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Resumen 

La síntesis de macromoléculas con estructuras bien controladas ha sido el foco de 

muchas investigaciones en química de polímeros. Las propiedades físicas y químicas de 

un material dependen de sus características moleculares, como el peso molecular, la 

polidispersidad, los grupos funcionales y la topología. El desarrollo de rutas sintéticas 

que permitan el control sobre las características moleculares ha llevado a la preparación 

de materiales cada vez más complejos como por ejemplo cepillos poliméricos, 

polímeros en estrella y escalera, dendrímeros, polímeros hiperramificados, redes y 

polímeros cíclicos. Se han realizado amplios estudios para vincular las propiedades 

físicas (i.e., temperatura de transición vítrea y de fusión, viscosidad intrínseca y de 

fundido, termoestabilidad, solubilidad, propiedades reológicas y viscoelásticas) y las 

propiedades químicas (i.e., reactividad y estabilidad) a la estructura covalente de un 

material. 

Los grupos finales de un polímero tienen una gran influencia sobre las propiedades 

mencionadas anteriormente, lo que hace que los polímeros cíclicos sean únicos, debido 

a su ausencia de grupos finales. A pesar de sus interesantes propiedades reológicas y 

térmicas, hasta la fecha se han desarrollado pocas aplicaciones que utilicen polímeros 

cíclicos. La dificultad para producir polímeros cíclicos puros en gran cantidad ha hecho 

que, por el momento, estos materiales sean de bajo interés para la industria. Por esta 

razón una gran cantidad de estudios se han enfocado en mejorar las técnicas sintéticas 

para producir polímeros cíclicos altamente puros. Además, ejemplos de moléculas 

cíclicas naturales como las proteínas cíclicas, los péptidos cíclicos o el ADN cíclico han 



   

fomentado una investigación más profunda de sus propiedades únicas conferidas por 

la ausencia de extremos de cadena. 

A pesar de un enorme esfuerzo en el estudio de las relaciones estructura-propiedad en 

polímeros cíclicos, la microestructura dipolar de dichos materiales ha quedado fuera 

del alcance de la gran mayoría de esos trabajos. Debido a que esta propiedad está 

relacionada con el momento dipolar asociado a la cadena principal (𝑃𝐴
⃗⃗⃗⃗ ), la 

microestructura dipolar depende principalmente de la regioquímica, es decir, de la 

orientación de las unidades de monómero dentro de la cadena del polímero, y de la 

topología, es decir, de la configuración general de una estructura macromolecular. En 

el caso de polímeros que presentan un componente de momento dipolar neto a lo largo 

del contorno de la cadena, esta propiedad puede vincularse con sus características 

arquitectónicas. En este caso, la identificación de la microestructura dipolar puede 

proporcionar información importante sobre la pureza topológica y las propiedades 

dinámicas de una cadena de polímero. 

El estudio de la microestructura dipolar de polímeros sintéticos no es sencillo y requiere 

de muestras con estructura precisa y con una alta pureza. El objetivo de esta tesis es la 

preparación de polímeros cíclicos regio-regulares que tengan microestructuras 

dipolares y pesos moleculares controlados y una baja polidispersidad. Se eligió el 

poli(glicidil fenil éter) (PGPE) como muestra de estudio ya que es un polímero que 

presenta señales dieléctricas intensas y por tanto permite el estudio de los modos 

dieléctricos segmentales y de cadena de forma adecuada. 

En esta tesis se sintetizaron muestras de PGPE cíclicos con microestructuras dipolares 

controladas mediante la técnica de cierre de anillo. Una parte importante de este 

trabajo se centró en la caracterización de los precursores lineales para garantizar la 

fidelidad de sus grupos finales de cadena ya que es un parámetro esencial para la 

síntesis de cadenas monocíclicas puras a través de la técnica de cierre de anillo. La 
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polimerización aniónica de apertura de anillo del glicidil fenil éter (GPE) se eligió como 

estrategia para la síntesis de precursores lineales de PGPE. Para verificar la composición 

de los grupos finales de cadenas se utilizó la desorción/ionización láser asistida por una 

matriz con detección de masas por tiempo de vuelo (MALDI-ToF MS) y la resonancia 

magnética nuclear (RMN). 

Se estudiaron dos casos principales. Primero, los polímeros que tienen cada unidad de 

monómero alineada en la misma dirección dando como resultado una microestructura 

dipolo no invertida. En segundo lugar, las cadenas de polímeros que presentan una 

inversión del dipolo en el medio de la cadena. Para la primera serie de muestras se 

consiguió obtener α-azida, ω-hidroxi PGPE con una gran fidelidad de grupo final 

mediante la utilización de azida de tetrabutilamonio y el conocido activador de 

monómero triisobutilaluminio (iBu3Al), el cual fue necesario para evitar reacciones de 

transferencia al monómero durante la polimerización. Sin embargo, para la segunda 

serie de polímeros, con inversión del dipolo, la utilización del iBu3Al fue inapropiada. De 

hecho, se descubrió que para la síntesis de PGPE mediante la iniciación con etilenglicol 

y una base de fosfaceno, t-BuP4, el iBu3Al promovía varias reacciones secundarias que 

no daban lugar a la formación de cadenas terminadas en dos grupos hidroxilos y por 

tanto, la síntesis resultaba en poca fidelidad de grupos finales. En este caso, las 

reacciones de transferencia al monómero se eliminaron ajustando la relación de GPE / 

t-BuP4 > 50. Finalmente se evaluó la orientación del dipolo a lo largo del contorno de la 

cadena mediante la espectroscopía dieléctrica de banda ancha (BDS). 

Los polímeros cíclicos sin inversión de dipolo se prepararon mediante cicloadición 

azida-alquino catalizada con cobre (I) y aquellos con inversión de dipolo mediante 

acoplamiento alquino-alquino (i.e., Glaser coupling). Para esto, los grupos terminales 

hidroxilo de los precursores lineales fueron inicialmente transformados en grupos 

alquinos mediante reacción de propargilación. La formación de las estructuras cíclicas 



   

y su pureza topológica se evaluaron mediante cromatografía de exclusión por tamaños 

(SEC), además de las técnicas de MALDI-ToF MS y BDS. 

La formación de cadenas de alto peso molecular por acoplamiento intermolecular es 

una de las principales fuentes de impurezas durante la ciclación mediante la técnica de 

cierre de anillo. Para abordar este problema se realizó una serie de experimentos con 

el objetivo de evaluar la influencia de los diferentes parámetros de la reacción de 

ciclación sobre la pureza cíclica. Finalmente se destacó la importancia del estado de 

oxidación del catalizador de cobre tanto en las reacciones de acoplamiento como en las 

condiciones experimentales óptimas para la preparación de cadenas monocíclicas 

puras. 

Finalmente, el estudio mediante BDS de la relajación dieléctrica alfa y del modo normal 

de los polímeros regio-regulares cíclicos sintetizados permitió identificar la formación 

de las microestructuras dipolares deseadas. En los polímeros cíclicos con dipolos no 

invertidos, el momento dipolar a lo largo de la cadena se cancela dando lugar a la 

desaparición del modo normal. Estos resultados se utilizaron para validar la pureza 

cíclica de estos polímeros, lo que además mostró por primera vez la utilidad del BDS 

para este propósito no convencional. En el caso de los polímeros con inversión de 

dipolo, éstos presentan una relajación dieléctrica del modo normal que refleja 

específicamente las fluctuaciones del diámetro del anillo. Esta importante característica 

permitió evaluar la dinámica del anillo, lo que resultó en una relajación 1,5 veces más 

lenta que la relajación análoga en el precursor lineal a la temperatura de transición 

vítrea. Estos resultados muestran el potencial de los macrociclos con dipolo invertido 

en el estudio de problemas físicos fundamentales en polímeros cíclicos. 
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1. Motivations  

 

The synthesis of macromolecules with well controlled structures has been the focus of 

many investigations in polymer chemistry. Both physical and chemical properties of a 

material depend on its molecular characteristics such as molecular weight, 

polydispersity, functional groups and topology. The development of synthetic routes 

allowing control over molecular characteristics have led to the preparation of more and 

more complex materials including polymer brushes, star polymers, ladder polymers, 

dendrimers, hyperbranched polymers, networks and cyclic polymers. Extensive studies 

have been made to link physical properties (i.e. glass transition temperature (Tg), melt 

temperature, intrinsic and melt viscosities, thermostability, solubility, rheological and 

viscoelastic properties) and chemical properties (i.e. reactivity and stability) to the 

covalent structure of a material. 

The end groups of a polymer have a large influence over the abovementioned 

properties, making the cyclic polymers unique, because of their absence of end groups. 

Despite their interesting rheological and thermal properties, few applications using 

cyclic polymers have been developed to date. The difficulty to produce high quantity of 

pure cyclic polymers has made those materials of low interest for the industry. For these 

reasons, better synthetic techniques to yield highly pure cyclic polymers have been the 

focus of a large number of studies. Moreover, examples of natural cyclic molecules such 

as cyclic proteins,1 cyclic peptides2 or cyclic DNA3 have encouraged deeper investigation 

of their unique properties conferred by the absence of chain ends. 
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Because of the extra constrains imposed by their ring structure, cyclic polymers have a 

more compact coil conformation. This property was demonstrated in early works by 

Kramers4 and Stockmayer,5 where the authors found that the radius of gyration of cyclic 

chains was approximately half of that of linear chains with similar molecular weights. 

This is due to the lower conformational degree of freedom in cyclic chains6 resulting in 

a lower hydrodynamic volume. As a result, cyclic polymers exhibit lower intrinsic 

viscosity compared to their linear analogues.7 The rheological properties are also 

affected by the cyclic topology. For example, the melt viscosity of rings is inherently 

smaller than that of linear chains.8,9 Extensive studies have demonstrated the influence 

of the cyclic topology over the thermal properties of a polymer. For example, cyclic 

polymers exhibit a higher values of Tg compared to their linear counterparts.10,11 For 

certain polymers, the same trends have been observed for crystallization 

temperatures12,13 and melting temperatures.14 However, some studies have shown the 

exact opposite effect.15,16 Additionally, cyclic polymers were found to have a much 

weaker dependence of the Tg with the molecular weight.17 Interestingly, a decrease of 

Tg with the increase of molecular weight has been observed for cyclic 

poly(dimethylsiloxane).18 This unique behavior was interpreted as the higher stiffness 

of cyclic chains of lower degree of polymerization.19 Additionally, new structural 

features arise from the ”endless” structure of ring polymers, such as the presence of 

knots20,21 and concatenated structures.22 

Despite an enormous effort in the study of structure-property relationships in cyclic 

polymers, the dipolar microstructure of such materials has remained out of the scope 

of the large majority of those works. Because it is related with the dipole moment 

associated to the main chain (𝑃𝐴
⃗⃗⃗⃗ ), the dipolar microstructure is a property that mainly 
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depends on the regiochemistry, i.e. the orientation of the monomer units within the 

polymer chain, and the topology, i.e. the overall configuration of a macromolecular 

structure. In the case of polymers presenting a net dipole moment component along 

the chain contour, this property can be linked to the architectural features of a polymer 

chain. In this case, identification of the dipolar microstructure can give important 

information over the topological purity and dynamic properties of a polymer chain.  

The study of the dipolar microstructure of synthetic polymers is not straightforward and 

requires samples with precise structures and high purity. The aim of this thesis is the 

preparation of regio-regular cyclic polymers having controlled dipolar microstructures, 

controlled molecular weights and low polydispersity.  

 

2. Polymers with controlled dipolar microstructure 

 

According to Stockmayer,23 type A polymers present fix dipole moments of the 

monomeric unit parallel to the main chain backbone.24 In the case of linear regio-

regular polymers (Figure 1a), where every monomer unit is aligned in the same 

direction, the dipole moment associated to the main chain (𝑃𝐴
⃗⃗⃗⃗ ) is proportional to the 

end-to-end vector (𝑅𝑁
⃗⃗⃗⃗  ⃗). In the following sections, a polymer displaying this dipolar 

microstructure will be referred to as linear 1-arm polymer (l-1a-polymer). 
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If a polymer is composed of two symmetric subchains with monomers oriented in the 

same direction within each subchain but with opposite direction between the 

subchains, a linear polymer with a distinct dipolar microstructure, here referred to as 

linear 2-arm polymer (l-2a-polymer), is obtained (Figure 1b). In this case, each subchain 

presents a resulting dipole moment that is proportional to the end-to-end vector of the 

subchain or “arm” 𝑅𝑁/2
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗.  

On the other hand, the chain topology imposes additional features to the resulting 

dipole moment 𝑃𝐴
⃗⃗⃗⃗ . Upon cyclization of a l-1a-polymer, 𝑃𝐴

⃗⃗⃗⃗  cancels because the end-to-

end vector is now equal to zero. Here after, a cyclic polymer characterized by this 

dipolar microstructure will be referred to as cyclic 1-arm polymer (c-1a-polymer). The 

cyclization of a l-2a-polymer will result in a cyclic polymer characterized by 𝑃𝐴
⃗⃗⃗⃗ ∝ 𝑅𝑁/2

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ 

(Figure 1d). A polymer displaying such dipolar microstructure will be referred to as cyclic 

2-arm polymer (c-2a-polymer). 

If the monomer orientation is not controlled during polymerization, regio-irregular 

structures are formed and the dipolar microstructures presented in Figure 1e and 1f are 

obtained. Both structures are characterized by 𝑃𝐴
⃗⃗⃗⃗    0.25 However, the module of the 

resulting dipole moment is small and its direction different for each synthesized 

macromolecule. 
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Figure 1. Schematic representation of polymers having different dipolar 
microstructures. 

 

By monitoring the fluctuations of 𝑃𝐴
⃗⃗⃗⃗ , it is possible to evaluate the dipolar microstructure 

of a polymer sample after synthesis. Moreover, important information over cyclic purity 

(Figure 1a) or cyclic dynamics (Figure 1d and 1f) can be obtained. The most adequate 

technique to evaluate such structures is broadband dielectric spectroscopy (BDS), as 

explained further below. 
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3. Ring opening polymerization of epoxides 

 

Specific synthetic routes must be followed to prepare polymers having distinct dipolar 

microstructures. For example, a l-1a-polymer, as depicted in Figure 1a, can be prepared 

using a monofunctional initiator throughout a polymerization mechanism allowing the 

alignment of the monomer units in a single direction. If instead a bifunctional initiator 

is used, a l-2a-polymer will be obtained (Figure 1b). Monosubstituted epoxy monomers 

are characterized by large dipole moment of the monomer unit.25 Therefore they are 

good candidates for the preparation of polymers chains presenting a dipolar moment 

associated to the main chain. Moreover, they can be polymerized under mild conditions 

due to their high reactivity. 

