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Resumen

La búsqueda y estudio de efectos novedosos relacionados con la interacción entre la luz

y la materia, aśı como el deseo de ofrecer explicaciones más completas sobre diversos

fenómenos relacionados con esta interacción son los ejes sobre los que pivota esta tesis

doctoral. El desaf́ıo de abordar la interacción de la luz no es nuevo, ya que el propio

concepto de la luz y la percepción de los colores han atráıdo la curiosidad del ser hu-

mano desde tiempos antiguos a lo largo de la historia. Afortunadamente, y a diferencia

de los primeros investigadores, hoy en d́ıa disponemos de un conjunto de complejas her-

ramientas matemáticas que suponen el pilar de la ciencia moderna en lo que se ha dado

en llamar el método cient́ıfico. Aśı mismo, se dispone de dispositivos que nos permiten

ver objetos muy pequeños para la simple vista, e incluso acceden a objetos aún más

pequeños que la longitud de onda de la luz visible que los ilumina.

Sin embargo, a pesar de la sofisticación de los instrumentos a nuestra disposición, con-

tinuamos tan fascinados por los colores brillantes de las plumas de los pájaros [1], la

iridiscencia de los caparazones de los escarabajos [2], y los colores vivos exhibidos por

ciertas especies de monos y de zarigüeyas [3], como lo estuvieron en su d́ıa los pioneros de

la ciencia. Éstos y muchos otros fenómenos ópticos ocurren porque, mediante un proceso

de selección natural, la Naturaleza ha equipado a diversas especies de pájaros, mariposas,

escarabajos y, más sorprendentemente, también a ciertos mamı́feros, con mecanismos

naturales para organizar complejas estructuras fotónicas a partir de part́ıculas de di-

mensiones menores de la longitud de onda. En un esfuerzo por comprender e imitar las

invenciones de la Naturaleza, muchos cient́ıficos han estudiado los elementos que forman

estos sistemas, y de una manera directa o indirecta, han logrado descubrir las fascinantes

propiedades de los nanosistemas metálicos y dieléctricos, como unidades especialmente

efectivas para localizar la luz [4–7], manipular su flujo [8–13] y controlar su interacción

con otro de los componentes básicos de la naturaleza, las moléculas [14–18]. Los cuatro

caṕıtulos de la tesis suponen una continuación de estos esfuerzos, en los que se presentan
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Resumen

cuatro contribuciones que pueden facilitar el camino hacia la comprensión y el control

de la luz.

El primer caṕıtulo de esta tesis describe nanosistemas diseñados para concentrar la luz

mediante la excitación de Resonancias Plasmónicas de Superficie Localizadas (LSPRs

por sus siglas en inglés), un fenómeno según el cual el campo eléctrico de una haz de luz

incidente induce oscilaciones coherentes de los electrones de conducción del metal. Estos

sistemas se han estudiado ampliamente tanto en trabajos teóricos como experimentales,

en los que la capacidad de localización y aumento del campo electromagnético en la na-

noescala han dado lugar a muchas aplicaciones tecnológicas, tales como las plataformas

sensóricas para bioloǵıa [19, 20], los sistemas que intensifican la señal de espectroscopias

ópticas, [5, 21–23], aśı como para establecer conexiones entre las excitaciones electrónicas

y fotónicas [24, 25]. Sin embargo, a pesar de los significativos avances logrados en la com-

prensión de su dinámica, las nanopart́ıculas metálicas continúan generando resultados

desconcertantes.

Un ejemplo de fenómeno dif́ıcil de explicar es la aparente inconsistencia en la posición

y anchura espectral de los picos de las resonancias plasmónicas al realizar una medida

espectroscópica de diferentes magnitudes: la extinción, la dispersión y el campo próximo

[26–29] inducidos por las nanopart́ıculas metálicas. Este peculiar efecto se ha estudiado

parcialmente mediante modelos que describen los plasmones como osciladores armónicos

amortiguados forzados cuyas resonancias son excitadas en el rango espectral del infrar-

rojo (IR) [30–33]. Sin embargo, paradójicamente, este simple modelo no es capaz de

reproducir las posiciones espectrales relativas de los correspondientes picos resonantes

en un caso paradigmático de excitación de plasmones localizados: una pequeña part́ıcula

de oro de dimensiones inferiores a la longitud de onda, resonante en el espectro visible.

En el Caṕıtulo 1 de esta tesis se estudia esta limitación, que se debe a la existencia de

una importante contribución de las transiciones interbanda del metal en el caso del oro,

que impiden una respuesta puramente plasmónica de las part́ıculas metálicas.

Para entender y resolver esta discrepancia en los diversos picos plasmónicos, se ha de-

sarrollado un modelo alternativo que puede ser utilizado satisfactoriamente en el caso de

part́ıculas metálicas caracterizadas por una función dieléctrica arbitraria, que presente

fuertes contribuciones de transiciones interbanda. mediante la aplicación de este modelo,

se demuestra y se explica la existencia de corrimientos espectrales en la comparación de

los picos de resonancias obtenidos en la sección eficaz de absorción, en la sección efi-

caz de dispersión, y en la intensidad del campo cercano. La metodoloǵıa desarrollada

en este caṕıtulo permite analizar en detalle y reinterpretar el papel de las transiciones

x



interbanda en el ensanchamiento y desplazamiento espectral de la respuesta óptica de

nanoparticulas metálicas resonantes en el espectro visible.

Otro aspecto de interés en torno a la respuesta de nanosistemas metálicos está rela-

cionado con la dinámica de los plasmones localizados. Los modelos más comunes asumen

que, una vez excitados, los plasmones debeŕıan exhibir oscilaciones con amortiguamiento

exponencial, estableciendo, por tanto, una relación directa entre la tasa de decaimiento

del plasmón y la anchura espectral de la resonancia. Sin embargo, un estudio más de-

tallado apunta que el decaimiento del plasmón no se limita en algunos casos a un simple

proceso exponencial [34]. Un análisis numérico de la dinámica de las excitaciones plas-

monicas permite estudiar este aspecto, en el que, efectivamente, se encuentra que los

plasmones inducidos en pequeñas nanopart́ıculas metálicas pueden llegar a exhibir una

dinámica no trivial debido a su acoplamiento con las transiciones interbandas. Esta

predicción podŕıa ser verificada mediante la utilización de pulsos de laser ultracortos,

como los utilizados en estudios recientes de la dinámica de plasmones en escalas de

tiempo de femtosegundos.

Tras explorar los efectos de la naturaleza amortiguada de las excitaciones en nanopart́ıculas

metálicas, esta tesis aborda el estudio de otros materiales que no sufren tales limitaciones.

En concreto, el Caṕıtulo 2 de la tesis estudia sistemas compuestos por resonadores de di-

mensiones microscópicas fabricados con materiales dieléctricos, que presentan un ı́ndice

de refracción alto. La utilización de sistemas micrométricos de estos materiales ha

sido un elemento fundamental en el desarrollo experimental de la comunidad de óptica

cuántica. Las prestaciones de este tipo de configuraciones han sido llevadas al ĺımite

submicrométrico recientemente en dos propuestas teóricas recientes de Aitzol Garćıa-

Etxarri et al. [35] y Andrey Evlyukhin et al. [36], que indican la posibilidad de utilizar

esferas submicrométricas de silicio en un rango de frecuencias del infrarrojo cercano. En

estos trabajos se demuestra que dichas nanoantenas puedan dispersar y localizar la luz

de una manera muy eficiente mediante la excitación de modos dipolares tanto eléctricos

como magnéticos. Las resonancias magnéticas podŕıan erigirse en una plataforma al-

ternativa respecto a los sistemas plasmónicos, al presentar la ventaja de la ausencia de

pérdidas. Además, los sistemas plasmónicos requieren un cuidadoso diseño que permita

obtener actividad magnética [37–39], mientras que los sistemas dieléctricos presentan

esta actividad de manera natural.

Las aplicaciones a las que dan lugar estos nuevos sistemas sin pérdidas son abordados en

el Caṕıtulo 2, donde se estudian nanoantenas dieléctricas como plataformas útiles para

aumentar la tasa de emisión espontánea de emisores dipolares eléctricos y magnéticos
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localizados en su proximidad. Se demuestra que estos sistemas pueden alcanzar presta-

ciones similares a las de sus análogos plasmónicos, mediante el acoplo de los emisores

con canales de decaimiento puramente radiativos, lo que permite mantener o incluso au-

mentar su eficiencia cuántica intŕınseca. Además de analizar las cotas del rendimiento

que se puede alcanzar en las antenas dieléctricas, se propone una descripción simplifi-

cada del aumento de la tasa de emisión espontánea, mediante un modelo que describe

la interacción entre el emisor dipolar y la excitación dipolar de la part́ıcula dieléctrica.

Esto puede hacerse gracias a la gran separación espectral entre los modos dipolares y

los de orden superior que presentan las estructuras dieléctricas.

El modelo de interacción dipolo-dipolo puede extenderse para analizar la respuesta de

una estructura de tipo d́ımero formada por dos part́ıculas dieléctricas, caracterizadas

por una polarizabilidad eléctrica y magnética arbitrarias. Se analiza en detalle la hib-

ridización de los modos dipolares de las part́ıculas individuales, y cómo esta hibridazión

da lugar a modos de tipo d́ımero que pueden ser clasificados de acuerdo a la simetŕıa

que presentan. Es especialmente reseñable que la enerǵıa de estos modos de tipo d́ımero

no se debe únicamente a la interacción entre pares homogéneos (eléctrico-eléctrico y

magnético-magnético) de los modos dipolares de las particulas individuales, sino que es

también necesario considerar la interacción electromagnética entre pares heterogéneos de

dipolos (eléctrico-magnético). Este estudio anaĺıtico se compara con cálculos numéricos,

lo que nos permite incorporar las modificaciones espectrales debidas a la forma y la

estructura de las nanopart́ıculas. Los resultados teóricos que explican las complejas hi-

bridaciones de los modos dieléctricos se han confirmado experimentalmente gracias a la

caracterización óptica de las estructuras de d́ımeros desarrolladas en colaboración con

el Laser Zentrum Hannover e.V.

En el último apartado del Caṕıtulo 2 analizamos las prestaciones de los d́ımeros dieléctricos

como antenas que intensifican la emisión de emisores individuales eléctricos o magnéticos

situados en la cavidad formada en el centro del d́ımero. Encontramos que los modos de

esta estructura de d́ımero pueden inducir un considerable aumento de la tasa de emisión

espontánea de los emisores dipolares, fundamentalmente debido al acoplo con modos

radiativos, manteniendo al mismo tiempo las altas eficiencias cuánticas incluso cuando

se incluyen las pérdidas intŕınsecas del silicio. Estos resultados permiten concluir que

los sistemas dieléctricos de dimensiones sub-micrométricas pueden ser utilizados como

elementos viables de una familia alternativa de antenas nanométricas y metamateriales.

Al derivar las expresiones que describen la intensificación de la tasa de decaimiento de

xii



los emisores dipolares acoplados a nanopart́ıculas dieléctricas en el caṕıtulo 2, se uti-

liza una metodoloǵıa sencilla: se expande el campo eléctrico originado por un emisor

dipolar eléctrico en una serie de armónicos esféricos vectoriales, y éstos son transforma-

dos, remplazando los campos eléctricos por campos magnéticos y, simultáneamente, el

emisor eléctrico por un emisor magnético (detalles indicados en el Apéndice A). Esta

trasformación es un caso espećıfico de la transformación dual más general, que mezcla

las componentes eléctricas y magnéticas del campo electromagnético a medida que éste

se propaga en un medio homogéneo. Sin embargo, tal y como se discute en el Caṕıtulo

3, esta transformación también se puede aplicar a los campos electromagnéticos en un

medio inhomogéneo. Podemos diferenciar dos casos en la aplicación de esta trasnfor-

mación. El primero, el caso macroscópico, requiere un medio homogéneo a trozos que

presente la misma relación entre la permitividad y la permeabilidad en todo el sistema.

El caso microscópico, en cambio, concierne a configuraciones aleatorias de part́ıculas dis-

persivas duales, es decir, part́ıculas con idéntica polarizabilidad magnética y eléctrica.

En esta tesis, analizamos este segundo caso en detalle, y demostramos la validez de

la transformada dual para un campo que se propaga en una distribución de part́ıculas

duales de silicio con dimensiones submicrométricas.

La transformación dual puede ser formulada utilizando su generador, el operador de

helicidad. De manera más espećıfica, si el sistema dual es iluminado con luz de helicidad

bien definida (es decir, si el campo incidente puede ser descompuesto en una serie de

ondas planas polarizadas circularmente de quiralidad fija), en este caso la luz dispersada

preserva su helicidad y, por tanto, también la quiralidad de la ondas planas polarizadas

circularmente que constituyen el campo dispersado. Es efecto puede constituir una nueva

herramienta para la caracterización de medios aleatorios.

Por último, en el Caṕıtulo 4 se considera el efecto de dispersión Raman no-resonante en

moléculas situadas en cavidades plasmónicas. La motivación de este estudio viene dada

por una serie de resultados e implementaciones recientes de este tipo de experimentos,

que han sido posibles como consecuencia de un mejor diseño de los substratos y soportes

para la realización de medidas de Dispersión Raman Aumentada por Superficie (SERS

por su acrónimo en inglés). Algunos de los resultados obtenidos con esta técnica de SERS

no pueden ser descritos mediante un tratamiento clásico del aumento de los campos

electromagnéticos dentro de las cavidades plasmónicas [40–42], y requieren el desarrollo

de una descripción cuántica de los campos electromagnéticos .

En este caṕıtulo presentamos un modelo más fundamental de la interacción no linear

entre los cuantos de excitación de la cavidad plasmónica y la estructura vibracional de
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la molécula, basada en la mecánica cuántica. Este modelo es capaz de describir efectos

que no pueden ser descritos por un tratamiento clásico y que detallamos a continuación:

(i) emergencia de dispersión Raman estimulada por fonones debido a una alta población

incoherente de los cuantos de vibración de la molécula; (ii) la dispersión anti-Stokes

depende de manera sorprendente de la frecuencia de la luz incidente y de la temperatura

local. Cabe apuntar que estos efectos se dan para valores realistas de los diferentes

parámetros.

Considerando las consecuencias de estos resultados para la interpretación de los es-

tudios experimentales, la predicción de la dispersión Raman estimulada en moléculas

individuales situadas en cavidades plasmónicas puede tener una gran importancia, y

puede apuntar nuevas v́ıas para intensificar la emisión Stokes y anti-Stokes, que son

intŕınsecamente débiles. A nuestro entender, este efecto no ha sido demostrado todav́ıa

en el laboratorio, pero los resultados presentados en esta tesis indican que algunos de

los experimentos actuales se realizan en condiciones muy similares a las expuestas aqúı,

que permitiŕıan, por tanto, poner de manifiesto estas observaciones.

Desde el punto de vista teórico, nuestro formalismo es exacto y abre nuevas posibilidades

para estudiar correlaciones clásicas y cuánticas entre los fotones emitidos por la cavidad.

Debido a la equivalencia formal entre el Hamiltoniano analizado en esta tesis para tratar

la interacción Raman y el usado en el estudio de sistemas optomecánicos cuánticos, el

esquema que presentamos en el último caṕıtulo de la tesis permite extender el estudio de

estos sistemas cuánticos a un nuevo régimen de valores de los parámetros optomecánicos.

En un sistema optomecánico Raman se pueden alcanzar fuerzas de acoplamiento relati-

vamente elevadas, observadas con anterioridad solamente para átomos fŕıos, y se pueden

encontrar de manera natural poblaciones térmicas muy pequeñas.

En resumen, los siguientes caṕıtulos de esta tesis presentan una serie de fenómenos

ópticos que rigen la respuesta y eficiencia de nanoantenas plasmónicas y dieléctricas.

Investigamos estos sistemas como posibles plataformas para estructurar y manipular el

flujo de la luz en la nanoescala, aśı como para aumentar su interacción con moléculas.

Los nuevos efectos que se predicen, tales como el decaimiento no exponencial de los

plasmones, la formación de modos heterogéneos en d́ımeros dieléctricos, la conservación

de la helicidad de la luz dispersada en un medio dual, o la emergencia de dispersión

Raman estimulada por fonones, puede encontrar aplicaciones directas en diversos sis-

temas nanofotónicos, y abrir nuevos caminos para un mejor control de la luz en escalas

inferiores a la longitud de onda.
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Introduction

At the very heart of this thesis, lies an effort to propose new effects related to the inter-

action of light with matter and to provide better explanations to a variety of reported

phenomena. The challenge we undertake is not a new one, as one could hardly imag-

ine a time in history where the very notion of light or the perception of colors, would

not trouble curious minds. Luckily, unlike the first discoverers, we are equipped with

an advanced mathematical framework, the cornerstone of modern science, the scientific

method, as well as with devices that allow us to see not only objects too small to be

observed with the sharpest sight, but even smaller than the wavelength of visible light.

And yet, despite all the sophistication of the available tools, we are still, just like the

pioneers of science, awed by the great show of bright coloring of the feathers of birds

[1], the iridescence of beetles’ shells [2] and vivid colors demonstrated by some species

of monkeys and opossums [3] (see Fig. 1). All these, and many other optical phenomena

occur because, through evolution, Nature has equipped birds, butterflies, beetles and,

somewhat surprisingly, certain mammals, with mechanisms to assemble subwavelength

particles into complex, photonics structures.

Therefore, in an effort to understand and mimic Nature’s inventions, scientists have been

studying building blocks of such systems, and uncovered the fascinating properties of

metallic and dielectric nanosystems that allow them to localize light [4–7], mold its flow

[8–13] and tune its interaction with another toy of Nature, molecules [14–18]. Following

their efforts, in the four chapters of this thesis we present four stepping stones, set up

to facilitate our progress towards an understanding and control over light.

The first chapter of this thesis describes nanosystems designed to focus light through the

excitations of localized surface plasmon resonances (LSPRs), a phenomenon in which the

electric component of incident illumination induces coherent oscillations of conduction
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Introduction

Figure 1: Structural coloration in the animal kingdom. (a) Photographs of butterfly
species (adapted from Ref. [1]). (b) Abdominal plane of the body of a female Japanese
jewel beetle Chrysochroa fulgidissima (adapted from Ref. [2]). (c) Male mouse opossum
(Marmosa robinsoni) with blue scrotum (adapted from Ref. [3]). The bright colors and
iridescence demonstrated by these animals is a result of a coherent scattering in photonic
structures, rather than pigmentation.

electrons in the metal. Such systems have been extensively studied both through exper-

imental and theoretical efforts, and found many applications as platforms for biosensing

[19, 20], enhanced spectroscopies [5, 21–23], as well as opened avenues to interfacing

electronic and photonic excitations [24, 25]. However, despite the significant progress in

the understanding of their dynamics, metallic nanoparticles continue to deliver baffling

results.

One example of such curious effects is the apparent inconsistency in the spectral positions

and widths of resonant features found in measurements of the extinction, scattering and

near-field spectra [26–29] of metallic nanoparticles. This peculiar effect has been partially

addressed by modeling localized plasmons, resonant in the infra-red (IR) spectral regime

as damped, driven harmonic oscillators [30–33]. However, this model unexpectedly fails

to reproduce the shifts between the spectral characteristics of the flagship of localized

plasmons, a small, subwavelength-sized gold nanoparticle resonant in the visible spectral

range. As we discuss in Chapter 1 of this thesis, this shortcoming is caused by the onset

2



Figure 2: Localization and enhancement of the electric field, E0, of an incident
planewave by a dimer of silver spheres of 35 nm radii.

of interband transitions in the metal, which hinder the purely plasmonic nature of gold

particles.

We therefore construct an alternative model which can be successfully applied to metallic

particles characterized by an arbitrary dielectric function, and develop it to demonstrate

and explain the spectral shifts between resonances observed in the absorption and scat-

tering cross sections, and in the spectra of the near-field intensity. This approach allows

us to dissect and understand the role of interband transitions in the broadening and

shifting of the optical response of metallic nanoparticles resonant in the visible spectral

range.

Another interesting aspect of the optical response of metallic nanosystems is related to

the dynamics of localized plasmons. Current models assume that, once excited, plasmons

should exhibit exponentially decaying oscillations, with the rate of the decay related to

the spectral width of the resonance. However, a more detailed study suggests that the

decay of the plasmon might not be a simple exponential process [34]. We explore this

possibility by analyzing numerically the dynamics of plasmon excitations and indeed find

that the plasmons induced in small metallic nanoparticles exhibit a non-trivial dynamics

due to their coupling to interband transitions. This prediction could be verified through

experiments, as ultrashort laser pulses have been recently employed to investigate the

dynamics of plasmons at femtosecond timescales.

Having explored the effects imposed by the lossy nature of the excitations in metallic

nanoparticles, we look towards other materials which would not suffer from such lim-

itations. As it turns out, systems comprising microscale resonators made up of high
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refractive index dielectrics have been a centerpiece of experimental setups in the com-

munity of researchers realizing quantum-optical microsystems. This type of design has

been recently proposed in the submicron regime by two publications from Aitzol Garćıa-

Etxarri et al. [35] and Andrey Evlyukhin et al. [36], who hinted on the possibility of

using submicron silicon spheres as antennas operating in the near-infrared regime. They

found that such nanoantennas can efficiently scatter and localize light through the exci-

tation of both electric and, somewhat surprisingly, magnetic dipolar modes (see Fig. 3).

This last feature would stand out as a tremendous advantage of these lossless systems

over the plasmonic ones, which require careful structuring to exhibit any magnetic ac-

tivity [37–39].

Figure 3: Scattering of light by a submicron silicon sphere. The electric (E0) and
magnetic (H0) components of the incident planewave induce orthogonal electric (p)
and magnetic (m) dipoles.

To explore the applications enabled by these new lossless systems, in Chapter 2 we em-

ploy dielectric nanoantennas as platforms for enhancing rates of spontaneous emission

from electric and magnetic dipolar emitters. We show that such systems can match

the performance of their plasmonic counterpartners, efficiently coupling the emitters to

purely radiative decay channels, thus retaining or even boosting their intrinsic quantum

efficiency. Furthermore, taking advantage of the large spectral separation between the
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dipolar and higher-order modes of the dielectric antennas, we propose a simplified de-

scription of the enhancement of the spontaneous emission rate by means of a model of

interaction between the dipolar emitter and the dipolar excitation in the particle.

An extension of this dipole-dipole interaction model can be further applied to understand

the response of a dielectric dimer structure, comprising two dielectric particles described

as scatterers with arbitrary dipolar electric and magnetic polarizabilities. We discuss

in detail how the dipolar modes of single spheres can hybridize, forming dimer modes

which are then classified through symmetry considerations. Interestingly, the energies of

these dimer modes are not governed exclusively by the interaction between homogeneous

pairs of single-particle dipolar modes (electric-electric and magnetic-magnetic), but also

by the interaction between heterogeneous pairs of dipoles (electric-magnetic). This an-

alytical work is compared with numerical calculations which allowed us to account for

the distortions of the shape and composition of the nanoparticles, and corroborated by

the experiments on dimer structures performed at the Laser Zentrum Hannover e.V.

In the last section of Chapter 2 we analyze the performance of dielectric dimers as an-

tennas for enhancing the emission from single dipolar electric and magnetic emitters

placed in the gap of the dimer. We find that the modes of the dimer structure dis-

cussed above can provide a significant enhancement of the rate of spontaneous emission

of dipolar emitters primarily through the coupling to radiation, while retaining high

quantum efficiencies even in the presence of intrinsic losses in silicon. We therefore con-

clude that dielectric submicron systems can serve as viable and robust building blocks

for alternative types of nanoscale antennas and metamaterials.

When deriving the expressions of the decay rate enhancement of dipolar emitters cou-

pled to dielectric nanoparticles in Chapter 2, we apply a simple trick: we expand the

electric field originated by an electric dipolar emitter into a series of vector spherical

harmonics, and transform it, replacing the electric fields with magnetic fields and, si-

multaneously, the electric emitter with a magnetic emitter (see Appendix A for details).

Such transformation is a special case of the general duality transformation which mixes

the electric and magnetic components of the electromagnetic field propagating in a ho-

mogeneous medium. However, as we discuss in Chapter 3, this transformation can be

also applied to electromagnetic fields in inhomogeneous media in two cases. The first,

macroscopic case, requires the piecewise-homogeneous medium to exhibit an identical

ratio of permittivity and permeability throughout the entire system. The second, mi-

croscopic case, applies to a random solution of dual scatterers, objects with identical

electric and magnetic polarizabilities. We analyze the microscopic case in detail, and
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demonstrate the validity of the duality transformation applied to a field propagating in

a distribution of dual submicron silicon particles.

Figure 4: Helicity in scattering on random media. If the medium is dual, (i.e. a
solution of dual nanoparticles with identical electric and magnetic polarizabilities), the
helicity is conserved in the single- and multiple scattering.

We also note that the duality transformation can be formulated through its generator,

an operator of helicity. Therefore, if a dual system is illuminated with light with a

well-defined helicity (i.e. the incident field can be decomposed into a set of circularly

polarized planewaves with identical handedness), then the scattered light will preserve

its helicity and, consequently, the handedness of the circularly polarized planewaves

making up the scattered field (see Fig. 4). This effect can be used as an additional tool

for characterizing random media.

Finally, in Chapter 4 we consider the effect of an off-resonant Raman scattering from

molecules placed in plasmonic cavities. This research is motivated by a recent surge of

novel results and implementations of such experiments, enabled by a better understand-

ing of the interaction between light and Raman-active molecules and the engineering of

efficient substrates for Surface Enhanced Raman Scattering (SERS). Among the variety

of reported results, some appear to escape the standard description based on the classical

treatment of the electromagnetic enhancement of fields inside the cavity [40–42].

We present a more fundamental, quantum-mechanical model of the non-linear interaction

between the quantized excitations of the plasmonic cavity, and the vibrational structure

of the molecule (see Fig. 5). This approach readily describes effects which are not en-

compassed by the classical framework: (i) we observe the onset of a phonon-stimulated
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Figure 5: (a) Schematic of a plasmonic cavity formed by a dimer of gold nanoparticles,
coupled to a molecule placed in the gap. (b) Schematic of the two-photon non-resonant
Stokes scattering between two vibrational states of a molecule (n = 0→ 1) mediated by
a virtual state |v〉 (dotted line). In a one-dimensional model discussed here, molecule
vibrates along an atomic coordinate X.

Raman scattering enabled by the large, incoherent populations of the quantized vibra-

tions of the molecule; (ii) we find an unexpected dependence of the anti-Stokes scattering

on the frequency of the incident laser and the local temperature.

From the experimental perspective, our prediction of the stimulated Raman scattering

from single molecules in plasmonic cavities should be of vital importance, as it opens a

new pathway to enhancing the intrinsically weak Stokes and anti-Stokes emission. While

this effect, to our best knowledge, has not been clearly demonstrated, our results indicate

that the experimental setups should be reaching the regime where such observations

would be possible.

On the theoretical side, our exact formalism opens avenues to studying classical and

quantum correlations of the photons emitted from the cavities. Furthermore, thanks to

the formal equivalence of our interaction Hamiltonian to that used for treating quan-

tum optomechanical systems, the theoretical scheme proposed takes the studies of such

systems to a novel parameter regime of relatively strong couplings, observed previously

only for cold atoms, and low thermal populations.

In summary, the following chapters of this thesis outline a set of optical phenomena

which govern the response and efficiencies of plasmonic and dielectric nanoantennas. We

investigate these systems as possible platforms for structuring and molding the flow of

light on the nanoscale, as well as for enhancing its interactions with molecules. Predicted

novel effects, such as the non-exponential decay of plasmons, formation of heterogeneous

modes in dielectric dimers, conservation of the helicity of light scattered in dual media,

or the onset of phonon-stimulated Raman scattering, should find applications in various
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nanophotonic systems, and open avenues to the enhanced control over light on the

subwavelength scale.
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Chapter 1

Revisiting spectral properties of

plasmonic nanoparticles with

strong interband contribution

“The horse was willing and allowed the man to place bridle and saddle upon

him. The man mounted hunted down the wolf and killed him. The horse joyful

and relieved thanked the man and said ‘Now that our enemy is dead, remove

the bridle and saddle and restore my freedom.’ Whereupon the man laughed

loudly and replied ‘The hell you say giddy-up Dobbin’ and applied the spurs

with a will.”

– Isaac Asimov, Foundation

A magnifying glass could easily be considered as one of the most fascinating devices

human kind has even invented. In the hands of a curious child it visibly increases

the sizes of investigated objects, making beetles grow tremendously, or shrinks them,

instantaneously moving insects beyond the hand’s reach. It can also darken paper, burn

skin on a sunny day or redirect light at a command. It appears that with just the right

magnifying glass, one could concentrate all the incoming light in an infinitely small spot.
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Chapter 1. Spectral characteristics of plasmonic nanoparticles

And yet, as we learn in school, that dream can never be realized, no matter how big the

lens, or the aperture of our magnifying glass is. This daunting result, formally known as

the diffraction limit, forbids us from focusing light on scales smaller than its wavelength

λ or, by reciprocity, discerning features smaller than λ.

Over the years and through some ingenuitive approaches, scientists have developed a

vast arsenal of tools that would help us to beat this limit, or at least to circumvent it.

Probably the most representative and timely examples of the latter approach are Stim-

ulated Emission Depletion (STED) [43] and Photoactivated Localization Microscopy

(PALM) [44].

Another path, that can be interpreted as an actual conquering of the diffraction limit,

stems from the remarkable ability of an object smaller than the wavelength of incident

light to act like an antenna, and transfer the energy and the information between the

propagating radiation and its immediate surroundings. Systems based on this principle

of operation are limited by the size of the nanoantennas, rather than the wavelength

of light, and can achieve resolutions which beat the diffraction limit in a spectacular

manner [45].

A particularly interesting implementation of this idea is found in metallic nanoparticles,

in which the electric component of the incident illumination can induce coherent oscilla-

tions of the free electron gas at the surface of the particles. Such excitations, dubbed as

localized plasmons, have been recognized as a versatile and tunable tool for engineering

of scattering and localization of light [4, 45, 46], enhancing its interaction with matter

[16, 47, 48], and opening avenues to new field-enhanced spectroscopies [33, 42, 49, 50].

However, despite an extensive theoretical effort, the exact dynamics of the decay of lo-

calized plasmons, which determines their lifetimes and their spectral linewidths, remains

unclear.

In this chapter we attempt to contribute to the discussion of these fundamental proper-

ties of plasmons. In order to avoid framing it exclusively in phenomenological terms, we

derive an analytical model of the optical response of a metallic nanoparticle, and analyze

its consequences in detail. To do this, we first briefly review the material properties of

metals and formally introduce the concept of plasmon resonance. We then proceed to

derive and analyze our model of the polarizability of a non-spherical nanoparticle and

discuss its predictions.
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1.1 Macroscopic description of metals

1.1 Macroscopic description of metals

In a first approximation, academic text-books [51–53] on solid state physics characterize

metal as a material with the optical, electrical and thermal properties determined by

the high density of conduction electrons1, which form the so-called free-electron gas. To

the community of optical physicists, the crucial elements of this picture are encapsulated

by the Drude-Sommerfeld model, which states that the dielectric function of the metal

εD is characterized by the density of conduction electrons n, their charge e and effective

mass me through a simple relationship

εD(ω) = 1−
ω2
p

ω2 + iγpω
, (1.1)

where γp describes the damping term proportional to the rate of electron collisions. In

SI units, used throughout this thesis, the plasma frequency ωp is given by

ωp =

√
ne2

meε0
, (1.2)

where ε0 is the permittivity of vacuum. The real and imaginary parts of the dielectric

function can be separated by rewriting εD as

εD(ω) = 1−
ω2
p

ω2 + γ2
p

+ i
γpω

2
p

ω(ω2 + γ2
p)
. (1.3)

We can thus expect that for the small collision rate, γp � ω, the material behaves as a

good metal with predominantly real and negative εD(ω) for ω < ωp. Before we analyze

the two typical choices for plasmonic systems, we briefly discuss two major corrections

to the Drude-Sommerfeld model.

Interband transitions

Let us step away for a moment from the classical model of free electrons oscillating in the

harmonic field of the incident light, and consider the effect of the excitation of a bound

electron to the conduction band due to the absorption of an incident photon. Naturally,

this process is only triggered if the photon carries sufficient energy. This phenomenon

can be analyzed by considering a damped, driven oscillations of an electron in a harmonic

1That is not true for astronomers who inexplicably define as metal any element different from hydro-
gen or helium.
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Chapter 1. Spectral characteristics of plasmonic nanoparticles

Figure 1.1: Real (left panel) and imaginary (right panel) part of the dielectric func-
tions of gold obtained by fitting the experimental tabulated data, εsca, from Johnson
and Christy [54, 55] (blue solid line), by considering a perfect Drude-Sommerfeld model,
εD, with ε∞ = 1 (dot-dashed green lines) and assuming a realistic Drude-Sommerfeld
model εD with ε∞ = 9.5 (dashed red lines).

potential [56], allowing us to introduce interband transitions (ITs) as corrections to the

Drude-Sommerfeld dielectric function in the form of narrow Lorentzian profiles.

Background permittivity

If we consider a metal in which ITs occur at frequencies much higher than the region of

interest, they will simply yield an almost-constant, real and positive contribution to the

dielectric function. We can therefore expect that in the spectral regimes far from any

interband transitions, the dielectric function ε will be given by the Drude-Sommerfeld

model with a real offset, which we will be referring to as the background permittivity ε∞:

εD(ω; ε∞) = ε∞ −
ω2
p

ω2 + iγpω
, (1.4)

Naturally, for the ideal Drude material, we have ε∞ = 1.

In this chapter we will be focusing our attention on one of the most commonly used

plasmonic materials - gold - and we will attempt to identify the optical properties of

gold nanoparticles which arise due to the deviation of this material from the free-electron

gas model. In Fig. 1.1 we compare the response of a free electron gas characterized by

a plasma frequency ωp = 2.15 × 1015 Hz (using the reduced Planck constant ~ we

can write ~ωp = 8.89 eV) and collision rate γp = 16 × 1012 Hz (~γp = 0.066 eV),

with the experimental data for gold provided by Johnson and Christy [54] (εsca, solid

blue line) and fitted to a series of analytical functions by Hao et al. [55]. Within the

Drude-Sommerfeld model of the dielectric permittivity εD we consider two values of the

background permittivity: ε∞ = 1 (dot-dashed green lines), and ε∞ = 9.5 (dashed red

12



1.1 Macroscopic description of metals

lines). The latter parameter is fitted to provide the best match of the Drude-Sommerfeld

model to the experimental data. While this approach yields very good fit for energies

below 2 eV, it also allows us to dissect the contribution from the interband transitions

which dominate the dielectric function for energies above approximately 2 eV.

