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En primer lugar me gustaŕıa mostrar mi más sincera gratitud a mis dos
directores, Andres Arnau Pino y Fernando Delgado Acosta. Ha sido un ver-
dadero privilegio tener la oportunidad de aprender y trabajar con dos grandes
pérsonas y cient́ıficos como vosotros. Ambos habeis contribuido enormemente
en mi aprendizaje y en ser la persona que soy hoy en d́ıa. Además, me habeis
proporcinado colaboraciones con otros grupos muy provechosas para mi. Y
gracias también por confiar en mı́.

Particularmente también me gustaŕıa agradecer a Andres Arnau toda
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Etxeberria, Irene Alonso, Irati Egaña, Maite Mancisidor, Maria Perez, Ei-
der Cerdeira, Nahia Uranga, Paula Antxustegi, Oihane Agirrebeña y Aroa

iv



Carril.
Azkenik, hiru pertsona oso berezi gelditzen zaizkit eskertzeko. Beraiek

gabe ez nuke inoiz fisika ikasiko eta ez nintzateke hemen egongo. Mila esker
Joseja Huerta, Eli Zugasti eta Juanba Artola; zuekin eman bainituen nire
lehengo urratsak zientziaren munduan.

v





Resumen

El rápido avance tecnológico de las últimas decadas y el gran impacto que
tiene la información en la sociedad actual crean la necesidad de buscar nuevas
formas más eficientes de almacenar la información. La cantidad total de in-
formación almacenada en el mundo ha pasado de 1 ZB (1021 B) en 2009
a alrededor de 20 ZB en 2017, y se espera que siga creciendo, superando
los 160 ZB en 2025. Este aumento se ha visto enormemente favorecido por
la aparición de nuevas tecnoloǵıas como los coches autónomos, la inteligen-
cia artficial y electrodomésticos inteligentes. Todos estos avances necesitan
procesar una cantidad enorme de información que tiene que ser almacenada
de alguna forma.

Hoy en d́ıa, la información se almacena en tres tipos de dispositivos:
ópticos, eléctricos y magnéticos. Los dispositivos más comunes y de más ca-
pacidad son los dispositivos de almacenamiento magnéticos. Éstos almacenan
la información en forma de dominios magnéticos localizados en un material
magnético. La información de estos dominios se lee y escribe mediante una
cabeza que detecta y modifica la magnetización de dicho dominio. Este tipo
de tecnoloǵıa se emplea en los discos duros, las bandas magneticas (tarjetas de
crédito) y las memorias RAM (random access memory) magnéticas o MRAM.
Generalmente, la capacidad de un dispositivo magnético aumenta cuanto más
pequeño sean los dominios. Los dispositivos convencionales tienen la capaci-
dad de almacenar alrededor de 1 Pbit/m2 (1016 bit/m2), lo que significa que
cada dominio ocupa unos 100 nm2 de la superficie magnética. En última
instancia, el tamaño ĺımite de estos dominios seŕıa el ĺımite atómico.

El objetivo de esta tésis es estudiar estos dominios magnéticos en el
ĺımite atómico. Para ello es necesario estudiar como son las interacciones
magnéticas a escala atómica. En sólidos, la interacción entre átomos vecinos
es tan fuerte que los cambios en un átomo se reflejan en los de su entorno.
Esto hace que sea complicado alcanzar el ĺımite atómico. Por ejemplo, el bit
más pequeño que se ha conseguido crear es de unos 12 átomos.

El tamaño del dominio magnético no es el único factor a tener en cuenta a
la hora de construir un dispositivo de almacenamiento magnético. Esos mo-
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mentos magnéticos tienen que ser estables durante un largo periodo de tiempo
para no perder la información. La barrera de anisotropia magnética (MAE)
determina la estabilidad del dominio magnético frente a fluctuaciones. A
escala atómica, una MAE alta requiere una combinación de un acoplamiento
esṕın-órbita fuerte y un campo cristalino adecuado. Los átomos de tran-
sición 3d, a pesar de tener un acoplamiento esṕın-órbita relativamente bajo,
pueden tener valores bastante altos de la MAE en circunstancias especiales,
tal y como veremos para el Co. Además de una MAE grande, es necesario
que el momento magnético no se pierda debido a la interacción con elec-
trones de conducción o fonones del substrato. Estas interacciones con el
substrato se pueden evitar, o por lo menos reducir, usando laminas delgadas
de carácter aislante que reducen las interacciones entre el substrato y los
momentos magnéticos. Una de estas laminas aislantes es la monocapa de
nitruro de boro hexagonal (h-BN), que se puede depositar sobre superficies
metálicas como el Ir o el Ru.

En esta tésis desarrollamos un nuevo método teórico y lo comparamos
con otros métodos y resultados experimentales. Este nuevo método deriva
un campo cristalino (CF) a partir de cálculos de la teoŕıa del funcional de la
densidad (DFT), para posteriormente introducirlo en un modelo de Hubbard
multiorbital. Los cálculos DFT se hacen con el código de ondas planas Vienna
Ab-initio Simulation Package (VASP), para después, mediante un cambio de
base a orbitales de Wannier maximalmente localizados (MLWF), derivar un
Hamiltoniano que es el que utilizaremos como CF. El cambio de base de on-
das planas a MLWF, lo hacemos con el código Wannier90, el cual nos permite
escribir el Hamiltoniano de interacción en la nueva base. Este Hamiltoniano
es todav́ıa demasiado grande para poder introducirlo en el modelo de Hub-
bard. Por lo tanto, primero identificamos cuales son los orbitales localizados
en el átomo magnético y detectamos que orbitales se hibridizan más con ellos.
Después, aplicando el método perturbativo de Feshbach-Schur, derivamos el
Hamiltoniano efectivo en el espacio reducido y lo introducimos en el modelo
de Hubbard. El objetivo principal de este modelo es representar el espectro
de baja enerǵıa lo mejor posible, incluyendo excitaciones de esṕın. Este mod-
elo incluye la interacción de Coulomb, el campo cristalino, el acoplamiento
esṕın-órbita y un término de Zeeman. Todos estos términos se derivan de
forma anaĺıtica, a excepción del campo cristalino, que depende del entorno
donde se encuentra el átomo magnético. Una vez obtenido el campo cristal-
ino, resolvemos el modelo de Hubbard mediante el método de interacción de
configuraciones (CI). Este método construye la matriz Hamiltoniana a partir
de cada una de las posibles configuraciones con un número de electrones fijo,
teniendo en cuenta el principio de exclusión de Pauli. Después, obtenemos
el espectro de baja enerǵıa.
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En este trabajo utilizamos este nuevo método para obtener el espectro de
baja enerǵıa de átomos aislados de Co sobre una monocapa de h-BN. Para
ello, primero tenemos que comprobar que con los cálculos DFT estamos sim-
ulando correctamente el h-BN. Estos cálculos DFT nos dan que el h-BN es
un material aislante con un gap de enerǵıa en el punto K de 4.66 eV y un
parámetro de red de 2.51 Å en ĺınea con resultados previos de DFT. Luego,
en una supercelda 4 × 4 de h-BN, colocamos el Co sobre los dos sitios más
favorables del h-BN: sobre un átomo de N (atop N ) y sobre el centro del
hexagono formado por la red (hollow). Tras una relajación, vemos que am-
bos sitios de absorción del átomo de Co están bastante cerca en enerǵıa (389
meV a favor del sitio hollow), tienen una ocupación de los orbitales d de 7.8
electrones y una magnetización de alrededor de 2 µB, lo cual es compatible
con un esṕın S = 1. Además, la densidad de estados proyectados sobre los
orbitales d del átomo de Co muestra una hibridación débil entre los diferentes
orbitales 3d del átomo de Co y estados 2p del h-BN. En el caso atop N, estas
hibridaciones corresponden a estados dz2 del átomo de Co con estados pz del
átomo de N que tiene debajo. Por el contrario, en el caso hollow, los estados
dxz y dyz del átomo de Co hibridizan con los estados pz de los 3 átomos de N y
los 3 átomos de B que forman el hexagono en el que se encuentra. Añadiendo
el acoplamiento esṕın-órbita a estos cálculos DFT (DFT+SOC), reducimos
la diferencia energética entre ambos sitios de absorción a 316 meV. Además,
obtenemos que para el sitio atop N, el Co tiene un eje de cuantización fácil
en la dirección perpendicular al plano del h-BN, con una MAE de 1.5 meV.
Mientras, para el sitio hollow, obtenemos que el eje perpendicular es un eje
dif́ıcil con una MAE de 0.43 meV. Posteriormente, a partir de los cálculos
DFT sin polarización de esṕın para ambos sitios de absorción, hacemos el
cambio de base a MLWF en la supercelda 3 × 3 y comprobamos que los
orbitales d del átomo de Co tienen forma de orbitales d átomicos. Seguida-
mente, reducimos el Hamiltoniano de Wannier y lo introducimos en el modelo
multiorbital de Hubbard para obtener el espectro de baja enerǵıa. Los re-
sultados obtenidos con el nuevo método concuerdan cualitativamente con los
obtenidos mediante los cálculos DFT+SOC. En ambos casos se obtiene que
el sitio atop N tiene un eje de magnetización fácil perpendicular al plano y
que el hollow tiene un eje dif́ıcil. Con la nueva metodoloǵıa los valores de
la MAE son un orden de magnitud más grandes (mayor que 30 meV y unos
3 meV para el atop N y el hollow, respectivamente). La razón principal de
este desacuerdo en la magnitud de la MAE podŕıa radicar en que los cálculos
DFT+SOC infravaloran el momento orbital, por lo que la MAE obtenida
de estos cálculos es demasiado pequeña. Por esto, necesitamos comparar el
nuevo método con otra aproximación diferente. En este caso, optamos por
introducir el CF en nuestro modelo de Hubbard con una aproximación de
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cargas puntuales. Las posiciones y las cargas las derivamos de los cálculos
DFT anteriores. En este caso, el acuerdo también es cualitativamente bueno,
puesto que reproducimos los ejes fáciles y dif́ıciles para el sitio atop N y hol-
low, respectivamente. El valor de la MAE es de unos 13 meV para el sitio
atop N y unos 5 meV para el hollow. De este último cálculo con el modelo
de cargas puntuales derivamos un Hamiltoniano de esṕın y extraemos los
parámetros de anisotroṕıa.

En nuestro caso, como disponemos de resultados experimentales de espec-
troscoṕıa de absorción de Rayos X (XAS), dicróısmo circular magnético en
absorción de Rayos X (XMCD) y dicróısmo linear magnético en absorción de
Rayos X (XMLD) sobre el h-BN/Ir(111) y h-BN/Ru(0001), nos centramos
en las propiedades del Co en estos dos substratos. Para simular el sitio de
absorción del átomo de Co en los experimentos, primero debemos ver como
se comporta el h-BN en estas superficies. Los cálculos DFT muestran que, en
el caso de la superficie de Ir(111), el h-BN se absorbe a unos 3.1 Å de altura
sobre la superficie y que se mantiene prácticamente plano. Esto nos lleva a
pensar que en Co/h-BN/Ir(111) se comporte de forma parecida al caso sin
Ir(111), y por lo tanto, que el sitio de absorción sea hollow. El Ru(0001), al ser
más reactivo que el Ir(111), interacciona más con el h-BN y le da una corru-
gación mucho mayor. Aśı, en este caso, estudiamos los dos sitios de absorción
del Co a distantas alturas del h-BN con respecto de la superficie de Ru(0001).
Las enerǵıas relativas obtenidas de los cálculos DFT muestran que el sitio
hollow en la region del h-BN lejana, y el atop N en la región cercana, son
los más favorables, pero con diferencias de enerǵıas en ĺımite de la fiabilidad
de los cálculos DFT. Por eso prefirimos combinar los datos experimentales
con los resultados del modelo multiorbital de Hubbard para determinar el
sitio de absorción en h-BN/Ru(0001). Con respecto a los experimentos, los
datos de XAS en ambas superficies son compatibles con una ocupación de 8
electrones en la capa d del átomo de Co, compatible con el esṕın S = 1 que
hemos obtenido de los cálculos DFT anteriores. Además, los experimentos
de XMCD y XMLD mustran una anisotroṕıa magnética de unos 13.7 meV
para el Co/h-BN/Ru(0001) y una anisotroṕıa despreciable para el Co/h-
BN/Ir(111). Posteriormente, usando unos ajustes de multipletes simulando
que el átomo de Co está en posición atop N, vemos que el estado fundamen-
tal del Co/h-BN/Ru(0001) es un doblete con Sz = ±1 y Lz = ±1.42, y el
excitado un singlete con Sz = 0 y Lz = −0.02. Estos resultados concuerdan
plenamente con los resultados que hemos obtenido con nuestro modelo de
Hubbard usando las cargas puntuales para el sitio atop N en h-BN. Nuestro
modelo muestra un doblete fundamental con Sz = ±0.96 y Lz = ±1.04, y un
singlete excitado con Sz = −0.09 y Lz = 0.09, además de una MAE de unos
13 meV. Los ajustes de multipletes para el Co/h-BN/Ir(111) muestran un
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singlete fundamental con Sz = 0.003 y Lz = 0.022, y un doblete excitado con
Sz = ±0.92 y Lz = ±1.13, solamente 0.7 µeV por encima. En este caso, el
acuerdo con nuestro modelo para el sitio hollow no es tan bueno, puesto que
las cargas puntuales nos llevan a un singlete fundamental con Sz = 0.19 y
Lz = 0.61, y un doblete excitado con Sz = 0.76 y Lz = 1.44, unos 5 meV por
encima. En el caso del atop N con el Co/h-BN/Ru(0001), el buen acuerdo
se debe a que el campo cristalino en el sitio atop N es creado principalmente
por el átomo de N de debajo, y apenas se ve afectado por pequeñas varia-
ciones del entorno. Sin embargo, en el caso hollow, el CF es bastante más
débil debido a que las cargas de los átomos vecinos tienden a crear un CF
nulo sobre el Co. Esto hace que el sitio hollow sea mucho más sensible a las
variaciones del entorno, asi como a la corrugación.

Por lo tanto, también es importante estudiar como son este tipo de in-
teracciones a la hora de diseñar un nuevo dispositivo de almacenamiento
magnético. A menudo, las interacciones con el substrato metálico suelen in-
volucrar a electrones de superficie. Estos estados de superficie son producto
de soluciones a la ecuación de Schorödinger de una part́ıcula con vector de
onda imaginaria en regiones donde se ha abierto un gap de enerǵıa. La en-
erǵıa con la que aparecen estos electrones superficiales se puede controlar
mediante la absorción de diferentes nanoestructuras, propiciando la transfer-
encia de carga o el confinamiento de los electrones a una región determinada
de la superficie. Respecto a la transferencia de carga, dependiendo de que
nanoestructura se absorba sobre la superficie, ésta puede coger electrones,
bajando la enerǵıa de los electrones superficiales, o donar electrones, aumen-
tando la enerǵıa. En el caso del confinamiento, al reducir la región en la que
aparecen los electrones superficiales, en todos los casos aumentará la energia
en la que aparecen.

Además de estudiar las propiedades del Co sobre el h-BN, en la tesis
también analizamos un caso reciente donde, sin haber transferencia de carga,
la enerǵıa de los electrones superficiales baja, a pesar del confinamiento de-
mostrado experimentalmente. Esta bajada de enerǵıa se ha medido en redes
organometálicas nanoporosas (MONN) como el Ph6Co o el Ph3Co sobre
la superficie de Au(111). Estas MONN están formadas por las moléculas
dicarbonitrilo-terfenilo (Ph3) o dicarbonitrilo-sexifenilo (Ph6) y átomos de
Co como enlaces de las moléculas formando una estructura con nanoporos
hexagonales. Los poros del Ph6Co son más grandes que los del Ph3Co, al
ser el Ph6 una molécula más grande que el Ph3. Sin embargo, el estado de
superficie del Au(111) baja más, respecto a la cara original, con el Ph3Co que
con el Ph6Co. Para simular este sistema, usamos una lámina de 4 capas de
Au(111) y pasivamos una de las caras con átomos de H. Comprobamos que
este modelo funciona, poniendo sobre la otra cara una monocapa molécular
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de pirazina. La monocapa molécular actua como un aislante, confinando el
estado de superficie y aumentando su enerǵıa en comparación con la cara
sin la monocapa. Posteriormente, colocamos sobre superficie de Au(111) un
átomo de Co en superceldas 2×2, 3×2 y 3×3 a una distancia de 2.5 Å. Esta
distancia es superior a la distancia de absorción óptima para simular que está
en el régimen de acoplamiento débil. De los cálculos DFT sin polarización de
esṕın vemos que, en el caso de la supercelda 2×2, la bajada es mayor que en
la 3×2. En ésta, a su vez, es mayor que en la 3×3. Con estos resultados con-
firmamos la bajada del estado de superficie y vemos que ésta bajada es mayor
cuanto mayor es la concentración de átomos de Co. En los MONN de los ex-
perimentos, vemos que ésta relación también es válida, ya que en el caso del
Ph3Co, al tener los poros mas pequeños, la concentración de átomos de Co
es mayor, y la bajada del estado de superficie también es mayor. Además, la
extrapolación lineal de los resultados DFT, dan un acuerdo muy bueno con
las mediciones experimentales. Confirmamos que con cálculos polarizados
en esṕın obtenemos los mismos resultados, y seguidamente, sustituimos el
átomo de Co por el de Au y aumentamos la distancia a 3 Å para colocarlo
en el régimen de acoplamiento débil. En este caso volvemos a obtener una
bajada del estado de superficie mayor en la supercelda 2× 2, que en la 3× 3.
Luego, hacemos lo mismo para un átomo de Cu a 3 Å de una lámina de 4
capas de Cu(111), pasivada con átomos de H por el lado contrario, con los
mismos resultados. Finalmente, acercamos al átomo de Cu a la superficie
de Cu(111), hasta 2.5 Å, y vemos que el peso del estado de superficie se di-
vide en dos bandas: una componente se mezcla con las bandas d de valencia
de la lámina de Cu(111) y el otro por encima del nivel de Fermi. Por lo
tanto, podemos decir que este efecto de la bajada del estado de superficie es
un efecto que se da cuando se absorben ciertos metales de transición en el
regimen de acoplamiento débil sobre algunas superficies metálicas, debido a
que el estado enlazante todav́ıa mantiene el carácter del estado de superficie.
Sin embargo, al aumentar el acoplamiento, el estado enlazante va perdiendo
el carácter de estado de superficie, mientras el estado antienlazante lo va
ganando, subiendo en enerǵıa.
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Chapter 1

INTRODUCTION

The Data Age is approaching. The fast-paced technological evolution during
the last decades challenges us to think about the impact of data management
and the need of new technological routes to store data. The amount of
stored data has grown exponentially in recent years, from 1 ZB (1021 B)
in 2009 to around 20 ZB in 2017, and it is predicted to continue growing,
reaching 160 ZB in 2025[1]. This is favoured by the appearance of new
technological applications such as autonomous cars, artificial intelligence and
smart home devices, which are likely going to transform the way we live.
These advances are based on processing huge amounts of data that need to
be stored somehow.

Nowadays, there are three types of devices to store all this data: optical,
electrical and magnetic storage devices. Optical devices, such as CDs or
DVDs, have a reflective surface which is divided into small sections that can
contain a hole or not. Each of the sections is a bit which is readable with a
laser beam. This devices are still alive due to music, video and videogames
industries. Electric storage devices use small floating-gate-transistors, like
USB memories or SD cards. These transistors can store an electric charge
for an extended period of time without a power supply. They have a limited
number of write/erase cycles, but they are small and cheap, thus representing
perfect portable devices.

Magnetic storage devices store data as a localized magnetic domain in
a magnetic medium. This type of storage is the oldest and has the great-
est capacity. Information is written and read from the medium by a read-
and-write-head, which detects and modifies the magnetisation of a specific
magnetic domain below it. There are two magnetization polarities for the
domains, which represent either 0 or 1 in a binary system. Magnetic stor-
age is used in hard disks, Magnetic Random Access Memories (MRAM) and
magnetic stripes to store data.

1



CHAPTER 1. Introduction

Focusing on hard disks, the ferromagnetic material is a thin film, 10-20 nm
in depth, deposited on a non-magnetic circular substrate, usually aluminium
alloy, glass or ceramic, and protected with an outer layer of carbon. This disk
is called platter and modern hard disks have several platters. Each magnetic
platter has one head mounted in an actuator arm, who moves the heads on
an arc over some of the platters as they spin. Modern commercial devices
made in this way have reached areal data densities above 10 Pbit/m2 (1016

bit/m2)[2], which means that the size of each bit is around 100 nm2.
As mentioned at the beginning, we need devices with larger storage ca-

pacities to store the increasing amount of data being created in the upcoming
years. This goal can be achieved, in the case of hard disks, by increasing the
areal data density of platters, i.e., reducing the size of each bit.

In principle, the ultimate size of a magnetic domain is the atom. In
solids, the interaction between neighbour atoms is so strong that changes in
one atoms are reflected in neighbouring atoms. Thus, each magnetic moment
needs to be far enough from the neighbouring magnetic moments to permit
a local manipulation without affecting its neighbourhood. This condition
make difficult to achieve the ultimate size limit. In laboratory conditions,
magnetic bits as small as 12 atoms have been built[3, 4, 5, 6].

However, the size is not the only important feature for a magnetic domain.
The stability of those magnetic moments depend on additional factors. The
Magnetic Anisotropy Energy (MAE) determines the stability of a magnetic
moment against fluctuations. At the microscopic scale, a large spin-orbit cou-
pling and a suitable crystal field may yield to a large MAE[7, 8]. Although
spin-orbit coupling in late 3d-transition metal atoms is relatively weak, they
can show very large MAE values when they are adsorbed under special cir-
cumstances, as it is the case of Co single atoms and nanostructures on Pt
single crystals[9, 10].

But a large MAE does not guarantee the stability of the magnetic do-
main. The spin lifetime of Co atoms on Pt(111) is sub-nanosecond and do
not show hysteresis, even at sub-Kelvin temperatures[11]. These observa-
tions highlight that spin scattering with conduction electrons and substrate
phonons is detrimental to the stability of the magnetic moment of isolated
impurities. Furthermore, atomic-scale magnetic moments can be quenched
when interacting with itinerant electrons, as Shockley surface electrons, on
a nearby metal, leading to the formation of Kondo singlets[12].

