
Electronic correlation and magnetic 
properties of one-dimensional systems

Joseba Goikoetxea Perez

Supervised by
Andrés Arnau Pino       &       María Blanco Rey

CAMPUS OF
INTERNATIONAL
EXCELLENCE





Electronic correlation and magnetic

properties of one-dimensional systems

Joseba Goikoetxea Perez

Supervised by

Andrés Arnau Pino Maŕıa Blanco Rey
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Laburpena

Tesi honen helburu nagusia, nanokate magnetiko desberdinetan, magnetismoaren

eta elektroien arteko korrelazioaren analisi teorikoa egitea da. Egitura sinpleak

izan arren, dimentsio baxuko sistemek ezaugarri magnetiko interesgarriak erakutsi

ahal dituzte. Esperimentalki horrelako sistemak gauzatzeak erronka handia su-

posatzen du, eta ondorioz neurketak egitea ia ezinezkoa bihurtzen da. Beraz,

analisi teorikoa ezinbestekoa da material horien ezaugarriak aurreikusteko. Gure

lanaren lehendabiziko helburuan, kateen eta katea hazten den sustratuaren arteko

elkarrekintzak aztertzen dituugu. Bi kasu ezberdin ditugu, lehena sustratua eta

katearen artean elkarrekintza handiak daudenean eta bigarrena, elkarrekintza bax-

uak direnean, hau da, katea sustratuarekiko isolatuta egongo balitz bezala aintzat

hartuz. Kate-sustratu elkarrekintzak elektroien korrelazioa erabat aldatu dezake,

eta ondorioz, kateen magnetismoa guztiz aldarazi. Gure bigarren eta azken helbu-

rua, atomo magnetikoek erakutsi ahal duten egoera desberdinek (spin dedberdin

edo berdinarekin) propietate magnetikoetan duten eragina aztertzea da.

XX. mendean material magnetikoen ezagutzak izan zuen iraultzaz geroztik,

material hauek gure egunerokotasuneko parte izatera pasa dira. Material mag-

netikoen erabilera ezagunena datuak gordetzeko ahalmena da: ordenagailuetako

disko gogorrak material magnetikoz osatuta daude. Tresneria hauetan domeinu

magnetikoen (atomoen momentu magnetikoek norabide orokorra duten eskualdeak)

magnetizazioa neurtzen da, momentu magnetikoaren noranzkoak 0 edo 1 bit kodea

ezartzen duelarik. Azken urte hauetan, mundu mailako datu kopuruak espo-

nentziali gora egin du, beraz memoria handiagoak duten disko gogorren beharra

dugu. Kontutan izanda informazioa domeinu magnetikoetan gordetzen dela, memo-

ria handitzeko modu bakarra domeinuak txikitzea da. Gaur egun, disko gogorre-

tan 1016 bit/m2-ko oroimenen dentsitatea lor dezakete, hau da, domeinuak gutxi-

gorabehera 10 mm2-koak dira. Domeinu magnetikoen tamaina txikitzeak, domein-

uen arteko hormak txikitzean lortzen da. Hormen tamaina bi elkarrekintzen araber-
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akoa da: truke elkarrekintzak eta anisotropia magnetikoak. Truke elkarrekintzak

atomoen arteko spinak lerrokatzearen alde egiten du, eta anisotropia magnetikoak

spinak kristalaren norantza zehatz batean egoteak lehenesten du. Beraz, trukeak

domeinuen arteko hormak luzatzea hobesten du, anisotropiak, ordea, horma motza-

goak. Domeinu magnetikoen tamaina txikitzeak muga bat du, txikitzean efektu

termikoak gero eta nabariagoak baitira, magnetizazioaren ausazko alderantziketak

sortuz. Muga honi muga superparagmetikoa deritzogu. Domeinu magnetikoen

txikitzearen limitea dimentsio baxuko sistemekin gainditu dezakegu.

Dimentsio baxuko materia sorta bidimentsionalak (2D) diren sistemetatik ima-

nen limitea den atomora (0D) arteko sistemek osatzen dute. Gure ikerkuntza

dimentsio bakarreko (1D) sistemetan zentratuta dago. Zehazki, Tesi honetan,

bi kate magnetiko mota aztertuko ditugu, bat trantsizio-metal atomoak O atom-

oekin lotura dutenean, hots, trantsizio metal-oxido kateak, eta bestean, trantsizio-

metalak molekula organikoen bidez lotzen direnean. Zergatik dimentsio baxuak er-

abili? Sistemen dimentsioa txikitzen denean, gorputz anitzen arteko elkarrekintzak

gora egiten du. Loturak dituzten atomo kopurua gutxitzen direnez, elektroien

arteko Coulomb elkarrekintzak handiagoak dira, apantailatze efektuak txikiagotzen

baitira. Ondorioz, spin-spin arteko truke elkarrekintza areagotzen da. Mermin-

Wagner teoriaren arabera dimentsio baxuko materialetan ezin da ausazko iris-

men luzeko magnetismorik eman, baldin eta anisotropia magnetikorik ez badago.

Beraz, anisotropia magnetikoa ezinbestekoa da dimentsio baxuetan magnetismoa

gauzatzeko. Gainera, dimentsio baxuetan eremu kristalinoa (beste atomoek sor-

tutako potentzial elektrikoen konbinazioa) txikiagotzen da, elektroien momentu

orbitalaren deuseztapena ezabatuz eta anisotropiari balio handiak izatea ahalbide-

tuz. Are gehiago, sistemen simetria ere txikiagotzen da, adibidez, inbertsio sime-

triarik ez dago, eta spinen arteko truke elkarrekintza handitzen denez, kolinealak

ez diren spin egiturak egotea ahalbidetzen ditu, baita beste motatako elkarrek-

intzak agertu ere, adibidez, truke antisimetrikoa, spin egitura kiralak ahalbidetuz.

Propietate horiek dimentsio baxuko sistemak gailu elektronikoetan erabiltzeko oso

erakargarriak egiten dituzte. Baina batez ere, kateen ezaguarri magnetikoek in-

teres handiena spintronikaren alorrean sustatzen dute, hau da, elektroien kargaz

gain spina ere manipulatzea ahalbidetzen duten tresnerien ikerkuntzan.

Lehenago aipatu dugun bezala, kalkulu teorikoak ezin bestekoak dira kateen

propietateak aurreikusteko. Gure analisi teorikoa gauzatzeko dentsitate funtzion-

alaren teoria (DFT) erabili dugu. Metodo honek parametro enpirikoen erabilera

saihesten du, konputazio denboraren eta zehaztazunaren arteko balantzea orekatuta
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mantenduz. Spina kontutan hartzen duten DFT kalkuluekin materialen propietate

magnetikoak lortu ditzakegu, hala nola, spin egoera eta truke elkarrekintza kon-

stantea J . DFT kalkuluetan spin orbita elkarrekintza (SOE) sartuta anisotropia

magnetikoaren energia lortu ahal dugu. DFT partikula bakarreko probleman oinar-

ritzen denez gorputz askoko elkarrekintzak ez ditu ondo deskribatzen. Arazo hau

argi ikusten da trantsizio-metal atomoetan, non, d orbitalean dauden elektroiek

elkarrekintza handiak izan ahal duten. Coulomb elkarrekintzaren deskribapen

mugatuaren ondorioz, materialen ezaugarrien emaitza okerrak izan ahal ditugu,

adibidez, sistema metalikoa berez isolatzailea denean. Hau konpontzeko DFT+U

zuzenketa erabiltzen da, non, U parametroak orbital jakin bateko elektroien elka-

rrekintza deskribatzen duen. Honez gain, DFT metodo bariazionala izanik, ener-

giaren minimizazio prozesu baten bitartez lortzen du oinarrizko egoera. Prozedura

hau zehatza izango balitz beti energia gutxineko egoeran amaituko genuke, hau

da, oinarrizko egoeran. Energiaren minimizazioaren prozedura ez denez perfektua,

energetikoki baxuak diren egoera kitzikatuetan bukatu dezakegu, oinarrizko egoera

saiheztuz.

Tesiak hurrengo egitura du:

2. atalean, lehendabizi, Estatu Solidoko Fisikan erabiltzen diren ekuazioen eta

hurbilketen sarrera labur bat emango dugu. Bigarrenez, DFT teoriaren oinarrizko

teoremak eta ekuazioak azalduko ditugu, DFT+U zuzenketarekin eta orbitalen

okupazio kontrolaren metodoarekin batera. Jarraian, anisotropia magnetikoaren

energia kalkulatzeko erabili ditugun bi metodoak azalduko ditugu: indar teorema

eta autokonsistentzia zikloak. Amaitzeko, mugatutako ausazko fase hurbilketa

azalduko dugu, metodo honekin elektroien elkarrekintza intraobital, U , eta elka-

rrekintza interorbitala, J , parametroak kalkulatu ahal ditugu. Honekin batera

maximoki lokalizatuta dauden Wannierren funtzioen azalpen labur emango dugu.

3. eta 4. ataletan, trantsizio metal-oxido kateetan oinarrituko gara, XO2

non X =Ni, Co, Fe eta Mn izanik, Ir(100) sustratuan hazita. 3. atalean, iso-

latutako kateen propietate magnetikoak kalkulatuko ditugu. Atomoen arteko dis-

tantzia eta Hubbard-U parametroa aldatzen ditugunean hainbat spin egoera lortu

ditzakegu atomo magnetikoetan. Zenbat eta U parametro handiagoa izan, orduan

eta spin balio handiagoa lortzen ditugu. Katearen gela unitatea bikoiztuz, eta

egoera antiferromagnetiko (AFM)-pin antiparaleloak- edo ferromagnetikoa (FM)-

spin paraleloak- ezarriz, truke elkarrekintza kalkulatzen dugu. Kate guztiak AFM

egoera lehenesten dute, MnO2-k izan ezik, FM egoera nahiago izanda. Spin egi-

tura bakoitzerako egoera dentsitateak kalkuluek MnO2 kasuan FM egoera erdi-

eroalea da erakusten dute. AFM egoera eroalea izanik. Beste kateetan aldiz AFM
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egoera isolatzailea da. Beraz, spin egituraren lehenespena materialen metalta-

sunarekin zerikusia du. Azkenik, anisotropia magnetikoa kalkulatu dugu indar

teorema eta kalkulu autokonsistenteak erabiliz. Bi metodoek ardatz leun (energia

gutxieneko norabidea) berbera ematen dute, NiO2 eta CoO2 kateentzat katearen

planoan baina bere norabidearekiko perpendikularra, eta beste bi kasuetan, FeO2

eta MnO2, katearen planoarekiko perpendikularra. Baina NiO2 kasuan balioak

oso desberdinak dira, balio autokonsistentea indar teoremarena baino hiru bidar

handiagoa izanik. Bi metodoak aplikatu eta geroko egitura elektronikoa kalkulatu

dugu aldaketa horren arrazoia lortzeko. Egitura elektronikoak argi uzten du indar

teoremak ez duela ondo deskribatzen SOE efektua Fermi maila inguruan. Honen

arrazoia, gure materialaren dimentsio baxua izan ahal da. Simetriak gutxitzen di-

renez, elektroien uhin funtzioak ez daude mugatuta, beraz SOE ezartzean bilakaera

handiagoa eman ahal da, eta indar teoerema ez da gai deskribatzeko. Azkenik,

anisotropia magnetikoaren energiaren dentsitatea kalkulatu dugu, hau da, autoen-

ergia bakoitzak anisotropia magnetikoaren energian duen ekarpena. Honekin, ka-

teen artean ardatz leunaren aldaketaren arrazoia bilatu ahal dugu, SOEaren on-

dorioz emandako banda banaketa garrantzitsuenak bilatuz eta banden orbitalen

proiekzioa erabiliz.

4. atalean, X atomoetako 3d orbitalean ematen diren Coulomb elkarrekintzak

azterkuko ditugu. Mugatutako ausazko fase hurbilketa erabiliz, U -ren zein J-ren

balioak lortu ditzakegu. Lehendabizi, isolatutako katearen interakzioa kalkulatu

dugu. Kate guztientzat J ∼ 1 eV lortzen dugu. FeO2 kate isolatzailean lortzen

dugu balio handiena U ∼ 7.7 eV, gainerakoak erdi-eroaleak izanik U ∼ 6 eV

balioa lortzen dugu. NiO2 katen bi egoera desberdin lortzen ditugu, C1 eta C2

egoerak, DFT kalkuletan ezartzen dugun U balioaren arabera. Bi egoera hauek,

bi U balio desberdin ematen dituzte mugatutako ausazko fase hurbilketa kalku-

luetan, batek UC1 ∼ 6 eV eta besteak UC2 ∼ 2.4 eV. Korrelazio espazioa aldatuz

O(p) orbitala interakzioaren apantaimenduan ekarpen handiena duen orbitala dela

ezartzen dugu. Gainera, kalkulu hauekin Ni(d)-O(p) loturaren arteko interakzioa

C1 eta C2 egoeretako aldatu egiten dela ezartzen dugu, ondorioz, apantailamendu

efektuak aldatuz. Sustratua gehi kate sisteman Uren balioa are gehiago txikitzen

da balioak U . 2 eV izan arte kate guztietan, MnO2a izan ezik non U ∼ 3.8

eV den. Jren balioak ez du aldaketa nabaririk sustratuta ezartzean. Sustratua

ezartzean, FeO2 kateak du aldaketa handiena U ∼ 1.4 eV izatera bihurtzen da, al-

daketa bortitz hau isolatzailetik metaliko izatera pasatzearen ondorioa deritzogu.

Horretaz aparte, sustratuak karga katera transferitzeko gai da orbitalen egoerak

aldatuz eta ondorioz spin egoera spin egoera aldatzen da, adib., FeO2 katean S = 2-

tik S = 3/2-ra. Honek X(d) orbitalaren eta O(p) arteko interakzioa aldatzen du,



Contents xvii

kalkuluek baieztatzen dute apantailamenturako beste efektu bat izan ahal dela.

Gainera, bi efektu hauek ezin dira bi termino desberdinetan banatu, beraz ezin

dezakegu bakoitzaren ekarpena kalkulatu.

5. atalean, trantsizio metal-molekula organiko kate polimerikoetan zentratuko

gara. Kate hauetan Co eta Cr atomoak 2,5-diamino-1,4-benzoquinonediimina

(QDI) molekularen bidez lotzen dira. Hasieran, U -ren balio desberdinetarako ge-

ometria erlaxatzen dugu. 4 ≤ U ≤ 5 arteko kalkulek, kate hauetan Co atomoak

bi spin egoera desberdin izan ahal duela frogatzen dute, S = 1/2 eta S = 3/2,

bi egoeretan atomoen distantzia desberdina izanik. Gainera, U = 4 eV kasuan,

oinarrizko egoera S = 1/2 den bitartean U = 5 ezartzean S = 3/2 egoera pasatzen

da oinarrizko egoera izatera. Aldiz, CrQDI katean soilik S = 2 egoera lortzen dugu

Cr atomorako. Metaegoeren azterketa bat burutzen dugu orbitalen okupazio kon-

trolaren metodoa erabiliz. Co atomoarentzat metaegoera bat lortzen du S = 3/2-

rekin, oinarrizko egoeratik 72 meV-ra. Co S = 1/2 eta Cr atomoan lortutako

metaegoerak oinarrizko egoeratik energikoki oso urrun daude, beraz ez ditugu kon-

tutan hartzen. Anisotropia magnetikoaren energia kalkuluek, CoQDI ardatz leuna

katearen planoan baina berekiko perpendikularra ezartzen dute S = 3/2 egoere-

tan, eta kateraren norabiden S = 1/2 egoerarentzat. CrQDI katean ardatz leuna

katearen planoaren normalaren norabidean dago. Truke elkarrekintzaren kalku-

luek, CoQDI kateko S = 3/2 egoerek AFM egitura lehenesten dutela frogatzen

dute, aldiz S = 1/2-ko egoerak FM egitura, CrQDI kateak AFM egitura erakusten

du. Emaitza hauek Pavel Jelineken taldeak XMCD eta XLD esperimentuetan neur-

tutako emaitzekin bat egiten dute. Soilik CrQDI truke elkarrekintzan neurtutako

seinaleak AFM egitura ahula neurtzen du eta gure kasuan AFM egitura egonko-

rra lortzen dugu. Truke elkarrekintzaren desberdintasuna azaltzeko asmoz katean

zentzu fisikoa duten aldaketak egiten saiatu gara, adib.: Uren balioa aldatu, spinen

egitura kolinealak ez diren egiturak ezarri, katearen geometrian distortzioak eragin

etab. Hala ere, aldaketa hauek ez dute truke elkarrekintzan ia eraginik, soilik Uren

aldaketek txikitzen du truke elkarrekintza, baina ez esperimentua azaltzeko bezain

beste.

Azkenik, 6. atalean, Tesi honetan burutu dugun ikerkuntzaren ondorio nagu-

siak aurkezten ditugu.





Chapter 1

Introduction

Pretentious quotations are the

surest road to tedium

H.G. and F.G. Fowler

The main purpose of this Thesis is to perform a theoretical analysis of the mag-

netism and electronic correlation on different spin chain system1. Though simple in

their structure, they show intriguing magnetic properties due to their low dimen-

sionality. Synthesizing one-dimensional systems on different substrates presents

a significant challenge to realize experimentally, and to do any measurement is a

great task. Therefore, theoretical calculations are essential to find ideal candidates

to be able to grow experimentally and also predict the magnetism in these systems.

Our work’s first aim is to give insights into the interplay between chains and the

substrate where the chain is grown. Studying two different systems, the chain with

and without the substrate. Depending on the interaction between substrate and

chain, the magnetic atom electron occupancy can be entirely modified and inter-

action between the electrons affected, thus, modifying the magnetic properties of

the system. Our second goal is to analyze the consequences when the theoretical

analysis is capable to converge to excited states apart from the minimum energetic

ground state. We will study the change in the magnetic properties when the dif-

ferent states are set in the magnetic atoms.

1We refer as spin chains to chains where spin-spin interactions between magnetic atoms take
place [1]



2 Chapter 1. Introduction

The discovery of magnetic materials and their utility has been a key element

in the development of human history. For instance, without the magnetic compass

pointing to the North pole2 navigation would have been inconceivable. Since the

late 20th century, magnetic materials have become a part of our daily life, from

the most common use as magnets sticking to the fridge to data storage devices in

computers. These advances have been only possible after deeply understanding the

origin of magnetism. Historically speaking, the first clear reference to magnetism

was given by Thales of Miletus around the 6th century BC with lodestones, a mag-

netic mineral of Fe3O4. The understanding of magnetism took a huge step forward

in the 19th century with the experiments of Oersted and Faraday, which linked

electric currents and the magnetic field. Later generalized by Maxwell’s equations,

giving rise to the joint theory of electromagnetism. These equations could describe

the magnetic and electric fields, but the description of the source of magnetism in

materials was still lacking. In the 20th century, the advent of Quantum Mechanics

and a better understanding of the structure of the atom brought a great revolution

in the research of magnetic materials. The Stern-Gerlach experiment showed that

a neutral beam of Ag atoms under a nonuniform magnetic field separated into two

spots, becoming the first experimental signature of the electron’s spin [3]. Uh-

lenbeck and Goudsmit were the first to propose the hypothesis of the ”spinning”

electron3 [4]. In their hypothesis, they proposed a magnetic moment proportional

to the angular momentum S. Pauli had already proposed that another quantum

number should be needed to understand the electronic structure, hence, he further

developed the idea of the electronic spin, setting that the spin operator S is an

orbital moment associated with the quantum number mS. As the orbital momen-

tum L, S can be associated with a vector S = (Sx, Sy, Sz), its component values

are given by the three Pauli matrices. In 1925, Pauli proposed his well-known

exclusion principle for the electrons, stating that particles with S = 1/2, can not

be in the same state, i.e., have equal quantum numbers4. The formal derivation

of the half-integer spin into theory was made by P. Dirac with the inclusion of rel-

ativity in Schrödinger’s equation resulting in the so-called Dirac’s equation [5, 6].

The spin appears automatically in Dirac’s equation, setting the spin as a quan-

tum property of particles without any equivalent characteristic in classical physics.

Considering all this theory, the total magnetic moment has two contributions from

2In fact, for the last 780.000 years, it is the magnetic South pole [2] due to the inversion of
the magnetic field of the Earth.

3Note, that even if we mentioned ”spinning” electron, this is not true as in our theory we
treat the electron as a point-like particle.

4The generalized exclusion principle for the fermions, i.e., particles with half-integer spin was
stated in 1940.
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the different angular momenta: orbital (µL) and spin (µS), the latter being twice

the first one because of the gyromagnetic factor. The spin magnetic moment of

the atoms originates from the unpaired electron spins resulting in a total net spin

different from zero. This implies that all atoms that have unpaired orbitals should

show magnetism.

In contrast to the atomic model, where atoms with an odd number of electrons

should show a magnetic moment, band theory predicts that only a few materials

are magnetic in bulk. In general, magnetism appears in materials that contain

transition metal atoms and rare-earth elements[7, 8, 9]. Magnetism in solids orig-

inates from the competition between the motion, i.e., the kinetic energy, and the

exchange interaction between electrons resulting from the Coulomb interaction.

While Coulomb interaction favors the electron localization and thus the magnetic

moment, while kinetic energy favors the itinerancy of electrons. 3d transition met-

als are a good example of the interplay of these two effects, as d electrons are

localized within the magnetic atoms but still can form dispersive bands [10]. In

magnetic materials, the atomic spin magnetic momenta can be aligned in different

ways (see Fig. 1.1), such as, parallel (ferromagnetic)[11] and antiparallel (anti-

ferromagnetic) [12], ferrimagnetic or forming complex non-collinear structures [6].

These spin orderings are possible by the exchange interaction proposed by Heisen-

berg: Si · Sj, where Si is the spin vector at atom i. The exchange interaction

counteracts thermal disorder effects. There is a critical temperature where all spin

order vanishes, namely the Curie temperature for ferromagnets and the Néel tem-

perature for antiferromagnetic materials. Above these temperatures, the magnetic

material are randomly oriented, resulting in a zero net magnetic moment,i.e., these

materials are paramagnetic. The stability of the magnetic moment is also related

to the magnetocrystalline anisotropy, i.e., the preference of the spin to be aligned

with a specific crystallographic5 direction, due to the spin-orbit coupling (SOC).

The higher the magnetocrystalline anisotropy the harder to change the spin orien-

tation, e.g., using external magnetic fields.

A well-known use of magnets is as data storage, where data is stored in mag-

netic domains, i.e., regions in magnetic materials where the atoms have a common

magnetization direction, using as support, for example, magnetic tapes and hard

disk drives [13]. These devices are made of thin films of ferromagnetic materials,

such as Co-based alloys, deposited on a non-magnetic substrate, e.g., aluminum,

glass or ceramic. The different magnetization alignments in the domains set the 0

5The preferred direction is known as easy-axis.
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a) Ferromagnetic

c) Ferrimagnetic d) Spin spiral

b) Antiferromagnetic

Figure 1.1: Examples of spin orders in a chain. (a) Ferromagnetic, (b) antiferro-
magnetic, and (c) ferrimagnetic orders are collinear, while the (d) spin spiral is a
non-collinear order.

or 1 bit encoding in the read-write processes. The amount of information that can

be stored depends on the magnetic domain density. Nowadays, hard disk drives can

reach a memory density of 1016 bit/m2, where each bit spatial extent is roughly 100

nm2 [14]. With the rapid progress of information technology, the data that needs to

be stored in these devices has grown exponentially in the last years [15]. Magnetic

domains need to be reduced to allow larger data storage. The size of the domains

can be controlled by manipulating the walls that separate each other. The wall

length is given by the competition between the exchange coupling and magnetic

anisotropy [16], where the exchange favors larger walls and anisotropy shorter ones.

As the size of the magnetic domains is reduced, thermal effects can drive to random

magnetization flips, the so-called superparamagnetic limit, which may lead to the

loss of the stored information [17]. Low-dimensional systems can be considered,

from two-dimensional systems (2D) up to the 0D limit of the magnet: the atom.