Ring-opening polymerization (ROP) is a chain-growth polymerization in which the 

terminal end group of a polymer chain acts as a reactive center propagating the 

polymerization reaction. A large number of monomers can be polymerized by ROP 

including epoxides, cyclic esters, cyclic amines, cyclic sulfides and cyclic olefins.26,27 

Polymerization is favored thermodynamically for all ring monomers of 3 to 8 atoms, 

with the exception of 6-membered rings where polymerization is generally not 

observed.28 Cyclic monomers can polymerize due to the loss of enthalpy associated with 

the loss of ring strain, which is considerable in the case of three-membered rings.29 

Moreover, the polarization of the CO bound increases the reactivity of epoxide 

monomers towards ROP.30  
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During ROP of monosubstituted epoxides, regio-errors can frequently occur.31 The 

attack on the epoxy ring can occur on the methine (1) or the methylene group (2) 

(Figure 2). If only one process occurs, then only head-to-tail linkage or tail-to-head 

linkage will be formed. However, in the case of occurring both processes, head-to-head 

and tail-to-tail linkage will be formed leading to regio-irregular structures. Analysis of 

the triad regiosequence by 13C nuclear magnetic resonance (NMR) gives information 

about the polymer microstructure. The percentage of the type of linkage present in a 

polymer can be obtained by integration of the corresponding signals.32  

 

Figure 2. Nucleophilic attack leading to regio-regular and regio-irregular polyethers. 

When a nucleophilic attack on a heterocyclic monomer initiates the reaction, the 

polymerization is described as anionic ring opening polymerization (AROP). During 

AROP of monosubstituted epoxides, the nucleophile attack of the alkoxide chain end 

generally proceeds selectively on the methylene carbon.33 Therefore, the presence of 

regio-errors within the chain is greatly reduced compared to cationic ROP. 
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3.1. Anionic ring opening polymerization 

 

3.1.1. Conventional anionic ring opening of epoxide monomers 

 

 With the exception of some four-membered ring oxetanes, three membered ring 

epoxides are the only cyclic ethers that can be polymerized by anionic polymerization. 

Larger rings are exclusively polymerized by a cationic ring opening mechanism. 

Typically, the anionic polymerization of monosubstituted epoxides follows three steps 

(Figure 3): a bimolecular initiation to form an alkoxide species, propagation via the 

alkoxide group and termination.  

 

Figure 3. AROP of epoxides initiated by a nucleophile. 

 

Monomers such as ethylene oxide,34 lactide35 and hexamethylcyclotrisiloxane36 have 

been successfully polymerized by AROP. Alkali metals derivatives, especially sodium, 

potassium and cesium have been extensively used for the AROP of epoxides.37,38 

Although higher polymerization rates are obtained when larger counterions are 

used,39,40 conventional AROP of epoxide monomers is generally limited by slow kinetics. 
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For that reason, other initiation systems have been developed. Notably, the addition of 

crown ethers41 and aluminum-based catalysts,42 as well as organic initiators43,44 have 

allowed faster polymerization.  

 

3.1.2. Initiation by phosphazene bases 

 

Among organic initiators, phosphazene bases45 are of particular interest for the AROP 

of epoxides monomers. These strong Brönsted bases are highly hindered with pKa 

ranging from 26.9 to 42.6, with t-BuP4 being the most basic (Figure 4).46 

 

Figure 4. Structures of the different phosphazene bases reported by Schwesinger et 

al.45 

 

Due to their high basicity, phosphazene bases are able to deprotonate alcohols,47 

amides48 and carboxylic acids49 to form alkoxides, azanides and carboxylates, 
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respectively, which are capable to initiate the ring opening of epoxide monomers. This 

strategy offers the possibility to incorporate a wide range of functional groups at one 

end of the polymer chain (Figure 5). 

 

Figure 5. Combination of phosphazene base with alcohols, amides and carboxylic acids 

for the AROP of epoxide monomers. 

 

When used for the AROP of epoxides, phosphazene bases form soft and highly 

delocalized counterions. Due to their large size, the distance between the charges of 

the counterion and the chain end is larger, helping to reduce aggregation phenomena 

during polymerization.50 Moreover, the use of soft counterions increases the reactivity 

of the active chain end, increasing the polymerization rate.51 The synthesis of 

poly(methyl methacrylate),52 poly(butylene oxide),53 poly(glycidyl ether)54,55 and many 

other polymers56 has been successfully achieved using phosphazene bases as 

counterions. 
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Zhang et al.57 used phosphazene bases to partially deprotonate mono- and 

multifunctional alcohols such as 2-(allyloxy)ethan-1-ol, 1,4-phenylenedimethanol and 

2,2-bis(hydroxymethyl)propane-1,3-diol for the AROP of ethylene oxide, propylene 

oxide, butylene oxide as well as vinyl glycidyl ether and tert-butyl glycidyl ether. The 

use of an initiator having multiple functional groups allowed the formation of star 

polymers having two, three and four arms. A fast proton exchange between the base 

and the active chain end allowed controlled polymerization even at phosphazene 

concentration as low as 5 % with respect to the alcohol. 

In 2013 Kakuchi et al. reported the use of 2,2-bis((6-azidohexyloxy)methy)- propane-

1,3-diol in combination with t-BuP4 for the synthesis of four-arm star polymers.53 The 

obtained polymer had two arms terminated in azide groups while the two others were 

terminated in hydroxyls, which were further modified into alkynes. Under high dilution, 

the azide and alkyne end groups were linked via intramolecular coupling to form eight-

shaped polymers. This reaction is known as the copper(I)-catalyzed alkyne-azide 

cycloaddition (CuCAA) and will be further explained in the following section. The 

obtained star and eight-shaped polymers had controlled molecular arm length, 

molecular weights and polydispersity. Later, an initiator having two azide groups and 

two hydroxyls groups was used in combination with t-BuP4 for the preparation of block 

copolymers of 2-(2-(2-methoxyethoxy)ethoxy)ethyl glycidyl ether as a hydrophilic 

monomer and decyl glycidyl ether as a hydrophobic monomer.58 After modification of 

the hydroxyl end groups into alkynes, the copper(I)-catalyzed alkyne-azide 

cycloaddition reaction was performed under high dilution for the preparation of four-

armed caged shaped amphiphilic polymers with controlled molecular characteristics. 
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Those works are great examples of the use of phosphazene bases in AROP of epoxides 

for the preparation of polymers with controlled topologies. 

 

3.1.3. Transfer to monomer  

 

During AROP of monosubstituted epoxides, such as propylene oxide (POx), side 

reactions can frequently occur leading to a poor control over the molecular weight, 

polydispersity and chemical structure of the obtained polymer. In the case of POx, the 

abstraction of a proton from the methyl group can take place and lead to transfer to 

monomer (Figure 6). This side reaction can drastically limit the molecular weight of final 

polymer chains.59  

 

 

Figure 6. Transfer to monomer reaction during AROP of propylene oxide. 

 

Deffieux et al.60 reported the synthesis of propylene oxide initiated by alkali metal and 

an excess of triisobutylaluminium (iBu3Al). The authors demonstrated the absence of 

transfer reactions in the presence of the Lewis acid. It is believed that iBu3Al is forming 
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a 1:1 “ate” complex with the initiator while simultaneously activates the monomer 

(Figure 7). Activation of the monomer makes the epoxy ring much more likely to 

undergo a nucleophilic attack from the propagating chain and, at the same time, 

reduces the basicity of the propagating chain end thus limiting the proton abstraction 

on the methyl group leading to transfer to monomer reactions. 

 

 

Figure 7. Monomer activation by iBu3Al in the AROP of propylene oxide with a metal 

alkoxide (X-Y+).61 

 

Later, the kinetics of polymerization using chloro(tert-butyl)phenylphosphine, sodium 

isopropoxide or tetraoctylammonium bromide as initiator, and iBu3Al as monomer 

activator was studied.61 The authors demonstrated that the polymerization rate was 

higher in the presence of iBu3Al for all onium salts, altough faster kinetics was observed 

with tetraoctylammonium bromide. The same authors also demonstrated the 

conservation of the living character of the polymerization in the presence of iBu3Al.62 

Another transfer to monomer mechanism for glycidyl phenyl ether was observed by 

Stolarzewicz63 (Figure 8). In this case, the proton of the methine group is abstracted to 
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yield a carbanion able to initiate the AROP of epoxide monomers. According to the 

author, this mechanism could also occur during AROP of POx. Fortunately, the addition 

of iBu3Al was efficient to prevent transfer to monomer via both mechanisms described 

in Figure 6 and 8.  

 

 

Figure 8. Second type of transfer to monomer reaction in the case of poly(glycidyl 

phenyl ether). 

 

AROP of epoxides is a suitable synthetic route for the preparation of polyethers with 

controlled structure. By playing with the functionality of the initiator, different 

architectures can be obtained. Moreover, AROP allows the synthesis of polymers with 

controlled regio-order, regiochemistry and controlled tacticity. for optically pure 

monomers. 
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4. Synthesis of cyclic polymers 

 

Cyclic polymers have been prepared by different strategies. The first examples of cyclic 

polymers were those synthesized by ring chain equilibration.64 However, only low 

molecular weight rings were obtained with high polydispersity. The linear precursor 

could not be properly isolated making the characterization of the cyclic chains 

complicated. To that respect, the ring expansion polymerization and the ring closure 

strategies are more appropriated for the synthesis of well-defined macrocyclic 

structures.65–68 Examples of cyclic polymers prepared by these strategies are presented 

in Appendix 1. 

 

4.1. Ring expansion polymerization 

 

Ring expansion polymerization (REP) allows the synthesis of cyclic polymers through the 

use of a cyclic monomer or a cyclic initiator.68 During propagation, monomer units are 

incorporated into the cyclic structure through a weak labile bond (e.g. organometallic 

or electrostatic). At the end of the reaction, the catalyst is either retained or expelled 

from the macrocycle (Figure 9). Because the cyclic structure is maintained throughout 

the whole polymerization, this method does not suffer the entropic penalties 

associated to the ring closure by reaction between two end groups. Since neither linear 

precursors nor high dilution conditions are needed to form macrocyclic polymers, high 
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molecular weights are accessible and the reaction can be scale up to obtain high 

amounts of cyclic product. However, complications can occur if the components of the 

reaction are not chosen carefully. Because the formation of the stable ring polymer is 

based on rates of polymerization, depolymerization and backbiting, high polydispersity 

can be obtained and removal of the catalyst from the polymer sample can be a 

challenge.  

 

Figure 9. Schematic representation of the ring expansion polymerization. 

 

4.2. Ring closure strategy 

 

The ring closure strategy relies on intramolecular coupling of the end-groups of a 

previously synthesized linear precursor. The use of predesigned linear polymers as 

precursors for the preparation of cyclic polymers allows high control over the molecular 

characteristics of the obtained rings. This strategy can be further divided into three 

different approaches: bimolecular homodifunctional coupling, unimolecular 
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homodifunctional coupling and unimolecular heterodifunctional coupling (Figure 10).66 

These strategies will be discussed in detail below. 

Figure 10. Schematic representation of ring closure strategies. 

 

Based on the works of Paul Ruggli69 and Karl Ziegler,70 showing that high dilution 

favored the intramolecular coupling of small organic molecules, cyclization via ring 

closure technique is performed under high dilution and on small scales to avoid 

intermolecular coupling. The entropic penalty, associated to the localization of the two 

chain ends into a space small enough to promote intramolecular coupling,71 only allows 

cyclization of relatively low molecular weight chains (< 25000 g/mol).  

The probability of cyclization, can be described by the well-known Jacobson-

Stockmayer equations.71 

𝑃𝑐 = (
3

2𝜋
)
3/2 𝑣𝑠

〈𝑟2〉3/2
 Eq.1 
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𝑃𝑙 = 2𝑁 
𝑣𝑠

𝑉
=  

2𝑁𝐴𝑐

𝑀
𝑣𝑠 Eq.2 

Pc is the probability of reaction when two ends of the same chain are within the capture 

volume, vs; Pl is the probability of reaction when two ends from two different chains are 

within the capture volume; ‹r2› is the mean square of the end-to-end distance of a 

chain; N is the total number of molecules in a total volume V; NA is the Avogadro 

number; M is the molecular weight of the polymer and c is the polymer concentration 

in g/mL.  

The ratio Pc/Pl is defined as follows:  

𝑃𝑐

𝑃𝑙
= (

3

2𝜋〈𝑟2〉
)
3/2 2000

𝑁𝐴[𝑃]
 Eq.3 

 

[P] is the polymer concentration in mol/L. 

The theoretical percentage of monocyclic chains can be calculated as follows: 

%𝑐𝑦𝑐𝑙𝑖𝑐 =  
𝑃𝑐

𝑃𝑐 + 𝑃𝑙
 × 100   Eq.4 

 

From this set of equations, it is clear that a decrease in the concentration of the linear 

precursor [P] increases Pc/Pl, and therefore the probability of cyclization. Since the 

intramolecular coupling is a unimolecular process, it is not influenced by the dilution. 
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Contrarily, the intermolecular coupling, which is a bimolecular process, is largely 

reduced upon dilution.69,70 Experimentally, it is possible to obtain a high percentage of 

cyclic chains by adding the previously synthesized linear precursor into a catalyst 

solution at a slow rate. In that way, the concentration of linear precursor is maintained 

as low as possible (pseudo-high-diluted conditions) and the active end-groups are 

consumed during intramolecular coupling.72,73 The second important prediction of the 

Jacobson-Stockmayer theory is the decreasing probability of intramolecular coupling 

with the chain length. Indeed, the probability for the two ends of the same chain to be 

within the capture volume decreases with the chain length. This is why high molecular 

cyclic polymers are not achievable via ring closure.  