Thus, in order to obtain stable nanomagnets, large MAE and weak elec-
tronic and phonon interactions with the surroundings are essential [6, 7, 8].
Thin decoupling layers can be introduced to reduce the hybridization of the
3d or 4f adsorbates with the metallic substrate, thus protecting the magnetic
moments from destabilizing scattering processes, while still allowing for large
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values of the MAE. Examples of metallic substrates with decoupling layers
are: MgO on Ag(001)[7, 13, 14], graphene on Pt(111)[15], graphene on Ir(111)
and Ru(0001)[16, 17] or h-BN on Rh(111)[18, 19]. For instance, in the case
of h-BN/Rh(111)[19], hydrogenated cobalt complexes are adsorbed atop N
sites of the h-BN lattice, showing relatively large out-of-plane MAE.

From the experimental point of view, there are three frequently used ex-
periments that can measure the MAE of magnetic impurities adsorbed on sur-
faces: X-ray Magnetic Circular Dichroism (XMCD), Inelastic Electron Tun-
nelling Spectroscopy (IETS) and Scanning Tunneling Microscopy induced
Electron Spin Resonance (STM-ESR). In order to interpret XMCD data,
electronic multiplet calculations and sum rules analysis are needed[20, 21],
with some fitting parameters needed to determine the crystal field and spin-
orbit coupling strength. The other experiments, IETS[22] and STM-ESR[23],
yield the spin excitation energies of a single or a few magnetic coupled atoms.
The magnetic anisotropy is then described in terms of some characteristic pa-
rameters by using a phenomenological spin Hamiltonian [7, 13, 19, 24, 25].
STM-ESR adds the extreme energy resolution of magnetic resonance, which
is only limited by the decoherence rate 1/T2, while still conserving the atomic
resolution of STM. Unfortunately, this technique has only been applied suc-
cessfully to MgO/Ag(001) substrate[7, 23].

From the theoretical point of view, Density Functional Theory (DFT)
calculations including Spin-Orbit Coupling (DFT+SOC) allow an estimation
of the MAE, but, in general, MAE is strongly underestimated. This stands
on the overestimation of the quenching of the orbital momentum[26, 27, 28].
Recently, a new approach[29, 30] to calculate the MAE has been developed.
This new approach consist on using DFT calculations to estimate the crystal
field, and then, to construct a many-body multiorbital Hamiltonian including
the obtained crystal field, spin-orbit and electron correlation effects. At the
atomic-scale, magnetic moments of adsorbed atoms can be quenched due
to spin scattering events with conduction electrons from the surface. Thus,
surface states also play an important role in the stability of the magnetic
moment, especially if they hybridize with states from the magnetic adatom.
So it is important to understand how the hybridization occurs and how to
control it.

As their name indicates, surface states are 2D states located at the sur-
face of a solid, generated by the symmetry breaking of the crystal in the
surface. It is possible to split surface states into two groups: Shockley sur-
face states[31] and Tamm surface states[32]. Shockley surface states emerges
from the description of sp-bands, while Tamm surface states form from d and
f -bands. So the possible hybridizations are different for each group.

Surface states have influence on the electronic and magnetic properties of
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the surface and the superstructures grown on them by different mechanism.
One of this mechanism is the charge transfer between the surface state and
the adsorbate, which can happen in both directions. In the case of Na or Cs
on Cu(111)[33, 34, 35], the surface state is shifted down in energy due to the
electron that it takes from the adsorbate. On the contrary, an electron may
also go from the surface to the adsorbate, like in TTF-TCNQ overlayer on
Au (111)[36], where the surface state is shifted up.

Confinement is another mechanism that allows the control of the sur-
face state. This is made usually by growing on the desired surface a vast
range of nanoporous networks, from hydrogen or halogen bonded molec-
ular networks[37, 38] to metal-organic superstructures[39, 40], as organic
molecules scattered on a surface where electrons are confined into the pores
of the network. This mechanism pushes the surface state upward in energy,
likewise a quantum box.

In order to study the surface state experimentally, a combination of An-
gle Resolved Photo-Emission Spectroscopy (ARPES) technique with Elec-
tron Plane Wave Expansion (EPWE) simulations[41] is used, as well as the
Fourier-Transform Scanning Tunnelling Spectroscopy (FT-STS)[42]. From
the theoretical point of view, performing DFT calculations to obtain the
bandstructures of the system is a good choice to model the surface state
using the passivated slab proposed by Gonzalez-Lacunza[43].

This thesis is organized in the following way. A brief introduction to the
theory of solids is given in chapter 2. In particular, DFT calculations and
MLWFs are introduced, focusing on solving the Schrödinger equation for a
solid in the plane-wave basis set, as it is implemented in the Vienna Ab-initio
Simulation Package (VASP) code[44, 45, 46] and changing the basis to the
MLWFs basis set using the Wannier90 code[47]. Following the approach
developed in the group of Fernandez-Rossier[29, 30], this basis change will
provide the crystal field that we will use to construct a many-body multior-
bital Hamiltonian.

The main results of the thesis will be splitted into chapter 3 and chapter 4.
Chapter 3 describes Co adatom on different adsorption sites of h-BN using
different theoretical methods. The first method will be using only DFT
calculation including spin-orbit coupling. In second place, we will construct
a many-body multiorbital Hamiltonian based on two different approaches to
the crystal and ligand fields: an effective tight-binding Hamiltonian in the
basis of MLWFs and a point charge model. Finally, we will derive a spin
Hamiltonian and compare the results obtained with all the approaches.

In chapter 4, we will compare results from the previous chapter with
XAS, XMCD and XMLD experimental data for Co on h-BN/Ir(111) and h-
BN/Ru(0001) provided by S. Rusponi from the group of H. Brune. XMCD
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and XMLD experiments show a big difference in the magnetic properties of
Co atom depending on the metallic substrate, even though the occupation
of d-shell of Co remains the same. We will use our DFT calculations to shed
light on the role of the metallic substrate. In the case of the Ir(111) substrate,
we will see that the h-BN is almost flat, while on the Ru(0001) substrate it
is highly corrugated. Due to the different corrugations, the adsorption site
of Co may be affected, changing the adsorption site.

On chapter 5, we will focus on the Shockley surface state of Au(111) and
Cu(111) and how it is affected by the adsorption of different type of adsor-
bates, from adatoms to molecular overlayers. We will compare our findings
with ARPES data provided by I. Piquero-Zulaica from the group of J. Lobo.
The experiment shows a counter-intuitive downward shift of the surface state
of Au(111) and Cu(111) surfaces when Co-dicarbonitrile-terphenyl (Ph3Co)
and Co-dicarbonitrile-sexyphenyl (Ph6Co) networks are grown on the sur-
face, while the downward shift is bigger for Ph3Co network. Our model,
consisting on a hydrogen passivated slab[43], permits the understanding of
this effect and we will discuss the conditions to see it in other systems.

Then, chapter 6 will summarize the main conclusions of the investigations
combining results from different chapters.

Finally, we have two appendixes. In appendix A, we explore the limita-
tions of the MLWFs method in the 4× 4 supercell of h-BN. In appendix B,
we study the case of Fe on h-BN.
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Chapter 2

THEORETICAL METHODS

This chapter introduces the theoretical framework. Throughout the thesis
we will use atomic units (me = e = ~ = 1) unless otherwise stated.

2.1 Basic quantum mechanics for solids

Formally speaking, solid materials are composed of Ni ions and ne electrons.
This means that we have to consider our system as a many-body system with
Ni + ne particles. The properties of such a system can be described by the
time-dependent Schrödinger equation,

i
∂Ψ ({R }, t)

∂t
= ĤΨ ({R }, t) , (2.1)

where Ψ({R }, t) is the many-body time-dependent wavefunction, with {R }
representing spacial coordinates of all particles in the system. So, if Ψ({R }, t)
is known for a system, static and dynamic properties of all important physical
observables are available. Ĥ is the Hamiltonian operator, which consist of
the kinetic and potential energy terms, describing interactions between all
particles in the system. In the absence of an external field, the Hamiltonian
is given:

Ĥ = T̂i + T̂e + V̂ii + V̂ee + V̂ie. (2.2)

T̂i and T̂e terms correspond to kinetic energy of ions and electrons, respec-
tively, and can be expressed as the sum of kinetic energy of each ion or
electron

T̂i = −
Ni∑
α

P2
α

2Mα

(2.3)
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and

T̂e = −
ne∑
ν

p2
ν

2
, (2.4)

where the indices α and ν run over ions and electrons, respectively.
The other three terms correspond to the Coulomb repulsion between ions,

V̂ii, and electrons, V̂ee and Coulomb attraction of ions and electrons, Vie:

V̂ii =
1

2

Ni∑
α 6=α′

ZαZα′

|Rα −Rα′ |
, (2.5)

V̂ee =
1

2

ne∑
ν 6=ν′

1

|rν − rν′|
(2.6)

and

V̂ie = −
Ni,ne∑
α,ν

Zα
|Rα − rν |

(2.7)

where Mα and Zα are respectively the mass and atomic number of each ion.
Rα and Pα denote the sets of position and momentum of ions and rν and pν
for electrons.

2.1.1 The Born-Oppenheimer approximation

Born and Oppenheimer proposed a scheme for separating the motion of nuclei
from that of electrons[48]. This is based on the fact that the time scale
associated to the motion of nuclei is usually much longer than that associated
to electrons. The origin of this is the difference in mass between nuclear
particles and electrons. In the case of Hydrogen atom, the most unfavourable
case, the mass ratio is 1:1836, which is less than 0.1%. So, from a classical
point of view, the speed of the electron is much higher than that of the nuclei.
Born and Oppenheimer introduced the mass ratio perturbatively in the time-
dependent Hamiltonian and they showed that different electronic stationary
states do not mix due to the interaction with the nuclei. Therefore, the
electrons do not undergo transitions between stationary states.

In principle, this approach is also valid for molecules, insulating and semi-
conducting systems. There the smallest electronic excitation is given by the
energy gap, which is typically a few eV, while for the nuclear motion, exci-
tations are at least two orders of magnitude smaller. For metallic systems,
the relevant energy scale is dictated by plasmon (collective charge oscilla-
tions), which is typically of the order of few eV. So electrons can be thought
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of as instantaneously following the motion of nuclei, while remaining always
in the same stationary state of the electronic Hamiltonian. In other words,
electrons adjust their wavefunction instantaneously according to the nuclear
motion

Ψ ({R }, t) =
∑
n

χn (R, t)ψn (R, r) , (2.8)

where χn(R, t) are the wavefunctions that describe the evolution of nuclei
in each one of the electronic eigenstates ψn(R, r). These electronic states
satisfy the time-independent electronic Schrödinger equation

ĥeψn (R, r) = En (R)ψn (R, r) , (2.9)

where ĥe is the electronic Hamiltonian:

ĥe = T̂e + V̂ee + V̂ie = Ĥ − T̂i − V̂ii. (2.10)

In eq. (2.9) nuclear coordinates R enter as parameters. As ψn(R, r) are solu-
tions of the time-independent electronic Schrödinger equation corresponding
to a particular nuclear configuration, the expansion described in eq. (2.8) is
always mathematically possible. Therefore, we need to know the nuclear and
electronic wavefunctions. So, we will start obtaining the nuclear wavefunc-
tion.

The total nuclear wavefunction can be considered as an incoherent super-
position of individual nuclear wave packets;

χn (R, t) =
P∏
α=1

χ(α)
n

(
R,R(α) (t) , t

)
, (2.11)

where R(α)(t) are the centres of each individual wave packets. As nuclear
masses are quite large, these individual wave packets are strongly localized
around their centres. Therefore, atomic nuclei are treated as classical par-
ticles. It is worthy mentioning that eq. (2.11) does not include correlations
between different nuclei. So, the time-dependent Schrödinger equation for
nuclear wavefunction is

i
∂χm (R, t)

∂t
=

[
−

P∑
α=1

1

2Mα

∇2 + ε̃n (R)

]
χm (R, t) , (2.12)

with

ε̃n (R) = εn (R) +
P∑
α=1

1

2Mα

〈ψq|∇2
α|ψq〉. (2.13)
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The second term is the correction due to the dependence of electronic
wavefunction on nuclear coordinates, which is proportional to the electron
mass. This correction, in the most unfavourable case, is smaller than 0.5%.
Therefore, it is usually neglected in the Born-Oppenheimer approximation.

Introducing eq. (2.11) into eq. (2.12) and taking the mean values, one can
find the following Newtonian equation of motion:

M
d2〈R〉
dt2

= −〈∇εn (R)〉, (2.14)

where εn(R) is the potential. In the classical nuclei approximation, the mean
value of the position operator 〈R〉 is identified with the coordinates of the
classical particle. This equation is solved by numerical integration methods
in ab-initio molecular dynamics. Imposing ∇εn (R) = 0, we can get the
solution corresponding to a geometrical optimization.

2.1.2 Density Functional Theory

The Born-Oppenheimer approximation reduces the dimensionality of the
problem solving the nuclear part of the eigenstate, but the electronic part
still remains unsolved. Due to electron-electron interaction term in the elec-
tronic Hamiltonian, there is no general solution for eq. (2.9). One method
to overcome this problem is to use Density Functional Theory (DFT). DFT
consist in using the electron density as key quantity in the many-body prob-
lem instead of electronic wavefunctions, which reduces the degrees of freedom
from 3ne to only 3.

The electron density is defined as follows:

n (r) =

∫
dr2 . . . drne|ψ (r, r2, . . . , rne) |2, (2.15)

where the parametric dependence of the electron density on the ionic posi-
tions is assumed, i.e. n(r) ≡ n(r,R). This relation can be reversed, except
of a phase of the wavefunction, so from the ground-state density, n0 (r), it is
possible to get the ground-state electronic wavefunction, ψ0 (R, r).

The electronic Hamiltonian is expressed in terms of the electronic density
n (r), so that each contribution becomes a functional of n (r). We can ap-
proximate the electronic ψn (r) by the Slater determinant of single-particle
wavefunctions φν (rν):

ψ (r1, r2, . . . , rne) =
1√
ne!

∣∣∣∣∣∣∣
φ1 (r1) · · · φ1 (rne)

...
. . .

...
φne (r1) · · · φne (rne)

∣∣∣∣∣∣∣ . (2.16)
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This wavefunction ψ (r1, r2, . . . , rne) shows the fundamental properties of a
fermionic system. Therefore, the exchange of two rows or columns is equiva-
lent to the interchange of two particles, which makes the wavefunction anti-
symmetric to the exchange of particles. Consequently, if two rows or columns
are equal, there are two electrons in the same state, and the wavefunction is
zero. Thus ensures these wavefunctions satisfy the Pauli exclusion principle.

Adapting the definition of the electronic density given in eq. (2.15) to the
single-electron wavefunctions φν (rν) used in eq. (2.16), we get the expression

n (r) =
ne∑
ν

|φν (r)|2 . (2.17)

This definition of the electronic density permits us to write the Hamiltonian
as a functional of the electronic density. Firstly, the electron-ion interaction
energy is

Eei [n] = 〈φ |Vei|φ〉 = −
Ni∑
α

Zα

∫
dr

n (r)

|r−Rα|
≡
∫
drn (r) vext (r) , (2.18)

where vext (r) is the external potential created by the ions. Secondly, the
electron-electron interaction energy is

Eee [n] = 〈φ |Vee|φ〉 =
1

2

∫∫
drdr’

n (r)n (r’)

|r− r’|
+ Exc [n] ≡ Eh [n] + Exc [n] ,

(2.19)
where Eh [n] is the Hartree energy. The Exc [n] term is the exchange and
correlation energy that takes into account the missing electron-electron in-
teraction contributions in the Hartree term. The exact form of the exchange
and correlation term is unknown, but we consider it as a functional of the
electron density. Finally, the kinetic energy term can be written in terms of
single-electron wavefunctions,

Ekin [n] = 〈φ |Te|φ〉 = −1

2

ne∑
ν

∫
drφ∗ν (r)∇2φν (r) . (2.20)

We maintain the dependence of the kinetic energy term on the electron
density using the single-electron wavefunctions notation. Therefore, the total
electron energy can be written as functional of the electron density as follows:

Ee [n] = Ekin [n] + Eh [n] + Exc [n] + Eei [n] . (2.21)

The first three term form which is called the universal functional, because
they depend on the specific electron-ion system implicitly through the elec-
tron density. So, the only term that depends on electron-ion system explicitly
is Eei [n], where the external potential vext (r) created by the nuclei appears.

11



CHAPTER 2. Theoretical methods

Regarding the external potential mentioned before, Hohenberg and Kohn
proved two basic theorems[49]:

Theorem 2.1.1 The external potential vext (r) is a conversely unique func-
tional of the electron density n (r), apart from a trivial additive constant.

Theorem 2.1.2 The exact electron density n (r) minimizes the electron en-
ergy functional Ee [n].

The theorems show that the ground state of the system can be uniquely
determined by the minimization of the electron energy functional Ee [n] with
respect to the electron density n (r) by a variational method. However, it
is not possible to minimize this energy functional due to the unknown exact
dependence of the universal functional on n (r).

Kohn and Sham [50] proposed to construct the exact electron density
n (r) using a set of non-interacting electrons moving in the effective field
created by the electron-ion system in order to minimize Ee [n]. Doing that,
we can write the electron density in the following form:

n (r) =

∫
dr2 . . . drne |ψ (r, r2, . . . , rne)|

2 =
ne∑
ν

∣∣φKSν (r)
∣∣2 , (2.22)

where φKSν (r) are the Kohn-Sham non-interacting orbitals. These single-
electron wavefunctions can replace the actual wavefunction in a large amount
of cases.

The Schrödinger like equations for non-interacting electrons in an effective
potential veff (r) can be written as follows[

−1

2
∇2 + veff (r)

]
φKSν (r) = ενφ

KS
ν (r) , (2.23)

where the effective potential veff (r) has the following terms:

veff (r) = vext (r) +

∫
dr’

n (r’)

|r− r’|
+
∂Exc [n]

∂n (r)
. (2.24)

The first term vext (r) is the external potential created by ions, the second
term corresponds to the Hartree potential vh (r) and the last term is the
exchange and correlation potential vxc (r).

The eigenvalue problems defined by the Kohn-Sham equations, eq. (2.23)
are solved self-consistently. Firstly, an electron density n (r) is proposed and
introduced into eq. (2.24) to get an effective potential veff (r). Then, this

12



2.1 Basic quantum mechanics for solids

potential is introduced in eq. (2.23) and the eigenvalue problem is solved, ob-
taining the corresponding Kohn-Sham non-interacting orbitals φKSν (r). Fi-
nally, with φKSν (r), a new electron density n′ (r) is calculated from eq. (2.22)
and compared with the electron density n (r) proposed at the beginning.
This process is repeated until the desired convergence threshold is achieved.

2.1.3 Approximations of the exchange and correlation
functional

The exact exchange and correlation functional is known for the case of the
uniform electron gas (UEG), in which the approximations are based. The
simplest approximation, which was also proposed by Kohn and Sham[49], is
the Local Density Approximation(LDA), where it is assumed that exchange
and correlation energies are local functions of the electron density in the limit
of UEG. We also assume that the electrons are independent, as in the UEG,
and move in an external potential created by a positive charge background, as
it happens for electrons in the Kohn-Sham equations, eq. (2.23). So the first
step to find an expression for Exc [n] will be to suppose the same functional
dependence for the system as for the UEG:

ELDA
xc =

∫
drn (r) vUEGxc [n (r)] . (2.25)

It is assumed that the exchange and correlation potential in each point of the
space r have the same form as in the UEG, so we can decompose vUEGxc (r)
linearly into exchange and correlation terms:

vUEGxc (r) = vUEGx (r) + vUEGc (r) . (2.26)

The correlation term, vUEGc (r), has been parametrized with quantum Monte-
Carlo simulations for different electron densities [51]. The most often used
parametrization is that of Perdew and Zunger[52].

The LDA approximation is very useful to get geometries and other physi-
cal properties of simple molecules and solids, particularly when s and p bands
dominate the electronic structure of the valence band. On the other side, the
LDA can fail when there are localized electrons dominating the electronic
structure, such as in transition metals, highly inhomogeneous or strongly
correlated systems.

The next approximation is called the Generalized Gradient Approxima-
tion (GGA), which introduces first-order density gradient contributions in
the Exc [n] functional,

EGGA
xc =

∫
drn (r) vxc [n (r) ,∇n (r)] . (2.27)

13



CHAPTER 2. Theoretical methods

In this case, vxc [n (r) ,∇n (r)] must be parametrized. In this way, the de-
scription of some molecules and their adsorption on surfaces is improved.
Different parametrizations of GGA need to be considered and compared for a
system. One of the most popular GGA parametrization is the one introduced
by Perdew, Burke and Ernzerhof (PBE)[53]. This type of parametrizations
correct the LDA exchange term by a multiplicative factor Fx (s) that depends
on density gradients(s is the generalized gradient defined as s = |∇n| /2kFn,
where kF is the Fermi wave-vector), while the correlation part is corrected
by a density-dependent additive term. Fx (s) is chosen to preserve the good
LDA description of the exchange and correlation energy in the small s region
and to satisfy the Lieb-Oxford[54] bound in the large s region. The PBE
approximation has been reviewed improving atomization and chemisorption
energies of some small molecules[55].

GGA-PBE approximations are enough for most of the electronic struc-
ture properties of adsorbed atoms and small molecules on metal surfaces.
However, they can fail when non-local interactions, as Van deer Waals inter-
actions, need to be included[56]. Specifically, the correlation term has to be
corrected including non-local contributions

Exc [n] = EGGA
x [n] + ELDA

c [n] + Enl
c [n] , (2.28)

where the non-local energy Enl
c [n] can be expressed in the exact form[56]:

Enl
c =

∫ ∞
0

du

2π
Tr [ln (1− Vχ)− ln (ε (u, r, r′))] . (2.29)

Here u is the imaginary frequency −iω, ε (r, r′, u) is the dielectric function
and Vχ corresponds to the next expression:

Vχ =

∫
dr′′V (r− r′′)χ (r′′, r′, u) . (2.30)

χ (r′′, r′, u) is the charge response function and V (r− r′′) the Coulomb
potential. The trace in eq. (2.29) integrates over diagonal elements. For
UEG, if we write functions that appear in eq. (2.29) in spatial coordinates,
they are diagonal, and thus, ε = 1− Vχ, and non-local corrections vanish. In
this way, we ensure that there is no double counting and that we have only
the LDA correlation for truly homogeneous systems.