1.1.1 Surface Plasmon Polaritons

Our motivation for paying so much attention to the Drude-Sommerfeld model of the

dielectric function and the deviations from it in the case of gold, is that the conduction

electrons in metal are one of the building blocks of a central concept in nano-optics,

surface plasmons polaritons (SPPs) [57–61]. As the name suggests, SPPs are collective

oscillations of the surface charge density coupled to electromagnetic waves.

Figure 1.2: (a) Schematic for the analysis of dispersion relation of SPPs. (b) Dis-
persion relations of the SPPs propagating along the air-gold interface calculated with
various dielectric functions derived with the Drude-Sommerfeld model (εD with param-
eters given in the legend) and with the literature data (εsca, Ref. [54]). Re(kSPP) and
Im(kSPP) denote the real and imaginary components of the SPP wavevector.
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Chapter 1. Spectral characteristics of plasmonic nanoparticles

More formally, SPPs are solutions of the Maxwell’s equations derived in the absence

of external excitation, and confined to the metal-dielectric interface. To get a firm,

mathematical grasp on the properties of SPPs, let us consider the Fresnel reflection

coefficients for an electromagnetic monochromatic planewave propagating in a dielectric

(characterized by a dielectric function ε1), impinging on the surface of a metal (εm)

spanning the x̂ŷ plane, as shown schematically in Fig. 1.2(a). Let us assume that both

the wavevector of this planewave k(1) and the polarization of the electric field lie in the

x̂ẑ plane. The Fresnel reflection coefficient of the p-polarized planewave, rp, can be then

derived as

rp =
εmk

(1)
z − ε1k

(2)
z

εmk
(1)
z + ε1k

(2)
z

, (1.5)

where k
(i)
z is the z component of the wavevector (perpendicular to the interface) in the

dielectric (i = 1) or metal (i = 2). Subscript p denotes the p (or TM) polarization of

the incident field. Using the dispersion relation of the wavevector(
k(i)
x

)2
+
(
k(i)
z

)2
=
(ω
c

)2
εi, (1.6)

where c is the speed of light in vacuum and ω is the frequency of the monochromatic

incident light, we can find that the reflection coefficient has a pole defined by the in-plane

component of the wavevector

k(1)
x = k(2)

x ≡ kSPP =
ω

c

√
ε1εm
ε1 + εm

. (1.7)

For future reference, we can also write down the expressions for the normal (z) compo-

nents of the wavevectors:

k(1)
z =

ω

c

√
ε2

1

ε1 + εm
, k(2)

z =
ω

c

√
ε2
m

ε1 + εm
. (1.8)

Let us for a moment assume that the dielectric function of the metal is purely real. Then,

for the kSPP to describe the non-decaying electromagnetic modes propagating along the

surface, kSPP has to be real, imposing the following conditions:

ε1εm < 0, ε1 + εm < 0, (1.9a)

or

ε1εm > 0, ε1 + εm > 0. (1.9b)

We can winnow through these two cases by imposing yet another condition for the SPPs:
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1.1 Macroscopic description of metals

they should be confined to the interface. In mathematical terms, this requirement calls

for a non-zero imaginary component of wavevectors k
(1)
z and k

(2)
z defined in Eq. (1.8),

a condition only fulfilled if the sum of the dielectric functions is negative. We thus

discard the case presented in Eq. (1.9b) and consider the inequalities in Eq. (1.9a) as

the conditions for the presence of SPP modes.

It can be further shown that in the presence of weak losses in the metal (that is, the

dielectric function εm = ε′m + iε′′m follows |ε′′m| � |ε′m|) the complex wavevector kSPP is

approximately given by

kSPP =
ω

c

√
ε1εm
ε1 + εm

≈ ω

c

√
ε1ε′m
ε1 + ε′m

(
1 + i

ε1ε
′′
m

2ε′m(ε1 + ε′m)

)
. (1.10)

For a metal described by the Drude-Sommerfeld model introduced earlier and character-

ized by small intrinsic losses, the pole of kSPP can thus be found at the surface plasma

frequency

ωSPP ≈
ωp√

ε1 + ε∞
. (1.11)

This feature is illustrated in Fig. 1.2(b), where we plot the dispersion relation of the

SPPs (Eq. (1.7)) induced at the interface between air (ε1 = 1) and gold, calculated us-

ing different models of the dielectric function of gold. The simplest dispersion, marked

with the solid red line, can be found for the lossless Drude-Sommerfeld model εD, with

background permittivity ε∞ = 1 and plasma frequency ωp = 2.15×1015 Hz. In the small

kx wavevector limit the dispersion asymptotically converges to the light line (blue line),

which describes the dispersion relation of light propagating in air, with the wavevector

parallel to the interface. On the other hand, for large wavevectors, the SPPs asymptot-

ically converge to ωSPP (~ωSPP = ~ωp/
√

2 ≈ 6.3 eV in this model). The fact that the

dispersion of SPPs does not cross with the light line (and lies outside of the light cone

defined as ckx < ω) implies that the SPPs cannot couple to free radiation in air, that

is, neither do they radiatively decay, nor can they be excited by the incident planewave

illumination. Various techniques have been proposed to circumvent this limitation, for

example relying on breaking the translational invariance of the interface by introducing

local scatterers or gratings on the surface [62, 63].

The dashed lines in Fig. 1.2(b) correspond to the more realistic Drude-Sommerfeld

model for gold with γp = 16 × 1012 Hz (or ~γp = 0.066 eV) and ε∞ = 9.5. Both the

real and imaginary components of kSPP (depicted with orange and green dashed lines,

respectively) exhibit the resonant behavior for the frequency ωSPP defined in Eq. (1.11)

15



Chapter 1. Spectral characteristics of plasmonic nanoparticles

(~ωSPP = ~ωp/
√

10.5 ≈ 2.8 eV in this model). Interestingly, the dispersion depicted

with the orange dashed line appears to have two branches, one laying outside of the

light cone, denoting the SPPs and bounded in energy by the surface plasmon frequency,

and a high-energy one, found inside the light cone. The latter branch describes the

bulk plasmons (although we should keep in mind that, as can be easily shown from

Eq. (1.1) and the following discussion, for ω > ωp/
√
ε∞ the dielectric function becomes

predominantly real and positive and the plasmonic nature of the excitations is lost).

Finally, with the dot-dashed lines we denote the SPP dispersion calculated with the use

of the dielectric function from the literature [54] which accounts for interband transi-

tions and thus yields a significantly broader spectrum of the imaginary part of kSPP

(Im(kSPP)). This difference between the Drude-Sommerfeld model and the realistic di-

electric function, which for gold becomes striking in the most interesting spectral region

near the surface plasmon frequency, will be the focus of this chapter.

1.1.2 Localized Surface Plasmons

The coupling between the electromagnetic field and the collective oscillations of the elec-

tron gas can be of course induced also in finite systems, which do not exhibit translational

invariance. The first example of such localized surface plasmon resonances (LSPRs), is

provided by considering the scattering of light by a small metallic sphere of radius a and

the dielectric function εm, embedded in a homogeneous dielectric medium (ε1) and illu-

minated by a monochromatic planewave with frequency ω and wavenumber k = ω/c
√
ε1.

Similarly as in the previous section, we will indirectly investigate the onset of LSPRs

by identifying resonant features in the mathematical formulas governing their scattering

and absorption properties. In this case, we consider the respective cross-sections of the

sphere which, in the quasi-static limit (denoted by superscript qs), ka� 1, are given by

σqs
sca(ω) =

k4

6π
|αqs(ω)|2, (1.12a)

σqs
abs(ω) = kIm[αqs(ω)]. (1.12b)

The dipolar polarizability of the sphere αqs is defined as

αqs(ω) = 4πa3 εm(ω)− ε1

εm(ω) + 2ε1
. (1.13)
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1.1 Macroscopic description of metals

The usual definition of the LSPR frequency is based on the Rayleigh condition for the

pole of αqs

Re[εm(ω)] + 2ε1 = 0, (1.14)

In the most elementary case of the Drude-Sommerfeld sphere with low losses and ε∞ = 1,

in air, we arrive at the trivial solution for the dipolar resonance frequency

ωLSPR =
ωp√

3
. (1.15)

As we increase the background permittivity or the permittivity of the medium, this

frequency will red-shift according to

ωLSPR =
ωp√

2ε1 + ε∞
. (1.16)

The polarizability of the sphere governs the amplitude and the phase of the oscillating

dipole p of the polarized particle, induced by the electric field of the incident illumination

E0,

p = ε0ε1α
qsE0. (1.17)

This dipole, associated with the oscillations of the electrons inside the entire volume of

the metal, can thus trigger an oscillating concentration of electrons at the boundaries of

the particle, and induce a significant enhancement of the electric field near its surface.

Examples of metallic nanostructures, such as a sphere, a dimer and an ellipsoid are

shown in Fig. 1.3, with their corresponding scattering and absorption spectra, calculated

using Lumerical FDTD software [83], and the distributions of electric fields at resonance

wavelengths. The three selected systems are a typical choice for plasmonic nanoantennas,

with numerous applications spanning from enhancing the incident field for field-enhanced

spectroscopies [21, 64], through sensing of changes in the dielectric response of the

medium, [65–67] to optical trapping and manipulation of other nanoscale objects [68, 69].

However, despite the extensive effort devoted to the study of these structures, only for

the first of the listed shapes an analytical model which would describe exactly the optical

response, has been proposed by Gustav Mie [70] (see Appendix A for a discussion of the

Mie theory). In the following section of this chapter, we discuss an approximated model

developed to describe the response of ellipsoidal particles. Furthermore, in Chapter 2

we discuss the dipole-dipole approach for the analysis of dielectric dimer structures.
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Figure 1.3: Scattering and absorption spectra (left) and distributions of the electric
fields (right) at the resonant wavelengths calculated for three plasmonic gold nanosys-
tems in vacuum: (a) a single sphere, (b) a dimer, (c) an ellipsoid. Radius of the spheres,
as well as the minor radius of the ellipsoid, is set to 35 nm, and the major radius of the
ellipsoid is 70 nm. The systems are illuminated with light polarized parallel to their
long symmetry axis. Calculations were performed using the Finite Difference Time
Domain (FDTD) method implemented in the Lumerical FDTD software [83], using
literature data on dielectric function of gold [54].
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1.2 Models of polarizability

1.2 Models of polarizability

As we have mentioned above, we attempt to find a model for the dipolar polarizability

of a non-spherical plasmonic scatterer, which considers all the aspects of the complex

interband structure in the radiative and nonradiative optical response. We will begin

by introducing the model in which plasmonic excitation in an arbitrarily shaped, small

metallic nanoparticle is described as a damped, driven harmonic oscillator, and discuss

its limitations. Afterwards, we will turn our attention to another approach, which also

describes the polarizability of ellipsoidal nanoparticles but, unlike the previous model,

does not require an extensive fitting of the parameters of the model.

1.2.1 Plasmon as a damped harmonic oscillator

In the contributions by Chen et al. [30] and Zuloaga et al. [31], the authors consider lo-

calized plasmons as driven damped harmonic oscillators (HOs) and relate the amplitude

of their oscillations to the frequency-dependent polarizability of a particle. The harmonic

oscillator, a workhorse of classical and, as we will discuss later, quantum physics, has

been successfully applied to model the hybridization in plasmonic nanosystems [71, 72],

exciton-plasmon coupling [73, 74] and numerous other effects related to plasmonic exci-

tations [32, 75, 76]. On the other hand, descriptions based on HO formalism often serve

merely as toy-models, since they require extensive a posteriori fitting of parameters to

describe experimental situations, and are therefore rarely seen as a proper tool to make

quantitative predictions. Below we derive a model based on HO which demonstrates

both of these characteristics.

Let us first follow the concept coined in Refs. [30, 31] and consider a driven, one-

dimensional, damped harmonic oscillator whose dynamics is governed by the simple

equation for the displacement x(t)

m
d2

dt2
x(t) = −kx(t)−mΓNR

d

dt
x(t) + F0e

iωt. (1.18)

The HO is characterized by its mass m, spring constant k = ω2
0m related to the natural

frequency of the oscillator ω0, an abstract damping parameter ΓNR and the external

harmonic force F0e
iωt oscillating at generic frequency ω. We should note that in this
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Chapter 1. Spectral characteristics of plasmonic nanoparticles

simplest model both the damping parameter and the spring constant are frequency-

independent. The usual ansatz

x(t) = D(ω)eiωt, (1.19)

leads to the explicit expression for the response function D(ω)

D(ω) =
F0

m

1

ω2 − ω2
0 + iΓNRω

. (1.20)

It can be easily shown that the amplitude of the oscillations given by |D(ω)|2 peaks at

a frequency lower, ωamp, than ω0

ωamp =

√
ω2

0 −
Γ2
NR

2
, (1.21)

which converges to ω0 for the vanishing damping parameter ΓNR. In fact, in the regime

of very narrow resonances (ΓNR � ω0), we can approximate the response function D(ω)

around the resonance ω0 by a Lorentzian profile, DLor(ω), as

D(ω) ≈ DLor(ω) =
F0

2mω0

1

ω − ω0 + iΓNR/2
. (1.22)

The time-averaged power absorbed by the oscillator, P (ω), can be calculated as the real

part of the product of the first time derivative of the oscillator’s displacement and the

complex conjugate of the applied force, leading to

P (ω) = mΓNRω
2|D(ω)|2. (1.23)

The friction term proportional to ΓNRdx/dt, which we have introduced in the dynamics

equation of the harmonic oscillator (Eq. (1.18)), was meant to describe the internal

damping (Kats et al. [32]), intrinsic and radiative damping (Zuloaga et al. [31]) or

simply damping (Chen et al. [30]). We propose a more accurate description of this term

in the later part of this chapter, and for the purposes of this section, simply refer to

it, and to the dissipation introduced by it as non-radiative damping or absorption. To

reflect this interpretation, from here on we replace coefficient ΓNR with ΓA.
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1.2 Models of polarizability

1.2.1.1 Radiation reaction

While for small and lossy metallic particles the absorption is the dominant channel of

energy dissipation, the optical response of larger particles is partially determined by the

radiative dissipation channel. We can include this effect into the presented HO model

by adding an Abraham-Lorentz term [77, 78] as the force FR

FR(t) =
q2

6πε1ε0c3

d3

dt3
x(t) = ΓR

d3

dt3
x(t) (1.24)

to the right-hand side of Eq. (1.18). Note that here we have introduced the charge q,

since we need to specify that the energy loss is related to the oscillations of q. Following

the prescription used earlier, we can solve the new dynamical equation and arrive at the

modified response function

D(ω) =
F0

m

1

ω2 − ω2
0 + i(ΓAω + ΓRω3)

. (1.25)

If we now return to the physical picture of the dipole p(ω) = qx(ω) induced in a small

metallic particle illuminated by the electric component E0 of the incident light (so that

F0 = qE0), we obtain from Eqs. (1.19) and (1.25)

p(ω) =
q2

m

1

ω2 − ω2
0 + i(ΓAω + ΓRω3)

E0 = ε0ε1α
HO(ω)E0, (1.26)

where we have introduced the polarizability of the particle αHO. We can thus interpret

the amplitude function |D(ω)|2 as the strength of the dipole, which is a real function

governing the intensity of the electric near-field of the dipolar mode of the particle.

The approximated spectral position of the peak of this new amplitude |D|2, which we

label as ωHO
α , in the limit of naarrow profile (where ΓRω

3 ≈ ΓRωω
2
0), is given as

ωHO
α ≈ ω0

√
1− (ΓA + ω2

0ΓR)2

2ω2
0

. (1.27)

Having differentiated between the absorption and scattering decay channels, we can write

the expression for the power dissipation, split into the absorption, PA, and scattering,

PR powers

PA(ω) = mΓAω
2|D(ω)|2, (1.28a)

PR(ω) = mΓRω
4|D(ω)|2, (1.28b)
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and derive simple approximations to the spectral positions of the peaks of these func-

tions:

ωA ≈ ω0, ωR ≈ ω0

√√√√ 1

1− (ΓA+ω2
0ΓR)2

2ω2
0

≈ ω0

[
1 +

(
ΓA + ω2

0ΓR
2ω0

)2
]
. (1.29)

We can therefore predict, using relationships listed in Eqs. (1.27) and (1.29) that if

the optical response of a plasmonic particle can be described by the HO model with

a friction term as in Eq. (1.18), and the radiation correction expressed through the

Lorentz-Abraham force (Eq. (1.24)), then the frequencies of the spectral peaks of the

amplitude function |D|2 (ωHO
α ), the absorbed power PA (ωA) and the scattered power

PR (ωR) follow the inequalities

ωHO
α < ωA < ωR. (1.30)

In previously mentioned references, Kats et al. [32], Zuloaga et al. [31] and Chen et al.

[30] listed a number of antennas which follow Eq. (1.30). An experimental illustration of

these properties was also provided by Alonso-Gonzalez et al. [33]. We should however

note that the last three reports only considered the shift between the extinction and the

amplitude peaks. Consequently, Ref. [32] is possibly the clearest theoretical demonstra-

tion of the inequality given in Eq. (1.30), illustrated by the calculations of the optical

response of gold nanowires resonant in the IR regime (4 − 10 µm). Importantly, the

authors also point out that this model should break down in the visible range. We will

pick up this issue later in this chapter to unveil the influence of the band structure on

the spectral response of nanoparticles.

1.2.2 Dynamic depolarization

We can wonder whether one could easily improve this simple HO model. The most

striking shortcoming of this description is the fact that so many of the parameters: ω0,

ΓA and ΓR (or q) need to be fitted, or otherwise estimated. Luckily, we can find a

less ambiguous description proposed in a seminal contribution by Meier and Wokaun

[79]. For a detailed summary of this work and the following contributions, we direct the

reader to the report by Moroz [80].
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1.2 Models of polarizability

Meier and Wokaun in a very short, but tremendously insightful paper, “Enhanced fields

on large metal particles: dynamic depolarization”, introduced the concept of the depo-

larizing field, Edep, which, together with the electric field E0 of incident light, induces a

polarization in the metallic particle

P = ε0(ε− 1)(E0 + Edep). (1.31)

The depolarizing field Edep(r) at position r is calculated by assigning a dipolar moment

dp(r′) to each volume element dV , and integrating the electric field produced by dipoles

dp(r′) at position r, expressed through the Green’s function
↔
GE(r′ − r) (see Eq. (2.12)

for a definition and the discussion of the Green’s functions) [78]. A similar idea lies

at the center of the discrete dipole approximation (DDA) [77, 81]. However, unlike in

the DDA, we avoid the cumbersome self-consistent calculations of the dipolar moments

dp(r) by assuming that the polarization P is homogeneous throughout the volume V

of the particle (arriving at dp(r) = PdV (r)), and we calculate the depolarization field

induced by the polarization P only at the geometric center of the particle. For the

incident harmonic illumination polarized along the ẑ axis we use the definition of the zz

component of the Green’s function in spherical coordinates,

[↔
GE(r′ − r)

]
zz

=
eikr

4πr

[(
1 +

ikr − 1

k2r2

)
+

3− 3ikr − k2r2

k2r2
cos2 θ

]
(1.32)

with the coordinate origin at the center of the particle, and θ and r denoting the az-

imuthal and radial coordinates, respectively [56]. By expanding the exponential eikr

up to the k3 order, we arrive at the following expression for the z component of the

depolarizing field, Edep,z, at the center of the sphere, related to the z component of the

intergrated polarization PzdV (r)

Edep,z(r) =
1

4πε0

∫
V

[
1

r3
(3 cos2 θ − 1) +

k2

2r
(cos2 θ + 1) + i

2

3
k3

]
PzdV (r). (1.33)

This expression was first derived by Meier and Wokaun in Ref. [79], and the resulting

model was later dubbed as Meier-Wokaun Long Wavelength Approximation (MWLWA)

[80].

In Eq. (1.33) we can thus clearly identify the contributions from the near-, intermediate-

and far-field components of the Green’s functions, which will give rise to:

• Geometric static depolarization factor L.
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• Geometric dynamics depolarization factor D.

• Radiation reaction term proportional to the total induced dipole.

These three terms can be conveyed as:

Edep,z = −4π

(
L− k2V

4π
D + i

k3V

6π

)
Pz
ε0
. (1.34)

Let us for example consider a sphere of radius a. In the spherical coordinates the integral∫
V dV is transformed into 2π

∫ a
0

∫ π
0 r2 sin θ dr dθ, and the integration of the second and

the third terms in Eq. (1.33) is straightforward. However, certain care needs to be taken

when calculating the static depolarization factor [80]. With that in mind, we arrive at

Lsphere =
1

3
, Dsphere = 1. (1.35)

We can consider now the sphere as a special case of a prolate (or oblate) ellipsoid with

the major and minor radii: a> and a<, respectively, for incident light polarized along the

major axis of the particle. In this case the depolarization coefficients can be expressed

through the ellipticity parameter e = (a2
> − a2

<)/a2
> as

L =
1− e2

e2
[−e+ arctanh(e)], D =

3

4

(
1 + e2

1− e2
L+ 1

)
. (1.36)

We can now plug Eq. (1.34) back into Eq. (1.31) and, after some elementary algebra,

arrive at the expression for the microscopic polarizability α̃, Pz = ε0α̃E0,z, induced by

the z component of the incident electric field E0,z:

α̃(ω) = −ξ
{[
ω2 − ξ

(
L− Re

1

ε(ω)− 1

)]
+ iξ

[
−Im

1

ε(ω)− 1
+
k3V

6π

]}−1

(1.37)

where ξ = 4πa>c
2/(DV ). Applying again the assumption that the polarization is homo-

geneous within the volume of the particle, we can relate α̃ to a more familiar polarizabil-

ity of the particle α = V α̃. In the following paragraphs we interpret the terms appearing

in this formula, and justify the somewhat artificial division of the term proportional to

(ε− 1)−1 introduced above.
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Restoring force and the Lamb shift

In the first square brackets of Eq. (1.37) we find the following term:

− ξ
(
L− Re

1

ε(ω)− 1

)
, (1.38)

which quantifies the restoring force (which in the simplest harmonic oscillator model we

considered as a constant ω0) given by the sum of the static depolarization factor L and

the dispersive correction, which we identify as the Lamb-shift. We plot this contribution

in Fig. 1.4 with a solid blue line, considering the experimental dielectric function [54],

εsca, fitted with a series of Lorentzian profiles [55]. The other blue lines in Fig. 1.4

correspond to the Lamb shift calculated within the Drude model of permittivity εD(ω)

given by Eq. (1.4) with background permittivities of ε∞ = 9.5 (dashed blue line) and

ε∞ = 1 (dotted blue line).

Figure 1.4: Lamb-shift (Re{[ε(ω)− 1]−1}, blue lines) and loss function (−Im{[ε(ω)−
1]−1}, orange lines) calculated using three prescriptions for the dielectric permittivity
ε: Johnson-Christy [54] (εsca, solid lines), Drude with ε∞ = 9.5 (εD(ε∞ = 9.5), dashed
lines) and Drude with ε∞ = 1 (εD(ε∞ = 1), dotted lines).

Radiative and non-radiative broadening

The second square bracket in Eq. (1.37),

ξ

[
−Im

1

ε(ω)− 1
+
k3V

6π

]
, (1.39)

contains the previously recognized Abraham-Lorentz term which describes the radiation

reaction, and the non-radiative contribution. Let us consider on the former, less familiar
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term. Within the three models of dielectric function discussed above, we can calculate

the loss function −Im{[ε(ω) − 1]−1}, and plot it in Fig. 1.4 for the three models of

permittivity: εsca (solid orange line), εD(ε∞ = 9.5) (dashed orange line) and εD(ε∞ = 1)

(dotted orange line).

In the simplest case of the free-electron gas model (ε∞ = 1), the Lamb shift and the loss

functions are given by

− 1

ε(ω)− 1
=

(
ω

ωp

)2

+ i
ωγp
ω2
p

. (1.40)

This case was recently analyzed in detail by Zorić et al. [82], and led to simple expressions

for the frequency and width of the resonance. If we further simplify this model by

including the small Lamb shift into the natural frequency ω0, we will arrive at yet

another model of polarizability αD:

αD(ω)−1 ∝ ω2 − ω2
0 + iξ

(
ωγp
ω2
p

+
k3V

6π

)
. (1.41)

This form of polarizability is reminiscent of the expression for the amplitude of a damped

harmonic oscillator, D(ω), introduced in Eq. (1.25), derived originally by considering

the non-radiative friction-like damping term proportional to γp (ΓA in the HO model

corresponds to ξγp/ω
2
p) and the radiation reaction term (with ΓR given by ξV/(6πc3)).

In Fig. 1.4 we show that, while the approximation of ε by the free electron gas yields a

good description of the polarizability for energies below 1 eV in the case of gold, for lower

frequencies, it dramatically underestimates both the Lamb shift and the loss function,

yielding narrower, blue-shifted resonances. The inclusion of the background permittivity

further allows to dissect the contribution from interband transitions in gold above 2 eV.

1.2.2.1 Scattering and absorption cross sections

To further examine the effect of the different contributions to the permittivity in the

optical response of plasmonic scatterers, we define the scattering σsca and absorption

σabs cross-sections as

σsca =
k4

6π
|α(ω)|2, (1.42a)

σabs = − k
V

Im
1

ε(ω)− 1
|α(ω)|2. (1.42b)

These definitions can be found by comparing the powers dissipated into absorption and

scattering with the intensity of the incident illumination. We note that if the metal
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is described solely by the free-electron gas, the above definitions of σsca and σabs yield

expression proportional to the powers scattered (PR, Eq. (1.28b)) and absorbed in the

nanoparticle (PA, Eq. (1.28a)), obtained from the HO model (Eq. (1.26)).

Figure 1.5: (a) Scheme of plasmon excitation and decay channels in a generic metallic
scatterer. Light incident at the metallic nanoparticle, E0, excites a dipolar charge
distribution within the metal p. The induced dipole then scatters its energy into
radiative channels (σsca), or interacts with itself in a two-fold manner, yielding two
non-radiative effects: depolarization leading to the Lamb shift of the plasmon energy,
and Ohmic losses (σabs). The intensity of the electric field in the near-field region Inf is
proportional to the amplitude function |α|2. (b,c) Scattering (blue lines) and absorption
(green lines) cross sections of a gold ellipsoid (radii (b) (a<, a>) = (35, 35) nm, (c)
(a<, a>) = (35, 80) nm) illuminated with light polarized along the major axis. The
cross sections were calculated using FDTD method [83] (solid lines) and the Maier-
Wokaun long wavelength approximation (MWLWA) model [79] (dashed lines) with the
use of literature dielectric function εsca. The red-shaded area depicts the profile of the
amplitude of the oscillations of the plasmon |α|2 derived from the MWLWA.

We illustrate the applicability of the model based on the MWLWA in Fig. 1.5, where we

plot the scattering (σsca, solid blue line) and absorption (σabs, solid green lines) cross

sections of gold ellipsoids with minor radii a< = 35 nm and aspect ratios of (b) 1 and (c)

2 calculated using FDTD Lumerical software [83] with the Johnson-Christy dielectric

function of gold. The dashed lines represent the profiles predicted by the analytical

model described above. The red-shaded profiles denote the amplitude function |α|2.

27



Chapter 1. Spectral characteristics of plasmonic nanoparticles

Interestingly, for both antennas analyzed in Fig. 1.5, the absorption peaks at a higher

energy than the scattering, in direct violation of the second inequality in Eq. (1.30). By

considering the elementary examples of gold nanoantennas, we will show below that this

is a general phenomenon characteristic of nanoantennas operating in the visible regime

(denoted by superscript vis), and that Eq. (1.30) should be replaced by a partially

reversed relationship:

ωvis
α < ωvis

R < ωvis
A . (1.43)

1.2.3 Systematic study of gold nanorods

The results shown in Fig. 1.4, as well as the analysis of the Lamb shift and loss func-

tion given by Eq. (1.40) suggest that the reversal of the inequality between the peak

frequencies of the scattering and the absorption is related to the deviation of the dielec-

tric function of the metal from the free electron gas model. To analyze this process in

a systematic manner, in Fig. 1.6 we plot with solid lines the spectral positions of the

peaks of the polarizability |α(ω)|2 (red lines), scattering (solid blue lines) and absorp-

tion (solid green lines) cross sections for gold ellipsoidal nanoparticles with minor radii

of a< = 35 nm and major radii from a> = 35 nm to a> = 140 nm. The profiles were

obtained with the analytical model presented earlier, for three dielectric functions: (a)

the experimental εsca, (b) the Drude-Sommerfeld model with background permittivity

εD(ε∞ = 9.5) and (c) the ideal free electron gas model described by Drude-Sommerfeld

model with background permittivity ε∞ = 1.

The results shown in Fig. 1.6(a) identify an anomalous blue-shift of the absorption

peak with respect to the scattering maximum in gold nanoparticles resonant in the blue

part of the visible range. In the left inset of Fig. 1.6(a) we zoom in on the region of

parameters where a crossing between the scattering and absorption peak frequencies

occurs. Surprisingly, this effect is identified at around 1.7 eV, far below that of the

dominant interband transition (2.5 eV), suggesting that the resonant contribution from

this IT is not the only factor that promotes the blue-shifting of the absorption cross-

sections. In fact, as we show in Fig. 1.6(b), the same anomalous, albeit significantly

weaker, shift occurs for gold described by the Drude model with ε∞ = 9.5 (see the left

inset in Fig. 1.6(b)). For metal described with an ideal Drude model (with ε∞ = 1),

we retrieve the results reported previously for nanoantennas operating in the near-IR

regime, which follow Eq. (1.30).
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Figure 1.6: Spectral positions of the maxima of the amplitude function (|α|2, red
lines), scattering (σsca, blue lines) and absorption cross sections (σabs, green lines), for
gold ellipsoids with minor radii of 35 nm and major radii from 35 to 120 nm. The
solid and dashed lines of scattering and absorption peaks correspond to the results
of the MWLWA model and the values of ωR, ωA predicted by the simple analytical
formulas given in Eqs. (1.48b) and (1.48a), respectively. The three panels correspond
to various dielectric functions of gold used for calculations: (a) the experimentally
measured permittivity εsca [54, 55], (b) Drude model with background permittivity
εD(ε∞ = 9.5), (c) Drude model of a pure free electron gas εD(ε∞ = 1).

1.2.3.1 Spectral shifts - analytical model

To estimate the spectral shifts between the spectral positions of the amplitude, scattering

and absorption peaks, we first consider the Taylor expansion of the amplitude |α|2 around

its resonance frequency ωα defined as(
d

dω
|α(ω)|2

)
ω=ωα

= 0, (1.44)

arriving at

|α(ω)|2 ≈ |α(ωα)|2 − χ

2
(ω − ωα)2, (1.45)
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where χ = −
(
d2

dω2 |α(ω)|2
)
ω=ωα

. We can also expand the prefactors found in the expres-

sions for the absorption (Eq. (1.42b)) and scattering (Eq. (1.42a)) cross sections, fabs

and fsca, respectively, as

fabs(ω) = − k
V

Im
1

ε(ω)− 1
≈ fabs(ωα) + (ω − ωα)βabs, (1.46a)

fsca(ω) =
k4

6π
≈ fsca(ωα) + (ω − ωα)βsca. (1.46b)

Then, by writing the conditions for the peak of either cross section as

|α(ω)|2fabs(ωA) = 0, |α(ω)|2fsca(ωR) = 0, (1.47)

inserting the expansions listed above and dropping the quadratic term ∝ (ω − ωα)2, we

can find the approximated solutions

ωA ≈ ωα +
βabs|α(ωα)|2

χfabs(ωα)
, (1.48a)

ωR ≈ ωα +
βsca|α(ωα)|2

χfsca(ωα)
. (1.48b)

The peak energies calculated with the equations above are depicted in Fig. 1.6 with

dashed lines, and reveal a remarkable agreement with the predictions of the analytical

model of polarizability. Interestingly, if the shifts were dependent on the prefactors fabs

and fsca solely through their derivatives (βabs and βsca, respectively) and not their values

(fabs(ωα) and fsca(ωα), respectively), as was suggested in earlier reports, the crossing

point between blue and green lines in Fig. 1.6(a) would be found for higher energies,

around 2 eV.

1.2.4 Tracing the decay of plasmons in time

Let us now consider the time-dynamics of the plasmon excitation. In the simplest

picture, plasmons are assumed to decay in an exponential manner, with the decay rate

related to the full width at half maximum (FWHM) of the amplitude profiles |α|2 [84].

This framework has been widely accepted and applied in the analysis of the attosecond

streaking spectroscopy [85–87] and recently explored in experiments with femtosecond

pulses [88]. In this subsection we attempt to question this assumption by accessing the

dynamics of the plasmon by Fourier transformation of the polarizability α. As a side
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1.2 Models of polarizability

Figure 1.7: Polarizability profiles of gold ellipsoids (|α|2, left panels) and the evolution
of electric fields of the plasmons E(t) (blue line in right panels) obtained by Fourier
transformation of the spectral profiles. The minor radii of the ellipsoids is 35 nm and
the aspect ratios are (a) 1 and (b) 2. Orange lines in right panels represent the function
exp(−iω0t)exp(−γt/2), with the parameters: frequency ω0 and decay rate γ (listed in
the left panels), determined by a fit to E(t) in the region where it exhibits exponentially
decaying oscillations. Parameters Γ|α|2 listed in left panels denote the FWHM of the
polarizability profiles |α|2.

note, we should point out that without an analytical model for α, the theoretical analysis

would require accessing the response function by cumbersome numerical calculations of

the dipolar polarizability of the particle. While in practice difficult, this approach is

definitely feasible, and in fact we apply a related method in Chapter 2 of this thesis to

investigate the hybridization scheme in dielectric scatterers.