Although high molecular weights are not achievable as opposed to the ring expansion 

technique, ring closure stays the most versatile choice for the preparation of ring 

polymers. The use of highly activated coupling reaction allows the synthesis of well-

defined cyclic polymers with a large scope of chemical compositions.74 

 

4.2.1. Ring closure by bimolecular approach 

 

The bimolecular ring closure approach relies on the coupling between a difunctional 

polymer chain and a difunctional coupling agent in dilute solution. The cyclization takes 

place in two distinct steps, first the intermolecular coupling between the polymer chain 

and the coupling agent complementary functional groups, and second the 

intramolecular coupling between the remaining complementary functional group of the 
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polymer chain and coupling agent. Because the homodifunctional bimolecular 

cyclization reaction is first order in both polymer and coupling agent, the stoichiometry 

between the polymer chain and the coupling agent must be respected to obtain a high 

percentage of cyclic products. If this condition is not met, linear polymers will be 

obtained. In the case of an excess of polymer over the coupling agent, oligomerization 

will occur (Figure 11). For an excess of coupling agent over the polymer chains, high 

molecular weight chains composed by a number of linear precursors will be formed. For 

that reason, extra care must be taken in the stoichiometry when preparing cyclic 

polymers via bimolecular ring closure.  

 

 

Figure 11. Consequence of incorrect stoichiometry during bimolecular cyclization. 

 

The second and biggest limitation concerning this approach is the combination of two 

steps requiring opposite conditions. Indeed, the first intermolecular reaction between 

the polymer chain and the coupling agent is favored by low dilution for the two 
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molecules to meet. However, the second intramolecular reaction to produce cyclic 

chains is favored by high dilution. Because the reaction is a one pot process, the 

concentration of both components must be kept as low as possible to avoid the 

formation of linear impurities. As a result, the intermolecular coupling occurring during 

the first step is very slow. To palliate the slow kinetics of the first step, highly efficient 

coupling reactions must be used. However, in most cases cyclization via bimolecular 

ring closure is contaminated by acyclic products. 

 

4.2.2. Ring closure by unimolecular approach 

 

The unimolecular strategy presents the advantage to link complementary end groups 

present on the same polymer chain (Figure 12). Consequently, high dilution will 

minimize intermolecular oligomerization without reducing the rate of intramolecular 

coupling. Moreover, stoichiometry between two reactants is no longer needed 

eliminating a great source of impurities. 

 

 

Figure 12. Competition between diffusion and coupling during ring closure by 

unimolecular approach. 
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Prior to the coupling reaction, the two reactive chain ends have to diffuse within a 

capture volume. This step is characterized by a diffusion constant rate, kd. Then, the 

coupling reaction can occur to form the cyclic polymer. This is characterized by a 

cyclization constant rate, kc. If the coupling reaction does not occur, the chain ends will 

diffuse away from each other with a constant rate k-d. In the case of kc >> k-d the ring 

closure reaction will be under diffusion control. In the reverse case kc << k-d the ring 

closure will be driven by its equilibrium kinetics.  

 

4.2.2.1. Homodifunctional unimolecular ring closure 

 

Although the number of homocoupling reactions is limited in organic chemistry, the 

homodifunctional unimolecular approach is motivated by the need to incorporate a 

unique functional group at both ends of a polymer chain. 

One of the earliest examples of oxidative homocoupling is the reaction between two 

alkynes to form a diyne bound, also known as Glaser coupling.75 In 1869, Glaser 

reported the formation of diphenyldiacetylene when mixing phenylacetylene, copper 

(I) chloride and ammonium hydroxide in ethanol under air. Years later, Hay proposed a 

crucial modification by adding a nitrogen ligand such as N,N,N′,N′-

tetramethylethylenediamine thus allowing the reaction to occur under mild 

conditions.76 Glaser coupling is now known to be catalyzed by metal salts, usually 

copper (I) and copper (II) through a complex mechanism.77,78 
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Cyclic poly(ethylene oxide) and cyclic polystyrene have been synthesized via Glaser 

coupling of alkyne terminated linear precursors.79 A solution of linear polymer was 

added slowly to a copper catalyst solution to generate cyclic polymers in high yields  

>95 % (Figure 13). The reaction proceeded under air and at room temperature, which 

makes Glaser coupling suitable for the cyclization of a large range of polymer 

backbones. The disappearance of alkyne groups and the formation of the diyne bound 

was confirmed by 1H NMR and Fourier-transform infrared (FTIR) spectroscopy. 

Additionally, the loss of two protons was confirmed by matrix assisted laser desorption 

ionization - time of flight mass spectrometry (MALDI-ToF MS) and the reduction of the 

hydrodynamic volume of polymer chains was demonstrated by a clear shit toward 

higher retention times in size exclusion chromatography (SEC) measurements. As 

pyridine is a good solvent for a large majority of synthetic polymers, the authors chose 

this solvent to carry out the Glaser coupling reaction. However, its high boiling point 

makes it difficult to remove completely after reaction, and additionally, pyridine 

requires extra cares during manipulation due to its toxicity. 

 

 

Figure 13. Synthesis of poly(ethylene oxide) via Glaser coupling. 
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Other homocoupling reactions can be found in the literature for the synthesis of a large 

number of cyclic polymers such as cyclic polystyrene,80 cyclic poly(propylene oxide),81 

cyclic poly(ethylene oxide)82 or cyclic poly(methyl acrylate).83 

 

4.2.2.2. Heterodifunctional unimolecular ring closure 

 

The coupling of heterodifunctional polymers is the most efficient way to produce cyclic 

polymers with high purity. Although the synthesis of α,ω-heterofunctional polymers is 

more challenging compared to α,ω-homofunctional polymers, the amounts of 

impurities generated during cyclization is notably reduced in heterodifunctional 

unimolecular ring closure reactions. This is because the rate of intermolecular coupling 

is reduced by a factor of two since the effective concentration of complimentary 

reactive groups is reduced by two. 

In 2001 the concept of “click” chemistry was introduced by Sharpless et al.84 In order to 

be qualified as “click” reaction, the reaction must be modular, wide in scope and have 

a very high yield. In the case of the formation of byproducts, they must be inoffensive 

and removable by non-chromatographic methods. Additionally, the reaction conditions 

must be simple (i.e. readily available reagents, easily removable solvent and purification 

by non-chromatographic methods). Finally, the product must be stable under 

physiological conditions. One of the most popular “click” reaction is the Huisgen dipolar 

cycloaddition85,86 of an azide and an alkyne group, to form both 1,4 and 1,5-substitued 

[1,2,3]-triazole ring. Later, the research groups of Folkin et al.87 and Meldal et al.88 
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reported simultaneously the use of a copper (I) catalyst, allowing the reaction to 

proceed at room temperature and giving access to one specific regioisomer, the 1,4-

substituted [1,2,3]-triazole. Since then, the copper catalyzed azide alkyne cycloaddition 

(CuAAC) has been extensively used in polymer chemistry.89-90 

In 2006 Laurent and Grayson combined CuAAC with controlled radical polymerization 

to prepare cyclic poly(styrene)s.72 This use of “click” chemistry constituted a great 

breakthrough for the synthesis of cyclic polymers. Linear polystyrene chains were first 

synthesized by atom transfer radical polymerization (ATRP) with propargyl  

2-bromoisobutyrate as initiator (Figure 14). After modification of the terminal bromide 

into azide, a solution of the obtained polymer was added dropwise into a copper 

catalyst solution under inert atmosphere. The consumption of the two complementary 

end-groups to form triazole rings was confirmed by 1H NMR and FTIR. The clear shift in 

retention time observed in SEC measurements demonstrated the formation of cyclic 

chains. 

 

 

Figure 14. Cyclization of poly(styrene) via CuAAC “click” reaction. 
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In the following years, the same strategy was employed for the synthesis of cyclic 

poly(N-isopropylacrylamide),91 cyclic poly(tert-butyl acrylate)92 and cyclic poly(4-

vinylbenzyl)carba-zole).93 Polymers of about 8000 Da with low polydispersity index  

(< 1.1) were obtained. Since then, the use of reactions considered as “click” chemistry 

has been greatly reported for the preparation of macrocyclic chains with high purity 

and in high yields. 

 

5. Main characterization techniques used in this thesis 

 

5.1. Size Exclusion Chromatography  

 

In the 1950s Porath and Flodin successfully separated water-soluble compounds 

using crosslinked dextrane gels.94 In 1964 Moore95 introduced the gel permeation 

chromatography (GPC) for the separation of non-water soluble polymers. Since 

then, GPC, sometimes referred to as SEC, has become one of the most popular 

methods for the determination of molecular masses. During SEC measurements, a 

dilute solution of the sample is injected through a column packed with small 

particles of a porous material. The space among particles is filled with a mobile 

phase consisting of the same solvent used for the preparation of the sample 

solution. The sample molecules are eluted from the column and separated 
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according to their hydrodynamic volumes. The smallest molecules, which are 

capable of entering into smaller pores, will elute at longer retention times than the 

larger molecules which are excluded rapidly from the column. SEC does not only 

give molar mass averages but also a complete description of the molar mass 

distribution. 

Different detectors can be used to monitor the elution of the analyzed samples. Two 

of the most commonly used detectors are ultra-violet (UV) detector and refractive 

index (RI) detector. Both are concentration-sensitive detectors and their signals are 

only proportional to the concentration of sample in the eluate. The UV detector 

measures the absorbance of the eluate in the ultra-violet region. Its use is therefore 

reserved for polymers absorbing at those particular wavelengths. On the other 

hand, RI detector measures the variation of the refractive index of the eluate and 

can be used universally for all compounds. SEC can also be equipped with a viscosity 

detector (VIS). This detector measures the specific viscosity of the eluate. When 

coupled to a concentration-sensitive detector, the intrinsic viscosity [η] can be 

obtained. [η] is a measure of the solute contribution to the solution viscosity and is 

one of the fundamental characteristics of a polymer.  

The disadvantage of SEC in its conventional form is that the determination of 

molecular weight depends on calibration. Retention times are compared to 

standards, usually polystyrene, to determine relative molecular weight values. For 

that reason, light scattering (LS) detectors represent the most powerful detection 

in SEC since they eliminate the use of calibration curves, allow the determination of 

absolute molecular weights and are very efficient detecting aggregates even at low 

concentrations. Among LS detectors, multi-angle light scattering (MALS) detectors 
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are commonly used. In addition of the absolute molecular weight, MALS detectors 

allow the determination of the radius of gyration from the angular dependence of 

the scattered light. When a polydisperse sample is analyzed, the chromatogram is 

divided in slices eluting at different elution volumes and the different eluted 

fractions are considered monodisperse. The SEC-MALS measurement yields for 

each slice of elution volume Vi the molar mass Mi and the mean square radius Ri².  

From the molecular weight values of each slice, it is possible to calculate the 

number-average molar mass (Mn) and weight-average molar mass (Mw) defined as: 

 

𝑀𝑛 = 
∑𝑛𝑖𝑀𝑖

∑𝑛𝑖
 Eq. 5 

𝑀𝑤 = 
∑𝑛𝑖𝑀𝑖

2

∑𝑛𝑖𝑀𝑖
 Eq. 6 

 

Mi is the molecular weight of the ith slice and ni is the number of chains of that 

molecular weight calculated from concentration-sensitive detector data. The 

polydispersity index, defined as Đ = Mw/Mn, gives information about the 

heterogeneity in molecular weight among all the chains present in a polymer 

sample.96,97 

SEC is a technique particularly useful for the characterization of cyclic polymers. 

Because of the reduction in hydrodynamic volume observed upon cyclization, ring 
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polymers exhibit longer retention times than their linear analogues,98 while having 

identical molecular weights. Therefore, SEC-MALS analysis allows the determination 

of the absolute molecular weight for both linear and cyclic polymers and can be 

used to confirm cyclization by comparing the retention times. Another consequence 

of the lower hydrodynamic volume of cyclic polymers is their lower intrinsic 

viscosity compared to their linear analogues. This reduction of intrinsic viscosity 

after cyclization can be readily measured by a VIS detector. Therefore, the 

association of RI-MALS-VIS detectors is particularly suited for the analysis of cyclic 

polymers.  

 

5.2. Matrix Assisted Laser Desorption Ionization - Time of Flight 

Mass Spectrometry  

 

This mass spectrometry technique was first developed for the analysis of 

biomacromolecules.99,100 However, it has been also suited for the characterization 

of synthetic macromolecules thanks to the minimal fragmentation induced during 

ionization of the analyte. In a typical experiment, the analyte is mixed with a matrix 

and a salt (e.g. a cationizing agent) in a dilute solution. The matrix adsorbs the 

energy from laser pulse and transfer it to the sample. The high energy density 

obtained in the matrix causes instantaneous vaporization of a microvolume and 

desorption of the analyte molecules. The cationized matrix and analyte molecules 

are then accelerated toward a detector by an electric field. The mass to charge ratio 
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(m/z) is obtained based on the time of flight of each analyte molecule allowing the 

determination of the absolute molecular weight of each individual n-mer 

represented within the polymer distribution. 

Thanks to the high resolving power achievable nowadays, MALDI-ToF MS is 

particularly suited for the analysis of polymer end groups. Indeed, the most 

significant drawback when characterizing end groups by other methods such as 

NMR or FTIR spectroscopy is the low relative concentration of end groups with 

respect to the polymer backbone in chains with molecular weights above a few 

kilodaltons. One unique advantage of MALDI-ToF MS is that all signals observed 

contain information about end group masses. Consequently, end-group analysis is 

possible even for high molecular weight samples. The following equation can be 

used to provide a general solution for the end-group analysis of any homopolymer 

by MALDI-ToF MS: 

𝑀𝑜𝑏𝑠 =  𝑛 × 𝑀𝑅𝑈 + 𝑀𝑐𝑎𝑡 + 𝑀𝑒𝑛𝑑−𝑔𝑟𝑜𝑢𝑝 Eq. 7 

 

where Mobs is the observed mass of the peaks, corresponding to the n-mers within 

the polymer distribution, MRU is the mass of the repeat unit of the homopolymer, n 

is the corresponding number of repeat unit of each n-mer, Mcat is the mass of the 

cation added during sample preparation and Mend-group is the summed mass of both 

end-groups. 

During MALDI-ToF MS characterization, polymers are typically ionized by 

complexation with a cation. However, some polymers can undergo elimination or 
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fractionation and form stable ionized species. In such cases, accurate assignation of 

signals can be challenging, and the ionization mode must be clarified. Investigation 

of mass spectra obtained with different cation sources, typically, sodium, 

potassium, silver and lithium can help determining the ionization mode and clarify 

peak assignment. 