Our work is focused on one-dimensional (1D) systems. 1D chains comprise a diverse

family of different structures, such as, atomic chains (a linear array of atoms) or

complexes such as metal-oxides or metal-organic molecule chains. In this family, we

also include ”quasi-one-dimensional” nanowires (or nanoribbons), wires with some

lateral extension, where 1D quantum effects determine their properties [18, 19] to

3D structures that effectively can be treated as arrays of stacked 1D chains [20].

Specifically, in this Thesis we will work with chains where the transition metal

atoms are linked with O atoms (transition metal-oxide, TMO) chains [21, 22, 23]

and with organic molecule ligands, forming metal-organic chains [24, 25, 26, 27, 28].

Along with the reduction of dimensionality, the many-body interactions become

more relevant than in the bulk state. Due to the lower coordination, Coulomb in-

teraction screening is reduced compared to that of a bulk system, thus, enhancing

the spin-spin exchange interactions. Therefore, there exists a possibility of mag-
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netism in otherwise non-magnetic materials, for example, sp elements such as Al

nanowires [29]. In low dimensional systems (d 6 2), the Mermin-Wagner theorem

forbids long-range spin ordering at any non-zero temperature [30], unless magnetic

anisotropy is present. The lower dimension favors larger spin and orbital moments,

enhancing the magnetic anisotropy [9]. The 1D chains can be used for electroni-

cal purposes [31], such as logic gates [32], diodes [33] or transistors [34, 35]. But

the main interest in one-dimensional chains comes from their intriguing magnetic

properties. Symmetry reduction in chains (e.g., lack of inversion symmetry) and

the Heisenberg exchange interaction makes different magnetic collinear or non-

collinear order possible. The loss of centrosymmetry combined with SOC allows

the appearance of other interactions such as the antisymmetric (Dzyaloshinskii-

Moriya) exchange, leading to non-collinear chiral spin orderings. This type of

interaction allows the existence of exotic magnetic textures, such as, skyrmions in

nanowires [36] and spin-orbit torque [37], which make them fundamental for state-

of-the-art technological devices based on spintronics [38], i.e., devices that consider

the spin degree-of-freedom [39, 40, 41]. Low dimensional systems can help reducing

the size of devices. However, they have a drawback: their critical temperature is

lower than that of 3D materials [9].

Synthesizing one-dimensional systems is challenging for experimentalists. Among

the used techniques are the controlled self-assembly, e.g., in stepped surfaces[42]

[43, 44, 45] and atomic manipulation [46] by STM [47]. The first experimental

evidence of magnetic order in atomic chains was reported in 2002 by Gambardella

et al. [48], who found ferromagnetism in monoatomic Co chains grown along the

step-edges of Pt(997) substrate. Experimentally, the geometry can be character-

ized at the atomic scale by means of low-energy electron diffraction (LEED) [49]

and scanning electron microscopy (STM) [50]. The electronic structure can be

studied using scanning electron spectroscopy (STS) [51], inelastic electron tun-

neling spectroscopy (IETS) [52] and angle-resolved photoemission spectroscopy

(ARPES) [53]. Magnetic characterization can be performed by X-ray magnetic

circular dichroism (XMCD) and linear dichroism (XLD) [54, 55] also using IETS

[56] and spin-polarized STS techniques [57, 58, 59]. The improvement of the ex-

perimental techniques, such as, the STM allows the characterization of the spin

of individual atoms, and in some cases, the displacement and transfer of specific

atoms [46, 1], this allows to a spin-by-spin control and characterization of the mag-

netic chains [60].

Early theoretical studies of spin chains include Heisenberg’s work on ferro-

magnetic chains [11], Bethe’s research on antiferromagnetism [61], the study of
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spin-wave excitations by des Cloizeaux [62, 63] and many others [64, 9]. Later

on, the development of ab initio calculation methods, such as, density functional

theory (DFT) allowed to perform calculations without empirical parameters but

still with an adequate balance between accuracy and computation cost. The spin-

polarized DFT allows us to calculate the system’s total energy for different spin

alignments. This allows to obtain the magnetic ground state configuration and

thus, the exchange coupling constant J between these spin orderings. The mag-

netic anisotropic energy (MAE) of each system can be obtained by the difference

in the total energy for different magnetization orientations in DFT+SOC calcula-

tions. MAE is around ∼ 1 − 10 meV in low dimensional systems [9]. Thus, the

total energy convergence needs to be obtained with a large precision. Different

approaches have been considered to ease the evaluation of SOC effects in the sys-

tems. In our work, we use two different methods: one where SOC is considered

self-consistently and the other is the force theorem [65, 66]. In the latter one,

SOC effects are evaluated in a converged spin-polarized electron density without

any further density updates; hence, a computationally less demanding calculation

is made, compared to the former one. In the self-consistent calculation, a more

accurate effect of SOC is obtained, as the electron density is allowed to relax at

the cost of increasing the computational cost.

DFT is based on a one-electron picture, hence, it can not always describe the

properties of strongly correlated materials. In these materials, the electron-electron

interaction needs to be considered in the calculation. This problem becomes evi-

dent in 3d transition metal atoms, where the d shell is strongly localized, partic-

ularly, in low-dimensional systems. This limitation may result in the erroneous

prediction of a metallic system instead of insulating [67]. To improve the descrip-

tion of the localized electrons, different corrections have been implemented into

DFT, e.g., self-interaction correction[68, 69, 70] and the DFT+U correction. In

our work, we use the latter method where a Hubbard-like term[71] is included in

the Hamiltonian to describe the interaction between the localized electrons. An-

other limitation when DFT is used to compute the ground-state properties is that

we rely on that the converged state is the ground state. If the energy minimiza-

tion procedure was exact, the resulting state would always be the ground state.

However, the numerical procedure is not perfect, it can find configurations with

sufficient energetic barrier that the energy minimization can not surpass, hindering

the true ground state [72, 73]. Therefore, methods that can consider these occu-

pation variation need to be applied to ensure the ground state.
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The structure of the Thesis is as follows:

In Chapter 2, we describe the theoretical framework used in our work. We be-

gin with a brief introduction to the basic equations in Solid State Physics. Next, the

DFT background is described along with the DFT+U correction scheme and the

occupancy matrix control (OMC) method used to find metastable configurations.

Next, we present the two methods used to evaluate the MAE: the self-consistent

method and the force theorem approach. Finally, we describe the constrained ran-

dom phase approximation (cRPA) method, used to calculate the U (intraorbital)

and J (interorbital) interaction parameters needed in the DFT+U calculations.

Together, a brief introduction to maximally localized Wannier functions (MLWF)

is given.

In Chapters 3 and 4, we present the results for our research on TMO chains,

XO2 where X =Ni, Co, Fe and Mn [23, 74]. In Chapter 3, we show the obtained

results for the magnetic properties of free-standing TMO chains. We calculate the

ground state dependence on U , along with the Heisenberg coupling and MAE.

Chapter 4 explores the screened Coulomb interaction in the d shell of the X

atom in the TMO chains. Using cRPA, we compute U and J for the isolated and

supported chains on an Ir(100) substrate. We study the variation of U and J with

the X atom d-orbital configuration for both cases.

Chapter 5 is devoted to the analysis of the metal-organic chains formed by

Co and Cr atoms coordinated with 2,5-diamino-1,4-benzoquinonediimine (QDI)

ligands [75]. In particular, we analyze the existence of metastable states in the TM

atoms and their effects in the magnetic features. Our theoretical results on the

electronic structure and the magnetic properties help to interpret the experimental

measurements of XMCD and XLD made by the group of Prof. Pavel Jelinek from

the Institute of Physics in Prague.

Finally, in Chapter 6, we present the main conclusions of the investigation

performed during the Thesis.





Chapter 2

Theoretical methods

That is brand-new information!

Phoebe Buffay, Friends

In Condensed Matter Physics, the framework to study materials at the atomic

scale is quantum mechanics. In this chapter, we introduce the theoretical back-

ground of the Thesis.

2.1 The Many-Body problem in Condensed

Matter Physics

An atomistic model of matter starts by Ni nuclei and Ne electrons that interact via

Coulomb’s law and obey the time-dependent many-body Schrödinger equation:

ĤΦ({r}, {R}, t) = i
∂Φ({r}, {R}, t)

∂t
, (2.1)

where Ĥ is the Hamiltonian of the system, Φ({r}, {R}, t) is the many-body wave-

function, {R} = (R1,R1, ..,RNi
) are the spatial coordinates of nuclei and {r} =

(r1, r1, .., rNe) are the electronic spatial coordinates. t is the time. In the case of

the stationary problem, we can separate the spatial degrees of freedom from the

time:

ĤΨ({r}, {R}) = EΨ({r}, {R}) , (2.2)
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being E the total energy of the stationary system and Ψ the time-independent

wave function. The Hamiltonian can be split into the kinetic energy of the ions

and electrons and the interaction terms between them. For a system under no

external fields, the non-relativistic Hamiltonian in atomic units1 can be written:

Ĥ = T̂i + T̂e + V̂ii + V̂ie + V̂ee =

Ni∑
i

P2
i

2Mi

+
Ne∑
n

p2
n

2
+

1

2

Ni∑
i 6=j

ZiZj
|Ri −Rj|

−
Ni∑
i

Ne∑
n

Zi
|Ri − rn|

+
1

2

Ne∑
n 6=n′

1

|rn′ − rn|
,

(2.3)

where T̂i and T̂e are the kinetic energy operators of the ions and electrons, re-

spectively, and V̂ii, V̂ie and V̂ee the Coulomb interaction terms between the ions,

ion-electron and electrons, respectively. The subindices i and j run over the ion

nuclei and n and n′ over the electrons. Pi and pn are ionic and electronic momen-

tum operators, respectively. Mi is the nuclear mass and Zi the nucleus charge.

Solving Eq. (2.2) allows us to obtain the exact wavefunction Ψ and, therefore,

all information regarding the system. However, we face an equation system with

3 (Ni+Ne) spatial degrees of freedom and Coulomb interactions make it impossible

to separate the many-body problem into a single-particle one. Furthermore, if the

goal is to obtain solutions for macroscopic behavior, we deal with an enormous

number, ∼ 6 × 1023, of atoms. Therefore, an exact solution is unfeasible and

approximations are required from the beginning.

The Born-Oppenheimer approximation

In the Born and Oppenheimer approximation, the full many-body wavefunction is

split into two different functions [76] as follows:

Ψ({r}, {R}) =
∑
n

χn({R})ψn({r}; {R}) , (2.4)

where χn and ψn stand for the set of nuclei and electron wavefunctions, and n

runs through the nuclei states. The Born-Oppenheimer approximation is based on

the huge difference of masses between the electrons and nuclei (for instance, in the

Hydrogen atom the mass ratio between electron and nuclei is 1/1836). Hence, in

the electron framework, nuclei move slow enough2 for the electron wavefunction
1me = e = h̄ = 1.
2Sommerfeld’s theory of conduction predicts ∼ 10 Å/fs for electrons and classical harmonic

theory predicts ∼ 10−2 Å/fs for ions [77].
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to adapt instantaneously to their movement. Inserting Eq. (2.4) into Eq. (2.2) we

build a Hamiltonian Ĥe that depends only on the electronic degrees of freedom

and where the ion spatial coordinates {R} enter as parameters:

Ĥeψn({r}; {R}) = En({R})ψn({r}; {R}) , (2.5)

Ĥe = T̂e + V̂ie + V̂ee + EII , (2.6)

where the interaction between nuclei EII is a constant, ψn({r}; {R}) and En({R})
in Eq. (2.5) are obtained for a given nuclear configuration. Within the Born-

Oppenheimer approximation, the system with 3 (Ni + Ne) degrees of freedom is

reduced to 3Ne electronic variables.

Hartree-Fock approximation

Despite the Born-Oppenheimer approximation, we still face the complexity of

the many-body character of the electronic wavefunction and the electron-electron

interaction. One of the proposed approaches to deal with this problem is the

Hartree-Fock (HF) method [78]. The HF method is a mean-field theory where

the many-body wavefunction is approximated by an independent electron wave-

function. In order to construct the approximated wavefunction3 we use the Slater

determinant[79]:

ψ(r1, r2, . . . , rNe) =
1√
Ne!

∣∣∣∣∣∣∣∣∣
φ1(r1) φ1(r2) · · · φ1(rNe)

φ2(r1) φ2(r2) · · · φ2(rNe)
...

...
. . .

...

φNe(r1) φNe(r2) · · · φNe(rNe)

∣∣∣∣∣∣∣∣∣ , (2.7)

where φν(rµ) are a single-particle wavefunctions. The Slater determinant builds an

antisymmetric wavefunction suitable for fermionic systems that fulfills the Pauli

exclusion principle. The expectation value of the Hamiltonian Eq. (2.6) using the

wavefunction of Eq. (2.7) is

3For the sake of simplcity, we remove the implicit dependence on the nuclei positions {R}.
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〈Ĥe〉 =
∑
n

∫
drφ∗n(r)

[
−1

2
∇2 + Vext

]
φn(r)

+
1

2

∑
nn′

∫
drdr′

|φn(r)|2|φn′(r′)|2

|r− r′|

− 1

2

∑
nn′

∫
drdr′φ∗n(r)φ∗n′(r

′)
1

|r− r′|
φn′(r)φn(r′) .

(2.8)

The first term contains the kinetic energy of each particle and the external po-

tential acting on the electrons. The second and third terms are two-body Coulomb

interactions, direct and exchange terms between two electrons, the latter one aris-

ing because of the Pauli exclusion principle.

In the HF method, we use the variational principle to find the approximated

ground state energy of the system. Using Lagrange multipliers, the energy is

minimized while maintaining the constraint of orthogonality between one-electron

wavefunctions:

F [φn] = 〈Ĥe〉 −
∑
n

εn

[∫
dr|φn(r)|2−1

]
(2.9)

where F is the functional to be minimized, the first term is given by Eq. (2.8) and

the second term is the set of orthogonality constraints, where εn are the Lagrange

multipliers. But, even if the electrons were uncorrelated, we still face a set of non-

linear equations with 3Ne variables, which makes the problem computationally

demanding.

2.2 Density Functional Theory

In Density Functional Theory (DFT), the center of interest is the electron den-

sity instead of the wavefunction. Hohenberg and Kohn stated the two principal

theorems that established DFT foundations [80]:

Theorem 2.1 The external potential Vext(r) is determined by a unique functional,

aside from a constant, of the ground state electron density n0(r).

Theorem 2.2 There exists a functional of the total energy dependent on the elec-

tron density, E [n], for any external potential. The exact ground state density gives

the global minimum of the energy functional which is the ground state energy.
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These two theorems set the relationship between the energy and the density.

However, the kinetic energy can not be directly rewritten in terms of the density

and the wavefunctions within a many-body problem are still intractable.

Kohn and Sham proposed an approach that, instead of studying an interact-

ing many-body problem, replaced it with a non-interacting one. Still, the non-

interacting picture upholds the same exact ground state density of the many-body

system [81]. All the information related to the many-body character of the particles

is incorporated in an exchange-correlation functional term. Within the Kohn-Sham

(KS) ansatz the electron density is obtained from non-interacting single-particle

wavefunctions, ψKSi (r):

ρ(r) =
Ne∑
i

|ψKSi (r)|2 . (2.10)

The electronic energy functional can be decomposed as:

EKS[ρ] = TKS[ρ] + Eext[ρ] + EH [ρ] + Exc[ρ] , (2.11)

where the kinetic energy expressed in terms of the KS orbitals is:

TKS[ρ] = −1

2

Ne∑
i

∫ [
ψKSi (r)

]∗∇2ψKSi (r); . (2.12)

In the kinetic functional, the dependence on the density is implicit, it comes from

the KS wavefunctions. Note that TKS[n] does not account for the correlation com-

ponent of the kinetic energy as we use non-interacting KS orbitals to build the

functional.

The energy due to the external potential can be expressed as:

Eext[ρ] =

∫
dr ρ(r)Vext , (2.13)

and the Hartree energy, which corresponds to the electron-electron interaction is:

EH [ρ] =
1

2

∫
drdr′

ρ(r′)ρ(r)

|r− r′|
. (2.14)

The information regarding the many-body features is in the exchange-correlation

energy. In the KS approach, the exchange-correlation energy can be approximated

by a local functional of the density as:
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Exc[ρ] =

∫
drρ(r)εxc([ρ], r) , (2.15)

where εxc([ρ], r) is the exchange-correlation energy per electron. The solutions of

the total energy functional are obtained by minimizing the functional 2.11 with

the Lagrange multipliers method:

δ

[
EKS − µ

(∫
drρ(r)−N

)]
= 0 (2.16)

where the constraint is set to be a fixed number N , of electrons with the chemical

potential µ acting as the multiplier.

In the KS picture the Hamiltonian is separable into single-particle KS orbitals

as follows: [
−1

2
∇2 + V KS(r)

]
ψKSi (r) = εiψ

KS
i (r) , (2.17)

where V KS is the effective potential of the system:

V KS = Vext +

∫
dr′

ρ(r′)

|r− r′|
+
δExc

δρ(r)
. (2.18)

Eq. (2.10) and Eq. (2.17) constitute the KS equations. The KS equations are

solved iteratively following the procedure shown in Fig. 2.1. From an initial guess

of the density, ρ(r), we get the potential of Eq. (2.18). Introducing the obtained

V KS potential into the Kohn-Sham eigenvalue problem, Eq. (2.17), we obtain a

set of KS orbitals. We build a new density from the latter and repeat the process

until we reach a certain convergence threshold.

ρ(r)

V KSψKS

E
q.

(2.18)

Eq. (2.17)

E
q.

(2
.1

0)

Figure 2.1: Simplified scheme of the self-consistent cycle to solve the Kohn-Sham
equations.

If the exact form of the exchange-correlation functional εxc were known, we

would be able to attain an exact description of the electronical properties of the

systems. Instead, εxc is obtained by means of approximations. In the following

section, we present the ones used in our calculations.



2.2. Density Functional Theory 15

Exchange and correlation functional

Kohn and Sham proposed one of the most successful approaches: the local density

approximation (LDA) [81]. In LDA, the exchange-correlation energy is considered

a local function of the density in the limit of the uniform electron gas (UEG).

ELDA
xc =

∫
drρ(r)εUEGxc (ρ(r)). (2.19)

In LDA the functional εUEG can be separated into the exchange and correlation

terms [82]:

εUEGxc = εUEGx + εUEGc (2.20)

where the exchange term εUEGx is known for a UEG system, whereas no analytic

form is known for the correlation energy εUEGc . Numerical methods, such as the

Monte Carlo method, are used to obtain approximated values of the correlation en-

ergy. LDA is a fine approximation unless the system presents high inhomogeneities.

Well-known systematic inaccuracies are present in the LDA approximation. The

most remarkable is the overestimation of the binding energies and, in consequence,

the underestimation of the bond-lengths [83].

The next step to improve the LDA is the construction of a semi-local approxi-

mation. In the generalized gradient approximation (GGA) a gradient of the density

is included to take into account the spatial variations of the density.

EGGA
xc =

∫
drρ(r)ε[ρ(r), |∇ρ(r)|] . (2.21)

In the GGA functional, Exc has the general form:

EGGA
xc =

∫
drρ(r)εUEG[n(r)]Fxc(ρ(r), |∇ρ(r)|) , (2.22)

where Fxc(ρ(r), |∇ρ(r)|) is the so-called enhancement function, which holds infor-

mation about the non-locality of the density. In our calculations, we have used the

parametrization given by Perdew, Burke and Ernzerhof (PBE) [84].

Another way to improve the exchange-correlation functional is to combine the

Hartree-Fock (HF) exchange and the LDA or GGA exchange-correlation function-

als. The hybrid functionals consider a mixing of both [85]:

EHybrid
xc = (1− a)EHF

xc + aELDA/GGA
xc , (2.23)
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where the parameter a is a mixing factor 0 < a < 1. In our calculations, we use

the Heyd–Scuseria–Ernzerhof hybrid functional [86], in this hybrid functional the

exchange term is divided into short and long range part, depending on a parameter

µ, where only the short-range term is mixed with the HF. Specifically, we use the

HSE06 formulation where a = 3/4 and µ = 0.2 are set [87].

Spin in DFT

Hohenberg and Kohn developed DFT theory for spinless systems, while von Barth

and Hedin extended it to include spin-polarized systems [88]. Spin-polarized DFT

uses spinor wavefunctions to build a density matrix. The density matrix, ρ̂, can

be separated into a scalar density ρ and vectorial m density:

ρ̂(r) = ψα∗1ψβ + ψα∗σαβψβ =
1

2

(
ρ(r) +mz(r) mx(r)− imy(r)

mx(r) + imy(r) ρ(r)−mz(r)

)
(2.24)

where ψα is the wavefunction with spin α, β =↑, ↓, 1 is the 2 × 2 unitary matrix

and σ = (σx, σy, σz) are the Pauli matrices. The density matrix elements are given

by: ραβ = ψα∗ψβ. In the case of no external magnetic field coupling to the spin

the resulting Schrödinger-like equation is:

[(
−1

2
∇2 +

∑
α

∫
dr′

ραα(r′)

|r− r′|

)
1 + V αβ

ext (r) +
δExc[ρ

αβ(r)]

δραβ(r)

](
ψ↑

ψ↓

)
= εi

(
ψ↑

ψ↓

)
(2.25)

Analogously to the density, the exchange-correlation functional is spin dependent.

Eq. (2.25) is the general case that describes noncollinear spin textures. Considering

that all atoms align their spins in the z-axis direction, such as in the collinear

case, e.g. antiferromagnetic, ferromagnetic or ferrimagnetic, the potential matrix

becomes diagonal, resulting in two decoupled equations [89]:

[
−1

2
∇2 +

∫
dr′

ρ↑↑(r′)

|r− r′|
+ V ↑↑ext + v↑↑xc

]
ψ↑ =ε↑iψ

↑ (2.26)[
−1

2
∇2 +

∫
dr′

ρ↓↓(r′)

|r− r′|
+ V ↓↓ext + v↓↓xc

]
ψ↓ =ε↓iψ

↓ (2.27)

where v↑↑,↓↓xc =
δE[ρ↑↑,↓↓]

δρ↑↑,↓↓
.
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DFT in strongly correlated systems: DFT+U method

LDA and GGA functionals consider an orbital-independent potential. Both func-

tionals have been successful to obtain material properties but they can fail when

strong electron interactions are present in the systems. The latter systems are

usually compounds with transition metal, or rare-earth, atoms with partially filled

d or f orbitals [90]. If the strong correlations are not taken into account, LDA- and

GGA-based calculations can miss their localized character, resulting sometimes in

an itinerant electron behavior and a metallic state instead of insulating [67]. This

latter problem is evident in Mott insulators[91], where non-interacting band the-

ory predicts a metallic state, but experiments show an insulating behavior, e.g.,

in V2O3 and CoO[92]. Several magnetic properties depend strongly on the value

of the interaction between the electrons, such as, magnetic moment, magnetic ex-

change coupling, etc. [93, 94, 10].

In order to obtain the correct ground-state properties in strongly correlated

systems, we need to properly take into account the Coulomb intratomic interactions

between the localized states. A way to do so is to combine DFT and the Hubbard

Hamiltonian, which constitutes the so-called DFT+U scheme. The Hamiltonian

of the system is separated into two terms: one where the orbital-independent one-

electron potential is maintained and another one where we include a Hubbard-like

term [71], aimed at describing the screened Coulomb interaction4 [95, 96] between

electrons in the correlated orbitals (d orbital in this work). The DFT+U energy

functional[97] is defined as follows:

EDFT+U [ρσ, nσl ] = EDFT[ρσ] + Eee[nσl ]− EDC[nσl ] , (2.28)

where EDFT[ρσ] is the functional with the LDA or GGA exchange-correlation.