For the polarizability given by a Lorentzian profile α−1
Lor ∝ (ω− ω0 + iγ), with arbitrary

width FWHM of |αLor|2: Γ|αLor|2 = γ, the dynamics of the electric field intensity can be
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Chapter 1. Spectral characteristics of plasmonic nanoparticles

described as an exponentially decaying function

|E(t)|2 ∝ exp(−γt). (1.49)

However, the expression for the polarizability α given in Eq. (1.37) suggests a devia-

tion of the general response from the simple lorentzian profiles. Indeed, plots of the

polarizabilities |α|2 of gold ellipsoids shown in the left panels of Fig. 1.7(a) (sphere with

a< = a> = 35 nm) and (b) ((a<, a>) =(35 nm, 70 nm)) are strongly asymmetric. In

the right panels, we plot with blue lines the time dependence of the electric field, calcu-

lated by the Fourier transformation of the polarizabilities α(ω) derived from MWLWA

(using α(−ω) = [α(ω)]∗). In both cases, the dynamics of the electric field over the

first oscillation period exhibits a very fast decay, and then settles as damped oscilla-

tions E(t) ∝ exp[−(iω0 + γ/2)t], plotted with orange lines. The resonant frequencies

ω0, FWHM of |α|2 profiles Γ|α|2 , and the phenomenological decay rates γ obtained from

fitting of E(t) to the exponentially decaying oscillations, are given in the left panels.

Interestingly, and unlike in the case of Lorentzian resonances, the latter two quantities

are dramatically different for the shorter ellipsoid (a), reflecting the breakdown of the

association between the width of a resonance line and the decay rate of the plasmon

excitation.

1.2.5 Phenomenological estimations of the plasmon dynamics

In Fig. 1.8 we compare the decay rates γ (orange line) obtained from the fitting of the

respective Fourier-transformed polarizabilities, with the FWHMs of polarizability Γ|α|2 ,

scattering Γsca and absorption Γabs cross sections for ellipsoids with varying major ra-

dius. The FWHM of absorption cannot always be determined since the relevant cross

section does not exhibit a clear resonant profile (see for example green line in Fig. 1.5(b)).

However, for aspect ratios around 4, Γabs becomes consistent with the remaining esti-

mations of the plasmon decay. In this regime the resonance becomes very narrow, and

the absorption and scattering profiles differ only in intensity.

In the more interesting regime of low aspect ratios, the FWHMs of the polarizability

and scattering, as well as the decay rates obtained from the time dependencies of the

field of the plasmon γ, remain in rather good agreement. Interestingly however, the

matching between Γsca and Γ|α|2 appears to be a rather accidental effect, since neither

one of the respective profiles exhibits a narrow Lorentzian profile (see Fig. 1.5(c)). The

deviation from the exponential decay of the plasmon in the regime denoted by an orange
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1.2 Models of polarizability

Figure 1.8: Comparison of different phenomenological estimations of the decay rate
of the localized plasmon in ellipsoids with increasing major radius a> and fixed minor
radius a< = 35 nm: A(ω) = Im[α(ω0)−1]/ω0 (green line), the FWHMs of the ampli-
tude function |α|2 (Γ|α|2 , blue line), absorption (Γabs, red filled dots) and scattering
cross sections (Γsca, violet empty dots) with the decay rate γ extracted from the time
dependence of the induced field E(t) ∝ exp[−(iω0 + γ/2)t]. Orange area denotes the
range of parameters in which the decay becomes strongly non-exponential and dashed
vertical lines marked as (a) and (b) indicate the major radii of ellipsoids analyzed in
Fig. 1.7(a) and (b), respectively.

background, originates from the onset of the IT in the metal in a two-fold manner: first

the large losses broaden the resonance, and then the strongly dispersive loss function

−Im{[ε − 1]−1} distorts the shape of the polarizability, enabling the non-exponential

evolution of the plasmon. Interestingly, this effect occurs also when the IT in the metal

is partially addressed with the use of the Drude model with background permittivity

ε∞ = 9.5.

Finally, the green line in Fig. 1.8 depicts yet another estimation of the decay rate, given

by the imaginary part of the denominator in the definition of α:

A(ω0) =
ξ

ω0

[
−Im

1

ε(ω0)− 1
+ k3 V

6π

]
. (1.50)

This estimation, while relevant for the resonances with large quality factorQ = ω0/A(ω0),

for which A(ω) is almost constant throughout the width of the profile, yields a sig-

nificantly overestimated decay for shorter ellipsoids, and a rather good estimation for

high-aspect ratio scatterers.
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Chapter 1. Spectral characteristics of plasmonic nanoparticles

1.3 Summary

In conclusion, building on a well-established theory of MWLWA, we have designed a

simple model of dipolar plasmon resonances which accurately predicts the position and

the relative shifts of the scattering and absorption spectra of metallic nanoparticles. Our

model addresses the most appealing, yet difficult regime where the interband transitions

break down the description based on the simple Drude model, and additionally predicts

the onset of non-exponential dynamics of the plasmon excitations in particles resonant

in the visible range. The detailed studies of the time dependence of the decay of the

plasmon excitation is particularly interesting in light of the recent experiments on gen-

eration and coherent manipulation of plasmons with few-femtosecond pulses [88, 89].

We explore this effect to identify the transition to the exponential decay regime and

investigate the relationship between the plasmon decay rate and the widths of different

spectral profiles.
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Chapter 2

Dielectric nanoantennas

Over the last two decades a vigorous debate, conducted in the community of optical

physicists, on novel designs of devices for the manipulation of light on the nanoscale,

has been predominantly focused on utilizing the collective oscillations of the free electron

gas in noble metals. With silver, gold and, recently, aluminium nanoparticles occupying

the center of attention of numerous works, less attention has been given to the dielectric

counterparts of such scatterers.

At the same time, in a neighboring, but slightly detached scientific community of

quantum-optical physicists, dielectric micro-cavities are considered the quintessential

photonic resonators that can be efficiently populated [90, 91], coupled to nearby atoms

[92], or even coupled to their own vibrations [93]. These applications are possible thanks

to the intrinsic properties of dielectric materials, which exhibit low intrinsic losses in

the spectral ranges of interest, and the suppression of radiation by utilizing high-order

whispering gallery modes (WGMs) [94]. Between those two effects, the dielectric micro-

cavities improve on two of the most appealing properties of plasmonic scatterers: (i) the

WGMs localize light in a very small region near the edge of the dielectric cavity and (ii)

the linewidths of these resonances are very small, implying that the photons released

into the cavity mode remain in it for a significant time.

Unfortunately, the straightforward transfer of the properties of dielectric micro-structures

from the few-THz regime to the near-IR or visible region of the spectrum calls for a con-

trollable method of manufacturing dielectric sub-micron particles with very few defects

- a serious challenge which has not been fully addressed to this day.
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Chapter 2. Dielectric nanoantennas

With the benefit of hindsight, one could ask the following questions: can we trade away

some of the radiation suppression offered by the WGMs and focus on lower order modes

of attainable sub-micron nanoparticles? How would such scatterers perform as antennas

for redirecting, absorbing or localizing incident light? Finally, how would they couple

with nearby emitters?

These questions were prompted a few years ago in two independent studies reported by

Aitzol Garćıa-Etxarri et al. [35] and Andrey B. Evlyukhin et al. [36]. Their calcula-

tions of the near-IR light scattering by sub-micron silicon spheres showed that dielectric

nanoparticles of high refractive index can efficiently scatter light through dipolar geo-

metric resonances and, even more surprisingly, scatter it also through strong magnetic

excitations. This discovery led to a number of fascinating studies and designs which

make use of both the magnetic activity of dielectric scatterers [8, 10, 15, 95, 96] and

their low-loss properties [7, 97].

In this chapter, we discuss in details two of such concepts investigated during the course

of this doctoral study: the use of dielectric spherical nanoantennas as platforms for

enhancing the spontaneous decay rate of electric and magnetic dipolar emitters and the

hybridization of dipolar modes in pairs of such dielectric nanoparticles.

2.1 Mie theory

The process of light scattering on nanoparticles lies at the very center of classical nanoop-

tics. Its importance has assured a considerable attention in the last century, which in

turn provided numerous analytical, and - thanks to the rapid development of computa-

tional techniques - numerical tools to address this problem. One of the most fundamen-

tal, and possibly the most elegant analytical methods for describing the light scattering

process was proposed by Gustav Mie [70]. In Appendix A we outline the derivation and

some of the results obtained within the Mie theory of scattering of light by spherical

particles.

The elementary result of the Mie theory is the formulation of the closed, analytical for-

mulas for the scattering σsca and extinction σext cross sections of a homogeneous sphere

of radius a and dielectric permittivity ε2, immersed in a homogeneous lossless medium

with dielectric permittivity ε1, as shown schematically in Fig. 2.1(a). If the particle is il-

luminated by a planewave with frequency ω and wavevector k0 = −kẑ = −ω/c
√
ε1(ω)ẑ,

its cross sections are given by a weighted sum of the so-called Mie coefficients an and bn,
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Figure 2.1: (a) Schematics of the canonical geometry for introducing Mie theory. A
homogeneous sphere of dielectric permittivity ε2 and radius a is immersed in a lossless
medium with dielectric function ε1 and illuminated by a linearly polarized monochro-
matic planewave incident along the ẑ axis. (b, c) Electric (left plots) and magnetic
(right plots) field distributions in the cross-sections of the sphere corresponding to the
(b) dipolar electric (a1, upper panel) and dipolar magnetic mode (b1, lower panel) and
(c) quadrupolar electric (a2, upper panel) and quadrupolar magnetic mode (b2, lower
panel). The labels denoting the spherical harmonics, M(e/o)mn and N(e/o)mn, shown in
the plots, are defined in Appendix A.
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Chapter 2. Dielectric nanoantennas

which describe the contributions from the dipolar (n = 1), quadrupolar (n = 2), etc.,

vector spherical harmonics of electric (an) and magnetic (bn) nature (see schematics in

Fig. 2.1(b,c) and the derivations in Appendix A):

σsca =
2π

k2

∞∑
n=1

(2n+ 1)(|an|2 + |bn|2), σext =
2π

k2

∞∑
n=1

(2n+ 1)Re(an + bn). (2.1)

2.1.1 Optical response of a submicron dielectric sphere

With this elementary knowledge of Mie theory presented above, we can reproduce the

results reported by Aitzol Garćıa-Etxarri et al. [35], who found the strong and spec-

trally separated electric and magnetic dipolar resonances in the near-infrared scattering

cross sections of a high-permittivity sub-micron sphere. For convenience, instead of the

relevant cross sections, we analyze the scattering and extinction efficiencies, defined as

the respective cross sections normalized to the geometrical cross section of the scatterer.

For spherical particles we get:

Csca =
σsca

πa2
, Cext =

σext

πa2
. (2.2)

In Fig. 2.2 we plot the planewave scattering efficiency spectrum (blue line) of a silicon

sphere of radius a = 230 nm, in air (relative refractive index M =
√
ε2/ε1 = 3.5).

By separating the contributions to the scattering efficiency, according to Eq. (2.1), we

can extract the scattering due to the electric dipolar (red area, Csca(a1)) and magnetic

dipolar (green area, Csca(b1)) Mie modes. The spectral feature resonant at λ = 1160 nm

represents the scattering by the quadrupolar magnetic b2 mode.

Note that for lossless materials, the scattering and extinction efficiencies are identical,

since for real M the Mie coefficients fulfill |an|2 = Re(an) and |bn|2 = Re(bn). In this

section we assume that for the IR energies of the incoming photons below 1 eV this

descriptions applies to silicon.

2.1.2 Scattering of radiation from a dipolar emitter

Mie theory offers more interesting results than those captured by the simple equations

for the scattering and extinction cross sections. Specifically, it provides tools to cal-

culate the scattered and absorbed powers for any physical illumination (described by

the electromagnetic fields which fulfill the vector wave equation in the homogeneous,
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electric dipolar mode magnetic dipolar mode

E0

H0

E0

H0

Figure 2.2: Scattering efficiency of a 230 nm radius Si nanosphere in air (M = 3.5)
illuminated by a plane wave. The schematics of the illumination setup and the induced
electric and magnetic dipolar modes are shown in the boxes on the right. The scattering
efficiency Csca is separated into contributions from the electric dipolar (red area, a1)
and magnetic dipolar modes (green area, b1).

lossless medium). One of such illuminations that is of particular interest is the radiation

from a dipolar emitter placed in the vicinity of the scatterer. This case is discussed in

Appendix A, and the explicit expressions for the power of the outgoing radiation (Psca)

and the power absorbed by the scatterer (Pabs), originated by the classical electric (e) or

magnetic (m) dipolar emitters are also derived. Comparing these powers to the power

P0 emitted by the dipole in the absence of the scatterer, we can draw a parallel to

the process of enhancing the rate of spontaneous emission Γ0 from a quantum dipolar

emitter [56], and formulate the radiative and total decay rate enhancement factors of an

emitter as
Γsca

Γ0
=
Psca

P0
,

Γtot

Γ0
=
Psca + Pabs

P0
, (2.3)

respectively. For the spherical homogeneous particle characterized by the Mie coefficients

an and bn and an electric (e) dipolar emitter positioned at a distance z from the center

of the sphere (z > a), oriented either radially (⊥) or parallelly (||) to the surface of the

particle, the expressions for the decay rate enhancements for each case are:

Γ⊥,esca

Γ0
=

3

2

∞∑
n=1

(2n+ 1)n(n+ 1)

∣∣∣∣∣jn(kz)− anh(1)
n (kz)

kz

∣∣∣∣∣
2

, (2.4a)

Γ
||,e
sca

Γ0
=

3

4

∞∑
n=1

(2n+ 1)

[
|jn(kz)− bnh(1)

n (kz)|2 +

∣∣∣∣ψ′n(kz)− anζ ′n(kz)

kz

∣∣∣∣2
]
, (2.4b)

Γ⊥,etot

Γ0
= 1− 3

2
Re

∞∑
n=1

(2n+ 1)n(n+ 1)an

[
h

(1)
n (kz)

kz

]2

, (2.4c)
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Γ
||,e
tot

Γ0
= 1− 3

4

∞∑
n=1

(2n+ 1)Re

{
an

[
ζ ′n(kz)

kz

]2

+ bn[h(1)
n (kz)]2

}
, (2.4d)

while for the magnetic (m) dipolar emitter

Γ⊥,msca

Γ0
=

3

2

∞∑
n=1

(2n+ 1)n(n+ 1)

∣∣∣∣∣jn(kz)− bnh(1)
n (kz)

kz

∣∣∣∣∣
2

, (2.5a)

Γ
||,m
sca

Γ0
=

3

4

∞∑
n=1

(2n+ 1)

[
|jn(kz)− anh(1)

n (kz)|2 +

∣∣∣∣ψ′n(kz)− bnζ ′n(kz)

kz

∣∣∣∣2
]
, (2.5b)

Γ⊥,mtot

Γ0
= 1− 3

2
Re

∞∑
n=1

(2n+ 1)n(n+ 1)bn

[
h

(1)
n (kz)

kz

]2

, (2.5c)

Γ
||,m
tot

Γ0
= 1− 3

4

∞∑
n=1

(2n+ 1)Re

{
bn

[
ζ ′n(kz)

kz

]2

+ an[h(1)
n (kz)]2

}
, (2.5d)

where we have made used of the spherical Bessel jn and Hankel h
(1)
n functions and a

Riccati-Bessel functions ζn(ρ) = ρh
(1)
n (ρ) and ψn(ρ) = ρjn(ρ).

2.2 Single dielectric-particle nanoantennas

Having introduced the mathematical framework for the description of light scattering on

spherical particles in the previous section, let us now proceed to exploring the concept of

coupling dielectric submicron antennas with electric and magnetic dipolar emitters [15].

To this end, we develop the description now presented in subsection A.3 of Appendix

A, and presented in the above Eqs. (2.4a-2.5d). Within this framework, we perform a

detailed study of the dependence of the decay rate enhancement of dipolar emitters on

their distance z to the surface of the spherical antenna, and its polarization.

To place these results in the context of the current research, we note a recent surge in the

interest of the scientific community in controlling magnetic transitions in lanthanide ions

embedded in nanocrystals. We should especially mention the experimental contributions

by S. Karaveli and R. Zia [98], who have shown that the rate of spontaneous emission

from trivalent europium (Eu3+) exhibiting a magnetic dipolar transition can be modified

by carefully placing it near a flat gold mirror. Their work can be acknowledged as a

successful realization of the simpler experiments reported almost 35 years earlier by K.

Drexhage [99], and later by R.E. Kunz and W. Lukosz [100], who studied the rates of

primarily electric transitions of europium ions placed on dielectric mirrors.
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2.2 Single dielectric-particle nanoantennas

In the following subsections, we first analyze the decay rate enhancements for dipolar

emitters placed near a submicron silicon antenna with spectrally well-separated electric

and magnetic dipolar resonances [35] (see Fig. 2.2). Later, we present a simple dipole-

dipole interaction model which accurately describes the interaction between the dipolar

emitters and the lowest-order Mie modes of dielectric nanoparticles.

2.2.1 Radiating dipoles in the presence of a high-index dielectric par-

ticle (Si sphere)

In Fig. 2.3 we show the spectra of the enhancement of the decay rates for the electric

(red lines) and magnetic (green lines) emitters positioned at a distance of 50 nm from

the surface of a 230 nm radius silicon sphere. The enhancement factors are shown

for the two orientations of both types of emitters - perpendicular (a) and parallel (b)

to the closest surface of the nanoparticle. The calculations were performed using the

appropriate formulas listed in Eqs. (2.4a-2.5d).

For the dipole oriented radially (Fig. 2.3(a), Eqs. (2.4a,2.4c,2.5a,2.5c)), it is possible to

dissect the contributions originating from each of the Mie modes in the sphere to the

decay rates. We illustrate this in Fig. 2.3(a) by marking with red and green areas the

contribution from the dipolar electric modes to the electric dipolar emission (a1, red

area) and magnetic dipolar mode to the magnetic dipolar emission (b1, red area).

We observe in Fig. 2.3 that both the orientation of the emitter as well as its electric or

magnetic nature determine which modes of the sphere are excited. An electric emitter

oriented parallelly (Fig. 2.3(b), red line) excites the magnetic dipolar b1 (at λ = 1680

nm), quadrupolar b2 (at λ = 1160 nm) and - although very weakly - the electric dipo-

lar a1 (at λ = 1350 nm) resonance, while the same emitter aligned perpendicularly

(Fig. 2.3(a), red line) couples exclusively to the broad electric dipolar a1 mode, peaking

at λ = 1350 nm. The complementary behavior is observed for the magnetic emitter:

for perpendicular orientation (Fig. 2.3(a), green line), only the magnetic b1, b2 modes

are excited, while in the parallel orientation (Fig. 2.3(b), green line) the emitter cou-

ples to both the magnetic and electric modes. In principle, this effect can be used to

discriminate between the two types of emitters.

To further investigate the selectivity of the emission, we plot in Fig. 2.4 the enhancements

of the decay rates of the electric (pemi) and magnetic (memi) dipolar emitters as a

function of the emission wavelength of the emitter λ and the radius a of the dielectric
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Figure 2.3: Decay rate enhancements of an electric (red lines) or magnetic (green
lines) emitters positioned in the vicinity of the particle. The emitter is oriented either
perpendicularly (a) or parallelly (b) with respect to the closest surface of the sphere.
Spectra of the radiative rate enhancements shown are calculated using Eqs. (2.4a-2.5d).
Contributions to the decay rates from the electric (a1) and magnetic (b1) dipolar modes
of the sphere can be isolated for the perpendicular orientation of the dipole, and are
denoted in (a) red and green areas, respectively. The refractive index of the silicon
nanosphere is 3.5, while the distance from the emitter to the surface of the sphere is
set to 50 nm.

nanosphere. Since Eqs. (2.4a-2.5d) depend on the parameter ka ∝ λ−1a through the

Mie coefficients, the spectral positions of the Mie resonances follow straight lines as

marked in the decay rate maps of Fig. 2.4 by dashed lines defined by a ∝ λ. The

dependence of Eqs. (2.4a-2.5d) on the distance from the dipole to the center of the

sphere z does not affect significantly the spectral features of the enhancements, but

governs the relative strength of the resonances. Furthermore, for the largest sphere,

many high-order resonances appear clearly in the high-energy region of spectra, as these

modes can be efficiently activated for small values of (z − a)/a.

Similarly to Fig. 2.3(a), for the perpendicular orientation, the electric emitter (Fig. 2.4(a))

couples only to the electric modes (marked as an), and excites mostly magnetic contri-

bution when oriented parallelly (Fig. 2.4(b)). In the latter case however, an electric

contribution is also present, which is mostly visible for the high order modes. Similarly,

the perpendicular magnetic emitter excites magnetic modes exclusively (Fig. 2.4(c)),
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Electric emitter Magnetic emitter

Wavelength λ [nm] Wavelength λ [nm]

Γ/Γ0

Figure 2.4: Spectra of the decay rate enhancements Γ/Γ0 of electric (pemi, (a,b)) or
magnetic (memi, (c,d)) nature near the silicon sphere of varying radius a in vacuum.
Dipoles are oriented either perpendicularly (a,c) or parallelly (b,d) to the surface of the
antenna, positioned at fixed distance of 50 nm from its surface. Dashed lines correspond
to the Mie resonances an and bn, as displayed in each of the plots. Geometries of the
setups are shown in the schematics.

whereas in parallel orientation it couples to the electric and to the magnetic modes

(Fig. 2.4(d)). Thus, the orientation and the nature of the emitters allows for a selective

excitation of the modes of the dielectric sphere.

This modal selectivity can be understood by tracing the presence of Mie coefficients in

Eqs. (2.4a-2.5d) for each case. For the emitter perpendicular to the surface of the antenna

(Eqs. (2.4a,2.4c,2.5a,2.5c)), only one type of Mie coefficient is present: electric an terms

for the electric emitter and magnetic bn terms for the magnetic emitter. On the other

hand, since the equations for the emitter oriented parallelly (Eqs. (2.4b,2.4d,2.5b,2.5d))

include both electric and magnetic coefficients, both types of resonances are excited.

We can further confirm the identification of the contributions from the electric and

magnetic modes to the enhancement of the decay rates (Fig. 2.3) by plotting the dis-

tributions of the fields induced in the system. In Fig. 2.5 the induced electric (a,c,e,g)

and magnetic field (b,d,f,h) distributions are shown for two resonances of the Si sphere:
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Figure 2.5: Distribution of the electric (upper row) and magnetic (lower row) induced
field amplitude enhancements by an electric (pemi) and magnetic (memi) dipole at a
distance of the 50 nm from the surface of a 230 nm radius silicon sphere. Shown cross-
sections contain the dipole and the center of the sphere. Plots (a-d) correspond to
the dipolar electric mode induced at λ = 1350 nm, with the induced dipole denoted
as pind, excited by the perpendicular electric (a,b) or parallel magnetic (c,d) emitter.
(e-h) illustrate the field distributions at the dipolar magnetic mode λ = 1680 nm
(mind), induced by the parallel electric (e,f) or perpendicular magnetic (g,h) emitter.
Schematics of the exciting and induced dipoles are shown at the top of the figures.
Intensities of the induced fields Eind and Hind are normalized to the values of the fields
E0 and H0 produced by the dipolar emitter in the absence of the particle and evaluated
at distance of 280 nm from the emitter in the direction perpendicular to its axis. The
position of the normalization point is marked by a white cross in each case.

electric a1 ((a-d), denoted in the schematics as the induced electric pind) and magnetic

b1 ((e-h), induced magnetic mind) dipolar modes. These excitations are induced by

the emitter of the electric (pemi) or magnetic (memi) nature, oriented as shown in the

top schematic of each panel in Fig. 2.5. The fields have been obtained from a vector

harmonic decomposition (see Appendix A for details). Dipolar electric resonances at

λ = 1350 nm are excited by the perpendicularly oriented electric emitter (Fig. 2.5(a,b))

or parallelly oriented magnetic emitter (Fig. 2.5(c,d)). The dipolar magnetic resonance

at λ = 1680 nm is induced both by the electric emitter oriented parallelly (Fig. 2.5(e,f))

and by the magnetic emitter oriented perpendicularly (Fig. 2.5(g,h)) to the surface of

the sphere. The distributions of the fields shown in Fig. 2.5 clearly indicate the dipolar

nature of the induced resonances and qualitatively agree with the field distributions of

the resonances obtained with excitation of the Si sphere by a plane wave [35].
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In Ref. [15] we provided a detailed comparison of the decay rate enhancement factors

with the case of a dipolar emitter coupled to a silver nanoparticle. We concluded that

the performance of silicon nano-antennas coupled to electric emitters matched that of

the plasmonic systems, and showed some improvements over their metallic counterparts

when applied to controlling the emission from magnetic emitters.

2.2.2 Dipole-dipole interaction

The electromagnetic coupling in the previous examples was often dominated by the

dipolar modes induced in the sphere. By limiting the sum in Eqs. (2.4c, 2.4d, 2.5c, 2.5d)

to the n = 1 terms and taking the explicit form of the spherical Hankel function h
(1)
1 ,

we obtain the following expressions for the enhancement of the decay rates within the

dipole-dipole approximation:

Γ⊥,etot

Γ0

∣∣∣∣∣
dip

= 1− 3

2πkz4
Im

[
αEe

2ikz

(
1 +

2i

kz
− 1

(kz)2

)]
, (2.6a)
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∣∣∣∣∣
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8πz2
Im
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αEe

2ikz
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2i

kz
− 3

(kz)2
− 2i

(kz)3
+

1

(kz)4

)]
+

3k

8πz2
Im

[
αMe

2ikz

(
−1− 2i

kz
+

1

(kz)2

)]
, (2.6b)
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2πkz4
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[
αMe

2ikz

(
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(kz)2
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, (2.6c)
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= 1 +
3k

8πz2
Im

[
αMe

2ikz

(
1 +

2i

kz
− 3

(kz)2
− 2i

(kz)3
+

1

(kz)4
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+

3k

8πz2
Im

[
αEe

2ikz

(
−1− 2i

kz
+

1

(kz)2
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, (2.6d)

where the electric αE and the magnetic αM dipolar polarizabilities are associated with

the first order Mie coefficients according to

αE = i
6π

k3
a1, αM = i

6π

k3
b1, (2.7)

respectively.
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Chapter 2. Dielectric nanoantennas

Out of the four equations above, only Eqs. (2.6b) and (2.6d) depend on both magnetic

(αM ) and electric (αE) contributions. The perpendicular electric (magnetic) emitter

couples only with the electric (magnetic) dipolar mode. In the cases when a single

dipolar mode of the sphere, either electric or magnetic, dominates the response at a

given wavelength, it is possible to describe the coupling at that wavelength as a simple

dipole-dipole interaction.

Figure 2.6: Distance dependence of the decay rate enhancements calculated using
the exact formulas (solid lines) and the dipolar interaction approach (dashed lines). In
plots (a-d), the emitter is positioned near a 230 nm radius silicon sphere and for (e-f)
- near a 50 nm radius silver sphere. The wavelength of radiation matches the dipolar
modes of the silicon particle: (a-b) electric at 1350 nm and (c-d) magnetic at 1680 nm,
and the electric dipolar mode of the silver sphere at 420 nm (e-f). In each case, only the
dominant induced dipole is considered for the dipolar approximation, while the mode
of the complementary nature (magnetic or electric) is neglected. The insets show the
orientation and the electric of magnetic nature of both the emitter (pemi or memi) and
the induced dipolar mode (pind or mind) in the antenna. The distance is measured
between the dipolar emitter and the center of the antenna.

To illustrate this property, we show in Fig. 2.6 the enhancement of the decay rate as a
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2.2 Single dielectric-particle nanoantennas

function of the distance between the dipole and the center of the nanoparticle. Results

were obtained with the use of the exact formulas given by Eqs. (2.4c-2.4d) (solid black

lines) as well as with the dipolar-interaction approximation (dashed red lines). We

consider a 230 nm radius silicon particle and, for the sake of comparison with a common

plasmonic systems, a 50 nm silver sphere described by a dielectric function from the

literature [101]. To extract the dominant contributions, we choose the wavelengths

corresponding to the dipolar electric a1 and dipolar magnetic b1 resonances, and set the

polarizabilities of the complementary nature to 0 in Eqs. (2.4c-2.4d). Namely, in the

case of the Si sphere, αE is neglected for λ = 1680 nm (corresponding to b1 resonance)

and αM is ignored for λ = 1350 nm (a1). For the Ag sphere, we put the magnetic dipolar

polarizability αM = 0 for λ = 420 nm (coinciding with the electric dipolar resonance

a1).

The dipole-dipole interaction model very accurately reproduces the exact results in all

the considered dielectric antennas. In Fig. 2.6(a), we plot the decay rate enhancements

of an electric emitter, perpendicular to the surface of the silicon sphere, radiating at

λ = 1350 nm (dipolar electric antenna resonance). The disagreement between the curves

can be attributed to the influence of the quadrupolar electric mode, not considered in

the dipole-dipole approximation. In the analogous situation of an identically oriented

magnetic emitter at the magnetic dipolar resonance (λ = 1680 nm, Fig. 2.6(d)), the

agreement with the analytical solution is almost perfect, as no higher-order magnetic

modes contribute in this spectral range. Small differences due to the neglected dipolar

polarizabilities can be seen for emitters oriented parallelly to the surface of the sphere:

the magnetic emitter coupled to the silicon antenna at its electric dipolar resonance

(λ = 1350 nm, Fig. 2.6(b)) and the electric emitter at the magnetic dipolar resonance

(λ = 1680 nm, Fig. 2.6(c)).

For the silver antenna (Fig. 2.6(e-f)), we show the distance dependence of the total

decay rate enhancement for the radiation wavelength of 420 nm, which corresponds to

the excitation of the dominant dipolar electric mode of the Ag particle. Almost perfect

agreement between the exact solution and the results of the dipole-dipole interaction

model is obtained both for the electric (Fig. 2.6(e)) and the magnetic emitter (Fig. 2.6(f))

oriented perpendicularly or parallelly to the surface of the antenna, respectively. The

slight deviations are mostly due to high order non-radiative contributions that become

more significant for very short separation distances. However, we emphasize that the

agreement between the simple model and the complete analytical solution is very good

in all the considered cases.
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Chapter 2. Dielectric nanoantennas

2.2.3 Conclusion

We have presented a detailed analysis of the radiative and non-radiative decay rates of

both dipolar electric and magnetic emitters positioned in the vicinity of a high-refractive

index spherical dielectric particle. Thanks to their strong magnetic dipolar resonances

in the near infrared, such antennas provide a canonical example of dielectric antennas

that can be used to selectively enhance magnetic dipolar emission. Interestingly, the

resonant coupling between a dipolar (electric or magnetic) emitter and the dipolar Mie

resonances in a particle is well described by the dipole-dipole interaction approach at

certain wavelengths even when the emitter is in close proximity to the sphere surface.

Near the magnetic resonance, we found a strong enhancement of the decay rate of

magnetic emitters which resembles the enhancement of electric dipole emission near

a resonant plasmonic particle. However, while the total decay rate in plasmonic nano-

antennas is often dominated by non-radiative channels, the total emission rate in lossless

silicon antennas is purely radiative. These results show that nanosphere dielectric anten-

nas are excellent platforms to enhance and manipulate magnetic dipolar emission with

important possible applications as elements of infrared and telecommunication devices.

2.3 Optical response of dielectric dimers

Considering the content of the previous section, it might be natural to wonder what

the optical response of the system discussed above would be, if we replaced the dipolar

emitter by another dielectric nanoparticle. Could one design an appropriate dipole-

dipole interaction model that would accurately describe the optics of a dielectric dimer?

How good of an approximation would it be in the regimes where the spheres exhibit

contributions from the higher modes?

In this section we attempt to answer these questions by presenting a detailed derivation of

an analytical model of hybridization in dimers of electric and magnetic dipolar scatterers,

and illustrating this concept by considering the optical response of a dimer of dielectric

spheres. Afterwards we discuss the optical response of dielectric dimers obtained from

experiments, and interpret them by means of numerical analysis, relating them to the

predictions of the analytical model. Finally, we attempt to answer the question whether

dimer structures can provide a more effective platform for enhancing the emission from

dipolar emitters compared to the single spheres.
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2.3 Optical response of dielectric dimers

For other interesting aspects of silicon dimer structures, such as their ability to enhance

the electric and magnetic fields, as well as the comparison between the performance of

dielectric and metallic nanoantennas, we direct the reader to Ref. [7].

2.3.1 Hybridization of dipolar modes in a dielectric dimer

Let us consider a dielectric dimer antenna shown schematically in Fig. 2.7. Spherical

nanoparticles of radii a are separated by the dimer gap d, and are centered on the ŷ

axis, equally spaced from the coordinate origin. The two panels of Fig. 2.7 depict the (a)

transverse electric TE and (b) transverse magnetic TM polarizations of the planewave

incident along axis ẑ, with wavevector k0, and incident electric E0 and magnetic H0

fields.

(a) (b)

E0
H0

k

H0
E0

k
a

D

a

D

x
y

z

x
y

zTE TM

Figure 2.7: Schematic representation of a particle dimer showing the orientation of
the incoming radiation with electric field E0 polarized (a) perpendicular and (b) parallel
to the dimer axis in TE and TM configurations, respectively.

Since each of the constituent nanoparticles exhibits both electric and magnetic reso-

nances, we expect that the response of strongly coupled dimer structures will be governed

by hybridized modes, composed of the homogeneous pairing of electric dipoles similar to

those observed in plasmonic dimers [71, 72], the less explored pairs of magnetic dipoles

[37, 102], and also novel heterogeneous pairs comprising one electric and one magnetic

dipole.

To study the formation of these modes in detail, we develop a simple model in which

the spheres (numbered as 1 and 2, and centered at r1 and r2, with the center-to-center

separation D = d+ 2a = |r1 − r2|), immersed in environment with relative permittivity

ε1 and permeability µ1, are represented as point-polarizable dipolar scatterers with the
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Chapter 2. Dielectric nanoantennas

electric (αe) and magnetic (αm) polarizabilities given by the first (dipolar) Mie coeffi-

cients as in Eq. (2.7). In general, this model can be identified as a realization of the

coupled electric and magnetic dipole method [103–105].

The induced electric pj and magnetic mj dipoles in the jth sphere are proportional to

the total fields at the position of the point scatterer, Etot(rj) and Htot(rj):

pj = ε0ε1αeEtot(rj), mj = αmHtot(rj). (2.8)

The total electric and magnetic fields at any point r are given by the sum of the incident

fields: E0 and H0 and the electric and magnetic field scattered by the two particles,

Esca and Hsca respectively. For the plane wave illumination, the former are given by:

(TE) E0(r) = E0e
ikz x̂, H0(r) =

E0

Z
eikz ŷ ≡ H0e

ikz ŷ, (2.9a)

(TM) E0(r) = E0e
ikz ŷ, H0(r) = −E0

Z
eikz x̂ ≡ −H0e

ikz x̂, (2.9b)

where Z =
√
µ0µ1/(ε0ε1) is the impedance of the medium. x̂ and ŷ are the unit vectors

along the x̂ and ŷ axes, respectively.

scatterer 
no.1

scatterer 
no.2

Figure 2.8: Schematics of the interaction between the electric (red arrows, p1, p2)
and magnetic (green arrows, m1, m2) dipoles induced in the particles positioned at r1

and r2, mediated by the electric (
↔
GE , orange arrows) and magnetic (

↔
GM , blue arrows)

Green’s functions.