Typically, the ionization efficiency differs among analytes.101 Therefore, the 

intensity of a signal in MALDI-ToF MS is not proportional to the quantity of a species. 

To obtain quantitative characterization, the combination with other 

characterization techniques is usually required. Nevertheless, MALDI-ToF MS 

remains a powerful tool for polymer characterization since it can provide critical 

evidence for confirming the structure of polymers. For example, the generation of 

cyclic polymers has been clearly identified by revealing the absence of end-group in 

polyesters.102 Also, the comparison of the mass spectra of the linear precursors and 

the cyclic products has confirmed, in part, the cyclization of poly(ε-caprolactone) 

after click coupling103 and poly(methyl acrylate) after olefin metathesis.83  

 

5.3. Broadband Dielectric Spectroscopy 

 

Molecular fluctuations of dipoles in an electric field result in relaxation phenomena, 

whereas motion of mobile charge carriers (i.e. electrons, ions) causes conductive 

contributions to the dielectric response of a material. In a typical broadband dielectric 

spectroscopy (BDS) experiment, a uniform periodic electric field  
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𝐸(𝑡) =  𝐸0 exp(−𝑖𝜔𝑡),  where ω is the angular frequency, is applied to a sheet of 

material forming part of a parallel plate capacitor. In these experiments, the frequency 

dependent capacitance is determined. The dielectric constant of the material is 

proportional to the capacitance. The response of a material to the electric field is 

determined by the spontaneous fluctuations of dipole entities within the material. At 

frequencies much higher than the dipole fluctuation rate, the dipoles do not contribute 

to the polarization and the dielectric constant and capacitance are low. On the contrary, 

at frequencies much lower than the dipole fluctuation rate, the dipoles do contribute 

to the polarization that follows the electric field variations and the dielectric constant 

and capacitance are high. In the intermediate range, dipoles produce a partial material 

polarization, whose dependence on time is delayed respect to that of the electric field. 

This phenomenology can be conveniently described in terms of the complex 

permittivity defined by:  

𝜀∗(𝜔) =  𝜀′(𝜔) − 𝑖𝜀′′(𝜔) Eq. 8 

where ε’(ω) is the real part and ε’’(ω) the imaginary part of the complex permittivity 

ε*(ω).  

One of the most important applications of dielectric spectroscopy is the investigation 

of relaxation processes that are due to rotational fluctuations of molecular dipoles. As 

they are related to characteristic parts of a molecule (e.g. functional groups) or to the 

molecule as a whole, information about the dynamics of a molecular ensemble can be 

obtained by analyzing the dielectric function.24 In BDS data, the relaxation processes 

are characterized by step-like decrease with increasing frequency (or decreasing 
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temperature) in the real part 𝜀′ and by a peak in the imaginary part 𝜀′′ of the complex 

permittivity. The frequency of the peak maximum fmax (𝑓𝑚𝑎𝑥 = 𝜔𝑚𝑎𝑥/2𝜋) is related to 

the relaxation time (τmax) of the process as:  

𝜏𝑚𝑎𝑥 = 1 𝜔𝑚𝑎𝑥
⁄  Eq. 9 

In most cases, the relaxation phenomena are characterized by fmax or τmax. Those 

parameters are characteristic of the molecular dynamics of a material and can be 

extracted quite directly from the experimental data.104  

 

5.3.1. Dielectric relaxations and polymer dynamics  

 

Most of the synthesized macromolecules present fix dipole moment perpendicular to 

the main chain backbone. The fluctuations of the dipole moment, in this case are due 

to the conformational transitions related to the segmental dynamics, and therefore to 

the glass transition, giving rise to the so-called α-relaxation.  

In linear regio-regular polymers presenting a fix dipole moment of the monomer unit 

as depicted in Figure 1a and 1b, the fluctuations of the end-to-end vector result in a 

dielectric relaxation usually referred to as normal mode (NM) relaxation. Because the 

dipole orientation along the chain contour differs between the two dipolar 

microstructures (Figure 1a and 1b), different dielectric responses will be obtained. 

Notably, for similar molecular weights, the NM relaxation will be faster for a  
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l-2a-polymer compared to a l-1a-polymer (i.e. the peak maximum shifts toward higher 

frequency) because the fluctuations of dipoles associated to the two subchains can 

occur without changes of the whole end-to-end vector.105 

Upon cyclization, the dipolar microstructures depicted in Figure 1c and 1d are 

respectively obtained. Since cyclic polymers exhibit higher glass transition 

temperatures compared to their linear analogues, the α-relaxation is slower in the case 

of cyclic chains, i.e. the peak maximum shifts toward lower frequency. Additionally, for 

a c-1a-polymer, the cancellation of 𝑃𝐴
⃗⃗⃗⃗  will result in the disappearance of the NM 

relaxation peak. On the other hand, c-2a-polymers display a NM relaxation. Due to the 

extra constrains imposed by the cyclic topology, a slower relaxation is expected for the 

cyclic polymers compared to that of l-2a-polymers with similar molecular weights. 

Summarizing, the analysis of the dielectric relaxation of synthesized polymers allows 

the determination of the dipolar microstructure of the chain. In the case of regio-

regular chains, the dipolar microstructure can be associated to the architecture of the 

polymer chain, making BDS a particularly useful technique for the characterization of 

such systems. 
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6. Objectives 

 

The main goal of this thesis is to synthesize cyclic polymers having specific dipolar 

microstructures. The study of dielectric relaxations of such polymers by BDS is expected 

to help understand the dynamic properties of ring polymers. To that end, poly(glycidyl 

phenyl ether) (PGPE) has been chosen as a reference material given the high dielectric 

signal intensity of this polymer. This investigation requires polymers with high 

topological purity and controlled regiochemistry. To meet these requirements, this 

work aims at finding the optimal conditions for generating 1) “clickable” linear 

precursors by AROP and 2) the corresponding cyclic structures by the ring closure 

approach.  

The above-mentioned strategies would ultimately allow the preparation of predesigned 

dipolar microstructures which could be readily identified by BDS analysis. 

 

7. Outline of the thesis  

 

In Chapter II, linear polyethers characterized by a resultant dipole moment proportional 

to the end-to-end vector are prepared (Figure 1a). Tetrabutylamonium azide is used as 

AROP initiator of glycidyl phenyl ether monomer. The monomer activator, 

triisobutylaluminium, was found to be essential to guaranty control over the 
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macromolecular characteristics. Cyclic polymers exhibiting the cancelation of dipole 

moment along the chain contour (Figure 1c) are prepared with high purity by ring 

closure via CuAAC “click” reaction. Cyclization is demonstrated by conventional 

characterization techniques, 1H NMR, SEC and MALDI-ToF MS. BDS, although not 

conventional for such a purpose, is shown to be very convenient to ensure cyclic purity 

in the case of regio-regular polymers. 

 

In Chapter III, ethylene glycol and the phosphazene base t-BuP4 are used to synthesize 

linear polyethers composed of two symmetric arms (Figure 1b). The combination of 

MALDI-ToF MS and BDS allowed the verification of the microstructure of obtained 

polymers and, in particular, the symmetry of the two sub-chains.  Interestingly, it was 

found that only in the absence of the monomer activator, triisobutylaluminum, 

symmetric arms were formed. 

In Chapter IV, the cyclization of linear polyethers composed of two symmetric arms is 

achieved (Figure 1d). First, it was found that using water and the phosphazene base t-

BuP4 as initiation system allowed better control of the linear precursor structure than 

the combination of ethylene glycol and t-BuP4. Then, the ring closure reaction 

performed via Glaser coupling was optimized to produce the corresponding cyclic 

polymer displaying a normal mode relaxation. BDS analysis of the synthesized cyclic 

samples provided general results on the ring dynamics. 

In Chapter V, the most significant conclusions of this work are presented.  
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As mentioned in chapter I, the synthesis of cyclic polymers via ring closure approaches 

is suitable for synthesizing a large variety of polymer backbones. Moreover, since this 

strategy relies on the ring closure of a previously synthesized linear precursor, it is 

possible to control the molecular characteristics of the chain.  

In this chapter, the synthesis of cyclic poly(glycidyl phenyl ether) is performed by the 

ring closure of synthesized linear precursors via copper(I)-catalyzed alkyne-azide 

cycloaddition (CuAAC) “click” reaction. Linear precursors are prepared by anionic ring 

opening polymerization (AROP) initiated by tetrabutylammonium azide (N3NBu4) in the 

absence and presence of triisobutylaluminum (iBu3Al). A deep investigation on the 

molecular characteristics of all the generated structures is performed.  

1. Introduction 

 

Click-chemistry has played an important role in the synthesis of complex architectures 

due to its ability to link molecular species with a rapid kinetics under mild conditions, 

high reaction yields and high functional group and solvent tolerance. In particular, 

CuAAC “click” reaction has allowed access to a variety of exquisite architectures 

including monocyclic1 and multicyclic polymer structures,2,3 single-chain polymer 

nanoparticles,4 sequence-controlled polymers,5 dendrimers,6 stars,7 and graft-

polymers.8  

Terminal azides are generally incorporated by nucleophilic substitution of terminal 

halogen atoms with NaN3 in preformed linear polymers. A convenient choice to 
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incorporate azide end groups into the polymer chain is by direct initiation with azides. 

Gervais et al.9 demonstrated that the monomer-activated AROP of epoxides mediated 

by N3NBu4 and iBu3Al directly generated α-azido-ω-hydroxypolyethers with controlled 

molar masses up to 30 kDa in a few hours. They successfully polymerized a variety of 

monomers including ethylene oxide, propylene oxide, ethoxyethyl glycidyl ether, and 

epichlorohydrin. Kim et al.10 recently demonstrated that initiation of ethylene oxide 

with NaN3 can be used to generate azide-terminated poly(ethylene oxide) through an 

AROP mechanism. Kakuchi et al.11 also reported a convenient way to synthesize azido-

terminated polyethers by using hydroxyazides as initiator and a phosphazene base as a 

catalyst. They produced monocyclic structures of poly(1,2 butylene oxide) and 

poly(benzyl glycidyl ether) by means of CuAAC “click” reaction. The advantages of using 

this initiation system rely on the complex architectures that can be obtained when the 

initiator molecule contains multifunctional azide and hydroxyl moieties.12,13 Although 

N3NBu4 allows the formation of only single azide-terminated polymers, this method is 

cheaper and simpler compared to previous techniques. 

In general, AROP is prone to chain transfer reactions which compromise the end-group 

functionality and their utility for the synthesis of well-defined architectures by CuAAC 

“click” reactions. The combination of alkali metal alkoxides and trialkylaluminum has 

been efficiently proved to control the polymerization and to preserve a high end group 

fidelity.14 Considering this, and in order to make some progress in the generation of 

cyclic structures with high purity, the polymerization of glycidyl phenyl ether (GPE) with 

N3NBu4 in the presence and absence of iBu3Al is investigated. 
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Matrix-assisted laser desorption/ionization−time-of-flight mass spectrometry (MALDI-

ToF MS), nuclear magnetic resonance (NMR), and gel permeation chromatography 

(GPC) are the techniques most routinely used to verify cyclization. However, the 

evaluation of cyclic purity is not always straightforward, as for example the appearance 

of high molecular weight shoulders in GPC chromatograms cannot be attributed solely 

to the formation of linear dimers by intermolecular coupling. Cyclic dimers can also be 

formed, and their identification requires the use of combined techniques.15 

Dielectric spectroscopy is a nonconventional technique to evaluate the cyclic purity. It 

is very sensitive to changes in the molecular weight and the topology of the polymer 

chain,16 specially in the case of regio-regular polymers. Fluctuations of the end-to-end 

vector in linear polymer chains are measured as a dielectric relaxation called normal 

mode (NM). Upon cyclization, the end-to-end vector vanishes as a consequence of the 

cancellation of dipole moment vectors parallel to the chain contour, resulting in the 

disappearance of such NM relaxation. Moreover, linear n-mers (dimers, trimers, etc.) 

obtained by intermolecular coupling can be detected by exhibiting much slower end-

to-end vector fluctuations. The usefulness of dielectric spectroscopy to confirm the 

cyclic purity has been reported in a series of regio-irregular poly(glycidyl phenyl ether) 

(PGPE) samples obtained by zwitterionic ring expansion polymerization17,18 after being 

subjected to a purification protocol by “click” scavenging of topological impurities 

(tadpoles and linear chains).19 However, owing the regio-irregular nature of those 

samples, that study was not centered on the NM analysis but on end-group-sensitive  

β-relaxations, which have a limited accuracy with increasing molecular weight.  

In light of these findings, the present study aims at two goals: (1) evaluating the use of 

N3NBu4 as an AROP initiator to synthesize α-azido-ω-hydroxy poly(glycidyl phenyl ether) 



Chapter II   

56 

 

(N3-PGPE-OH) for the generation of pure cyclic structures and (2) using dielectric 

spectroscopy as an additional tool to evaluate the cyclic purity in regio-regular 

polymers. With those purposes, the study of the polymerization of glycidyl phenyl ether 

(GPE) with N3NBu4 in the absence and presence of iBu3Al is presented, as well as the 

evaluation of the end-group fidelity by using MALDI-ToF MS and NMR. After 

modification of terminal hydroxyl groups to alkyne with propargyl bromide, the 

efficiency of copper(I)-mediated ring-closure of α-azido-ω-alkyne poly(glycidyl phenyl 

ether) (N3-PGPE-ALK) for the generation of pure cyclic PGPE (c-PGPE) is investigated. 

The cyclic purity is evaluated by means of dielectric spectroscopy, which in agreement 

with triple detection GPC data reveals the formation of pure cyclic structures in samples 

of Mn < 20 kDa generated with N3NBu4 and iBu3Al. 

 

2. Experimental Section 

 

2.1. Materials  

 

GPE, toluene and dichloromethane (Sigma-Aldrich) were distilled from CaH2 under 

reduced pressure. N3NBu4, iBu3Al (1.1 mol/L in toluene) and NaH (Sigma-Aldrich) were 

stored in the glovebox under a nitrogen atmosphere and used as received. Propargyl 

bromide, propargyl alcohol, (+) sodium L-ascorbate, N,N,N′,N′′,N′′-
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pentamethyldiethylenetriamine (PMDETA), methanol and tetrahydrofuran (Sigma-

Aldrich) were used as received.  