Considering collinear spins, ρσ is the spin density with spin σ =↑, ↓. The second

term is the multiorbital Hubbard-like functional dependent on the orbital occu-

pation matrix nσl , where l is the orbital shell number, and the last term is the

double counting (DC) term. In Eq. (2.28) the DC term is introduced to eliminate

the electron-electron interaction of the localized states that is already taken into

account in EDFT. Next, we describe details about the two different forms of the

Hubbard term that have been used in the manuscript. The first one is proposed

in Ref. [98] 5:

4From now on, when we write screening, we refer to the screening of the localized d states.
In the case of the screening of the full system, W , we will explicitly write fully screened.

5We adopt Dirac’s notation to account for the Coulomb matrix elements.
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Eee[n] =
1

2

∑
σσ′

m1,m2
m3,m4

n̂σm1m2
( 〈m1m3|Vee|m2m4〉 − 〈m1m3|Vee|m4m2〉 δσσ′) n̂σ

′

m3m4

(2.29)

where n̂σm1m2
are the matrix elements of the occupation matrix, mi are the or-

bitals of the shell l, running for mi = −l, . . . , l, and V ee is the screened Coulomb

interaction. Different flavours to account for DC term exist, such as the around

mean-field approximation [95] (AMF) and the fully-localized limit [97] (FLL). Re-

sults may be depend on the chosen DC term. In the FLL, the states that are

more than half-occupied are lowered in energy while in the AMF case the states

with an occupation higher than the average are lowered in energy[99, 100]. In our

calculations, we use the DFT+U within the fully localized limit DC term [101]:

EDC[n] =
U

2
N(N − 1)− J

2

∑
σ

Nσ (Nσ − 1) , (2.30)

where Nσ = Tr(n̂σ) is the trace of the n̂σ matrix, and N = N↑ + N↓. The U and

J parameters are the screened electron interaction and the exchange parameters,

obtained from the screened Coulomb interaction as follows:

U =
1

2l + 1

∑
m1m3

〈m1m3|V ee|m1m3〉 (2.31)

J =U − 1

2l(2l + 1)

∑
m1m3

(〈m1m3|V ee|m1,m3〉 − 〈m1m3|V ee|m3m1〉) . (2.32)

The second one is a simplified version of Eq. (2.29), derived by Dudarev et al.

[102] considering the Hamiltonian given in [96]:

Eee[n] =
U

2

∑
mm′σ

nσmn
−σ
m′ +

U − J
2

∑
m6=m′σ

nσmn
σ
m′ . (2.33)

where nm is the occupation number of the m orbital, i.e. nm = n̂mm.

In order to take into account the DC term, we evaluate the previous equation in

the limit of integer values of the occupation matrix and subtract it from the DFT

energy. The resulting DFT+U functional in Dudarev’s approach is expressed as:

EDFT+U
Dudarev[ρσ, n] = EDFT[ρσ] +

U − J
2

∑
σ

(∑
m1

n̂σm1m1
−
∑
m1m2

n̂σm1m2
n̂σm2m1

)
.

(2.34)
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where, the second term, proportional to U − J , acts as a penalty function on the

DFT energy, driving the system towards an integer on-site occupancy matrix, nσmm.

In the DFT+U , the U correction scheme is only applied to states with the

orbital character of the localized orbital and the total energy will depend on U and

J . This means that total energies resulting from two calculations that use different

U and J values cannot be compared.

Bloch’s theorem

3D perfect crystals are formed by repeated units with lattice vectors R1, R2 and

R3. Therefore, the effective potential Veff acting on the electrons has to be R-

periodic.

Veff (r + R) = Veff (r) , (2.35)

Bloch’s theorem [103] states that the eigenfunctions ψ of a Hamiltonian with a

periodic potential like Eq. (2.35) can be written as a product of a plane-wave and

a function u(r) with the periodicity of the lattice:

ψnk(r) = eik·runk(r) (2.36)

unk(r) = unk(r + R) (2.37)

where k is a wave vector in the first Brillouin zone of the reciprocal lattice and n is

a band index resulting from different solutions for a given k. Because of Eq. (2.36),

we can expand the wavefunctions using a plane-wave basis:

ψnk(r) =
1√
V

∑
G

cnk(G)ei(k+G)·r (2.38)

where V is the volume of the cell, cnk(G) the coefficients and G are reciprocal

lattice vectors.

Projector Augmented Wave (PAW)

In order to solve the KS equations numerically, different methods have been imple-

mented in software codes. In our calculations, we use two different codes: VASP

(Vienna Ab-Initio Software Package) and FLEUR. Both codes calculate the elec-

tronic structure and ground-state properties of the systems. In this section, we

will describe briefly the projector augmented wave (PAW) method [104] used in

VASP. For a detailed description, the reader is referred to ref. [105].



20 Chapter 2. Theoretical methods

The PAW method generalizes the pseudopotentials and linearized augmented

plane-wave techniques. The valence electrons are responsible for most physical and

chemical properties and therefore enter into the KS equations and construction of

the density. The valence electrons wavefunctions show a rapid oscillatory behavior

near the nuclei, making it necessary to use a large number of plane waves to

describe them correctly. To overcome this problem, the potential acting on the

core electrons is replaced by a pseudopotential inside a spherical region, where

valence electrons are described by smoothed pseudowavefunctions. In the PAW

method, the transformation from the pseudowavefunction to the true one-electron

wavefunction ψ̃nk is done by:

ψnk = (1 + L) ψ̃nk (2.39)

where L is the linear transformation function acting inside the PAW sphere, which

maps the pseudowavefunction ψ̃nk to the true wavefunction. Inside this region the

constructed pseudowavefunction is a mathematical tool that does not resemble the

true all-electron wavefunction. Outside, the wavefunction ψ̃nk matches the true

all-electron wavefunctions. In VASP, the ψ̃nk is expanded in a plane-wave basis.

Full Potential Linearized Augmented Plane Wave

(FLAPW)

The FLEUR code is an implementation of the full-potential linearized augmented

plane wave (FLAPW) method [106]. We give here the basic details of FLAPW.

For a complete description we refer to the review of S. Blügel and G. Bihlmayer

Ref. [107].

In the LAPW method, the space is divided into non-overlapping muffin-tin

(MT) spheres centered at each atom and the interstitial region (IR) between them.

The core electrons are localized inside the MT region, while the valence electrons

spread over the MT and IR. In the MT region, the wavefunctions are described by

the spherical harmonics times a radial function, while in the IR a plane-wave basis

is used. The radial function is the solution of the radial Schrödinger equation. To

avoid the dependence on the energy E parameter, in LAPW, a linear approximation

in E of the radial function is made, that depends on an orbital (l) dependent

parameter El. Therefore, the valence electrons wavefunctions are:
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ψkG(r) =


1√
V
ei(k+G)·r , if r ∈ IR∑

lm

(
almkGu(r;EL) + blmkGu̇(r;EL)

)
Ylm(r̂) , if r ∈ MT

(2.40)

where u(r, El) is the radial function and u̇(r, El) the first derivative with respect to

the energy evaluated at the energy parameter El. Ylm(r̂) is the spherical harmonic

for angular momentum quantum number l and magnetic quantum number m. The

coefficients almkG and blmkG are obtained from the matching conditions of u and u̇ at

the boundary of each MT sphere. The FLAPW approach is the combination of

the potential without any shape approximations, i.e., keeping the full potential

and the linearized functions of the LAPW basis.

Occupancy Matrix Control (OMC)

The DFT+U functionals introduce an explicit orbital occupation dependence,

since partial occupations are penalized in favor of integer ones (see Eq. (2.29)

and Eq. (2.34)). The Hubbard corrections DC term is also occupation dependent

and, moreover, not uniquely defined. In practice, this makes the KS equations

self-consistency biased by the initial orbital occupation matrix. Different initial

matrix n̂σ guesses may lead to metastable states instead of the true ground state

configuration, as schematically shown in Fig. 2.2.

Figure 2.2: Representation of an energy curve vs the density. The local minimum
is a metastable state of the system while the global minimum is the true ground
state.

To search for energetically accessible metastable configurations, in this work

we have used the occupancy matrix control (OMC) method developed by Allen
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et al. [73] and implemented in VASP via Dudarev’s DFT+U correction. In an

initialization run, the occupancy matrix provided by the user is kept fixed while

the wavefunctions and charge density are allowed to relax. The resulting total

energy of this calculation is meaningless as we have obtained it by imposing a

constraint. With the resulting charge density and wavefunctions, we run again the

calculation without applying OMC. To allow further relaxation of the occupations.

States within a shallow minimum of energy landscape can relax to a more stable

configuration, but those configurations located in a deep minimum will remain

as metastable configurations. From the resulting energies, the lowest one can

correspond to the actual ground state.

2.3 Spin-Orbit Coupling (SOC)

In this section, we will discuss the spin-orbit coupling (SOC) effect in the electrons

of solids. Considering a non-relativistic limit of Dirac’s equation, the Schrödinger

equation along with other terms can be obtained. The latter terms are the rela-

tivistic corrections to the Schrödinger equation. One of those terms is the SOC.

The SOC term can be expressed as:

HSOC = σ · (−∇V (r)× p) = −1

r

dV (r)

dr
σ · (r× p) = ξ(r)σ · L , (2.41)

where σ are the Pauli spin matrices, V (r) the potential, L the orbital moment

and ξ(r) = −1
r
dV (r)
dr

. In Eq. (2.41), a spherically symmetric potential has been

assumed, as SOC is an atomic property. The function ξ(r) increases for heavy

atoms as the Coulomb potential is proportional to Z, nuclear number. Integrating

ξ(r) over the radial function for each orbital and rewriting Eq. (2.41) in terms of

the spin S = σ/2:

HSOC = λS · L , (2.42)

where λ = 〈ξ〉 /2 is the radially integrated spin-orbit constant. Note that the

constant differs for different orbital shells of the atom. As a consequence of this

relativistic term, there are splittings in the atomic energetic states. In solids, the

inclusion of SOC can split energy bands with degeneracies if their orbital symme-

try allows for it [108, 109].

In DFT, to account for relativistic effects instead of solving Dirac’s equation,

which would require a 4-component spinor, we consider the Schrödiger equation
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that includes the relativistic terms. This Hamiltonian is known as the Pauli equa-

tion (without an external magnetic field). In this method, the needed spinor is

reduced to a 2-component spinor [89]:

HPauli = HNR +HSR +HSOC (2.43)

where the HNR is the non-relativistic term, as in the Schodinger equation, and HSR

are the scalar-relativistic terms which are the relativistic corrections without the

spin term6.

In magnetic systems, SOC is the origin of several effects, such as the antisym-

metric magnetic exchange (the so-called Dzyaloshinskii-Moriya interaction), the

anomalous Hall effect and the magnetocrystalline anisotropy. This Thesis focuses

on the latter effect. SOC introduces a spin-orientation dependence in the total

energy of the system and, hence, the existence of a preferred magnetization direc-

tion with respect to the lattice. This energy difference between directions is the

magnetocrystalline anisotropy energy (MAE), as shown in Fig. 2.3.

EMAE

or

Spin direction

E
n

er
g

y
 

Figure 2.3: Scheme of the total energy dependence on the spin orientation and
the MAE.

The MAE is usually small for fcc and bcc bulk systems, around 10 µeV or less

[9], because the high symmetry reduces it to a λ4 effect. For other bulk structures

[110] and lower-dimensional systems, symmetries are reduced and higher values of

the MAE are possible (of the order of λ2, i.e. ∼ 1 meV). In order to evaluate such

values of the MAE a fine k-point mesh is needed, as well as, a precise Fermi level

determination.

6The mass-velocity and Darwin terms.
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To calculate the MAE, first, a scalar-relativistic self-consistent ground state is

obtained [111]. In the following step, a fully-relativistic self-consistent DFT calcu-

lation is carried out, including SOC effects. The MAE is obtained by substracting

the two different total energies for two different spin orientations, a, b as seen in

Fig. 2.3,

MAESCF = Ea
TOT − Eb

TOT . (2.44)

As mentioned before, calculating the MAE needs a fine treatment of the SOC

and a demanding convergence. Different approximations have been used to over-

come this problem, such as those based on second-order perturbation theory [112,

113, 114, 54] and the force theorem (FT) method [65, 115]. In the following section,

we describe the FT technique used in our work.

The non-self-consistent approach of the MAE: the force

theorem

In this method, the SOC effect is added non-self-consistently to the already con-

verged scalar-relativistic density. The FT approach can be considered because the

SOC term is small compared to the other terms of the KS equation. Hence, its

effect on the density of the system can be treated as a perturbation. The FT ap-

proximation is correct up to the ∆ρ′ density term (the change in the density when

SOC term in included). Terms of (∆ρ′)2 order have a minor effect due to cancella-

tions between different orientations [115]. The cancellation of different terms allows

to obtain the MAE as the difference of the band energies for two magnetization

orientations.

MAEFT = Ea
band − Eb

band =
∑
nk

[
fa(εank)εank − fb(εbnk)εbnk

]
(2.45)

where εnk is the KS eigenenergy of band n at point k and a,b the directions of

the spins. fa,b accounts for the Fermi-Dirac distribution for each spin direction,

included separately because the Fermi level varies with the magnetization direc-

tions. With the FT approach the computational cost of calculating the MAE is

considerably reduced.

The SOC term can split band degeneracies depending on the spin orientation.

In Fig. 2.4, we show schematically how band splittings due to SOC affect the MAE.

In Fig. 2.4 (a) and (b) the bands are fully occupied. Splitting (a) is symmetric,

thus, there is no net effect in the MAE. Splitting (b) is asymmetric, favoring the
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easy-axis to be the z-axis. In Fig. 2.4 (c) and (d) the Fermi energy lies at the

degeneracy point. In (c) one band becomes fully occupied while the other is unoc-

cupied giving the largest contribution to MAE, in this case to the z-axis. The (d)

splitting is not affected as the occupation is not modified.

Spin direction

X
Z

Fermi level

Symmetric splitting
No contribution to the MAE

Asymmetric splitting
Contribution to z-axis MAE

a)

b)

E E
Large contribution
to z-axis MAE

Spin direction

X

c)

d) Asymmetric splitting
Contribution to z-axis MAE

Z

Fermi level

Figure 2.4: Scheme of band splittings induced by SOC and their effect on the
MAE.

Making use of the FT method, we can define a MAE density in reciprocal space

to understand the origin of the MAE in terms of the electronic structure details as

described in Fig. 2.4:

MAE density (ε,k) =
∑
n

εakng(εakn − ε)−
∑
n′

εbkn′g(εbkn − ε) (2.46)

where g(εakn−ε) is a Gaussian or a Lorentzian centred at εa,bkn of width σ, this allows

us to estimate the MAE contribution of states near energy ε at point k. With this

equation, we can identify the band splittings that mainly contribute to the MAE

[116].
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2.4 Constrained Random Phase Approximation

(cRPA)

In Section 2.2, we introduced the theoretical method to add the screened Coulomb

interaction as a Hubbard-like term into the ab initio calculation, where U and

J are parameters. These parameters are often unknown.Several methods have

been developed to determine the value of U and J for different systems from first

principles. In the constrained local density approximation (cLDA) [117, 118], the

Hubbard-U is calculated from the second derivative of the total energy with respect

to the occupation number of the localized states. The cLDA does not provide the

matrix elements of the screened Coulomb matrix elements neither the frequency

dependence of the screened Coulomb interaction (note that the response func-

tion of materials under time-dependent external fields is frequency-dependent). It

is known that the cLDA overestimates the Hubbard-U value, compared to other

methods [119]. Other techniques based on Slater integrals [67] and linear methods

that compute the Hubbard-U parameter using response functions calculated by

means of constrained DFT [120] have been derived.

The method used in this Thesis is the constrained random phase approximation

(cRPA) [119, 121, 122, 123]. The starting point is the fundamental equation of the

fully screened Coulomb interaction:

W (r, r′) =

∫
dr′′V (r, r′′)ε−1(r′, r′′) , (2.47)

where V is the bare Coulomb interaction and ε the dielectric function. Within the

RPA approximation [124] the dielectric function can be expressed as:

ε(r, r′;ω) = δ(r− r′)−
∫
dr′′V (r, r′′)P (r′′, r′;ω) , (2.48)

where P is the polarization. Note that the polarization induces a frequency depen-

dence in the dielectric function. In the RPA linear response theory, the interacting

polarization is approximated by the non-interacting one, which can be written as :

P (r, r′;ω) =
∑
σ

occ∑
nk

unocc∑
n′q

ψσ
∗

nk(r)ψσn′k+q(r′)ψσ
∗

n′k+q(r)ψσnk(r′) (2.49)(
1

ω + εσnk − εσn′k+q + i0+
− 1

ω − εσnk + εσn′k+q − i0+

)
,
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where ψσnk and εσnk are the KS eigenfunctions and eigenvalues of the system, respec-

tively, the sum for n,k states runs over the occupied states and that for n′,k + q

over the unoccupied states, and σ is the spin.

In the cRPA, we split the Hilbert space into two separate sets, one composed

of the localized states (l) and the other of the rest of the states (r). This results in

the separation of the full polarization into transitions inside the localized subspace,

Pl and the other transitions, Pr:

P = Pl + Pr (2.50)

The Pr subspace includes also transitions that end or start in the l subspace 7. In

Figure 2.5, the division of the space is illustrated for the SrVO3 case. In SrVO3, the

Hubbard-U is calculated for the t2g subspace -the l subset- formed by the orbitals

dxz, dyz and dxy.
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Figure 2.5: Left: SrVO3 bandstructure with the cRPA space division. The red
bands comprise the t2g localized states (l-subspace). The black bands are the
r-subspace. The transitions between the states are also shown. Right: Band
structure interpolation of the localized subspace spanned by maximally localized
Wannier functions.

7These constributions are suppressed in the cLDA [121].
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Inserting Eq. (2.50) into Eq. (2.48) and combining them with Eq. (2.47), the

Coulomb interaction can be rearranged in the following manner8 [122]:

W = [1− V (Pl + Pr)]
−1 V =

[
1− (1− V Pr)−1 V Pl

]−1
(1− V Pr)−1 (2.51)

=(1−WrPl)
−1Wr ,

where we have defined an interaction, Wr, that excludes the l−l screening channels:

Wr = (1− V Pr)−1 V . (2.52)

So, Wr is an effective interaction that is screened further when adding the transi-

tions between the localized orbitals, resulting in the fully screened interaction.

Therefore, Wr can be interpreted as an effective interaction that acts on the

localized subset, i.e., it is equivalent to the Hubbard-U parameter:

U(r, r′;ω) = Wr(r, r
′;ω) =

∫
dr′′ [δ (r− r′)− V (r, r′′)Pr(r

′, r′′;ω)]
−1
V (r, r′′) .

(2.53)

The latter equation can be solved by any KS system solver. As the Coulomb

screened is localized in the atom, to obtain the matrix elements centered in the

atom R, Un1n2n3n4;R(ω), it is natural to choose a localized basis set, where ni are

the orbitals running through nl = −l, . . . , l. The calculation of Un1n2n3n4;R(ω) is

straightforward when the strongly correlated states and the other bands are sep-

arated. As an example, in Figure 2.5 the bands with t2g orbital character are

isolated from the other bands. However, when localized orbitals are hybridized

with other orbitals, separating the polarization into two terms is a challenging

problem.

Different methods have been proposed to tackle the problem of entangled bands.

These methods use maximally localized Wannier functions (MLWFs). The ML-

WFs built a real-space localized basis from unitary transformations on the Bloch

states. The use of the MLWFs was introduced by Miyake et al. in Ref. [125]. Still,

this technique is not capable of providing a well-defined polarization for each set,

as hybridization between the l subspace and r subspace is switched off. Hence, the

electronic structure can be modified in the case of strong hybridization.

In this work, we have used the method derived by Şaşıoğlu et al.[126], the so-

called projection method, which is a parameter-free procedure. The MLWFs span

8For the sake of simplicity we use a matrix notation.
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the localized orbitals as:

wσmR(r) =
1

Nk

∫
dke−ik·R

∑
kn

T σmnkψ
σ
nk(r) , (2.54)

where wσmR are the MLWF centered at the atomic position R, Nk the number of

k-points and T σmnk is a unitary matrix. The MLWFs construction will be addressed

in the next section.

It can happen that in order to built adequate MLWFs of the localized space,

states from the r space need to be considered. In order to obtain adequate Pr and

Pl, transitions that take place between the l− l states need to be singled out from

the total polarization. The total probability for an electron to be in the localized

set before and after the transition ψσnk → ψσnk+q is pσknp
σ
k+qn′ where:

pσkn =
∑
m

|T σmnk|2 . (2.55)

Therefore, for entangled bands we have pσknp
σ
k+qn′ < 1 and for disentangled bands

pσknp
σ
k+qn′ = 1. Then, Pl is constructed as:

Pl(r, r
′;ω) =

∑
σ

occ∑
nk

unocc∑
n′q

(
pσknp

σ
k+qn′

)2
ψσ
∗

nk(r)ψσn′k+q(r′)ψσnk(r′)ψσ
∗

n′k+q(r) (2.56)(
1

ω + εσnk − εσn′k+q + i0+
− 1

ω − εσnk + εσn′k+q − i0+

)
.

Combining this equation with Eq. (2.50), the polarization for the rest of space Pr
is obtained and, from this, U(r, r′;ω). The screened Coulomb matrix elements in

the MLWFs basis are given by:

Um1m2m3m4;R(ω) = 〈m1m2|U |m3m4〉 (2.57)

=

∫ ∫
drdr′wσ∗m1R

(r)wσm3R
(r)U(r, r′;ω)wσ

′∗
m2R

(r′)wσ
′

m4R
(r′) .

The effective Hubbard-U and J parameters are calculated by averaging the matrix

elements in the static limit, 〈U(ω → 0)〉. Different parametrizations exist to do

this. The Kanamori parametrization calculates parameters adapted for t2g and eg

(dx2−y2 and dz2 orbitals) [127]. The Slater parametrization was already defined in

Eq. (2.31) and Eq. (2.32):
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Ul =
1

(2l + 1)2

l∑
m=−l

l∑
m′=−l

Umm′mm′;0 (ω = 0) (2.58)

Jl = Ul −
1

2l(2l + 1)

l∑
m

l∑
m′

[Umm′mm′;0 (ω = 0)− Umm′m′m;0 (ω = 0)] , (2.59)

where l = 2 for the d shell. Ul accounts for the on-site intraorbital interactions and

Jl is the on-site inter-orbital exchange parameter. The Coulomb matrix elements

spin dependence is small according to calculations [126].

In this work, cRPA calculations have been performed using the SPEX code

[128] where the projection method is implemented. SPEX uses previously con-

verged ground-state ab initio wavefunctions from the FLEUR code and makes use

of the Wannier90 [129] library to construct MLWFs. The SPEX code has the cRPA

method implemented by means of the mixed-product basis (MPB)[130]. The polar-

ization function and Coulomb matrix elements involve the calculation of products

of wavefunctions, as they describe the initial and final states between two elec-

trons. Each product arising from initial and final state pairs is transformed to the

MPB, which allows an efficient numerical evaluation of the total polarization and

the Coulomb matrix elements using the FLAPW basis provided by FLEUR. The

MPB allows a mathematically exact treatment of the divergence of the Coulomb

interaction at k→ 0.

In Figure 2.6 a simplified workflow to compute the Hubbard-U parameters is

shown. Two key factors to obtain well converged Hubbard-U parameters. First,

proper convergence in the DFT+U calculation is needed. Second, the MLWFs need

to be properly localized and centered. Only then, we can calculate the polarizations

(P , Pl and Pr) and screened matrix elements (U and J). All these values are

computed in the same run of SPEX.

2.5 Maximally Localized Wannier Functions

Bloch-like wavefunctions can be expanded into a real-space localized basis, as pro-

posed by Wannier [131]. We give below a summary of the construction of the

Wannier functions (WF). For a detailed description, we refer to the review Ref.