The scattered fields at any position r are given by

Esca(r) =
∑
j=1,2

[
k2

ε0ε1

↔
GE(r− rj) · pj + iZk2

↔
GM (r− rj) ·mj

]
, (2.10)
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Hsca(r) =
∑
j=1,2

[
− i

Z

k2

ε0ε1

↔
GM (r− rj) · pj + k2

↔
GE(r− rj) ·mj

]
, (2.11)

where
↔
GE(r) and

↔
GM (r) denoted the free-space Green’s functions which, acting on an

arbitrary vector v give [56, 106]:

↔
GE(r) · v =

[(
1 +

i

kr
− 1

k2r2

)
v +

(
−1− 3i

kr
+

3

k2r2

)
(r̂ · v)r̂

]
g(r), (2.12)

↔
GM (r) · v = (r̂× v)

(
i− 1

kr

)
g(r). (2.13)

r̂ is the unit vector along r = r̂r and g(r) = eikr/(4πr) the scalar Green’s function. The

two Green’s functions are related to each other by

↔
GM ≡

1

k
∇×

↔
GE . (2.14)

In the following chapter, we will attribute a physical interpretation to the operator

k−1∇×.

We can thus write down the self-consistent equations for the coupled dipoles:
p1

m1

p2

m2

 =


ε0ε1αeE0(r1)

αmH0(r1)

ε0ε1αeE0(r2)

αmH0(r2)

+

+ k2


0 0 αe

↔
G

(12)

E iε0ε1αeZ
↔
G

(12)

M

0 0 − iαm
Zε0ε1

↔
G

(12)

M αm
↔
G

(12)

E

αe
↔
G

(21)

E −iε0ε1αeZ
↔
G

(21)

M 0 0

− iαm
Zε0ε1

↔
G

(21)

M αm
↔
G

(21)

E 0 0




p1

m1

p2

m2

 ,

(2.15)

where
↔
G

(12)

E ≡
↔
GE(r1 − r2),

↔
G

(12)

M ≡
↔
GM (r1 − r2), (2.16a)

and
↔
G

(21)

E ≡
↔
GE(r2 − r1),

↔
G

(21)

M ≡
↔
GM (r2 − r1). (2.16b)

51



Chapter 2. Dielectric nanoantennas

Figure 2.9: Schematic representation of the dipolar system used to model the elec-
tromagnetic response of the silicon sphere dimer. Red (green) arrows on the spheres
correspond to the induced electric (magnetic) dipoles. For the TE polarization in (a)
(TM in (b)) the magnetic (electric) dipoles along the z-axis are the secondary dipoles
induced by the field of the primary electric (magnetic) dipoles px (mx), and are not
directly excited by the incoming plane wave.

2.3.1.1 Transverse-magnetic illumination

The general equation shown above can be solved without any incident illumination,

offering the description of the eigenmodes of the system. Such approach has been re-

cently used to find the fundamental modes of strongly coupled trimers [107, 108] and

quadrumers [109] of dielectric scatterers. Here however, we will arbitrarily assume a

TM illumination scheme, shown schematically in Fig. 2.9(b), to simplify the calcula-

tions and learn about the polarization-selectivity of the system. In such setup, the only

non-vanishing components of the induced dipoles are shown in Fig. 2.9(b) with red (py,

pz) and green (mx) arrows. Equation (2.15) can be then rewritten using the properties

of the Green’s functions:

↔
GE(r1 − r2) · x̂ =

(
1 +

i

kD
− 1

k2D2

)
g(D)x̂ ≡ −gxxx̂, (2.17)

↔
GM (r1 − r2) · x̂ = −

(
i− 1

kD

)
g(D)ẑ ≡ gzxẑ, (2.18)

↔
GE(r1 − r2) · ẑ =

(
1 +

i

kD
− 1

k2D2

)
g(D)ẑ ≡ −gxxẑ, (2.19)

↔
GM (r1 − r2) · ẑ =

(
i− 1

kD

)
g(D)x̂ ≡ −gzxx̂, (2.20)

↔
GE(r1 − r2) · ŷ =

(
− 2i

kD
+

2

k2D2

)
g(D)ŷ ≡ gyyŷ, (2.21)

↔
GM (r1 − r2) · ŷ = 0, (2.22)
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yielding the following equations

p1y = ε0ε1αeE0 + αek
2gyyp2y, (2.23)

p2y = ε0ε1αeE0 + αek
2gyyp1y, (2.24)

p1z = −αek2gxxp2z + iε0ε1αeZk
2gzxm2x , (2.25)

p2z = −αek2gxxp1z − iε0ε1αeZk
2gzxm1x , (2.26)

m1x = −αm
Z
E0 + i

αm
Z

k2

ε0ε1
gzxp2z − αmk2gxxm2x, (2.27)

m2x = −αm
Z
E0 − i

αm
Z

k2

ε0ε1
gzxp1z − αmk2gxxm1x. (2.28)

We have marked the terms of particular interest, which describe the heterogeneous

electric-magnetic interactions between the pjz and mj′x dipoles (j 6= j′). Note that

these modes are enabled by the coupling of the incident light to the mj′x dipoles, which

in turn (through the magnetic Green’s function
↔
GM ) excite the secondary pjz dipoles.

Furthermore, the terms proportional to gxx and gzz describe the interaction between par-

allel dipoles of homogeneous nature and, finally, the terms proportional to E0 correspond

to the single-particle excitations induced directly by the incident light.

The solution to the above set of equations can be elegantly expressed by introducing

dressed polarizabilities α̃, defined as

α̃ey ≡
αe

1− αek2gyy
, α̃ez ≡

αe
1− αek2gxx

, α̃mx ≡
αm

1 + αmk2gxx
(2.29)

α̃e−m,TM ≡
α̃mxα̃ezk

2gzx
1− α̃mxα̃ezk4g2

zx

, (2.30)

and relating

p1y = p2y = ε0ε1α̃eyE0, (2.31)

p1z = −p2z = −iε0ε1α̃e−m,TME0, (2.32)

m1x = m2x =

[
− α̃mx

Z
−
(
α̃e−m,TMk

2gzx
) α̃mx
Z

]
E0. (2.33)

The respective dressed polarizabilities α̃ex, α̃my, and α̃e−m,TE can be found for the case

of TE polarization of the incident light and the induced components of the dipoles px,

my and mz (see Fig. 2.9(a)).
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2.3.1.2 Dimer symmetry group D2h

Figure 2.10: Schematic representation of the irreducible representations of the D2h

dimer symmetry group and their coupling to the incident planewave. (a) Modes B3u

and B2g are directly excited by the incident TM-polarized light as they exhibit non-
vanishing total dipoles parallel to the respective components of the incident light. (b)
Similarly, modes B2u and B3g couple to the incident TE-polarized light. While the
remaining homogeneous modes shown in (c) do not directly couple to light in any of
those polarizations, the B1g and B1u can be excited indirectly due to the coupling
between the scatterers. (d) Schematic of the coherent homogeneous modes in which
the magnetic dipoles are induced in the ”1” (left) or ”2” (right) sphere by the incident

magnetic field H0. The magnetic Green’s function
↔
GM then couples this dipole to the

perpendicular, electric dipole in the other sphere. The coherent sum of these two modes
can be rewritten as the coherent sum of two modes B1g and B2g.

In a slightly more pictorial manner, we can consider the modes of the dimer as irre-

ducible representations of the dimer symmetry group D2h. While this approach allows

for a detailed analysis of the symmetries of the modes, we will use it predominantly to

simplify the description presented above. For an interesting example of a more elaborate

analysis, we note the recent contributions in Refs. [107,109]. We have gathered these
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2.3 Optical response of dielectric dimers

representations in Fig. 2.10. and grouped them by their ability to couple directly to the

normally incident (a) TM- or (b) TE-polarized planewave.

The remaining modes, depicted in (c), cannot couple directly to normally incident,

linearly-polarized light. However, as we discuss below, two of them - B1g and B1u -

will contribute to the extinction cross-section of the dimer through the mechanics shown

schematically in Fig. 2.10(d) for the former case of mode B1g: in the scheme on the

left, the incident magnetic field of TM polarization induces a magnetic dipole in one of

the spheres (m1) which in turn, through the Green’s function
↔
GM , induces the electric

excitation in the other sphere (p2). Similarly, the magnetic mode m2 in the second

sphere can induce the electric excitation p1 in the first sphere. As a result, the two

coherently excited dimer modes can be decomposed into a sum of B1g and B2g, as

depicted in the bottom schematics of Fig. 2.10(d).

In a similar manner, under TE polarization, the coherent sum of heterogeneous modes

leads to the excitation of complementary modes B2u and B1u.

The expressions for the extinction cross-sections of such dimers have been derived in

Ref. [7] from the optical theorem by considering the scattering amplitude in the forward

direction by the induced dipoles in the x̂ŷ plane (dipoles pjz and mjz do not radiate

along the z axis):

(TE) σext = 2kIm
[
α̃my + α̃px +

(
α̃e−m,TEk

2gzx

)
α̃px

]
(2.34a)

(TM) σext = 2kIm
[
α̃ey + α̃mx +

(
α̃e−m,TMk

2gzx

)
α̃mx

]
. (2.34b)

In Fig. 2.11 we plot the extinction cross sections of a dimer of dielectric spheres with 150

nm radii, calculated with Eq. (2.34b) (solid blue lines) and using the exact FDTD method

[83] (dashed blue lines) for two dimer gaps of 10 nm and 50 nm, respectively and normally

incident TM polarization. The two methods yield very similar results for both separation

distances, except for the presence of the quadrupolar peak around a wavelength of 800

nm. Within the analytical model, the contributions to the extinction can be separated,

displaying the extinction due to the homogeneous electric B3u (dashed red lines) and

magnetic B2g (dashed green lines) homogeneous modes. The significant contribution

from the heterogeneous modes is marked with black lines which is particularly relevant

in the case of the small gap (Fig. 2.11(b)), exhibiting a double-peak structure. This

55



Chapter 2. Dielectric nanoantennas

800 1000 1200 1400
0

4

8

2

6

800 1000 1200 1400
0

4

8

2

6

Wavelengthp[nm]

E
xt

in
ci

on
tps

ca
tte

rin
gp

C
ex

t

(a) (b)

Wavelengthp[nm]

E
xt

in
ci

on
tps

ca
tte

rin
gp

C
ex

t

Interparticlepdistancepd=50 nm Interparticlepdistancepd=10 nm

totalp-panalytics

totalp-pnumerics

Figure 2.11: Extinction spectra of a dimer of silicon particles of 150 nm radii under
TM polarization (see Fig. 2.9(b) for schematics) with the gap separations of (a) 10 nm
and (b) 50 nm, calculated using the dipole-dipole model (solid blue line) and compared
with numerical results obtained from FDTD calculations [83] (dashed blue line). Our
model (Eq. (2.34b)) allows us to dissect the contributions from the B3u (red dashed
line), B2g (green dashed line) and B1g (black solid line) modes, displayed in Fig. 2.10.

shape stems from the fact that, as we have noted above, the coherent excitation of

heterogeneous modes leads to the simultaneous excitation of both B2g and B1g.

We have thus developed a simple dipole-dipole interaction model to address the optical

far-field response of a dimer of dielectric particles. Within this model, we have pre-

dicted the onset of the heterogeneous electric-magnetic modes, induced indirectly by an

incident planewave, and quantified their contribution to the extinction spectra of the

dimer structure. Considerations based on the theory of symmetry groups can help to

design and guide the engineering of magnetic models in high-refractive index photonics

materials.

2.3.2 Experimental realization of scattering of light on dielectric dimers

The experimental confirmation of the theoretical predictions described in the previous

section of this thesis has been, until recently, hampered by the shortage of methods

for generation and positioning of spherical Si nanoparticles. One of the few methods

which addresses these problems was developed in the group of Prof. Boris Chichkov in

Laser Zentrum in Hannover (LZH), who proposed to apply the laser printing technique,

used previously for generating metallic nanoparticles, to dielectric systems [110]. This

technology relies on femtosecond laser printing of Si nanoparticles onto a glass receiver

substrate using silicon-on-insulator (SOI) wafers as laser targets.
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2.3 Optical response of dielectric dimers

Figure 2.12: (a) Schematic illustration of femtosecond laser printing of nanoparticles.
A silicon-on-insulator (SOI) wafer was used as a target to transfer spherical Si nanopar-
ticles from a 50 nm crystalline Si layer onto the transparent glass receiver substrate.
(b) To print Si nanoparticle dimer structures, one can displace either the target mate-
rial or the receiver substrate. (c) SEM-images of the Si nanoparticle dimer structures
obtained on a glass substrate. Experimental implementation at the Laser Zentrum in
Hannover.

2.3.2.1 Experimental details

A schematic illustration of the generation of nanoparticles and nanoparticle dimer struc-

tures in LZH is shown in Fig. 2.12. First, silicon nanoparticles are transferred by single

femtosecond laser pulse irradiation of an SOI substrate toward a glass receiver substrate

(Fig. 2.12(a)). Subsequently, the SOI substrate is shifted relative to the receiver sub-

strate. By repeating the printing process, silicon nanoparticle dimer structures with

varying interparticle distances are realized (Fig. 2.12(b)). Initially, these structures are

in the amorphous phase (a-Si). By additional single-pulse laser irradiation, the amor-

phous nanoparticles can be controllably transformed into crystalline particles (c-Si). The

resulting silicon nanoparticle dimer structures consist of two identical nanoparticles, as

shown in the SEMS images of Fig. 2.12(c).

In Fig. 2.13 we show the polarization-resolved dark-field scattering spectra of the dimer

structures with a gap separation of 375 nm (a,b) and 5 nm (c,d), illuminated by light

polarized perpendicularly (a,c) or parallelly (b,d) to the long axis of the dimer. These

two setups correspond to the TE and TM polarization schemes, respectively, discussed in
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Chapter 2. Dielectric nanoantennas

Figure 2.13: Scattering spectra of crystalline silicon nanoparticle dimer structures for
incident light polarized perpendicular (a,c) and parallel (b,d) to the axis of the dimer
structure, as displayed in the insets. The distance between the nanoparticle surfaces
is 375 nm (a,b) and 5 nm (c,d) and was measured using SEM image analysis software
with a standard deviation of 0.8 nm. Insets show the dark scattering images of the
corresponding dimer structures. Measurements were carried out at the Laser Zentrum
in Hannover.

the previous section. Measurements of the Si nanoparticle dimer structure with an inter-

particle distance of about 375 nm reveal no significant difference in the spectral position

of the scattering peaks for different polarizations (see Fig. 2.13(a) and (b)) indicating

a weak electromagnetic interaction between the nanoparticles in well-separated dimers.

In contrast, scattering measurements for the case of a small interparticle distance (5

nm) demonstrate a significant difference between the two types of polarization (see Fig.

2.13(c) and (d)). For light polarized parallel to the major dimer axis a single broad

scattering peak emerges (Fig. 2.13(d)) between the two resonant features observed for

perpendicular polarization (Fig. 2.13(c)).

The exact shape and geometries of the nanoparticles cannot be read out from the SEM

images exclusively, as the nanoparticles suffer deformation during the impact against the

SOI wafer. Furthermore, as pointed out in Refs. [111] and [8], the outer layer of silicon

oxidizes, forming a SiO2 coating. To address these effects, below we present a detailed

discussion of how the flattening and oxidation of Si nanospheres influence the position of
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the electric and magnetic dipolar resonances, deriving a protocol to determine the most

suitable parameters to describe the morphology of the experimentally obtained sample.

2.3.2.2 Numerical analysis of single nanoparticle scattering

The optical response of a single c-Si scatterer can be influenced by many different factors

such as the presence of the substrate, the oxidation of the outer layer of the particle or

its departure from the spherical shape. Therefore, before we attempt to unravel the

optical response of the dimer structures shown in Fig. 2.13, let us consider a single c-Si

nanoparticle. To this goal, in Fig. 2.14 and in the following paragraphs we present a

careful numerical analysis of the effects listed above. The dielectric function of crystalline

silicon was taken from the literature [112].

Presence of the substrate

The black solid line in Fig. 2.14(a) denotes the scattering cross section of a c-Si nanopar-

ticle of 97 nm radius in air, with two dominant contributions: electric and magnetic

dipolar modes marked with the green and red lines, respectively. As previously reported

[111], the spectral positions of the lowest-order Mie resonances in dielectric spheres are

rather insensitive to the presence of a substrate (dashed line). This is mostly due to the

localization of the displacement currents inside the dielectric material. We observe this

effect in Fig. 2.14(a), where both the dipolar electric and magnetic resonances of a 97

nm radius c-Si nanosphere peak at 600 nm and 750 nm independently of the presence

of the silica substrate.

Oxidation of the particle

Silicon nanoparticles undergo oxidation of their outer layers, a process that leads to

the formation of a core-shell nanoparticle with a shrunken c-Si core and a silica shell.

Since the refractive index of silica is significantly lower than that of the c-Si, the optical

response of the nanoparticle is primarily determined by the c-Si core. In Fig. 2.14(b)

we show how the optical features blue-shift with the shell thickness h increasing from 0

nm (black line) to 8 nm (blue line), and simultaneously decreasing the core radius from

97 nm to 89 nm.

Distorting the shape of nanoparticle

Silicon nanoparticles formed in the printing process are not ideally spherical, but rather
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Figure 2.14: Calculated scattering cross sections of single dielectric scatterers. (a)
Scattering by a c-Si nanosphere of 97 nm radius (black solid line) dominated by the
electric dipolar (green line) and magnetic dipolar (red line) contributions. Spectral
positions of these resonances are largely insensitive to the presence of the silica substrate
(dashed line). (b) Oxidation of the outer layer of the nanoparticle of thickness h
significantly blue-shifts all of the spectral features. (c) Contraction of the c-Si scatterer
along the ẑ axis selectively blue-shifts magnetic resonances. See definitions of rx and
rz in the inset. (d) By modifying the illumination angle, it is possible to selectively
tune the strength of higher order resonances. Here, calculations for the oblate spheroid
described by (rx, rz) = (97, 75) nm are shown.
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2.3 Optical response of dielectric dimers

take on a form of oblate spheroids. As shown in Fig. 2.14(c), such lowering of the

symmetry of the scatterers influences the electric and magnetic dipolar modes slightly

differently. Specifically, contracting the nanoparticle along the illumination direction

(changing rz) shifts the low-energy magnetic and high-energy electric modes by 70 nm

and 20 nm, respectively. This is clearly a very different behavior with respect to the

homogeneous shift induced by the formation of the oxide layer. A similar analysis of

the geometrical parameters of nanodisks and their effect on the optical response can be

found in Ref. [95].

Angled incidence

To model the dark-field scattering microscopy scheme, we present the spectra obtained

for varying illumination angles. As observed in Fig. 2.14(d), changing the angle of

illumination modifies the relative intensity of the resonances. For instance, it is possible

to eliminate the scattering from the 525 nm mode (quadrupolar magnetic) for grazing

incidence.

Considering all the effects reported above, we have estimated the optimal parameters

that correctly describe the spectral features of the optics of the single scatterers prepared

by laser printing. This will set up the morphology of the system to further study the

interaction in the dimer structure. We will hence describe the nanoparticles as ellipsoidal

core(c-Si)-shell(SiO2) structures with major and minor core radii of 95 and 78 nm,

respectively, and a 4 nm oxide layer.

2.3.2.3 Numerical analysis of the dimer scattering

Let us now proceed to analyze the optical response of dimer structures and its depen-

dence on the separation between the scatterers and on the polarization of the incident

light. In Figs. 2.15(b) and 2.16(b) we present the experimental (black lines) and cal-

culated (solid red lines) scattering intensities of dimer structures with varying dimer

separations d ranging from 320 nm (tops) to 5 nm (bottom plots), illuminated by the

normally incident light with TM (Fig. 2.15) and TE (Fig. 2.16) polarizations. For

each spectrum we have also calculated numerically the strengths of the dipoles induced

in each of the nanoparticles (pi, mi for i = 1, 2) by integrating the polarization P

(pi =
∫
Vi

PdV ) and polarization currents J (mi = 1
2

∫
Vi

r × JdV ) inside the volume of
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the i-th particle Vi. Having obtained these quantities, we have calculated the contribu-

tion to the scattering intensity from the different dimer modes, which were introduced

in the discussion of the analytical model, in Section 2.3.1.1.

For example, for the TM polarization (Fig. 2.15) the scattering from the bonding mode

of the electric dipoles B3u (dashed green line) is dominant for all the dimer separations d,

and it red-shifts with decreasing d, similarly to the electric bonding modes of plasmonic

dimer antennas. Simultaneously, the magnetic mode B2g, denoted with a dashed orange

line, blue-shifts and decreases significantly in intensity. We should note here that this

shift is not monotonous and might point to a more complex near-field interaction not

described within this model. Finally, we can consider the B1g mode which, as shown

earlier, can couple to light (blue dashed line) through the excitations of the heteroge-

neous modes, each comprising one electric and one magnetic dipole. Similarly as in the

analytical spectra shown in Fig. 2.11, this last mode exhibits a double-peak structure.

The resulting hybridization scheme shown in Fig. 2.15(a), which - unlike the correspond-

ing schemes drawn for electric-only excitations in plasmonic nanoparticles - contains the

homogeneous magnetic mode B2g and the heterogeneous modes which give rise to the

B1g mode.

The numerical calculations reveal a remarkable agreement with the experimental results

(see comparison in Fig. 2.15(b)). Importantly, this close correspondence allows us to

identify the small contribution in the experimental results around 570 nm, for a small

d = 5 nm separation, as due to the effects of the excitation of the heterogeneous modes.

The slight deviation in the intensities of the features most likely stems from the particular

situation of the setup of the dark-field microscope, i.e., the finite aperture and the non-

normal incidence of light.

A similar analysis can be conducted for the TE polarization of the incident light (electric

field normal to the dimer axis). The hybridization scheme shown in Fig. 2.16 reveals

the emergence of two homogeneous modes: electric B2u and bonding magnetic B3g,

both induced directly by the incident light, as well as the pair of heterogeneous modes

which give rise to the excitation of the magnetic B1u mode. The decomposition of the

scattering intensity in Fig. 2.16(b) reveals the evolutions of the modes as indicated by

the hybridization scheme (Fig. 2.16(a)), with the red-shifting B1u (dashed blue) and B3g

(dashed orange) and blue-shifting B2u (dashed green) modes. As in the previous case,

the agreement between the experimental and numerical results is very good, including
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2.3 Optical response of dielectric dimers

Figure 2.15: Scattering of normally incident light with electric field along the axis of
a dimer of silicon scatterers. (a) Energy-level diagram describing the hybridization of
electric (red arrows) and magnetic (green arrows) dipolar resonances of single scatterers
with the representations of the D2h symmetry group: B3u, B1g and B2g. (b) Calculated
scattering intensities of dimer structures (solid red line) for separations of d = 320, 100,
50 and 5 nm (top to bottom) compared to the experimental results (black line). The
spectra are decomposed according to the hybridization scheme of electric and magnetic
modes: B3u (green dashed line), B1g (blue dashed line) and B2g (orange dashed line).
Each single scatterer is an oblate ellipsoidal core(c-Si)-shell(SiO2) structure with major
and minor external radii of 95 and 78 nm, respectively, and a 4 nm oxide layer.

an emergence of the heterogeneous mode at around 710 nm for the smallest separation

(blue dashed line contribution in the bottom spectrum).

The additional resonant feature at a wavelength of 510 nm (see Figs. 2.15 and 2.16)

is weakly dependent on the separation of the dimers for both polarizations of light,

pointing to the multipolar character of this excitation.

2.3.2.4 Conclusion

As a summary, we have investigated dimers of sub-micrometer crystalline silicon nanopar-

ticles with different interparticle distances, ranging from 5 nm to 375 nm. The dimers
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Figure 2.16: Scattering of normally incident light with electric field perpendicular
to the axis of a dimer of silicon scatterers. (a) Energy-level diagram describing the
hybridization of electric (red arrows) and magnetic (green arrows) dipolar resonances
of single scatterers with the representations of the D2h symmetry group: B2u, B3g

and B1u. (b) Calculated scattering intensities of dimer structures (solid red line) for
separations of d = 320, 100, 50, and 5 nm (top to bottom) compared to the experimental
results (black line). The spectra are decomposed according to the hybridization scheme
of electric and magnetic modes: B2u (green dashed line), B1u (blue dashed line) and
B3g (orange dashed line). Scatterers are identical to those used in Fig. 2.15.

have been fabricated on a glass substrate by a laser printing method which has been

recently developed for Si nanoparticles with resonant optical responses.

For small interparticle distances the electric and magnetic dipolar modes of single scat-

terers hybridize and form homogeneous electric-electric, magnetic-magnetic, and more

complex heterogeneous electro-magnetic modes, following the hybridization scheme dis-

cussed herein. These findings are reproduced very accurately by numerical simulations,

which further allowed us to access information about the exact shape and composition

of the scatterers. We conclude that tunable and strongly interacting dielectric dimers

are a versatile tool for studying the coupling of light in dielectric nanostructures.
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2.3 Optical response of dielectric dimers

2.3.3 Control of single emitters

As we have shown in the Section 2.2, single dielectric nanoparticles can serve as efficient

platforms to enhance the electric and magnetic emission from dipolar emitters. Below

we briefly describe how such systems can be improved by adding a second nanoparticle,

thus effectively placing the emitter in the gap of a dielectric dimer. We should note that

these results include the description of non-radiative processes, which we have neglected

when considering lossless single particle nanoantennas. To account for this effect, the

real constant refractive index of silicon was replaced with the dispersive function from

Palik [112].

In Fig. 2.17 we show the spectra of the radiative decay rate enhancement Γsca/Γ0 and

the quantum efficiency Q defined as

Q =
Γsca

Γtot
(2.35)

for (a) electric and (b) magnetic dipolar emitters, placed at the center of 10 nm (red

lines), 50 nm (green lines) and 200 nm (blue lines) gaps between two silicon spheres of

150 nm radii each. The emitters are oriented either along (left panels) or perpendicularly

(right panels) to the symmetry axis, as shown in the corresponding insets.

Spectra of the radiative enhancement rates of the electric dipolar emitter shown in

Fig. 2.17(a) exhibit selective coupling to the modes of the dimer structure, which we have

described earlier. For an orientation of the electric dipolar emitter along the symmetry

axis (left panel in Fig. 2.17(a)) the spectrally broad and strong enhancement is due

to coupling with the bonding B3u mode of the dimer (see schematics in Fig. 2.10).

For perpendicular orientation (right panel in Fig. 2.17(a)) the enhancement is given

predominantly by the magnetic mode B1u, although we can expect from the symmetry

considerations a contribution from the electric B2u resonance. For the smallest gap

widths (red lines), at resonance wavelengths, the radiative decay rate is enhanced by up

to 300 (left panel in Fig. 2.17(a), λ = 1300 nm) and 12 (right panel in Fig. 2.17(a), λ =

800 nm), depending on the emitter’s orientation, while retaining quantum efficiencies

over 0.1.

For the magnetic emitter oriented along the symmetry axis of the dielectric dimer an-

tenna (left panel in Fig. 2.17(b)), we obtain the strongest enhancement of the radiation

rate (up to 250 for 10 nm separation) due to coupling to the quadrupolar magnetic mode

at a wavelength of 810 nm, and a large enhancement (up to 100, around a wavelength
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Figure 2.17: Enhancement of the radiative decay rate and quantum efficiency of an
(a) electric and (b) magnetic dipolar emitter positioned at the center of a gap of a
silicon dimer formed by two spheres of 150 nm radius. For the electric emitter, the
enhancement is given predominantly by the coupling to the electric B3u mode for the
orientation of the emitter along the axis (left panel in (a)) or the interplay of the
dominant magnetic mode B1u and a weak electric B2u for the perpendicular dipole
(right panel in (a)). Similarly, the magnetic emitter couples to the B3g mode when
oriented along the axis (left panel in (b)) and both B1g and B2g modes. Orientations
of the emitters are shown in the schematics. Gap widths are given in the legends.

of 1150 nm) from the B3g mode of the dimer. Significantly weaker enhancements (up

to 25) are obtained for the emitter oriented perpendicularly to the dimer axis (right
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panel in Fig. 2.17(b)), as a result of the interplay of the electric B1g and magnetic B2g

excitations.

The quantum efficiency of the emitter is primarily governed by the extinction coefficient

of silicon, which grows steadily for energies above around 1 eV. Furthermore, significant

dips in the quantum efficiency can be qualitatively assigned to the dips in the radiative

rate enhancement.

It is worth to mention that, in some frequency ranges, the emission rates, for both electric

(Fig. 2.17(a)) and magnetic (Fig. 2.17(b)) emitters, are strongly reduced. For very small

gap widths, this suppression of radiative decays coincides with a low quantum efficiency.

However, inhibition of spontaneous emission does not necessarily correlate with quantum

efficiency as it can be seen from our results for large gap widths. Notice that emission

rates are constrained by specific sum rules derived from the Kramers-Kronig relationship

[113, 114]. In particular, any reduction in spontaneous emission rate over some range of

wavelengths must necessarily be compensated by as increase over some other range of

frequencies. Dips in the emission rates observed in all the cases considered in Fig. 2.17

could also be found even for a single lossless sphere, where quantum efficiency is 1, as

discussed in Ref. [15] and Section 2.2. While such effects can be found in the radiative

decay rate enhancement near plasmonic nanoparticles, they are often masked by the

enhancement of the non-radiative decay rates. These effects can avoided by embedding

the emitters into photonics crystals with the bandgap matched to the emission energy

of the emitters [115, 116]. Our significantly simpler systems can be thus seen as a an

intriguing alternative to these complex setups.

2.4 Summary

In this chapter we have analyzed the optical response of two elementary systems com-

prising dielectric dipolar nanoantennas: a single spherical nanoparticle, serving as a

platform for enhancing the emission from electric or magnetic dipolar emitters, and a

dimer of subwavelength particles, either illuminated by an incident planewave or coupled

to a dipolar emitter. In order to provide a physical interpretation to the spectral char-

acteristics of these structures, we have designed simple analytical models which explain

the observed spectral features in terms of the dipolar modes induced in the dielectric

scatterers. We have thus observed an interaction between homogeneous pairs of two

electric dipoles, commonly discussed in the literature, as well as the more exotic pairs of
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magnetic dipoles and, finally, the heterogeneous pairs comprising electric and magnetic

dipoles.

These models can be further developed by removing their dependence on the external

illumination, thus obtaining the description of the eigenmodes of the system, or by

including additional, dipolar scatterers and forming trimer or quadrumer structures. In

another interesting extension of this study, one could introduce a rigorous analysis of

the coupling between the bright and dark modes which would go beyond the quasi-static

limit already studied for the coupling in plasmonic nanosystems.
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Helicity and random media

“It’s a poor sort of memory that only works backwards,’ says the White Queen

to Alice.”

– Lewis Carroll, Through the Looking-Glass

Classical electrodynamics is endowed, as any elegant theory, with numerous intrinsic

symmetries and associated conservation laws which, if used properly, can greatly sim-

plify derivations and provide novel results with just a bit of ingenuity. However, the

revelation about the symmetries underlying certain physical phenomena often comes

from hindsight.

In this chapter, we present two complementary paths to finding a new physical effect:

the conservation of helicity in light scattering processes. The first approach, perhaps

the more elegant one, is based on arguments of conservation principles and symmetries

of Maxwell’s equations. It provides the necessary and sufficient macroscopic conditions

to preserve helicity when light propagates through a piecewise-homogeneous medium.

The second approach is more phenomenological, and is based on the description of the

multiple scattering of helical light in a solution of dipolar scatterers. Before we report

on these findings, let us first introduce the formalism that will sustain our results.
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3.1 Operators, symmetries and transformations

For future reference, let us write down Maxwell’s equations in a linear, non-dispersive,

source-free and homogeneous medium for monochromatic harmonic fields in the fre-

quency domain:

∇ ·E = 0, (3.1a)

∇ ·H = 0, (3.1b)

∇×E = iωµ0µH, (3.1c)

∇×H = −iωε0εE, (3.1d)

where ε0 (µ0) and ε (µ) are the vacuum and relative permittivities (permeabilities) of

the medium and ω is the frequency of the harmonic fields E and H.

In Appendix A we discuss how, by considering the intrinsic symmetries of a system, one

can find a convenient basis to solve Maxwell’s equations. Specifically, for the derivation

of light scattering on spherical particles [70], the choice was particularly simple. The

basis for the components of the electromagnetic fields was spanned by the vector spherical

harmonics defined as

M(r) = ∇× [rΨ(r)], N(r) =
∇×M(r)

k
, (3.2)

where r is the position vector and Ψ a solution of the scalar wave equation. We note

that, while this choice of basis allows for a particularly simple description of scattering

on a system with spherical symmetry, it is rather inconvenient for the expansion of a

planewave or dipolar illumination.

A more sensible choice of the basis, that would yield a simple description of the planewave

illumination, is provided by functions

MTE(r) = ∇× [âΨ(r)], MTM(r) =
∇×MTE(r)

k
, (3.3)

where â is a constant unitary vector dubbed as the guiding or pilot vector [117]. With

the choice of

Ψ(r) = exp(ik · r), (3.4)

functions MTE and MTM themselves represent planewaves with wavevectors k, and

orthogonal polarizations.
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We can now pose the following question: Is it possible and, if it is, how to construct a

basis of functions that would exhibit an arbitrary set of symmetries, e.g. a symmetry

with respect to the spatial translation along ẑ axis, rotation around ẑ and temporal

translation? Before we answer these questions, we need to formalize our considerations

a bit further.

3.1.1 Complete set of commuting operators

Let us consider two properties (or observables) of the electromagnetic field represented

by operators F and G. If the operators commute, that is

[F ,G] = 0, (3.5)

then one can find an eigenbasis formed by the electromagnetic fields denoted as Φ̄ ≡
{Φi = (Ei,Hi)}i=1,...,n (the eigenbase does not have to be finite), which fulfill Maxwell’s

equations, and are simultaneously eigenfunctions of both operators:

FΦi = φFi Φi, (3.6a)

GΦi = φGi Φi. (3.6b)

This property can be then extended to a larger set of operators F̄ ≡ {Fk}k=1,...,N ,

until they fully characterize the field (so that no two modes Φi and Φj have identical

eigenvalues of all the operators F̄). F̄ is then called the complete set of commuting

operators.