Cu(I)Br was purified following the Keller and Wycoff method.20 Briefly, 1 g of Cu(I)Br 

was washed five times with 20 mL of glacial acetic acid, then three times with 30 mL of 

absolute ethanol and finally six times with 15 mL of anhydrous ether. During washing, 

the suction was adjusted so the liquid passed slowly over the powder. The clean Cu(I)Br 

was dried at 80 °C for 30 min and then kept in an airtight bottle storred in a glovebox. 

 

2.2. Synthesis of α-azido, ω-hydroxy poly(glycidyl phenyl ether) 

initiated by N3NBu4 

 

In a typical experiment performed in bulk, N3NBu4 (200 mg; 7.03 × 10−4 mol) was 

transferred to a round bottom flask equipped with a magnetic stirrer in a glovebox. 

Then, GPE (2 mL; 1.47 × 10−2 mol) was added, the flask sealed with a stopcock and the 

reaction stirred at room temperature for 45 min. A high increase of the viscosity was 

observed. The polymer was dissolved in THF and the reaction was terminated by 

addition of HCl (60 µL in 0.5 mL of methanol). The polymer was purified by precipitation 

in cold methanol twice and dried under vacuum. Polymers with different molecular 

weight were prepared following the same procedure and adjusting the monomer to 

initiator ratio. 
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In a typical experiment performed in solution, N3NBu4 (200 mg; 7.03 × 10−4 mol) was 

transferred to a round bottom flask equipped with a magnetic stirrer in a glovebox and 

dissolved in 1 mL of toluene. Then, GPE (2 mL; 1.47 × 10−2 mol) was added, the flask 

sealed with a stopcock and the reaction stirred at room temperature for 20 h. The 

reaction was stopped by addition of HCl (60 µL in 0.5 mL of methanol). The solvent was 

evaporated under reduced pressure, the product redissolved in THF and purified by two 

precipitations in cold methanol. 

 

2.3. Synthesis of α-azido, ω-hydroxy poly(glycidyl phenyl ether) 

initiated by N3NBu4 / iBu3Al 

 

In a typical experiment, GPE (2 mL; 1.47 × 10−2 mol) was transferred to a round bottom 

flask containing 7 mL of toluene and equipped with a magnetic stirrer in a glovebox. 

Then, 0.96 mL of iBuAl3 solution (1.1 mol/L in toluene) was added to the reaction flask. 

Finally, N3NBu4 (200 mg; 7.03 × 10−4 mol) was dissolved in 2 mL of toluene and added 

to the reaction flask. The flask was sealed and cooled down to −30 °C during the first 15 

min to reduce the initial polymerization rate. After this, the reaction was stirred for 4 h 

at room temperature. The reaction was stopped with 1 mL of ethanol. The solvent was 

evaporated under reduced pressure and the polymer was redissolved in THF and 

precipitated in cold methanol twice and dried under vacuum. Polymers with different 

molecular weights were prepared following the same procedure and adjusting the 

monomer to initiator ratio, keeping the iBuAl3/ N3NBu4 ratio in 1.5. 
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2.4. End-group modification: formation of α-azido, ω-alkyne 

poly(glycidyl phenyl ether) 

 

A solution of N3-PGPE-OH (375 mg; 4.69 × 10−5 mol) and NaH (33 mg; 1.38 × 10−3 mol) 

was stirred at 40 °C for 1 h in THF (2.5 mL) under argon atmosphere. Then, propargyl 

bromide (200 mg; 1.68 × 10−3 mol) was added. The reaction was stirred for 72 h at room 

temperature.  

In order to verify the presence of terminal azide groups, a reaction with propargyl 

alcohol was performed. Cu(I)Br (78 mg; 5.5 × 10−4 mol) was introduced in a round 

bottom flask equipped with a magnetic stirrer. Oxygen was removed by purging with 

argon. In a second flask, N3-PGPE-OH (50 mg; 1.1 × 10−5 mol) was dissolved in 3 mL of 

toluene and purged with argon for 15 min. This solution was added under argon to the 

first flask. Immediately after, PMDETA (0.11 mL; 5.5 × 10−4 mol) and propargyl alcohol 

(0.01 mL; 1.7 × 10−4 mol) were added. The reaction was stirred at room temperature for  

24 h. 
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2.5. Cyclization of α-azido, ω-alkyne poly(glycidyl phenyl ether) 

 

A typical procedure for the cyclization of α-azido,ω-alkyne PGPE is as follows: in a round 

bottom flask, Cu(I)Br (30 mg; 2 × 10−4 mol), (+) sodium L-ascorbate (41 mg; 2 × 10−4 mol) 

and PMDETA (0.04 mL; 2 × 10−4 mol) were added. The flask was purged with argon for 

15 min and 1 mL of dichloromethane was added under argon atmosphere. In a second 

flask, α-azido,ω-alkyne PGPE (35 mg; 4 × 10−6 mol) was introduced and the flask was 

purged for 15 min. Then, 1 mL of dichloromethane was added under argon. The polymer 

solution was transferred to a syringe under argon and added slowly (7.44 mL/h) to the 

Cu(I)Br solution. After all the polymer solution was added (about 8 min), the reaction 

was stirred at room temperature for 3 h. The copper catalyst and the amine were 

removed by extraction with a saturated ammonium chloride solution. The organic 

phase was dried with magnesium sulfate. After evaporation of the solvent under 

reduced pressure, the polymer was redissolved in THF and precipitated in cold 

methanol and dried under vacuum. 

 

2.6. Characterization 

 

The molecular weight, molecular weight distribution and intrinsic viscosity data were 

determined by GPC on an Agilent G‐1310A HPLC pump connected to miniDAWN MALS, 

Optilab rEX dRI and ViscoStar II detectors from Wyatt. All the detectors were at 25 °C. 
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PLgel 5µm 500Å and PLgel 5µm Mixed‐C columns were used for separation, both kept 

in a column heater at 30 °C. THF (1.0 mL/min) was used as an eluent. ASTRA 

software (Wyatt, version 6.1.2.84) was used for data collection and processing.  A 

differential refractive index (dn/dc) value for PGPE of 0.137 mL/g was used, as previously 

determined.18  

MALDI‐ToF MS measurements were performed on a Bruker Autoflex Speed system 

(Bruker, Germany) equipped with a 355 nm NdYAG laser. Spectra were acquired in both 

positive reflector mode and linear mode. Trans‐2‐[3‐(4‐tert‐Butylphenyl)‐2‐methyl‐2‐ 

propenylidene]malononitrile (DCTB, Fluka) was used as a matrix. Potassium 

trifluoroacetate (KTFA, Aldrich) or Sodium trifluoroacetate (NaTFA, Aldrich) were added 

as the cationic ionization agent (10 mg/ml dissolved in THF). The matrix was also 

dissolved in THF at a concentration of 20 mg/ml. Polymer samples were dissolved in THF 

at a concentration of 10 mg/ml. In a typical MALDI experiment, the matrix, salt and 

polymer solutions were premixed at a 20:1:3 ratio. Approximately 0.5 µL of the obtained 

mixture were hand spotted on the ground steel target plate. For each spectrum 10000 

laser shots were accumulated. The spectra were externally calibrated using a mixture of 

different poly(ethylene glycol) standards (PEG, Varian).  

1H and 13C NMR data were recorded on a Bruker Avance spectrometer at 400 MHz. CDCl3 

or (CD3)2CO at 25 °C were used as a solvent. 

Fourier transform infrared spectroscopy (FTIR) measurements were performed at 25 °C 

in a Jasco 6300 FTIR. Spectra were registered in transmission mode under nitrogen 

atmosphere. The polymer samples were spread on ZnSe windows with a spatula to form 

films of about 0.2 mm. Baselines of FTIR spectra were not corrected. 
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A broadband and high‐resolution dielectric spectrometer, Novocontrol Alpha, was used 

to measure the complex dielectric function, ε*(ω) = ε′(ω) − iε″(ω), ω =2πf, in the 

frequency (f) range from f = 10−2 Hz to f = 106 Hz. Samples were placed between parallel 

gold‐plated electrodes with 20 mm diameter and 0.1 mm thick, by using finely cut  

0.1 mm thick cross‐shaped Teflon as spacer. To remove the water traces, the samples 

were heated within the cell at 420 K for 15 min until constant conductivity.  The data 

were collected isothermally during cooling from 420 to 130 K. The temperature was 

controlled within ±0.1 K using a Novocontrol Quatro cryostat that uses a continuous 

nitrogen‐jet flow. 

Differential scanning calorimetry (DSC) measurements were carried out on 5 mg 

specimens using a Q2000 TA Instruments. All samples were measured by placing the 

samples in sealed aluminum pans, cooling to −100 °C at 20 °C/min, and heating to  

150 °C at 20 °C/min (first run). Then, samples were cooled back to −100 °C at 20 °C/min 

(second run) and finally heated to 150 °C at 20 °C/min (third run). A helium flow rate of 

25 mL/ min was used throughout. The glass transition temperatures (Tg) were evaluated 

in the third run. 
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3. Results and discussion 

 

3.1. Synthesis of α-azido, ω-hydroxy poly(glycidyl phenyl ether)  

 

Polymerization of GPE was performed with N3NBu4 in the absence and presence of 

iBu3Al. In the absence of iBu3Al, N3NBu4 was found to initiate the polymerization of GPE 

by generating polymer chains with very low polydispersity (Tables 1 and 2). The reaction 

occurred very rapidly in bulk, obtaining a yield of 90 wt% in 1 h. In solution, the reaction 

occurred more slowly, it being necessary to increase the reaction time to 24 h. The 

experimental number average molecular weights, Mn, were in agreement with the 

theoretical ones at low monomer to initiator ratios ([M0]/[I0]) in both reaction 

conditions, bulk and solution. However, [M0]/[I0] ≥ 100, the experimental Mn obtained 

in bulk deviated considerably from the theoretical one likely because this 

polymerization system is dominated by transfer, whose effect is much higher at low 

initiator concentration.21  
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Table 1. Polymerization of GPE initiated by N3NBu4 in bulk at room temperature. 

Entry [M0]/[I0] 
Time 

(h) 

Mn (theo) 

(kDa) 

Mn (obs)  

(kDa) 
Ð 

Yield 

(wt%) 

1 21 1 3.0 4.6 1.02 95 

2 42 1 5.8 7.6 1.04 93 

3 100 24 13.8 9.5 1.07 92 

4 214 24 22.5 8.7 1.11 70 

 

Table 2. Polymerization of GPE initiated by N3NBu4 in toluene at room temperature. 

[M0] = 15 mol/L. 

Entry [M0]/[I0] 
Time 

(h) 

Mn (theo) 

(kDa) 

Mn (obs)  

(kDa) 
Ð 

Yield 

(wt%) 

5 21 24 2.7 5.5 1.05 85 

6 42 24 5.4 6.2 1.11 85 

 

Polymerization of GPE with N3NBu4 in the presence of iBu3Al was performed in solution 

by keeping a [iBu3Al]/[N3NBu4] ratio higher than 1 to ensure the activating effect of free 

iBu3Al species according to a monomer-activated mechanism9 (Table 3). A verification 

experiment with [iBu3Al]/[N3NBu4] < 1 conducted to the expected nonpolymerization 

reaction.9 Experimental Mn values were found to also deviate from the theoretical ones 

(Table 3), although higher molecular weights than by using N3NBu4 alone could be 

reached. 
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Table 3. Polymerization of GPE initiated by N3NBu4 / iBu3Al in toluene.  

[M0] = 1.5 mol/L. 

Entry 
[M0]/[ 

N3NBu4] 
[iBu3Al]/[N3NBu4] 

Time 

(h) 

Mn 

(theo) 

(kDa) 

Mn 

(obs) 

(kDa) 

Ð 
Yield 

(wt%) 

7 21 1.5 4 2.9 6.7 1.27 90 

8 42 1.5 4 5.7 13.6 1.27 90 

9 100 1.5 4 13.5 24.5 1.05 90 

10 214 1.5 4 28.9 20.8 1.11 90 

 

3.1.1. End group fidelity 

 

1H NMR data of a representative PGPE sample synthesized with N3NBu4 alone is shown 

in Figure 1a. Main peaks were assigned to the backbone of the polymer chain and 

confirmed the formation of the targeted polymer. However, the spectral data in the 

region between 4.3 and 6.5 ppm showed the formation of alkene groups, which are 

likely formed by proton abstraction from the methyleneoxy group of GPE through a 

transfer to monomer reaction (Figure 2). Cis and trans alkene groups were identified 

and assigned as h, i and h’, i’, respectively. Integration of the alkene 1H NMR signals 

yielded amounts as high as 17 % of X-PGPE chains in the sample. To confirm the 

presence of alkene groups, a reaction with HCl was performed and the obtained 

product characterized by 1H NMR (Figure 1b). All the peaks assigned to alkene groups 
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in the region between 4.8 and 6.6 ppm disappeared as a consequence of the addition 

of HCl to the double bond, thus confirming proton assignment. The formation of alkene 

groups by side reactions during AROP typically occurs by initiation with alkali metal 

alkoxides and hydroxides due to the high basicity of the propagating species.22,23 As a 

consequence, the molar mass of the obtained polyethers is reduced. In the 

polymerization of propylene oxide with conventional alkali metal initiators the molar 

mass was found to be limited to values up to 6 kDa.24,25 In the case of PGPE, the Mn 

reached values up to 9.5 kDa.  

 

 

Figure 1. 1H NMR data of PGPE obtained by initiation mediated by a) N3NBu4 (Entry 1, 

Table 1), b) N3NBu4 and further modification with HCl, and c) N3NBu4 / iBu3Al (Entry 7, 

Table 3). Solvent: CDCl3. 
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Figure 2. a) Polymerization of GPE initiated with N3NBu4 alone. b) Transfer to monomer 

with the generation of alkene functionalities. 

 

When polymerization was performed with both N3NBu4 / iBu3Al, 1H NMR data revealed 

the total absence of alkene impurities in the region between 4.8 to 6.6 ppm (Figure 1c). 

The Lewis acid is believed to form an “ate” complex with the amine which can initiate 

the polymerization. The excess of iBu3Al is on the other hand activating the monomer. 

This process speeds up the reaction and favors the nucleophile attack on the epoxy 

ring.26 

The formation of carbonyl groups was not detected by FTIR analysis in none of the 

catalytic systems (Figure 3), which suggests that other side reactions as previously 

reported for the polymerization of GPE do not occur.27 The presence of terminal azide 

group at the chain head (α-position) was verified by FTIR (Figure 3) and MALDI-ToF MS 

(Figure 4). FTIR data exhibit a strong absorption band at 2100 cm-1 that corresponds to 

the symmetric stretching of azide groups.  