[132]. The WF can be written as:

|Rn〉 =
1√
N

∑
k

e−ik·R |ψkn〉 , (2.60)
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DFT ground-state cal-
culation by FLEUR

Converged ground-state?

Calculate the wavefunctions
and energies for SPEX

Span localized subspace into
MLWFs with Wannier90

Appropiate MLWFs?

Compute screened U and
J parameters with SPEX

Change number
of bands and

MLWF projections

Converged U and J values?

Set new values of U and J
for DFT+U computation

Converged U and J values

No

Yes

Yes

No

No

Yes

Figure 2.6: Scheme of the work flowchart to calculate the values of the U and J
combining FLEUR, SPEX and Wannier90.

where N is the number of k-points in the 1BZ and R a lattice vector. The coor-

dinate representation is obtained as 〈r|Rn〉 = wRn(r). The inverse transformation

from WF to Bloch states is:
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|ψkm〉 =
1√
N

∑
R

eik·R |Rm〉 . (2.61)

Eq. (2.60) and Eq. (2.61) constitute a unitary linear transformation between the

WFs and Bloch functions. Thus, both are valid to describe electronic bands.

Bloch functions show a ”gauge freedom” that makes them invariant to unitary

transformations. The generalized gauge freedom for a multiband case of M bands

is expressed as:

|ψ′km〉 =
M∑
m=1

Tmnk |ψkn〉 , (2.62)

where Tmnk is a unitary matrix of dimension M ×M . When a multiband manifold

is considered states can be degenerate at band crossings. At these points, the

Bloch states are not analytic. Hence, constructing WFs from degenerate bands

would result in poor localization and it is necessary to include the unitary matrix

transformation. To solve the latter problem, the non-uniqueness of the WFs is

used. The T matrix induces unitary rotations to obtain smooth wavefunctions

at the degenerate points, resulting in well-localized WFs. Although, the trace is

preserved, |ψ′km〉 may not be an eigenstate, and the index m is no longer a valid

band index. Inserting Eq. (2.62) into Eq. (2.60) gives the general WF construction:

|Rm〉 =
1√
N

∑
k

e−ik·R
M∑
n=1

Tmnk |ψkn〉 . (2.63)

The unitary matrix rotation has to be optimized to obtain ”maximally localized”

WFs. In this work we use the technique derived by Marzari et al.[133], whose

localization functional is:

Ω =
∑
m

[
〈0m|r2|0m〉 − 〈0m|r|0m〉

]
=
∑
m

[〈
r2
〉
m
− 〈rm〉2

]
. (2.64)

It measures the sum of the quadratic spreads of the WFs centers located at the

initial unit cell. Bount et al.[134] proved that the matrix elements for the position

operator could be obtained by means of derivatives with respect to the wave vector

k, which can be calculated using finite differences. All the needed information is

given by the overlap between neighboring Bloch states,

Mk,b
mn ≡ 〈ψm′k|ψmk+b〉 . (2.65)
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At each iteration, the overlap and the transformation matrix are updated in

order to minimize Ω. This method can be extended to include non-isolated bands,

i.e., entangled bands [135].





Chapter 3

Magnetic properties of planar

free-standing transition metal

oxide chains

I’m not so good with the

advice... Can I interest you in

a sarcastic comment?

Chandler Bing, Friends

3.1 Introduction

Reduction of coordination in low-dimensional systems results in less atoms forming

bonds, enabling the emergence of magnetism in materials that are non-magnetic

in bulk [29, 9, 136].

Theoretical methods, e.g., DFT, have made it possible to study different low-

dimensional systems, from 2D [137] to 1D systems [48, 138] and adatoms (0D)

[139, 140]. Typically, reducing the dimension results in larger spin and orbital mo-

ments, the magnetic anisotropy being enhanced as well. The magnetic anisotropic

energy (MAE) is a necessary property for low dimensional systems to allow a long-

range magnetic order at finite temperature [30]. Furthermore, enhancement of
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spin-orbit effects and the sizeable energetic difference between the easy- and hard-

axes of magnetization, i.e., magnetocrystalline anisotropy, make low-dimensional

systems suitable1 for spintronic devices [142, 143].

The Hubbard Hamiltonian is used to describe the interaction between the lo-

calized electrons within certain orbitals, for instance, electrons in the 3d orbital

of transition metals. The larger the Hubbard-U parameter the larger localization

of electrons. Localization of electrons favors larger magnetic moments. Therefore,

the U parameter value can induce the stabilization of magnetic states and its vari-

ation can alter the spin state.

In this chapter, we study the ground-state magnetic properties of transition

metal-oxide (TMO) chains XO2, where X =Ni, Co, Fe, and Mn [23]. These

chains can be grown on Ir and Pt substrates [74]. Spin-polarized STM (SP-STM)

experiments have determined some of their magnetic properties [74]. Combining

SP-STM data with DFT calculations, the presence of non-collinear spins between

adjacent MnO2 chains has been observed. The non-collinear spin texture results

from an antisymmetric exchange interaction mediated by the substrate, indicating

the presence of a RKKY interaction[144]. The experimental data do not always

agree with the theoretical calculations. For instance, CoO2/Ir(100) is predicted to

show a FM coupling [23], while no such magnetic contrast is observed with SP-

STM[74]. Measuring the magnetic properties is a difficult task, hence, theoretical

calculations are needed. In particular, DFT allows us to understand the magnetic

properties in terms of the electronic structure of the chains. There, we study the

spin states of the TM atoms dependence on the intrachain interaction, i.e., U .

We calculate the magnetic coupling between the X atoms and obtain the MAE of

each chain. The anisotropy is calculated using two methods: treating SOC in a

self-consistent manner and the FT approach (see Section 2.3 for the background of

these two techniques), to test the applicability of the latter method in this family

of systems.

The chapter is structured as follows: in Section 3.2 the geometry of the planar

unsupported chain. Then, in Section 3.3, we show the obtained spin states for

each metal atom. Next, in Section 3.4, we describe the exchange coupling between

the metal atoms. In Section 3.5, we compute the MAE and analyze the obtained

easy-axes in terms of the resulting band structures. Finally, in Section 3.6, we give

the conclusions based on the obtained results.

1Particularly, when the out-of-plane direction is the easy-axis[141].
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3.2 Structure model

The one-dimensional XO2 chains, where X=Ni, Co, Fe, Mn, form in an Ir(100)

surface. Structural analyses carried out with LEED-IV and STM show defect-

free chains with 500 atom lengths arranged in periodically ordered (3×1) domains

orientated along the [110] and [110] crystallographic directions. The procedure to

grow the chains is given by Ferstl et al.[23]: the chains are formed on Ir(100)-

(2×1)-O or on metastable Ir(100)-(1×1) by depositing 0.33 of a monolayer of each

transition metal atom followed by an annealing in a 1×10−7 mbar O2 atmosphere.

In Fig. 3.1 the structure of the system is shown.

Figure 3.1: Left: side view of the structure of the XO2 chains. Chains are
separated by 3dIr, where dIr = 2.71Å is the Ir(100) lattice constant. Right: top
view.

In our first calculations, instead of the whole system, we consider the ideal

case of a planar free-standing chain (see 3.2). The chains are isolated from the Ir

substrate and the oxygens atoms are placed between the transition metal atoms

coplanarly.

Figure 3.2: Planar free-standing chain geometry.

3.3 Planar free-standing chain: Spin phase

diagrams

DFT calculations were performed using the VASP code, with the PBE exchange-

correlation functional [84] and Dudarev’s formulation of the DFT+U functional
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[102] where the interaction parameter is given by U − J , applied to the d-orbital.

In all calculations, J is set to 0. We used a plane-wave energy cut-off of 450 eV

with a Γ-centered 10×1×1 k-point grid. To avoid interaction between different

chains, we set 10 Å of vacuum between the chain’s periodic replicas. The total en-

ergy convergence threshold is set at 10−6 eV. The geometry relaxation is performed

until the forces are less than < 0.01 eV/Å. We optimize the distance between the

X-X and O-O atoms to obtain the relaxed ground state.

In Fig. 3.3, the resulting spin values for different X-X and O-O distances are

shown as spin state phase diagrams for U − J = 0, 1.5 and 5 eV. The spin values

at the ground state for each U parameter are tabulated in Table 3.1. Note that

the spin states differ from an integer or half-integer value because in DFT the oc-

cupation matrix elements are fractional2. The fractional occupations indicate that

the ml orbitals of the d shell are forming bonds, instead of being empty or fully

occupied as in the isolated atom case (see Section 2.2).

A non-magnetic state appears in all chains when the Hubbard U parameter is

set to 0 eV. Generally, multiple spin states are accessible by modifying only the

value of U . Increasing the value of the U increases the spin value. In the case of

Ni, two states are accessible. The equilibrium geometry at U = 0 eV lies at the

boundary between the non-magnetic and the magnetic state, implying that a small

distortion could drive it either to magnetic polarization or quenching. For finite U

values, the Ni atom stabilizes in a magnetic state with S = 1/2. The Co atom lies

in a magnetic state for all U values. For U = 0 eV and U = 1.5 eV, the Co atom

is in a S = 1 state and for U = 5 eV the spin state is at the transition between

S = 1 and S = 3/2. Fe and Mn atoms are both in magnetic states with S = 3/2

for U = 0 eV and U = 1.5 eV. For U = 5 eV both atoms show a spin state S = 2.

U (eV)
NiO2 CoO2 FeO2 MnO2

SNi SCo SFe SMn

0 0.29 0.98 1.52 1.47
1.5 0.47 1.05 1.63 1.61
5 0.55 1.26 1.83 1.88

Table 3.1: Spin states of the metal atoms in the equilibrium geometry for different
Hubbard-U parameters.

2In the analysis, we will mention the closest spin value.
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Figure 3.3: Spin values for different planar chain geometries. The distance between
metal atoms, d(X-X), and oxygen atoms, d(O-O) is varied for three U values.
Colors show different spin values and white spaces indicate a spin state transition.
The black cross indicates the ground state configuration in each case.

Table 3.2 shows the equilibrium X-O bond lengths. They are weakly affected

by the increase of the Hubbard-U parameter. The maximum change is 5% for the

MnO2 between the U=0 and 5 eV, while in the other chains, it is less than 2%.
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U (eV)
NiO2 CoO2 FeO2 MnO2

dNi-O (Å) dCo-O (Å) dFe-O (Å) dMn-O (Å)

0 1.77 1.78 1.82 1.82
1.5 1.79 1.79 1.82 1.83
5 1.80 1.79 1.83 1.87

Table 3.2: Equilibrium X-O bond lengths at each ground state given by the U
values.

3.4 Magnetic coupling in planar free-standing

chains

The magnetic order of the ground state of each chain has been calculated for the

Hubbard-U parameter given in the literature U = 1.5 eV [23, 74, 144]. The low

value of U is used to consider the screening effects of the Ir substrate in the chains.

The supercell is doubled and the transition metals’ magnetic moments are set

parallel, i.e., a ferromagnetic (FM) state or anti-parallel, i.e., antiferromagnetic

(AFM) state. To consider possible effects in the total energy due to strain, the

AFM doubled cell has been relaxed for each magnetic configuration. In Table 3.3,

we give the bond-length at each magnetic coupling. The largest difference between

the AFM and FM states bond-length is 0.02 Å for the CoO2. Therefore, setting

either magnetic coupling affects slightly the bond length.

We describe the magnetic exchange of the chains with a Heisenberg model:

H = −
∑
<ij>

JijSi · Sj , (3.1)

where < ij > indicates that the sum is over pairs of nearest neighbors. Si is

the spin for the transition-metal atom in site i and Jij the magnetic exchange

coupling parameter between spins at sites i and j. The sign of the exchange

coupling determines if the coupling is FM, J > 0, or AFM, J < 0. In DFT

calculations, the exchange coupling parameter is obtained from the difference of

total energies of the AFM and FM magnetic configuration, calculated in a doubled

cell:

J =
EAFM − EFM

2S2
(3.2)

The interaction between the TM atoms is mediated by the oxygen atoms. This

type of indirect interaction is known as the superexchange interaction [145, 146].

In Table 3.3, we summarize the results obtained by doubling the cell. The X-O

bond lengths at the AFM and FM states differ less than 2%. The energy difference,
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∆E = EAFM −EAFM, establishes that for the NiO2, CoO2 and FeO2 the preferred

magnetic coupling is AFM, while MnO2 is FM. In the FM state, the oxygen atoms

are polarized parallel to the X atoms spin except in the MnO2, where they are set

antiparallel. In a naive reasoning, the O atom’s spin inversion in the latter chain

determines the Mn atom coupling, setting the order of Mn ↑-O ↓-Mn ↑. In the

AFM state, the O atoms do not show any polarization as the oxygen atoms lie in

the center plane between the two metal atoms with opposite polarizations.

XO2 dX-O (Å) µXS (µB) µO
S (µB) ∆E (meV) J (meV)

NiO2 (AFM) 1.78 0.89 0.00
-42 -95

NiO2 (FM) 1.79 0.95 0.43

CoO2 (AFM) 1.77 2.01 0.00
-350 -159

CoO2 (FM) 1.79 2.12 0.36

FeO2 (AFM) 1.81 3.11 0.00
-476 -90

FeO2 (FM) 1.82 3.26 0.24

MnO2 (AFM) 1.82 2.86 0.00
562 108

MnO2 (FM) 1.83 3.23 -0.18

Table 3.3: Obtained data for the AFM and FM magnetic orders. The relaxed
bond-lengths between TM and O atoms, spin magnetic moments of the TM atom
µXS and oxygen atom µO

S are given for both magnetic states. The calculations were
performed for the 2×1 supercell with U = 1.5 eV.

In Fig. 3.4, we show the projected density of states (DOS) of the XO2 onto the

X(d) and O(p) orbital for each magnetic state. We make the important observation

that the AFM chains (NiO2, CoO2, and FeO2) are insulators, while MnO2, which

favors a FM state, is half -metallic 3. In CoO2 and FeO2, the AFM state shows a

larger gap than the FM state, the larger gap the lower the total energy. For MnO2,

the insulating behavior of the minority spin in the FM state implies a lowering of

the total energy compared to the metallic AFM state. Now, looking at the total

energy difference between the magnetic states in Fig. 3.4, we see that the difference

increases from NiO2 to MnO2. Being the largest difference between the metallic

AFM vs. half-metallic FM state of the MnO2 chain.

3In a half-metallic compound, one spin channel is metallic while the other presents a gap.
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Figure 3.4: Projected density of states. The solid gray indicates the total DOS,
red and blue are the projections on the X(d) and O(p) orbitals, respectively. Only
the projections on atoms in one half of the (2× 1) cell are plotted.

3.5 Magnetic Anisotropic Energy in planar

free-standing chains

We have calculated the MAE for the planar free-standing chains with U = 1.5 eV

with two methods: SCF and the FT approach. In the latter one, the SOC term
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is added non-self-consistently to a converged spin-polarized electron density, while

in the former SOC is considered in a self-consistent manner (see Section 2.3). We

have calculated the MAE for several plane-wave energy cut-offs and k-point grids

to obtain properly converged values. The total energy convergence threshold for

both calculation setup is 10−8 eV. We give in Appendix A the convergence tests of

the MAE.

MAEFT (meV) MAESCF (meV) Easy-axis

NiO2 -2.04 -6.43 y
CoO2 -0.51 -0.84 y
FeO2 0.81 1.13 z
MnO2 0.54 0.96 z

Table 3.4: We show the MAE values between the hardest- and easiest-axis of each
chain, which is the y − z difference. The MAE is obtained using the SCF and FT
techniques.

In Table 3.4, we summarize the obtained MAE and the easy axes of magnetiza-

tion. For the NiO2 and CoO2, we obtain that the easy-axis is the y-axis, i.e., across

the chain axis (see Fig. 3.2 for the orientations). The FeO2 and MnO2 chains have

the easy axis along the z-axis direction. The FT approach and calculations includ-

ing SOC self-consistently agree in the prediction of the easy axis. The MAE values

differ between both techniques, but overall the agreement is acceptable, except

in the case of the NiO2 where the self-consistent MAE is three times larger than

the FT one. To understand this, we calculate the band structure of NiO2 in both

approaches (see Fig. 3.5). The main difference between the band structures is seen

around the Fermi level, at k ≈ 0.25, where for SCF a band becomes fully occu-

pied, but it is still partially unoccupied for the FT. This significant change in the

contributing eigenenergies at the Fermi level can result in a substantial difference

in the MAE (see Fig. 2.4), as seen in Table 3.4. In the NiO2 case, the FT method

fails to describe the SOC effect correctly in the system. Hence, the converged

wavefunctions may differ between the two methods. The FT has been successfully

applied to bulk systems [116], but it is less accurate for lower dimensional systems

[147, 148], because the wavefunction is less constrained by symmetries than in bulk

materials and can have larger variations when allowed to relax in the presence of

a SOC term in the Hamiltonian.

The NiO2 chain also shows magnetic anisotropy for S = 1/2. It has been stated

that systems with S = 1/2 should not show any magnetic anisotropy [149, 150].

The hybridization between orbitals modifies the orbital shapes and can cause par-
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tial fillings in the orbitals used in DFT, such as the X-O bonds do in our system.

That is to say, DFT results are not to interpret with a single-ion perspective.
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XΓ

Figure 3.5: Band structure of the NiO2 chain where SOC is introduced in a self-
consistently (green, SCF) and non-SCF (red,FT). The circle highlights the feature
that explains the MAE difference.

In Table 3.5, we give the orbital moments. The orbital moment projection of

each chain, µil, is defined by projecting L on the S vector, at each calculation,

where S is aligned to different magnetization axes i = x, y, z. The orbital moments

calculated in the FT approach are lower than in the SCF ones. In the latter,

the charge density is allowed to be modified contrary to the FT. Therefore, larger

orbital moments are obtained for the SCF than for the FT method. In all calcula-

tions, the L and S vector remain colinear after the energy minimization procedure.

The NiO2 and CoO2 orbital moments along the easy axis are ten times larger

than the ones obtained for FeO2 and MnO2. The difference in the orbital mo-

ments comes from the minority d orbital configuration. Empty and full orbitals

do not contribute to the orbital moment. Comparing the minority spin orbital
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SCF FT
Easy-axis

µxl (µB) µyl (µB) µzl (µB) µxl (µB) µyl (µB) µzl (µB)

Ni 0.088 0.215 0.032 0.066 0.106 0.024 y
Co 0.097 0.121 0.018 0.065 0.072 0.014 y
Fe 0.031 0.020 0.008 0.030 0.017 0.006 z
Mn -0.020 -0.012 -0.022 -0.016 -0.011 -0.017 z

Table 3.5: Orbital moments of each metal atom when SOC is included.

occupations, we see that the NiO2 and CoO2 chains have partially filled orbital

occupancies, except the full dz2 , that contribute to the orbital moment, while in

the FeO2 and MnO2, all orbitals except the partially filled dxy are almost empty.

P. Bruno, using a second-order perturbative analysis, established that the MAE

and orbital magnetic moment anisotropy, µ⊥l −µ
‖
l , were proportional to each other

by a constant C > 0 [114, 54]. This relation is valid if spin-flips are neglected and

the majority spin band is completely filled. Bruno’s relation allows us to under-

stand the MAE in terms of the orbital moments direction of the magnetic atom.

The orbital moment of each chain is larger at the easy-axis of each chain, fulfilling

Bruno’s relation, except in the FeO2 chain. Here, considering that the majority

spin shows a partially filled dxy the requirements to fulfill Bruno’s relation are not

completely met.

The orbital moment direction depends on the occupation of the d orbitals. Ac-

cording to Stöhr [55], the electron residing in a certain orbital is able to ”hop”

between the lobes of the orbital. As shown in Fig. 3.6(a) for the dxy case, the hop-

ping in the xy plane of the electrons sets the orbital moment direction. Therefore,

the dxy,x2−y2 orbitals contribute to µ⊥l , and the dxz,yz orbitals to µ
‖
l .

In the MnO2 chain, the only contribution to the orbital moment is the partially

filled dxy orbital, which sets the orbital moment in the z-axis. In the NiO2 and

CoO2 chains, except the full dz2 the rest of the orbitals contribute to the orbital

moment, thus, the preferred orbital moment orientation can not be easily pre-

dicted. However, considering that the TM atoms bind with the coplanar oxygen

atoms, because of the crystal field and hybridization with the atom, the dxy,x2−y2

orbitals are perturbed, resulting in a quenched out-of-plane orbital moment (see

Fig. 3.6(b)). The dxz,yz orbitals are not too affected by the oxygen atoms. Hence,

the orbital moment has a larger contribution in the xy-plane, setting the in-plane

orbital moment. The O and TM atoms do not form a perfect square, resulting on
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a larger orbital moment projection on the y-axis, as in the NiO2 and CoO2 chains.

e-
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e-

L⟂

(a) (b) (c)

L∥
e-

Figure 3.6: (a) The hopping electron is the origin of the out-of-plane orbital
moment. (b) The out-of-plane orbital moment (L⊥) is quenched because of the O
atoms, while (c) the in-plane moment (L‖) is almost non-affected.

MAE density for XO2 chains

We have analyzed the band-resolved MAE and have used the orbital-projected

band structure to identify the orbital character of the band splittings by SOC that

mainly contribute to the MAE. The band degeneracy breakings can be accounted

for by the matrix elements
〈
ψσl
∣∣l · s∣∣ψσ′l 〉 using the one-electron wavefunctions (ψσ

′

l )

with d orbital character (l = 2) of spin σ [108, 109].

〈n|l · s|m〉 |x2 − y2〉 |xz〉 |z2〉 |yz〉 |xy〉
〈x2 − y2| 0 iŝy 0 iŝx −2iŝz
〈xz| −iŝy 0 i

√
3ŝy −iŝz iŝx

〈z2| 0 −i
√

3ŝy 0 i
√

3ŝx 0

〈yz| −iŝx iŝz −i
√

3ŝx 0 -iŝy
〈xy| 2iŝz −iŝx 0 iŝy 0

Table 3.6: Matrix elements of the l ·s operator for the d orbitals, given in Ref.[108,
109].

We show in Fig. 3.7 the electronic structure for each chain including SOC in

the FT approach for all chains. We compare the band splittings that occur with

the magnetization along the y- (blue) or z-axis (red) and mark with circles the

band splittings that have the largest contribution to the easy-axis determination

according to the MAE density (Fig. 3.7 panels (d)).

In NiO2, four main splittings can be identified that contribute to the y-axis

(blue), as shown in Fig. 3.7. These splittings occur between the spin majority dyz
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and minority dz2 orbitals crossing. In the bottom left, the splitting is given by

minority dxy and dx2−y2 , and in the bottom right, the splitting is between majority

dxy and dx2−y2 . In CoO2 (Fig. 3.7) two splittings are the main contribution to the

y-axis. The top splitting is between the majority dxz and minority dz2 . Other split

bands are the minority dx2−y2 and the majority dxz. For the FeO2, the easy-axis

is the z-axis. Only the crossing of majority dxz and dz2 orbital has an appreciable

contribution to anisotropy along the z-axis at E −EF = −3 eV. In the MnO2, the

MAE density shows two red spots that lie deep in the energy, i.e., E − EF = −3

and −4 eV, where the splitting is between the dz2,↑ and the dxz,↑ setting the easy-

axis along the z-axis. Second-order perturbation analysis of the SOC set that the

main contribution to the MAE is due to splittings near Fermi level, but in all of

our chains, there are splittings lying deeper than the Fermi level in energy, which

show an appreciable contribution to the MAE.

Apart from the key factor that the split bands have different orbital characters,

another essential element is the occupation of the d orbital. The FeO2 chain has

one electron less compared to the CoO2 chain so that an occupied minority dz2

band in CoO2 crossing becomes unoccupied in FeO2. These bands show a split

that contributes to the y-axis in the CoO2, but not in FeO2. These two splittings

involve bands with the same orbital character: majority dxz and dz2 . The latter

atoms, FeO2 and MnO2, have a similar d orbital filling that makes them follow

the same trend having the same easy-axis with the same orbital character band

splittings, even if the magnetic ground state coupling differs.