There are other approximations to the exchange and correlation functional[57,
58, 59], but these are the most used ones, and the ones that we will use in
this work.
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2.1 Basic quantum mechanics for solids

2.1.4 Electrons in a periodic potential and pseudopo-
tential approximation

With the Hamiltonian defined, the time-independent electronic Schrödinger
equation, has to be solved to obtain εn(R) and its gradient. This is called an
electronic structure calculation of a system. Its exact solution gives access to
all physical and chemical properties of the system. Even though an external
field may be added to the Hamiltonian, the basic ideas can be illustrated
in the case of electrons interacting with nuclei and themselves via Coulomb
forces.

Due to the electron-electron interactions, the electronic wavefunctions
cannot be written as the product of individual electronic wavefunctions.
Here, we suppose that the system is a perfect solid. Although, real solids
aren’t absolutely pure, and defects are all of great importance, the effects
of imperfections can be treated as small perturbations on the properties of
a perfect solid. Therefore, the electrostatic potential affecting an electron
in the perfect crystalline solid will be periodic, with a periodicity of lattice
vector R,

veff (r + R) = veff (r) . (2.31)

Considering that our system is composed by independent electrons, in-
cluding the effect of core electrons in the periodic electrostatic potential
veff (r), each electron follows the single electron Schrödinger equation:

ĥseψ =

(
−p2

2
+ veff (r)

)
ψ = εseψ. (2.32)

As Bloch’s theorem[60] states, the eigenstates of this Hamiltonian with peri-
odic potential can be chosen to have the form of a plane wave times a function
with the periodicity of the lattice,

ψnk (r) = eik·runk (r) , (2.33)

where
unk (r + R) = unk (r) , (2.34)

and k is the real wave vector, that follows the Born-Von Karman boundary
condition.

Generally speaking, the solution introduced by Bloch’s theorem is not a
eigenstate of the momentum operator, p = 1

i
∇. So the wave vector k, which

can be always confined to the first Brillouin zone, is not proportional to the
electronic momentum. This can be shown applying p to ψnk:

pψnk =
1

i
∇
(
eik·runk (r)

)
= kψnk +

eik·r

i
∇unk (r) , (2.35)
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CHAPTER 2. Theoretical methods

which is not a constant times ψnk.

Bloch’s theorem also introduces an additional n index because for each
wave vector there are many solutions to the Scrhödinger equation. Each
solution for a given wave vector has, in principle, different eigenvalue and
eigenstate, which are labelled by the index n. Since unk (r) has the same
periodicity of veff (r), the wavefunctions can be expanded using the plane-
wave basis set:

ψnk (r) =
1√
V

∑
G

Cnk (G) ei(k+G)·r, (2.36)

where Cnk (G) are the plane-wave expansion coefficients, V is the total vol-
ume and G denotes the reciprocal lattice vectors. Introducing this expansion
into the Kohn-Sham equations eq. (2.23), a set of matrix equations for the
Cnk (G) is obtained:

∑
G′

[
−1

2
|k + G|2 δGG′ + 〈k + G |veff (r)|k + G′〉

]
Cnk (G′) = εnkCnk (G) .

(2.37)
Here, the matrix elements of the effective potential are:

〈k + G |veff (r)|k + G′〉 =

∫
dre−i(k+G)·rveff (r) ei(k+G′)·r. (2.38)

Usually, the effective potential is a functional of the valence electron den-
sity nv (r) only, instead of the total electron density. In this way, core and
valence electrons are separated. Core electrons are treated as static and lo-
calized. On the other hand, valence electrons are much more delocalized
and free to interact with the environment, making them responsible of most
of the physical properties of solids. Furthermore, oscillations of the poten-
tial around atomic nuclei make necessary to include a large number of plane
waves. The pseudopotential approximation assumes that only valence elec-
trons enters in the Kohn-Sham equation, decreasing the cost of solving the
problem significantly.

The construction of the pseudopotential for an isolated atom of a given
element also contains some approximation[61, 62, 63, 64, 65], as it is a many
body problem. It starts solving the atomic Schrödinger equation for all
electrons, obtaining the corresponding exact eigenfunctions and eigenvalues.
Then, the pseudowavefunction ψps (r) is constructed for each valence elec-
tron, which must be equal the exact wavefunction beyond a cutoff radius Rc.
For r < Rc the pseudowavefunction ψps (r) should smoothly vanish as r goes
to 0. The pseudopotential V ps (r) is numerically calculated at every point in
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2.2 Maximally localized Wannier functions

real space from the Schrödinger equation of ψps (r):(
−1

2
∇2 + V ps (r)

)
ψps (r) = εψps (r) . (2.39)

In order to avoid numerical problems, ψps (r) should be nodeless. Now we
have all the elements to solve Kohn-Sham equation, eq. (2.23).

2.1.5 Solving Kohn-Sham equations

After knowing the pseudopotetial of atoms of the studied system, Kohn-
Sham equations can be solved self-consistently for valence electrons. At first,
an initial guess is made for the electron density ni (r) and the corresponding
effective potential veff (r) is calculated. With this veff (r) the Kohn-Sham
equation is solved in a set of k-points diagonalizing in the plane wave basis,[

−1

2
∇2 + veff (r)

]
ψi (r) = εiψi (r) . (2.40)

The diagonalization of the Kohn-Sham equation yields a set of eigenvalues εi
and eigenfunctions ψi (r). From the solution of eq. (2.40) the final electron
density nf (r) is obtained and compared with the initial electron density
ni (r). If the electron density is not selfconsistent, a new initial electron
density is guessed, which is based on the previous step, until the converge
is achieved. Once this happens, output quantities, as energy or charge, are
calculated.

2.2 Maximally localized Wannier functions

In the previous section we constructed the solution of the many-body prob-
lem in a set of functions known as Bloch orbitals |φnk〉, which were expanded
in a plane wave basis set in eq. (2.36). One can change to a different set
of functions through linear combinations of |φnk〉, in particular, to a local
and orthonormal bases. This method was introduced in 1937 by G. H.
Wannier[66] and has been developed since then. The basis set introduced
in this method are a set of Wannier Functions (WF), which are orthonormal
functions, defined as:

|Rn〉 =
1√
N

∑
k

e−ik·R |φnk〉 , (2.41)
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with 〈r|Rn〉 = wnR (r) and N is the number of mesh points in the Brillouin
Zone. Note that this is the Fourier transform of Bloch orbitals from k-space
to real space. The inverse relation is

|φnk〉 =
1√
N

∑
R

eik·R |Rn〉 . (2.42)

Equations (2.41) and (2.42) define a linear transformation between Bloch
functions and WFs. Even though WFs are not eigenstates of the Hamilto-
nian, both sets are, in principle, an equally acceptable basis for the descrip-
tion of electronic properties.

2.2.1 Gauge freedom

Bloch orbitals have an indeterminate phase in k-space. Therefore, we can

define the equally valid orbital
∣∣∣ ˜φnk

〉
as∣∣∣ ˜φnk

〉
= eiϕ(k) |φnk〉 , (2.43)

where ϕ (k) is real and periodic in reciprocal space. This property of Bloch
orbitals is called “gauge freedom” and it can be used to get WFs that are
localized in real space. So, the smoother the Bloch orbital we chose, the more
localized the WFs.

One can also generalize the gauge freedom of Bloch orbitals to

∣∣∣ ˜φnk

〉
=

M∑
m=1

U (k)
mn |φmk〉 , (2.44)

with U
(k)
mn a M x M unitary matrix. Notice that eq. (2.43) is the special case

where U
(k)
mn is diagonal. Generally speaking, off-diagonal elements of U

(k)
mn

mix the contribution of several Bloch orbitals, which results in a transformed

function
∣∣∣ ˜φnk

〉
that is not an eigenstate of the Hamiltonian. Therefore, n

cannot be identified as a real band index, it corresponds to a mixture of
bands.

In order to get well-localized WFs, one has to construct smooth trans-

formed functions
∣∣∣ ˜φnk

〉
. So, WFs are defined as:

|Rn〉 =
1√
N

∑
k

e−ik·R
∣∣∣ ˜φnk

〉
=

1√
N

∑
k

e−ik·R
M∑
m=1

U (k)
mn |φmk〉 . (2.45)
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2.2 Maximally localized Wannier functions

In this case, U
(k)
mn should be rotated to cancel inherent discontinuities of Bloch

orbitals and get well-localized WFs. In the general case, doing this is more
complex than it seems. Firstly, degeneracies of different bands can occur for
some k. Bloch orbitals corresponding to degenerate bands at those points
are not analytic, so the Fourier transform may be problematic. Secondly,
and more important, it is not clear how should one chose the U

(k)
mn matrix

to have every transformed function
∣∣∣ ˜φnk

〉
smooth in k-space. Remind that

one mixes contributions of several bands with U
(k)
nm, so trying to improve the

smoothness of one band may worsen the smoothness of another one.

2.2.2 Marzari-Vanderbilt localization functional

Marzari and Vanderbilt developed in 1997[67] a method for determining the
optimally localized set of WFs, and later it was generalized to the case of
entangled bands by Souza, Marzari and Vanderbilt[68]. This method uses
the next localization functional:

Ω =
∑
n

[〈
0n
∣∣r2
∣∣0n〉− 〈0n |r|0n〉2] =

∑
n

[〈
r2
〉
n
− r̄2

n

]
. (2.46)

This functional measures the sum of quadratic spreads of desired WFs in the
home unit cell around their centers. The functional can be decomposed into
gauge invariant (ΩI) and gauge dependent (Ω̃) parts,

Ω = ΩI + Ω̃, (2.47)

where

ΩI =
∑
n

[〈
0n
∣∣r2
∣∣0n〉−∑

Rm

|〈Rm |r|0n〉|2
]

(2.48)

and
Ω̃ =

∑
n

∑
Rm6=0n

|〈Rm |r|0n〉|2 . (2.49)

Ω̃ and ΩI are both positive. Moreover, ΩI is also invariant under any arbi-
trary transformation of the Bloch orbitals.

At this point, in order to minimize Ω, one only has to minimize the
gauge dependent part, Ω̃. At the minimum point, the off-diagonal elements
|〈Rm |r|0n〉|2 are the smallest, and so one reaches the best compromise in
the simultaneous diagonalization in the desired subspace of Bloch orbitals.
Blount[69] showed in 1962 that the matrix elements of the position operator
between WFs take the form:

〈Rn |r|0m〉 = i
V

(2π)3

∫
dkeik·R 〈unk |∇k|umk〉 (2.50)
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and 〈
Rn

∣∣r2
∣∣0m〉 = − V

(2π)3

∫
dkeik·R

〈
unk

∣∣∇2
k

∣∣umk

〉
, (2.51)

where V is the real-space primitive cell volume. Using these expressions we
can express the localization functional Ω in terms of ∇k and ∇2

k, connecting
WFs to the Bloch formalism. They also allow us to calculate the effects of
localization of any unitary transformation of |unk〉 without having to recalcu-
late scalar products, which are computationally expensive. So, we determine
the Bloch orbitals |unk〉 on a regular k-point grid and use finite differences
to evaluate the derivatives

∇k |unk〉 =
∑
b

cbb (|unk+b〉 − |unk〉) +O
(
b2
)
, (2.52)

where b are reciprocal vectors connecting nearest neighbour k-points and cb
the associated weights[67, 70]. In a similar way,

[∇f (k)]2 |unk〉 =
∑
b

cb (|unk+b〉 − |unk〉)2 +O
(
b3
)
. (2.53)

Now we can calculate the matrix elements in eq. (2.50) and eq. (2.51). The
overlaps Mmn (k,b) between Bloch orbitals at neighbouring k points now
have all the information needed for the reciprocal space derivatives:

Mmn (k,b) ≡ 〈umk|unk+b〉 . (2.54)

The overlap matrices are obtained iteratively updating the rotation matrix
Mmn (k,b) in each iteration to minimize the global spread Ω.

This method results on a special type of WFs called Maximally Local-
ized Wannier Functions (MLWFs) with the desired properties. First, they
form the set of WFs with the highest level of localization[71]. Second, the
localization of MLWFs is exponential. If spin-orbit coupling is not taken
into account, the MLWFs are real. Last, this procedure permits to fix the
arbitrary phase of Bloch orbitals in a large variety of systems.

2.2.3 Disentanglement procedure

The MLWFs obtained by the method introduced above describe correctly an
isolated set of bands, such as valence states in an insulator. However, we
need to introduce the disentanglement procedure[68] to obtain MLWFs for
entangled bands that appear in metallic systems or the conduction bands
of an insulator. This procedure requires defining an energy window, which
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2.2 Maximally localized Wannier functions

is called the outer window. For a k-point k, there are N
(k)
win states within

the energy window. At each k-point, we perform a unitary transformation
amongst the Bloch states which fall inside the energy window to obtain a set
of N Bloch states, ∣∣uoptnk

〉
=

∑
m∈N(k)

win

Udis(k)
mn |umk〉 , (2.55)

where Udis(k) is a rectangular N x N
(k)
win matrix, and so

(
Udis(k)

)†
Udis(k) = 1.

The set of Udis(k) are obtained by minimising ΩI within the outer energy
window. Later on, the Marzari-Vandervilt localization functional can be
used to minimise Ω̃ and to obtain the MLWFs for this subspace.

The mixing between states in this subspace may lead to energy bands that
do not correspond to any of the original energy bands. Also, a second energy
window, the inner, or frozen, energy window, can be defined to preserve
exactly the properties of a system in a given energy range. States that lies
within this energy window are introduced unchanged in the optimal subspace.

2.2.4 Construction and reduction of the Wannier Hamil-
tonian for a 3d magnetic impurity

Once Udis(k) and U(k) are known, we can write the Hamiltonian in the basis
of MLWFs[47]. For this, we start expressing the Hamiltonian in the basis of
rotated Bloch states,

H(W ) (k) =
(
U(k)

)† (
Udis(k)

)†
H (k) Udis(k)U(k). (2.56)

And then, we find its Fourier representation,

Hnm (R) =
1

N0

∑
k

e−ik·RH(W )
nm (k) . (2.57)

This is performed once and for each of the N0 lattice vectors R that lie in
a supercell conjugate to the k-mesh. Hnm (R) decay quickly with R because
the strong localisation of the MLWFs. For notation clarity, hereafter we
should denote the Hamiltonian matrix at R = 0 as H.

This Wannier Hamiltonian can be diagonalized to obtain its eigenvalues
εM and eigenvectors |M〉:

H |M〉 = εM |M〉 . (2.58)

Introducing this Hamiltonian in a multiorbital Hubbard model, which is our
goal, is computationally very expensive. So, we reduce the dimension of the
Hamiltonian taking only the most relevant orbitals.
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If we select the basis of the MLWFs in the correct order, we can write
the Wannier Nt ×Nt Hamiltonian as

H =

 Hsd Vsd,j Vsd,α

Vj,sd Hj Vj,α

Vα,sd Vα,j Hα

 , (2.59)

where Hsd is the Hamiltonian corresponding to s and d orbitals of the mag-
netic atom, which is a 6× 6 matrix or 5× 5 matrix depending on whether it
is necessary to include the s orbital or not. The block Hj contains the sub-
space of the Wannier Hamiltonian that are hybridized with the d-orbitals of
the magnetic atom. Finally, the Hα is the remaining subspace Hamiltonian,
which contains the orbitals that are not hybridized with the d-orbitals of the
magnetic atom. Notice that all these blocks, Hsd, Hj and Hα, are square
matrices which interact by the hopping matrices Vi,k (with i 6= k).

In order to decide which orbitals are hybridized with the d-orbitals of
the magnetic atom, we diagonalize the Wannier Hamiltonian and obtain the
weight of each eigenvector |M〉 on the subspace of d-orbitals:

WM
d =

∑
k∈d

|〈M |k〉|2 . (2.60)

Notice that in so doing, we are labelling the MLWFs centred on magnetic
impurity as s or d orbitals. Now we introduce a threshold weight ∆d and the
corresponding eigenvalues εM and eigenvectors |M〉 such that WM

d ≥ ∆d.
One can also introduce the weights on any MLWF, WM

k = |〈M|k〉|2 and a
second threshold ∆k. The subspace of MLWFs hybridized with the d-orbitals
of the magnetic impurity is then define by the N vectors |k〉 that satisfy the
conditions:

WM
d ≥ ∆d (2.61)

WM
k ≥ ∆k (2.62)

Notice that the smaller ∆d and ∆k, the larger the dimension N of the reduced
Hamiltonian. If we introduce the eigenvalues and eigenvectors of the reduced
Hamiltonian HNew as HNew

∣∣MP
〉

= εPM
∣∣MP

〉
, with M ∈ [1, N ], ideally we

should have
∣∣εM − εPM ∣∣ → 0 and

∑
k∈N W

M
k → 1. These conditions are

trivially found when Vsd,α = Vj,α = 0 or when N = Nt.
The new reduced Hamiltonian will have the form

HNew =

(
H′sd V′sd,j
V′j,sd H′j

)
. (2.63)

Since the MLWFs on the subspace belonging to Hα are only weakly hy-
bridized to the N subspace, the new Hamiltonian HNew can be derived
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treating the effect of the hoppings Vsd,α and Vj,α perturbatively, following
the Feshbach-Schur perturbative method[72]. Thus, it is given by

HNew (λ) ≈ HP − PV RλV P, (2.64)

where P =
∑

k∈N |k〉 〈k| and Q = 1−P are the projectors on the hybridized
space and remaining space respectively, HP = PHP and the resolvent Rλ is
defined as

Rλ = Q (QHQ− λ1)−1Q. (2.65)

The resulting effective Hamiltonian HNew (λ) is defined parametrically in
terms of the energy λ. The closer λ to the actual eigenvalues εM, the more
accurate is the representation given by HNew (λ). Notice that this method
works well when the energy spectra of Hsd and Hj is far from the energy spec-
tra of Hα, which means that there is a gap between eigenvalues of Hsd⊕Hj

and Hα. However, this may not be the case of magnetic adatoms on top of
metal surfaces. In systems where there is a strong coupling between orbitals
of the magnetic atom and neighbouring atoms, the MLWFs may not provide
a good description. In these cases, linear combinations of atomic orbitals
(LCAO)[73], which are called ligand orbitals, provide a much better descrip-
tion of the system. The property that make ligand orbitals more convenient
is that d-orbitals of the magnetic atom will coupled only to some linear com-
binations of orbitals of neighbouring atoms, depending on the symmetries of
the environment. The idea in these cases is to change the basis set of the
orbitals of neighbouring atoms to a more suitable one. First, we define the
Hamiltonian

HNeig =

(
Hj Vj,α

Vα,j Hα

)
. (2.66)

By diagonalizing this Hamiltonian, we get its eigenvalues εNeigm and eigenvec-
tors |mNeig〉. Therefore, we can define the diagonal matrix,

H
(dia)
Neig = VT ·HNeig · V , (2.67)

where V is the matrix formed by all |mNeig〉. With this matrix, we can define
the rotation matrix U that acts on H as

U ≡ 1sd ⊗ V . (2.68)

Hence, the rotated Hamiltonian will take the form

HROT = UT ·H · U =

 Hsd V’sd,j V’sd,α
V’j,sd H

(dia)
j 0

V’α,sd 0 H(dia)
α

 . (2.69)

23



CHAPTER 2. Theoretical methods

We can now apply the same procedure described above in this section to
this rotated Hamiltonian HROT . In the next section we will introduce the
reduced Wannier Hamiltonian in the Multiorbital Hubbard model to describe
the crystal and ligand field in the Hamiltonian.

2.3 Multiorbital Hubbard model

As mentioned in the previous chapter, the main goal of the work is to calcu-
late electronic and magnetic properties of strongly correlated materials. With
that purpose, we use a multiorbital Hubbard model[74, 75, 76, 77, 78, 79].
Therefore, our aim is to build a many-body Hamiltonian, derived from DFT
calculations that accounts for the strong correlation of the system. This
approach describes the spin excitations correctly in systems where charge
redistribution and lattice deformation are negligible.

We model the magnetic atom on a substrate by a many-body Hamiltonian
for Ne electrons,

H = λCoulHCoul + λCFHCF + λSOHSO +HZeem. (2.70)

We introduce the dimensionless λi parameters to switch off each interaction
independently for analysis, where the physical situation would correspond to
λi = 1. Here, HCoul refers to the electron-electron Coulomb interaction, HCF

accounts for the crystal and ligand field, HSO is the spin-orbit interaction
and HZeem is the Zeeman interaction, which appears in the presence of a
magnetic field.

2.3.1 Electron-electron Coulomb interaction

The first term in eq. (2.70) refers to the Coulomb interaction between elec-
trons in the s and d-shells of the magnetic atom, and it can be expressed
by:

HCoul =
1

2

∑
m,m′

n,n′

V
∑
σ,σ′

d†mσd
†
nσ′dn′σ′dm′σ − Ed

∑
m

n̂m, (2.71)

where d†mσ (dmσ) denotes the creation (annihilation) operator of an elec-
tron with spin σ in orbital m of the magnetic atom. Coulomb integrals
Vmnm′n′ are calculated numerically. The second term controls the occupa-
tion of orbitals of the magnetic atom. This occupation can fluctuate in one
electron due to hoppings to orbitals of neighbouring atoms. The effective
Udd = 〈Vmmmm〉 repulsion characterizes the strength of Coulomb integrals,

24



2.3 Multiorbital Hubbard model

while n̂m =
∑

σ d
†
mσdmσ is the occupation of the m-orbital. Ed controls the

electron transfer between the d-shell of the magnetic atom and neighbouring
atoms orbitals.

2.3.2 Crystal and ligand field

The second term in eq. (2.70) corresponds to the crystal and ligand fields
Hamiltonian, that we write as

HCF = HMA +Hneigh + λhoppHhopp, (2.72)

where HMA is the crystal field acting only on the electrons of the magnetic
atom. We assume that it is given by

HMA =
∑
m,m′

〈m |HCF |m′〉
∑
σ

d†mσdm′σ, (2.73)

with 〈m |HCF |m′〉 =
〈
m
∣∣HROT

∣∣m′〉 derived from DFT, using the procedure
described in the previous section, or extracted from a point charge model.

