region of thermal pumping (where we can neglect
all the terms o< Q% in the above equations), we recover the well-known formula for the

anti-Stokes/Stokes ratio [17]

Tows) - (1) @35

B.1.5 Phonon population

Our analytical approach allows us to write down the explicit expression for the thermal

~th

coh
N

m

incoh

meohand coherent n

incoherent n phonon populations in the case of the laser

tuned to the cavity resonance (A = 0):

ny = (b1b)ss = Al + nine 4 nioh (B.36)



Appendix B. Linearization of the optomechanical Hamiltonian

where

: 490\ 2
n;frllcoh — < g ) K + 7m . 5 ~ 5292i’ (B37)
K Ym|K + Ym + 2iwp, | Ym

4 2
neh (%?) (j) . (B.38)

B.1.6 Quartic dependence of Stokes intensity on the enhancement of
the incident field

By inserting the definitions of Q (Eq. (4.46)) and g (Eq. (4.34)) into the lowest-order
expression for S(wg) (Eq. (B.30)), we can write S(wg) o< K?/V,g, where K is the en-
hancement of the incident field at the position of the molecule. The inverse volume factor
can be shown to be proportional to K2, by relating the Purcell factor (Eq. (4.40)) to K?
through the reciprocity theorem, thus allowing us to recover the expected dependence

of the Stokes emission S(wg) o< K.

It should be also noted that a similar dependence of the anti-Stokes intensity on K
can be retrieved only in the thermal pumping regime, where the phonons are primarily
provided by the thermal bath, and the anti-Stokes intensity is proportional to ﬁ;“,r};QQ.
In the vibrational pumping regime, the phonons are provided by the Stokes transitions,

and thus we expect to retrieve the higher-order dependence of S(w,s) on K.

B.2 Threshold for the onset of the phonon-stimulated Ra-

man scattering

From Eq. (B.33) and the relation between sy and s4 (Eq. (B.32b)), we can derive an
approximate criterion for the onset of the phonon-stimulated Raman scattering, defined
arbitrarily by the stimulated Stokes emission becoming as strong as the spontaneous
emission:

ath 45,02 51 (B.39)

m
Dropping the first term on the left-hand side, which becomes comparatively very small
as the power is increased, and inserting the definitions of sy (Eq. (B.32)), g (Eq. (4.34))
and Q (Eq. (4.46)), we can show that

2
S2Q2i o (RVQ8)2 (K|E0’) K

_ B.40
Ym Vveff|/€_2iwm‘2 Ym ( )
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