3.6 Conclusions

To summarize, we have studied the magnetic properties of ideal isolated and planar

XO2 (X=Ni, Co, Fe, Mn). We have obtained the spin phase diagram in the con-

figuration space for a range of variations of the bond lengths and different selected

Hubbard-U values. The chains show up to four different spin states.

For U=1.5 eV, NiO2, CoO2 and FeO2, the preferred magnetic ordering is AFM

while the MnO2 is in a FM state. Band structure calculations indicate that chains

preferring the AFM coupling are insulators, and the MnO2 chain, FM shows a

half-metallic state and metallic in the AFM i.e., the band gap reduces the total

energy.
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Figure 3.7: In all panels: (a) Electronic structure with SOC when the magne-
tization is aligned to the y-axis (red) or z-axis (green). The projected density is
separated into in-plane orbitals (b) and out-of-plane orbitals (c). (d) MAE density,
the contribution of each colored points is as follows: red for z-axis and blue for
y-axis, the density varies from -0.8 eV/Å(most satured blue) to 0.8 eV/Å(most
saturated red).

Finally, the magnetic anisotropic energy has been obtained. We have found

that NiO2 and CoO2 show an in-plane easy-axis perpendicular to the chain axis.

The FeO2 and MnO2 show an out-of-plane easy-axis. The self-consistent and force

theorem calculation methods agree on the sign prediction, but the magnitudes

differ significantly for NiO2, where the FT approach fails to describe SOC effects

adequately for band splittings at the Fermi level. The other chains show good
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agreement. This study has shown that the easy-axis variation of the chains can

be related to the occupancy of specific d orbitals. In particular, CoO2 shows an

occupied dz2 band that contributes to the in-plane easy-axis. This latter band is

unoccupied for FeO2 and MnO2, resulting in an out-of-plane easy-axis.





Chapter 4

Electronic correlation and

multiplet effect in TMO chains

I wish I could,

but I don’t want to.

Phoebe Buffay, Friends

4.1 Introduction

Strong Coulomb interaction can give rise to high-TC superconductivity [151], colos-

sal magnetoresistance [152], ferroelectricity etc. [153, 154, 155]. Magnetic materials

with d and f orbitals localized in the atom show the need to include interactions

within these orbitals.

The study of correlated materials is a challenging research area, as it implies

a many-body problem. Experiments have shown that some transition metal com-

pounds have an insulating character, while the orbital shell is incomplete, a hint

of a metallic behavior [92]. N.F. Mott [91] described the insulator state in the

correlated materials using the Hubbard Hamiltonian [71]. Not all strongly corre-

lated materials display an insulating behavior; compounds that show a metallic

behavior do exist, e.g., V2O3 at high-temperature [156]. The latter systems are

out of the scope of the description given by the Mott-Hubbard theory. Zaanen,

Sawatzky and Allen developed a model (ZSA model) where the insulator gap and
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metallic behavior could be described in terms of the charge transfer energy (∆CT),

the bandwidth (W) resulting from hybridization and intraorbital Coulomb interac-

tions modeled by a Hubbard-U parameter. Within this theory, both metallic and

insulating states can be obtained in compounds with elements with strong elec-

tronic interactions (see Fig.3 in [157]). The ZSA model allows to distinguish two

types of insulating states: the Mott insulator where the band gap is determined

by U (e.g. MnO [158]) and the charge-transfer (CT) insulator where the gap is

defined by ∆CT (e.g., NiO [158, 159]).

The Hubbard-U describes the effective screening due to the surrounding envi-

ronment inside the localized orbitals. Thus, its effective value will be dependent

on hybridization. As the number of atoms surrounding the correlated atom in-

creases, the effective screening is enhanced. Therefore, dimensionality can dras-

tically change the value of U [127]. The Coulomb interaction can be strongly

damped in bulk and interfaces where the U value can drop from tens of eV to a

few eV [160, 161]. Coulomb interaction in finite-size low dimensional clusters can

even show non-conventional phenomena, such as antiscreening, i.e., the induced

polarization from the other systems increases the electron interaction [162, 163].

DFT is a one-electron framework where interactions within orbitals cannot be

adequately described. For instance, it predicts an incorrect metallic behavior in

FeO and CoO compounds [164, 158]. The DFT+U technique can provide better

results for systems with localized states (see Section 2.2 for a more detailed dis-

cussion). Other theoretical methods that go beyond DFT have been developed

to treat many body-interactions, such as, GW[165, 166], LDA++[167], MP2[168],

RPA[169] and DMFT [170, 171, 172], but these methods can be computationally

demanding. The DFT+U is a computationally inexpensive technique compared to

the latter methods, so it can be used as a first step before going beyond-DFT meth-

ods. However, in order to use DFT+U an adequate value of U needs to be set in

order to obtain accurate properties of materials, for instance, in the direct exchange

and superexchange the magnetic exchange constant (J ) is inversely proportional

to the U parameter [145, 10]. The value of U can be obtained by combining Auger

spectroscopy and X-ray photoemission spectroscopy [173, 174] using Herring’s defi-

nition. According to Herring [175, 176] the U parameter is the sum between the ion-

ization energy and electron affinity: U = [E(dn+1)− E(dn)] + [E(dn−1)− E(dn)].

Another possibility is to calculate suitable U and J by ab initio methods. Differ-

ent first-principles methods have been developed for this, such as the constrained

LDA (cLDA) method [117, 177], and others based on linear response theory [120]
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or the constrained random-phase approximation (cRPA) [122, 119, 123]. In this

Thesis, we use the cRPA to calculate the U and J parameters (see Section 2.4 for

a detailed explanation of the method) in collaboration with G. Bihlmayer and C.

Friedrich from the Peter Grünberg Institute and Institute for Advanced Simulation

in Forschungszentrum Jülich and JARA.

In the previous chapter, we have studied the magnetic properties of the planar

free-standing XO2 chains. Fig. 3.3 shows that the modification of the U param-

eter does not alter the bond length, but it can trigger a spin state transition. A

change in the Hubbard-U value can drive the NiO2 chain from a non-magnetic to

a magnetically polarized state. The dependence of the magnetic properties on the

Hubbard-U show that adequate U and J parameters are needed. In this chapter,

we calculate the U and J values for the ideal case of the planar isolated chain and

the chain with substrate. In the XO2/Ir(100) system, the inclusion of the Ir atoms

induces effects, such as, charge transfer to the TM atom and hybridization with

the chains orbitals can modify the electron-electron interaction. Apart from the

electronic structure screening, the cRPA allows to modify the source of the screen-

ing by varying the correlated space allowing to estimate the source of the screening.

This chapter is organized as follows: in Section 4.2, we describe the relaxation

of the chain plus substrate system and the cRPA calculation setup. In Section 4.3,

the ideal planar free-standing screened Coulomb interaction is calculated. The non-

planar case is studied for the MnO2 chain. Section 4.4 is devoted to the supported

chains, where the effects of the Ir layers in the U and J are analyzed. Finally, in

Section 4.5, we draw the conclusions of our research.

4.2 Computational details

XO2/Ir(100) geometry

The relaxed geometry of the planar free-standing chains has been obtained in the

previous chapter (see Table 3.2). In this chapter, we will compare the ideal and

supported cases. Therefore, we relax the geometry including the Ir substrate. The

equilibrium geometry for the XO2/Ir(100)-3×1 system is obtained considering five

Ir layers, where the last layer is kept frozen during relaxation. We set the same

convergence parameters as in the previous chapter (see Section 3.2), except for the

k-grid, where we set 10 × 3 × 1. The relaxed geometry is given in Table 4.1 for
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U = 1.5 eV.

NiO2 CoO2 FeO2 MnO2

zO 1.32 1.34 1.31 1.39

zX 1.19 1.17 0.89 1.12

dX-O 1.85 1.90 1.96 1.90

dO-O 2.56 2.64 2.63 2.62

∆12 1.87 1.84 1.84 1.84

∆23 1.98 1.99 1.99 1.99

∆34 1.84 1.84 1.84 1.84

Table 4.1: All lengths are given in Angstroms. The distance between the metal
atoms is fixed by the Ir(100) lattice parameter dIr-Ir = 2.71 Å. The dX−O and dX−X
are the interatomic lengths. The height (z) of the X and O atoms is measured
from the topmost Ir layer. ∆ is the averaged interplanar distance between the Ir
layers. Bucklings and lateral displacements of individual Ir atoms, not shown, are
of the order of 0.1 Å for the topmost layer and below 0.05 Å elsewhere.

cRPA calculations

The cRPA calculations where done using the SPEX code[128]. SPEX needs pre-

viously converged wavefunctions, obtained from DFT calculations done by the

FLEUR code, based on the FLAPW method (see Section 2.2). In FLEUR, we use

the GGA+U with the PBE exchange-correlation functional. The +U correction is

implemented as described by Shick et al. [98] within the fully-localized limit [100]

to account for the double-counting correction. The specific setting of the conver-

gence parameters of each chain is specified in Appendix B. In the unsupported

case, we maintain the geometry obtained in the previous chapter with the same

k-grid sampling. The supported system is sampled with a 10×3×1 k-grid centered

at Γ. Partial occupations and Fermi level have been determined by a Fermi-Dirac

smearing with a 0.015 H width.

In SPEX, the polarization involves a summation over empty states. We use

a total of 150 bands to calculate a converged sum. The convergence parameters

of the cRPA method are specified in Appendix B. Maximally localized wannier

functions (MLWFs) are used to build real-space localized states (see Section 2.5

for a theoretical background of the MLWFs) [132]. For the MLWFs construction
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and cRPA calculations, a 10× 3× 3 k-grid has been used 1.

The screened Coulomb interaction is calculated for the X(d) orbital. There-

fore, the space spanned by the MLWFs should only contain the d orbital. In the

supported case, the X and O atoms are hybridized (in Fig. 4.1 a small weight

of Mn(d) orbitals can be appreciated in the bands near Fermi level, which have a

main O(sp) orbital character). To avoid losing any contribution of the d orbital and

obtain well-localized MLWFs, the localized space includes both X and O atomic

orbitals. We consider 11 bands for the NiO2, CoO2, FeO2 chains. The MLWFs are

constructed with projections onto the X(d) orbital, as well as O(s, px, pz) orbitals.

In the MnO2 chain there are degenerate states, around 6 eV, (see Fig. 4.1) that

need to be included to obtain well-localized MLWFs. Therefore, in the case of

MnO2, 13 bands that include the O(py) orbitals are considered.

Because of the short screening length in metals, we consider that two layers will

be sufficient to account for the screening due to the Ir substrate (to validate the lat-

ter assumption, we have also made a calculation using 3 layers, see Appendix B.2).

Therefore, unless specified, only two layers are used in cRPA and FLAPW calcula-

tions. Fig. 4.1 shows a strong hybridization between chain and substrate. Hence,

the Ir atomic orbitals are also included to construct the MLWFs. 41 bands are

used with projections onto the p, d on the X atom, s, p on O atom and sp3d on

Ir atom. When Bloch states are projected onto the MWLFs basis, we ensure that

the eigenstate character is approximately preserved. We calculate the projected

electronic structure with FLEUR for the Bloch states and with SPEX for the ML-

WFs. In Fig. 4.1, we show the band structure for the unsupported and supported

MnO2 chains obtained with FLEUR and band interpolation done with MLWFs.

The MLWFs orbital characters of the bands nicely match with the ones obtained

by FLEUR.

The U values are obtained by calculating how the polarization of the rest of the

space2 affects the bare Coulomb potential of the localized set. The localized space

correlation is eliminated from the total polarization. In our system, the localized

set is composed of a larger space than only the X(d) orbitals. This requires that

the projection of the d orbitals onto the MLWFs have to be singled out from the

other contributions. The projection method allows to isolate the subset formed by

1The k-points along the z axis are considered for the construction of the MLWFs. Setting
10× 1× 1 or 10× 3× 1 resulted in an impossibility to obtain adequate MLWFs, because of the
lack of points in the y and z-axes needed to evaluate the derivatives using finite differences.

2States not included in the correlated space.
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Figure 4.1: Panels (a), (b) and (c) correspond to planar free-standing chain and
pannels (d), (e) and (f) to the supported case. Panels (a) and (d) show the bands
obtained by FLAPW (black) and MLWFs (red) interpolation. The (b) and (e) are
the orbital weighted bands for the MLWFs, and the (c) and (f) for the FLEUR cal-
culation. The size of the curves is proportional to the magnitude of the projection.
Arrows indicate spin up/majority (red) and spin down/minority (blue).

the X(d)-like MLWFs from the whole localized set and obtain the localized subset

polarization using Eq. (2.57). In Fig. 4.2, we show the MnO2 band structure along

with the probability (pkm) of the electron to be in a certain m state at a given

k-point using Eq. (2.55) for the whole localized space and for the d orbitals subset.

In Fig. 4.2 we use squares to visualize the probability: when the whole localized set

is considered, the squares have all the same size (pkm = 1), while when calculating

pkm for the d subset the size is smaller (pkm < 1) for bands with Mn and O orbitals
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Figure 4.2: Probability pkm of the localized space in MnO2 chain. Pannels (a) and
(b), show the probability when the whole localized set of 13 bands is considered,
pannels (c) and(d) when d orbitals formed subset is chosen. The size of the square
indicates the value of the probability (pkm). Bands are obtained by MLWFs inter-
polation. Arrows indicate spin up/majority (red) and spin down/minority (blue).

The U and J values are obtained by spherical averaging of the interaction

matrix elements in the static limit Uαβ
mm′nn′(ω → 0), previously defined in Eq. (2.59).

We follow the workflow of Fig. 2.6 with the convergence criterion of ∆U = |Unew−
Uold|< 0.05 eV.

4.3 Planar free-standing XO2 chains

The isolated chain model allows to study the screened Coulomb interaction arising

only due to the bonding to O atoms. We set U0 = 5.5 eV and J0 = 0.0 eV as

initial guess values to calculate the one-electron wavefunctions in FLEUR. With

them, obtain the new U and J values with SPEX.
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The U and J values are calculated for the spin channels ↑↑, ↑↓ and ↓↓. Note

that ↑↓ will yield the same result as ↓↑3. About 4-5 cycles are needed to obtain

convergence. In Table 4.2, we give the results for the ↑↑ channel. We find that the

U and J values are rather insensitive to the selected spin channels (we tabulate

the value of U and J for different spin channels in Appendix B). To check if the

obtained values depend on our initial guess we have also considered other starting

values, namely, U0 = 3.5 and 7.5 eV, which tend to converge to the same U and J ,

except the NiO2, which will be discussed separately. The interorbital interaction,

J , does not show a significant variation. Differences are 6 0.2 eV for the different

compounds. The Hubbard parameters can be interpreted with the Slater integrals,

where the intraorbital parameter is U = F 0 and, for the d orbital, the interorbital

exchange is J =
1

14
(F 2 + F 4) [175, 178, 96]. The F 2 and F 4 are slightly affected

by screening effects, maintaining an almost constant J value [175, 179, 161].

The U values of CoO2, FeO2 and MnO2 range from 5.73 eV to 7.67 eV (see

Table 4.2). The FeO2 one shows the highest value compared to the other chains.

Electronic structure calculations show that this system is an insulator while the

others are half-metallic (see Fig. 4.3). Metals have a shorter screening length than

insulators, agreeing with FeO2 showing a larger U value.

XO2 U J Ũ

Ni (C1) 6.59 1.17 8.45
Ni (C2) 2.41 1.01 7.03

Mn 6.21 1.04 6.57
Co 5.73 1.11 8.62
Fe 7.67 1.13 9.06

Table 4.2: Converged U and J values (↑↑ spin channel) for the planar free-standing
XO2 chains. The Ũ is the result when the shell-folding method is used. All units
in eV.

The NiO2 shows a distinct behavior from the rest. Two different Ni(d) orbital

configurations are converged depending on the starting U0. We label them C1 and

C2. These configurations are maintained throughout consecutive FLAPW and

cRPA cycles. If U0 ≥ 4 eV the resulting orbital configuration will be C1, and

for U0 < 4 eV C2 configuration is favored, with converged U values of U = 6.59

eV and U = 2.41 eV, respectively. The difference between C1 and C2 is the

3The average U value is the same, since matrices are conjugated transposes: U↑↓mn;mn =(
U↓↑mn;mn

)†
.



4.3. Planar free-standing X4O24 chains 4 59

dxz
dyz

d

dz2

dx -y2 2

xy

E-
E F

(e
V)

-10

-8

-6

-4

-2

0

4

6

-10

-8

-6

-4

-2

0

4

6

2

E-
E F

(e
V)

-10

-8

-6

-4

-2

0

4

6

-10

-8

-6

-4

-2

0

4

6

2

Γ ΓX X Γ ΓX X

Γ ΓX X

a) b)

c)

Figure 4.3: In each panel, central subpannels show the electronic structure of the
planar unsupported chain, and on the sides the PDOS. (a) MnO2, (b) CoO2 and
(c) FeO2. Arrows indicate spin majority (red) and spin minority (blue). The d
orbital character of the bands is plotted with a color code, where the thickness is
proportional to the magnitude of the projection on each d orbital. d orbital PDOS
is plotted in black, while full bands and the total DOS are plotted in gray.

occupation of the Ni(d) orbital (see Fig. 4.5 for the band structure and PDOS for

the C1 and C2 configurations). DFT+U calculations show that the spin magnetic

moment of each configuration is µC1
Ni = 1.23µB and µC2

Ni = 0.55µB, respectively.

C1 and C2 configurations can be considered as two multiplets of S = 1/2, i.e.,

two states with the same spin state but different orbital occupation configuration.
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Nevertheless, the difference between the bare Coulomb parameters4 is just V C1 −
V C2 = 25.02 − 24.81 = 0.21 eV, a 0.8% relative variation on the averaged matrix

elements. A large variation on the bare Coulomb potential would indicate that

the shape of the orbitals is altered depending on the configuration. A real space

representation of the Wannier orbitals, shown in Fig. 4.4, assures that both C1

and C2 present almost no difference. The slight variations between the MLWFs

can result in a small difference on the bare Coulomb parameters, but they can not

explain the large variation of U . C1 and C2 screening difference is the result of the

different Ni(d) orbital occupancy and, consequently, different electronic structures

(see Fig. 4.5).

NiO2

C1

C2

dz2 dxz dyz dx -y2 2 dxy pz px py

Figure 4.4: Real space representation of the unsupported chains MLWFs of the
spin minority Ni(d) and O(p) orbitals.

To obtain insight into the effective screening, we modify the subset where the

screened interaction is calculated. In Fig. 4.6, we show the matrix elements Umn
5

for the ↑↑ spin channel. We recall that the subset correlation is excluded. In con-

sequence, if we include O(s) [O(p)], the origin of the effective screening will be due

solely to O(p) [O(s)]. Only bands that lie deeply in energy have X(s) and X(p)

orbital weight in the muffin-tin. Therefore, we assume that the screening effects

from these orbitals are negligible.

The matrix elements shown in panels (a) and (d) in Fig. 4.6 consider only the d

orbitals subset, hence, screening is due to O(sp). In the following panels, the com-

bined effect of O(s) and O(p) is separated. For (b) and (e) is due to O(p), for panels

(c) and (f) only to O(s). As a reference, we also show the bare Coulomb matrix

elements of Ni(d), O(s) and O(p) of C1. When the O(p) orbital is considered as the

4Average of the electron interaction without screening: Vm1m2m3m4
= 〈m1m2|

1

r− r′
|m3m4〉.

5We use contracted indices notation: Umn;mn → Umn.



4.3. Planar free-standing X4O24 chains 4 61

Γ Γ Γ ΓX X X X

a) b)

E-
E F

(eV
)

-10

-8

-6

-4

-2

0

4

6

-10

-8

-6

-4

-2

0

4

6

2

dxz
dyz

d

dz2

dx -y2 2

xy

Figure 4.5: Same information as in Fig. 4.3. The free standing NiO2 is shown in
panels (a) C1 and (b) C2.

origin of the screening, and similarly with the O(sp) combined effect, the averaged

U(d, d)6 parameter is 6.70 eV in C1 and 2.61 eV in C2. Nevertheless, O(s) is not

to be overlooked, as the O(s) reduces the U from 25 eV to 15 eV in the C1 state

and to 10 eV in the C2. From these results, we can conclude that the combined

effect of O(sp) on Ni(d) is no a sum of the individual terms of the O(s) and O(p)

orbitals. The O(p) orbital is the main source of the screening on the d orbital for

C1 and C2. Still, in C2, the O(p) orbital shows a larger efficiency in the screening.

This indicates that Ni(d)-O(p) interaction differs for the C1 and C2 configurations.

The PDOS and band structure (see Fig. 4.5) of the chain shows features arising

from the different d− p bonding of each multiplet state. According to Eq. (2.57),

in the static limit (ω → 0) the main contribution to the polarization are the

states around the Fermi level [127]. Therefore, the larger the density of states at

Fermi level, ρ(EF ), the more effective the screening. The multiplets show different

electronic structures: C1 presents a half-metallic state, where the band-gap is at

majority spin, and dxz and dyz states are fully occupied, while C2 is metallic. These

findings agree with the obtained results, where C1 has a larger U than the metallic

C2. In addition, the C2 configuration presents sharp peaks around the Fermi level.

The band narrowing in C2 enhances the electronic polarization, which in turn can

reduce the U value even more [127].

6With U(d, d) we refer to the matrix block formed by the d orbital.
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Figure 4.6: U↑↑mn matrix elements for the screened orbitals. The indices indicate
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As a reference the bare Coulomb matrix (C1 configuration) is included (panel g).
Color code units in eV

Bands with dxy character show a similar splitting and localization in energy in

both multiplets. The main difference between C1 and C2 is at bands with dz2,x2−y2

character 7. According to Table 4.3 in C1 the dz2,↓ is empty. In C2 the dz2,x2−y2

orbitals are fully occupied. In the C2 configuration, the Ni and O atom orbitals

are more hybridized around the Fermi level than in C1, where there is almost

no mixing between Ni(d) and oxygen orbitals in the majority spin (see PDOS in

the Fig. 4.5). The change in the hybridization suggests that the Ni(d) and O(p)

interact in a different manner in the C1 and C2 configurations. The ligand field

difference of C1 and C2 is reflected in the charge transfer between O and Ni atom:

in C2 PDOS peaks at EF −1 eV indicate a d−d character band gap (meaning that

U < ∆CT), while in the C1 the band gap is formed between Ni(d)−O(p) orbitals

(i.e., U > ∆CT) [157].

7The chain symmetry favors the formation of the sp3d2 hybrid orbital, where dz2 and dx2−y2

orbitals are hybridized.



4.3. Planar free-standing X4O24 chains 4 63

Next, we estimate the correlation energy with:

EU = U
∑
i

n↑in
↓
i (4.1)

where n
↑(↓)
i are the individual orbital occupations in Table 4.3. The latter estima-

tion shows the trend of the U values depending on the orbital occupation. The

results for Σin
↑
in
↓
i and EU are given in Table 4.48. C2 shows a larger Σin

↑
in
↓
i than

C1, suggesting that U should be lowered in order to minimize the energy, in agree-

ment with our results. Note, however, that Eq. (4.1) results can not be used as

a criterion to define which configuration is more stable, as DFT+U total energies

for different U values can not be compared. Only for U ' 6 eV and J ' 1 eV both

configurations have been converged, resulting in a C1 ground state while C2 is a

metastable state separated by 0.33 eV.