In eq. (2.72), we also consider contributions to the crystal field due to
electrons on neighbouring atoms in the next form:

Hneigh + λhoppHhopp =∑
j,k,σ

〈
j
∣∣HROT

∣∣ k〉 p†jσpkσ + λhopp
∑
m,k,σ

(〈
m
∣∣HROT

∣∣ k〉 d†mσpkσ + h.c.
), (2.74)

where p†j,σ (pj,σ) denotes the creation (annihilation) operator of a pseudopar-
ticle with spin σ in the j orbital of a neighbouring atom. The parameter λhopp
is used also for analysis reasons, as it permits us to decouple the contributions
from the magnetic atoms and the hybridizations with other orbitals.

2.3.3 Spin-orbit and Zeeman interaction

The last two terms in eq. (2.70) are the spin-orbit interaction and the Zeeman
interaction. The spin-orbit interaction is described by:

HSO = ζ
∑
mm′
σσ′

〈
mσ

∣∣∣~l · ~S∣∣∣m′σ′〉 d†mσdm′σ′ , (2.75)

where ζ is the single particle spin-orbit coupling parameter of d electrons.
Notice that we have assumed that this term is non-zero only on the orbitals
of the magnetic atom.
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On the other hand, the Zeeman interaction, which appears when a mag-
netic field is applied to the system, can be written as:

HZeem = HZeem−MA +HZeem−neigh

= µB ~B ·
∑
mm′
σσ′

〈
mσ

∣∣∣(~l + g~S
)∣∣∣m′σ′〉 d†mσdm′σ′

+ gmP

(
~B
)
~B
∑
jk
σσ′

〈
jσ
∣∣∣~S∣∣∣ kσ′〉 p†jσpkσ′ ,

(2.76)

where g = 2 is the gyromagnetic factor of the electron and mP

(
~B
)
≈

ρ (εF )µ2
B
~B is the spin magnetic moment in the Pauli’s diamagnetism.

Notice that the order of the terms in eq. (2.70) is descendent. The first
term, Coulomb interaction, splits the energy levels in some eV. The second
term, the crystal and ligand field interaction, produces a splitting around 1
eV. The magnitude of the third term, the spin-orbit interaction, is some tens
of meV. And finally, the splitting produced by the last term, the Zeeman
interaction, is about some meV.

The next section describes the Configuration Interaction method (CI
method), which will be used for solving the multiorbital Hubbard Hamil-
tonian described in this section.

2.4 Configuration Interaction method

The aim of the Configuration Interaction (CI method) method is to solve the
time-independent electronic Schrödinger equation, eq. (2.70), for a system
with Ne electrons. The many body Hamiltonian is spanned in the basis of
configurations projected onto Norb single particle orbitals. We shall illustrate
this method for the simplest non-trivial case: the H2 molecule, where we
have 2 electrons in 2 s states. The Hubbard Hamiltonian in this case can be
written as:

H =
2∑
i=1

Un̂i↓n̂i↑ + V
∑
i<j

n̂in̂j − V Exc
∑
i<j
σ

n̂iσn̂jσ + t
∑
i 6=j
σ

c†iσcjσ, (2.77)

where the first term is the on-site repulsion interaction, the second term is
the repulsion interaction between electrons in different states, the third term
is the exchange term and the last term is the hopping term. Here we have
introduced the creation (annihilation) operators c†iσ (ciσ) of an electron in the
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2.4 Configuration Interaction method

single particle state labelled by i, with spin σ; and the occupation operators
n̂iσ = c†iσciσ and n̂i =

∑
σ n̂iσ.

Each many body configuration Ψm1,...,mN (~r1, ..., ~rN) is given by Slater
determinant

Ψm1,...,mN (~r1, ..., ~rN) =
1√
N !

∣∣∣∣∣∣∣
ψm1 (~r1) · · · ψmn (~r1)

...
. . .

...
ψm1 (~rN) · · · ψmn (~rN)

∣∣∣∣∣∣∣ , (2.78)

where ψm (~r) are the product of orbital states ξm (~r) and a spinor χms , i. e.,

ψm (~r) = ξm (~r)⊗ χms , (2.79)

ξn (~r) were obtained before from the MLWFs.

The energy of single particle states has no upper bound. In consequence,
we have an infinite number of single particle eigenvectors ψm (~r), and an
infinite number of possible configurations. Nevertheless, the low energy states
of N interacting particles system can be well approximated by a finite number
of configurations nC . This constitutes the bases of the CI method. The
problem of N interacting particles is then solved by calculating eigenvalues
and eigenfunctions of the nC × nC Hamiltonian matrix. This nc is linked to
the number of single particle orbitals Norb and electrons Ne by

nC =
(2Norb)!

(2Norb −Ne)!Ne!
, (2.80)

where the 2 reflects the possible spin orientations of electrons for each orbital.
In the case of H2 molecule, with Norb = Ne = 2, the number of possible
configurations is nC = 6. This number increases rapidly with Ne and Norb.
For instance, lets consider a Co adatom on 3 × 3 hexagonal boron nitride
(h-BN) supercell, which will be consider afterwards for DFT calculations.
The system is composed by 9 N atoms (9 × 5 = 45 electrons), 9 B atoms
(9×3 = 27 electrons) and 1 Co atom (9 electrons), Ne = 81 electrons. For B
atoms and N atoms we consider only 1 s and 3 p orbitals, and for Co atom 1
s and 5 d orbitals, thus the number of orbitals introduced in the CI method
are Norb = 78 orbitals. So, in the system there are nC = 5.19× 1045 possible
configurations.

The diagonalization of the Hamiltonian H becomes simpler if there is an
observable Â that commutes with it. In this case, an orthonormal basis can
be constructed with eigenvectors common to Â and H. Then, the matrix H
is block diagonal in the basis of eigenvectors of Â, which makes the problem
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much simpler. In the case of H2 molecule, reflecting the spin-orbit coupling,
Ŝz commute with H,

[H,Sz] = 0. (2.81)

Therefore, the quantum number that defines eigenvalues of Sz is a good
quantum number. For this reason, we will group the configurations that
have the same value of Sz. As we have 2 electrons to distribute in 2 orbitals,
from quantum mechanics, we know that the possible values are obtained from
the equation

Sz |ms1 ;ms2〉 = Ms |ms1 ;ms2〉 , (2.82)

where Ms = ms1 + ms2 and msi = ±1/2. The number of configuration for
each eigenvalue of Sz is given by

nCSz =
Norb!

(Norb −N↓)!N↓!
Norb!

(Norb −N↑)!N↑!
, (2.83)

where N↓ (N↑) is the number of electrons with spin down (up) for each eigen-
value, Ne = N↑ + N↓. So, for the H2 molecule, we have that the eigenvalues
and eigenvectors of Sz are

Sz = −1 → |1↓, 2↓〉
Sz = 0 → |1↓, 2↑〉 |1↑, 2↓〉 |1↑, 1↓〉 |2↑, 2↓〉
Sz = 1 → |1↑, 2↑〉 ,

(2.84)

The spins of both electrons that build the configuration with Sz = 1 will
be up. The configurations built with one electron with spin up and the
other spin down have the eigenvalue Sz = 0. And, the configuration with
eigenvalue Sz = −1 is built with the spin of both electrons is down.

According to eq. (2.83), in subspaces of Sz = ±1 only 1 configuration
is possible, nC1 = nC−1 = 1. As there cannot be two electrons with equal
spin in the same orbital, due to the Pauli exclusion principle, the only way
to distribute the electrons is placing one electron in each orbital. Thus, the
Hamiltonian corresponding to these subspaces will be 1 × 1 matrices. On
the other hand, there are 4 possible configurations in the subspace Sz = 0,
nc0 = 4, i. e., there are 4 possible ways to distribute the electrons with one
spin up and one spin down. Therefore, the diagonal block of the Hamiltonian
with Sz = 0 will be a 4× 4 matrix.

Now we have to build the configurations for each subgroup. These Slater
determinants will form the many-particle basis wavefunctions in which we
will solve the Hamiltonian, eq. (2.77). For the eigenvalue Sz = −1 we have
only one configuration,

Ψ1↓,2↓ (~r1, ~r2) =
1√
2!

∣∣∣∣ ψ1↓ (~r1) ψ2↓ (~r1)
ψ1↓ (~r2) ψ2↓ (~r2)

∣∣∣∣ . (2.85)
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For the eigenvalue Sz = 0, we have 4 configurations:

Ψ1↓,2↑ (~r1, ~r2) =
1√
2!

∣∣∣∣ ψ1↓ (~r1) ψ2↑ (~r1)
ψ1↓ (~r2) ψ2↑ (~r2)

∣∣∣∣ , (2.86)

Ψ1↑,2↓ (~r1, ~r2) =
1√
2!

∣∣∣∣ ψ1↑ (~r1) ψ2↓ (~r1)
ψ1↑ (~r2) ψ2↓ (~r2)

∣∣∣∣ , (2.87)

Ψ1↑,1↓ (~r1, ~r2) =
1√
2!

∣∣∣∣ ψ1↑ (~r1) ψ1↓ (~r1)
ψ1↑ (~r2) ψ1↓ (~r2)

∣∣∣∣ (2.88)

and

Ψ2↑,2↓ (~r1, ~r2) =
1√
2!

∣∣∣∣ ψ2↑ (~r1) ψ2↓ (~r1)
ψ2↑ (~r2) ψ2↓ (~r2)

∣∣∣∣ . (2.89)

Finally, for the eigenvalue Sz = 1 we have also only one configuration,

Ψ1↑,2↑ (~r1, ~r2) =
1√
2!

∣∣∣∣ ψ1↑ (~r1) ψ2↑ (~r1)
ψ1↑ (~r2) ψ2↑ (~r2)

∣∣∣∣ . (2.90)

It is particularly convenient to write the Slater determinants in terms of
the creation operators,

|α, β〉 = c†αc
†
β |0〉 , (2.91)

where |0〉 is the ground state of the vacuum and α and β are composed index
(m,σ). And the corresponding ket in terms of annihilation operators is

〈α, β| = 〈0| cβcα. (2.92)

Therefore, the CI basis written in terms of creation and annihilation opera-
tors is

{|u〉 , |a〉 , |b〉 , |c〉 , |d〉 , |v〉}, (2.93)

where
|u〉 = c†1↓c

†
2↓
|0〉

|a〉 = c†1↑c
†
1↓
|0〉

|b〉 = c†1↓c
†
2↑
|0〉

|c〉 = c†1↑c
†
2↓
|0〉

|d〉 = c†2↑c
†
2↓
|0〉

|v〉 = c†1↑c
†
2↑
|0〉 .

(2.94)

We will write the configurations in terms of creation and annihilation oper-
ators to calculate Hamiltonian matrix elements in an easier way.

Once we have constructed each of the possible configurations, we can
obtain the matrix elements of the Hamiltonian in this basis by,

Hij = 〈Ψi |H|Ψj〉 , (2.95)
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where we replace Ψa,b (~r1, ~r2) by |Ψi〉. For instance, lets calculate the first
term:

〈u |H|u〉 = 〈0| c1↓c2↓

(
2∑
i=1

Uni↓ni↑ + V
∑
i<j

ninj−

−V Exc
∑
i<j
σ

niσnjσ + t
∑
i 6=j
σ

c†iσcjσ

 c†1↓c
†
2↓
|0〉 .

(2.96)

The first term in eq. (2.96) is 0 as there is no spin ↑ electron in |u〉 configu-
ration and so ni↑ |u〉 = 0. In the second term, there is only one element,

V

〈
u

∣∣∣∣∣∑
i<j

ninj

∣∣∣∣∣u
〉

= V
〈

0
∣∣∣c2↓c1↓n1n2c

†
1↓
c†2↓

∣∣∣ 0〉 = V. (2.97)

Similarly, the third term is

− V Exc

〈
u

∣∣∣∣∣∣∣
∑
i<j
σ

niσnjσ

∣∣∣∣∣∣∣u
〉

= −V Exc. (2.98)

The last term creates an electron in one orbital and annihilates in the other.
All the terms that have the ↑ spin are 0 as there is no electron in |u〉 with ↑
spin. So, we will only consider terms with all operators for ↓ spin,

〈0| c2↓c1↓

(
tc†1↓c2↓ + tc†2↓c1↓

)
c†1↓c

†
2↓
|0〉 = t (〈2↓|1↓〉+ 〈1↓|2↓〉) = 0 (2.99)

Doing all the computation with all the elements, one can derive the next
Hamiltonian matrix:

H =


V − V Exc 0 0 0 0 0

0 U t −t 0 0
0 −t V 0 t 0
0 t 0 V −t 0
0 0 −t t U 0
0 0 0 0 0 V − V Exc

 . (2.100)

The eigenvalues obtained from the diagonalisation are

E1 = 1
2

(
U + V −

√
16t2 + (U − V )2

)
E2 = E3 = V − V Exc

E4 = V
E5 = U

E6 = 1
2

(
U + V +

√
16t2 + (U − V )2

) . (2.101)
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Our multiplet calculations will be more complex, as we will work a larger
number of orbitals and electrons. In spite of that, we will follow the procedure
described above.

In the next chapter, we will use all these methods to extract magnetic
properties of Co on h-BN, and associate them with different adsorption sites.
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Chapter 3

Co ADATOM ON h-BN

The main goal of this chapter is to study the magnetic anisotropy of Co on
hexagonal boron nitride (h-BN). The magnetic anisotropy energy (MAE) has
a critical role in the stability of a magnetic moment. A large MAE avoids
spin transitions due to, for example, thermal fluctuations, and it appears
as a combination of the spin-orbit coupling and the appropriate crystal field
symmetry. The spin-orbit coupling strength of late 3d transition metal atoms
is relatively low, around 50 meV. However, they can show large MAE values
in special conditions. This is the case of single atoms and nanostructures of
Co on Pt single crystals[9, 10].

In this chapter, we will study the interaction from DFT+SOC calcula-
tions of Co with the h-BN, which we will use in chapter 4 as a decoupling
layer from different metallic substrates. In addition, we will also follow the
procedure described by Ferron et al.[29, 30] to calculate magnetic properties
of the system. This procedure is based on extracting the crystal field from
first principle DFT calculations. Then, it is introduced in a many-body mul-
tiorbital Hubbard model, including also spin-orbit and electron correlation
effects.

3.1 Properties of h-BN

The structure of h-BN is the same as that of graphene, sp2-bonded hon-
eycomb lattice. In h-BN, instead of having two C sublattices, one of the
sublattices is composed of N atoms and the other one of B atoms. There-
fore, h-BN is isostructural and isoelectronic to graphene, and it has 8 valence
electrons per BN unit that are distributed in the in-plane σ and the out-of-
plane π bonds[80]. The B-N bond-length of h-BN is also similar to the C-C
bond-length of graphene, 1.44 Å and 1.42 Å respectively, which ends up in a
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Figure 3.1: Top view of the h-BN where green spheres represent B atom and
blue ones N atoms. The unit cell is represented by red lines, where a is the
length of unit cell vectors.

small lattice mismatch between h-BN and graphene (≈ 1.4%)[81].

However, h-BN has quite different electronic properties compared to graphene.
The electronegativity of B and N atoms is different, which produces a con-
siderable charge transfer from B to N. The N atom is negatively charged and
the B atom positively, giving a ionic character to the bond and making the
h-BN an insulator with a large band gap of about 6 eV [82, 83, 84]. Addition-
ally, h-BN shows low defect density and high chemical and thermal stability,
which makes it an excellent candidate as a decoupling layer from a metallic
substrate. Other properties and applications of h-BN and its derivates can
be found in the report by Willi Auwärter[80].

The first thing to do here is to model the h-BN, see fig. 3.1. For that, we
need to calculate the lattice parameter of h-BN. We perform first-principles

Figure 3.2: Calculation of the optimal lattice parameter. We refer the total
energy to the energy of the minimum energy E0, which corresponds to the
lattice parameter a = 2.51 Å.
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Figure 3.3: Calculated bandstructure of the isolated h-BN.

DFT calculations using VASP code with PAW potential. The total energy
calculations have been carried out using the PBE parametrization of the
GGA exchange and correlation functional. We set the energy cutoff of plane-
waves in 500 eV and an energy convergence threshold of 10−5 eV. We select
a 9× 9× 1 Monkhorst-Pack Γ centered method for generating the k-mesh in
these calculations.

The h-BN has a sp2-bonded honeycomb structure. For convenience, the
perpendicular vector to the h-BN plane will correspond to the Z axis. The
remaining two vectors will form an angle of 2π/3 in the XY plane, but they
will be of the same length. We will call the length of this two vectors, a, the
lattice parameter, and we will vary it to get its optimal value. We will keep
constant the length of the perpendicular vector at 15 Å to avoid interaction
due to periodic boundary conditions. Finally, a N atom is placed at the origin
and a B atom at (1/3,2/3,0) fractional coordinates to form the structure of
the h-BN showed in fig. 3.1.

Figure 3.2 shows the total energy of the system with respect to the lattice
parameter, and it shows that the optimal lattice parameter is 2.51 Å. This
lattice parameter is consistent with other DFT calculations, as the 2.50 Å
obtained for LDA approximation[85]; but also by the experimental measure-
ment of 2.48 ± 0.05 Å by Corso et. al.[86].

Then, we calculate the bandstructure of the system taking the k-points
along high symmetry lines in the first Brillouin zone.

From the bandstructure in fig. 3.3, we can extract the band gap energy,
EGAP , which is 4.66 eV, in good agreement with other GGA calculation by
Wang et. al.[87], who reported a band gap of 4.77 eV for a lattice parameter
of 2.46 Å.
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3.2 Adsorption of Co on h-BN

Once we have characterized the isolated h-BN, and taking into account that
the main goal is to use the h-BN as a decoupling layer from metallic substrate,
we build a 4×4 supercell, see fig. 3.4. That supercell is formed by two vectors
of 9.80 Å length in the XY plane, with 2π/3 angle, and one vector of 21.47
Å length in the perpendicular direction. We will use this unit cell after
when the metallic substrate is included in the calculation. This supercell
corresponds to a primitive unit cell with a lattice parameter slightly smaller,
2.45 Å, than the optimal one, but it will match with a rotation of metallic
substrates analysed later in the thesis. In the 4 × 4 h-BN supercell, we will
study the adsorption of Co in different sites. Taking that into account, the
unit cell will be composed by 16 N atoms and 16 B atoms in the same XY
plane, and 1 Co atom at higher Z coordinate.

3.2.1 Non-spin-polarized DFT calculations

These DFT calculations were performed within the PAW method as it is
implemented in VASP code. We used PBE for the exchange-correlation
functional. Non-spin-polarized DFT calculations were performed using an
energy cutoff of 400 eV and a gaussian smearing of 0.2 eV width. DFT-D2
method of Grimme[58] was used to include Van der Waals correction. For
the study of the Co adsorption site we used a Γ only k-mesh. The relaxation
of the system was performed until the forces were below 0.01 eV/Å.

Forces in planar 4×4 h-BN, without the Co adatom, are below 0.01 eV/Å
so it does not need a relaxation. We take the energy of the planar 4×4 h-BN
as the reference energy.

Then, we deposit a Co adatom atop N site, see fig. 3.4, and relax all
the atoms in the unit cell in Z direction. This relaxation result on a small
corrugation, around 0.4 Å of the 4 × 4 h-BN monolayer, with the Co atom
placed 1.89 Å above one of the N atoms. The energy of this system is 2.41 eV
lower than the reference. The interaction energy of the Co in this site is 1.66
eV , which is obtained by subtracting from the total energy of the system the
energy of each component isolated.

For the hollow adsorption site in fig. 3.4, we repeat the same relaxation as
for the atop site. This also results on a small corrugation of around 0.4 Å for
the 4× 4 h-BN, with the Co atom placed at 1.66 Å above the N underneath.
In this case, the energy of the system is 2.15 eV smaller than the reference,
and the interaction energy is 1.33 eV.

According to these results the Co adsorbs on atop N site, but it is close
in energy, 261.1 meV, to the hollow site. Thus, we decide to perform more
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Figure 3.4: Top view of the unit cell, marked with grey lines, of the 4 × 4
h-BN where green spheres represent B atom and blue spheres N atoms. Red
dot is the atop N adsorption site and black dot the hollow site.

realistic calculations, as spin-polarized calculations or DFT+U calculations.

3.2.2 Spin-polarized DFT and DFT+U calculations

We perform spin-polarized relaxation for both adsorption sites with parame-
ters described previously. The energy difference between different adsorption
sites is now reduced to 84.6 meV, but, contrary to the previous calculation,
favourable to the hollow site.

As we expect, the bond distance increases when spin-polarized DFT cal-
culations performed, in comparison with non-spin-polarized calculations. In
the case of the atop N site the distance between Co adatom and the N atom
below is 1.94 Å, increasing the Co-N bond length by 3% in comparison with
non-spin-polarized calculations. For the hollow adsorption site, the height of
the Co adatom from its first neighbour N atoms is 1.89 Å which represent
an increase in the N-Co bond length of 9%.

From spin-polarized calculations we obtain the PDOS, shown in fig. 3.5,
for both adsorption sites. The energy integration of these PDOS curves onto
3d-states up to the Fermi level gives around 7.8 electrons in the d-shell of
Co adatom in both cases, see table 3.1. The occupation of d-shell for the Co
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Figure 3.5: Projected density of states (PDOS) onto 3d orbitals of Co and
pz orbitals of first neighbour N and B atoms for atop N (left) and for hollw
(right) adsorption sites, as obtained from the spin-polarized calculations.
Positive values correspond to majority-spin and negative values to minority-
spin. The insets shows the adsorption site, where the red spheres represents
the Co adatom, while blue and green spheres represent N and B atoms,
respectively.

adatom corresponds to a spin S = 1 localized in the 3d shell of Co.
The PDOS of both cases also reveals a weak hybridization between Co

3d-states and h-BN 2p-states, due to the presence of relatively sharp peaks,
where practically the majority spin 3d-states of the Co are occupied, but
only three of the minority spin states. In the case of the atop adsorption, the
weak hybridization corresponds to dz2 state of Co with pz state of N. The
hollow case is more complicated, as it involves more states than in the atop
N case, where the dyz orbitals and dxz of Co are hybridized with pz of first
neighbour N and B atoms.

Table 3.1: Populations and spin polarization of Co orbitals from spin-
polarized DFT+U calculations.

Total 4s 3d

Total charge 8.77 0.98 7.79
Spin up 5.80 0.87 4.93

Spin down 2.97 0.11 2.86
Polarization 2.83 0.76 2.07

38



3.2 Adsorption of Co on h-BN

In order to have more realistic results, we performed DFT+U calculations
including vdW interaction for the spin-polarized system, which result in an
energy difference of 367.9 meV favourable to the hollow site, in agreement
with the work by Yazyev and Pasquarello [88]. In this energy range, which
corresponds to the weak chemisoption regime, Van der Waals forces are play-
ing an important role, and is difficult to determine accurately the adsorption
site.