3.1.2 Operators and symmetries

Let us consider a set of operators which are the generators of symmetries of interest.

Below we present the short list, assembled by Xavier Zambrana-Puyalto [118], of the

operators which we will be making use of later:

1. Linear momentum operator defined as

P = −i∇, (3.7)

in the Cartesian coordinates has three commuting components: Px = −i∂x, Py =

−i∂y, Pz = −i∂z, and is a generator of the spatial translation Tδr = exp(−iP ·δr).

71



Chapter 3. Helicity and random media

2. Hamiltonian defined as

H = −i ∂
∂t
, (3.8)

is a generator of the time evolution Tδt = exp(−iHδt), and commutes with P.

3. Angular momentum operator defined as

J = L + S, (3.9a)

where L is the orbital angular momentum OAM

L = r×P, (3.9b)

and S - the spin angular momentum SAM, expressed in Cartesian coordinates as

S = −i(x̂ε1jk + ŷε2jk + ẑε3jk), (3.9c)

with the Levi-Civita symbol εijk:

εijk =


1 if (i, j, k) is (1, 2, 3), (2, 3, 1), (3, 1, 2)

−1 if (i, j, k) is (3, 2, 1), (1, 3, 2), (2, 1, 3)

0 if i = j or j = k or i = k.

(3.9d)

J is the generator of rotation around vector n̂: Rn̂(φ) = exp(−iJ · n̂). Therefore,

unlike in the linear momentum case, the components of J do not commute

[Ji, Jj ] = iεijkJk. (3.9e)

Interestingly, neither one of the two operators constituting J: OAM nor SAM is

a generator of proper rotations. Furthermore, if we apply those operators to the

fields fulfilling Eqs. (3.1), the resulting fields do not fulfill Maxwell’s equations.

4. Casimir operator

J2 = J2
x + J2

y + J2
z , (3.10)

commutes with all the components of J,

5. Helicity operator

Λ =
J ·P
|P|

=
S ·P
|P|

, (3.11)
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is the generator of the duality transformation defined as

Dφ

(
E

B

)
=

(
E cosφ− cB sinφ

E sinφ+ cB cosφ

)
, (3.12)

where B = µ0µH. For monochromatic fields (|P| = k), we can rewrite it as

Λ =
∇×
k
. (3.13)

Almost all of the above operators commute with the rest, with the following exceptions:

• [Pi, Jj ] = iεijkPk,

• [Ji, Jj ] = iεijkJk.

With this last remark, we are ready to answer the first part of the question posed earlier:

yes, it is possible to find an eigenbasis of the set of commuting operators:

{Pn̂, Jn̂, H}. (3.14)

By definition, such eigenbasis will be invariant with respect to the spatial translation

along n̂ (Tδn̂), rotation around n̂ (Rn̂) and temporal translation (Tδt).

In the following section we try to answer the natural follow-up question: how to derive

such a basis.

3.1.3 Fields and modes

Let us analyze the modes which we have introduced earlier: MTE and MTM. For the

sake of simplicity, we assume that these modes were defined with the pilot vector â = ẑ

- a unit vector along axis ẑ, yielding

MTE(r) = ξs(r)Ψ(r), MTM(r) = ξp(r)Ψ(r), (3.15)

with the two orthogonal vector fields

ξs(r) =
i

kρ
(kyx̂− kxŷ), (3.16a)

ξp(r) =
1

kkρ
[−kz(kxx̂ + kyŷ) + k2

ρẑ], (3.16b)
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where k = (kx, ky, kz) and kρ =
√
k2 − k2

z was introduced into the definitions of ξs and

ξp to properly normalize the fields. Both planewaves are eigenvectors of the Hamiltonian

H and the linear momentum operator P.

The helicity operator acting on these modes gives

Λ[ξs(r) exp(ik · r)] = ξp(r) exp(ik · r), (3.17a)

Λ[ξp(r) exp(ik · r)] = ξs(r) exp(ik · r). (3.17b)

Thus, in a manner reminiscent of the construction of the Jones vectors for circular

polarizations, we can introduce two new modes with well-defined helicities

ε+ =
1√
2

(ξs + ξp) exp(ik · r), with Λε+ = ε+, (3.18a)

ε− =
1√
2

(ξs − ξp) exp(ik · r), with Λε− = −ε−, (3.18b)

We can also express these modes through the circular polarization vectors of a planewave

propagating along ẑ: σ̂± = 1√
2
(x̂± iŷ) as

ε± =
1

2

[(
1∓ kz

k

)
eiφk σ̂− −

(
1± kz

k

)
e−iφk σ̂+ ±

√
2kρ
k

ẑ

]
exp(ik · r), (3.19)

where φk is the azimuthal component of wavevector k. The resulting modes are eigen-

functions of the linear momentum P, helicity Λ and the Hamiltonian H operators.

3.1.3.1 Bessel beams

Let us now consider another class of electromagnetic fields characterized by

1. symmetry under temporal translations (eigenfunctions of H),

2. well-defined helicity (eigenfunctions of Λ),

3. symmetry under spatial translations along â (eigenfunctions of Pâ),

4. symmetry under rotations around â (eigenfunctions of Jâ),

Without the loss of generality, we again assume â ≡ ẑ and consider beams composed of

modes
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1. with identical |k| (monochromatic),

2. with identical and well-defined helicities, either ε+ or ε−,

3. with identical ẑ component of linear momentum Pz.

To address these constrains, we write the sought-after beam as a superpositions of ε+

(ε−) modes with k vectors distributed on a cone with aperture θk around the axis ẑ, such

that kz = k cos θk (denoted by superscripts +, ẑ and −, ẑ). The aperture angle and the

distribution function of the wavevectors on the cone f(φk), where φk is the azimuthal

angle, are denoted in the subscript:

B±,ẑf,θk
=

∫ 2π

0
dφkf(φk)ε± exp(ik · r). (3.20)

The function f(φk) needs to be selected to ensure that the resulting field B±,ẑf,θk
is an

eigenstate of Jz. Choosing f(φk) = exp(iφkm) yields the field with the required prop-

erties:

PzB
±,ẑ
m,θk

= kzB
±,ẑ
m,θk

, (3.21a)

JzB
±,ẑ
m,θk

= mB±,ẑm,θk
, (3.21b)

ΛB±m,θk = ±B±,ẑm,θk
, (3.21c)

where we have replaced the subindex f with the eigenvalue of operator Jz: m. Expanding

the integrals and the definitions of modes ê± we can write

B±,ẑm,θk
=

√
kρ
2π
imeikzz

[
i√
2

(
1∓ kz

k

)
Jm+1(kρρ)ei(m+1)φσ̂−+

+
i√
2

(
1± kz

k

)
Jm−1(kρρ)ei(m−1)φσ̂+ ±

kρ
k
Jm(kρρ)eimφẑ

]
. (3.22)

Functions Jm used in this definition are the Bessel function of the first kind, and they

originate from the expansion of the transversal components of the momentum in exp(ik ·
r). Therefore, we will be referring to this class of beams as Bessel beams.

3.1.3.2 Circularly-polarized light

We should note that for vanishing aperture angle θk → 0 (and kz → k) we obtain

B±,ẑm,θk→0 ∝ i
m+1eikzzJm∓1(0)ei(m∓1)φσ̂±. (3.23)
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In this limit the normalization scheme needs to be changed, since the coefficient
√

kρ
2 →

0. With the Bessel function Jn non-vanishing at kρ = 0 only for the Bessel function of

the 0th order, the only meaningful B functions are

B±,ẑm=±1,θk→0 ∝ e
ikzzσ̂±, (3.24)

and describe the circularly polarized (CP) light. The argument for choosing a certain

sign (+ or −) of σ to denote the right-hand circularly polarized (RCP) or left-hand

circularly polarized (RCP) light depends on whether we observe the beam from behind

the source, or heading towards us. In the former case the real component of the electric

field described by the vector field B+,ẑ
m=+1,θk→0 ∝ σ+ is performing a counter-clockwise

rotation, identifying it as the LCP light. Accordingly, vector field B−,ẑm=−1,θk→0 ∝ σ−

describes clockwise rotation of the electric field, and the RCP light:

(observer behind the source), LCP: σ+, RCP: σ−. (3.25)

Conversely, if the observer is facing the incoming light, B+,ẑ
m=+1,θk→0 and B−,ẑm=−1,θk→0

appear to be describing the clockwise (RCP) and counter-clockwise rotation (LCP),

respectively.

(observer facing the source), LCP: σ−, RCP: σ+. (3.26)

The first convention is typically used in the community of quantum physics, while the

second one in that of optics. Throughout the rest of the chapter we will follow the latter.

We can also generalize this result to any helical field and interpret the field with positive

helicity Λ = +1 as that which can be decomposed into right-hand circularly polarized

planewaves, and the field with negative helicity Λ = −1 as that which can be decomposed

into left-hand circularly polarized planewaves.

3.1.3.3 Constructing the electric and magnetic fields

The abstract derivation provided above deserves some clarification regarding the con-

struction of the electric E and magnetic H fields of a beam with a well-defined helicity

(helical beam). The two fields are related to each other through the Faraday’s equa-

tion (Eq. (3.1c)), which can be rewritten using the definition of the helicity operator

(Eq. (3.13)) as an eigenvalue equation

H = − i

µ0c
ΛE = − i

µ0c
ΛE. (3.27)
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3.2 Helicity preservation in an inhomogeneous medium

Therefore, by choosing the electric field as a superposition of the B±,n̂m,θk
modes with

various orders m and aperture angles θk around an arbitrary axis n̂, we automatically

define the corresponding magnetic field H as a superposition of all those beams with

the appropriate sign determined by their helicity.

3.2 Helicity preservation in an inhomogeneous medium

In this section we discuss two complementary results published recently, both of which

report the conservation of helicity of the electromagnetic field in an inhomogeneous

medium, but treat the problem with very different tools.

The first report deals with the scattering of helical electromagnetic fields on arbitrarily-

shaped, homogeneous scatterers, described solely by their permittivities and permeabili-

ties. This result allows us to formulate the conditions under which the light propagating

in a piecewise-homogeneous medium retains its helicity [119].

The second result describes the preservation of helicity in the scattering on a solution

of dipolar, resonant scatterers which behave like point electric and magnetic dipoles

with equal polarizabilities [120]. In this approach the induced dipoles can be seen as

the microscopic building blocks of a macroscopic medium with equal permittivity and

permeability.

3.2.1 Macroscopic approach

Let us consider a homogeneous medium characterized by permittivity ε1 and permeabil-

ity µ1, and a distribution of electric E1 and magnetic H1 fields which fulfill Maxwell’s

equations (Eq. (3.1)). If this medium is unbound, then in the absence of charges and

currents, Maxwell’s equations are invariant in the entire system with respect to the

duality transformation Dφ, that is, the fields transformed according to Eq. (3.12) will

fulfill the Maxwell’s equations. This description can be extended to include sources, as

we demonstrate in Appendix A when deriving the electromagnetic fields generated by a

magnetic dipole.

We can now complicate the system, by dividing it into two regions (Ω1 and Ω2) char-

acterized by the material properties (ε1, µ1) and (ε2, µ2), respectively. The electric and

magnetic fields {Ei,Hi}i=1,2 fulfill (i) the Maxwell conditions inside the homogeneous

77



Chapter 3. Helicity and random media

media, and (ii) the boundary conditions on the interface between Ω1 and Ω2:

n̂× (E1 −E2) = n̂× (H1 −H2) = 0, (3.28a)

n̂ · (ε1E1 − ε2E2) = n̂ · (µ1H1 − µ2H2) = 0, (3.28b)

where n̂ is a unitary vector normal to the boundary between two media. If we apply the

duality transformation to both sets of fields in the two media

(
Ẽφ
i

H̃φ
i

)
= Dφ

(
Ei

Hi

)
, (3.29)

we arrive at the obvious question whether these fields fulfill both Maxwell’s equations

and the boundary conditions.

In their work, Fernandez-Corbaton et al. [119] prove that these conditions are fulfilled

if and only if the ratios of the permittivities and permeabilities of each material are

identical:
ε1

µ1
=
ε2

µ2
. (3.30)

Importantly, this result, trivially expanded to a system comprising more homogeneous

media, holds independently of the geometric properties of the homogeneous domains Ωi.

An important implication of this conclusion is that in the piecewise-homogeneous medium

fulfilling the generalized condition formulated in Eq. (3.30), the response of the system

(or, equivalently, Maxwell’s equations and the boundary conditions describing the sys-

tem) is invariant with respect to the dual transformation Dφ. Furthermore, since this

helicity is the generator of the dual transformation, the system preserves the helicity of

the field with which it interacts.

A convenient illustration of this effect is given in Fig. 3.1, where we plot the value of scalar

function introduced in Ref. [119] to locally measure the helicity of the electromagnetic

field

Λ̃± = |E± icµ0H|2 . (3.31)

For a helical field {E, H} which follows the helicity eigenvalue equation (Eq. (3.27)) we

get

Λ̃± = |E|2|1± 1|2. (3.32)

The system Ω, shown in Fig. 3.1(c), comprises a two-dimensional homogeneous scatterer

Ω1 with material properties: ε1 = 2.25 and µ1, immersed in vacuum Ω2 (ε2 = µ2 = 1).
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3.2 Helicity preservation in an inhomogeneous medium
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Figure 3.1: Helicity of the field scattered on a pan flute-like object composed of infinite
cylinders, immersed in air (ε2 = µ2 = 1) and illuminated by a circularly polarized light.
Functions Λ± are calculated in the plane denoted in green in (c), and the permeability
of the scatterer (Ω1) was chosen either not to fulfill (a) or to fulfill (b) the condition
for helicity preservation given in Eq. (3.30). Illustrations inspired by Ref. [119]

The incident helical field is a monochromatic, left-hand circularly polarized planewave

(LCP) incident along the black arrow. In (a) we plot the Λ̃+ and Λ̃− functions, calculated

for µ1 = 1 6= ε1, in the plane schematically depicted with light green color in (c). Neither

of those functions vanish, indicating that the system Ω does not preserve helicity of the

incident LCP. On the other hand, function Λ̃− shown in (b), where µ1 = 2.25 = ε1,

vanishes in the whole system Ω, demonstrating that the helicity of the scattered field is

identical to that of the incident LCP (Λ = −1). The calculations were performed using

the FDTD software [83], and the shape of the scatterer, although not the illumination,

was chosen to mimic the structure investigated in Ref. [119].

3.2.2 Microscopic approach

In this section we analyze the scattering of helical beams on a random medium compris-

ing identical particles with strong electric and magnetic activity. These particles can be

similar to those studied in Chapter 2, made of high-refractive index dielectric material.

In parallel to the study of macroscopic structures discussed earlier, we formulate a clear

criterion for the scattering process to conserve the helicity of the electromagnetic fields.
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3.2.2.1 Random media and polarization

Although the study of the statistical properties of complex, irregular distribution of

electromagnetic fields known as speckle patterns [121, 122] has been a topic of high

interest during the last decades, the statistics of the polarization of electromagnetic

vector waves is still not well understood. The depolarization of light in a random medium

is the basis of an increasingly broad range of applications from remote sensing [123],

enhanced backscattering phenomena [124–127], to biomedical imaging and diagnostics

[128–130]. Even for static samples, the polarization of the scattered field is far from being

isotropic [123] and the polarization of the speckle pattern may exhibit rapid changes from

one speckle grain to another [131] with a nontrivial statistical distribution of polarization

singularities [132, 133]. It is generally assumed that multiple scattering of light from

inhomogeneities in optically dense media randomizes the state of polarization of light.

A wave propagating in such a medium becomes rapidly depolarized in a characteristic

length scale that depends on the properties of both the scattering medium and the

illuminating light [134–136].

Therefore, if we could show that a solution of particles (which can be readily obtained)

exhibits an isotropic conservation of the polarization state of the incident illumination,

we could add an important contribution to the research of scattering of light in random

media. To this end we first analyze the scattering of helical light by particles in the

dipolar approximation, with identical electric and magnetic polarizabilities (so-called

dual particles). This case is then expanded to treat multiple scattering processes in

systems comprising dimers and random ensembles of such dual nanoparticles.

3.2.2.2 Degree of helical polarization

Figure 3.2 depicts the process of the scattering of helical light on a single nanoparticle.

For illustrative purposes, throughout this section we use a special form of the helical

beam B±,ẑm=1,θk=π/4 with the axial symmetry around the propagation direction ẑ defined

in Eq. (3.22). We should stress that all of the results discussed in this section are general

and hold true for any given helical incident beam, for instance for Bessel beams of order

m 6= 1, or circularly polarized planewaves. In fact, the only property of the incident

fields {E, H} which we will make use of is that they are the eigenfunctions of the helicity

operator (see Eq. (3.27)).
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3.2 Helicity preservation in an inhomogeneous medium

Figure 3.2: Schematic of the scattering process of helical light on a dielectric nanopar-
ticle. The incident helical light is a Bessel beam of m = 1 order with aperture θk = π/4
and helicity Λ = −1, given by Eq. (3.22). The panel shows the cross section of the
intensity of the beam with characteristic Bessel function-like radial oscillations. The
scattered light contains right- and left-handed circularly polarized components mea-
sured by the differential scattering cross sections IRC and ILC , respectively.

The measurements of the scattered light are always performed in the far-field regime,

and can therefore only access the components of scattered fields carried by a very narrow

distribution of wavevectors. In the limit of vanishing detector aperture, this distribu-

tion becomes singular and thus, as we have shown before, the helical beam simplifies to

a circularly-polarized planewave. Consequently, the two functions IRC and ILC which

describe the intensity of the right- and left-hand circularly polarized scattered light, re-

spectively (see Fig. 3.2), can be used to define a degree of helical polarization η ∈ [−1, 1]:

η(ϕ, θ) =
IRC(ϕ, θ)− ILC(ϕ, θ)

IRC(ϕ, θ) + ILC(ϕ, θ)
. (3.33)

Integrating η over the polar and azimuthal angles, we define the total degree of helical

polarization

ηtot =
1

4π

∫ π/2

−π/2

∫ 2π

0
sin(θ)η(ϕ, θ) dθ dϕ ∈ [−1, 1]. (3.34)

As an example of dipolar scatterers with strong electric and magnetic polarizabilities

we choose submicron silicon spherical nanoparticle, such as the ones analyzed in detail

in the previous chapter. We should note that some unusual scattering properties of

such particles associated with their overlapping electric and magnetic polarizabilities

(e.g. the strongly asymmetric angular distributions of scattered intensity), have been

recently reported in the literature [8, 10, 137–139].
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Figure 3.3: (a) Square moduli (top panel) and phases (bottom panel) of the electric
(αe, blue line) and magnetic (αm, red line) polarizabilities of a 230 nm radius silicon
sphere in the near-IR. Scattering cross section (σscattk

−4 shown with a black line) is
dominated by the contributions from these dipolar terms. Dashed vertical lines indicate
wavelengths at which the polarizabilities are equal both in magnitude and phase. (b)
Integrated circular polarization factors ηtot for the sphere positioned on the axis of a
helical beam as the introduced in Fig. 3.2 (top panel), displaced by 2 µm from the beam
axis (middle panel) and 4 µm (bottom panel) from the axis, as shown in the insets with
a blue dot denoting the particle.
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3.2 Helicity preservation in an inhomogeneous medium

In Fig. 3.3(a) we plot the electric αe and magnetic αm polarizabilities of a 230 nm radius

silicon (n = 3.5) sphere in air. The two polarizabilities are identical for wavelengths of

λ = 1844 nm and 1160 nm, which we have marked with vertical dashed blue lines. Note

that for the latter case, the scattering spectrum is dominated by higher-order modes,

and we cannot consider the spheres as dipolar scatterers. Furthermore, the spectra

of |αe|2 and |αm|2 cross also at λ = 1520 nm, but for this wavelength the phases of

the polarizabilities are different (i.e. Re{αe} = −Re{αm}, which corresponds to the

almost-zero-forward condition [10, 137, 138]). The polarizabilities and the scattering

cross section plotted in Fig. 3.3(a) have been calculated with Mie theory.

It should be noted that these scatterers are not dual in terms of the ratio of their permit-

tivity and permeability being equal to that of the surrounding medium (the macroscopic

case we discussed in Section 3.2.1). Instead, as we prove below, the duality arises when

the electric and magnetic polarizabilities are identical [140].

3.2.2.3 Scattering on a single nanoparticle

In the spectral range where the scattered fields can be described by dipolar electric and

magnetic responses, the previously introduced polarization-resolved intensities of the

scattered light are given by the following analytical form [78]

Iε(n̂) ∝ |ε∗ · p + (n̂× ε∗) ·m/c|2, (3.35)

with subindex ε and vectors ε corresponding to the left- (LC, ε = ε−) and right-hand

(RC, ε = ε+) circular polarization of the scattered light (see the definition of ε± in

Eq. (3.18) and the discussion of circular polarizability in Section 3.1.3.2), and p and m

denoting the electric and magnetic dipolar momenta induced in the particle, respectively.

Unit vector n̂ describes the direction of scattering, and was previously determined by

the polar and azimuthal angles θ and φ. This expression can be obtained by considering

the far-field components of the electric field originating from p and m. These electric

and magnetic dipolar momenta are induced by the incident fields {E, H}:

p = ε0αeE, m = αmH. (3.36)

For the dual nanoparticle (αe = αm = α0), using the relationship Eq. (3.27), we obtain:

Iε(n) ∝ |ε0α
∗
0E
∗ · [ε + iΛ n̂× ε]|2 . (3.37)
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For any scattering direction n̂, it can be shown from the definition Eq. (3.18) that

n̂ × ε− = −iε− and n̂ × ε+ = iε+. Thus, the squared expression in the scattering cross

section (Eq. (3.37)) is proportional to

(
ILC
IRC

)
∝
∣∣∣∣(ε−ε+

)
+ Λ

(
ε−
−ε+

)∣∣∣∣2 , (3.38)

indicating that for Λ = 1(−1) incident beams the RC (LC) polarization of the scattered

light vanishes. Therefore, for the dual nanoparticle and the incident helical field, η(n̂)

for every direction should be equal to 1, giving ηtot = 1(−1) for the incident Λ = −1(1)

light.

We illustrate this scattering invariance in Fig. 3.3(b). In the panels we present the spec-

tra of the total degree of helical polarization ηtot, calculated for the scatterer positioned

on the axis of the beam (top panel), shifted away from it by d = 2 µm (middle panel)

or by d = 4 µm (bottom panel), as shown schematically in the insets by the position of

the blue dot. For the two wavelengths at which the two polarizabilities match (λ = 1160

nm and 1844 nm), ηtot reaches its maximum value 1, indicating an isotropic circular

polarization of the scattered light.

Interestingly, the scattering of a dual nanoparticle preserves the helicity everywhere,

and is not only limited to the far-field, as we have shown above. Since the scattered

near-field, composed primarily of evanescent waves, is essential for the understanding of

systems comprised of many scatterers, below we will investigate in detail the helicity of

all the components of the field scattered on a dual particle.

Let us consider the relationship between the electric p and magnetic m dipoles induced

in a dual nanoparticle by a helical light. Inserting Eq. (3.27) into definitions given in

Eq. (3.36), we arrive at

m = −icΛp. (3.39)

The scattered electric field from such a pair of dipoles can be expressed through the

Green’s functions as

Escatt =
k2

ε0

↔
GEp + iZk2

↔
GMm =

k2

ε0
(
↔
GE + Λ

↔
GM )p. (3.40)

To calculate the action of the helicity operator on Escatt, we use the following property

of the Green’s function:

Λ
↔
GE =

↔
GM , Λ

↔
GM =

↔
GE , (3.41)
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which can be derived by taking the definition of the helicity operator for monochromatic

fields (Eq. (3.13)). We then have

ΛEscatt =
k2

ε0
(
↔
GM + Λ

↔
GE)p. (3.42)

Since the eigenvalues of the helicity operator follow Λ2 = 1, we can further rewrite the

above equation as

ΛEscatt = Λ
k2

ε0
(Λ
↔
GM +

↔
GE)p = ΛEscatt. (3.43)

Therefore, the scattered field inherits the helicity of the incident field.

3.2.2.4 Scattering on a dimer of particles

Since the helicity of the electromagnetic field is conserved in the process of scattering on

a single dual scatterer, it should also be conserved in the subsequent scattering events

on other dual scatterers. To illustrate this helicity invariance, we consider the scattering

of the helical beam on a dimer of silicon spheres, recalling the system analyzed in the

previous chapter and in Ref. [7]. We arbitrarily place on of the particles is positioned

at the origin of the coordinate system, while the other is centered at (x, y, z) = (1 µm,

0 µm, 0.5 µm) (see schematics in Fig. 3.4). As previously, we address the problem by

using the coupled electric and magnetic dipole method, that is, by solving a set of self-

consistent equations for the set of four dipoles {pi,mi}i=1,2 illuminated by the Bessel

beam. The central panels in Fig. 3.4 show the distribution of two scalar fields defined

as

Λ± = |Escatt ± icµ0Hscatt|2 , (3.44)

calculated in the transverse plane defined by z = 3 µm. This function differs slightly

from the previously introduced Λ̃±, which we have defined to study the field in Fig. 3.1,

and which included both incident and scattered field (Eq. (3.31)), but carries identical

information. Two wavelengths of the incident light are considered: (a) λ = 1844 nm,

for which the scatterers are dual, and (b) λ = 1679 nm, at which the scatterers have

a dominating magnetic dipolar response. For a helical beam with Λ = −1 interacting

with a dual dimer, the scattered intensity into modes with Λ+ will be zero as shown

in Fig. 3.4(a). In contrast, for the non-dual scatterers (Fig. 3.4(b)), neither one of

the two fields Λ± vanishes, indicating the mixing of the two helicities in the scattering

process. For both wavelengths, we also investigate the far-field properties of the scattered

light, plotting its differential scattering cross section I(ϕ, θ) in the top plots of the right
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Figure 3.4: Light scattering by a dimer of spheres. The incident helical (Λ = −1)
light of (a) 1844 nm or (b) 1679 nm wavelength is scattered on a dimer of two (a)
dual and (b) non-dual silicon spheres. One of the spheres is positioned at the origin
of the coordinates system and the other is shifted from it 0.5 µm along the axis ẑ
and 1 µm in the transverse direction x̂. In the near field (calculated at z = 3 µm) the
helicities of the scattered light can be measured by calculating distributions Λ± (central
panels). Vanishing distribution of Λ+ in (a) indicates that the scattered light retains
the negative helicity of the incident light, while the non-vanishing distributions in (b)
indicate mixing of the Λ = −1 and Λ = 1 components of light. Right panels represent
the differential scattering cross sections of the scattered light I(ϕ, θ) (upper plots) and
of the polarization degree η(ϕ, θ) (lower panel). For the dual spheres (a) η(ϕ, θ) = 1
is a constant function, indicating that the scattered light is fully circularly polarized
(ηtot = 1).
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panels of Fig. 3.4. For neither of the wavelengths the intensity distribution exhibit a

clear scattering pattern, although in the case of dual spheres (Fig. 3.4(a)) we observe a

predominant scattering in the forward direction. This effect is related to the complete

suppression of the backward scattering we expect from a single dual scatterer [119].

On the other hand, the maps of the degree of helical polarization η(ϕ, θ) shown in the

bottom plots of right panels in Fig. 3.4 corroborate our analytical modeling, demon-

strating that the scattered light is fully circularly polarized for the dual sphere (Fig.

3.4(a)). In the case of non-dual scatterers (Fig. 3.4(b)), no such property is observed.

3.2.2.5 Scattering in a random medium

We can also extend our considerations to the random medium, modeled as a distribution

of dual scatterers, where each one preserves the helicity in every single scattering event.

By using again the coupled electric and magnetic dipole method [103–105], we illustrate

this conservation principle in Fig. 3.5, where we investigate the scattering of incident

helical light on a distribution of 80 nanoparticles positioned randomly in a cubic volume

of 60 µm edge length. Similarly as in Fig. 3.4, we consider two wavelengths of incident

light: (a) 1844 nm, at which the scatterers are dual, and (b) 1679 nm where they are not.

In the former case, the circular polarization degree η is constant and equal to 1 for any

scattering direction (right bottom panel in (a)), indicating the conservation of helicity in

the multiscattering process. For the non-dual scatterers, the polarization degree shown

in the bottom right panel in (b) does not exhibit preservation of helicity, and function

η(ϕ, θ) reveals a speckle pattern similar to that found in the intensity distribution I(ϕ, θ)

(top right panels).

It is worth noting that the intensity distribution for dual particles (top right panel

in Fig. 3.5(a)) presents a clear asymmetry between forward and backward scattering.

Due to the conservation of angular momentum and helicity, a complete suppression of

backscattering (at θ = 0) is expected [119] for dual and axially symmetric samples. The

partial (statistically averaged) axial symmetry of the particle distribution explains the

observed results. Such an asymmetry is not observed for the non-dual medium (top

right panel in Fig. 3.5(b)).
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Figure 3.5: Light scattering by a random medium. The incident helical (Λ = −1)
light of (a) 1844 nm or (b) 1679 nm wavelength scatters on an ensemble of 80 randomly
distributed (a) dual and (b) non-dual silicon spheres. The scatterers were randomly
distributed in a cubic box with edges of 60 µm length, centered on the axis of the
beam as shown to the left of the figure. Panels on the right represent the differential
scattering cross-section I(ϕ, θ) (upper plots) and of the polarization degree η(ϕ, θ) for
each case.

3.2.2.6 Kerker conditions

As a side note, we would like to point out that studies of the relationship between the Mie

coefficients, or material properties of the scatterers and the emergence of asymmetric

scattering can be traced back to the seminal paper by M. Kerker et al. [141], to whom

we owe two critical observations:

1. The first Kerker condition states that the backscattering from a spherical particle

can be completely suppressed if the permittivity and permeability of the particle’s

material are equal (ε = µ).
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2. The second Kerker condition states that the forward scattering from a small (dipo-

lar) spherical particle can be completely suppressed if the dipolar Mie coefficients

describing the particle are opposite (a1 = −b1).

Recently these conditions have been related to the discussion of the helicity and gen-

eralized to describe the scattering of helical light on objects with cylindrical symmetry

[142, 143].

3.2.2.7 Inhomogeneous solution

Finally, we briefly discuss the effect of a non-homogeneous distribution of scatterers in

a random medium on the conservation of helicity. We calculate the effect that a fixed

dispersion of sizes centered around the dual condition has on the duality of the random

medium.

Let us first consider a single scattering event. For convenience, we will define the Kerker

wavelength, λK , through the duality condition

αe(λK) = αm(λK). (3.45)

This magnitude exhibits a parametric dependence on the radius of a silicon nanoparticle

a, as illustrated in Fig. 3.6(a). We thus observe that by changing the radius of the

nanoparticle by around 13% (0.23 µm ± 0.03 µm), we shift the Kerker wavelength from

1.844 µm by around 0.2 µm. Note that the exact magnitude of this detuning depends

on the actual material of the scatterer through the refractive index.

Another measure of how rapidly the detuning from the Kerker wavelength λK renders a

non-dual medium is the deviation from the duality condition, quantified as the relative

difference between electric and magnetic polarizabilities

κ =

∣∣∣∣αm(λK)− αe(λK)

αm(λK) + αe(λK)

∣∣∣∣ , (3.46)

shown in Fig. 3.6(b) as a function of the radius of the scatterer at λK = 1.844 µm.

To place the above results in the proper context of experimentally feasible systems, in

Fig. 3.6(c) we plot Gaussian functions which represent normal distributions of nanopar-

ticle radii around a0 = 0.23 µm. The standard deviation of these distributions is fixed

as 1% (blue area), 2% (red area) and 5% (green area) of the mean radius a0.
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Figure 3.6: Effect of size distribution of scatterers on the duality of a random medium.
(a) Kerker wavelength defined by equal electric and magnetic dipolar polarizabilities,
as a function of the radius of the Si nanoparticle. (b) Deviation from the duality of
a single scatterer defined through the parameter κ, as in Eq. (3.46), calculated at the
incident light wavelength of 1.844 µm, which corresponds to the Kerker wavelength
of a a0 = 0.23 µm radius Si sphere. (c) Normal distributions used in the simulations,
centered at a0 with standard deviations of 1% (blue area), 2% (red area) and 5% (green
area) of a0. In all the plots horizontal and vertical thin dashed lines correspond to the
Kerker conditions analyzed in the manuscript.

How does this deviation from the duality of scatterers deteriorate the helicity conserva-

tion in the scattering by a realistic random medium? To analyze this effect we performed

a series of simulations of such scattering on random distributions of scatterers, assuming

that the radii of scatterers are normally distributed around 0.23 µm, with the distribu-

tion as shown in Fig. 3.6(c). The spectra of the integrated polarization degree ηtot for

each simulation are given in Fig. 3.7. Note that, as previously, the calculations are done

in the dipolar approximation, and thus they do not account for higher order modes,

which dominate the optical response below λ = 1.2 µm, and quench the effect of helicity

conservation in this region. Nevertheless, the simulations reveal that for an increasing

deviation of sizes, the integrated polarization degrees drop to 0.95, 0.85 and 0.60, for
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Figure 3.7: Spectra of integrated polarization degrees ηtot calculated for random
solutions nanoparticles with radii given by normal distributions centered at 0.23 µm,
with standard deviations of (a) 0, (b) 0.01a0, (c) 0.02a0 and (d) 0.05a0. For each
distribution of sizes, we performed simulations of light scattering in 5 random media
comprising 80 nanoparticles. In the calculations the nanoparticles are considered as
point scatterers with dipolar polarizabilities, accurately describing their optical response
for wavelengths above λ = 1.2 µm. The shaded regions correspond to the spectral range
(λ < 1.2 µm) where higher order modes dominate the optical response of medium,
effectively quenching the helicity conservation.

the dispersions of 1%, 2% and 5%, respectively, around λK = 1.844 µm.

The largest assumed standard deviation of radii (5%) is close to the inhomogeneities

found in realistic solutions of dielectric nanoparticles generated nowadays [144]. While

weakening of helicity conservation appears to be considerable for these widths, we stress

that the polarization degree of 0.6 signifies that only about 20% of the scattered light

exhibits polarization opposite to that of the incident illumination.