Spin dz2 dxz dyz dx2−y2 dxy µX (µB)

NiO2: C1
↑ 0.99 0.99 0.99 0.99 0.54

1.23
↓ 0.03 0.94 0.85 0.97 0.42

NiO2: C2
↑ 0.99 0.91 0.86 0.99 0.48

0.55
↓ 0.99 0.64 0.61 0.99 0.46

MnO2

↑ 0.94 0.91 0.86 0.99 0.41
3.49

↓ 0.01 0.10 0.08 0.09 0.28

FeO2

↑ 0.98 0.98 1.00 1.00 0.59
3.67

↓ 0.01 0.21 0.14 0.11 0.49

CoO2

↑ 0.97 1.00 1.00 0.96 0.52
2.21

↓ 0.00 0.84 0.75 0.14 0.46

Table 4.3: Individual occupations of the X(d) orbital of the unsupported chains.
The spin magnetic moment is included to indicate the spin state.

Seth et al. [180] proposed another method to cope with the correlation when

strong hybridization between the d and p. In Ref. [180], the ”shell folding” (SF)

method is proposed, where a renormalization of the U value is done to account

for the screening due to the p ligand field. Within the shell-folding approach, the

localized subset includes d and also p orbitals, resulting on off-diagonals elements

in the Coulomb matrix that will account for the d-p interaction (see Fig. 4.6). As-

suming that the total occupation of d and p orbitals is invariant over changes in

8Since dz2 and dx2−y2 form a hybrid atomic orbital7, we consider them a single orbital with
double maximum occupancy.
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n↑n↓ EU

NiO2 C1 3.98 26.2

NiO2 C2 5.09 12.3

MnO2 0.40 1.3

CoO2 2.11 12.1

FeO2 0.80 6.1

Table 4.4: n↑n↓ factors and correlation energy estimates EU of free-standing chains.

the U , the resulting effective screening is calculated as Ũ(d, d) = U(d, d)−U(d, p),

where Ũ(d, d) is the renormalized screening, U(d, d) is the average value of the

matrix elements of the d-d diagonal block (intraorbital interaction), and U(d, p)

is the average of the off-diagonal block. The resulting Ũ(d, d) are given in Table 4.5.

U(d, d) U(d, p) U(p, p) Ũ = U(d, d)− U(d, p) Ũ − U
MnO2 12.24 5.67 9.96 6.57 0.36

FeO2 15.19 6.13 10.64 9.06 1.39

CoO2 14.84 6.22 11.08 8.62 2.89

NiO2 (C1) 14.61 6.15 11.26 8.45 1.86

NiO2 (C2) 10.31 3.28 8.77 7.03 4.62

Table 4.5: Screened Coulomb parameter using the shell-folding method for the
planar unsupported chain. The U values indicate the averaged of block matrices
dd, dp or pp. The fourth column is the result of the shell-folding renormalization
(Ũ). The last column indicates the difference between the shelf-folded Ũ and the
cRPA with projection method with only a d orbital subset. All values in eV.

For all unsupported planar chains, Ũ > U is obtained, as shown in Table 4.2.

In the MnO2 chain, the difference is Ũ−U =0.36 eV. This small difference between

the two methods implies that the d− p ligand contribution is correctly described,

i.e., the correlated space is well separated from the rest of space. In NiO2, we

already mentioned that the p ligands do not interact in the same manner at the

C1 and C2 configurations. The difference is Ũ − U = 1.86 eV and 4.62 eV for

C1 and C2, respectively. In the C2 configuration, the d − p ligand contribution

has a significant effect compared to the C1 one. The block average U(d, p) for the

NiO2-C2 is 3.28 eV, which shows a large difference with respect to the other chains,

where U(d, p) ∼ 6 eV is obtained. The FeO2 and CoO2 chains are in-between the
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limit behaviors of MnO2 and NiO2-C2 chains.

Non-planarity in free standing chains

In the ideal case, metal and O atoms are coplanar, but as the X and O atom

form the chain in an Ir(100) substrate, the O atoms are lifted. The non-planarity

induces larger bonds between the X and O atoms, which alters the electron hop-

ping and may affect the Coulomb interaction. To consider separately the effects

of the absorbed geometry in the substrate, we have done a cRPA calculation with

the free-standing MnO2 chains in the adsorbed buckled geometry. In Fig. 4.7, we

compare the band structures of both unsupported MnO2 chain.
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Figure 4.7: Band structure of the unsupported (a) planar, (b) absorbed geometry
and (c) supported MnO2 chain for majority and minority spins. Only Mn(d)
projections are shown in this case. The d orbital projections color code is the same
as in Fig. 4.5.

In the buckled geometry, the band dispersion is modified with respect to the

planar chain, but the general aspects of the hybridization between the Mn and

O atoms are maintained. For the buckled MnO2, the converged interaction pa-

rameters are U = 6.18 eV and J = 1.04 eV (in the ↑↑ spin channel). There is a

change of 0.03 eV in the intraorbital interaction, while there is no variation on the
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interorbital exchange interaction. In the next section, we will study the screened

correlation when the Ir substrate is included.

4.4 Supported XO2 chains on Ir(100)

Charge transfer and orbital hybridization between substrate and chain can alter the

electronic structure of the chains, which may, in turn, affect the screened Coulomb

interaction. We have already seen that different orbital configurations with the

same spin state yield different effective screenings, e.g., NiO2 C1 vs C2, since the

binding with O(p) is different in these cases. Hence, a contribution due to multi-

plet change can not be disregarded in our calculations.

The U value can be defined as the sum between the affinity and ionization

energies. However, upon deposition of the oxide chains on metals, the interac-

tion between the d orbitals is further screened by another term, U = E(dn+1) +

E(dn−1)−2E(dn)−2Eim, where Eim is the image potential originated from the ions

creating a mirror charge in the substrate [160, 161]. However, this regime is not

applicable here because the X atom is in a missing row, i.e., they are not on top

of the substrate but in the substrate (see Fig. 3.1). Therefore, an approximation

of the atom as a point charge with a Coulomb interaction tail of 1/|z − zx|, where

z is the distance and zx height of the X atom can not be considered.

In the supported case, the initial guess for U and J is set at U0 = 3.5 eV and

J0 = 0.0 eV. The converged values of U and J for the supported chains are given

in Table 4.6. All U values are reduced in comparison to the planar free-standing

chain. In the FeO2 chain, the effective screening is reduced by as much as ∼ 6 eV

compared to the free-standing case. The interorbital exchange coupling, J , is also

smaller than in the unsupported case. The largest change is ∼ 0.30 eV for the Fe

atom.

Interaction between the Ir atoms and the chain is visible in the electronic struc-

ture of the chains (see Fig. 4.8). We begin by discussing the MnO2 and CoO2 chains,

as they show a similar trend. Charge transfer from the substrate fills the partially

occupied dxz,↑ and dyz,↑ bands in both chains and, in CoO2, a partial filling of the

dx2−y2,↓ can be observed near the Fermi level. In Table 4.7, we give the individual

partial occupations of the supported chains.
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XO2/Ir U J Ũ

Ni 1.71 0.87 1.16

Mn 3.78 0.98 3.29

Co 2.39 0.90

Fe 1.38 0.80

Table 4.6: Converged U and J values (↑↑ spin channel) for the XO2/Ir(100)
chains. All units in eV.
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Figure 4.8: Same information as Fig. 4.3 for the supported (a) NiO2 (b) MnO2,
(c) CoO2 and (d) FeO2 chains.
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Spin dz2 dxz dyz dx2−y2 dxy µX (µB)

NiO2/Ir
↑ 0.97 0.95 0.95 0.97 0.62

0.52
↓ 0.59 0.94 0.95 0.96 0.41

MnO2/Ir
↑ 0.96 0.98 0.98 0.99 0.41

3.66
↓ 0.08 0.08 0.08 0.09 0.23

FeO2/Ir
↑ 0.95 0.97 0.97 0.98 0.68

2.87
↓ 0.25 0.41 0.17 0.36 0.28

CoO2/Ir
↑ 0.97 0.96 0.96 0.98 0.70

2.02
↓ 0.08 0.93 0.94 0.29 0.31

Table 4.7: Individual occupations of the X(d) orbital in the supported chain. The
spin magnetic moment is shown too.

n↑n↓ EU (eV)

NiO2/Ir 5.08 8.7

MnO2/Ir 0.61 2.3

CoO2/Ir 2.74 6.5

FeO2/Ir 1.93 2.7

Table 4.8: n↑n↓ factors and correlation energy estimates EU for the supported
chains.

Using Eq. (4.1) to estimate the correlation energy, the
∑

i n
↑
in
↓
i factor shows a

subtle increase (see Table 4.8), consistent with the U values decrease as indicated

in Table 4.6. The study of individual occupancies shows that the multiplet config-

uration of the MnO2 and CoO2 is maintained upon deposition. Even the magnetic

moments are similar to those of the unsupported chain.

Next, we apply the shell-folding method, where all screening processes due to

the O(sp) are eliminated, leaving only the Ir substrate, i.e., the localized subset

is formed by the X(d) and O(sp). The obtained matrix elements for MnO2 are

plotted in Fig. 4.9. The renormalized Ũ value yields 3.29 eV, similar to the value

obtained including O(sp) orbitals in the screening, U = 3.78 eV. The small differ-

ence (∼ 0.5 eV) between shell folding and our method implies that d-p bonds are

disentangled as in the free-standing case. In Fig. 4.9, we compare the matrix ele-

ments obtained for the MnO2 and MnO2/Ir(100). In panels (a) and (b), we show

the planar unsupported case where the O(p) is the main source of the screening.
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In the supported case (panels (c) and (d)), there is only a small change when the

O(sp) is taken out, implying that Ir is the main source of screening.
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Figure 4.9: Screened Coulomb matrix elements for MnO2 and MnO2/Ir. Panel (a)
is only for the unsupported Mn(d) orbital, (b) considers the unsupported Mn(d)
and O(p) orbital formed subset. Panels (c) and (d) show the same orbitals as
panels (a) and (b) for the supported case. The (d) panel orbitals includes the O(s)
orbitals in the subset, its matrix elements are not shown. The numbering follows
the same code as in Fig. 4.6. All units in eV.

The NiO2/Ir chain shows a similar trend as CoO2 and MnO2 chain on the

orbital filling: dxz and dyz become occupied by charge transfer, but in this case

the dz2,x2−y2,↓ becomes partially occupied (see Table 4.7). All states of Ni(d) form

narrow bands around the Fermi level and EF − 2 eV, resembling the narrow peaks

present in the C2 configuration. In addition, as given in Table 4.8, the
∑

i n
↑
in
↓
i

factor differs by only 0.01 and the spin magnetic moment by 0.03 µB from the

free-standing C2 configuration. Hence, we consider that upon deposition a similar

state as the C2 is settled for the Ni atom. The converged low value of U = 1.71

eV can be considered an effect of the further screening of the Ir to the NiO2-C2,

which already shows a substantial screening. Thus, the multiplet state plays an

important role on the obtained U value.

A comparison with the C1 value would be interesting, but it is not obtained

in the adsorbed NiO2 chains, neither as a ground state nor as a metastable state

for the studied U parameter range (U0 = 1.5, 3.5 and 5.5 eV). All calculations ini-
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tializing with the orbital configuration of C1 are driven to the similar C2 ground

state, yielding the same converged U and J values. We calculate the shell-folded

interaction for the NiO2, being Ũ = 1.16 eV. The difference between the d formed

correlation space U value and Ũ is ∼ 0.6. The Ni(d)−O(p) ligand field is effectively

well described when the chain is on the substrate, owing to a change in the d− p
interaction due to the Ir.

Note that in the unsupported chains the shell-folded method yields Ũ > U ,

while in the supported case, Ũ < U . This implies that Ir layers also modify the

p orbitals of the O atoms (see Fig. 4.10). In the supported case, the Ir substrate

effectively screens both X and O atoms. The real space representation of the ML-

WFs shows that including the substrate can indeed affect the shape of the orbitals.

FeO2

FeO2/Ir

dz2 dxz dyz dx -y 2 2 dxy pz px py

Figure 4.10: Real space representation of the minority spin MLWFs in the FeO2

and FeO2/Ir chain. Second and bottom rows show the unsupported and supported
FeO2 chains, respectively.

U(d, d) U(d, p) U(p, p) Ũ = U(d, d)− U(d, p) Ũ − U

MnO2/Ir(100) 4.66 1.37 4.34 3.29 -0.49

NiO2/Ir(100) 1.99 0.83 1.26 1.16 -0.55

Table 4.9: Screened Coulomb parameters using the shell folding method for the
supported MnO2 and NiO2 chains. The distribution of the table follows Table 4.5.
All values in eV.

Finally, the FeO2/Ir system is discussed. The converged intraorbital value

shows a drastic enhancement of the effective screening compared to the isolated

chain case, U = 1.38 eV, which is a reduction of more than 6 eV. The real-space

representation of the MLWFs do not show major changes due to the substrate (see

Fig. 4.10). Hence, the change in U needs to be due to other effects. In Table 4.8,
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the sum over n↓in
↑
i increases by one unit compared to the ideal chain case. This

increase is also reflected in the change of spin state, where the Fe atom changes

from a S = 2 (unsupported case) to a S=3/2 state. The planar free-standing FeO2

electronic structure shows the features of a CT insulator, i.e., a band gap between

X(d)−O(p) orbitals. However, in the supported case, the chain becomes metallic

as spin minority d bands are located around Fermi. The drastic change in the U

value can be associated with the insulator-to-metallic transition. We have checked

that, despite varying the U value in the GGA+U calculations, the minority d band

is pinned at the Fermi level, and this could be driving the cRPA cycles to the low

U values.

Considering the change of state and the large U variation, one could pose the

question: in the limit of no hybridization with the substrate, what would be the

screening? We artificially set it to two different heights: zFe = 2.5 Å and zFe = 4 Å,

measured from X atom in the absorbed geometry. At the same time, we consider

two different initial U values: the converged free-standing value U f
0 = 7.67 eV and

the converged absorbed one U s
0 = 1.35 eV. In Table 4.10, we show the obtained U

values for each calculation.

zFe = 2.5 Å zFe = 4 Å

U s
0 = 1.35 eV U s

2 = 3.38 eV U s
1 = 3.18 eV

U f
0 = 7.67 eV U f

2 = 3.73 eV U f
1 = 6.13 eV

Table 4.10: Resulting U values when the FeO2 chain is lifted at zFe = 2.5 and 4 Å
starting from U s

0 or U f
0 . The subscript indicates the iteration number, and the f(s)

superscript indicates that the starting U value is the free-standing or supported.

The resulting PDOS are shown in Fig. 4.11. At the intermediate height of

zFe = 2.5 Å, both cRPA calculations yield a U ' 3.5 eV after two iterations. In

the the PDOS for zFe = 2.5 Å, the dz2,↓ is pinned at the Fermi level for both

starting values (panels (a) and (b)), and also a dxy,↑ for the U f
2 (panel (b)). This

residual hybridization may contribute to reduce the Hubbard-U .

At height zFe = 4 Å, the first iteration of the cRPA results in U f
1 = 6.13 eV

and U s
1 = 3.81 eV values, still far from the free-standing values. Fig. 4.11 panel

(c) shows a small peak of dz2,↑ and other d character peaks persist near EF . For

U f (panel (d)) this pinning of the dz2 vanishes becoming an empty orbital for both

U values, but still an empty dxy,↑ is near Fermi. If we compare the free-standing

FeO2 PDOS (Fig. 4.3) with the lifted ones (Fig. 4.11), we see that at z = 4 Å,
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panel (d), the PDOS is similar to the free-standing FeO2 chain. The d orbitals

peaks are at a similar energy range ( EF − 8 eV, EF − 10 eV), except for the dxy,↑
which is situated near the Fermi level instead of EF+1 eV.
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Figure 4.11: The colored curves show Fe(d) orbital contributions to the PDOS
of FeO2 detached from the Ir(100) substrate at heights 2.5 Å (a,b) and 4 Å (c,d),
for U s

0 = 1.40 and U f
0 =7.67 eV, which correspond to the limit U values in the

adsorbed (a,c) and free standing (b,d) configurations, respectively. The gray curve
corresponds to the total DOS.

The artificial lifting of the chain cannot reproduce the free-standing U value,

even though hybridization between substrate and chain is almost completely lost
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Figure 4.12: Total potential of the bare Ir surface compared with an image po-
tential. zim is set to match the derivative of both curves. Solid grey lines mark the
z = 2 Åand z = 4 Åpositions.

in the z = 4 Å and U f
0 . The still present long-range screening effect is the effect of

a still present non-negligible screening. In Fig. 4.12, we compare the total potential

of the bare Ir substrate, i.e, no chains with an image potential. We see that the

GGA total potential decays exponentially compared to the 1/z tail. At z = 4 Å

the GGA has a small value of ∼ 1 eV, which is 0.33 eV smaller than that of the

Coulomb-like tail. Therefore, the obtained orbital pinning and screening can be

physically possible, albeit, not accurate numerically.

4.5 Conclusions

In conclusion, DFT+U and cRPA calculations are used to study the electronic

correlation of XO2 chains on Ir(100), where X =Ni, Co, Fe and Mn. We have

calculated the U and J values of the free-standing planar and supported chains,

with an analysis of the interplay between the ligand field and the substrate.

In the ideal case of the planar free-standing chains, we obtain U values rang-

ing from 2.4 to 7.7 eV, being the largest value that of the insulator FeO2 chain.

DFT+U calculations show the existence of two different multiplets for the same

spin state in NiO2: C1 and C2 configurations, which C1 can be associated to a

d-d gap, (U < ∆CT), and C2 is a d− p one (U > ∆CT), where ∆CT is the charge-

transfer energy. Each configuration shows a different U value. Calculations with

the shell folding method result in higher values of the U for all chains. These cal-

culations show that each Ni(d) multiplet interacts differently with the O(p) orbital

depending on the orbital configuration. Calculations varying the correlated space
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show that the O(p) is the main source of screening. The non-planar geometry of

the chain modifies the band structure, but the U value is slightly affected.

All supported chains show an increased effective screening as expected. The

FeO2/Ir shows an insulator-to-metallic transition, which strongly enhances the

screening reducing the U from 7.7 eV to 1.38 eV. The Ir substrate also can mod-

ify the d orbital configuration due to charge transfer which can contribute to the

screening. The shell folding method allows to estimate the ligand field contri-

bution to the U value, showing that the X(d)-O(p) bonding is different between

the unsupported and supported case. An artificial lifting of the FeO2 chains from

the substrate cannot reproduce the free-standing U value. Screening due to Ir is

present in the detached chain limit, total potential calculations that an appreciable

long-range interaction tail is still present in the calculations.



Chapter 5

Magnetic properties of transition

metal-organic chains: the CoQDI

and CrQDI cases

They don’t know that we know

they know we know.

Phoebe Buffay, Friends

5.1 Introduction

In this chapter, we deal with metal-organic chains, i.e., a type of chain where tran-

sition metal (TM) atoms are linked by organic ligands. This type of system can

be formed on surfaces through self-assembly [42].

The large amount of accessible molecular complexes allows the synthesis of dif-

ferent metal-organic networks. This type of networks are formed by many atoms

leading to a high number of spatial degrees of freedom, combined with the spin

makes the metal-organic system capable of displaying different possible geometries,

and in consequence, they can show different magnetic and electronic properties

[25, 181, 182, 183]. Occasionally, they show a spin-crossover (SC) transition [26],

where the TM atom can switch from a low-spin (LS) state to a high-spin (HS)

state due to an external perturbation, such as, thermal effects, light, pressure or
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high-magnetic fields. The SC can be used in pressure sensors, as data storage,

devices electronic devices [184, 185, 186, 187] or may be applicable to holography,

because of the different refractive indices of the LS and HS states [188].

In low-dimensional systems, where the electron correlation is enhanced, DFT+U

needs to be applied. The inclusion of the new term in the DFT functional (see

Eq. (2.28)) adds an implicit bias in the DFT calculation, which becomes depen-

dent on the orbital occupation matrix and the chosen double-counting term (see

Section 2.2). In addition, the TM species can show different states (with the same

spin or different), i.e., different orbital occupations. Recall that in the previous

chapter the NiO2 could show two different orbital occupations with the same spin

state for different values of U , and both could be converged for a given U value.

If the energy minimization procedure was exact, the obtained state would be the

ground state (GS). However, this numerical minimization procedure can converge

to metastable states[72, 189, 190]. The orbital occupation can affect the magnetic

anisotropy and exchange coupling. In order to study the properties of both the GS

and metastable states, we use the occupancy matrix control (OMC) method [73]

(see Section 2.2).

This chapter focuses on the CrQDI and CoQDI 1D polymeric chains, tran-

sition metal-organic chains that result from the combination of 2,5-diamino-1,4-

benzoquinonediimines (2HQDI) with Cr and Co atoms (see Fig. 5.1 for the struc-

ture). The research group of Prof. P. Jelinek from the Czech Academy of Science

in Prague synthesized these chains on an Au(111) surface in ultra-high vacuum

conditions, forming well-ordered long chains (> 100 nm). The structural prop-

erties of the chains have been previously analyzed by V. M. Santhini et al. [75]

using atomic force microscopy and scanning tunneling microscopy. The experi-

mental data on the magnetic properties of these chains have been obtained by C.

Wäckerlin et al. from the Swiss Federal Laboratories for Materials Science and

Technology in collaboration with the group of Prof. P. Jelinek using X-ray absorp-

tion spectroscopy combined with X-ray magnetic dichroism (XAS/XMCD) and

linear dichroism (XAS/XLD) [6].

In our work, we study the possible states in the CoQDI and CrQDI chains,

ground state and metastable, and the consequences that these may have on the

magnetic properties. We also study the stability of the magnetic coupling over

different conditions: variation of U (this mimics different screening conditions),

consider a spin spiral order and structural distortions. The theoretical results are

used to interpret the experiments. Previous work, Ref.[75], shows that the chain
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Figure 5.1: Structure of the TMQDI chains where TM=Co, Cr.

could be easily manipulated with the STM, implying a weak substrate-chain in-

teraction. Therefore, our analysis is done considering a planar free-standing chain,

i.e., no Au(111) substrate is considered.

The chapter is organized as follows: in Section 5.2, combining DFT+U and

OMC, we calculate the possible spin states and establish the ground state of each

system. In Section 5.3, the magnetic properties of the CoQDI and CrQDI chains

are analyzed using DFT+U , with a study of the robustness of the magnetic cou-

pling for the CrQDI chain. We compare our results with the experimental data.

Finally, in Section 5.4, we give the main conclusions of the chapter.

5.2 Computational details

The theoretical analysis of the unsupported planar chains is done using DFT+U

calculations with the Vienna Ab Initio Simulation Package (VASP) (see Section 2.2),

with the PBE exchange-correlation functional[84]. The Hubbard-U correction

scheme is applied via Dudarev’s functional[102]. The plane-wave cut-off energy

is set at 450 eV with a 10 × 1 × 1 k-grid centered at Γ. The relaxed geometry is

calculated imposing a periodic supercell and setting 12 Å of vacuum between the

periodic repetitions. The forces minimization threshold is < 0.01 eV/Å and the

total energy minimization convergence criterion is set to 10−6 eV.

In the geometrical optimization, we modify the lattice parameters of the chain

and let the molecule atoms to relax while the TM atom is frozen. The aromatic

ring bond lengths are almost unaffected by the geometrical relaxation, the distance

between the N and C atoms changes by less than 0.02Åcompared to the gas-phase

molecule. The main change is at the bond length between the TM atom and N

atoms. In Fig. 5.2, we show the resulting total energy curve for U = 0, 1.5, 4 and

5 eV. For U = 0 and 1.5 eV only one curve is obtained. For high U values (4 and
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5 eV), two different curves are obtained showing different minima. At each curve,

the Co atom shows a different spin state: a low-spin state (LS) with S = 1/2

(blue) and the red curve is a high-spin state (HS) with S = 3/2 (red), i.e., there is

a spin crossover. Each spin state shows a distinct Co-N bond length as indicated

in Fig. 5.2. In Table 5.1, we give the Co-N bond length and the spin magnetic mo-

ment of the Co atom for the LS and HS states. The LS state shows a shorter bond

length compared to the HS one. The bond lengths do not show a large variation

when U increases. For U = 5 eV the HS and LS states’ energies differ 88 meV,

while for U = 4 eV, the energy difference is 200 meV.
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Figure 5.2: Total energy with respect to the Co-N bond length measured from
the ground state of each U value. The curve color shows the spin state of the Co
atom: blue for S = 1/2 (LS) and red for S = 3/2 (HS).