Chapter II   

68 

 

1000150020002500300035004000

Wavenumber (cm-1)

 N3Bu4

 N3Bu4 / iBu3Al

1000150020002500300035004000

azide

 

Figure 3. FTIR spectra of N3-PGPE-OH samples obtained by initiation with N3NBu4 (Entry 

1, Table 1) and N3NBu4 / iBu3Al (Entry 7, Table 3). 

 

Figure 4. MALDI-ToF MS data of PGPE synthesized with N3NBu4 alone (Entry 1, Table 1) 

in a), b) reflector mode and c),d) linear mode with potassium as counter ion. 
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MALDI-ToF MS data of PGPE synthesized with N3NBu4 alone is shown in Figure 4. The 

data exhibited three main distribution peaks whose relative intensities changed with 

the analysis method, in reflector or linear mode. Orange colored signals are attributed 

to N3-PGPE-OH species; polymer chains that contain an azide groups at the chain head 

(α-position) and a hydroxyl group at the chain tail (ω-position). Their peaks are 

separated by 150.19 Da, corresponding to the repeat unit mass of GPE. Signals in blue 

are shifted by -42.95 Da respect to those of N3-PGPE-OH, which correspond to the mass 

of X-PGPE species. Signals in green and pink are assigned to fragments ions resulting 

from a loss of N2 (-N2) via both in-source and postsource metastable ion formation 

according to the work of Grayson et al.28 The latter is known to be nonuniform and to 

be characterized by having noninteger mass offset (approximately -24.0 Da in the region 

shown in Figure 4b) relative to the parent ion and to disappear in linear mode 

detection.28 By changing from reflector to linear mode detection,28 a clear intensity 

reduction of postsource metastable PGPE(-N2) ions is observed with a concomitant 

increase of the signals attributed to N3-PGPE-OH relative to X-PGPE species. The relative 

intensity between both species in the data recorded in linear mode (orange to blue 

signal ratio) seems to exhibit a high population of X-PGPE species, in agreement with 

NMR data. 

 

To confirm the presence and absence of azide end groups in PGPE chains, a CuAAC 

“click” reaction with propargyl alcohol was performed in the presence of Cu(I)Br as a 

catalyst. MALDI-ToF MS data of the obtained product are shown in Figure 5. The data 

exhibited a mass shift of +56.31 Da with respect to N3-PGPE-OH indicating the addition 

of a propargyl alcohol moiety at the chain end by forming a triazole ring (T-PGPE 
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species). The data also exhibited that the signals assigned to X-PGPE remained at the 

same position as those of the unmodified product, thus confirming the non-reactivity 

of X-PGPE species toward the “click” addition of propargyl alcohol, as expected. 

Moreover, upon modification of azide terminal groups, the signals assigned to the 

fragments ions resulting from the loss of N2  

(- N2) were no longer observed, which confirms quantitative modification of end groups 

terminated in azide groups. 
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+

[N3-PGPE30-OH + K]
+

- N2- N2
- N2

4550 4600 4650 4700 4750 4800

m/z

Dm/z theo = 56.03 Da

Dm/z obs = 56.31 Da

[N3-PGPE31-OH + K]
+

[T-PGPE30 + K]
+

[T-PGPE31 + K]
+

[X-PGPE31 + K]
+

a)

b)

 

Figure 5. MALDI-ToF MS data in reflector mode of a) the crude PGPE precursor and b) 

the product obtained by reaction of propargyl alcohol and a PGPE sample synthesized 

with N3NBu4 alone.  

 

MALDI-ToF MS data of PGPE synthesized with N3NBu4 / iBu3Al revealed two cases. 

Samples with Mn < 20 kDa (Entries 7 and 8, Table 3) exhibited the absence of X-PGPE 
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species and the exclusive formation of N3-PGPE-OH chains, assigned to the orange 

colored signals in Figure 6.  
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Figure 6. MALDI-ToF MS data of PGPE synthesized with N3NBu4 / iBu3Al (Entry 7,  

Table 3) in linear and reflector mode. 

 

Samples with Mn > 20 kDa (Entries 9 and 10, Table 3) contained macromolecular species 

not reactive toward propargyl alcohol (Figure 7, expected shift of +56.03 Da). Those 

new species can be attributed to PGPE chains obtained by initiation with hydride  

(H-PGPE) and with an isopropyl anion (I-PGPE) in side reactions. Table 4 lists the 

abbreviations and proposed structures. Previous studies on the ROP of propylene 
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oxide26 and on the anionic polymerization of n-butyl acrylate29 in the presence of iBu3Al 

also observed the occurrence of such side reactions. The formation of alkene moieties 

was not detected by NMR in none of the samples synthesized with N3NBu4/iBu3Al, 

indicating that transfer to monomer reactions leading to X-PGPE species were reduced 

by the addition of iBu3Al, in agreement with previous works.14 All of the identified 

species were reactive toward propargyl bromide (shift of +37.78 Da) confirming 

termination in OH groups. 
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Figure 7. MALDI-ToF MS data registered in linear mode of a) N3-PGPE sample obtained 

by initiation with N3NBu4/iBu3Al (Entry 9, Table 3), b) the product obtained upon 

reaction with propargyl alcohol, and c) the product obtained upon reaction with 

propargyl bromide. See structures in Table 4. 
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Table 4. Structures assigned to MALDI−ToF MS signals. 

Name Structure Mass 

N3-PGPE-OH 

 

150 n + 43 

N3-PGPE-ALK 

 

150 n + 81 

c-PGPE 

 

150 (n+2) + 81 

T-PGPE 

 

150 (n+1) + 99 

X-PGPE 

 

150 n + 150 

X-PGPE-ALK 

 

150 n + 188 
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Name Structure Mass 

H-PGPE 

 

150 n + 2 

H-PGPE-ALK 

 

150 n + 40 

I-PGPE 

 

150 n + 58 

I-PGPE-ALK 

 

150 n + 96 
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3.1.2. Regiochemistry 

 

The regioregularity of PGPE samples synthesized with both initiating systems, N3NBu4 

and N3NBu4/iBu3Al, was investigated by 13C NMR (Figure 8). Assignment of triad 

regiosequences was done according to previous study.18 The data revealed the 

appearance of signals that correspond to a configuration produced by only head-to tail 

or tail-to-head enchainment, indicating the formation of highly regio-regular polymers 

with both initiating systems.18 This analysis is relevant for studying the dielectric chain 

relaxation as explained below. 

 

Figure 8. Methylene and methine region of 13C NMR spectra of PGPE samples obtained 

with N3NBu4 and N3NBu4 / iBu3Al. Spectra were recorded in (CD3)2CO at 25 °C. 

 

δ (ppm)

N3NBu4

N3NBu4 / iBu3Al

CHO

CH2O

CH2OPh

End groups
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3.2. Cyclization of α-azido, ω-alkyne poly(glycidyl phenyl ether) 

 

The presence of chains-end heterogeneities leads to non-quantitative cyclization. For 

that reason, the synthesis of PGPE with N3NBu4 alone is not a convenient route to 

generate pure cycles. On the contrary, the synthesis of PGPE with N3NBu4 / iBu3Al 

exhibited high end-group fidelity which makes these samples suitable for generating 

cyclic structures with high purity. To this aim, the polymer samples were first subjected 

to propargylation and then to CuAAC “click” reaction according to Figure 8. The 

cyclization reactions of N3-PGPE-ALK were performed at high dilution by using a 

continuous addition technique.1 

 

 

Figure 9. Scheme of end group modification and cyclization of PGPE. 
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3.2.1. Optimization of the cyclization reaction 

 

During cyclization via ring closure, the competition between intermolecular coupling 

leading to high molecular weight linear chains and intramolecular coupling leading to 

cyclic chains determines the final purity of the product. In this section, different 

parameters were tested and their influence on cyclic purity was verified by GPC. The 

first parameter investigated was the temperature. For this set of experiments, the 

concentration of the linear precursor solution was fixed at 4.10−3 M (in 1 mL of toluene). 

In a second flask, 50 equivalents of Cu(I)Br respect to the azide function were dissolved 

in 1 mL of toluene. The polymer solution was added to the copper catalyst solution at 

7.44 mL/h. Before addition, the polymer solution was heated at 70 °C to ensure good 

dissolution and to break potential polymer aggregates. During addition the copper 

catalyst solution was maintained at 0°C, 25 °C or 50 °C. The GPC measurements of the 

three obtained samples are presented in Figure 10. 
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7.0 7.5 8.0 8.5 9.0 9.5 10.0

Time (min)

 Linear precursor

 T = 0 °C

 T = 25 °C

 T = 50 °C

 

Figure 10. GPC data (RI detector) of N3-PGPE-ALK linear precursor and samples 

generated by CuAAC “click” reaction at different temperatures to evaluate the influence 

of temperature on the cyclization reaction. 

 

When the reaction was performed at 0 °C, no shift in retention time was observed, and 

in addition, an intense shoulder at the high molecular weight region appeared. At this 

low temperature, the “click” reaction between azide and alkyne is too slow favoring the 

intermolecular coupling of chains. As a result, a high proportion of high molecular 

weight linear chains were obtained. Increasing the temperature to 25 °C did helped to 

reduce the intermolecular coupling. However, a further increase in temperature did not 

show a significant improvement of the yield of cyclization.  

For the second set of experiments, the influence of the concentration of the linear 

polymer solution in toluene and dichloromethane (DCM), was investigated. The 
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temperature was fixed at 25 °C and the rest of the parameters mentioned above were 

maintained constant. The GPC traces of the obtained cyclic samples are compared 

respect to that of their linear precursors (Figure 11). As observed in both solvents, the 

concentration did not have a significant influence over the cyclization yield. However, 

when the syntheses were performed in DCM, the intensity of the shoulder in the high 

molecular weight region was greatly reduced. This was attributed to the higher 

solubility of Cu(I)Br in DCM than in toluene, thus increasing its efficiency.  

 

7.0 7.5 8.0 8.5 9.0 9.5 10.07.0 7.5 8.0 8.5 9.0 9.5 10.0

Time (min)

a) 

Toluene

b) 

DCM

 Linear precursor

 2 mM 

 4 mM 

 

Figure 11. GPC data (RI detector) of N3-PGPE-ALK linear precursor and samples 

generated by CuAAC “click” reaction at different polymer concentrations and solvents: 

a) toluene and b) DCM. 
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CuAAC proceeds via a complex multi-step mechanism during which the copper catalyst 

plays a key role.30 The first step of the mechanism involves the formation of a copper 

(I) acetylide species able to activate the azide function by coordination. As a result, the 

electrophilic character of the azide and the nucleophilic character of the acetylide are 

enhanced allowing the formation of a first N-C bound and finally of the triazole ring.  

In the third set of experiments the effect of Cu(I)Br purity was investigated. The 

temperature was fixed at 25 °C and the concentration of the polymer solution at  

4.10-3 M in DCM. Cu(I)Br was either used as received or washed following the Keller and 

Wycoff method.20 Finally, sodium L-ascorbate was added as reducing agent in an 

experiment using washed Cu(I)Br. The GPC traces of the obtained cyclic samples are 

presented in Figure 12. 

When crude Cu(I)Br was used, a shift toward lower retention times was observed. It is 

known that Cu(I) is oxidized to Cu(II) by reaction with oxygen and that the CuAAC 

reaction is very sensitive to the presence of Cu(II), which does not catalyze the azide-

alkyne reaction but promotes the coupling between two alkyne end groups leading to 

intermolecular coupling.31 The purification of copper catalyst was observed to help in 

the reduction of intermolecular coupling. However, the maximum cyclization efficiency 

was only observed when the reducing agent, sodium L-ascorbate, was added to the 

reaction as observed by the absence of any shoulder in the GPC trace at shorter 

retention times. It is likely that sodium L-ascorbate prevented the oxidation of Cu(I) to 

Cu(II) by residual oxygen in the reaction.32 
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7.5 8.0 8.5 9.0 9.5 10.0

Time (min)

 Linear precursor

 Crude CuBr

 Washed CuBr

 Na - L- ascorbate

 

Figure 12. GPC data (RI detector) of N3-PGPE-ALK linear precursor and samples 

generated by CuAAC “click” reaction with crude and pure Cu(I) catalyst, and with pure 

Cu(I) + sodium L-ascorbate.  

 

As a conclusion of this section, the optimization of cyclization reaction was achieved by 

taking special care of the following factors: good solubility of all the reagents in the 

selected solvent (DCM much better than toluene), careful purification of Cu(I)Br, and 

addition of sodium L-ascorbate reducing agent. If one of the previous prerequisites 

were not fulfilled, then a shoulder at the high molar mass side of GPC chromatograms 

was observed indicating intermolecular coupling. 
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3.2.2. Evaluation of cyclic purity  

 

MALDI-ToF MS data of end-group modified (N3-PGPE-ALK) and cyclic PGPE (c-PGPE) 

products are shown in Figure 13 (generated from sample of Entry 7, Table 3). The data 

show a +38.31 Da shift with respect to N3-PGPE-OH distribution in agreement with the 

addition of a terminal propargyl group in N3-PGPE-ALK sample. Upon cyclization, these 

signals remain at the same position, as expected from the identical molecular mass of 

the linear precursor and cyclic product. The data also exhibit the presence of signals 

corresponding to the fragmentation of the azide functionality in N3-PGPE-ALK via 

expulsion of N2 (-N2). These signals completely disappear after CuAAC reaction in  

c-PGPE sample. However, this behavior cannot be completely attributed to the 

occurrence of cyclization because intermolecular reactions between N3-PGPE-ALK 

chains would also lead to the consumption of azide functionalities.  
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[N3-PGPE30 + K]+

a)

b)

c)

Dm/z theo = 38.02 Da

Dm/z obs = 38.31 Da

[N3-PGPE30-ALK + K]+

[c-PGPE30 + K]+

- N2

- N2

4550 4600 4650 4700 4750

m/z

 

Figure 13. MALDI-ToF MS data in reflector mode of a) N3-PGPE-OH sample synthesized 

with N3NBu4 / iBu3Al, b) N3-PGPE-ALK, and c) cyclic PGPE obtained by ring-closure of N3-

PGPE-ALK. –N2 represents the fragments ions resulting from a loss of N2 from their 

linear precursors via both in-source and postsource metastable ion formation. 