3.2.3 DFT+SOC calculations

DFT calculations including spin-orbit interaction are more expensive than
DFT+U calculations and permit us to estimate, not only the absorption
site, but also the MAE from the total energy difference of two self-consistent
calculations corresponding to two different magnetization directions, in-plane
and out-of-plane. This type of calculations requires extremely high precision
(energy convergence threshold smaller than 10−6 eV) to get well converged
MAE values. We achieve this convergence using Γ centered 5×5×1, 7×7×1
and 9× 9× 1 k -point samplings.

DFT+SOC calculations confirm that Co adatoms prefer the hollow ad-
sorption site rather than the atop N site. The energy difference between
them is a slightly smaller than for spin-polarized DFT+U calculation, 316
meV, but it is still in the energy range of weak chemisorption.

The results of such accurate calculations are summarized in table 3.2,
where we can see that the Co on both adsorption site has similar spin-
moment. The quenching of orbital moments is overestimated by DFT cal-
culations and results on an underestimation of the calculated MAE. This
problem of DFT calculations is well-known, and therefore we can only repro-
duce observed trends.

The MAE for Co adatom on atop N site is significantly higher (1.5 meV)
with an easy axis (EA) anisotropy (MAE > 0) in comparison with the hard
axis (HA) anisotropy (MAE < 0) of Co adatom on hollow site (-0.43 meV).

Table 3.2: Summary of calculated spin-moment (mS), orbital-moment (mL)
and zero-field splitting (ZFS) of Co atoms on a h-BN layer obtained from
DFT calculations including the spin-orbit interaction. Here HA and EA
stand for hard axis and easy axis, respectively.

Adsorption-site mS (µB) mL (µB) ZFS (meV)

atop N 2.31 0.29 1.5 (EA)
hollow 2.20 0.184 0.43 (HA)
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However, these values are not in quantitative agreement with XMCD data,
see section 4.1.3, as a consequence of the overestimation of the quenching of
the orbital-moment of this type of calculations. This inherent limitation of
DFT makes us to follow a different procedure, which was proposed by Ferron
et al.[30, 29], in order to get a more realistic MAE.

3.2.4 MLWFs and multiplet calculations

In order to calculate the low energy excitation spectrum of Co adatoms on h-
BN we use a multiorbital Hubbard model, which was explained in section 2.3.
Consequently, our aim is to build a many-body Hamiltonian derived from
DFT calculations that accounts for the strong correlations in the system.

All the terms that are included in the model are analytical, except the
crystal field term, which depends on the system. Therefore, the first thing
to do is to derive an effective crystal field term from DFT.

The starting point are the non-spin-polarized DFT calculations on the
3×3 supercell for both adsorption sites using the VASP code. We change the
basis from the plane wave basis, which was obtained from the VASP calcula-
tions, to Maximally Localized Wannier Functions (MLWF) using Wannier90
code[47]. We select an atomic orbital basis containing sp2 and pz orbitals for
N atoms and s and d orbitals for Co atom to perform the basis change. In
order to perform the change, we disentangle the bands in the energy range
between -21.5 eV and 1 eV, referred to the Fermi energy, while energy bands
between -12 eV and 0.8 eV are frozen.

Due to the gauge freedom inherent to MLWFs, it is necessary to check
that we are describing the system correctly in the new basis. The first check is
to compare the eigenvalues obtained from the previous DFT calculation and
the MLWFs calculation, which can be done comparing the bandstructure
obtained from DFT and MLWFs calculation, see fig. 3.6. The bandstruc-
tures showed in the figure present a very good agreement between DFT and
MLWFs eigenvalues for both adsorption sites.

Apart from the eigenvalues, it must be checked the spread of the orbitals,
as they might spread to another atoms in the unit cell. We have to check
specially d orbitals from Co, as we shall assume later that they correspond
to atomic orbitals.

Looking at the shape of the orbitals from Co, see fig. 3.7, one can notice
that the s orbital has a mushroom shape, which indicates that the s orbital
is hybridized with the pz orbital of the N atom below. Furthermore, the dz2
orbital is also distorted due to the hybridization with pz orbitals of B and N
atoms below. The rest of the orbitals are also slightly tilted, but their shape
is close to the atomic ones. Additionally, the spread of the orbitals is not

40



3.2 Adsorption of Co on h-BN

Figure 3.6: Bandstructures of Co on a 3 × 3 monolayer of h-BN obtained
from DFT and MLWF calculations. Black lines represent DFT bandstructure
and red ones MLWF. Left panel (A) shows the bandstructures for atop N
adsorption site and right panel (B) for hollow site.

high, so we can use this orbitals to construct the crystal field term.
After all these checks, we can follow the procedure described in sec-

tion 2.2.4 to reduce the dimension from a 42 × 42 matrix obtained in the
MLWFs calcualtion to a matrix easier to handle within the multiorbital Hub-
bard model. In the case of atop N site, we used ∆d = 0.05, ∆k = 0.01 and
λ = −1.5 eV to reduce the dimension of the matrix to 10×10. For the hollow
site, the parameters that we used were ∆d = 0.05, ∆k = 0.008 and λ = −1.5
eV, and we obtain a 9× 9 matrix.

According to spin-polarized DFT calculations, the d-shell of Co is par-
tially filled with almost 8 electrons, see table 3.1. Therefore, we describe
the interacting Ne = 8 electrons at the Co d-shell by the Hamiltonian in
eq. (2.70). The single particle spin-orbit coupling constant is taken as the
atomic value ξCo = 65.5 meV[89].

Following Hund rules, the expected total angular momentum and spin
quantum numbers for the ground state of a d8 configuration are L = 3 and
S = 1, respectively. The crystal field splits the ground state multiplet, with
degeneracy (2L+ 1) (2S + 1) = 21, in a similar way on the two sites: the
ground state multiplet is a spin triplet. However, as it is shown in fig. 3.8,
the effect of the spin-orbit coupling is different. For the atop N site, the
triplet ground state is split into a ground state doublet, with |Lz| and |Sz|
degeneracy, and a singlet, with |Lz| = |Sz| = 0 and higher in energy. For
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CHAPTER 3. Co Adatom on h-BN

Figure 3.7: Visualization of MLWFs from Co adatom on atop N site with s
and d character. Yellow lobes refers to positive values of the isosurface and
blue to negative ones.

the hollow site, the splitting is much smaller than for the atop site due to
the mixing of different components of 〈Lz〉 and 〈Sz〉. This mixing of states
is reflected in the fact that, even for large magnetic fields, the values of 〈Lz〉
and 〈Sz〉 are not saturated.

3.2.5 Point charge model

As a consequence of the limitations induced by the use of MLWFs, see ap-
pendix A, we disregard the procedure using MLWFs to construct the crystal
field term and use a point charge model, which is derived from spin-polarized
DFT calculations. Although it is well known that these point charge mod-
els do not provide a good quantitative description, especially when covalent
bonds are present, they yield the right qualitative behaviour and they cor-
rectly reproduce the symmetry of the environment.

We include only first neighbouring N and B atoms in the point-charge
model. The positions and charges that we use for each site are summarized
in table 3.3. The atomic-cloud dependent expectation values 〈r2〉 and 〈r4〉
are taken from the atomic values[89].

The results of the multiplet calculation with the point charge model for Co
on pristine h-BN on atop N (left panels) and hollow (right panels) adsorption
sites are shown in fig. 3.9. As expected for an atomic d8 configuration on the
basis of Hund rules, the total angular momentum and spin quantum numbers
are L = 3 and S = 1 in both cases. The crystal field splits the ground state
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3.2 Adsorption of Co on h-BN

Figure 3.8: Results obtained from multiplet calculations when the crystal
field is derived from MLWFs. Top panels, (A) and (B), show multiplet low
energy excitation spectra of Co on a 3 × 3 h-BN monolayer in d8-electronic
configuration versus spin-orbit coupling strength (λSO) and magnetic field
applied perpendicular to the h-BN plane. Bottom panels, (C) and (D), show
the expectation values 〈Sz〉 (solid lines) and 〈Lz〉 (dashed lines) for the three
lower energy states corresponding to the effective S = 1 anisotropic spin.
Black color is used for the ground state, red for first excited state and green
for second excited state.

multiplet, with degeneracy (2L+ 1) (2S + 1) = 21, in a different way on the
two sites due to lower symmetry of the hollow site; for atop N site, the ground
state multiplet is an orbital doublet 6 times degenerate as it corresponds to
S = 1, while for the hollow site the crystal field leads to a 3 times degenerate
orbital singlet. As a result, the spin-orbit coupling induces a qualitatively
different behaviour in both systems. More specifically, the effect of spin-
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Figure 3.9: (a) and (b) Multiplet energy spectra versus spin-orbit coupling
strength λSO and magnetic field along the out-of-plane direction for Co ad-
sorbed on atop N and hollow sites of h-BN, respectively. The solid blue,
red and black curves correspond to the lowest three energy states, while the
light grey lines correspond to the higher energy states (not considered in the
discussion). (c) and (d) Zooms of the low energy sector for the three lower
energy states corresponding to the effective S = 1 anisotropic spin, where the
labels correspond to the spin Sz and orbital Lz moments at B = 6.8 T. The
superposed dashed lines correspond to the solutions of the spin Hamiltonian,
eq. (3.1). (e) and (f) Average spin mS (top) and orbital mL (bottom) angular
momenta in the direction of the applied B field for out-of-plane and grazing
directions at T = 2.5 K.
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3.2 Adsorption of Co on h-BN

Table 3.3: Position and charges of the point charges used to calculate the
crystal field contribution in the multiorbital Hubbard model.

Hollow site Atom Atop N site

x (Å) y (Å) z (Å) q (e) x (Å) y (Å) z (Å) q (e)
1.23 0.71 −1.66 −0.50 N 0.00 0.00 −1.90 −1.50
0.00 −1.42 −1.66 −0.50 N − − − −
−1.23 0.71 −1.66 −0.50 N − − − −
0.00 1.42 −1.68 0.50 B 1.51 0.00 −1.90 0.50
1.23 −0.71 −1.68 0.50 B −0.75 1.30 −1.90 0.50
−1.23 −0.71 −1.68 0.50 B −0.75 −1.30 −1.90 0.50

orbit coupling on these two lowest laying multiplet states is to split the
orbital doublet and singlet states into four and two states, respectively, see
fig. 3.9(a) and (b). These states are further split by the external magnetic
field.

As observed from the magnetic field dependence for the atop N position,
the lowest doublet is formed by the Sz = ±1 states, while the excited state
corresponds to Sz ≈ 0, indicating an out-of-plane easy axis system. This
situation is reversed for the hollow adsorption site, where an out-of-plane hard
axis is found. The change in the preferential magnetization axis between the
two adsorption sites is also corroborated by the average magnetization along
the applied magnetic field, see fig. 3.9(c) and (d). Interestingly, the orbital
moment is drastically affected by the adsorption site: the atop N site leads to
a significantly larger orbital moment, a situation reported before in similar
systems with very high symmetry[7, 90]. The origin of this unquenched
orbital moment is the large and almost perfectly axial crystal field crated by
the underlying N atom. On the contrary, the hollow site corresponds to a
much lower point symmetry, in which both the spin and orbital components
along the field direction are quenched compared to the atop N site.

Spin Hamiltonian Extracted from the multiorbital model

Excitation spectra of diluted magnetic centres in a paramagnet are often
described in terms of spin Hamiltonians[89], which depend only on the spin
degrees of freedom. In the case of S = 1 system, the spin Hamiltonian can
be written as

HS = DŜ2
z′ + E

(
Ŝ2
x′ − Ŝ2

y′

)
+ gµB ~B · ~S, (3.1)

where Ŝa is the a-component of the spin operator and D and E are the
axial and transverse magnetic anisotropy parameters (|D| = ZFS for a spin
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S = 1). At finite external field ~B, the spectrum changes due to the induced
Zeeman splitting, with a response characterized by the Landé g-factor tensor.
It should be pointed out that, although we may not expect the transverse
term in eq. (3.1) from the C3v-symmetry of the two adsorption sites, this
term can appear due to any small symmetry breaking, which can be found
for Co/h-BN/Rh(111)[19].

The parameters are usually estimated from fitting to experiments. Here,
however we construct such a Hamiltonian from the many-body Hubbard
Hamiltonian. If we denote by |En〉 and En the eigenvectors and eigen-
values of the many-body Hamiltonian, eq. (2.70), and taking advantage

that
〈
En

∣∣∣Ŝ2

∣∣∣E ′n〉 ≈ S (S + 1) δnn′ , we can construct HS by projecting the

(2S + 1) low energy states into the bases of eigenstate of Ŝ2, Ŝz′ , i.e., HS =∑
n=1,...,2S+1EnP̂S |En〉 〈En| P̂S, where P̂S =

∑
mz′
|S,mz′〉 〈S,mz′ |. We no-

tice that the quantization axis z′ may be different from the z-axis taken in
the DFT calculations, see inset fig. 3.5, in which case some rotations may be
needed to recover the simple form eq. (3.1). The parameters found in the
analysis are summarized in table 3.4. In agreement with previous results,
the Co on atop N site can be described as an easy axis system with the z′

direction out-of-plane. By contrast, the Co on hollow site corresponds to a
hard axis. The energy spectra of HS are also depicted in fig. 3.9 (a) and (b)
with dashed lines. The accordance between these results and those of the
multiorbital Hubbard model indicates the robustness of our assumptions in
deriving HS.

3.3 Conclusions

Summarizing, in this chapter we studied the free standing h-BN and the
magnetic anisotropy of Co on atop N and hollow adsorption sites on h-BN. We
started by determining the lattice constant of h-BN, 2.51Å, which is in good
agreement with previous experimental and theoretical works [85, 86]. This

Table 3.4: Parameters of the spin Hamiltonian HS in eq. (3.1) as extracted
from the multiorbital Hubbard model. Remember that for S = 1, ZFS =
|D|.

Site D (meV) E (meV) gxx gyy gzz
Atop N −12.41 0.008 1.72 1.67 2.96
Hollow +3.34 0.50 3.15 3.01 2.15
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lattice constant matches rather well, less than 3 %, with a rotation of 13.9◦ of
fcc (111) or hcp (0001) surfaces, as the Ir(111) or Ru(0001) surfaces. Then,
we obtained a band gap of 4.66 eV in the band-structure using the previous
lattice parameter. This energy gap will prevent hybridizations near the Fermi
energy of the adsorbate with the surface below, which is a requirement for its
use as a decoupling layer since it helps to stabilize single adatom magnetic
moments[6, 7, 8, 13, 14, 15, 16, 17, 18, 19, 91].

Afterwards, we analysed the adsorption of Co. We performed different
type of DFT calculations to determine the adsorption site. We found that
the hollow site is the most favourable energetically, but we also consider
the case of the atop N site to understand the different magnetic properties
if Co when comparing with the experimental data, chapter 4. The main
reason for this is that the Co adsorbs at the weak chemisorption regime,
where Van der Waals forces are playing an important role. Consequently,
we studied magnetic properties of Co on hollow and atop N adsorption sites
with different methods. However, it was convenient to know how electrons
were divided in different shell of Co on both sites. Thus, we obtained the
PDOS from the spin polarized calculation and integrating these curves up to
the Fermi level. We showed that the occupation of both sites is the same,
7.8 d-electrons for Co, corresponding to a spin S = 1.

The first method consist in performing DFT calculations including spin-
orbit interaction. These calculations yield a significantly higher out-of-plane
easy axis magnetic anisotropy for the atop N site, while the hollow site has
smaller in-plane MAE. Both adsorption sites have similar spin moments, but
orbital moments are small.

The second method consist in constructing a many-body Hamiltonian
using MLWFs to obtain the crystal field. We performed non-spin-polarized
DFT calculations for both adsorption sites on the 3× 3 supercell. Then, we
changed the basis to MLWFs to construct the crystal fields for each site and
introduce these crystal fields in the many-body Hamiltonian. We got an out-
of-plane easy axis anisotropy with a ZFS of more than 30 meV for the atop
N site and an in-plane anisotropy of 3 meV for the hollow one. These results
agree quite well with DFT+SOC calculations, as the obtained directions of
the anisotropy are the same, but the MAE is one order of magnitude higher.

The third method consist in using a point charge model derived from
DFT calculations to construct the crystal field, instead of using the MLWFs.
For this, we extracted the position and charges of Co and first neighbouring
N and B atoms. Then, we introduced this crystal field created by those
charges in our many-body Hamiltonian. The results for the atop N site
showed a higher out-of-plane anisotropy, while for the hollow site, a smaller
in-plane anisotropy was found due to the smaller point symmetry of this site.
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We confirmed these results by extracting a spin Hamiltonian and fitting the
parameters.

Generally speaking, we found a qualitatively good agreement between
the three methods. The MAE value is larger for the atop N site than for the
hollow site with all methods. Additionally, we obtain an out-of-plane easy
axis anisotropy for the atop N site, while the hollow site corresponds to a
hard axis.
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Chapter 4

Co ADATOM ON
h-BN/Ir(111) AND
h-BN/Ru(0001) SUBSTRATES

In the previous chapter, we studied the electronic and magnetic properties of
Co on free standing h-BN monolayer. However, in experiments, this system is
grown on different substrates. There are many substrates where h-BN mono-
layer can grow forming different structures[80]: from noble metal surfaces,
as Au(111)[92] or Ag(111)[93], to transition metal ones, like Mo(110)[94] or
Re(0001)[95]. We will focus the attention on Ir(111) and Ru(0001) substrates
for which we have available experimental data.

On one hand, the X-ray absorption spectroscopy (XAS), combined with
multiplet calculations using CTM4XAS6[96] and the multiX[97] codes, pro-
vides a clue about the electronic structure of adatoms. On the other hand,
the magnetic ground state and magnetic anisotropy are obtained by measur-
ing X-ray magnetic circular dichroism (XMCD) and X-ray magnetic linear
dichroism (XMLD) spectra at normal and grazing incidences, and combined
with multiplet calculations with multiX[97] code.

Therefore, the first part of the chapter will be devoted to the analysis of
experimental data. Later, we will study the absorption of Co adatoms on
the 4× 4 h-BN monolayer on a 4 layer slab of Ir(111) and Ru(0001) by DFT
calculations. Our main goal with these DFT calculations is to give additional
support to the fundamental difference between the adsorption of Co on h-
BN/Ru(0001) and h-BN/Ir(111), i. e., the atop N and hollow adsorption
sites. Actually, this basic assumption has been used in the previous chapter
to study the MAE at three different levels of approximation. As it is shown in
the chapter, the multiorbital Hubbard model results for S, Sz, Lz and MAE
values previously obtained are in very reasonable agreement with the values
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extracted from fittings to XMCD data, as long as the different adsorption
sites are considered.

4.1 XAS, XMCD and XMLD experiments

In this section, we will describe the experiments and multiplet calculations
using CTM4XAS6 and multiX codes performed in the group of Prof. Harald
Brune[98].

4.1.1 Sample Preparation

The Ir(111) and Ru(0001) single crystals were prepared in-situ by repeated
cycles of Ar+ sputtering and annealing. Subsequently, h-BN was grown by
chemical vapor deposition (CVD) using borazine (125 Langmuir at 1030 K).
The reaction is self-limited to one monolayer since the catalytic dissociation
of the precursor molecule requires bare metal areas. Co was deposited from
a high purity rod (99.998 %) using an e-beam evaporator in a background
pressure of ≤ 3 × 10−11mbar. The Co coverage is expressed in monolayers
(ML), where 1 ML is defined as one Co atom per h-BN unit cell. During
Co deposition the temperature of the sample surface remains below 5 K. At
this temperature surface diffusion is inhibited, corresponding to a random
adatom adsorption.

4.1.2 XAS data

The XAS experiment consists in exciting a core electron to an empty state by
the absorption of an X-ray photon, which is obtained usually by synchroton
radiation. During the X-ray absorption process, a core-hole is created in the
excited electron state. XAS experiments can determine accurately the local
geometry or obtain element-specific information[99]. In our case, we use XAS
experiment to determine the electronic structure of Co, as the position of the
peak depends on the number of 3d electrons.

The X-ray absorption measurements were performed at the EPFL/PSI
X-Treme beamline at the Swiss Light Source, Paul Scherrer Institut, Villi-
gen, Switzerland[100]. The experiments were carried out in the total electron
yield (TEY) mode at 2.5 K, for circularly (σ+, σ−) and linearly (σh, σv) po-
larized X-rays, with the magnetic field applied parallel to the incident X-ray
beam. The XAS corresponds to (σ+ +σ−). The TEY mode enables the high
sensitivity required by the extremly low concentration (∼ 1%) of magnetic
elements at the surface. The XAS spectra were acquired with the magnetic
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Figure 4.1: (top) XAS spectra measured for Co on h-BN/Ir(111) and on h-
BN/Ru(0001) (θ = 0◦, T = 2.5 K, B = 6.8 T, Co coverage ΘCo = 0.005 ML
and ΘCo = 0.008 ML on h-BN/Ir(111) and on h-BN/Ru(0001), respectively).
Similar spectral features are observed on the two substrates. (bottom) Mul-
tiplet calculations with two different codes, namely CTM4XAS6 and multiX
for mixed and pure d-shell configuration, respectively. The electronic config-
uration of the Co atom is prevalently 3d8 corresponding to a spin quantum
number of S = 1.

field collinear with the photon beam at normal (θ = 0◦) and grazing incidence
(θ = 60◦). To take into account the different surface areas illuminated by the
X-ray beam at both sample orientations, the XAS spectra were normalized to
the intensity at the pre-edge (772 eV). Prior to deposition of Co, background
spectra on the given substrate have been recorded and then subtracted from
the Co XAS spectra to eliminate the substrate contribution.