For each of the distributions shown above, we plot in Fig. 3.8 the polarization degree η

(upper panel) and intensity patterns I of the helical light scattered on representative ran-

dom samples. The wavelength of incident light is 1.844 µm. The increasing distribution

of widths triggers an increasingly inhomogeneous and asymmetric polarization degree

and intensity patterns, with higher intensity and more significant helicity conservation

in the forward scattering (θ = 0).
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Figure 3.8: Patterns of polarization degree η (upper panels) and scattering intensity
I (lower panels) for representative random samples of 80 scatterers with the standard
deviations of radii ((a) 0, (b) 0.01a0, (b) 0.02a0, (d) 0.05r0) as discussed in Fig. 3.7.

3.3 Summary

In conclusion, we have investigated the problem of scattering of helical light in a piecewise-

homogeneous medium and in a solution of dipolar scatterers, and formulated simple con-

ditions for the preservation of the helicity in such systems. Specifically, in the latter case,

we showed that if both electric and magnetic dipolar polarizabilities of scatterers are

equal, then the electromagnetic field in the system is symmetric with respect to the du-

ality transformations. We further discussed in details an implication of this phenomenon

- an anomalous conservation of the circular polarization of light in the scattering on a

single nanoparticle, a dimer and in a random solution of dielectric nanoparticles. Our

results open a pathway to exploit novel properties in random scattering media, including
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intriguing applications in random lasing [145, 146], as well as provide new possibilities

to characterize magnetic optical properties of nanoscatterers [147].
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Chapter 4

Quantum plasmonics

“ ‘You were about to run into a tree, and I stopped you.’ ‘No I wasn’t.’ She

looks off after the squirrel, now safely up a bigger tree on the other side of the

yard, ‘Because of quantum.’ ”

– Chad Orzel, How to Teach Quantum Physics to Your Dog

Previous chapters of this thesis were devoted entirely to the description of physical phe-

nomena which, at the surface, appear to be purely classical effects. By classical we

should understand that they have been successfully described and understood within

models based on the description of electromagnetism offered by the Maxwell’s equa-

tions and the macroscopic formulation of dielectric functions, rather than the Quantum

Physics. To arrive at such models, we have had to sacrifice the more fundamental,

quantum-mechanical description of the contribution from the d electrons to the dielectric

properties of gold, the band structure of silicon, or the coherent dynamics of molecules

serving as dipolar emitters. We have made sure to only apply those approximations

when their fragile quantum-mechanical nature did not play a role in the investigated

phenomena. In this way, we have been carefully following the path that plasmonic and

nanophotonics have been trudging on until approximately a decade ago. Around that

date, which we have arbitrarily identified with the publication of the seminal contribution
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by Akimov et al. [148], the methods for manufacturing elements of nanosystems capa-

ble of generating, transferring and emitting single photons, have reached the qualities

which would allow us to foresee the feasibility and realizations of quantum-mechanical

nanosystems.

In this chapter we describe a contribution to this effort, a quantum-mechanical descrip-

tion of Raman scattering from a molecule placed in a plasmonic cavity. The phenomenon

itself has been demonstrated and studied in great detail, as illustrated in a long list of

reports [5, 40, 42, 149, 150] and alternative models [151–154] that would follow every

major experimental contribution. Interestingly, most of the theoretical formalisms suffer

from a clear dichotomy, as they describe the plasmonic systems through the classical

electromagnetism, and apply the quantum-mechanical framework to handle the dynam-

ics of the molecule. This way, one effectively simplifies the role of the cavity to a mere

concentrator of the incident light. Our model lifts this limitation, and allows us to study

the coherent interaction between quantized plasmons populating the plasmonic cavity

and the quantized vibrations of the molecule.

Before we introduce the model and present its predictions, we provide a brief introduction

into the formalism used to describe the interactions of the molecule and the plasmon

with the environment - the theory of open quantum systems.

4.1 Brief introduction to open quantum systems

4.1.1 Von Neumann equation

The elementary approach to addressing the coherent dynamics of a closed quantum

system, defined as a quantum-mechanical system which does not interact in any way with

elements external to the system, or environment, is through the Schrödinger equation

i~
d

dt
|φ(t)〉 = Ĥ |φ(t)〉 , (4.1)

where Ĥ is the Hamiltonian of the system and |φ(t)〉 describes its quantum state, which

corresponds to a vector in the Hilbert space H.

For a so-called pure quantum state of a system, which can be described by a single state

vector |φ〉, we can construct a projection operator

ρφ = |φ〉 〈φ| , (4.2)
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to which we will be referring to as the density matrix of the pure state |φ〉. We can also

consider a state defined as a statistical mixture of pure states:

ρ =
∑
i

pi |φi〉 〈φi| , (4.3)

where pi (0 ≤ pi ≤ 1,
∑

i pi = 1) is the probability of finding the system in the

pure quantum state |φi〉. Such statistical ensembles can be viewed as mixtures of the

elements from the Hilbert space. The von Neumann equation governing the evolution

of the density matrix can be derived from Eq. (4.1) as

d

dt
ρ(t) = − i

~
[Ĥ, ρ], (4.4)

and the information about any subsystem A can be extracted from the reduced density

matrix ρA defined as

ρA = TrS/A ρ, (4.5)

where TrS/A denotes the partial trace over the elements of the system S not included in

A (S/A).

4.1.2 Open quantum system

One might wonder why we would sacrifice the exact description of the system provided

by Eq. (4.1) and complicate the formalism by introducing density matrices. The answer

is twofold:

• Often we do not have sufficient knowledge about the initial state of the whole

system to formulate its description in terms of a vector state, but instead we know

that the system is in a particular vector state |φi〉 with given probability pi.

• We are only interested in the observables related to some part of the system, and

the remaining elements are not relevant.

An elementary example of a setup which can be effectively described through the density

matrix formalism, is a two-level system (TLS) coupled to a thermal photon bath. While

we are interested in the exact dynamics of populations and coherences of the TLS, we

are not concerned with the exact state and dynamics of the continuous, large bath.

Let us be a bit more general and consider an abstract quantum system S coupled to

a bath of modes, which we will denote as a reservoir R. The dynamics of these two
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elements is given by the Hamiltonian of the system ĤS , reservoir ĤR and a term which

describes their interaction ĤSR:

Ĥ = ĤS + ĤR + ĤSR. (4.6)

Since the system and reservoir together form a closed quantum system, its dynamics

will be given by the von Neumann equation for the evolution of the density operator

ρ (Eq. (4.4)). In the interaction picture, the density matrix of the system and its

Hamiltonian are defined as

ρI(t) = ei(ĤS+ĤR)tρ(t)e−i(ĤS+ĤR)t, (4.7a)

and

Ĥ
′
SR(t) = ei(ĤS+ĤR)tĤSRe

−i(ĤS+ĤR)t, (4.7b)

respectively, and we can rewrite the von Neumann equation (Eq. (vonNeumann)) as

d

dt
ρI(t) = − i

~
[Ĥ
′
SR(t), ρI(t)]. (4.8)

A formal solution of Eq. (4.8) is given as

ρI(t) = ρI(0)− i

~

∫ t

0
[Ĥ
′
SR(τ), ρI(τ)]dτ. (4.9)

Inserting this solution back into the right-hand side of Eq. (4.8) and taking the partial

trace over the reservoir TrR on both sides, we arrive at

d

dt
ρS,I(t) = − i

~
TrR[Ĥ

′
SR(t), ρI(0)]− 1

~2

∫ t

0
TrR[Ĥ

′
SR(t), [Ĥ

′
SR(τ), ρI(τ)]]dτ, (4.10)

where ρS,I = TrR(ρI) is the reduced density matrix of the system in the interaction

picture. We will now make a number of approximations that will lead to a simpler form

of the above equation:

1. The system and the reservoir are not correlated at t = 0, and thus ρ(0) = ρS(0)⊗
ρR(0), where ⊗ denotes the tensor product.

2. Within the Born approximation, the once-uncorrelated setup of the system and

reservoir (at t = 0) does not build up correlations over time, meaning that its

complete density matrix can be still factorized ρ(t) ≈ ρS(t)⊗ ρR(t) ≈ ρS(t)⊗ ρR.

98



4.1 Brief introduction to open quantum systems

This approximation holds if the interaction between the system and the reservoir

is weak and the influence of the former on the latter is small.

3. We apply the Markov approximation by replacing the integrand ρI(τ) by ρI(t),

and thus stating that the evolution of the system depends solely on its current

state and not on its history. This approximation relies on the short memory of the

reservoir, which will dissipate any information about the system in a time much

shorter than the characteristic time scale of the evolution of the system.

4. To remove the term TrR[Ĥ
′
SR(t), ρI(0)], we redefine the Hamiltonian of the system

by including the term TrR[ĤSR(t), ρR(0)] into the system’s Hamiltonian ĤS and

removing it from the interaction Hamiltonian ĤSR.

Having applied these approximations, we arrive at the Redfield equation

d

dt
ρS,I(t) = − 1

~2

∫ t

0
TrR[Ĥ

′
SR(t), [Ĥ

′
SR(τ), ρI(t)]]dτ. (4.11)

Note that this is not yet a Markovian equation, as it exhibits an explicit dependence on

the arbitrary initial time parameter t = 0 through the lower limit of the integral. We

can correct that problem by introducing a new parameter s, substituting τ in Eq. (4.11)

by t − s and, recalling our argument about the short reservoir memory, extending the

integration limit to ∞.

Finally, going back to the Schrödinger picture, we obtain a general form of the master

equation for the density matrix of the system ρS

d

dt
ρS(t) = − i

~
[ĤS(t), ρS(t)]− 1

~2

∫ ∞
0

TrR[ĤSR(t), [ĤSR(t− s), ρS(t)⊗ ρR]]ds. (4.12)

The approximations listed above deserve a more careful analysis, and such has been

given to them in the extensive literature on the subject (see Refs. [155, 156] for the

discussion and Refs. [157–160] for examples and applications). Of particular interest is

the Markov approximation, which holds if the memory time of the reservoir is much

shorter than the time-scales of the evolution of the system. The deviation from this

condition could lead to some very interesting dynamics [157–160]. However, usually the

division of the setup of interest into the system and reservoir is done in such a way that

these conditions are fulfilled. We briefly discuss this problem, and provide canonical

examples, in the following subsection.
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However, before we do that, let us rewrite Eq. (4.12) in its final, elegant form

d

dt
ρS(t) = − i

~
[ĤS(t), ρS(t)] + L[ρS ]. (4.13)

The first term on the right-hand side describes the coherent evolution of the system,

while the second one, L[ρS ], called the Lindblad-Kossakowski super-operator describes

the influence of the time-independent reservoir on the dynamics of the system. Its exact

form will depend on the interaction we describe in ĤSR, so that it can represent the

decay of the excitation from the system into the reservoir, the incoherent excitation of

the system by a thermal bath, or the dephasing of the system. Either way, we will be

referring to the system S, its coherent dynamics and the interaction with the reservoir

as the open quantum system.

4.1.3 Designing the open quantum system - case study

Let us consider a physical setup in which an atom, modeled as a 2-, 3- or 4-level system,

is placed in an unstructured (non-resonant) large environment (the energy transferred

from the atom to the environment does not significantly affect the reservoir’s state)

modeled as a continuous bath of free-space photons. In this case, the choice of the

system and reservoir is rather natural, therefore we will consider the atom as the sole

element of the open quantum system, and the bath as the reservoir (see Fig. 4.1).

In the simplest case of a 2-level atom with the resonant frequency of the atomic transition

ωat, the relevant Hamiltonian of the system is defined as

ĤS = Ĥatom = ~ωatσ̂z, (4.14a)

where σ̂z is the Pauli matrix. The reservoir is modeled as a collection of free-space

photons with momenta k, the corresponding frequencies ωk and governed by the bosonic

creation â†k and annihilation âk operators.

ĤR = ~
∫
k
ωkâ

†
kâk (4.14b)

Furthermore, the system-environment interaction is described through a familiar Jaynes-

Cummings Hamiltonian

ĤSR = ~
∫
k
gkâkσ̂+ + h.c., (4.14c)
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where h.c. denotes the hermitian conjugate of the respective terms, gk’s are the coupling

coefficients and the spin raising and lowering operators are defined by the Pauli matrices

σ̂± = σ̂x ± iσ̂y.

free-space 
photon bath

atom

(2-LS)

(3-LS)

(4-LS)

system reservoir

Figure 4.1: Division of the elements of the setup into the system and reservoir. The
former contains the atom described by the density matrix ρatom, while the latter is a
free-space photon bath.

We can now plug this explicit form of the interaction Hamiltonian into Eq. (4.12). If

we assume that the photon bath is in a thermal equilibrium state at temperature T , we

can use the following properties of the averages of the bath operators

〈âkâq〉 = 〈â†kâ
†
q〉 = 0, (4.15a)

〈â†kâq〉 = N(ωk)δk,q, (4.15b)

〈âkâ†q〉 = (N(ωk) + 1)δk,q, (4.15c)

where N(ω) = (e~ω/kBT −1)−1, defined through the Boltzmann constant kB, is the Bose-

Einstein distribution that governs the thermal population of the photon bath modes.

After some algebra we arrive at the following form of the master equation:

d

dt
ρS(t) = − i

~
[ĤS(t), ρS(t)] + i∆at[ρS , σ̂z] +

γ

2
[N(ωat) + 1]Lσ̂− [ρS ] +

γ

2
N(ωat)Lσ̂+ [ρS ],

(4.16)

where the Lindlblad-Kossakowski operator [161, 162] LÔ[ρS ] for an arbitrary operator

Ô is defined as

LÔ[ρ] = 2ÔρÔ† − Ô†Ôρ− ρÔ†Ô. (4.17)

The terms on the right-hand side of Eq. (4.16) describe, in the order of appearance:

• The coherent evolution of the atom.
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• The Lamb shift arising due to the interaction with the modes of the bath, renor-

malizing the energy of the atom by

∆at = P
∫ ∞
−∞

dω
J(ω)N(ω)

ωat − ω
+ P

∫ ∞
−∞

dω
J(ω)(N(ω) + 1)

ωat − ω
, (4.18)

where J(ω) is the spectral density of the bath defined as J(ω) =
∑

k |gk|2δ(ω−ωk)

and P denotes the principal value.

• The decay of the atom from the excited state to the ground state at a rate

γ[N(ωat) + 1], where γ = 2πJ(ωat). The two terms in the sum N(ωat) + 1 de-

scribe the stimulated emission dependent on the thermal population of the bath

and the spontaneous emission, respectively.

• The excitation of the atom by the energy from the bath. Note that this term,

similarly to stimulated emission, will vanish if the thermal population of the bath,

N(ωat), is equal to 0.

Having presented the description of this elementary model in the formalism of open

quantum systems, we can complicate it slightly by including a cavity into the system,

thus bringing it closer to the actual setup that we will consider in this chapter. A

schematic of such expanded system and reservoir is shown in Fig. 4.2. Independently

atom + cavity

(2-LS)

(3-LS)

(4-LS)
free-space 
photon bath

system reservoir

cavity

Figure 4.2: Division of the elements of the setup into the system and reservoir. The
former contains the atom and the cavity, described together by the density matrix
ρatom+cavity, while the latter contains all the free-space photon bath modes.

of the form of the cavity-atom interaction that is chosen, this framework will yield

the coherent dynamics of the system, encapsulated by the [ĤS , ρS ] term in the master

equation (Eq. (4.16)). We can thus focus on the interaction of the cavity (described

by the creation ĉ† and annihilation ĉ operators) with the reservoir, which defines the
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Lindblad-Kossakowski operators (denoted by Lĉ[ρS ], Lĉ† [ρS ], Lσ̂− [ρS ] and Lσ̂+ [ρS ] in

the schematic in Fig. 4.2) added to account for the interaction of the cavity and the

atom with the reservoir. If we choose to describe the state of the cavity, resonant at

frequency ωc with bosonic operators, the Hamiltonian of the cavity should be given as

Ĥcavity = ~ωcĉ†ĉ, (4.19)

and its coupling to the reservoir should be described by a proper term in the Hamiltonian

ĤSR,cavity = ~
∫
k
gckâkĉ

† + h.c., (4.20)

with the coupling coefficients gck. Therefore, we will finally arrive at the master equation

d

dt
ρS(t) = − i

~
[ĤS(t), ρS(t)]

+i∆at[ρS , σ̂z] + i∆c[ρS , â
†â]

+
γ

2
(N(ωat) + 1)Lσ̂− [ρS ] +

γ

2
N(ωat)Lσ̂+ [ρS ]

+
κ

2
(N(ωc) + 1)Lâ[ρS ] +

κ

2
N(ωc)Lâ† [ρS ]. (4.21)

The new quantities related to the cavity-reservoir interaction: ∆c (Lamb shift arising

from the interaction of the cavity with the bath)

∆c = P
∫ ∞
−∞

dω
J(ω)cN(ω)

ωc − ω
+ P

∫ ∞
−∞

dω
J(ω)c
ωc − ω

(N(ω) + 1), (4.22)

where Jc(ω) =
∫
k |g

c
k|2, as well as κ = 2πJc(ωc), and κ (decay of the cavity), are defined

in a similar way as ∆at and γ, respectively.

4.2 Raman scattering from molecules in plasmonic cavities

In this section, we apply the framework of open quantum systems to describe the co-

herent interaction between plasmons and molecular vibrations in typical configurations

of Surface Enhanced Raman Scattering (SERS). SERS is a spectroscopic technique in

which the inelastic scattering from a molecule is increased by placing it in a hotspot of

a plasmonic cavity, where the electric fields associated with the incident and the scat-

tered photons are strongly enhanced (see the schematic in Fig. 4.3) [17]. The difference

103



Chapter 4. Quantum plasmonics

between the energy of those two photons provides a fingerprint of the molecule, i.e., de-

tailed chemical information about its vibrational structure. Over the last decades, con-

siderable advances in designing efficient SERS configurations [163] have resulted in the

observation of Raman scattering from single molecules [149], and recently, even reaching

sub-nanometer resolution image of the vibrational modes of a molecule [42]. These re-

sults suggest that some experimental realizations of SERS have reached a regime where

the quantum-mechanical nature of both the molecular vibrations and the plasmonic

cavity emerges [41], calling for an adequate theoretical description that goes beyond the

classical treatment of the electric fields inside plasmonic cavities [17, 22, 164].

Figure 4.3: Schematic of the two-photon non-resonant Stokes scattering between two
vibrational states of a molecule (n = 0 → 1) mediated by a virtual state |v〉 (dotted
line). A harmonic potential (solid line) approximates the energy landscape of the ground
electronic level (dashed line).

4.2.1 Quantization of excitations

The model presented in this section addresses the underlying quantum-mechanical na-

ture of Raman scattering processes by describing both the vibrations of the molecule

and the electromagnetic field of a plasmonic cavity through quantized bosonic modes. In

the following subsection we discuss this framework in details.

4.2.1.1 Quantized vibrations of a molecule

Let us consider a simplified one-dimensional model of the energy landscape of the ground

electronic state of a molecule as a functions of the generalized atomic coordinate (e.g.,

104



4.2 Raman scattering from molecules in plasmonic cavities

the length of a molecular C=O bond [41, 164]). Such potential, described with a dashed

line in Fig. 4.3, can be approximated as a displaced harmonic potential depicted with a

solid line. Therefore, the vibrations characterized by the vibrational frequency ωm [165],

can be quantized following the usual prescription for the quantization of a harmonic

oscillator [166]. We thus introduce the creation and annihilation operators b̂ and b̂†

which describe the creation and annihilation of a quantum of vibrations, which we will

be referring to as phonons. We next define a linear polarizability of the molecule along

this coordinate α̂ν as [17]

α̂ν = RνQ
0
ν(b̂+ b̂†), (4.23)

where Rν is the element of the Raman tensor and Q0
ν =

√
~/(2ωm) is the zero-point

amplitude of the vibrations. For the sake of simplicity, we neglect the component of

the linear optical polarizability of the molecule independent of Qν , which describes the

elastic scattering. Furthermore, we should note that by using the free-space Raman

tensor Rν , which describes interaction of a molecule with an incident planewave in free

space, we will focus our attention on the electromagnetic enhancement mechanism, and

neglect any contribution from the chemical enhancement. Finally, we stress that this

approach is limited to the off-resonant Raman scattering, for which the virtual state

mediating the Raman transition (dotted line in Fig. 4.3) is strongly detuned from any

excited electronic state.

A detailed description of the quantization protocol of vibrations of a molecule can be

found in Ref. [17].

4.2.1.2 Quantization of a plasmonic cavity

Due to the lossy and dispersive character of the metal forming the plasmonic cavity,

the canonical prescription for the quantization of the electromagnetic fields cannot be

applied to the quantization of plasmons [167]. An alternative path is described in the

contributions listed as Refs. [168–170], where the formalism of macroscopic QED was

presented. Within this framework, the fields inside the metal are quantized as local

operators f̂λ(ω, r), dependent on the position r and frequency ω, describing modes with

polarization λ = 1, 2, obeying the canonical commutation relations[
f̂λ1(ω1, r1), f̂ †λ2(ω1, r)

]
= δ(ω1 − ω2)δ(r1 − r2)δλ1,λ2 , (4.24)
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and yielding the following Hamiltonian of the cavity:

Ĥmacr. QED =
∑
λ

∫
d3r

∫ ∞
0

dω~ωf̂ †λ(ω, r) · f̂λ(ω, r) (4.25)

This description is derived by diagonalizing the Hamiltonian of the more elementary

system comprising radiation modes coupled to a reservoir of localized harmonic oscilla-

tors which represent the Ohmic losses of the material. For a detailed summary of this

formalism and its numerous implications, we direct the reader to Ref. [170].

The electric field inside the cavity, with which our molecule will be interacting, can be

then expressed through the classical electric Green’s function
↔
GE(r, r′, ω)

Ê(ω, r′) = i

√
~
πε0

ω2

c2

∑
λ

∫
d3r
√

Im[εm(ω)]
↔
GE(r, r′, ω)f̂λ(ω, r), (4.26)

where εm(ω) is the dielectric function of the metal and the integration is carried out

over the volume of the metal.

Pseudomodes of the cavity

While the quantization procedure sketched above might be exact, in practice it proves

very difficult to apply in realistic setups, and provides little information about the phys-

ical phenomena governing the dynamics of the system. We therefore choose to consider

the more familiar problem of the spontaneous decay of a two-level system (TLS) in a

structured environment. The TLS is characterized by the transition frequency ω0 and

the transition dipole d, and is placed in the medium described by
↔
GE , at position r′. It

can be easily shown [167, 171, 172] that the amplitude ce(t) of the excited state of the

molecule is given by an oscillating function ce(t) = c̃e(t)e
iω0t, where c̃e(t) is governed by

the integro-differential equation

˙̃ce(t) = −
∫ t

0
dτK(t− τ)c̃e(τ). (4.27)

Memory kernel K is defined as

K(t) =

∫ ∞
0

dωJ(ω)ei(ω−ω0)t. (4.28)

J(ω) is the spectral density, which we have defined earlier as the sum of the squared

coupling coefficients between the elements of the open quantum system and the bath.
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In the formalism of Green’s functions, the spectral density is defined as

J(ω) =
ω2

πε0~c2
d · Im

[↔
GE(r′, r′, ω)

]
· d∗. (4.29)

Note that, following this approach, we effectively remove the cavity from the system,

and formulate the dynamics of the TLS solely in terms of the spectral density J , or

the memory kernel K of the environment. This formalism can be adopted to describe

numerous interesting effects, such as the non-Markovian dynamics of the excitons in

structured environments [157, 160]. In Fig. 4.4 we plot an exemplary normalized spectral

Figure 4.4: Spectral density J(ω) normalized by the decay rate of free-space decay
rate of a dipolar quantum emitter, calculated for an emitter (red arrow in the inset)
placed 50 nm from the center of a 30 nm radius silver nanoparticle. The dashed red area
corresponds to the contribution from the dipolar mode of the sphere, which we identify
with the cavity mode resonant at ~ωc, with decay rate ~κ defined by the FWHM of the
profile.

density J(ω)/γ0 calculated for a dipolar emitter characterized by a free-space decay rate

γ0, positioned over a silver nanoparticle (described by the Drude model with ε∞ = 4.6,

~ωp = 9 eV and ~γp = 0.1 meV) as shown schematically in the inset. The spectral

density was calculated by noting that, in the so-called weak-coupling limit (when the

decay of the emitter is an irreversible process [166, 167, 172, 173]), J(ω)/γ0 is related

to the enhancement factors which we have discussed in Chapter 2 (Γ⊥,etot /γ0):

J(ω)

γ0
=

1

2π

Γ⊥,etot

Γ0
. (4.30)
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We make use of the additive nature of the contribution to J(ω) from the Mie modes

and separate the contribution from the radiative, dipolar mode and mark it with a red-

shaded area. We now take an informal step and identify this quasi-lorentzian profile

with the dominant cavity mode, characterized by the resonant frequency ωc and the

decay rate κ given by the peak frequency and the FWHM of the plasmonic profile,

respectively. Similar approach has been implemented in other studies, where authors

have been analyzing the coupling of quantum emitters with a pseudomode of a metallic

interface [171] or with a pseudomode formed by the set of higher-order modes (peaking

around 3.7 eV in Fig. 4.4) of a silver particle [174, 175].

We should admit that by following this prescription we ignore the limitations which

we have been discussing in Chapter 1 of this thesis, regarding the approximation of the

dipolar polarizability profiles by Lorentzian functions. Most notably, the quasi-lorentzian

profile of the dipolar polarizability of the sphere, calculated with Mie theory, can have a

non-vanishing real component at resonance frequency, which could lead to a significant

Lamb shift. Nevertheless, our approach is a good first step to the characterization of

the plasmonic system to further explore its interaction with the vibrations.

4.2.2 Cavity-vibrations interaction Hamiltonian

Having addressed the problem of quantization of the plasmonic cavity, and the vibrations

of the molecules, let us consider the coupling between these elements. The electric field,

Ê, of the cavity mode characterized by the resonant frequency ωc, decay rate κ and the

effective volume Veff [176, 177], can be expressed by the plasmon annihilation (â) and

creation (â†) operators as

Ê = i

√
~ωc

2ε0Veff
(â− â†). (4.31)

The induced Raman dipole [17]

p̂R = α̂νÊ (4.32)

will be therefore interacting with the cavity field Ê, yielding the interaction Hamiltonian

ĤI = −p̂RÊ = RνQ
0
ν

~ωc
2ε0Veff

(â− â†)2(b̂+ b̂†) =
~g
2

[â2 +(â†)2− ââ†− â†â](b̂+ b̂†), (4.33)

where we have introduced the bare or single-photon coupling

g = RνQ
0
ν

ωc
ε0Veff

. (4.34)
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Within the so-called rotating wave approximation (RWA) [166, 178] the counter-propa-

gating terms proportional to (â†)2 and (â)2, which yield rapid oscillations at frequencies

of 2ωc � ωm, are removed. Furthermore, using the commutation relation

[â, â†] = 1, (4.35)

we can rewrite the remaining part of the interaction Hamiltonian as

ĤI = −~g
(
â†â+

1

2

)
(b̂+ b̂†). (4.36)

The second term in the first parentheses describes the interaction between vibrations

and the vacuum field of the cavity g/2(b̂+ b̂†). We can remove it by properly displacing

the equilibrium position of the vibrations, arriving at the final form of the interaction

Hamiltonian

ĤI = −~gâ†â(b̂+ b̂†). (4.37)

...

...
C   O

Figure 4.5: Schematic description of Raman scattering from a molecule placed in a
plasmonic cavity.

In a direct analogy to the description of optomechanical systems, Roelli et al. [179]

considered a plasmonic cavity coupled to a Raman-active molecule characterized with

the amplitude of vibrations Q̂ν = Q0
ν(b̂+ b̂†). In this picture, a Hamiltonian identical to

that derived above can be found by noting that the frequency of the cavity ωc coupled

to a Raman-active molecule is a function of Q̂ν . Expanding it around the equilibrium

position defined as Q̂ν = 0:

ωc(Q̂ν) ≈ ωc(0) + Q̂ν

[
∂ωc

∂Q̂ν

]
Q̂ν=0

= ωc(0)− g(b̂+ b̂†). (4.38)
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4.2.2.1 Estimation of the coupling parameter

To estimate the coupling parameter g, we can compare it to the coupling parameter

gJC , which governs the interaction in a resonant emitter-plasmon system. Such setup,

described by the Jaynes-Cummings Hamiltonian, has been thoroughly analyzed in the

literature in different variations (with the emitter described through bosonic [180] or

spin [181] operators) and parameter regimes [182, 183]. In its simplest form, gJC is

defined as [183]:

|gJC | = d

√
ωc

2ε0Veff
, (4.39)

where d is the dipolar moment of the emitter. As we have mentioned earlier, in the weak

coupling regime, the interaction of the emitter with the single-mode lossy cavity modifies

the rate of the spontaneous decay of the emitter by the Purcell factor FP determined as

FP = 1 + 4
|gJC |2

κγ0
, (4.40)

where γ0 is the decay rate of the uncoupled emitter. Therefore, by comparing the

definitions of the two coupling parameters: g (Eq. (4.34)) and gJC (Eq. (4.39)), we

arrive at a simple relationship

g =
RνQ

0
ν

d2
2|gJC |2. (4.41)

Expressing now the right-hand side of the above equations with Eq. (4.40) in the limit of

large Purcell factors (FP � 1) and plugging in the explicit definition γ0 = ω3
cd

2/(3πε0c
3)

[56], we get

g = RνQ
0
νFP

κ

6πε0

(ωc
c

)3
. (4.42)

We can therefore find an estimate of the absolute values of the coupling coefficient g for

illustration, by recalling some of the reported Purcell factors FP [184, 184–186], and an

exemplary value of the Raman tensor Rν .

The values of the elements of the Raman tensor Rν and the zero-point amplitude Q0
ν

vary significantly for different molecules and each vibrational degree of freedom. The

estimates of these values have been provided from theoretical and experimental studies

for numerous molecules, including rhodamine 6g (R6G) [188] or various peptides [189],

as well as cluster structures of e.g., silicon [190]. To provide conservative estimates of

the values of g we consider the specific values of Raman activity of rhodamine 6g. The

non-resonant Raman spectra of the R6G molecules exhibit vibrational energies in the
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Type of cavity FP ~ωc [eV] ~κ [eV] ~g (R6G)
[eV]

plasmonic patch 5× 102 0.45 0.45 3× 10−11

antenna [184]

plasmonic particle [185] 8× 103 1.5 0.1 4× 10−8

on a dielectric substrate

plasmon mode 5× 103 2.2 0.07 10−7

in nanorod [186]

plasmonic dimer [187] 3× 103 3.5 0.2 6× 10−7

Table 4.1: Values of the Purcell factors FP for various types of cavities with resonant
energies ~ωc and widths ~κ. In the last column we provide the estimates of the coupling
coefficient g calculated for the coupling with the specific transition of a rhodamine 6G
molecule (see text below for details).

range of hundreds of meV and, in the strong-vibrations end of the parameters spectrum,

a Raman activity (which, in the one-dimensional model of vibrations used throughout

this chapter, is equal to R2
ν) close to 5 × 102 ε2

0

◦
A

4
amu−1. Including this parameter

into Eq. (4.42), we arrive at the upper estimate of the coupling parameter of around

~g ≈ 6× 10−7 eV for a molecule placed in a plasmonic dimer nanoantenna [187].

We should note that, except for the dark plasmon mode in a nanorod, the structures

listed above are designed to provide large Purcell factors while retaining high quantum

efficiency and avoiding quenching of emission from the resonant two-level systems. This

limitation can be removed when designing systems for SERS or TERS, since the Raman

scattering does not suffer from quenching, and we can consider other setups, e.g. metal-

lic dimers with subnanometer gaps and significantly reduced mode volumes. A lower

limit for such structures was recently obtained by Barbry et al. [191] from TDDFT

calculations of the dimer of sodium clusters as Vmin ≈ 10−28 m3 for the mode energy of

~ωc = 3.3 eV.

To estimate the coupling parameter observed in such systems, we can apply the definition

of the coupling given in Eq. (4.34). Taking a more conservative value of the mode

volume of Veff = 10−26 m3, and considering the Raman activity of rhodamine 6g, obtain

~g ≈ 1 meV, which we will be using throughout the rest of this chapter.

4.2.2.2 Coherent pumping

The Hamiltonian of the system can be formulated as

Ĥ/~ = ωmb̂
†b̂+ ωcâ

†â− gâ†â(b̂† + b̂) + Ĥpump/~, (4.43)
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with Ĥpump describing the coherent illumination, or pumping of the cavity

Ĥpump = i~Ω(â†e−iωlt − âeiωlt). (4.44)

Throughout this chapter Ω2 will be referred to as a pumping power proportional to the

power density of the input laser and the intrinsic parameters of the cavity mode. Ω itself

is defined as [183]

Ω =
κ

2

√
ε0Veff

2~ωc
|Esm|, (4.45)

where |Esm| is the maximum of the scattered fields. We can define the field enhancement

of the plasmonic system as K = |Esm|/|E0|, where |E0| is the amplitude of the incident

coherent illumination. Since K is an intrinsic physical property of the cavity and the

geometric setup of the illumination, the driving parameter Ω can be re-written as a

product of a term depending solely on the cavity properties and the amplitude |E0|

Ω =
κ

2

√
ε0Veff

2~ωc
K|E0|. (4.46)

To provide some exemplary values of the parameter Ω, we consider an optical plasmonic

cavity with plasmon resonance energy ~ωc = 2.5 eV, quality factor Q = 10 (~κ =

0.25 eV), the effective volume given above Veff = 10−26 m3 and enhancement factor

K = 102. Thus, for the strong laser intensity I = 109 W/cm2, which yields |E0| ≈
6× 107 V/m, we obtain ~Ω = 0.25 eV.

For the strongest laser intensities used throughout this chapter, we approach the regime

where Ω and ωc become comparable. Nevertheless, even for those strong pumping coef-

ficients, the pumping Hamiltonian (Eq. (4.44)) is written in the rotating wave approxi-

mation. We expect that the inclusion of the counter-rotating terms i~Ω(âe−iωlt+ â†eiωlt)

will not change significantly the dynamics of the system, as they will result mainly in

energy shifts that can be corrected with appropriate laser detuning.