 

In this sense, SEC-MALS-Vis provides more reliable data to verify cyclization as observed 

in Figure 14a. First, the peak of c-PGPE shifts to longer retention times with respect to 

that of its linear precursor, as expected from its structural compaction. Second, the data 

of c-PGPE exhibit monomodal molecular weight distribution and the lack of any 

shoulder at shorter retention times, indicating the absence of intermolecular coupling. 

Furthermore, viscosity data exhibit the expected reduction in the intrinsic viscosity ([𝜂]) 

of the cyclic product in comparison with its linear precursor (Figure 14b). The 

𝑔′ = [𝜂]𝐶/[𝜂]𝐿 value obtained for this series of polymers in THF at 25 C over a 
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molecular weight range from 5.9 to 15.8 kDa was 0.87 ± 0.01 and a Mark−Houwink 

exponent for both the linear and cyclic product of 0.39 ± 0.01. The K values of 

Mark−Houwink expression were 0.19 and 0.14 mL/g for the linear and cyclic product, 

respectively.  
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Figure 14. a) Normalized refractive index-GPC data and molar mass of N3-PGPE-ALK and 

c-PGPE (synthesized from sample of Entry 7, Table 3). b) Mark–Houwink–Sakurada plot. 

 

The g′ value found for c-PGPE is higher than that reported for cyclic polystyrene, which 

typically varies from 0.5 to 0.7 depending on the molecular weight range, temperature, 

and solvent (good solvent and theta solvent).33 The major discrepancy in the g’ values 

found among those studies seems to be originated from the cyclic purity. In the case of 

c-PGPE, no reported g’ values were found for comparison. The closest cyclic polyether 

structures with already reported g’ values are the cyclic poly(butylene oxide),12 whose 
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g’ values (determined in THF at 25 °C) vary from 0.61 to 0.88 in going from 9 to 4 kDa 

of Mn. 

Finally, the cyclic purity was verified by dielectric spectroscopy. In this technique the 

frequency dependence of the complex dielectric permittivity is measured and the 

relaxation processes are detected as peaks in the first derivative of the real part of the 

dielectric permittivity with respect to the log frequency, dε’/d[log(f)]. Figure 15 shows 

- dε’/d[log(f)] as a function of frequency for the c-PGPE sample whose GPC data is 

shown in Figure 14 (hereafter named pure c-PGPE sample). To compare, the dielectric 

data of its linear precursor N3-PGPE-OH and an impure c-PGPE sample are also 

exhibited. The impure c-PGPE sample was obtained by using washed Cu(I)Br but in the 

absence of sodium L-ascorbate (washed Cu(I)Br in Figure 12). This impure c-PGPE 

sample exhibits a high molecular weight tail in the GPC chromatogram. The area of this 

tail respect to the total GPC area is about 17 %. This tail could be attributed to the 

formation of higher molecular weight chains by intermolecular coupling. It is likely that 

in the presence of Cu(II) the reaction between two alkyne groups (Glaser coupling)31 is 

also favored in addition to the reaction catalyzed by Cu(I) between alkyne and azido 

groups of different chains. 
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Figure 15. Dielectric spectroscopy data of pure and impure c-PGPE samples at 320 K and 

of their linear precursor (N3-PGPE-OH) at 315 K. “xn” represents the position at which 

the NM contribution is expected from linear chain impurities with “n” times the mass 

of the N3-PGPE-OH precursor. 

 

The dielectric data of N3-PGPE-OH in Figure 15 show two relaxation peaks, the 

segmental α-relaxation peak (at the high frequency side) and the normal mode (NM) 

peak (at the low frequency side). The lowest frequency side exhibits a signal increase 

which is related to interfacial polarization processes originated from ionic conductivity 

in the material. The peak assignment is in agreement with previous dielectric studies of 

PGPE samples with different microstructures and topologies.18 The α-relaxation is 

related to the glass transition of the material. DSC data showed that pure c-PGPE has a 
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higher Tg value (287.3 K) than its linear precursor, N3-PGPE-OH (281.2 K), as expected 

by theory and previous experiments34 (Figure 16). Consequently, to easily compare the 

dielectric data and to find good superposition of the α-relaxation peaks, the data of the 

cyclic compounds are shown at a temperature 5 K higher than that of their linear 

precursor. 

 

Figure 16. DSC data exhibiting the glass transition of linear and cyclic PGPE samples (2nd 

heating run). 

 

The NM peak in regio-regular linear polymer chains is related to the fluctuations of end-

to-end vector, as mentioned above. As observed in Figure 15, the NM peak detected in 

the linear precursor, N3-PGPE-OH, drastically changes after cyclization. In the impure  

N
3
-PGPE-OH 

c-PGPE 
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c-PGPE sample a lower frequency shoulder is detected. According to the simple Rouse 

model,35 the NM peak frequency depends dramatically on the molecular mass,  

(fNM ∝ M−2). Therefore, the shoulder can be attributed to the presence of linear n-mers  

(n < 4) generated from intermolecular coupling (see arrows in Figure 15). Contrarily, in 

the pure c-PGPE sample, no clear shoulder is detected, and the remaining signal is close 

to the detection limit. The former result confirms the presence of linear impurities of 

higher molecular weights detected by GPC in the impure c-PGPE sample. Moreover, the 

absence of a detectable NM in pure c-PGPE indicates a high purity level of this sample 

in agreement with the GPC analysis. 

 

4. Conclusions 

 

Pure monocyclic structures of poly(glycidyl phenyl ether) can be generated by 

combining AROP and CuAAC “click” reaction but only after guaranteeing the end-group 

fidelity of as-generated linear polymers with N3NBu4 initiator and a series of reaction 

conditions during cyclization. In particular, initiation with N3NBu4 / iBu3Al allows the 

formation of polymer chains with high end-group fidelity at Mn < 20 kDa. All the chains 

contain an azide group at the chain head (α-position) and a hydroxyl group at the chain 

tail (ω-position), which can be conveniently transformed into alkyne functionalities for 

a subsequent cyclization reaction. However, the polymerization initiated with N3NBu4 

alone conducted to the formation of only 83 % of linear chains containing azide groups 

at the α-position due to the formation of 17 % of undesired alkene functionalities in 
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monomer transfer reactions. High cyclic purity was achieved after optimization of 

CuAAC “click” reaction conditions. The copper (I) catalyst purity was found to be of great 

importance in the generation of pure cyclic polymers. For that reason, Cu(I)Br was 

thoroughly washed before reaction and stored under inert atmosphere. With the 

addition of sodium L-ascorbate, oxidation of Cu(I) during reaction was avoided 

preventing intermolecular coupling and therefore, the formation of higher molecular 

weight impurities. 

The cyclic purity was demonstrated by a combination of techniques including GPC with 

triple detection and dielectric spectroscopy. The latter have been demonstrated to be 

a convenient technique for verifying cyclization in polymers that present dielectric 

relaxations due to fluctuations of the end-to-end vector in their linear form. In the case 

of regio-regular polymers, it is possible to detect the presence of linear impurities in 

cyclic samples since BDS is highly sensitive to changes in the topology of the polymer 

chain.  
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In this chapter, the combination of ethylene glycol and the phosphazene base 1-tert-

Butyl-4,4,4-tris(dimethylamino)-2,2-bis[tris(dimethylamino)-phosphoranylidenamino]-

2λ5,4λ5-catenadi(phosphazene) (t-BuP4) is used to produce poly(glycidyl phenyl ether) 

(PGPE) containing a dipole inversion along the chain contour. In other words, each 

polymer chain is composed of two regio-regular sub-chains with its own dipole moment 

facing opposite direction. Broadband dielectric spectroscopy (BDS) is used to verify the 

bi-directional growth of arms in synthesized PGPE samples.  

1. Introduction 

 

Neutral phosphazene bases developed by Schwesinger et al.1 have played an important 

role in the synthesis of complex structures through the utilization of functional or 

multifunctional initiators.2 t-BuP4, the most basic one of this phosphazene family, has 

been used in combination with alcohols in the anionic ring opening polymerization 

(AROP) of monosubstituted epoxides3–9 and ethylene oxide.10 t-BuP4 promotes hydroxyl 

deprotonation generating alkoxide initiators. By playing with the functionality of the 

alcohol, a diversity of architectures can be produced including linear, star-shaped and 

multicyclic structures.6–9,11–13  

Transfer to monomer reactions are frequently observed in t-BuP4 / alcohol-initiated 

polymerizations of asymmetric epoxide monomers.14 The addition of a Lewis acid such 

as iBu3Al was proven efficient to reduce transfer reactions. The Lewis acid forms a 1:1 

“ate” complex with the alkoxide species while the excess of iBu3Al activates the 
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monomer. As a result, an increase of the polymerization rate and a decrease of the 

basicity of the growing chains occur.15 However, initiation by hydride coming from an 

isobutyl group of iBu3Al can still occur, as observed in the monomer-activated 

polymerization of propylene oxide initiated by onium salts (tetrabutylammonium 

chloride, tetrabutylammonium bromide and tetrabutylphosphonium chloride)16 and 

that of glycidyl phenyl ether (GPE) initiated by tetrabutylammonium azide.17 Initiation 

by an isobutyl anion coming from iBu3Al has also been observed in the polymerization 

of methacrylates initiated by cesium halide18 and GPE initiated by tetrabutylammonium 

azide.17 Side reactions affect end-group fidelity and consequently limit the generation 

of macromolecular architectures with high purity.  

Figure 1 exhibits different structures that can be produced in a synthetic polymer 

sample obtained by initiation with ethylene glycol via AROP. As indicated, in addition to 

the expected two-symmetric-arm polymer, other structures can be formed either by 

termination or initiation from impurities. Note that the three cases in Figure 1a-c are 

depicted with similar chain length, so they would not be differentiated by size exclusion 

chromatography (SEC). Structure (c) can be differentiated from structures (a) and (b) by 

NMR and matrix-assisted laser desorption/ionization−time-of-flight mass spectrometry 

(MALDI-ToF MS), but structure (b) cannot be differentiated from structure (a) by any of 

these methods. It has been recognized that the uniformity of arm segments in star 

polymers synthesized from core-first initiators cannot be unambiguously determined 

by SEC.19 In order to verify the arm symmetry in star copolyethers of three and four 

arms synthesized via t-BuP4-catalyzed AROP, Satoh et al. performed arm cleavage by 

hydrogenolysis with Pd/C and characterized their molecular weight by SEC.8 By means 
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of this laborious method, they demonstrated not only that the arm length was 

homogeneous but also that each hydroxyl group of the initiator led to initiation.  

 

 

Figure 1. Expected two-symmetric-arm polymer a) and possible byproducts  

b, c) in AROP initiated by a diol. All of them will exhibit identical molecular weights but 

different dielectric responses associated to the dipolar moment along the chain contour 

(indicated by arrows in a simplified way). 

 

Broadband dielectric spectroscopy (BDS) is a technique particularly useful for examining 

certain molecular characteristics, especially those related to the dipolar microstructure. 

BDS measures the fluctuations of molecular dipoles in an alternating electric field and 

provides useful information about the molecular mobility at different time scales 

including the chain, segmental, and local mobility.20 The dielectric normal mode (NM) 

relaxation is associated with chain fluctuations and is affected by the dipolar moment 

orientation along the chain contour. Therefore it is sensitive to changes in both the 

regiochemistry and the chain topology.17,21,22 The dipolar moment orientations of the 

linear chains depicted in Figure 1 exhibit clear differences among them. It is possible to 
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take advantage of these differences by analyzing the BDS results of samples that exhibit 

a NM relaxation. Furthermore, for unentangled polymer chains, the Rouse theory 

provides accurate quantitative predictions on the dielectric NM. According to this 

theory, a polymer chain is represented by N beads connected by springs. The chain 

relaxation is described by N different relaxation modes, numbered by a mode index  

p = 1, 2, 3, ..., N. The relaxation time of the pth mode is described as 𝜏𝑝 ≈ 𝜏0  (
𝑁

𝑝
)
2

, 

where τ0 is the relaxation time of the monomer. For polymers composed by a single 

arm, as in Figure 1c, only odd modes contribute to the dielectric NM relaxation (p = 1, 

3, 5, ...). However, the NM relaxation of polymers composed of two symmetric arms 

(Figure 1a) is described by even-numbered Rouse modes (p = 2, 4, 6, ...). Then, for two 

polymer chains of equal molecular weight (same N) but different topology, the NM 

relaxation time will be different because of the Rouse modes contributing to each case. 

The analysis of the NM relaxation using this framework allows the application of BDS to 

identify different polymer architectures. Moreover, BDS requires only a small mass of 

material, the polymer does not suffer chemical changes during the experiment, and the 

sample is fully recoverable after measurements. 

In this chapter, the effects of initiation with t-BuP4 – diol on the symmetrical growth of 

poly(glycidyl phenyl ether) (PGPE) in two directions in the presence and absence of 

iBu3Al is investigated. The prepared polymers were characterized combining NMR, 

MALDI-ToF MS and BDS. The latter technique allows the identification of two-arm PGPE 

samples in a direct and easy way and the assessment of their arm symmetry without 

the need of using chemical cleavage of arms. To this end, the molecular weight 

dependence of the NM relaxation for bidirectionally grown PGPE samples (hereafter 

called l-2a-PGPE) obtained with a t-BuP4 / diol initiating system is compared with that 
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of PGPE samples obtained with monofunctional initiators presented in Chapter II 

(hereafter called l-1a-PGPE). The BDS analysis showed that polymers obtained in the 

absence of iBu3Al were formed by two symmetrical arms whereas those obtained in the 

presence of iBu3Al were mainly formed by unidirectionally grown PGPE chains due to 

side reactions. 

2. Experimental section  

 

GPE and toluene (Sigma-Aldrich) were distilled from CaH2 under reduced pressure and 

stored under nitrogen atmosphere. iBu3Al and t-BuP4 (Sigma-Aldrich) were stored in a 

glovebox and used as received. Ethylene glycol (Sigma-Aldrich) was washed three times 

with hexane and dried at 80 °C overnight before being stored in a glovebox.  