The comparison between the XAS spectra of isolated Co atoms deposited
on the two surfaces and the spectra obtained from multiplet calculations
with two different approaches is shown in fig. 4.1. The experimental data
show a fine multipeak structure, fingerprint of the Co electronic state. In
particular we note that the L3 edge splits in a main peak at 777.0 eV and
in a small shoulder at 778.8 eV. This multipeak structure compared to the
broad L3 shape observed for Co atoms in bulk is signature of an electronic
state partially preserving an atomic like-character. In order to disentan-
gle the Co electronic state, multiplet calculations were performed using the
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CTM4XAS6[96] and the multiX[97] codes. In both cases, a crystal field (CF)
with C3v symmetry was assumed, corresponding to Co adsorption on top of
the N atom or in the hollow site. The CTM4SAX6 code describes the CF via
Dq, Ds and Dt terms and allows for mixed configurations; while the multiX
code describes the CF via a point charge approach and it does not include
partial charge transfer to the ligand, i.e., only pure 3dn configurations are
considered. Both calculations represent the data well and reveal a ground
state configuration with mainly 3d8 character on both surfaces. This predis-
position to acquire an extra electron in the 3d shell is frequently observed for
Co atoms adsorbed on surfaces with low electron density at the Fermi level
such as alkali metals[101], graphene[15, 16, 102] or MgO[7].

4.1.3 XMCD and XMLD data

The use of circularly or linearly polarized X-rays (XMCD and XMLD respec-
tively) opened the door to study magnetic properties of transition metals or
rare earth elements. These experiments compare the absorption spectra of
two XAS measurements with two different polarizations.

More specifically, in XMCD experiments, as the angular momentum must
be conserved, X-ray photons transfer their angular momentum to excited
electrons, ~ for photons polarized to the right or −~ to the left. The trans-
ferred angular momentum from right polarized photons is opposite to left
polarized photons and, thus, the excited electrons have different spin, de-
pending on the original photon polarization. Since the p3/2 (L3 edge) and p1/2

(L2 edge) states have opposites spin-orbit coupling, l+s and l-s, respectively,
the spin polarization will be different at the two edges. After absorbing the
X-ray, the electrons are excited to empty d-bands, which are also polarized,
i.e., the number of unoccupied spin up states is different from the number
of unoccupied spin down states. The transferred angular momentum is re-
flected as a change of ±1 in the total angular momentum quantum number
mJ and thus the excited electrons will behave differently for two different
photon polarizations. The XMCD signal corresponds to (σ+ − σ−). As an-
tiferromagnetic materials have no net magnetization, the absorption of right
polarized or left polarized X-rays is the same, and, thus the XMCD signal is
null.

In contrast, XMLD experiments provide information about the mag-
netism of both ferromagnetic or antiferromagnetic materials. Each magnetic
atom has a spin moment, which induces a deformation of the charge due to
spin-orbit coupling. Even if there is no net magnetic moment, as in anti-
ferromagnets, this effect still occurs. The charge distortion depends on the
spin axis, see fig. 4.2, but not on the direction. Thus, the absorption of
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Figure 4.2: Illustration of how a spherical charge density may be modified in
the presence of a magnetic alignment of the spins in the sample. The charge
distortion arises from the spin-orbit coupling and an asymmetry is induced
relative to the spin axis (not direction!). The effect exists in both collinear
ferromagnets and antiferromagnets. Picture taken from the book of Stöhr
and Siegmann[103].

X-rays polarized parallel to the spin axis is different from the absorption of
X-rays polarized perpendicular. And this is where XMLD experiment comes
in. It measures the difference in absorption of X-rays polarized parallel and
perpendicular to the spin axis. Therefore, XMLD experiments reveal local
charge anisotropies.

Comparing both experiments, XMCD depends linearly on the sample
magnetization ( ~M), while XMLD varies with ~M2. This means that XMCD
depends on the magnitude and the direction of the magnetization, while
XMLD depends only on the magnitude, and not on the direction of indi-
vidual magnetic moments. This feature of XMLD makes it useful to study
antiferromagnets and other materials with compensated magnetic structures.

The microscopic origin of the magnetic anisotropy is the combined effect
of the anisotropy in the atomic orbital moment dictated by the CF and the
spin-orbit interaction[104, 105]. In solids, the orientation of the orbital mo-
ment is defined by the CF symmetry and strength. However, in an external
magnetic field, ~S and ~L tend to align to the field itself; thus, the resulting
configuration depends on the competition between CF and magnetic field.
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Figure 4.3: (a) XMCD spectra measured for Co on h-BN/Ir(111) and on h-
BN/Ru(0001) at normal and grazing incidence in an external field B = 6.8 T.
(b) XMLD spectra measured at grazing incidence for Co on h-BN/Ir(111) and
on h-BN/Ru(0001) showing strong and weak field dependence, respectively.
(c) XMCD and (d) XMLD spectra calculated with the multiX code by using
the point charge distributions sketched in panel (c) for hollow and atop N Co
adsorption sites. The area of the circles is proportional to the charge value,
and the colour represents the sign of the charge (grey = positive, yellow =
negative).

Linear dichroism is a measure of the charge density involved in perpendicular
versus in-plane bonds formed between Co atom and supporting substrate. Its
field dependence, i.e. the XMLD, thus provides a measure of this competi-
tion.

Coming back to our system, XMCD and XMLD spectra measured at nor-
mal (θ = 0◦) and grazing (θ = 60◦) incidence, see fig. 4.3, enlighten the mag-
netic properties of Co on h-BN/Ir(111) and on h-BN/Ru(0001). The quite
similar XMCD shape and intensity observed at normal and grazing incidence
for Co on h-BN/Ir(111) indicate negligible magnetic anisotropy. On the con-
trary, in the case of Co on h-BN/Ru(0001) it is observed a strong angular
dependence of the XMCD signal, larger at normal than at grazing incidence,
indicating a strong out-of-plane magnetic anisotropy. These conclusions are
also supported by the magnetic field dependent (independent) XMLD signal
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Table 4.1: Point charge CF scheme employed in multiplet calculations with
the multiX code.

h-BN/Ir(111) h-BN/Ru(0001)

x (Å) y (Å) z (Å) q (e) x (Å) y (Å) z (Å) q (e)
0 0 −1.70 0.10 0 0 −1.60 1.00

1.50 0 −1.70 −1.40 1.50 0 −1.60 −1.80
−0.75 1.30 −1.70 −1.40 −0.75 1.30 −1.60 −1.80
−0.75 −1.30 −1.70 −1.40 −0.75 −1.30 −1.60 −1.80
−1.50 0 −1.70 1.40 − − − −
0.75 1.30 −1.70 1.40 − − − −
0.75 −1.30 −1.70 1.40 − − − −

observed in Co/h-BN/Ir(111) (Co/h-BN/Ru(0001)). In systems with strong
CF and magnetic anisotropy, the application of an external field can only
marginally change the orientation of ~L and ~S, resulting in a field indepen-
dent XMLD as observed in Co/h-BN/Ru(0001); the opposite behaviour is
observed in low magnetic anisotropy systems. The angular dependence of
the magnetization curves shown in fig. 4.4 fully confirm the low and high
magnetic anisotropy scenario for Co/h-BN/Ir(111) and Co/h-BN/Ru(0001),
respectively.

Comparison of the experimental data with multiplet calculations, which
were performed with the multiX code, allows us to provide a more quanti-
tative analysis. Given the mainly 3d8 character of the Co atoms on both
substrates, we focused on calculations with the multiX code in which a pure
3d8 electronic state has been assumed. These calculations include the ef-
fect of the external magnetic field, finite temperature, incidence of X-rays
and crystal field environment of the magnetic atom. The CF is defined by
effective point charges whose positions and intensities were chosen in order
to simultaneously fit the shape and intensity of XAS, XMCD and XMLD
spectra as well as the shape of the magnetization curves at the two X-ray
incidence angles. The point charge distributions that best reproduce the two
systems are sketched in fig. 4.3, and the exact position and charge values are
summarized in table 4.1. They correspond to a hollow and atop N adsorp-
tion site for Co/h-BN/Ir(111) and Co/h-BN/Ru(0001), respectively. This
is very similar to the behaviour of Co on graphene on both substrates[16].
Orbital (mL) and effective spin magnetic moment (mS+D), given by the sum
of the spin and dipolar term, projected onto the X-ray incidence direction
are evaluated by applying the sum rules to the experimental and calculated
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Figure 4.4: Upper panels: magnetization curves, (dot) experimentally
acquired and (line) obtained from multiplet calculations, for Co on h-
BN/Ru(0001) and h-BN/Ir(111) at both normal and grazing incidence.
Lower panels: Corresponding field splitting of the Co lower states obtained
from multiX multiplet calculations. The labels in lower panels Lz and Sz are
the orbital and spin moments in the normal direction, respectively, measured
in ~.

spectra, see table 4.2. The orbital moment is relatively large on both sam-
ples with values close to free atom values observed for Co deposited on other
decoupling layers such MgO[7] or graphene on Ru(0001)[16]. In addition,
mL shows a strong angular dependence for Co/h-BN/Ru(0001), with the
largest value observed at normal incidence, while there is only a fractional
reduction by moving from normal to grazing incidence for Co/h-BN/Ir(111).
The different angular dependence of the orbital momentum observed in the
two systems explains the high (negligible) magnetic anisotropy observed in
Co/h-BN/Ru(0001) (Co/h-BN/Ir(111)), as also highlighted by the angular
dependence of the magnetization curves in the two systems, see fig. 4.4. We
can quantify the strength of the MAE by the zero field splitting (ZFS), which
is the energy difference between the ground and first excited state. The ZFS
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4.1 XAS, XMCD and XMLD experiments

Table 4.2: Orbital (mL) and effective spin (mS+D) moments (in µB), as
well as their ratios, for normal (0◦) and grazing (60◦) incidence evaluated by
applying the sum rules to the experimental (calculated) spectra assuming a
hole number nh = 2.

mS+D mL mL/mS+D

Normal
h-BN/Ir(111) 1.4(2.01) 0.8(1.13) 0.57(0.56)

h-BN/Ru(0001) 1.4(2.22) 1.0(1.42) 0.71(0.64)

Grazing
h-BN/Ir(111) 1.2(1.9) 0.7(1.10) 0.58(0.58)

h-BN/Ru(0001) 1.0(1.25) 0.6(0.77) 0.6(0.62)

values, as deduced from the multiX calculations, are shown in table 4.3.
For Co/h-BN/Ru(0001) we find that the ground state consists of a doublet
(Sz = 0.98, Lz = 1.42) separated by 13.7 meV from the singlet (Sz = 0,
Lz = 0.02). These values of Sz and Lz for different states are in very good
agreement for the ground state doublet (Sz = 0.96, Lz = 1.04) and singlet
excited state (Sz = 0.09, Lz = 0.09) obtained from the multiorbital Hub-
bard model for atop N site within the point charge approach, see fig. 3.9.
The ZFS of 13.7 meV obtained for Co/h-BN/Ru(0001) is quite large, similar
to the values observed for Co on graphene supported by different metallic
substrates[15, 16], and only lower than the ZFS of about 58 meV reported
for Co/MgO/Ag(100)[7]. Furthermore, the D = −12.41 meV value result-
ing from the spin Hamiltonian analysis for atop N site agrees very well with
experimental observations of Co on h-BN/Ru(0001). On the contrary, for
Co/h-BN/Ir(111) we find a singlet ground state (Sz = 0.003, Lz = 0.022)
and a excited doublet (|Sz| = 0.92, |Lz| = 1.13) only 70 µ eV higher in
energy. The agreement with the hollow site on free standing h-BN is more
limited, as the experiment does not detect a measurable MAE. The multi-
orbital Hubbard model results for the hollow site are a ground state singlet
(Sz = 0.19, Lz = 0.61) and a doublet excited state (Sz = 0.76, Lz = 1.44).
Additionally, the D = 3.34 meV value obtained from the comparison with
the spin Hamiltonian is in clear contrast with the almost null XMCD signal.
We note that on both surfaces the lowest energy states are not pure Sz = 0,
±1 and Lz states, since they contain admixtures of different spins and orbital
moments from electronic levels belonging to multiplets higher in energy.

In order to compare experimental results with the multiorbital Hubbard
model, there are two important points that have to be taken into account.
The underlying metallic substrate, Ir(111) or Ru(0001), partially reduces the
symmetry of Co environment. In addition, the crystal field felt by Co atoms
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Table 4.3: Values of the spin and ZFS as deduced from multiplet calculations
as obtained with the multiX code assuming a 3d8 configuration.

S ZFS(meV)
h-BN/Ir(111) 0.92 0.07

h-BN/Ru(0001) 0.98 13.7

can be affected by the region of the Moiré pattern where it is adsorbed. In
the case of the atop N site, the crystal field is created mainly by the un-
derlying N atom, so a corrugation of the h-BN monolayer does not produce
qualitative changes. Assuming that, in the experiment, the N-Ru registry is
the same, there are small changes of the MAE between different Co atoms
on h-BN/Ru(0001). Contrarily, on the hollow site, the electrostatic potential
on the Co position tends to cancel, due to the symmetric positions of oppo-
site charges with similar magnitudes of the first neighbours atoms. Thus,
a small corrugation, charge transfer or lattice strain can introduce impor-
tant changes for atoms adsorbed on hollow sites. This, partially explains the
limited agreement for Co atoms on the hollow sites on h-BN/Ir(111).

4.2 Modelling h-BN on Ir(111) and Ru(0001)

surfaces

In order to model the experimental systems, Co/h-BN/Ir(111) and Co/h-
BN/Ru(0001), we will start studying how the h-BN behaves when it is ph-
ysisorbed on these surfaces. The calculations have been done using a 4 × 4
h-BN supercell, which matches reasonably well, with a rotation of 13.9◦, on
the Ir(111) and Ru(0001) surfaces. This strategy is similar to the one used
to study the adsorption energy variations in different Moiré domains for h-
BN/Ni(111) with a lattice matched model[88]. Previous works showed that
the corrugation of h-BN is much smaller in the case of Ir(111)[106] than the
case of Ru(0001)[107]. For this reason we will study first the case of the
Ir(111) surface.

4.2.1 Absorption of h-BN on Ir(111) surface

We performed non-spin-polarized DFT self consistent calculations varying
the adsorption distance of flat h-BN from 2.7 Å to 3.9 Å in steps of 0.05
Å. We used a gaussian smearing with a width of 0.05 eV and a 9 × 9 × 1Γ-
centered k-point mesh. We set an energy cutoff of 600 eV. As the h-BN is in
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Figure 4.5: a) Side and b) top views of the 4 × 4 supercell for h-BN on
Ir(111) surface, after relaxation of the h-BN monolayer in the Z direction.
Green and blue spheres represent B and N atoms, respectively, while light
blue are the top most layer Ir(111) surface atoms. The side view, a), show a
small corrugation of the h-BN on Ir(111) of 0.44 Å.

the physisorption regime, where Van der Waals forces play an essential role,
we include Van der Waals corrections by the D2 method of Grimme[58].

Comparing the energies obtained from different calculations performed
with the same parameters gives a very good clue about the adsorption dis-
tance. In this way, we can conclude that the optimal distance from the flat
h-BN monolayer to Ir(111) is around 3.10 Å. A relaxation was performed,
from this point, until vertical forces acting on B and N atoms were smaller
than 0.05 eV/Å. For the relaxation, we used the same set of parameters as
before. The h-BN structure obtained from the relaxation shows a small cor-
rugation of 0.44 Å, see fig. 4.5. This corrugation is slightly higher than in
the work of Schulz et. al.[106]. The reason for this difference is that they
use a supercell consisting on a 13× 13 superstructure of h-BN on a 12× 12
Ir(111) slab. This different approach introduce, in our case, a bigger lattice
mismatch, 2.4 % for our supercell, against the 0.8 % of the case of Schulz et.
al., and explains our higher corrugation.
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It is worth to mention that the closest region to the surface is 2.79 Å
above it, which is still in the physisorption regime. Therefore, we expect
that the adatoms behave similarly to the case of free standing h-BN studied
in the previous chapter.

4.2.2 Absorption of h-BN on Ru(0001) surface

As both surfaces have the same lattice parameter, we used the same rotated
supercell as for the Ir(111). In this case, we place it 3 Å above the Ru(0001)
surface and perform a non-spin-polarized relaxation including the the Van der
Waals correction by the DFT-D2 method of Grimme. We use 0.2 eV width
gaussian smearing, an energy cutoff of 400 eV and Γ only k-point sampling.
We allow atoms from the h-BN to move in the perpendicular direction until

Figure 4.6: a) Side and b) top views of the 4× 4 supercell for h-BN on the
Ru(0001) surface after relaxation of the h-BN monolayer in the Z direction.
Green spheres represent B atoms, blue ones N atoms and grey ones the top
most layer Ru(0001) surface atoms. The side view show a) shows the high
corrugation of the h-BN on Ru(0001) of 1.06 Å.
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forces were smaller than 0.01eV/Å.
The relaxation results in a much more corrugated structure for Ru(0001)

surface, see fig. 4.6, than for Ir(111). This corrugation is in good agreement
with the measurements of Goriachko et. al.[107], who measures a corrugation
of about 0.7 Å. As in the case of h-BN on Ir(111), the used 4 × 4 h-BN
superstructure on rotated Ru(0001) surface is smaller than the 13×13 h-BN
superstructure on the 12×12 Ru(0001) slab, due to some compressive strain
that increases the corrugation.

There are two qualitatively different regions of h-BN on Ru(0001): the
first region is the one that is far from the surface, and the second one close to
the surface. We expect the behaviour of adatoms on these different regions
to be different. On one side, in the far region, the adatoms will behave
similarly to the free standing h-BN, as the interaction of the h-BN with
surface atoms is weak. On the other side, in the close region, and despite the
insulating character of the h-BN, the Ru surface electrons will interact with
the adatoms, affecting the adsorption.

4.3 Co adatom on h-BN/Ru(0001)

In this section we will study the effect of Ru(0001) surface on the adsorp-
tion of Co adatom. The highly corrugated h-BN/Ru(0001) may change the
adsorption site of Co, specially in the region where the h-BN is closer to
Ru(0001). We used the relaxed h-BN/Ru(0001) obtained in the previous
section and we placed the Co atoms at three different regions, depending
on the distance between the h-BN monolayer and the Ru(0001) surface: 3.2
Å, 2.5 Å and 2.1 Å, which we will call far, medium and close regions, re-
spectively. With this strategy, we simulate the absorption of Co on different
Moiré domains.

We performed spin-polarized DFT+U relaxations using an energy cutoff
of 400 eV, a gaussian smearing of 0.2 eV width and Γ only k-point sampling.
We included Van der Waals correction by using the DFT-D2 method of
Grimme. We set the Coloumb (U) and exchange (J) parameters at 4 and 0
eV, respectively.

In the case of atop N adsorption site, we relaxed the perpendicular co-
ordinates of Co adatom and the N atom below and all the coordinates of
first neighbour B atoms until the forces were smaller than 0.01 eV/Å. For
the hollow case, we performed the same relaxation as the atop N, relaxing
all coordinates of first neighbour N and B atoms.

The relative energies of these calculations are summarized on table 4.4.
When the Co is adsorbed on the far region of h-BN/Ru(0001), it has a similar
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Table 4.4: Relative energies of Co on h-BN/Ru(0001) for both adsorption
sites obtained from spin-polarized DFT+U calculations. The lowest energy
was taken as the reference, the one that corresponds to 0 meV.

Region Site Energy (meV)

Far
Hollow 0
Atop N 821

Medium
Hollow 48
Atop N 83

Close
Hollow 18
Atop N 0.3

behaviour that the free standing h-BN. DFT+U calculations show that the
hollow site is favourable in this region. As it was expected, these results show
that at 3.2 Å the interaction between the h-BN monolayer and the Ru(0001)
surface is too weak to affect the adsorption of Co. However, when we look
to what happens in the close region, the Co atom prefers to be on the atop
N site.

Notice that atop N site on the close region is only 0.3 meV above the
hollow site on the far region. This energy difference is too small to argue
in favour of one adsorption site or the other only with these total energy
calculations. Furthermore, our 4 × 4 supercell is too small to contain all
possible Ru registries for the atop N site on the close region, nor for the hollow
site for far region. A similar situation was found for molecular adsorption
on metal weak chemisorption regime, like Co on Cu(111), where the correct
adsorption site is only obtained when hybrid functionals, like, BLYP, are
used[108]. However, combining XMLD and XMCD data in section 4.1.3
with the multiorbital Hubbard model, see section 3.2, we deduce the atop N
site for Co on h-BN/Ru(0001).

4.4 Conclusions

In this chapter we studied the adsorption of Co adatoms on two different
surfaces: the almost flat h-BN/Ir(111) surface and the highly corrugated h-
BN/Ru(0001). We started analysing experimental data, where XAS, XMLD
and XMCD reveal a large out-of-plane magnetic anisotropy for individual Co
atoms adsorbed on h-BN/Ru(0001), but basically without any anisotropy on
h-BN/Ir(111). The XAS data also reveal the spin quantum number S = 1
for Co on both surfaces, which is in good agreement with spin-polarized DFT
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calculations obtained for free standing h-BN in the previous chapter. In ad-
dition, the adsorption sites for Co on h-BN/Ru(0001) and on h-BN/Ir(111)
are identified as atop N and hollow sites, respectively, by fitting XMCD data
with CTM4XAS6 and multiX codes for multiplets calculations and compar-
ing with the multioprbital Hubbard model results.

The agreement is rather good between the experimental S, Sz, Lz and ZFS
values for the Co on h-BN/Ru(0001) and the multiorbital Hubbard model
values for atop N adsorption site of Co on h-BN. The obtained average spin
and orbital moments saturate for fields around 3 T in both, experiments and
model. Additionally, the obtained ratios (mL/mS) of 0.71 and 0.6 in the
experiments at normal and grazing incidence are close to the value of 0.54
obtained in the model. In contrast, the XMCD data for Co on h-BN/Ir(111)
give a magnetic anisotropy much smaller than the one obtained with the
model for the Co on the h-BN hollow site. The difference in the agreement is
partially explained by the absence of a strong crystal field in the case of the
hollow site, making this site more sensitive to small changes, like corrugation,
charge transfer or lattice strain. In the case of atop N site, the strong crystal
field affecting the Co is mainly produced by the underlying N atom. This
strong crystal field is not affected by changes in the surrounding atoms and,
thus, gives better agreement between the experiments and the model.