In Fig. 5.3, we show the energy at each bond-length for U = 0, 3, 4 and 5 eV

for the CrQDI chain. As in CoQDI, we have considered different lattice vectors

and then let the geometry to relax, maintaining only the TM atom frozen. For all

U values, only one spin state is obtained, S = 2. The equilibrium bond lengths

show a significant change between U = 0 and U = 3 eV, while there is almost no

variation in the Cr-N distance between U = 3, 4 and 5 eV. In Table 5.1, we show

the bond length between the Cr and O atom and the spin magnetic atom of the
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Cr atom for U = 5 eV.
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Figure 5.3: Total energy with respect the Cr-N atom bond-length measured from
the ground state total.

dTM-N µSTM (µB)

CoQDI (LS) (U = 4 eV) 1.86 1.20
CoQDI (HS) (U = 5 eV) 2.02 2.73

CrQDI (U = 5 eV) 2.08 3.71

Table 5.1: Equilibrium TM-O bond lengths and spin magnetic moment of each
TM atom.

In Figs. 5.4 and 5.5, we show the band structure and the projected density of

states (PDOS) of both chains. The CoQDI shows a metallic-to-insulator transition

when the spin state goes from the LS to the HS state. In the former, the majority

dxy band is half-filled, while in the HS state becomes fully occupied. The minority

spin bands show the largest change: in the HS state, only the dz2 and dx2−y2 bands

are fully occupied, while in the LS the dxy and dxz bands are partially filled. The

change in the orbital occupancy is related to a different hybridization between the

Co(d) and O(p) orbitals. The CrQDI chain shows an insulator state with an empty

dxy,↑ orbital and all minority orbitals unoccupied.
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Figure 5.4: Electronic structure of the CoQDI chain in the LS (left) and HS (right)
states. (a) Band structure for majority (red) and minority (blue) spins. The PDOS
for the Co(d) orbitals is shown in (b) and for the O(p) in (c).
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Figure 5.5: Same as in Fig. 5.4 for the CrQDI chain.

Metastable configurations

As previously commented, the U functional introduces a dependence on the ini-

tial orbital configuration. A study of the energy minimization for several orbital

matrix occupations can confirm if the so-far converged states are the GSs and, in

passing, find metastables states of the energy functional. For this analysis, we use
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the OMC method.

We consider first the HS state with U = 5 eV. The orbitals occupation matrices

have to be built keeping a S = 3/2 state. The majority spin matrix is fully

occupied, while the minority spin one has two occupied orbitals. We have to

build combinations with two electrons filling different orbitals. Due to the planar

chain symmetry, the out-of-plane dxz and dyz can share an electron, while one

of the remaining orbitals can be fully occupied by the remaining electron. We

also consider the sp3d2 hybrid atomic orbital, where the out-of-plane dz2 and in-

plane orbitals dx2−y2 become hybridized and hence, share an electron. We use the

following notation to simplify the matrices:

[1 1 1 1 1] =


1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

 , [0h 0h 1] =


0 0 0 0 0

0 0.5 0 0.5 0

0 0 0 0 0

0 0.5 0 0.5 0

0 0 0 0 1

 . (5.1)

The last matrix is an example of the dxz and dyz orbitals sharing an electron, in-

dicated with h. The order of the orbitals is [dxy dyz dz2 dxz dx2−y2 ]. There are 11

different combinations to be considered. In Table 5.2, we give the initial orbital oc-

cupation matrices and the final ones after the OMC is applied and a self-consistent

energy minimization procedure (without constraint orbital occupations) has been

done. We also give the energy difference with respect to the true ground state.

We fix the atomic positions to the relaxed structure obtained in the previous sec-

tion. From 11 initial matrices, only seven different configurations are converged.

The ground state orbital configuration is [0 0 1 0 1], the same as obtained without

OMC. The [0 0h 1h] orbital occupation configuration shows only 72 meV of dif-

ference with respect to the ground state. The interatomic forces in the metastable

state are < 0.05 eV/Å, thus, letting the geometry to relax still maintains the HS-2

configurations. Hence, this metastable state may become relevant in the calcula-

tions, if any distortion is applied to the chain, the energy minimization can go to

the excited state instead of the GS.

To differentiate the GS and this metastable state, in the following we label

them as HS-1 and HS-2, respectively. All the other excited states show differences

larger than 300 meV with respect to the ground state. Therefore, in principle,

these states can be disregarded as the energy difference is too large. The PDOS of

the HS-1 and HS-2 configurations is shown in Fig. 5.6. HS-1 and HS-2 differ in the
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Initial conf. Final conf. µSCo (µB) ∆E = E − E0 (eV)

[1 0 1 0 0] [1 0 1 0 0] 2.88 1.682
[1 0 0 0 1] [0 0 1 0 1] 2.73 0.000
[0 0 1 0 1] [0 0 1 0 1] 2.73 0.000
[0 1 0 1 0] [0 1 0 1 0] 2.75 0.333
[1h 0h 0] [0h 1h 0] 2.75 0.563
[0h 1h 0] [0h 1h 0] 2.75 0.563
[0h 0h 1] [0h 0h 1] 2.73 0.471
[1 0h 0h] [1 0h 1h] 1.06 0.385
[hhhh 0] [0 0h 1h] 2.74 0.072
[0hhhh] [0 0h 1h] 2.74 0.072
[h 0h 0 1] [0 0 1 0 1] 2.73 0.000

Table 5.2: Initial and converged minority spin orbital occupation matrices at the
HS state. The energy with respect to the ground state is given for each calculation.
We also give the spin magnetic moment of the Co atom of each converged state.
The calculations were done at U = 5 eV.

minority occupation. In HS-1, the dz2,↓ and dx2−y2,↓ bands are filled and dxz,↓ is

empty, while in the HS-2, dz2,↓ and dx2−y2,↓ are half-filled and dxz is fully occupied.

In HS-1 the dxz,↑ orbital is localized in energy between EF −7 and EF −5 eV, while

in the HS-2 it is set between EF − 6 and EF − 4 eV. The dz2,↑ and dx2−y2,↑ show

sharper peaks at EF − 4 eV in the HS-1 state than in the HS-2. Nevertheless, the

different occupation does not affect the Co(d)-N(p) bond. As shown in Fig. 5.6, the

N(p) PDOS is only slightly affected. We compare both states with a calculation

done using the hybrid HSE06 functional. The hybrid calculation shows a similar

configuration as the HS-1 state as ground state, albeit with sharper peaks and a

larger gap than the GGA calculations. This is due to the Hartree-Fock approxima-

tion employed in the hybrid functional, which uses the bare electron interaction,

overriding the screened value of the GGA, resulting in a stronger localization and

a larger gap.

We make the same study for the LS state. In this case, the occupation matrices

are built considering the S = 1/2 state. In the converged LS state, the majority

orbital is occupied by four electrons and the minority part with three electrons. We

also take into account the hybridization, e.g., dxz and dyz symmetry and the sp3d2

hybrid orbital. This results in six different orbital occupations for the majority

channel and eleven for the minority one, 66 combinations in total. To reduce the

total number of combinations to be studied, we make use of an estimation of the

correlation energy:
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Figure 5.6: PDOS for Co(d) at the HS-1 ground state, HS-2 metastable states
with DFT+U and the hybrid functional result. Calculations for the HS-1 and HS-2
were done with U = 5 eV

EU = U
∑
m

Nm(Nm − 1) (5.2)

where Nm =
∑

σ nmσ, being nmσ the individual occupation at each m orbital and

spin σ =↑, ↓. In the HS state, all the different combinations have EHS
U = 6U and in

the case of the already converged LS is ELS
U ∼ 4.5U1. For a given U , the only possi-

bility to reduce EU is modifying the orbital occupancy. In a simple approximation,

the LS GS should have a lower or equal ELS
U value as the converged LS state. In the

end, we consider only those orbital occupations that satisfy EU ≤ 3.5U eV. This

reduces the total number of orbital matrices to be tried out to 23 (see Table 5.3).

1We consider empty, full or half-filled orbitals for this value, i.e., without partial fillings.
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After the OMC procedure, only five different states remain. From these states,

only one configuration shows a small energy difference (92 meV) with respect to

the ground state. However, in this low-energy metastable state, values of the in-

teratomic forces are of the order of ∼ 0.3 eV/Å. After geometry relaxation, the

orbital occupation converges to the ground state. Therefore, we can disregard this

metastable state. Other metastable states show a difference in energy larger than

800 meV. Thus, we consider that only the orbital occupation with [0.5 1 1 1 1],

[0.5 0 1 0.75 1] on-site values will be achieved in DFT calculations. Calculations

with occupation matrices that are between 4U < ELS
U < 5U show also that the

latter state is maintained as GS.

Initial conf. ↑, ↓ Final conf. ↑, ↓ µSCo (µB) ∆E = E − E0 (eV)

[1 1 1 1 0], [0h 1h 1] [0.5 1 1 1 1], [0.5 0 1 0.75 1] 1.14 0.000
[1 1 1 1 0], [1h 0h 1] [0.5 1 1 1 1], [0.5 1 0 1 1] 1.05 0.092
[1 1 1 1 0], [hhhh 1] [0.5 1 1 1 1], [0.5 0 1 0.75 1] 1.14 0.000
[1h 1h 1], [1 1 0 1 0] [1 1 1 1 1], [0, 1, 0, 1, 0] 2.61 1.23
[1h 1h 1], [0 1 1 1 0] [0.5 1 1 1 1], [0.5 0 1 0.75 1] 1.14 0.000
[1h 1h 1], [0 1 0 1 1] [0.5 1 1 1 1], [0.5 1 0 1 1] 1.05 0.092
[1h 1h 1], [0h 1h 1] [0.5 0 1 0.75 1], [0.5 1 1 1 1] -1.14 0.000
[1h 1h 1], [h 1h 1 0] [0.4 1 1 1 1], [0.5 1 0 1 1] 1.05 0.092
[1h 1h 1], [hhhh 1] [0.5 1 1 1 1], [0.5 0 1 0.75 1] 1.14 0.000
[1h 1h 1], [0 1h 1h] [0.4 1 1 1 1], [0.5 1 0 1 1] 1.05 0.092
[1h 1h 1] ,[1hhhh] [0.4 1 1 1 1], [0.5 1 0 1 1] 1.05 0.092
[1 1 0 1 1], [1h 1h 0] [0.5 1 0 1 1], [0.4 1 1 1 1] -1.05 0.092
[1 1 0 1 1], [0h 1h 1] [0.4 1 1 1 1], [0.5 1 0 1 1] 1.05 0.092
[0 1 1 1 1], [1h 1h 0] [0.4 1 1 1 1], [0.5 1 0 1 1] 1.05 0.092
[0 1 1 1 1], [1h 0h 1] [0.4 1 1 1 1], [0.5 1 0 1 1] 1.05 0.092
[0 1 1 1 1], [1hhhh] [0.5 1 1 1 1], [0.5 0 1 0.75 1] 1.14 0.000
[1 1h 1h], [0h 1h 1] [0.5 1 1 1 1], [0.5 0 1 0.75 1] 1.14 0.000
[1 1h 1h], [hhhh 1] [0.5 1 1 1 1], [0.5 0 1 0.75 1] 1.14 0.000
[1 1h 1h], [1hhhh] [1 1 1 1 1], [0 0h 1h] 2.47 0.811
[h 1h 1 1], [1 0 1 0 1] [0.5 1 1 1 1], [0.5 0 1 0.75 1] 1.14 0.000
[h 1h 1 1], [1h 1h 0] [0.5 1 1 1 1], [0.5 1 1 1 0] 1.17 1.323
[h 1h 1 1], [hhhh 1] [0.5 1 1 1 1], [0.5 0 1 0.75 1] 1.14 0.000
[h 1h 1 1], [1hhhh] [0.5 1 1 1 1], [0.5 0 1 0.75 1] 1.14 0.000

Table 5.3: Same information as in Table 5.2 for the LS state. We show the
majority and minority matrices of each calculation. The calculations were done at
U = 4 eV.
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To obtain a complete analysis of all the chains, we also use the OMC method in

the CrQDI chain. In the converged ground state the majority spin orbital matrix

has four electrons while the minority one is completely empty. From seven different

initial matrices, only two different states are kept after the energy minimization

procedure (see Table 5.4). One is the ground state given by [0 1 1 1 1], and the

other one is a metastable state, [1 1 1 1 0], with a large energy difference of 2.15 eV.

Initial configuration Final conf. µSCr (µB) ∆E = E − E0 (eV)

[0 1 1 1 1] [0 1 1 1 1] 3.71 0.000
[1 0 1 1 1] [0 1 1 1 1] 3.71 0.000
[1 1 0 1 1] [0 1 1 1 1] 3.71 0.000
[1 1 1 0 1] [0 1 1 1 1] 3.71 0.000
[1 1 1 1 0] [1 1 1 1 0] 3.54 2.151
[1 1h 1h] [0 1 1 1 1] 3.71 0.000
[1h 1h 1] [0 1 1 1 1] 3.71 0.000

Table 5.4: Same information as in Table 5.2 for the CrQDI chain. The calculations
were done at U = 5 eV.

5.3 Magnetic anisotropy and exchange coupling

Knowledge of the true ground state is mandatory to obtain the actual magnetic

properties of the chains. In this section, we + calculate the magnetic anisotropic

energy (MAE) and the magnetic exchange coupling constant of the CoQDI and

CrQDI chains.

XAS, XMCD and XML experiments

In this section, we present the experimental data of the CoQDI and CrQDI obtained

by XAS/XMCD and XAS/XLD experiments provided by C. Wäckerlin et al.. The

XAS experiment is based on electrons getting excited by the absorption of an X-

ray photon. In the XAS/XMCD and XAS/XLD experiments, the photons are

polarized circularly (σL and σR) or linearly (σh or σv) while an external magnetic

field is applied to the sample. Combining the XAS/XMCD and XAS/XLD data

with atomic multiplet calculations the spin state, magnetic coupling and the MAE

of each chain can be determined. The obtained results are given in Table 5.5.
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The CoQDI is determined to be in the S = 3/2 ground state, which agrees with

our calculations for the HS state, which points to a high electron correlation with

U ≥ 5 eV. The CrQDI is in a 3d4 state, i.e., S = 2, also in agreement with the

DFT+U calculations. By fitting the XLD data, the CoQDI chain is shown to have

the easy-axis aligned along the y-axis, while in the CrQDI the easy-axis is along

the z-axis. The fitted data of the XLD experiment is used to obtain the crystal

field parameters of the systems. The latter parameters are used in the multiplet

calculations to simulate the XMCD spectra. Because atomic multiplet calculations

consider the metal atoms individually (as if they were paramagnetic), the simulated

XMCD spectra (b-f) show a large magnetic dichroism in the absence of magnetic

interactions. However, the experimental XMCD of Co is quenched (b,c) and the

one of Cr is very weak (e,f), thus, suggesting an antiferromagnetic interaction in

both cases.

Figure 5.7: XAS/XMLD and XAS/XMCD experimental and simulated data. The
XAS/XMLD fitted data results are used to simulate the XAS/XMCD spectra. The
solid line indicates the experimental data (green: XAS and red: XLD and XMCD).
The simulations are indicated by the dotted lines (light green: XAS and orange:
XLD and XMCD). The figure has been obtained from [191]

TM atom Spin state µSTM (µB) µLTM (µB) Easy-axis ZFS (meV)

Co 1.47 ∼= 3/2 (HS) 2.94 1.79 y 37
Cr 4/2 4 0.05 z 0.7

Table 5.5: Resulting magnetic properties from the XAS/XMCD and XAS/XMLD
data for the CoQDI and CrQDI chains. The MAE is given by the zero-field splitting
(ZFS)[149, 150] value.
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DFT calculations

The DFT calculations are used to interpret the obtained experimental results in

terms of the electronic structure of the systems. In addition, we analyze the con-

sequences on the MAE and exchange coupling of the previously found low-energy

states in the CoQDI chain. First, we calculate the MAE for each metal-organic

chain. The spin-orbit coupling (SOC) is evaluated self-consistently, and the MAE

is calculated as the difference in the total energy between the different magnetiza-

tion alignments (see Section 2.3). The total energy convergence threshold is set at

10−8 eV.

Magnetic anisotropic energy

For the CoQDI, we have calculated the MAE for the LS, HS-1 and HS-2 states.

The results are given in Table 5.6. For the LS state, the easy axis is along the

chain axis. In both cases, HS-1 and HS-2 states have an in-plane easy axis across

the chain, with the HS-2 MAE value being twice that of the HS-1 one. In the

PDOS (Fig. 5.6) of the HS-1 state, we see that the dxz,↓ is the empty state clos-

est to the Fermi level. According to Ke et al. [113], transitions between the dz2

and dx2−y2 orbitals to the dxz (m′ = m + 1 and σ = σ′ type) favor the in-plane

easy-axis. In the HS-2 state, the dxz,↓ is filled, therefore a hopping electron in this

orbital can contribute to set the orbital moment along the y-axis, which is missing

in the HS-1 state [55] (see Fig. 3.6). The obtained result for the HS states agrees

with the experimentally observed easy-axis, but the values differ by one order of

magnitude from the experimental ones. The magnitude order difference appears

also between the theoretical and measured orbital moments (see Table 5.7). Note

that DFT+U calculations tend to underestimate the orbital moment (L) [95, 192].

Bruno’s relation states that MAE is proportional to the orbital moment [114, 54].

In all the cases, the orbital anisotropy shows the largest projection of L along the

easy-axis directions. The change of the MAE between the HS-1 and HS-2 states

is not reflected in the orbital moment anisotropy, as it is almost unaffected. The

easy-axis change between the HS and LS states results from the orbital occupancy

matrix variation.

In the CrQDI chain, the easy-axis is out-of-plane of the chain, i.e., it is the

z-axis. The DFT calculation agrees with the XAS/XMLD results in the sign and

order of magnitude. In Table 5.6, the orbital moment also shows a similar value in

both experimental and DFT results. The calculated orbital anisotropy also follows

Bruno’s relation. The antiparallel alignment between the orbital moment (L) and
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spin (S) is due to Hund’s third rule.

TM atom µLTM (µB) MAE (meV) Easy-axis

Co 0.200 -0.76 (x− z) x
Co (HS-1) 0.207 -1.22 (y − z) y
Co (HS-2) 0.236 -2.76 (y − z) y

Cr -0.039 0.54 (x− z) z

Table 5.6: MAE results for the CoQDI and CrQDI chains. The total energy
difference is calculated between the easy and hardest axis of each chain. The
calculation for the LS state is done with U = 4 eV and the rest with U = 5 eV. We
indicate the easy-axis of each chain and give the orbital moment (µLTM) projection
along the easy axis of each TM atom.

TM atom µLTM,x (µB) µLTM,y (µB) µLTM,z (µB)

Co (LS) 0.200 0.039 0.066
Co (HS-1) 0.200 0.207 0.086
Co (HS-2) 0.191 0.236 0.100

Cr -0.013 -0.017 -0.039

Table 5.7: Orbital moment anisotropy of the TM atoms. The projection is cal-
culated by setting L along the direction of S at the beginning of each calcula-
tion (throughout the self-consistent calculations the collinearity is maintained, i.e.,
transverse directions values are negligible).

Magnetic coupling

To obtain the magnetic coupling constant we double the periodic cell and calcu-

late the total energy for ferromagnetic (FM) and antiferromagnetic (AFM) spin

alignments. We let the doubled cell geometry to relax. OMC method is applied

to the HS-CoQDI to ensure convergence to the HS-1 configuration. From these

calculations, the magnetic exchange coupling constant (J ) can be obtained (see

Eq. (3.2)). In Table 5.8, we give the resulting total energy differences between the

AFM and FM states, the coupling constant J and the TM atoms spin magnetic

moment.

In the CoQDI, the LS spin state favors a weak FM coupling, being the total

energy difference less than 1.50 meV. In both HS states, the TM atoms spins prefer

the antiparallel alignment. The obtained result in the HS-1 state agrees with the

absence of signal in the XMCD experiments. The Cr spins show an AFM coupling.
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Remarkably, the band structure of each chain (see Figs. 5.4 and 5.5), shows that

the LS state which prefers a FM coupling is the only metallic one, while the HS

states and CrQDI are both insulators with an AFM coupling. The metallicity and

magnetic coupling follow the same trend observed in the TMO chains.

TM atom ∆E(meV) J (meV) µSTM (µB)

Co (LS) 1.48 2.05 (FM) 1.20
Co (HS-1) -11.07 -2.97 (AFM) 2.73
Co (HS-2) -7.60 -2.02 (AFM) 2.74

Cr -30.43 -4.42 (AFM) 3.71

Table 5.8: Total energy difference calculated as ∆E = EAFM − EFM, coupling
constant and spin magnetic moment. The electron interaction is set to U = 5 eV,
except for the LS state where U = 4 eV.

We will address the AFM coupling of the CrQDI. Considering that the mag-

netic interactions between the distant TM atoms occur via the organic molecule,

and the magnetic moment is largely localized in the TM atom. Therefore, one

could expect that the interaction between the TM atoms is small, hence, a low

value of the magnetic coupling constant could be expected. Indeed, the XMCD

data shows an almost negligible signal. The obtained total energy difference and

J value for the CrQDI does not agree with that interpretation. The disagreement

can be a result of different assumptions made in the theoretical calculations, such

as the U value, the planar geometry, or even a consequence of effects not considered

previously, for instance, the presence of a different spin ordering or an anisotropic

exchange coupling due to SOC. Therefore, we have performed an analysis of the

change of the CrQDI chain exchange coupling constant when the previous situa-

tions are considered.

We start by varying the value of U . Experimental control of the chains with

STM showed a weak interaction with the Au(111) substrate. This effect is also

confirmed by the good agreement between the experimental and DFT calculations

in the unsupported chain. The value of U can be quite large in one-dimensional

systems in the absence of interaction with the substrate, for instance, cRPA cal-

culations have shown that free-standing oxide chains could reach up to U ≈ 8 eV

(see Chapter 4). Therefore, we analyze the change of J in the range of U between

0 and 8 eV. The results are given in Table 5.9. As expected, the trend of J is to

decrease its value upon the increase of U , because the coupling constant is known

to behave as ∝ U−n, e.g., direct exchange, superexchange interaction, etc. [10].
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The coupling for a value of U as large as 8 eV is halved compared to the U = 5

eV, as the energy difference, in this case, is ∼ 15 meV. The energy difference is

reduced, but the system is weakly AFM.

U J (meV)

0 -19.03
3 -14.56
4 -6.45
5 -4.42
8 -2.09

Table 5.9: Exchange coupling constant variation with respect to the value of U
for the CrQDI chain.

Next, we investigate the possibility that J has an anisotropic behavior, i.e., its

value depends on the magnetization orientation. We have performed DFT+SOC

calculations at different magnetization alignments in the doubled cell. The varia-

tion of the resulting magnetic coupling constants, shown in Table 5.10, is weak.

We have also examined the possibility of a non-collinear spin ordering, originated

Axis J (meV)

x -4.336
y -4.339
z -4.335

Table 5.10: Exchange coupling constant at each crystallographic axis when SOC
is considered for the CrQDI chain.

from the non-negligible interaction between neighbors further than the nearest

ones. The exchange coupling constant between a spin and its n-th neighbors can

be obtained by Fourier transforming the coupling constant for different values of

the spin spiral wave q, Jq:

Jn =
1

Nq

q∑
−q

Jqeiqna, where Jq =
Eq − E0

S2
, (5.3)

where n is the atom number, a the lattice parameter and Nq the total number of

used q values. In Fig. 5.8(a), we show the obtained total energies for the CrQDI

referred to the energy of q = 0, E0. q = 0 corresponds to the FM alignment and

q = 2π
a

1
2

to AFM. Since the latter q value shows the lowest energy, the AFM align-

ment is favored against the formation of spin spirals. Fig. 5.8(b) shows that the
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next-nearest exchange constant |J2| is half the |J1| value. The exchange constant

J for n > 2 is drastically reduced by one order of magnitude. Thus, the AFM

coupling is preferred over a non-collinear order.