In the following, the phonon energy is set to ~ωm = 0.1 eV and the phonon decay rate

is set to ~γm = 1 meV, in agreement with the literature data (see Ref. [192]). The

plasmonic cavity with quality factor of Q = 10 is chosen to be resonant at ~ωc = 2.5

eV and therefore decaying with rate ~κ = ~ωc/Q = 0.25 eV. The coupling parameter

is taken as ~g = 1 meV in accordance with the reported characteristics of the resonant

plasmon-emitter systems discussed above.
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4.2.3 Master equation

Before we write down the master equation for the dynamics of the density matrix of the

system to which, from now, we will be referring to as ρ, let us consider the populations

of the thermal bath, given by the Bose-Einstein distribution function N(ω), for the

energies corresponding to the cavity photon ωc and the vibration of the molecule ωm, at

ambient temperature T = 300 K:

N(~ωc = 2.5 eV;T = 300 K) ≈ 10−42 ≈ 0, n̄th
m = N(~ωm = 0.1 eV;T = 300 K) ≈ 0.02.

(4.47)

Thus, in the master equation we can neglect the terms that describe the stimulated emis-

sion and excitation of the cavity by the environment (analyzed previously in Eq. (4.21)),

and write

∂tρ =
i

~
[ρ, Ĥ] +

κ

2
Lâ[ρ] +

(n̄th
m + 1)γm

2
Lb̂[ρ] +

n̄th
mγm
2
Lb̂† [ρ], (4.48)

4.2.4 Numerical solution

To analyze the dynamics of the system, we solve directly the master equation in Eq. (4.48)

by representing both the state of the cavity, and of the molecule in the basis of Fock

states

{|nvib,mcav〉}nvib=0,1,...,Nmax, mcav=0,1,...,Mmax (4.49)

which spans a truncated Hilbert space H̄ [193]. Such approach is usually not practical

for optomechanical systems comprising high-quality cavities, as the number of states

in the Fock basis representing its state would be too large. However, thanks to the

weak coupling with vibrations and the low quality factor of the optical cavity, the latter

remains very close to a coherent state. We can therefore displace the cavity operators

by the complex number which corresponds to the amplitude of this coherent state and

truncate the Fock space to a relatively small dimension (see Appendix B for details).

Spectra of emission from the cavity are calculated, following the Glauber’s photodetec-

tion theory [194], as I(ω) = αdetS(ω), where the frequency-independent parameter αdet

describes the properties of the detection system [164] and

S(ω) = ω4

∫ ∞
−∞

dte−iωt〈â†(t)â(0)〉ss. (4.50)

Subscript ss denotes the steady-state of the system. The two-time correlator is calculated

by applying the quantum regression theorem (QRT, see Appendix B for details) [156]. In
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Fig. 4.6(a) and (b) two of such spectra are shown, with removed elastic Rayleigh scatter-

ing contributions, calculated for the weak ((~Ω)2 = 10−2 eV2) and strong illuminations

((~Ω)2 = 0.5 eV2), respectively, and for the laser tuned to the cavity (∆ ≡ ωc−ωl = 0).

In the inset of Fig. 4.6(a) we zoom in on the anti-Stokes emission calculated with the

environment at T = 0 K (dashed line) and T = 300 K (solid line). The difference be-

tween these plots illustrates the effect of thermal pumping of the vibrational levels by the

environment [153, 195]. While a difference in the intensity of the anti-Stokes peak can

be appreciated for different temperatures at low pumping (see the inset in Fig. 4.6(a)),

it disappears for high pumping power (Fig. 4.6(b)).

Figure 4.6: Spectra of Raman scattering S(ω) of a molecule in a plasmonic cavity at
pumping (a) (~Ω)2 = 10−2 eV2 and (b) (~Ω)2 = 0.5 eV2 at T = 0 K (dashed lines) and
T = 300 K (solid lines). All the cases assume ∆ = 0.

To further explore this effect and to trace the evolution of the signal with the pumping

power, we plot in Fig. 4.7(a) the maxima of the Stokes emission (blue solid line) which

is independent of temperature T , and of the anti-Stokes emission (orange dashed line

for T = 0 K and orange solid line for T = 300 K), for the increasing Ω2. In the weak

pumping regime ((~Ω)2 . 10−2 eV2), for non-zero temperature (solid lines), both the

Stokes S(ωS) and anti-Stokes S(ωaS) emission depend linearly on Ω2, indicating that

the anti-Stokes transition originates from the thermally excited vibrational state. For

higher driving powers (10−2 eV2 . (~Ω)2 . 0.5 eV2) the anti-Stokes intensities become

independent of the temperature, as the phonons are provided primarily by the Stokes

transitions (vibrational pumping) [195].

The transition between the thermal and the vibrational pumping of phonons [195] is

illustrated in Fig. 4.7(b), where we plot the populations of the phonons (green line) and

plasmons (red line) for T = 0 K (dashes lines) and T = 300 K (solid lines).
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Figure 4.7: Dependence of the Raman scattering on the excitation power and temper-
ature. (a) Emission intensities of the Stokes (S(ωS), blue lines, calculated at T = 300 K)
and anti-Stokes photons (S(ωaS), orange dashed and solid lines for T = 0 K and
T = 300 K, respectively) as a function of the driving intensity Ω2; (b) populations of
plasmons (red line) and phonons (green lines) in the steady state for T = 0 K (dashed
lines) or T = 300 K (solid lines). All the cases assume ∆ = 0.

Finally, for the largest considered pumping powers ((~Ω)2 & 0.5 eV2) the Stokes intensity

S(ωS) visibly surpasses the expected linear dependence on Ω2 (marked with a dotted

gray line in the top-right corner of Fig. 4.7(a)). To understand this effect, we have

developed an analytical solution to the dynamics of the system, which we briefly present

in the following subsection. The detailed derivation can be found in Appendix B.

4.2.5 Linearized Hamiltonian

To design an analytical description of the system, let us take a step back and consider

the Hamiltonian of the system given in Eq. (4.43) with the coherent pumping (Eq. 4.44).

If we decouple the cavity from the molecule (putting g = 0) the plasmonic system will be

driven into a steady coherent state with amplitude αs = Ω/(κ2 + i∆), where ∆ = ωc−ωl
is the detuning between the frequency of the pumping laser and the resonant frequency

of the cavity. We can therefore redefine the cavity operators, excluding the coherent

amplitude:

â→ â+ αs, (4.51)

and write

Ĥ/~ = ∆â†â+ ωmb̂
†b̂− g|αs|2(b̂+ b̂†)− g(αsâ

† + α∗sâ)(b̂+ b̂†)− gâ†â(b̂+ b̂†). (4.52)
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The last, nonlinear term in the above Hamiltonian is proportional to the incoherent

population of the cavity, and will be small provided that the interaction with the molecule

g is weak. Thus, in the regime usually discussed in optomechanics, characterized by the

weak coupling g, the last non-linear term can be neglected, allowing us to write down

the linearized Hamiltonian

Ĥ ′/~ = ∆â†â+ ωmb̂
†b̂− g|αs|2(b̂+ b̂†)− g(αsâ

† + α∗sâ)(b̂+ b̂†), (4.53)

which yields a purely quadratic dynamics and linear quantum Langevin equations for

operators â and b̂ [180, 181].

It should be noted that, when solving the linearized Hamiltonian, we do not map the

quantum Langevin equation to the classical dynamics equations, as is often done in the

analysis of the optomechanical systems [196]. Consequently, our approach provides a

complete characterization of the classical and quantum correlations within the system,

and allows us to reproduce the proper dependence of Stokes and anti-Stokes signal on

the pumping strength Ω.

As we discuss in detail in Appendix B, the linearized Hamiltonian can be solved exactly

for the specific case of the laser tuned to the cavity resonance, ∆ = 0, by applying the

quantum regression theorem (QRT), yielding a simple expression for the intensity of the

Stokes emission:

S(ωS) =
2ω4

S

γm
s2Ω2

(
1 + n̄th

m + s2Ω2 κ

γm

)
, (4.54)

where

s2 ≈ [4g/(κ|κ− 2iωm|)]2. (4.55)

Let us analyze terms in the brackets of Eq. (4.54):

• The first term can be recognized as the conventional two-photon cavity-assisted

Stokes transition, linearly dependent on Ω2, as demonstrated in the Appendix B.

This term yields the expected S(ωS) ∝ K4 dependence on the enhancement of the

incident field by the cavity K [49].

• The sum of the second and the third terms in brackets represents the incoherent

population of the phonon mode

nincoh
m = 〈b̂†b̂〉ss − 〈b̂†〉ss〈b̂〉ss, (4.56)
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arising from (i) the thermal pumping and (ii) the coupling to the plasmon cav-

ity. Brackets 〈...〉ss denote the steady-state expectation values. These two terms

together describe a process of phonon-stimulated Raman scattering, in which the

population of vibrations enhances the rate of Stokes scattering. We can easily

check that Eq. (4.56) represents the incoherent population of phonons by noting

that the addition of a coherent contribution to b̂ (b̂→ β + b̂) does not change the

covariance on the right-hand side of Eq. (4.56).

We note that phonon-stimulated Raman scattering has been reported in experiments

on ensembles of Raman-active centers, for example in hydrogen gas (see Refs. [197, 198]

and references therein).

Similarly, we can derive the expression for the anti-Stokes emission

S(ωaS) =
2ω4

aS

γm
(s2n̄

th
mΩ2 + s4Ω4), (4.57)

which describes the thermal pumping regime (first term in the brackets, proportional to

the thermal population of phonons n̄th
m) and the vibrational pumping regime (propor-

tional to Ω4).

The intensity of Stokes and the anti-Stokes emission, given by these equations, is shown

in Fig. 4.8 with solid blue and orange lines, respectively.

4.2.6 Breakdown of the linearization

As a side note, we remark that in the regime where the coupling parameter g and cavity

width κ are similar [199, 200], this linearization scheme breaks down. To estimate the

error induced by dropping the non-linear interaction term for our set of parameters, in

Fig. 4.8 we have compared the intensities of the Raman peaks calculated numerically

using Hamiltonians listed in Eqs. (4.52) (empty squares) and (4.53) (full circles), for

different values of the coupling strength g: (a), g = g0 = κ/250, (b) g = 10g0 and (c)

g = 30g0. These results indicate that in the regime of realistic parameters discussed

in this chapter (g = g0, Fig. 4.8(a)) both Hamiltonians give identical strengths of the

Stokes and anti-Stokes scattering. However, with increasing coupling parameter (by a

factor of 10 in Fig. 4.8(b) or 30 in Fig. 4.8(c)), the linearized Hamiltonian begins to

over-estimate the inelastic scattering.
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●
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Figure 4.8: Dependence of the Raman scattering on the excitation power and coupling
parameter g, calculated numerically using full (empty squares, Eq. (4.52)) or linearized
(full circles, Eq. (4.53)) Hamiltonian or analytically (solid lines) from the quantum
regression theorem (QRT) using Eqs. (4.54) and (4.57) for Stokes (solid blue lines)
and anti-Stokes (solid orange lines), respectively. Coupling coefficients are given as
multiples of the coefficient used throughout the manuscript g0 = κ/250: (a) g = g0, (b)
g = 10g0 and (c) g = 30g0. Dashed lines denote the linear dependence of the Stokes
signal on Ω2 expected from the classical theories, as obtained by taking the first term
of Eq. (4.54) exclusively.

4.2.7 Dependence on the laser detuning ∆

To further explore the effects of thermal and vibrational pumping of phonons on the

Raman scattering, let us consider the dependence of Raman scattering on the detuning

∆ ≡ ωc−ωl of the incident laser ωl from the cavity resonance ωc. In the typical classical

models of SERS [49] the dependence of the Stokes (Sclass(ωS ; ∆)) and the anti-Stokes

(Sclass(ωaS ; ∆)) emission is determined by the enhancement of the electric field of both

the incoming (|E(ωl)/E0(ωl)|2, where ωl is the frequency of the incident illumination)

and outgoing (|E(ωS/aS)/E0(ωS/aS)|2) photons at the position of the molecule:

Sclass(ωS/aS ; ∆) ∝ ω4
S/aS

∣∣∣∣ E(ωl)

E0(ωl)

E(ωS/aS)

E0(ωS/aS)

∣∣∣∣2 . (4.58)

Assuming that the enhancement is given by a lorentzian profile centered on the cavity

resonance ωc with width κ (gray curves in the bottom panels of Fig. 4.9), one can

expect that the calculated Raman emission spectra S(ωS/aS ; ∆) will depend on the laser

frequency ωl, as depicted with the blue dashed curves in the bottom panels of Fig. 4.9.

In particular, the Stokes signal should be the strongest for the incident laser blue-

detuned from the cavity. This general result for the Stokes scattering is supported by
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Figure 4.9: Dependence of the (a) Stokes and (b) anti-Stokes emission on the fre-
quency of the incident laser ωl. In the top panels we show the numerically calculated
intensities (a) S(ωS ; ∆ = ωc − ωl) and (b) S(ωaS ; ∆) for the pumping power from
(~Ω)2 = 10−3 eV (red lines) to (~Ω)2 = 0.25 eV (green lines) and environment temper-
ature T = 0 K (dashed lines) and T = 300 K (solid lines). The bottom panels show the
predictions of classical models (Eq. (4.58)) for (a) Sclass(ωS ; ∆) and (b) Sclass(ωaS ; ∆)
(dashed blue lines) and the cavity amplitude in gray.

our calculations performed for various pumping power ((~Ω)2 = 10−3 eV2 to 0.25 eV2,

depicted in the top spectra from red to green lines) and different temperatures (T = 0 K

and 300 K in dashed and solid lines), as shown in the upper panels of Fig. 4.9(a). We

also note that, as a result of the nonlinearity in Stokes emission, the profile of S(ωS ; ∆)

narrows with increasing pumping. On the other hand, Eq. (4.58) fails to explain the

dependence of the anti-Stokes scattering (Fig. 4.9(b)). For the weakest driving powers

(red lines, (~Ω)2 = 10−3 eV2), the S(ωaS ; ∆) intensity is the largest for the laser on

resonance or red-detuned from the cavity resonance both in the absence or presence of

thermal pumping of phonons (at T = 0 K and T = 300 K), respectively. For stronger

driving powers the intensity plots for T = 0 K and 300 K start to merge and peak at

increasingly blue-shifted frequencies, notably crossing the cavity resonance ωc.

This surprising property stems from the transition between the thermal and vibrational

pumping of the vibrational levels. Classical Eq. (4.58) for the anti-Stokes Sclass(ωaS ; ∆)
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intensity does not account for the origin of the phonons in the molecule, and therefore

can only be applied when these are provided by the heated reservoir (it should be noted,

however, that a suitable correction to S(ωaS ; ∆) introducing the vibrational pumping

has been proposed by Kneipp et al. [153]). If the environment is cooled down, or the

coherent driving dominates over the thermal phonons, the populations of the vibrations

can only originate from the Stokes transition, forcing the blue-detuning of the intensity

dependence, as observed in Fig. 4.9(b).

4.2.8 Correlations of the emitted light

Figure 4.10: Two-photon frequency-resolved correlators g
(2)
ΓΓ (ωS , ωaS) are calculated

by adding two lossy (Γ) weakly coupled (εS , εaS �
√
γmΓ/2) two-level sensors and

calculating their intensity correlations [201].

We can further characterize the photon emission by calculating the time- and frequency-

resolved photon correlations [202–204] between the Stokes and the anti-Stokes photons

emitted from the cavity. This technique was proven successful in showing quantum

correlations that are otherwise hidden in normal spectroscopy or standard photon corre-

lations [205]. The correlations can be accessed experimentally either by inserting filters

in a standard Hanbury-Brown-Twiss setup [204] or through a streak camera set-up [203]

that allows for ps detection resolution required for the plasmonic setup.

Theoretically, these time and frequency-resolved photon correlations are computed through

intensity-intensity correlations:

g
(2)
Γ1Γ2

(ω1, ω2; τ) = lim
t→∞

〈Â†ω1,Γ1
(t)Â†ω2,Γ2

(t+ τ)Âω2,Γ2(t+ τ)Âω1,Γ1(t)〉

〈(Â†ω1,Γ1
Âω1,Γ1)(t)〉〈(Â†ω2,Γ2

Âω2,Γ2)(t+ τ)〉
, (4.59)
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where

Âωi,Γi(t) =

∫ t

−∞
dt1e

(iωi−Γi/2)(t−t1)â(t1) (4.60)

is the output field after passing through a Lorentzian frequency filter with central fre-

quency ωi, and width Γi, at time t. In principle, in order to compute these correlations

one must apply the quantum regression theorem three times and perform the integrals

afterwards. Instead, we use the method recently proposed in Ref. [201], which avoids

this complication by coupling the mode of interest, i.e., â in our case, to two-level sys-

tems that will play the role of sensors (see the schematic of the concept in Fig. 4.10),

with frequencies ωi and lifetimes Γi, through the following Hamiltonian:

Ĥsens =
∑
i=1,2

εi(â
†σ̂

(i)
− + âσ̂

(i)
+ ), (4.61)

where σ̂
(i)
+ and σ̂

(i)
− are spin raising and lowering operators of the ith sensor. The coupling

εi must be sufficiently weak so that the dynamics of the sensors does not perturb the

system., i.e., 4ε2i /Γi � γs, where γs is the smallest transition rate of interest (here

γs = γm). Notice that this condition can always be imposed as εi is a free non-zero

parameter that we can choose at will in our simulation. Under this assumption it can

be shown that:

g
(2)
Γ1Γ2

(ω1, ω2; τ) = lim
εi→0

〈n̂1(0)n̂2(τ)〉ss
〈n̂1〉ss〈n̂2〉ss

, (4.62)

with n̂i = σ̂
(i)
+ σ̂

(i)
− . This simplifies the calculation at the cost of a small increase in the

dimension of the Hilbert space. For example, in the case of coincidences, i.e., τ = 0, that

we are mainly interested in, we only need to compute one-time correlators, avoiding the

need of the quantum regression theorem.

For simplicity we consider Γ1 = Γ2 = Γ and place the Lorentzian filters at ω1 = ωS and

ω2 = ωaS . The photon correlations g
(2)
ΓΓ(ωS , ωaS ; τ = 0), are plotted in Fig. 4.11(a) as a

function of the driving parameter Ω2 for T = 0 K (dashed lines) and T = 300 K (solid

lines) environment temperature. The coupling parameters g are taken as multiples of

g0 = κ/250: g = g0 (blue lines), g = 2g0 (orange lines), g = 4g0 (green lines), and

the filter linewidth ~Γ = 0.1 meV. As shown in Fig. 4.11(b), for these parameters the

spectrum S
(1)
Γ (ω) = 〈Â†ω,Γ(0)Âω,Γ(0)〉 is formed by three peaks: the elastic Rayleigh

scattering and the inelastic Stokes and anti-Stokes contributions.

We clearly observe that for the weak coherent pumping and in absence of thermal pump-

ing, the system exhibits strong bunching statistics, which is a signature of strongly cor-

related emission [206, 207]. The physical origin of the strong correlation is that, in the
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Figure 4.11: (a) Two-photon frequency-resolved Stokes-anti-Stokes correlators

g
(2)
ΓΓ (ωS , ωaS) and (b) physical spectra of emission S

(1)
Γ (ω) = 〈Â†ω,Γ(0)Âω,Γ(0)〉 calcu-

lated for the temperatures T = 0 K (dashed lines) and T = 300 K (solid lines), coupling
parameters chosen as multiples of g0 = κ/250: g = g0 (blue lines), g = 2g0 (orange
lines), g = 4g0 (green lines), and laser tuned to the cavity ∆ = 0.

absence of other source of excitations, the Raman photons are emitted by exchanging

a single phonon and therefore they are strongly correlated. Interestingly, the regions of

strongly bunched frequency correlations have been linked to the violation of classical in-

equalities [208] and can be optimized though proper filter engineering [209], potentially

providing access to producing a quantum correlated emission in this setup. The depen-

dence of the correlations on the coupling parameter stems from the fact that for small

g (and weak anti-Stokes emission), the filters detect primarily the elastically scattered

photons (Fig. 4.10(b)). For larger coherent driving or increased thermal pumping, the

anti-Stokes photons are increasingly created through the absorption of phonons which

originate either from thermal excitation or are created by an uncorrelated, earlier Stokes

transition. Thus, the correlation between the anti-Stokes and the simultaneously de-

tected Stokes photon decreases. We note these results are consistent with those recently

reported by Kasperczyk et al. [210] from measurements of the Stokes and anti-Stokes

pairs emitted from a thin layer of diamond.

4.3 Optomechanical cavities

As we have mentioned earlier, the Hamiltonian describing the interaction between the

cavity plasmons and the vibrations is reminiscent of that used to describe the dynamics

of optomechanical system. In this section, we briefly comment on this resemblance and

compare our system to common optomechanical setups.
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4.3 Optomechanical cavities

In a typical optical cavity, formed by two highly reflective mirrors, the circulating pho-

tons exert a radiation pressure on the mirrors. In optomechanical cavities, this force is

harnessed, by allowing one of the mirrors to move. The mechanical motion then shifts

the resonance frequency of the cavity, modifying the intensity of the circulating light and,

therefore, the radiation pressure force. This backaction [93, 196, 211] can be understood

as a coherent feedback mechanism that provides paths to cool or amplify the vibra-

tions of the mirror. For example, when the cavity is illuminated by a laser red-detuned

from its resonance, the backaction cools the mechanical vibrations by transferring their

energy to the optical cavity (significantly below the thermal population). Conversely,

under a blue-detuned illumination, the amplification or heating of the mirror vibrations

is achieved. A few realizations of optomechanical cavities, exhibiting a range of mechan-

ical frequencies and qualities of the optical cavities, are schematically shown in panels

(a)-(c) of Fig. 4.12.

Figure 4.12: Schematics of typical optomechanical systems: (a) suspended trampoline
mirror [212], (b) cold atoms [213] and toroidal resonator [211]. Optical and mechanical
modes are marked, together with the relevant parameters for each case: the mechanical
frequency (ωm) and the quality factors (Q) or finesse (F) of the optical cavities. (d)
The plasmon-enhanced Raman system exhibits much larger mechanical frequencies and
significantly lower quality factors of the optical plasmonic cavities.

We can therefore consider plasmon-enhanced Raman scattering as a realization of an
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optomechanical system (Fig. 4.12) in a novel regime of very high mechanical frequencies,

large single-photon coupling parameters (g ∼ γm) and low-Q optical cavities. This last

characteristic is usually unwelcome, since it implies very low population of the optical

cavity na and, consequently, weakens the effective coupling coefficient

geff =
√
nag (4.63)

(see Appendix B for details on the linearization scheme). Nevertheless, the large single-

photon coupling in SERS systems can, even in the case of very small na, trigger the

onset of interesting, non-linear effects.

Finally, the extraordinarily high mechanical frequency, significantly larger than the fre-

quency of the thermal bath, removes any need for cooling of the vibrations, and opens

avenues to implementing room-temperature quantum cavity optomechanics.

As mentioned before, this correspondence between Raman scattering and optomechan-

ical systems was also identified and analyzed in an independent contribution from

Christophe Galland and Tobias Kippenberg and colleagues at the École Polytechnique

Fédérale de Lausanne [179]. Their classical model suggests that the vibrations of a

molecule can be amplified by illuminating a plasmonic cavity with a blue-detuned laser,

just like the heating of mirror vibrations in an optomechanical cavity can be induced

by a similarly detuned laser. Under these conditions, a significant increase of the Ra-

man signal intensity is expected. This effect appears to be reminiscent of that discussed

in detail above, where the process of Stokes emission is stimulated by the incoherent

population of phonons. There are however some critical differences between the results

offered by the two frameworks. Most significantly, when the laser is tuned to the reso-

nant frequency of the cavity, our formalism predicts the onset of the stimulated emission,

while in the classical model, neither cooling now amplification of vibrations occurs.

Given that in their contribution Kippenberg and his colleagues apply the usual mathe-

matical framework to describe the dynamics of optomechanical systems (they linearize

the interaction Hamiltonian and solve classical Langevin equation), the differences high-

lighted above need to be properly identified and understood.
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4.4 Summary

In this chapter we have presented a fundamental, quantum-mechanical model of the

non-linear interaction between the quantized excitations of a plasmonic cavity, and the

vibrational structure of a molecule. This approach readily describes effects which are not

encompassed by the classical framework: (i) the onset of stimulated Raman scattering

due to the interaction with the cavity plasmons, (ii) an unexpected dependence of the

anti-Stokes scattering on the frequency of the incident laser and the local temperature.

From the experimental perspective, our prediction of the stimulated Raman scattering

from single molecules in plasmonic cavities should be of vital importance, as it opens a

new pathway to enhancing the intrinsically weak Stokes and anti-Stokes emission. While

this effect, to our best knowledge, has not been demonstrated, our results indicate

that the parameters of the experimental setups, i.e., the qualities of the plasmonic

cavities, could reach the regime where such observations are possible. The second major

prediction (point (ii)) can serve as a guideline for optimizing the experimental setups to

enhance the anti-Stokes scattering, and can contribute to the debate over the use of the

Stokes/anti-Stokes intensity ratio as a local temperature probe.

On the theoretical side, our exact formalism opens avenues to studying classical and

quantum correlations of the photons emitted from the cavities.

Finally, thanks to the resemblance of our interaction Hamiltonian to that used for treat-

ing optomechanical systems, the framework presented here takes the studies of such

systems to a novel parameter regime characterized by relatively strong couplings, pre-

viously observed only for cold atoms, and low thermal populations.
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Final remarks and outlook

In this thesis we have presented a few phenomena related to nanoscale optics, repre-

sentative of the rapidly developing front of research in this field. While some of the

effects discussed here, such as the shifts between different far-field optical properties of

plasmonic resonances, or the magnetic response of dielectric nanoparticles, have been

already verified in experiments, others are still calling for empirical verification.

One might wonder whether, should such confirmations arrive, these effects will actually

lead to further work, or will be otherwise placed in a, already cluttered, repository

of intriguing, but otherwise useless inventions. To try to answer this question, let us

briefly look into possible directions or research that the four pillars of this thesis might

contribute to.

Firstly, let us consider the results assembled in Chapter 1 and the future of research into

the dynamics of plasmons using femtosecond laser pulses. On the one hand, to study the

dynamics of processes occurring at the fs scale, one would ideally wish for probes that

would provide a higher time resolution. However, the very fundamental wave nature

of light would render such pulses as spectrally broad probes. Nevertheless, working

at this limit of the trade-off between spectral- and time-resolutions, we should be able

to identify the non-exponential dynamics of plasmons induced in metals and coupled

to interband transitions. Furthermore, one could extend this study and consider more

complex plasmonic or hybrid structures that exhibit Fano-like spectral resonances due

to the coupling between bright and dark modes. Therefore, the future of this direction

of research is bright, and will hopefully be aided by this contribution.

In the case of dielectric nanoparticles, which we describe in Chapter 2, the research

path for the next few years appears to have been laid out by previous efforts to guide

plasmonic nanosystems towards applications. Despite serious experimental challenges,

high-refractive index nanoantennas of various shapes: single spheres [10, 35, 36], dimers
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[7, 214, 215], trimers or oligomers [107, 109], nanorods [216, 217] or even metasurfaces

[218] have been theoretically and, in some cases, also experimentally characterized, and

reportedly form a rather significant competition for their plasmonic counterpartners.

The natural next step would be to couple those systems with quantum emitters, such

as molecules, quantum dots or perhaps even ions with a complex level structure, and

optimize them to match, or even outperform their conceptual ancestors, the microres-

onators.

The future of research into helicity conservation in scattering on random medium (Chap-

ter 3) most likely lies in the hands of optical physicists who have been working over the

last few years to boost the information capacity of optical fibers by implementing proto-

cols based on the angular momentum of light. While their efforts are primarily focused

on the orbital angular momentum, the helicity of light was also pointed out as an impor-

tant and promising candidate for implementing such protocols. Therefore, research into

scattering processes that could conserve this property might be crucial for the develop-

ment of novel optical fibers or adapters for interaction with other devices with little loss

of information.

From a more fundamental perspective, one should point out that the understanding of

symmetries of Maxwell’s equations, formulated over 150 years ago, and their realizations

in macroscopic and microscopic inhomogeneous media seems to be a long-overdue effort.

The final chapter of this thesis is devoted to developing a quantum-mechanical descrip-

tion of the coupling between plasmonic cavities and molecular vibrations. As such, it

is built on a concept which has been introduced in the field of plasmonic very recently

(i.e. quantization of the cavity modes), and serves as a example of phenomena that

can be described if one goes beyond the traditional, classical image of nanoantennas as

a concentrator of energy. On the other hand, we are slowly entering into a regime of

parameters of plasmonic systems which should offer the possibility to glimpse into the

internal structure of molecules and ions. Soon, we will hopefully learn how to access

and control their dynamics or, at the very least, exploit the intrinsically quantum na-

ture of molecules and ions to design novel hybrid devices based on, otherwise classical,

plasmonic building blocks.

In summary, we expect that the results reported in this thesis will influence a broad

field of immediate research in various areas of nanophotonics and, perhaps, contribute

to the development of new devices and uncovering exciting novel phenomena.
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Mie theory

A.1 Vector spherical harmonics

In this appendix we briefly introduce the elementary theory used in the description of the

scattering of light on spherical particles, the so-called Mie theory, named after German

physicist Gustav Mie [70]. We will not make an effort to introduce to the reader the

details of this framework, as those are discussed at length in many publications, but

rather strip it down to the core and most interesting, in our subjective view, elements.

To begin, let us consider the simplest non-trivial three-dimensional system which com-

prises a linearly polarized planewave illuminating a spherical nanoparticle. Without the

loss of generality, we can assume that, as illustrated in Fig. 2.1, the incident illumination

wavevector k0 is parallel to the axis ẑ and its electric field E0 is polarized along axis x̂.

The scatterer, a homogeneous sphere of radius a and dispersive dielectric permittivity

ε2, is centered at the origin of the coordinate system. The homogeneous environment in

which the sphere is embedded, is characterized by a dispersive, lossless dielectric permit-

tivity ε1. Thus, the wavevector k0 and the wavelength λ of the incident monochromatic

planewave with frequency ω are related as

k0 = −ẑk = −ẑ 2π

λ
= −ẑ ω

c

√
ε1(ω), (A.1)

where c is the velocity of light in vacuum.

In Mie theory, the incident and scattered fields, as well as the field inside the spherical

scatterer, are defined in the complete and orthonormal basis of the so-called spherical
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harmonics. We define this basis by considering the intrinsic spherical symmetry of the

scatterer (note that this symmetry does not extend to the incident illumination) and

following the ingenuitive prescriptions:

1. First, consider two vector fields M, N with vanishing divergence, defined through

a scalar function Ψ as

M = ∇× (rΨ), N =
∇×M

k
. (A.2)

Let Ψ be a solution of the scalar wave equation:

∇2Ψ + k2Ψ = 0. (A.3)

It can be then shown that both the M and N vector fields satisfy the vector wave

equations

∇2

(
M

N

)
+ k2

(
M

N

)
= 0, (A.4)

and

M =
1

k
∇×N. (A.5)

Thus, if in the above equations we put k = ω
√
ε1/c, then M and N defined in

Eq. (A.2) are the general solutions for the electric E and magnetic fields H. in the

homogeneous medium of permittivity ε1.

2. To choose a specific form of a set of functions Ψ which will define the simplest set

of vector spherical harmonics, we denote the spherical symmetry of the scatterer

and consider Ψ as:

Ψ(r, θ, φ) = R(r)Θ(θ)Φ(φ), (A.6)

where (r, θ, φ) are the spherical coordinates with θ and φ denoting the polar and

azimuthal angles, respectively. With this separation of variables, the scalar wave

equation in spherical coordinates breaks into three independent equations for R(r),

Θ(θ) and Φ(φ). Solving them separately, we find two families of solutions, Ψemn

and Ψomn, defined as(
Ψemn

Ψomn

)
=

(
cosmφ

sinmφ

)
Pmn (cos θ)zn(kr), (A.7)

where the radial function zn(kr) is any of the four spherical Bell’s functions: jn,

yn, h
(1)
n , h

(2)
n and Pmn are the associated Legendre polynomials. The respective
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vector functions Memn and Nemn (Momn and Nomn) are defined by introducing

the above formulations of Ψemn (Ψomn) into Eq. (A.2). An explicit representation

of these harmonics in spherical coordinates can be found in Ref. [117].

This very general and mathematical definition of the Mie modes, Memn, Momn,

Nemn and Nomn might appear arduous at first glance. Therefore, to familiarize

the reader with its more appealing, physical interpretation, in Fig. 2.1(b) and (c)

we have plotted the vector fields and intensity distributions of the two lowest-order

electric (a1 and a2) and magnetic (b1 and b2) Mie modes. The dipolar modes (b)

have the simplest form, as they are characterized by the electric and magnetic fields

constant for a1 and b1, respectively, throughout the volume of the nanoparticle,

and the complementary fields circulating around these directions.

3. Expand the incident field illuminating the scatterer (E0, H0), the field inside the

particle (Ei, Hi) and the scattered field (Es, Hs) in the basis of the Mie modes

defined above:

E0 =
∞∑
n

∞∑
m=n

∑
j=o,e

(Bjmn
0 Mjmn +Ajmn0 Njmn), (A.8a)

Es =

∞∑
n

∞∑
m=n

∑
j=o,e

(Bjmn
s Mjmn +Ajmns Njmn), (A.8b)

Ei =
∞∑
n

∞∑
m=n

∑
j=o,e

(Bjmn
i Mjmn +Ajmni Njmn), (A.8c)

The respective magnetic fields are defined by Eqs. (A.2) and (A.5).

4. Apply the boundary conditions to find the relationship between the fields on the

boundary of the scatterer

(E0 + Es −Ei)× êr = (H0 + Hs −Hi)× êr = 0, (A.9)

where êr is the radial vector on the surface of the sphere defined as |r| = a.

Thanks to the completeness of the vector spherical harmonics defined above, any elec-

tromagnetic field which satisfies the vector wave equations can be expanded in this basis.

In the following section, we discuss two specific cases which are of interest to the work

presented in this thesis: the illumination of the sphere by a planewave and by a radiating

dipolar emitter.
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A.2 Scattering of a planewave

The expansion of the fields of a planewave incident on the particle as in the schematics

in Fig. 2.1(a) into a series of vector spherical harmonics is, as Bohren and Hufman

phrased it ”somewhat like trying to force a square peg into a round hole” [117]. Literary

value aside, this picture reflects very well the dissimilar symmetries of the field and the

selected basis.