For the adsorption site calculations on different substrates, we needed
an accurate description of the surfaces. For that we used a rotated lattice
matched model. This model consist in a 4 × 4 h-BN surface unit cell on a
rotated Ir(111) or Ru(0001) 4 layer slab. This model slightly magnifies the
corrugation of h-BN on both surfaces, but gives the appropriate behaviour
at much lower computational cost. The main reason for this is that the cal-
culated Moiré pattern of h-BN on both metallic substrate requires supercells
of 13 × 13 h-BN surface unit cell to represent it. Despite the magnification
of the corrugation of the h-BN, on Ir(111) surface it is still small, due to
the low reactivity of this surface. For this reason, the Co on h-BN/Ir(111)
substrate is assume to adsorb on a hollow site, as it did in the free standing
h-BN, validating our previous considerations.

In contrast to the Ir(111) surface, the Ru(0001) induces a high corru-
gation on the h-BN, making the adsorption of Co on h-BN/Ru(0001) more
complex. The h-BN on Ru(0001) has some regions that are much closer than
other regions from the surface, and the Co can be adsorbed anywhere. We
performed DFT+U calculations for both adsorption sites on different h-BN
regions. The total energy differences obtained for hollow site on a far region
of the h-BN and atop N site on a close region is less than 1 meV. Therefore,
although our DFT calculations for Co adsorption on h-BN/Ru(0001) do not
permit to establish unambiguously the Co adsorption site based on this tiny
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energy differences, the information obtained from XMCD and XMLD, as well
as the results of the multiorbital Hubbard model permit to do so.

64



Chapter 5

CONTROLLING THE
SURFACE STATE OF Au(111)
AND Cu(111) BY
ADSORBATES

In the previous chapters we have studied magnetic properties of Co adatoms
on h-BN, with or without substrate. In this chapter, we will focus the study
on electronic properties of Au(111) and Cu(111) with different adsorbates.
Specially, we will put the attention on the surface state of these substrates
and the changes that the adsorbates, Co among others, may induce.

The main goal of the chapter will be to understand and explain the
unexpected shift of the Au(111) surface state measured by angle resolve
photo-emission spectroscopy (ARPES) when two homothetic metal-organic
nanoporous networks (MONNs) are grown. Similar metal-organic networks
has been studied[39, 40] with opposite behaviour of the surface state. We
will use the passivated slab model[43] with Co, Au or Cu adatoms to study
the behaviour of Au(111) and Cu(111) surface states.

5.1 Tuning the surface state

The surface of a crystal breaks the symmetry of the solid. This is the origin
of some special two dimensional (2D) states that are located on the surface,
the so called surface states. They spread, only, near the topmost atomic layer
and cannot exist in the bulk. In reciprocal space, due to periodic potential,
an energy gap opens, where real wave vector solutions to the one-particle
Schrödinger equation, eq. (2.24), are forbidden. However, imaginary wave

65



CHAPTER 5. Controlling the surface state of Au(111) and Cu(111)

vectors solutions can exist. They are the surface states. These imaginary
wave vector solutions explode in the solid, but not in the semi-infinite crystal,
and they can only exist within the energy gap at the surface.

There are two types of surface states depending on the valence band states
of the metal. On one hand, Shockley surface states[31] emerge from two band
model formalism, which is applied to the description of sp- bands. This is
the case of the studied surfaces, Au(111) and Cu(111). On the other hand,
Tamm surface states[32] are split-off states of d - and f - bands.

Electronic and magnetic properties of surfaces are influenced by their
surface state. This makes necessary the study and to understand the different
physical mechanisms that control surface states. Charge transfer between
the surface and an adsorbate is one of these mechanisms. Depending on
the electron affinity of the adsorbate and the surface an electron may be
transferred from the adsorbate to the surface shifting down in energy the
surface state. This is the case of alkali metals, such as Na[33, 35] or Cs[34]
on Cu(111). The opposite situation may also occur, as in TTF-TCNQ layer
on Au(111)[36]. As TTF-TCNQ molecule is more electron affine than the
Au(111), electrons are transferred from the surface to the adsorbate, shifting
up in energy the surface state.

Another mechanism for tuning the surface state is confinement. This
mechanism is similar to a single particle in a box. In this case, if the size of
the box is L, the energy of the ground state is given by

EL =
π2~2

2mL2
, (5.1)

where m is the mass of the particle. Notice that EL is always positive. But
if we reduce the size of the box by half, making the size L/2, the energy of
the ground state is:

EL/2 =
π2~2

2m (L/2)2 = 4EL. (5.2)

So if we confine the surface state, we will see that it will be shifted up in
energy.

The surface state can be confined by nanoporous networks[37, 38, 39,
40], also called quantum dot (QD) arrays, which form a huge family of new
and exotic 2D materials to study and engineer their electronic properties.
These QD arrays can be synthesize by selecting the proper components, the
building blocks of QD arrays, and depositing them on selected substrates. In
this way, one can obtain long-range ordered, regular and robust nanoporous
networks, ranging from hydrogen-[37] or halogen-bonded[38] to metal-organic
structures[39, 40]. Surface electrons are scattered by organic molecules and
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Figure 5.1: STM topographies of single domain Co-coordinated hexagonal
QD arrays using (A) Ph6 and (B) Ph3. Red scale bar corresponds to 5 nm.
Green lines represent organic molecules and purple dots Co atoms forming
the hexagonal QD arrays. Image from [109].

are confined into pores of the network. This confinement produces an upward
shift of the surface state, as well as of states from the metal atoms.

Confinement is not the only mechanism present when nanoporous net-
works are grown on different surfaces. Metal-organic nanoporous networks
(MONN) show a downshift of the surface state, as it was reported by I.
Piquero-Zulaica et al [109]. The confinement mechanism can only shift the
surface state to a higher energy, and never to a lower energy.

This chapter aims at studying this downshift and explain it. In their
work, I. Piquero-Zulaica et al, grew two homothetic (scalable) metal-organic
nanoporous networks on Au(111), see fig. 5.1, by evaporating sequentially
dicarbonitrile-terphenyl (Ph3) or dicarbonitrile-sexyphenyl (Ph6) molecules
and Co atoms in a 3:2 stoichiometry, followed by a mild annealing to 400 K.
In agreement with previous work [110], both networks show sixfold symmetry
and enclose pore areas of 8 nm2 for Ph3Co network and 24 nm2 for Ph6Co.

ARPES measurements[109] on these hexagonal structures showing the
band structure of system are presented in fig. 5.2. The second derivative of
the ARPES spectral density along the ΓM high symmetry direction from
Ph6Co and Ph3Co are shown. A gradual downshift of the fundamental en-
ergy at Γ point is observed as the pore size is reduced. This can be quantified
from the normal emission energy distribution curves (EDC), fig. 5.2c and ta-
ble 5.1. The measured downshift of the surface state is 40 meV for Ph6Co
network and 100 meV for Ph3Co. Note that this behaviour goes in opposite
direction to the energy shift expected from conventional lateral confinement.
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Figure 5.2: Second derivative of the spectral density obatined by ARPES at
150 K along ΓM high-symmetry direction (A) for Ph6Co and (B) for Ph3Co
MONN. The band structure exhibits downward shifts of the band bottom
and gap openings at the superstructure symmetry points compared to the
pristine Au(111) surface state (black dotted lines). (C) Energy distribution
curves at normal emission (Γ point) for pristine Au(111) (green), Ph6Co
(blue) and Ph3Co (red). Image from [109].

Therefore, another mechanism must be involved as well.

First, we focus on the confinement effect. Using Scanning Tunnelling
Spectroscopy (STS), it is possible to verify that these MONN confine the
surface state of Au(111), similar to what happens in Ag(111)[110]. Figure
5.3a shows the STS data obtained at two different positions of the Ph6Co
network. In order to compare Au(111) and Ag(111) data, a shifted onset has
been used. The agreement between these two datasets is quite reasonable,
demonstrating that the confinement properties of Ph6Co are similar for both
substrates. Therefore, the conductance spectra together with the dI/dV
maps taken at different voltages, fig. 5.3b to e, exhibit confinement resonances

Table 5.1: ARPES experimental binding energies at Γ and effective masses
(columns EΓ

B and m∗/m0) for the substrate and the two networks).

System EΓ
B (eV) m∗/m0

Au(111) 0.45 0.255
Ph6Co 0.49 0.24
Ph3Co 0.55 0.22
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Figure 5.3: Local confinement and renormalization effects observed by
STM/STS. (A) dI/dV spectra at the pore center (black) and halfway (red)
for three Ph6Co datasets: Experimental curves of Ph6Co on Au(111) (mid-
dle), corresponding electron plane wave expansion (EPWE) conductance sim-
ulation using the ARPES parameters (bottom), and experimental spectra
of Ph6Co on Ag(111) adapted from reference [110] and normalized to the
Au(111) 2D electron gas (top). (B to E) Experimental dI/dV maps repro-
ducing standing wave patterns of different energy levels n showing excellent
agreement with the EPWE simulated ones at similar energies (F to I). (J)
Zoom-in onto the experimental dI/dV onset for the pristine Au(111) surface
state (green) and Ph6Co (blue) and Ph3Co (red) networks probed at the
center of the pores.
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within the pores.

Different factors might be responsible for these downshift of the confined
surface states with respect to the pristine Au(111) surface. One possibility
is some network-substrate interaction in the form of charge transfer, simi-
lar to the shift induced by alkali metals [111]. However, the fact that m∗

decreases and the Fermi wave-vector kF is practically pinned suggests the
conservation of the electron occupancy of the 2D electron gas (electron den-

sity n =
k2F
2π

)[112]. Therefore, the Au(111) surface state shift is not driven by
electron charge transfer from Co atom to the Au surface and, indeed, does
not appear in our DFT calculations.

As it will be shown in the next sections, the downward shift of the surface
state reflects the weak hybridization between the Co atom and the Au surface.

5.2 Modelization of the surface state

The first thing to do is to model the surface state of the Au(111) substrate. In
doing so, we use the characterization of the Au(111) surface state proposed
in the thesis of Nora González-Lakunza[36, 43]. Our aim is to study the
downshift of the Au(111) surface state due to the hybridization with the Co
atom and to reproduce the trends observed in experiments.

Figure 5.4: Side (top) and top (bottom) view of the Au(111) passivated slab.
Yellow spheres represent bulk Au atoms, while green spheres surface ones
and white H atoms.
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Figure 5.5: Calculated band structure of Au(111) 4 layer slab using the 1×1
unit cell.(A) Symmetric slab and (B) slab passivated with H atoms on the
bottom. Red bands correspond to the surface state.

Our simulations use a slab of atomic layers to model the desired sur-
face. Increasing the number of atomic planes improves the description of the
continuous band structure of the metal. If the Au slab is symmetric, there
are two (111) surfaces. Therefore, we have two surface states. Both surface
states have similar energy and dispersion. In this case, we obtain two non-
degenerate surface states. The “true” surface state energy will be in between
these two state energies.

In order to quench one of the surface states, and obtain a more realistic
description of the surface state, we passivate with H atoms the bottom face
of the slab, see fig. 5.4. The resulting band structure, see fig. 5.5b, shows
only one surface state, which is localised on the surface that has no H atoms,
at 222 meV below EF . Although the obtained binding energy of the Au(111)
surface state does not agree with the experimental one, see table 5.1, this
description of the surface state is enough to reproduce the experimental trend.

To test the model, we will put a molecular layer, pyrazine layer, on the
non-passivated face of the Au(111) slab at 3.5 Å height, see fig. 5.6. We use
a 2× 2 supercell and, as the pyrazine does not enter in this supercell, we tilt
the molecule by 15o for the calculations.

The pyrazine molecular layer scatters surface electrons and does not per-
mit them to penetrate so much in vacuum. Therefore, the molecular layer
confines the surface state in the perpendicular direction of the surface. This
causes an upward shift of the Au(111) surface state, as it is showed in fig. 5.6b.
The calculated upward shift of the Au(111) surface state is 390 meV, be-
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Figure 5.6: (A) Side (top) and top (bottom) view of the passivated Au(111)
slab with a pyrazine molecular layer. Same colour code of fig. 5.4 for yellow,
green and white spheres, while black spheres represent C atoms and blue
spheres N atoms. (B) Band structure of 2 × 2 supercell of a passivated 4
layer Au(111) slab with a pyrazine molecular layer. Solid red line is the
surface state of the pristine Au(111) surface as it is obtained in the 2 × 2
supercell. Dashed red line are a guide to follow the Au(111) surface state
shifted by the molecular layer.

coming empty. This upward shift follows expected trends, also previously
observed for naphthalene tetracarboxylic diimide (NTCDI, C14H8N2O4) and
1,4-bis(4,6-diamino-1,3,5-triazin-2-yl)benzene (BDG, C12H12N10) molecular
layers adsorbed onto Au(111)[113].

These results confirm that our model describes correctly the Au(111) sur-
face state, at least to study locally the interaction with an adsorbate. There-
fore, we will use it to study the interaction of Co atoms with the Au(111)
surface.

5.3 Weakly interacting adsorbates on Au(111)

surface

In this section we will study the effect that Co or Au arrays have on the
Au(111) surface state. In addition, we shall also consider Cu arrays on the
Cu(111) surface.
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Figure 5.7: Visualization of the Au(111) surface state (continuous red curve
for the pristine case) downward energy shift at two different Co coverages.
The vertical arrows show the calculated shift close to Γ and the red dashed
lines are a guide to the eye to follow the shifted surface state. The left panel
corresponds to 0.25 ML of Co and the right panel to 0.11 ML, as obtained
by using a 2× 2 and a 3× 3 supercell, respectively. The different supercells
introduce an evident difference in the folding of Au bands (black lines). The
blue curves close to the Fermi level correspond to Co adatom d-bands. The
coupling between the Co d-bands and folded bulk-bands with the Au(111)
surface state pushes it downwards in energy, the shift being larger at higher
Co coverages.

5.3.1 Co adatoms

As it was previously mentioned, the downward shift of the surface state
reflects the local Co hybridization with the Au substrate. We explore the
weak Co-Au hybridization by putting Co atom arrays on a non-reconstructed
Au(111) surface, but at larger adsorption distance than the optimal one to
simulate the situation of the metal-organic network.

First of all, notice that the downward shift measured in experiments is
smaller for Ph6Co network than for Ph3Co network. Consequently, when Co
concentration is smaller, the downward shift is smaller, as the pore formed
by Ph6Co is bigger than the pore formed by the Ph3Co network. In the
experimental networks, the concentration of Co is 0.015 monolayers (ML)
for Ph3Co network and 0.005 ML for the Ph6Co network. These are very
small concentrations, 1 Co atom per 67 and 200 Au surface atoms for Ph3Co
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Figure 5.8: Same as fig. 5.7 with spin polarization. Visualization of the
Au(111) surface state (continuous red curve for the pristine case) downward
shift at two different Co coverages. The vertical arrows show the calculated
shift close to Γ and the red dashed lines are a guide to the eye to follow
the shifted surface states with different spin polarizations. The left panel
corresponds to 0.25 ML of Co and right panel to 0.11 ML, as obtained by
using a 2×2 and a 3×3 supercell, respectively. Different supercells introduce
different Au band foldings (black lines). The blue lines correspond to Co
adatom d-bands.

and Ph6Co networks, respectively. Therefore, we need 8 × 8 and 14 × 14
supercells to have similar Co concentrations, which is computationally too
expensive. So we will work with smaller supercells, between 2× 2 and 3× 3,
where the concentration of Co is higher than in the experiment (0.25 ML
and 0.11 ML, respectively) to see the trends and extrapolate to explain the
observations.

Another important point to take into account in these calculations is the
height of the Co atoms from the Au(111) surface. Ph3 and Ph6 molecules
are coupled to Co atoms and henceforth the coupling between Co and the
Au surface is weaker than if only Co is adsorbed. So the distance from the
Au(111) surface to Co atom must be larger than the optimal Co adsorption
distance on Au(111) surface. For these calculations we put the Co atom at
2.5 Å from the surface.

In fig. 5.7, we can see the calculated band structures from two selected
supercells: 2×2 (0.25 ML) on the left and 3×3 (0.11 ML) on the right. These
superstructures introduce an evident difference in the folding of Au bands,
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but more importantly, a clear downshift of the pristine Au(111) surface state.
We find that the magnitude of the downshift is directly related to the amount
of isolated Co adatoms on the surface.

Notice that Co atom d-states (in blue) are close to the Fermi energy.
More accurately, they appear between the surface state and the Fermi level.
So, d-states from Co push down the surface state by hybridization. This
hybridization creates the bonding and antibonding states but, as we are in
the weak coupling regime, they still maintain their original characters, surface
state and d-states characters.

Although geometrical variations of the overlayer, in the form of verti-
cal displacements, could affect the surface state reference[39, 114, 115], the
hybridization of Co d-bands with Au(111) surface state explains the experi-
mentally observed surface state renormalization, see fig. 5.13.

We include spin-polarization to our calculations, while we maintain the
Co at 2.5 Å from the surface. Typically, adsorption distances obtained from
spin-polarized calculations are larger than for non-spin-polarized calcula-
tions. However, 2.5 Å is still larger than the optimal adsorption distance for
spin-polarized calculations, so we continue in the weak hybridization regime.

In fig. 5.8, we can see the calculated spin-polarized bands-structure from
the 2 × 2 supercell (0.25 ML) on the left and the 3 × 3 (0.11 ML) on the
right. The downward shift measured before is confirmed with spin-polarized
calculations. Although the spin polarization makes difficult to obtain a value
for the shift, since surface state is split into majority and minority spin states,
the calculated shift is of the same order of magnitude than the obtained for
non-spin-polarized calculations.

5.3.2 Au adatoms

In order to check if the downward shift of the surface state due to hybridiza-
tion appears with other arrays of metallic atoms, we change the Co atom for
another atom that has occupied d-states. In this case, we choose Au atom.

The optimal bonding distance of Au is larger than for Co. This means
that we have to put the Au adatom further from the surface. However, the
distance cannot be so large that there is no interaction. So, the absorption
distance that we use is 3 Å in the weak hybridization regime.

The band structure for Au adatom on Au(111) is showed in fig. 5.9. The
downward shift of the Au(111) surface state with Au adatom is similar to
the shift with Co adatom. However, d-bands of Au adatom are close to the
valence band of the substrate and below the surface state. Consequently,
we can discard that the downward shift is an effect of the electrostatic in-
teraction. Hybridization between the Au adatoms, and the folded substrate
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Figure 5.9: Au(111) 4 layer slab band structure for two different Au cov-
erages. The color code is the same as in fig. 5.7, except for blue lines that
correspond to Au d-bands. The left panel corresponds to a coverage of 0.25
ML of Au and the right panel to 0.11 ML. Au adatom d-bands, in blue, are
below the surface state, far from the Fermi energy.

bands, with the Au(111) surface state appear as the cause of this effect.

Next, we will consider the more reactive Cu(111) surface under two dif-
ferent coupling regimes, weak and strong.

5.4 Cu adatoms on Cu(111)

In order to study the Cu(111) surface, we will use the same model as for the
Au(111), a 4 layer slab with one of the faces passivated with H atoms. This
description of the Cu(111) surface state gives us that the Cu(111) is 530 meV
below Fermi level.

5.4.1 Weak interaction regime

For the Cu(111) surface, we select Cu atom as the adatom since it has been
reported as linker in metal-organic networks on this surface[39, 116, 117]. In
order to be in the weak hybridization regime, we put the Cu adatom at a
distance of 3 Å from the Cu(111) surface.

The band structure of Cu adatom on the passivated 4 layer Cu(111) slab
is showed on fig. 5.10. In this case, we have again the same trend than for Co
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Figure 5.10: Passivated Cu(111) 4 layer slab band structure for two different
Cu coverages. The Cu(111) surface state (continuous red line corresponding
to the pristine case) downward shift can be seen at the two different Cu
coverages. The vertical red arrows show the calculated shift close to Γ and
the red dashed lines are a guide to follow the shifted surface state. The left
panel corresponds to 0.25 ML of Cu and the right panel to 0.11 ML. As we
use different supercells for each coverage the folding of Cu bands (black lines)
is different on each panel. Blue lines correspond to Cu adatom d-bands.

and Au onto Au(111). The downward shift of the surface state is not only
seen in Au(111) surface, it appears also in Cu(111) surface. The difference
is that the downward shift is smaller for the low coverage in comparison
with Co and Au adatoms on Au(111) surface. Notice that, in this case, the
position of d-bands of Cu adatom is very close the pristine Cu(111) surface
state.

Now, we can state that for Au(111) and Cu(111) surfaces the adsorption
of homoatomic and heteroatomic arrays exhibit the downward shifting effect
whenever the hybridizations are not strong (physisorption cases), such that
the surface state character is maintained. This commonly applies to MONN
since the molecules slightly pull the adatoms away from the surface[39, 114,
115], effectively reducing its coupling the the surface.

5.4.2 Strong interaction regime

Previous studies of Cu-coordinated MONN on Cu(111)[39, 116, 117] did not
report such a counter-intuitive downward shift of the surface state. The
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Figure 5.11: Visualization of the MONN studied in [39]. In this system,
there are two different type of Cu atoms, Cu atoms from the substrate and
from the MONN, represented by light and dark yellow spheres, respectively.
Blue, grey and white spheres indicate N, C and H atoms, respectively. (A)
Top and (B) side views of the system. Image taken from[39].

MONN of those works is shown in fig. 5.11. The growing technique of such
a structure is different from the previous one. In this case, the organic
molecule, 4,9-diaminoperylene-quinone-3,10-diimine (DPDI), is deposited on
the surface below one ML coverage, which are mobile on the Cu surface. The
molecules are frozen by decreasing the temperature to 5 K before annealing
at 200 oC to dehydrogenate N atoms, but also generate Cu adatoms from
the surface. By this method, the MONN is formed for coverages below 0.73
ML, as each Cu adatom is coordinated to two N atoms from two adjacent
molecules at the node.

In the previous MONNs, Ph6Co and Ph3Co from fig. 5.1, the metallic
linker was only one Co atom, which was evaporated sequentially with the
organic molecule. In contrast, the metallic linker of DPDICu MONN is a Cu
trimer that has been taken from the surface, i.e., segregated Cu adatoms.
This makes a big difference as the Cu trimer is close to the surface, making
the Cu-Cu(111) hybridization strong.

In order to simulate this strong hybridization, we bring the Cu adatom
closer to the surface, to 2.5 Å and repeat the calculation in the 2×2 supercell.