We continue to investigate other possible effects that may change the nearest-

neighbor interaction. We have said earlier that the Au substrate is inert, i.e.,

negligible charge transfer, but the substrate can affect the geometry of the chains.

Therefore, we have investigated the stability of the exchange coupling under vibra-

tional distortions of the CrQDI chain that modify the Cr-N bond. We have done

these studies at the Γ point in the doubled cells. Neglecting distortions that do

not affect the Cr-N bonds and the three translational modes, only three possible

low-energy (E . 6 meV) and low-frequency (ν . |1.5| THz) distortions are pos-

sible candidates. These three modes appear in the AFM and FM states. These

modes are a soft mode that bends the TM-N bond and two real modes that twist

the molecule: one out-of-plane and the other in-plane. These three distortions are

shown in Fig. 5.9. Neither of these low-energy distortions can change the preferred

coupling. Remarkably, both magnetic orders show the same trend, showing that

J remains constant when low amplitude distortions are applied.

The analysis shows that the exchange coupling is robust under different modi-

fications of the CrQDI chain. The mismatch can be due to other effects, such as,

neglecting the effect of the substrate through weak van der Waals interactions or

screenings effects, recall that the Ir substrate showed a non-negligible screening

even if there was no charge transfer to the TMO chains. In addition, as we are

in the low-dimensional case, the description of the enhanced exchange-correlation

interactions is within the limit of DFT theory [193].

5.4 Conclusions

We have studied two metal-organic chains, CoQDI and CrQDI, where organic lig-

ands connect the transition metal atoms. Our DFT+U calculations show that the

CoQDI has a spin-crossover from a low-spin state (S = 1/2) to a high-spin state

(S = 3/2), triggered by a U value change from 4 to 5 eV. Occupancy matrix control

calculations show that the CoQDI chain has a metastable state with S = 3/2 at 72

meV from the HS ground state. The S = 1/2 state does not show any metastable

state. The CrQDI chain shows only the S = 2 state without metastable states.

In the LS, the exchange coupling between Co atoms is predicted to be FM and
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Figure 5.9: Total energy with respect to the lowest energy (AFM without distor-
tion) for the AFM and FM orderings in the distorted CrQDI chain.

the easy axis is orientated along the chain axis, while in both (ground state and

metastable) HS states an AFM coupling is preferred and the easy axis is across

the chain axis. The HS state is the one that agrees with the XAS/XMCD and

XAS/XMLD spin and MAE.

In the CrQDI chain, the easy axis is aligned out-of-plane of the chain in agree-

ment with the experiments. The XAS/XMCD suggests the presence of a significant

AFM coupling. However, our theoretical calculations show an evident AFM cou-

pling. To sort out these differences, we have analyzed the coupling constant, J ,
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under several variations, such as, for U values between 0 and 8 eV, including SOC

if there is an anisotropic exchange effect, a non-collinear spin ordering and lastly,

distortions that modify the Cr-N bond. Except for high values of U , none of these

changes significantly modify the magnetic coupling.





Conclusions

It’ll pass.

The Priest, Fleabag

The main goal of this Thesis is to provide a theoretical description, at the

Density Functional Theory (DFT) level, of the magnetic properties and electronic

correlation of one-dimensional systems. In particular, we have focused on two types

of magnetic chains: oxide chains XO2, where X=Ni, Co, Fe and Mn on an Ir(100)

substrate, and XQDI chains, where the X=Co and Cr atoms are connected with

the organic molecule QDI, grown in an Au(111) substrate.

In the first part of the Thesis, we have analyzed the XO2 chains using the

DFT+U method. By varying the distance between the atoms for different values

of U , we show that the X atoms can have different spin states. The bond-length

variations allows to achieve different magnetic states, while the larger U values the

larger the S value that can be obtained. For large U values all equilibrium geome-

tries are in a magnetic state. Considering that the Ir(100) substrate screens the

value of U , we first set U = 1.5 eV to start the calculations for the free-standing

chain. The NiO2, CoO2, FeO2 chains prefer the antiferromagnetic (AFM) cou-

pling, while the MnO2 favors a ferromagnetic (FM) coupling. The metallicity of

each chain seems to be related to the preferred magnetic coupling, as the MnO2 is

half-metallic while the other chains are insulators. We have also studied the mag-

netic anisotropy energy (MAE) using two different methods: the self-consistent,

where the spin-orbit coupling (SOC) is evaluated self-consistently, and by force

theorem (FT), where SOC is added to a converged scalar-relativistic electron den-

sity without self-consistent iterations. In the latter method, the MAE is obtained

by the difference over the band energies of the system for two different magneti-

zation directions and in the former by the difference of the total energies. The

calculations show that NiO2 and CoO2 have the easy-axis of magnetization across
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the chain direction, while in FeO2 and MnO2 the easy-axis is out-of-plane of the

chain. In the NiO2, the FT and the self-consistent MAE agree in the predicted

easy-axis, but the values differ largely. An analysis of the bands when SOC is

included shows that the FT methods fails to accurately describe SOC splittings

in bands near Fermi level. Because of the low-dimensionality of the system, the

wave functions are not as constrained with symmetries as in bulk, hence, allowing

a larger change when SOC is included in the DFT calculation, which the FT is not

able to describe. We have calculated the contribution of each eigenstate the MAE

and find that the main difference between the preference of in-plane or out-of-plane

is in the occupation of the dz2 orbital. When this latter orbital is empty (FeO2

and MnO2 chains) the easy axis is out-of-plane.

We have seen that the Hubbard-U parameter is a key component to obtain

different magnetic states. In the previous calculations the value of U has been

estimated considering screenings effects due to the Ir(100) substrate. By combining

DFT and constrained random phase approximation (cRPA) calculations, we have

obtained the value of U and J for each chain. The cRPA calculations based on

the projection method allow to separate the correlated space and from the rest of

the Hilbert space, while transitions between these two spaces are not neglected.

cRPA calculation have been done for the unsupported and supported chains. In the

planar unsupported case, the insulator FeO2 reaches the largest value of U ∼ 7.67

eV, while CoO2 and MnO2 are of the order of U ∼ 6 eV. NiO2 shows a different

behavior, having two different orbital occupation configurations depending on the

value of the U while maintaining the same spin state, labeled as C1 and C2. Each

configuration converges to a different U value: UC1 = 6.6 eV and UC2 = 2.41 eV. To

account for the p ligand effects, we use the shell folding method: the O(p) orbitals

are included in the correlated space and the resulting d− p interaction is used to

renormalize the value of U . These calculations confirm that the ligand-field effect

on the correlation varies for each configuration. Non-planar unsupported chain

calculations do not show any significant variation of U with respect to the planar

case.

In the supported case, the value of U is reduced in comparison with the unsup-

ported case. The largest difference is for FeO2/Ir(100), whereupon deposition, the

chain goes from an insulating to a metallic state. Because of the charge transfer

from the Ir(100) substrate to the chain, the orbital configuration can be modi-

fied. For example, the NiO2/Ir shows a similar configuration to the C2, and the

Fe atom’s spin state changes from a S = 2 to a S = 3/2 state. This, in turn,

modifies the ligand-field contribution to the screening. The shell folding method
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confirms that the substrate changes the ligand field between the X(d)-O(p) atoms.

Inclusion of the O(sp) states into the correlated space shows that in this case the

Ir substrate screens both X and O atoms. So, there are two contributions to the

screening hybridization with the Ir substrate and the ligand-field modification due

to charge transfer. These two contributions can not be decoupled from each other.

In the last part of the Thesis, we have studied the CoQDI and CrQDI polymeric

chains. Previous experiments showed that the chains could be easily manipulated

with the STM, suggesting a weak coupling with the Au(111) substrate. Therefore,

the calculations have been done considering free-standing chains. For values of

4 ≤ U ≤ 5 eV the CoQDI chain shows a spin crossover, i.e., a spin transition from

a low spin (LS) state S = 1/2 to a high spin (HS) state (S = 3/2). In CrQDI,

only the S = 2 state is found for the studied range of U values. We have analyzed

the different possible orbital occupations with the same spin using the occupancy

matrix control (OMC) method. OMC calculations show that there is an excited

state for the CoQDI with S = 3/2 at 72 meV with respect to the ground state

for U = 5 eV. The converged metastable states of LS-CoQDI and CrQDI show a

large difference in the energy with respect to the ground state energy. Thus, these

states can be disregarded. We have calculated the MAE for the CrQDI, and GS

and metastable states of the CoQDI chain. In the CoQDI, the HS ground and

metastable states prefer an AFM coupling and an in-plane easy axis across the

chain axis. In the LS state, the preferred coupling is FM, and the easy axis is

aligned to the chain axis. In the case of the CrQDI, the preferred magnetic cou-

pling is AFM and the easy-axis is the out-of-plane of the chain. These theoretical

results are used to interpret the experimental data obtained by XMCD and XLD

experiments performed by C. Wäckerlin et al.. [191]. In the CoQDI chain, the

data agree with the predicted magnetic properties of the HS state. For the CrQDI,

the experimental data agree with the MAE and AFM prediction. The magnetic

coupling constant J , remains unchanged in various situations, such as, increasing

the U value, non-collinear spin orders or geometrical distortions of the chain.

To sum up, we show that electron correlation is a key feature to determine

the magnetic properties of one-dimensional systems. The cRPA calculations show

that different values of U are allowed for different atomic species depending on the

configuration of the d orbital and the interaction with the substrate. In addition,

a study over different U needs to be done to avoid missing the possible states with

different orbital configurations. Magnetic properties in localized magnetism, are

governed by the orbital occupations, hence, varying the orbital occupations can



98 Chapter 5. Magnetic properties of TM-organic chains

alter the magnetic properties of the same atomic species. Metastable states are a

handicap for the DFT+U calculation, as the energy minimization procedure can

get trapped in a local minimum. Therefore, methods like the OMC needs to be

applied to facilitate finding the ground state.



Appendix A

Magnetic Anisotropy Energy

(MAE) convergence test

A.1 Convergence details

The small value of the MAE in bulk (∼ 10 µeV) and low dimensional systems

(∼ 10 meV) impose a strict convergence criterion. We compute the MAE of the

TMO chains for different energy cut-offs for the plane-wave basis, from 350 to 650

eV, with a step of 50 eV. and 25×1×1, 35×1×1 and 45×1×1 k-point grids. For

the DFT+SOC calculations, the convergence threshold of the total energy is set

to 10−8. The MAE can be considered converged by 500 eV, with subtle differences

(∼ µeV) for higher cut-offs. All chains show a properly converged MAE for a

35× 1× 1 k-grid, except the MnO2 where 45 k-points are needed. To characterize

the orbital partial occupation effects, we calculate the self-consistent MAE with

the tetrahedron method1 [194] and with Fermi-Dirac distribution for several values

of the width, σ = 0.02, 0.05, 0.1 eV. In the FT approach, we use a Fermi smearing

of σ = 0.05 eV width to consider an in-between value of the SCF.

In Tables A.1 to A.3 the resulting energy differences are shown. In the SCF

calculations, the MAE shows little variation with the smearing, particularly in the

FeO2 chain. Considering that σ influences the partial occupations of orbitals, it

is to be expected that the metallic systems, i.e., NiO2, and MnO2, are the ones

that have a larger variation compared to the semimetallic CoO2 and the insulating

FeO2 chains.
1We say tetrahedron as it is the methods name, but as 1D instead of tetrahedron is triangular.
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MAE= Ex − Ey (meV)

FT SCF

σ = 0.05 (eV) Tetra σ = 0.02 σ = 0.05 σ = 0.1

NiO2 1.74 6.09 6.62 7.06 5.23

CoO2 0.40 0.57 0.57 0.58 0.59

FeO2 0.02 0.07 0.07 0.08 0.07

MnO2 0.23 0.32 0.29 0.25 0.21

Table A.1: XO2 MAE between x − y directions computed with a cut-off of 650
eV and a 45×1× 1 k-point mesh.

MAE= Ex − Ez (meV)

FT SCF

σ = 0.05 (eV) Tetra σ = 0.02 σ = 0.05 σ = 0.1

NiO2 -0.29 -0.35 -0.36 -0.36 -0.33

CoO2 -0.12 -0.27 -0.26 -0.28 -0.30

FeO2 0.83 1.12 1.20 1.20 1.22

MnO2 0.31 0.64 0.59 0.52 0.51

Table A.2: Same as Table A.1 for directions x− z.

MAE= Ey − Ez (meV)

FT SCF

σ = 0.05 (eV) Tetra σ = 0.02 σ = 0.05 σ = 0.1

NiO2 -2.04 -6.43 -6.98 -7.15 -5.57

CoO2 -0.51 -0.84 -0.83 -0.86 -0.86

FeO2 0.81 1.13 1.27 1.13 1.13

MnO2 0.54 0.96 0.88 0.78 0.96

Table A.3: Same as Table A.1 for directions y − z.
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cRPA calculations

B.1 FLEUR and SPEX convergence parameters

A summary of the convergence parameters is given in Table B.1. The FLAPW

wavefunctions are expanded up an the angular moment lmax = 8, 6, 8 for X, O and

Ir atoms respectively, and the non-spherical contribution is set to lnonsphmax = lmax−2.

In SPEX, the mixed basis product angular moment is set to Lmax = lmax/2 and

the plane wave energy cut-off is set to 0.75Ewvf
c , where Ewvf

c is the plane-wave

energy cut-off.

MnO2 FeO2 CoO2 NiO2

RX
MT (a.u.) 2.24(2.16) 2.28(2.14) 2.23(2.11) 2.23(2.11)

RO
MT (a.u.) 1.27(1.22) 1.29(1.21) 1.26(1.19) 1.26(1.19)

RIr
MT (a.u.) 2.45 2.35 2.37 2.34

Ewvf
c (a.u.−1) 4.7(4.9) 4.5(5.0) 4.7(5.0) 4.6(4.5)

Epot
c (a.u.−1) 14.2(14.7) 13.8(14.9) 14.2(14.9) 14.1(13.0)

Table B.1: Convergence parameter used in the FLAPW and SPEX calculations
for the unsupported (supported) chains. The R are the muffin-tin radii where
the local basis functions are considered for each atom. The energy cut-offs of the
interstitial planes and potential are given by Ewvf

c and Epot
c . Values between the

parenthesis are for the supported case.
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B.2 cRPA calculation results

In Table B.2 we give the converged U and J values at each spin channel combina-

tion. The maximum spread between the different spin channels is ∼ 0.5 eV for the

U value and ∼ 0.15 eV for the J .

U↑↑ U↑↓ U↓↓ J↑↑ J↑↓ J↓↓

MnO2 6.21 5.95 5.73 1.04 0.95 0.89

MnO2/Ir(100) 3.78 3.53 3.33 0.98 0.88 0.83

FeO2 7.67 7.38 7.12 1.13 1.04 0.97

FeO2/Ir 1.38 - 1.32 0.80 - 0.73

CoO2 5.73 5.58 5.45 1.11 1.05 1.00

CoO2/Ir 2.39 - - 0.90 - -

NiO2 (C1) 6.59 6.49 6.38 1.17 1.13 1.10

NiO2 (C2) 2.41 2.40 2.39 1.01 1.00 1.00

NiO2/Ir 1.71 - 1.70 0.87 - 0.86

Table B.2: Averaged screened Coulomb parameter for different spin channels. All
values in eV.

MnO2 with 3 layers of Ir(100)

We calculate the Hubbard-U interaction for a three-layered MnO2/Ir system. We

obtain U = 3.86 eV and J = 1.00 eV on a first iteration with cRPA. The obtained

U value differs slightly by 0.12 eV from the two-layer case, suggesting that two

layers are enough to characterize the screening due to Ir substrate. In Fig. B.1

we show the MLWFs band interpolation compared to the band structure obtained

with FLEUR.
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Figure B.1: Wannier band interpolation (FLAPW band structure) for MnO2 with
3 layers of Ir in red (black).
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[12] M. Louis Néel. Propriétés magnétiques des ferrites ; ferrimagnétisme et

antiferromagnétisme. Annales de Physique, 12(3):137–198, 1948. (Cited in

page 3.)

[13] Motor Technology. Magnetic Materials : Domestic. (Krebs), 1995. (Cited

in page 3.)

[14] Taeyoung Choi. Studies of single atom magnets via scanning tunneling mi-

croscopy. Journal of Magnetism and Magnetic Materials, 481(January):150–

155, 2019. (Cited in page 4.)

[15] David Reinsel, John Gantz, and John Rydning. The Digitization of the

World - From Edge to Core. Framingham: International Data Corporation,

(November):US44413318, 2018. (Cited in page 4.)

[16] L. W. McKeehan. Physical theory of ferromagnetic domains [37]. Physical

Review, 79(4):745, 1950. (Cited in page 4.)

[17] Dieter Weller and Andreas Moser. Thermal effect limits in ultrahigh-density

magnetic recording. IEEE Transactions on Magnetics, 35(6):4423–4439,

1999. (Cited in page 4.)

[18] Joerg Appenzeller, Joachim Knoch, Mikael T. Björk, Heike Riel, Heinz

Schmid, and Walter Riess. Toward nanowire electronics. IEEE Transac-

tions on Electron Devices, 55(11):2827–2845, 2008. (Cited in page 4.)

[19] Nihar Mohanty, David Moore, Zhiping Xu, T. S. Sreeprasad, Ashvin Na-

garaja, Alfredo Alexander Rodriguez, and Vikas Berry. Nanotomy-based pro-

duction of transferable and dispersible graphene nanostructures of controlled

shape and size. Nature Communications, 3(May):844–848, 2012. (Cited in

page 4.)



Bibliography 107

[20] J. Schlappa, K. Wohlfeld, K. J. Zhou, M. Mourigal, M. W. Haverkort, V. N.

Strocov, L. Hozoi, C. Monney, S. Nishimoto, S. Singh, A. Revcolevschi, J. S.

Caux, L. Patthey, H. M. Rønnow, J. Van Den Brink, and T. Schmitt. Spin-

orbital separation in the quasi-one-dimensional Mott insulator Sr 2 CuO3.

Nature, 485(7396):82–85, 2012. (Cited in page 4.)

[21] Svetlozar Surnev, Francesco Allegretti, Georg Parteder, Thomas Franz, Flo-

rian Mittendorfer, Jesper N. Andersen, and Falko P. Netzer. One-dimensional

oxide-metal hybrid structures: Site-specific enhanced reactivity for CO oxi-

dation. ChemPhysChem, 11(12):2506–2509, 2010. (Cited in page 4.)

[22] Sebastian Loth, Susanne Baumann, Christopher P Lutz, D M Eigler,

and Andreas J Heinrich. Bistability in Atomic-Scale Antiferromagnets.

335(January):196–200, 2012. (Cited in page 4.)

[23] Pascal Ferstl, Lutz Hammer, Christopher Sobel, Matthias Gubo, Klaus

Heinz, M. Alexander Schneider, Florian Mittendorfer, and Josef Redinger.

Self-Organized Growth, Structure, and Magnetism of Monatomic Transition-

Metal Oxide Chains. Physical Review Letters, 117(4):1–5, 2016. (Cited in

pages 4, 7, 36, 37 and 40.)

[24] Mario Ruben, Esther Breuning, Jean Marie Lehn, Vadim Ksenofontov, Franz

Renz, Philip Gütlich, and Gavin B.M. Vaughan. Supramolecular spintronic

devices: Spin transitions and magnetostructural correlations in [Fe4IIL4]8+

[2 Ö 2]-grid-type complexes. Chemistry - A European Journal, 9(18):4422–

4429, 2003. (Cited in page 4.)

[25] Marisa N. Faraggi, Vitaly N. Golovach, Sebastian Stepanow, Tzu Chun

Tseng, Nasiba Abdurakhmanova, Christopher Seiji Kley, Alexander Langner,

Violetta Sessi, Klaus Kern, and Andres Arnau. Modeling ferro- and antifer-

romagnetic interactions in metal-organic coordination networks. Journal of

Physical Chemistry C, 119(1):547–555, 2015. (Cited in pages 4 and 75.)

[26] Hassan Denawi, Mathieu Koudia, Roland Hayn, Olivier Siri, and Mathieu

Abel. On-Surface Synthesis of Spin Crossover Polymeric Chains. Journal of

Physical Chemistry C, 122(26):15033–15040, 2018. (Cited in pages 4 and 75.)

[27] Hassan Denawi, Mathieu Abel, and Roland Hayn. Magnetic Polymer Chains

of Transition Metal Atoms and Zwitterionic Quinone. Journal of Physical

Chemistry C, 123(7):4582–4589, 2019. (Cited in page 4.)



108 Bibliography

[28] Jing Liu, Yifan Gao, Tong Wang, Qiang Xue, Muqing Hua, Yongfeng Wang,

Li Huang, and Nian Lin. Collective Spin Manipulation in Antiferroelastic

Spin-Crossover Metallo-Supramolecular Chains. ACS Nano, 14(9):11283–

11293, 2020. (Cited in page 4.)

[29] A. Ayuela, H. Raebiger, M. J. Puska, and R. M. Nieminen. Spontaneous

magnetization of aluminum nanowires deposited on the NaCl(100) surface.

Physical Review B - Condensed Matter and Materials Physics, 66(3):1–8,

2002. (Cited in pages 5 and 35.)

[30] N. D. Mermin and H. Wagner. Absence of ferromagnetism or antiferromag-

netism in one- or two-dimensional isotropic Heisenberg models. Physical

Review Letters, 17(22):1133–1136, 1966. (Cited in pages 5 and 35.)

[31] Yi Cui, Xiangfeng Duan, Yu Huang, and Charles M. Lieber. Nanowires as

Building Blocks for Nanoscale Science and Technology, volume 35. 2003.

(Cited in page 5.)

[32] Y. Huang, X. Duan, Y. Cui, L. J. Lauhon, K. H. Kim, and C. M. Lieber. Logic

gates and computation from assembled nanowire building blocks. Science,

294(5545):1313–1317, 2001. (Cited in page 5.)

[33] Yao Zhen, Henk W.Ch Postma, Leon Balents, and Cees Dekker. Carbon

nanotube intramolecular junctions. Nature, 402(6759):273–276, 1999. (Cited

in page 5.)

[34] Sander J. Tans, Alwin R.M. Verschueren, and Cees Dekker. Room-

temperature transistor based on a single carbon nanotube. Nature,

393(6680):49–52, 1998. (Cited in page 5.)

[35] Pho Nguyen, Hou T. Ng, Toshishige Yamada, Michael K. Smith, Jun Li,

Jie Han, and M. Meyyappan. Direct integration of metal oxide nanowire in

vertical field-effect transistor. Nano Letters, 4(4):651–657, 2004. (Cited in

page 5.)

[36] Xiuzhen Yu, John P. Degrave, Yuka Hara, Toru Hara, Song Jin, and Yoshi-

nori Tokura. Observation of the magnetic skyrmion lattice in A MnSi

nanowire by Lorentz TEM. Nano Letters, 13(8):3755–3759, 2013. (Cited in

page 5.)
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Lazar, Olivier Siri, and Pavel Jeĺınek. 1D Coordination π–d Conjugated

Polymers with Distinct Structures Defined by the Choice of the Transition

Metal: Towards a New Class of Antiaromatic Macrocycles. Angewandte

Chemie - International Edition, 60(1):439–445, 2021. (Cited in pages 7

and 76.)

[76] M Born and R J Oppenheimer. On the quantum theory of molecules (English

translation). Annalen der Physik, 457(1927):1–32, 1927. (Cited in page 10.)

[77] Neil W. Ashcroft and David Mermin. Solid State Physics. 1978. (Cited in

page 10.)
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