Nevertheless, since the basis is complete, it allows us to expand the incident electric and

magnetic fields into a slowly converging series [117],

E0 = E0

∞∑
n=1

in
2n+ 1

n(n+ 1)
(M

(1)
o1n − iN

(1)
e1n), (A.10a)

H0 = − k

ωµ
E0

∞∑
n=1

in
2n+ 1

n(n+ 1)
(M

(1)
e1n + iN

(1)
o1n). (A.10b)

Superscripts (1) denote the choice of spherical Bessel functions, jn, in the definition of

the spherical vector harmonics M and N.

By plugging in the general form of the electric fields Es (Eq. (A.8b)) and Ei (Eq. (A.8c))

into the boundary condition (Eq. (A.9)), the electric field scattered from and inside the

sphere can be derived as

Es = E0

∞∑
n=1

in
2n+ 1

n(n+ 1)
(ianN

(3)
e1n − bnM

(3)
o1n), (A.11a)

Ei = E0

∞∑
n=1

in
2n+ 1

n(n+ 1)
(cnM

(1)
o1n − idnN

(1)
e1n). (A.11b)

Superscripts (3) denote the choice of spherical Hankel functions, h
(1)
n . The Mie coeffi-

cients an and bn are defined as

an =
Mψn(k1a)ψ′n(ka)− ψn(ka)ψ′n(k1a)

Mψn(k1a)ζ ′n(ka)− ζn(ka)ψ′n(k1a)
(A.12)

bn =
ψn(k1a)ψ′n(ka)−Mψn(ka)ψ′n(k1a)

ψn(k1a)ζ ′n(ka)−Mζn(ka)ψ′n(k1a)
, (A.13)

where k1 = k
√
ε2/ε1 = kM is the wavenumber inside the sphere, and M =

√
ε2/ε1 is

the relative refractive index of the sphere. The Ricatti-Bessel functions ψ(x) = xjn(x)

and ζ(x) = xh
(1)
n (x) are introduced to simplify the notation. The coefficients for the
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fields inside the particle (often referred to as the transmitted fields), cn and dn, are

cn =
Mψn(ka)ζ ′n(ka)−Mζn(ka)ψ′n(ka)

ψn(k1a)ζ ′n(ka)−Mζn(ka)ψ′n(k1a)
, (A.14a)

dn =
Mψn(ka)ζ ′n(ka)−Mζn(ka)ψ′n(ka)

Mψn(ka)ζ ′n(ka)− ζn(ka)ψ′n(k1a)
. (A.14b)

The denominators of cn and bn are identical, as are those of the dn and an coefficients.

Therefore, any resonant behavior of the scattering coefficients an and bn should be

associated with a resonance observed in the intensity of the field inside the particle.

We should note that we adopt here the definitions of the Mie coefficients by Bohren and

Huffman in Ref. [117], which differ from those used by Ruppin [219] and, more recently,

Mertens et al. [220] by interchanging an ↔ −bn and cn ↔ −dn.

Knowing the exact expressions for both the incident and scattered fields (as well as the

magnetic fields, given by Eq. (A.2)), we can now calculate the scattering and extinction

cross sections of the sphere σscatt and σext, respectively. This is done by integrating

the flow of the respective time-averaged elements of the Poynting vectors formed by the

scattered field, Ss, and the combinations of the incident and the scattered fields, Sext

[117]:

Ss =
1

2
Re(Es ×H∗s), Sext =

1

2
Re(E0 ×H∗s + Es ×H∗0) (A.15)

through a large imaginary sphere S encompassing the scatterer, and normalizing it by

the energy density of the incident illumination I0:

σsca = I−1
0

∫
S

Ss · ds, σext = I−1
0

∫
S

Sext · ds. (A.16)

Plugging in the expressions for the incident (Eq. (A.10)) and scattered fields (Eq. (A.11)),

centering S at the origin of coordinate system for simplicity, and performing the inte-

gration, we arrive at the following expressions:

σsca =
2π

k2

∞∑
n=1

(2n+ 1)(|an|2 + |bn|2), σext =
2π

k2

∞∑
n=1

(2n+ 1)Re(an + bn), (A.17)

Where Re(z) denotes the real part of z. The cross sections are often related to the

geometric cross sections of the scatterer - in the case of spherical particles πa2 - by

introducing the scattering and extinction efficiencies:

Csca =
2

(ka)2

∞∑
n=1

(2n+ 1)(|an|2 + |bn|2), Cext =
2

(ka)2

∞∑
n=1

(2n+ 1)Re(an + bn). (A.18)
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A.3 Scattering of radiation of a dipolar emitter

A.3.1 Electric dipolar emitter

Following a similar path as briefly presented above, we can describe the field distribution

in a system comprising a spherical scatterer illuminated by the field from a radiating

dipolar emitter. This problem was analyzed in detail by Kerker et al. [221] to whom we

owe the expansion of the field originating from an electric dipole into vector spherical

harmonics.

Let us consider an electric dipole positioned at rdip = (0, 0, zdip) in the Cartesian coor-

dinate system, and, as before, a homogeneous sphere of radius a < zdip. Without loss of

generality, we can consider two orientations of the dipole: radial (along the ẑ axis) and

polar (along the x̂ axis). The expansion of the incident field originated by the dipole at

point r depends on whether r lies within an imaginary sphere of radius zdip:

E0 =


∑

ν Dν

[
pνM

(1)
ν + qνN

(1)
ν

]
, r > zdip∑

ν Dν

[
sνM

(3)
ν + tνN

(3)
ν

]
, r < zdip

, (A.19)

where the summation is performed over indices
∑

ν ≡
∑

σ=o,e

∑∞
n=1

∑n
m=0, which can

be identified with subscripts identifying the vector harmonics discussed above. The

amplitude coefficients are given by Dν = δm(2n+ 1)(n−m)!/(4n(n+ 1)(n+m)!), where

δm =

{
1, m = 0

2, m > 0.
(A.20)

The expansion coefficients are given by

sν =
ik3

π
M(1)

ν (krdip) · p, tν =
ik3

π
N(1)
ν (krdip) · p, (A.21a)

pν =
ik3

π
M(3)

ν (krdip) · p, qν =
ik3

π
N(3)
ν (krdip) · p. (A.21b)

The scattered field and the field inside the sphere are expanded as

Es =
∑
ν

Dν

[
uνM

(3)
ν (kr) + vνN

(3)
ν (k1r)

]
, (A.22a)

Ei =
∑
ν

Dν

[
fνM

(1)
ν (k1r) + gνN

(1)
ν (k1r)

]
. (A.22b)
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A.3 Scattering of radiation of a dipolar emitter

Applying the boundary conditions, Eq. (3.28), to the expansions of the electric fields

given in Eqs. (A.19) and (A.22), we obtain

uν = −bnpν , vν = −anqν , (A.23a)

fν = −cnpν , gν = −dnqν (A.23b)

where an and bn are the Mie coefficients given by Eqs. (A.12) and (A.13).

We can now calculate the power scattered from the system by integrating the flux of

Poynting vector, Sext, defined in Eq. (A.15) over the sphere S, which now encapsulates

both the particle and the dipole. Using the orthogonality of the M and N basis, we can

express this quantity as

Psca =

∫
S

Sext · ds =

√
ε0

µ0

π

k2

∑
ν

δm
(2n+ 1)(n−m)!

8n(n+ 1)(n+m)!
(|sν + uν |2 + |tν + vν |2). (A.24)

The power lost into the other decay channel, related to the losses inside the scatterer,

can be calculated as

Pabs =
1

2

∫
ωIm(ε2)|E1(r)|2dr =

=
1

2

∫
σ|E1(r)|2dr =

=
πσ

8

∑
ν

εm
(2n+ 1)(n−m)!

n(n+ 1)(n+m)!
×

×
∫ a

0

{
|fν |2|jn(k1r)|2 +

|gν |2

2n+ 1
[(n+ 1)|jn−1(k1r)|2 + n|jn+1(k1r)|2]

}
r2dr,

where σ is the conductivity of the material of the scatterer and Im(z) denotes the imag-

inary part of z. The integrals of the spherical Bessel functions can be solved analytically

[222].

Plugging in the explicit forms of the expansion coefficients listed in Eq. (A.23) into the

above equations, and normalizing the scattered power by the radiative energy loss of the

dipole in the absence of the sphere, P0, we arrive at explicit expressions for the normalize

power scattered by an electric dipolar emitter:

P⊥,esca

P0
=

3

2

∞∑
n=1

(2n+ 1)n(n+ 1)

∣∣∣∣∣jn(kz)− anh(1)
n (kz)

kz

∣∣∣∣∣
2

, (A.25a)
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P
||,e
sca

P0
=

3

4

∞∑
n=1

(2n+ 1)

[
|jn(kz)− bnh(1)

n (kz)|2 +

∣∣∣∣ψ′n(kz)− anζ ′n(kz)

kz

∣∣∣∣2
]
. (A.25b)

Here the superscripts ⊥ and || denote the radial and polar orientation of the dipole,

respectively, and e stresses the electric nature of the dipole. Similarly, we can calculate

the sum of the powers emitted into radiation and lost through the absorption in the

scatterer as Ptot = Psca + Pabs and write

P⊥,etot

P0
= 1− 3

2
Re

∞∑
n=1

(2n+ 1)n(n+ 1)an

[
h

(1)
n (kz)

kz

]2

, (A.26a)

P
||,e
tot

P0
= 1− 3

4

∞∑
n=1

(2n+ 1)Re

[
an

[
ζ ′n(kz)

kz

]2

+ bn[h(1)
n (kz)]2

]
. (A.26b)

A.3.2 Magnetic dipolar emitter

We can now derive the respective quantities for magnetic dipolar emitters. To achieve

this goal, we make use of the invariance of Maxwell’s equations in a homogeneous medium

under the transformation

E→ −ZH, H→ 1

Z
E, p→ m

c
, (A.27)

where Z is the impedance of the medium with dielectric permittivity ε1: Z =
√

µ0
ε0ε1

.

We can thus rewrite the expansion of the magnetic field of the magnetic dipole by

applying the above transformation to the electric field of the electric dipole (Eq. (A.19)):

Hm
0 = −Z


∑

ν Dν

[
pmν M

(1)
ν + qmν N

(1)
ν

]
, r > zdip∑

ν Dν

[
smν M

(3)
ν + tmν N

(3)
ν

]
, r < zdip

, (A.28)

where the expansion coefficients, marked with the superscript m to denote the magnetic

nature of the source, are given by

smν =
ik3

cπ
M(1)

ν (krdip) ·m, tmν =
ik3

cπ
N(1)
ν (krdip) ·m (A.29a)

pmν =
ik3

cπ
M(3)

ν (krdip) ·m, qmν =
ik3

cπ
N(3)
ν (krdip) ·m. (A.29b)

The transformation defined in Eq. (A.27) cannot be extended to the problem of scatter-

ing on arbitrary objects (although it can be applied for arbitrarily-shaped objects with
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A.3 Scattering of radiation of a dipolar emitter

specific macroscopic material properties, as we discuss in Chapter 3), and therefore we

cannot readily apply it to the scattered fields.

To address this problem, let us take a slightly less direct approach and represent the

electric field of the magnetic dipole as a sum of vector spherical harmonics,

Em
0 = − iZ

cε1

∑
ν

Dν

[
smν N(3)

ν + tmν M(3)
ν

]
. (A.30)

With the help of the Mie theory, we can now readily write the expansion coefficients of the

scattered electric field by multiplying the smν and tmν by the respective Mie coefficients:

Em
s =

iZ

cε1

∑
ν

Dν

[
ans

m
ν N(3)

ν + bnt
m
ν M(3)

ν

]
. (A.31)

The magnetic fields Hm
sca and Hm

i can thus be written as

Hs = −Z
∑
ν

Dν

[
umν M(3)

ν (kr) + vmν N(3)
ν (k1r)

]
, (A.32a)

Hi = −Z
∑
ν

Dν

[
fmν M(1)

ν (k1r) + gmν N(1)
ν (k1r)

]
, (A.32b)

where

umν = −anpmν , vmν = −bnqmν , (A.33a)

fmν = −dnpmν , gmν = −cnqmν . (A.33b)

These equations reveal a remarkable symmetry similarity to those obtained for the scat-

tering coefficients of the radiation from electric dipoles, given in Eq. (A.23). Even more

importantly, they indicate that the expressions for the power scattered from the mag-

netic dipole into radiation and lost to absorption in the scatterer are identical as those

for the electric dipole, with the exchange of the electric (an) and magnetic (bn) Mie

coefficients:

P⊥,msca

P0
=

3

2

∞∑
n=1

(2n+ 1)n(n+ 1)

∣∣∣∣∣jn(kz)− bnh(1)
n (kz)

kz

∣∣∣∣∣
2

, (A.34a)

P
||,m
sca

P0
=

3

4

∞∑
n=1

(2n+ 1)

[
|jn(kz)− anh(1)

n (kz)|2 +

∣∣∣∣ψ′n(kz)− bnζ ′n(kz)

kz

∣∣∣∣2
]
, (A.34b)

P⊥,mtot

P0
= 1− 3

2
Re

∞∑
n=1

(2n+ 1)n(n+ 1)bn

[
h

(1)
n (kz)

kz

]2

, (A.35a)
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P
||,m
tot

P0
= 1− 3

4

∞∑
n=1

(2n+ 1)Re

[
bn

[
ζ ′n(kz)

kz

]2

+ an[h(1)
n (kz)]2

]
. (A.35b)
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Appendix B

Linearization of the

optomechanical Hamiltonian

B.1 Analytical treatment of the system

In the following section we present an analytical treatment of the dynamics of an off-

resonant Raman scattering in plasmonic cavities, based on the quantum regression theo-

rem (QRT) [156]. To readily apply this method, we first consider a linearized version of

the optomechanical Hamiltonian and verify numerically that this approximation is well-

suited for describing the system in the range of parameters discussed in Chapter 4. We

then proceed to solve the linearized Hamiltonian analytically and present a solution for

the case of incident coherent illumination with frequency tuned to that of the plasmon

cavity.

Since we have already introduced all the parameters of the system with proper units

in Chapter 4, to simplify the notation we will from now follow the tradition celebrated

in academic books on quantum optics, and skip the reduced Planck constant ~ in the

following equations.
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Appendix B. Linearization of the optomechanical Hamiltonian

B.1.1 Quantum Langevin equations of the original Hamiltonian

Consider the optomechanical Hamiltonian in the frame rotating with the frequency of

the laser ωl (∆ = ωc − ωl):

Ĥ = ∆â†â+ ωmb̂
†b̂+ iΩ(â† − â)− gâ†â(b̂+ b̂†), (B.1)

where all the parameters and operators are properly defined in Chapter 4. With the

inclusion of a vacuum noise ain and thermal noise bin terms, which are taken to have

zero mean value and arise from δ-correlated thermal baths [196]:

〈a†in(t)ain(t′)〉 = 0, (B.2a)

〈ain(t)a†in(t′)〉 = δ(t− t′), (B.2b)

〈b†in(t)bin(t′)〉 = n̄th
mδ(t− t′), (B.2c)

〈bin(t)b†in(t′)〉 = (n̄th
m + 1)δ(t− t′), (B.2d)

The dynamics equations for operators â and b̂ are:

˙̂a = −(κ/2 + i∆)â+ Ω + igâ(b̂+ b̂†) +
√
κain(t), (B.3a)

˙̂
b = −(γm/2 + iωm)b̂− igâ†â+

√
γmbin(t). (B.3b)

B.1.2 Analytical solution to the linearized Hamiltonian

The linearized form of the above Hamiltonian was derived in Section 4.2.5:

Ĥ ′ = ∆â†â+ ωmb̂
†b̂− g|αs|2(b̂+ b̂†)− g(αsâ

† + α∗sâ)(b̂+ b̂†). (B.4)

For reference we remind that to derive it, we have redefined the cavity operators

â→ â+ αs, (B.5)

removing the coherent amplitude of the cavity field αs = Ω/(κ2 + i∆). The third term in

this linearized Hamiltonian can be interpreted as the effective coherent driving (∝ g|αs|2)

of the phonon mode.

A redefinition of the phononic operators in a similar manner (by removing the coherent

amplitude of vibrations) leads (via the linear coupling term) to a new linear driving of
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B.1 Analytical treatment of the system

the cavity (and a renormalized ∆), and so on, successively. We can capture all orders

of this feedback by defining displacements α′s and β′s through the condition that in the

displaced basis the transformed Hamiltonian does not contain any linear (driving) terms,

so that it can be written as

Ĥ ′′ = ∆â†â+ ωmb̂
†b̂− g[α′sâ

† + (α′s)
∗â](b̂+ b̂†), (B.6)

where displacements α′s and β′s are defined as

α′s =
Ω

κ/2 + i∆− 2igRe(β′s)
, (B.7)

β′s = − g|α′s|2

ωm − iγm/2
. (B.8)

Inserting Eq. (B.7) into (B.8), we arrive at a cubic equation

4g2[Re(β′s)]
3 − 4g∆[Re(β′s)]

2 +

[(κ
2

)2
+ ∆2

]
Re(β′s) +

gωmΩ2

ω2
m + (γm/2)2

= 0. (B.9)

The leading order of Eq. (B.9) gives the approximations to β′s and α′s, which can be

otherwise derived as the coherent amplitudes of the undisplaced operators 〈b̂〉 and 〈â〉,
respectively, as we discuss in the following section. The subsequent corrections decrease

in value very quickly and are quantitatively negligible for our parameters. However, the

presence of these terms, and in particular the appearance of higher powers of Ω2 is a

clear evidence of the fundamental non-linearity of the system.

B.1.2.1 Numerical solution

In our numerical calculations, we have implemented the non-linear Hamiltonian with the

displaced cavity operators (Eq. (4.52)) and solved the corresponding master equation,

describing the vibrational and photonic degrees of freedom in the basis of Fock states

(Eq. (4.49)). For the strongest pumping and coupling parameters, the calculations were

ensured to converge by using up to 15 and 10 Fock states for the description of the

vibrational and photonic state, respectively.

B.1.3 Steady state of the linearized Hamiltonian

From here on, we will focus our attention on the dynamics of the system given by the

linearized Hamiltonian Ĥ ′ and the master equation given in Eq. (4.48). We can thus
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Appendix B. Linearization of the optomechanical Hamiltonian

rewrite the Heisenberg equations given in Eq. (B.3a, B.3b) using the displaced photonic

operator â as

˙̂a = −(κ/2 + i∆)â+ igαs(b̂+ b̂†) +
√
κain(t), (B.10)

˙̂
b = −(γm/2 + iωm)b̂− ig(α∗sâ+ αsâ

†)− ig|αs|2 +
√
γmbin(t). (B.11)

Denoting by A a column vector with expectation values of operators

A =


〈â†〉
〈â〉
〈b̂†〉
〈b̂〉

 , (B.12)

and by Γab the correlation matrix

Γab = 〈


â†

â

b̂†

b̂


(
â â† b̂ b̂†

)
〉, (B.13)

we can rewrite Eqs. (B.10) and (B.11) as

d

dt
A = MA+D, (B.14)

d

dt
Γab = MΓab + ΓabM

† +AD† +DA† + E, (B.15)

where

D = ig|αs|2(0, 0, 1,−1)T , (B.16)

E = diag([0, κ, γn̄th
m , γm(1 + n̄th

m)]), (B.17)

for superscript T denoting matrix transpose and diag - a diagonal matrix and M defined

as the dynamical matrix

M =


−(κ/2− i∆) 0 −igα∗s −igα∗s

0 −(κ/2 + i∆) igαs igαs

igαs igα∗s −(γm/2− iωm) 0

−igαs −igα∗s 0 −(γm/2 + iωm)

 . (B.18)
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B.1 Analytical treatment of the system

Denoting by Γ̃ab = Γab−AA† the covariance matrix we get a simple equation of motion

without terms depending on A. For simplicity we neglect the thermal population of

phonons n̄th
m = 0 and arrive at

d

dt
Γ̃ab = M Γ̃ab + Γ̃abM

† + diag([0, κ, 0, γm]). (B.19)

Computations can be simplified by vectorizing these equations. To this goal, we denote

by ~Γab the vector formed by stacking the columns of Γ̃ab, and by M̃ the 16× 16 matrix

M ⊗ 1 + 1⊗MT [193]. Then Eq. (B.19) reads

d

dt
~Γab = M̃~Γab + ~E, (B.20)

where ~E is a vectorized matrix E. The displacements and covariances at time t are then

given by

A(t) = −M−1D + etM
(
A(0) +M−1D

)
, (B.21)

~Γab(t) = −M̃−1 ~E + etM̃
(
~Γab(0) + M̃−1 ~E

)
, (B.22)

and, consequently, the steady-state (denoted by subscript ss) displacements and covari-

ances are

Ass = −M−1D, (B.23)

~Γab,ss = −M̃−1 ~E. (B.24)

B.1.4 Quantum regression theorem

Equation (B.14) is a closed form of equations of motion (Eqs. (B.10, B.11)) for the

operators making up vector A: â†, â, b̂†, b̂, and allows us to calculate the expected values

of these one-time operators in the steady state Ass (Eq. (B.23)), where the subscript ss

denotes the steady-state. The quantum regression theorem (QRT) allows us to calculate

the two-time correlators 〈a†(t)a(0)〉ss which determine the spectrum S(ω) of emission

from the cavity

S(ω) = ω4

∫ ∞
−∞

dte−iωt〈â†(t)â(0)〉ss. (B.25)
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Appendix B. Linearization of the optomechanical Hamiltonian

More generally, from the QRT, the equation of motion for 〈X(t)Y (0)〉 is the same as

that for 〈X(t)〉. Therefore, for matrix of correlations C(t) defined as

C(t) = 〈


â†(t)

â(t)

b̂†(t)

b̂(t)


(
â(0) â†(0) b̂(0) b̂†(0)

)
〉ss, (B.26)

we can write an evolution equation

Ċ(t) = MC(t) +DA†, (B.27)

with formal solution

C(t) = −M−1DA†ss + etM Γ̃ab,ss, (B.28)

for the steady-state covariance matrix Γ̃ab,ss = Γab,ss −AssA
†
ss.

We then find that the two-time correlator 〈a†(t)a(0)〉ss used to calculate the spectrum

S(ω) of emission from the cavity (Eq. (B.25)) is given by the first element of the vector

defined by a product of exp(tM) and the first column of the steady-state covariances

matrix Γ̃ab,ss.

For the resonant case (∆ = 0) and without thermal pumping (T = 0 K) the exponent

of M can be found analytically, and we can rewrite the above product as a series of

expressions with exponential factors given by the eigenvalues of M :

{e−κ/2, e−(γm/2±iωm)}. (B.29)

From those, we choose the terms oscillating at frequencies ±ωm and decaying at a rate

γm/2, as they govern the strengths of Stokes and anti-Stokes scattering. After some

algebra, we obtain the explicit expressions for the Stokes and anti-Stokes emission as

second order polynomials of Ω2:

S(ωS) =
2ω4

S

γm
(s2Ω2 + s4Ω4), (B.30)

S(ωaS) =
2ω4

aS

γm
a4Ω4, (B.31)

where ωS and ωaS are frequencies of the Stokes and anti-Stokes emission, respectively.

The exact formulas for si and a4 are somewhat lengthy, but take a simpler form in the

144



B.1 Analytical treatment of the system

limit γm � κ, ωm:

s2 ≈
(

4g

κ|κ− 2iωm|

)2

, (B.32a)

s4 ≈
(

4g

κ|κ− 2iωm|

)4 κ

γm
= s2

2

κ

γm
, (B.32b)

a4 = s4. (B.32c)

The first term in expression for S(ωS), proportional to Ω2, is dominant for low pumping

power. For larger Ω the second term becomes dominant, and yields the non-linear

dependence discussed in Chapter 4. Note that the coefficients of the terms proportional

to Ω4 are equal both for Stokes and anti-Stokes, and thus for larger pumping powers,

the Stokes/anti-Stokes ratio becomes independent of Ω.

If T > 0, additional terms appear in the expressions for the Stokes and anti-Stokes emis-

sion, reflecting (i) the thermal pumping of the molecule, which effectively changes the

strength of the anti-Stokes scattering and (ii) the enhancement of the Stokes scattering

by stimulated phonon emission. Specifically, we find that Eq. (B.30) can be rewritten

S(ωS) =
2ω4

S

γm
[s2(1 + n̄th

m)Ω2 + s4Ω4], (B.33)

and the anti-Stokes emission (Eq. (B.31)) becomes

S(ωaS) =
2ω4

aS

γm
(a2n̄

th
mΩ2 + a4Ω4), (B.34)

with coefficient a2 = s2. Thus, in the region of thermal pumping (where we can neglect

all the terms ∝ Ω4 in the above equations), we recover the well-known formula for the

anti-Stokes/Stokes ratio [17]

S(ωaS)

S(ωS)
≈
(
ωaS
ωS

)4 n̄th
m

1 + n̄th
m

. (B.35)

B.1.5 Phonon population

Our analytical approach allows us to write down the explicit expression for the thermal

n̄th
m , incoherent nincoh

m and coherent ncoh
m phonon populations in the case of the laser

tuned to the cavity resonance (∆ = 0):

nb = 〈b̂†b̂〉ss = n̄th
m + nincoh

m + ncoh
m , (B.36)
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where

nincoh
m =

(
4gΩ

κ

)2 κ+ γm
γm|κ+ γm + 2iωm|2

≈ s2Ω2 κ

γm
, (B.37)

ncoh
m ≈

(
2Ω

κ

)4( g

ωm

)2

. (B.38)

B.1.6 Quartic dependence of Stokes intensity on the enhancement of

the incident field

By inserting the definitions of Ω (Eq. (4.46)) and g (Eq. (4.34)) into the lowest-order

expression for S(ωS) (Eq. (B.30)), we can write S(ωS) ∝ K2/Veff, where K is the en-

hancement of the incident field at the position of the molecule. The inverse volume factor

can be shown to be proportional to K2, by relating the Purcell factor (Eq. (4.40)) to K2

through the reciprocity theorem, thus allowing us to recover the expected dependence

of the Stokes emission S(ωS) ∝ K4.

It should be also noted that a similar dependence of the anti-Stokes intensity on K

can be retrieved only in the thermal pumping regime, where the phonons are primarily

provided by the thermal bath, and the anti-Stokes intensity is proportional to n̄th
mΩ2.

In the vibrational pumping regime, the phonons are provided by the Stokes transitions,

and thus we expect to retrieve the higher-order dependence of S(ωaS) on K.

B.2 Threshold for the onset of the phonon-stimulated Ra-

man scattering

From Eq. (B.33) and the relation between s2 and s4 (Eq. (B.32b)), we can derive an

approximate criterion for the onset of the phonon-stimulated Raman scattering, defined

arbitrarily by the stimulated Stokes emission becoming as strong as the spontaneous

emission:

n̄th
m + s2Ω2 κ

γm
> 1. (B.39)

Dropping the first term on the left-hand side, which becomes comparatively very small

as the power is increased, and inserting the definitions of s2 (Eq. (B.32)), g (Eq. (4.34))

and Ω (Eq. (4.46)), we can show that

s2Ω2 κ

γm
∝ (RνQ

0
ν)2 (K|E0|)2

Veff|κ− 2iωm|2
κ

γm
. (B.40)
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Schmidt, R. Esteban, A. González-Tudela, G. Giedke, and J. Aizpurua. ArXiv

preprint arXiv:1509.03851 (2015). [18]

6. Revisiting the energy and dynamics of plasmons for a generalized dielectric func-

tion. M.K. Schmidt, P. Nordlander, C. Sönnichsen, and J. Aizpurua. In prepa-
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List of symbols

Chapter 1

εD Drude-Sommerfeld dielectric function, Eq. (1.4)
ε∞ background permittivity
ωp plasma frequency, Eq. (1.2)
γp damping parameter in Drude-Sommerfeld model, Eq. (1.4)
αqs quasi-static polarizability of a sphere, Eq. (1.13)
ΓNR, ΓR, ΓA non-radiative (Eq. (1.18)), radiative Abraham-Lorentz

(Eq. (1.24)), and absorption damping coefficients,
αHO harmonic oscillator polarizability, Eq. (1.26)
α̃, α MWLWA microscopic and macroscopic polarizability,

Eq. (1.37)
αD MWLWA polarizability with Drude-Sommerfeld model

εD(ε∞ = 1), Eq. (1.41)
σscatt, σabs MWLWA scattering (Eq. (1.42a)) and absorption (Eq. (1.42b))

cross sections
Γ|α|2 , Γsca, Γabs full width half maximum of |α|2 (Eq. (1.37)), σsca (Eq. (1.42a)),

σabs (Eq. (1.42b))

Chapter 2

an, bn Mie coefficients, Eqs. (A.12,A.13)
M(e/o)mn, N(e/o)mn vector spherical harmonics, Eqs. (A.5,A.7)

Csca, Cext scattering and extinction efficiencies, Eqs. (2.1,A.18)

Γ†,xsca/Γ0 radiative enhancement of the decay rate of electric (x = e)
or magnetic (x = m) emitter oriented parallelly († = ||)
or perpendicularly († = ⊥) to the surface, Eqs. (2.4a-2.5d)
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List of symbols

Γ†,xtot/Γ0 total enhancement of the decay rate of electric (x = e)
or magnetic (x = m) emitter oriented parallelly († = ||)
or perpendicularly († = ⊥) to the surface, Eqs. (2.4a-2.5d)

(Γ†,xtot/Γ0)|dip total enhancement of the decay rate of electric (x = e)
or magnetic (x = m) emitter oriented parallelly († = ||)
or perpendicularly († = ⊥) to the surface,
in a dipolar approximation, Eqs. (2.6a-2.6d)

αE , αM electric and magnetic polarizabilities (Mie theory), Eq. (2.7)
↔
GE ,

↔
GM electric (Eq. (2.12)) and magnetic (Eq. (2.13)) Green’s function

α̃ey, α̃ez, α̃mx, dressed polarizabilities Eq. (2.29)
α̃e−m,TM dressed polarizability Eq. (2.30)

Chapter 3

P, Tδr linear momentum operator and spatial translation
transformation, Eq. (3.7)

H, Tδt Hamiltonian operator and time evolution
transformation, Eq. (3.8)

J, Rn̂ angular momentum AM (Eqs. (3.9a)) and rotation transformation
L, S orbital AM (Eqs. (3.9b)), spin AM (Eqs. (3.9c)) operators
Λ, Dφ helicity operator and duality transformation, Eqs. (3.11, 3.12)
MTE, MTE TE and TM polarized planewaves, Eq. (3.15)
ε± planewaves with well-defined helicities, Eq. (3.18)

B±,ẑm,θk
Bessel beams, Eq. (3.22)

Λ̃±, Λ± local measures of helicity, Eqs. (3.31,3.44)
IRC , ILC intensity if right- and left-hand circularly polarized light, Eq. (3.35)
η, ηtot degree of helical polarization, Eqs. (3.33,3.34)

Chapter 4

ĤR, ĤS , ĤSR Hamiltonian of the reservoir (e.g. Eq. (4.14b)), system
(e.g. Eq. (4.14a)), and reservoir-system interaction (e.g. Eq. (4.14c))

ρR, ρS density matrix of the reservoir and the system
TrR partial trace over the elements of reservoir
LÔ Lindlblad-Kossakowski superoperator, Eq. (4.17)
α̂ν Raman polarizability (Eq. (4.23))
Rν , Q

0
ν Raman tensor and zero-point amplitude of vibrations
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ĤI plasmon-vibrations interaction Hamiltonian, Eq. (4.33)
g coupling, Eq. (4.34))
Ω coherent pumping, Eq. (4.46))
n̄th
m thermal population of phonons, Eq. (4.47)
ωm, γm vibrations frequency and decay rate of phonons
ωc, κ cavity resonance frequency and decay rate of the cavity
S(ω) spectrum of emission from the cavity, Eq. (4.50)
∆ detuning of the coherent pumping
αs coherent amplitude of the cavity
ωS , ωaS Stokes and anti-Stokes emission frequencies

g
(2)
Γ1Γ2

(ω1, ω2; τ) two-photon frequency-resolved correlator, Eq. (4.59)

151





Bibliography

[1] Prum, R., Quinn, T., and Torres, R. Anatomically diverse butterfly scales all

produce structural colours by coherent scattering. J. Exp. Biol., 209(4):748–765,

2006.

[2] Schenk, F., Wilts, B., and Stavenga, D. The japanese jewel beetle: a painter’s

challenge. Bioinspir. Biomim., 8(4):045002, 2013.

[3] Prum, R. and Torres, R. Structural colouration of mammalian skin: convergent

evolution of coherently scattering dermal collagen arrays. J. Exp. Biol., 207(12):

2157–2172, 2004.

[4] Novotny, L. and Van Hulst, N. Antennas for light. Nat. Photon., 5(2):83–90, 2011.

[5] Xu, H., Aizpurua, J., Käll, M., and Apell, P. Electromagnetic contributions to

single-molecule sensitivity in surface-enhanced Raman scattering. Phys. Rev. E,

62(3):4318, 2000.

[6] Novikov, S. M., Sánchez-Iglesias, A., Schmidt, M. K., Chuvilin, A., Aizpurua, J.,

Grzelczak, M., and Liz-Marzán, L. M. Gold spiky nanodumbbells: Anisotropy in

gold nanostars. Part. Part. Syst. Char., 31(1):77–80, 2014.

[7] Albella, P., Poyli, M., Schmidt, M., Maier, S., Moreno, F., Saáenz, J., and Aizpu-
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[160] Galland, C., Högele, A., Türeci, H. E., and Imamouglu, A. m. c. Non-markovian

decoherence of localized nanotube excitons by acoustic phonons. Phys. Rev. Lett.,

101:067402, 2008.

[161] Gorini, V., Kossakowski, A., and Sudarshan, E. C. G. Completely positive dy-

namical semigroups of n-level systems. J. Math. Phys., 17(5):821–825, 1976.

[162] Lindblad, G. On the generators of quantum dynamical semigroups. Commun.

Math. Phys., 48(2):119–130, 1976.

[163] Sharma, B., Frontiera, R. R., Henry, A.-I., Ringe, E., and Van Duyne, R. P. SERS:

materials, applications, and the future. Materials Today, 15(1):16–25, 2012.

[164] Johansson, P., Xu, H., and Käll, M. Surface-enhanced Raman scattering and

fluorescence near metal nanoparticles. Phys. Rev. B, 72:035427, 2005.

[165] Bougeard, D. and Smirnov, K. S. Calculation of off-resonance Raman scattering

intensities with parametric models. J. Raman, 40(12):1704–1719, 2009.

[166] Fox, M. Quantum Optics: An Introduction, volume 6. Oxford university press,

2006.
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