In fig. 5.12, the band structure of close Cu adatom on the passivated
4-layer Cu(111) slab is showed. The surface state is now splitted into two
bands, bonding and anti-bonding states, 1.5 eV below Fermi energy and 1
eV above Fermi energy, respectively. In this case, the bonding state is mixed
with valence bands of the substrate. Thus, ARPES experiment should show
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Figure 5.12: Band structure of Cu on passivated 4-layer Cu(111) slab at 2.5
Å with 0.25 ML coverage. The solid red line is where the original surface
state appears in the clean Cu(111) slab, while the dashed and dotted red
lines are a guide to follow the antibonding and bonding states, respectively.
Blue lines correspond to d-bands of Cu adatom.

the antibonding state, which is higher in energy than the original surface
state and acquires surface state character.

The experiments were not able to see the downward shift of the surface
state on Cu(111) with DPDICu MONN due to the strong hybridization of
the d-states from the linkers with the surface state. Although there is no
direct chemical interaction between the organic ligand and the surface, the
network is chemically bonded to the surface by Cu trimers. This bonding is
responsible also of the bending of the DPDI molecule that can be appreciated
in fig. 5.11b.

5.5 Conclusions

In summary, we tested the model to describe the surface state proposed in
the thesis of Nora González Lacunza[43] with a pyrazine molecular layer on
Au(111). This system confines the surface state of Au(111) in the perpen-
dicular direction of the surface. Due to this confinement the state is shifted
upward, which confirms the expected trends from previous studies[113].

Apart from the upward shift, we have studied the unexpected downward
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Table 5.2: Energy shift of the pristine surface state obtained from DFT
calculations. The calculations, from the left to right, correspond to the cases
Co/Au(111), Au/Au(111) and Cu/Cu(111). To account for the decoupling
effect of the molecules, Co adatom is located at 2.5 Å above the unrecon-
structed pristine surface, while Au and Cu adatoms are 3 Å above. The cal-
culations show a increasing downward shift of the surface state with adatom
content. Note that the experimental amounts of Co used are significantly
lower, corresponding to 0.015 ML for Ph3Co and 0.005 ML for Ph6Co.

Adatom concentration Array size Co/Au(111) Au/Au(111) Cu/Cu(111)
(ML) ∆SS (eV) ∆SS (eV) ∆SS (eV)

0.25 2× 2 -0.94 -0.92 -0.93
0.17 3× 2 -0.70 -0.65 -0.78
0.11 3× 3 -0.49 -0.49 -0.35

shift of Au(111) and Cu(111) surface states, which was reported by Piquero-
Zulaica et al.[109], due to weakly adsorbed metallic adatoms. Unlike other
MONN, Ph3Co and Ph6Co networks show a counter-intuitive downward shift
of the Au(111) surface state while the confinement effect is still confirmed by
STM/STS experiments and EPWE simulations. Our DFT calculations, see
table 5.2, reproduce the trends observed in the experiments, see fig. 5.13. The
linear extrapolation of DFT values is in good agreement with experimental
values. This trend was also confirmed by spin-polarized calculations for Co
on Au(111).

We find that the hybridization between d-states of the metallic adatoms
and the surface state is essential to determine the direction of the shift of
the surface state. Whenever the hybridization is strong, the surface state
character is lost and our DFT model cannot determine it. This is due to the
high concentration of adatoms that we have in our calculations calculations.
In contrast, in the experiment, the bonding state resulting from the strong
hybridization between the surface state and the Cu d-states is mixed with
valence band states of Cu(111) substrate, while the antibonding state is what
ARPES measurements probes.

In the weak hybridization regime, the surface state character is retained,
in spite of the high concentration of our calculations, and we were able to
reproduce the experimentally observed downward shift of the surface state,
see fig. 5.13. We assign this downward shift to the weak hybridization be-
tween the surface state and d-bands of the adsorbate. We notice also that
the downward shift happens when the bonding state does not mix with bulk
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Figure 5.13: Energy shift of the Au(111) surface state due to the Co adatom
concentration. Red dots correspond to values obtained from DFT calcula-
tions while blue dots were experimentally measured. Red line is the linear
fitting of DFT values. The linear fitting is giving quite good agreement be-
tween the experimental and theoretical values of the surface state energy
shift.

valence bands, as it is the case of Cu on Cu(111) at 3.0 Å and Au and Co on
Au(111) at 3 Å and 2.5 Å, respectively. The adsorption distance in all these
cases is larger than their optimal adsorption distance in order to reproduce
in the weak hybridization regime. By doing this, we simulate the decoupling
effect of the organic molecule.

In conclusion, our single description of weakly adsorbed d-adatoms can ex-
plain the downward shift observed in the experiment with Ph3Co and Ph6Co
networks. Organic molecules, Ph3 and Ph6, are reducing the hybridization
between the d-states from Co adatoms and Au(111) surface state. Thus, the
surface state is shifted downward in energy. The shift of the surface state is
very sensitive to the balance between charge transfer, confinement and the
hybridization with d-states.
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Chapter 6

CONCLUSIONS

Overall, in this thesis we have demonstrated that the Co has different mag-
netic properties on different chemical environments, in spite of having similar
d shell occupation. The main part of the thesis is devoted to study the mag-
netic anisotropy of Co on h-BN. We developed a new method to construct
a crystal field Hamiltonian and introduce it in the multiorbital Hubbard
model[30]. We have compared the obtained results with other theoretical
approaches and experimental data. In the case of 0-dimensional systems,
as magnetic adatoms, one needs to go beyond Density Functional Theory
(DFT) to get a quantitative agreement between measured and calculated
Magnetic Anisotropy Energy (MAE).

The use of Maximally Localized Wannier Functions (MLWFs) introduces
a new set of parameters that need to be fixed and the MAE is very sensitive to
them. If a nice description of the system in terms of MLWFs is obtained, the
method provides qualitatively good results in quantitative agreement with
experiments. This was done for Co on h-BN/Ir(111) and h-BN/Ru(0001),
where it unveiled the different adsorption sites of Co depending on the metal-
lic substrate: hollow site with negligible magnetic anisotropy for Co on h-
BN/Ir(111) and atop N with a larger out-of-plane anisotropy for Co on h-
BN/Ru(0001).

We started by considering the problem of Co adsorbed on a free standing
h-BN monolayer. We saw that Co atoms adsorb in the weak chemisorption
regime, where Van der Waals forces play an important role. Moreover, we
demonstrated that there are two possible adsorption sites close in energy,
with hollow site as the preferable adsorption site. We also extracted that
the d-shell occupation for Co on both adsorption sites is 7.8 electrons, which
corresponds to a spin S ' 1.

Regarding the magnetic anisotropy of both sites, we performed DFT+SOC
calculations and obtained a significantly higher out-of-plane easy axis anisotropy
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for the atop N site and a smaller in-plane MAE for the hollow. Then, from
the multiorbital Hubbard model using MLWFs, we obtained results in qual-
itative agreement, but with MAE values an order of magnitude higher. We
obtained similar results using a point charges approach in the multiorbital
Hubbard model. We confirmed this results by extracting a spin Hamiltonian
and calculating its parameters. Comparing the three methods, we found a
qualitatively good agreement between them.

Afterwards, we have studied the effects of Ir(111) and Ru(0001) sub-
strates on the magnetic properties and compared them with experimental
data. First, we studied the effect that those substrates have on h-BN. We
demonstrated that the corrugation is larger on Ru(0001) than on Ir(111).
These results showed that the Ir(111) substrate has little effect on the h-BN
and, thus, it acts as the free standing h-BN. Therefore, the hollow site is
assumed for Co on h-BN/Ir(111), as it was found for the free standing h-BN.
Then, we have confirmed that the hollow adsorption site of Co on a far re-
gion of the h-BN on Ru(0001), and the atop N site on a close region have
similar adsorption energies. These DFT results suggest that the adsorption
site of Co on h-BN/Ru(0001) could be either atop N or hollow. Thus, we
combine experimental data, together with multiplet fittings, with our mul-
tiorbital Hubbard model results to stablish the adsorption site. X-ray Ab-
sorption Spectroscopy (XAS), X-ray Magnetic Circular Dichroism (XMCD)
and X-ray Magnetic Linear Dichroism (XMLD) measurements reveal a large
out-of-plane magnetic anisotropy for Co atoms on h-BN/Ru(0001), while on
h-BN/Ir(111) have basically no anisotropy, consistent with atop N and hollow
adsorption sites, respectively.

XAS data agrees on the spin S = 1 obtained for Co atoms on both
substrates. In addition, multiplet fittings of experimental XAS, XMCD and
XMLD data correctly reproduce the main trends in the magnetic anisotropy,
thus, only confirming that Co on h-BN/Ru(0001) and on h-BN/Ir(111) are
atop N and hollow sites, respectively.

Adsorption sites of Co for the two surfaces are also supported by the
multiorbital Hubbard model. The agreement between the S, Sz, Lz and
Zero Field Splitting (ZFS) values of the atop N site within the multiorbital
Hubbard model and the experimental Co/h-BN/Ru(0001) XAS, XMCD and
XMLD data is very good. The average spin and orbital moments saturate for
fields around 3 T in both, experiments and model. Additionally, the obtained
ratios (mL/mS) in the experiments for normal and grazing incidence are close
the one obtained in the model.

Although the model for the hollow site predicts a magnetic anisotropy
larger than the measured one for Co/h-BN/Ir(111), the agreement is quali-
tatively good. This is due to the fact that the anisotropy of the hollow site,
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in comparison with the atop N site, is much more sensitive to small changes
in the surrounding environment like corrugation, charge transfer or lattice
strain.

Finally, we have also studied the effect of weakly adsorbed Co, Au and
Cu arrays on the Shockley surface state of Au(111) and Cu(111) surfaces.
In particular, Angle Resolved Photo-Emission Spectroscopy (ARPES) and
Scanning Tunnelling Spectroscopy (STS) measurements reveal a gradual en-
ergy downward shift of the Au(111) surface state upon the formation of two
homothetic Co coordinates Metal-Organic Nanoporous Networks (MONNs).
This counterintuitive downshift is gradual with decreasing pore size, despite
the confining attribute of the nanocavities, which shifts the surface state
upward in energy.

The downward shift of the surface state happens in the weak hybridiza-
tion regime of d-atoms arrays on noble metal surfaces and it becomes stronger
with the adatom concentration, as it happens for Co-dicarbonitrile-terphenyl
(Ph3Co) and Co-dicarbonitrile-sexyphenyl (Ph6Co) MONNs. We consider
that, in the experiment, the interaction of the Co atoms with the surface is
not so strong due to the presence of Ph3 and Ph6 molecules. We assume
that the molecules push the Co atoms from their optimal adsorption dis-
tance, and place them at the weak hybridization distance. Nevertheless, if
the hybridization is strong, or for high concentrations, the downward shift
of the surface state disappears because it mixes with valence bands and it
looses its surface state character. In general, other MONNs onto noble metal
surfaces should show such subtle counterintuitive downward shift whenever
the surface state character is preserved, i.e., for weak coupling cases.
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Appendix A

Co on 4x4 h-BN: Challenges of
the MLWFs method

In order to obtain the crystal field from the MLWFs for our multiorbital Hub-
bard model, we used a 3× 3 supercell. A priori, it would be more convenient
to use the 4 × 4 supercell that better matches with the rotation of Ir(111)
and Ru(0001). Even though Ir and Ru have different 3D Bravais lattices,
the surface unit cell is very similar for both substrates: an hexagonal unit
cell with a lattice constant of 2.72 Å. After a rotation of 13.9◦, this surface
matches well with a 4 × 4 h-BN supercell, with a mismatch of 2.4%. Since
the 4 × 4 h-BN monolayer that matches with the surfaces has a compres-
sive stress, the lattice parameter of the supercell is slightly smaller than the
optimal one, and the h-BN will have a small corrugation.

The MLWFs basis for the 4× 4 h-BN monolayer contains the sp2 and pz
orbitals for N atoms and s and d orbitals for the Co. In order to describe
correctly the system, we select the disentanglement energy window from -22
eV to 2 eV referring to the Fermi energy, and the frozen energy window from
-1.5 eV to 0.5 eV .

The bandstructure obtained of both adsorption sites for the 4×4 supercell
do not show the same quantitative agreement than the 3 × 3 supercell, see

Table A.1: Energies of the MLWF Co d-states for the atop N site. For both
supercells, the 3× 3 and 4× 4, energies are referred to the lowest d-state.

Supercell ∆E (meV)

3× 3 0 105 169 232 243
4× 4 0 19 23 137 138
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Figure A.1: Bandstructure of Co on h-BN monolayer for a 4 × 4 supercell
from DFT (black lines) and MLWF (red lines) calculations. Left panel (A)
corresponds to the atop N adsorption site, while the right panel (B) corre-
sponds to the hollow site. (C) and (D) show the energy range in the green
squares where Co d states are located.

fig. 3.6 and fig. A.1. Notice that the energy range of MLWF d-bands is 100
meV larger for the 3× 3 supercell than for the 4× 4 supercell, see table A.1.

We reduce the Hamiltonian obtained with this basis and introduce it as
the crystal field. For 8 electrons in the d-shell of Co, the expected total
angular momentum and spin quantum numbers for the ground state are
again L = 3 and S = 1, respectively. After applying the crystal field term,
the ground state, whose total initial degeneracy was 21, ends in a triplet
ground state with total degeneracy 3, see fig. 3.8 and fig. A.2. The ground
state for atop N site is now the one with 〈Lz〉 = 〈Sz〉 = 0, contrary to the
3 × 3 case. But also the quenching of 〈Lz〉 and 〈Sz〉 change in the 4 × 4
supercell. The quenching for the atop N site is higher than for the hollow
site, which makes the ZFS bigger for the hollow site. On the opposite side is
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Figure A.2: Top panel, (A) and (B), show multiplet low energy excitation
spectra of Co on a 4 × 4 h-BN monolayer in d8-electronic configuration for
spin-orbit coupling strength (λSO) and magnetic field applied perpendicular
to the h-BN plane. Bottom panels, (C) and (D), show the expectation values
〈Lz〉 (dashed lines and 〈Sz〉 (solid lines) for the three lower energy states
corresponding to the effective S = 1 anisotropic spin. Black colour is used
for the ground state, red for first excited state and green for second excited
state.

the hollow site, where it is expected to found a hard axis in the out-of-plane
direction. However, the expectation values of 〈Sz〉 seem to indicate an easy
axis.

The difference between the 3× 3 supercell, studied in chapter 3, and the
4 × 4, comes mainly from the MLWFs. In order to obtain realistic results,
a very accurate MLWF description is needed, which is not trivial to get.
The same MLWF basis used for Co on h-BN in the 3 × 3 supercell is not
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describing correctly Co d-states around Fermi energy in the 4× 4 supercell,
see table A.1. We attribute to the inaccurate MLWF description of d-states
of Co in the 4× 4 the incorrect magnetic anisotropy displayed in fig. A.2.

Another source of error is the reduction of the dimension of the Hamilto-
nian obtained from the MLWFs. This step is necessary as the computational
cost increases with the dimension of the matrix that we want diagonalize, but
we are missing some contributions that may be important for the magnetic
properties.
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Appendix B

Fe on h-BN

In this appendix, we will study the Fe adatom on free standing h-BN.

B.1 Adsorption of Fe on h-BN

Fe on h-BN has 7 d-electrons with a small energy difference between the atop
N and hollow adsorption sites.

B.1.1 Spin-polarized DFT and DFT+U calcualtions

We perform spin-polarized relaxation for both adsorption sites using the same
parameters as for Co. In the case of Fe on atop N site, the adatom is placed
2.03 Å above the N atom, while on the hollow site it is placed 1.96 Å above
the plane formed by first neighbour N atoms.

The spin-polarized calculations give the PDOS showed in fig. B.1. The
energy integration of the PDOS curves onto 3d states of Fe up to the Fermi
level gives around 6.8 electron in the d-shell of Fe for both adsorption sites, see
table B.1, as expected 1 electron less than Co. This occupation corresponds
to a spin S = 3/2 localized in the 3d shell of the Fe atom. Comparing the
PDOS for Fe and Co, fig. B.1 and fig. 3.5, we notice that the component that
is lost in the case of Fe, as it has 1 electron less in the d shell, is the minority
spin dz2 state.

The relatively sharp peaks that appear on the PDOS for both adsorption
sites is consistent with a weak hybridization between the 3d atom states and
the h-BN states, as it happened for Co. The hybridization of both adsorption
sites is similar to the hybridization found for Co: on the atop N site, the dz2
state of Fe is hybridized with the pz state of N, while on the hollow site the
dyz and dxz states hybridize with the pz states of first N and B neighbours.
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Figure B.1: Projected density of states (PDOS) onto 3d orbitals of Fe and
pz orbitals of first neighbour N and B atoms once for atop N (left) and
once for hollow (right) adsorption sites, as obtained from the spin-polarized
calculations. Positive values correspond to majority-spin and negative values
to minority-spin.

Moreover, we performed DFT+U calculations for both adsorption sites
with the same parameters used for Co and obtained that the total energy
difference is 151.4 meV in favour of the atop N site. As it happened for
Co, we are in the weak chemisorption regime, and it is difficult to determine
accurately the adsorption site due to the crucial role that Van der Waals
forces are playing at this regime.

B.1.2 DFT+SOC calculations

We perform DFT+SOC calculations of the Fe adatom using the same pa-
rameters as for the Co.

Table B.1: Populations and spin polarization of Fe orbitals from spin-
polarized DFT+U calculations.

Total 4s 3d

Total charge 7.70 0.89 6.81
Spin up 5.78 0.86 4.92

Spin down 1.92 0.03 1.89
Polarization 3.86 0.83 3.03
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Table B.2: Summary of calculated spin-moment (mS), orbital-moment (mL)
and zero-field splitting (ZFS) of Fe atoms on a h-BN monolayer obtained
from DFT calculations including spin-orbit interaction. HA and EA stand
for hard axis and easy axis, respectively.

Adsorption-site mS (µB) mL (µB) ZFS (meV )

atop N 3.20 0.13 0.13 (HA)
hollow 3.20 0.11 0.48 (EA)

We find for the Fe the opposite behaviour than for the Co: while for
Co relaxation results in atop N site, for Fe it gives hollow site. DFT+SOC
calculations result on a change in the adsorption site for both adatoms. The
Co prefers to adsorb on hollow site, while the Fe adsorbs on atop N site. The
energy difference in the case of Fe is even smaller than for Co, 152 meV .

We also find that the character of the magnetic anisotropy is reversed,
see table B.2. The spin-moment is the same for Fe on both adsorption sites,
and they have similar orbital-moment, which is also quenched. However the
ZFS splitting is completely different and it is reversed in comparison with
Co.

B.1.3 Point charge model

We used for Co, we performed multiplet calculations using a point charge
model derived from DFT to obtain the crystal field. Notice that, for Fe
adatom we will not use the MLWF to obtain the crystal field, as the results
obtained for Co using this approach are not decisive. In the case of Fe, there
is one electron less in the d-shell than in the case of Co, therefore we describe

Table B.3: Position and charges of the point charges used to calculate the
crystal field contribution in the multiorbital Hubbard model for Fe adatom.

Hollow site Atom Atop N site

x (Å) y (Å) z (Å) q (e) x (Å) y (Å) z (Å) q (e)
1.23 0.71 −1.99 −0.50 N 0.00 0.00 −2.00 −1.50
−1.23 0.71 −1.99 −0.50 N − − − −
0.00 −1.42 −1.99 −0.50 N − − − −
0.00 1.42 −1.99 0.50 B 1.42 0.00 −2.00 0.50
1.23 −0.71 −1.99 0.50 B −0.71 1.22 −2.00 0.50
−1.23 −0.71 −1.99 0.50 B −0.71 −1.22 −2.00 0.50
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Figure B.2: (A) and (B) Multiplet energy spectra En versus spin-orbit cou-
pling strength λSO and magnetic field along the out-of-plane direction for
Fe adsorbed on atop N and on hollow sites of h-BN, respectively. For the
spin-orbit coupling strength the energy of the ground state was taken as the
reference energy, while for the magnetic field the energy of the ground state
at zero magnetic field. The solid blue, red, green and purple lines correspond
to the lowest four energy states, respectively, corresponding to the effective S
= 3/2 anisotropic spin, while the light grey lines correspond to higher energy
states (not considered in the discussion). The labels correspond to the spin
SZ and orbital LZ moments at B = 6.8 T . The inset in (B) is a zoom to
the interested energy range. (c) and (d) Average spin mS (top) and orbital
mL (bottom) angular momenta in the direction of the applied B field normal
and grazing directions at T = 2.5 K.
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the interacting Ne = 7 electrons at the d-shell of Fe by the Hamiltonian,
eq. (2.70).

We used the atomic values of the spin-orbit coupling (ξFe = 50.1 meV [89])
and expectation values 〈r2〉 and 〈r4〉. The distances and charges are given in
table B.3.

Results of these multiplet calculations with the effective multiorbital
model for Fe on pristine h-BN on both adsorption sites are shown on fig. B.2.
Left panels show results for atop N adsorption site and right panels for hol-
low site. According to Hund rules, an atom with an atomic 3d7 electronic
configuration has the total angular momentum and spin quantum numbers of
L = 3 and S = 3/2, as we obtain in our multiplet calculations. The ground
state multiplet, whit degeneracy (2L+ 1) (2S + 1) = 28, is split by the crys-
tal field leading a cuadruplet ground state, as it corresponds to S = 3/2.
Then, the spin-orbit coupling induces a different splitting of the cuadruplet
into two doublets for both adsorption sites. For the atop N site, the high
spin doublet corresponds to the ground state, while for the hollow site the
low spin doublet is the ground state. These doublets are then split by the
external magnetic field.

The zero-field-splitting is significantly different for both sites. In the case
of the hollow site, similarly to the Co, the ZFS is in the range of few meV .
Contrarily, in the case of the atop N site, the ZFS is around 40 meV , which
is higher than for Co. As mentioned before, for the atop N site, the lowest
doublet is formed by the high spin doublet Sz = ±3/2, while the excited
state corresponds to the low spin doublet Sz = ±1/2. This is an indicator of
an out-of-plane easy axis in the case of the atop N. The situation is reversed
for the hollow adsorption site, where an out-of-plane hard axis is found, as
the ground state is the low spin doublet, Sz ≈ ±1/2, and the excited state
is the high spin doublet, Sz ≈ ±3/2.

From the point of the orbital moment, we see a similar behaviour than
for Co, the atop N site shows a significantly larger orbital moment than
the hollow site due to the N atom below, which creates a large and almost
perfect crystal field. On the contrary, the hollow site has a much lower point
symmetry leading to a quenching of spin and orbital moments along the
direction of the field.
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