 

2.1. Synthesis of two-arm poly(glycidyl phenyl ether) with  

t-BuP4 / ethylene glycol 

 

In a typical experiment, ethylene glycol (5 µL; 9.0 × 10−5 mol) and 180 µL of  

t-BuP4 solution (0.8 mol/L in hexane) were transferred to a round bottom flask 

containing 0.9 mL of toluene and equipped with a magnetic stirrer in a glovebox. The 

obtained solution was stirred at room temperature for 30 min. GPE (1 mL; 7.0 × 10−3 

mol) was added under nitrogen atmosphere. Then the flask was sealed and cooled 
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down to –30 °C and stirred at that temperature for 15 minutes. After this, the reaction 

was carried out at room temperature for 72 h. The reaction was quenched with a 

solution of HCl (0.5 M in methanol), The solvent was evaporated under reduced 

pressure, the product redissolved in THF and purified by two precipitations in cold 

hexane. Different molecular weight polymers were prepared by adjusting the monomer 

to initiator (ethylene glycol) ratio. 

 

2.2. Synthesis of two-arm poly(glycidyl phenyl ether) with  

t-BuP4/ethylene glycol and iBu3Al as monomer activator 

 

In a typical experiment, ethylene glycol (5 µL; 9.0 × 10−5 mol) and 180 µL of  

t-BuP4 solution (0.8 mol/L in hexane) were transferred to a round bottom flask 

containing 0.9 mL of toluene in a glovebox. The obtained solution was stirred at room 

temperature for 30 min. GPE (1 mL; 7.0 × 10−3 mol) and, immediately after, 255 µL of 

iBu3Al solution (1.1 mol/L in toluene) were added under nitrogen atmosphere. Then, 

the flask was sealed and cooled down to – 30 °C and stirred at that temperature for 15 

min. After this, the reaction was carried out at room temperature for 6 h. The reaction 

was quenched with a solution of HCl (0.5 M in methanol), The solvent was evaporated 

under reduced pressure, the product redissolved in THF and purified by two 

precipitations in cold hexane. Different molecular weight polymers were prepared by 

adjusting the monomer to initiator (ethylene glycol) ratio. 
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2.3. Characterization 

 

MALDI-ToF MS measurements were performed on a Bruker Autoflex Speed system 

(Bruker, Germany) equipped with a 355 nm Nd:YAG laser. Spectra were acquired in 

linear and reflector mode. Trans-2-[3-(4-tert-Butylphenyl)-2-methyl-2-propenylidene] 

malononitrile (DCTB, Fluka) was used as a matrix. Potassium trifluoroacetate (KTFA) 

(Aldrich) was added as the cationic ionization agent (10 mg/ml dissolved in THF). The 

matrix was dissolved in THF at a concentration of 20 mg/ml. Polymer samples were also 

dissolved in THF at a concentration of 10 mg/ml. In a typical MALDI experiment, the 

matrix, salt, and polymer solutions were premixed at a 20:1:3 ratio. Approximately  

0.5 µL of the obtained mixture were hand spotted on the ground steel target plate. The 

spectra were externally calibrated using a mixture of different polyethylene glycol 

standards (PEG, Varian). 

1H and 13C NMR spectra were acquired at 25 °C or 50 °C on a Bruker Avance 400 in CDCl3 

or acetone-d6 at 25 °C. To differentiate end-group signals from those of the backbone, 

a small amount (a drop) of trichloroacetyl isocyanate (TAI) derivatizing agent was added 

to the samples recorded in acetone-d6.  

BDS measurements were performed using an Alpha analyzer (Novocontrol) and the 

temperature was controlled by a nitrogen gas jet (Quatro from Novocontrol), with a 

temperature stability during every single frequency sweep of ±0.1 K. Starting at room 

temperature (c.a. 300 K), all samples were heated up to 420 K at a 3 K/min rate inside 

the cell. The temperature was maintained at 420 K for 15 min to remove water and 
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residual solvents. Then, a frequency sweeps was performed over a broad frequency 

range, 10−1 ≤ f (Hz) ≤106, in 5 K isothermal cooling steps from 420 K to 270 K. In order 

to minimize conductivity-related contributions, all the polymer samples were 

thoroughly purified before BDS measurements, as follows. A 1 mg/mL solution of the 

polymer in dichloromethane was prepared. To this solution, a mixed-bed ion-exchange 

resin (Dowex Monosphere MR-450 by Sulpeco) was added in a proportion of 100 mg 

resin per each mL of the polymer solution. The resin/solution mixture was stirred for  

2 h at room conditions. Afterward, the resin was filtered out and the solution 

concentrated by rotary evaporation. The resulting liquid was left in a vacuum oven at 

60 °C for 24 h to evaporate the residual solvent. For BDS measurements, the purified 

samples were sandwiched between gold electrodes by melt pressing. Briefly, the 

bottom electrode (20 mm diameter) was placed on a hot plate at 150 °C and the sample 

was deposited on top of it. This temperature was high enough for the polymer to be in 

its liquid state. Then, a Teflon spacer (0.1 mm in thickness) was placed on the polymer 

melt, and finally, the top electrode (10 mm diameter) was attached. The formed 

capacitor was cooled down fast by placing it on a cold plate.  
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3. Results and discussion 

 

3.1. Synthesis of two-symmetric-arm (or dipole-inverted) 

poly(glycidyl phenyl ether)  

 

3.1.1. End group fidelity  

 

To synthesize α, ω–hydroxy telechelic PGPE with two symmetric arms, the 

polymerization of GPE was first initiated with ethylene glycol and t-BuP4. If no transfer 

reactions occur, a two-symmetric-arm polyether should be formed with a dipole-

inverted structure (Figure 2).  

 

 

Figure 2. Polymerization of GPE leading to two-symmetric-arm (or dipole-inverted) 

PGPE. 
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In these conditions, the polymerization occurred very slowly, in 7-15 days, but PGPE 

samples with high end-group fidelity were generated. Then, the polymerization was 

performed in the presence of iBu3Al with the purpose of accelerating the reaction,11 but 

the results showed a detriment of the molecular characteristics of synthesized 

polymers. Table 1 compares the molecular characteristics of synthesized polymers and 

Figure 3 exhibits 1H NMR data of representative PGPE samples obtained in the presence 

and absence of iBu3Al. 

Table 1. Molecular characteristics of representative PGPE samples. 

Entry 
[GPE]0 / [OH] / 

[t-BuP4] / [iBu3Al] 

Time 

(h)a 

Mn (theo) 

(kDa) 

Mn (SEC) 

(kDa) 

Ð 

 

Yield 

(wt%)b 

1 25/1/0.1/0 20 3.8 2.6 1.04 95 

2 50/1/0.2/0 200 7.5 6.1 1.11 80 

3 39/1/0.8/0 72 5.9 5.4 1.09 80 

4 51/1/1/0 360 7.7 7.3 1.05 85 

5 86/1/1/0 300 13.0 6.5 1.14 85 

6 39/1/0.2/1.5 70 5.8 7.7 1.52 75 

7 19/1/0.8/1.5 6 2.9 6.0 1.50 85 

8 39/1/0.8/1.5 6 5.8 5.8 1.28 90 

9 49/1/1/1.5 35 7.3 6.8 1.21 100 

10 87/1/1/1.5 48 13.0 10.5 1.12 99 

aTime at which the reaction was stopped after observing high viscosity. bYield 

determined gravimetrically.  
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1H NMR data of PGPE samples obtained in the absence and presence of iBu3Al exhibit 

the proton signals corresponding to depicted PGPE structure (Figure 2). The spectra do 

not exhibit signals corresponding to alkene moieties, which indicate the absence of 

chain transfer to monomer in both samples (Figure 3). However, the spectra do exhibit 

that the signal integration of aliphatic protons differs between both samples, which 

have similar SEC-determined molecular weights. The results indicate that the polymer 

synthesized in the presence of iBu3Al contains more GPE units per ethylene glycol 

moieties than that synthesized in the absence of iBu3Al. In fact, the molecular weight 

that could be determined through proton integration would indicate that Mn(NMR) of the 

former is overestimated, 11.8 kg/mol, whereas that of the latter is 4.8 kg/mol in 

agreement with Mn(SEC). These results suggest that in the presence of iBu3Al, ethylene 

glycol does not initiate all the chains in contrast to what happens in the absence of 

iBu3Al. These results are further confirmed by MALDI-ToF MS.  
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Figure 3. 1H NMR (in CDCl3) of PGPE samples of similar Mn (SEC) obtained in the (a) 

absence and (b) presence of iBu3Al (Entries 3 and 8, respectively). 

 

MALDI-ToF MS data of a representative PGPE sample obtained in the absence of iBu3Al 

(Figure 4a) exhibit high-intensity signals corresponding to potassium-complexed PGPE 

chains obtained by initiation with deprotonated ethylene glycol [PGPE-EGn+K]+ and 

termination with two protons (one at each chain end, Figure 2). The signals are 

separated by 150.17 Da, which corresponds to the repeat unit mass of PGPE.  
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Figure 4. MALDI-ToF MS of a) crude PGPE sample synthesized in the absence of iBu3Al 

(Entry 3) and b) its propargylated product. The spectra were taken in reflector mode. 

 

Upon reaction with propargyl bromide in basic medium (Figure 4b), the signals shifted 

by +76.04 Da confirming the functionalization of two hydroxyl groups.23 Side reactions 

were not observed except initiation by adventitious water. The small signals indicated 

by species [W-PGPEn+K]+ and its propargylated product that exhibit an offset of  

+76.05 Da point out to the presence of a second population of PGPE chains initiated by 

water and terminated in two hydroxyl groups. An investigation on water-initiated PGPE 

will be detailed in chapter IV. See Table 2 for abbreviations and proposed structures.  
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Table 2. Structures assigned to MALDI−ToF MS signals. 

Name Structure Mass (Da) 

PGPE-EG 

 

150 n + 62 

PGPE-EG-ALK 

 

150 n + 138 

W-PGPE 

 

150 n + 18 

W-PGPE-ALK 

 

150 n + 94 

Bu-PGPE 

 

150 n + 74 

Bu-PGPE-ALK 

 

150 n + 112 

H-PGPE 

 

150 n + 2 

H-PGPE-ALK 

 

150 n + 40 
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Name Structure Mass (Da) 

Ph-PGPE 

 

150 n + 94 

R-PGPE 

 

150 n + 118 

RR-PGPE 

 

150 n + 174 

 

In contrast to previous results, MALDI-ToF MS of a PGPE sample obtained in the 

presence of iBu3Al revealed the formation of three distinct potassium-cationized 

species, one of them identified as the target PGPE initiated by deprotonated ethylene 

glycol [PGPE-EGn+K]+ (Figure 5a). This signal exhibited the expected shift of +76.83 Da 

upon reaction with propargyl bromide (Figure 5b). The other two signals exhibited a 

shift of only the half of the expected mass upon propargylation, which indicates that 

they arise from chains terminated in single hydroxyl groups. Based on their mass 

position, these signals were assigned to PGPE chains likely formed by initiation with 

isobutanol [Bu-PGPEn+K]+ and hydride [H-PGPEn+K]+.  The former could be formed by 

reaction of iBu3Al and water, and the latter by hydride abstraction from an isobutyl 

group of iBu3Al16–18 (see Table 2 for abbreviations and proposed structures). Upon 

propargylation, an additional peak that could not be attributed to any species was also 

observed (signal “Unknown”) which suggests the existence of other byproducts in this 

sample. In fact, by analyzing a PGPE sample synthesized with a larger [GPE]0 to [iBu3Al] 
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ratio (32 compared to 25 in previous sample) the formation of a series of other 

byproducts was detected (Figure 6), whose origin seems to be related to the activation 

of the glycidyl ether with iBu3Al, followed by the attack of active oxygen species (from 

ethylene glycol or the growing chain) to the methylene carbon next to glycidyl ether 

oxygen and the formation of phenol (Table 2). 

 

 

Figure 5. MALDI-ToF MS of a) crude PGPE sample synthesized in the presence of iBu3Al 

(Entry 6) and b) its propargylated product. The spectra were taken in linear mode. A 

potassium salt was used as a cationizing agent. 
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Figure 6. MALDI-ToF MS of PGPE samples synthesized in the presence of iBu3Al. The 

spectra were taken in linear mode. A potassium salt was used as a cationizing agent. 

See proposed structures in Table 2. 

 

In general, in the absence of iBu3Al, the Mn(SEC) values were similar as those theoretically 

expected at Mn(theo) < 7 kDa (Figure 7a). The variation of Mn(SEC) as a function of Mn(theo) 

exhibited a plateau at about 6 kDa for Mn(theo) > 7 kDa, independently of the  

[t-BuP4] / [OH] ratios used in the reaction. The polydispersity index (Ð) remained the 

same and low in all the synthesized polymers. In the presence of iBu3Al, Mn(SEC) were 

about 1.5 times larger than those expected (Figure 7b), which implies that only two-

thirds of alkoxides were active in the polymerization, in agreement with the MALDI-ToF 

MS data discussed above. The Ð values were not as uniform as those obtained in the 

absence of iBu3Al exhibiting variations from 1.1 to 1.6. No clear effect of the  

[t-BuP4] / [OH] ratio on the end-group nature was detected, although an increase of the 

reaction rate was indeed observed at higher [t-BuP4] / [OH] values. 
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Figure 7. Solid symbols: Mn values measured by SEC as a function of theoretical Mn for 

PGPE samples obtained in the a) absence and b) presence of iBu3Al. Open symbols: 

Polydispersity index. The dashed line represents the expected Mn. 

 

3.1.2. Regiochemistry 

 

The analysis of regiosequences in synthesized PGPE samples is relevant in the 

evaluation of the dielectric NM since the fluctuations of the chain dipole moment are 

proportional to the end-to-end vector only in regio-regular linear chains. 13C NMR 

analysis confirmed that samples generated either by initiation with ethylene glycol/ 

t-BuP4 or ethylene glycol/t-BuP4/iBu3Al are regio-regular (Figure 8). The data revealed 

the appearance of signals that correspond to a configuration produced by only head-to 

tail or tail-to-head enchainment as observed by the appearance of sharp methylene 

(CH2O) and methine (CHO) peaks of GPE repeated units in the main chain. Assignment 
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of triad regiosequences was done according to previous studies.21,24 Assignment of end 

groups and ethylene glycol moieties was evaluated by comparing the 13C NMR spectra 

obtained prior and post addition of small amounts of trichloroacetyl isocyanate (TAI) 

derivatizing reagent. Upon the addition of TAI, the terminal hydroxyl groups are 

transformed into urethane groups. Consequently, the 13C NMR signals of carbons in α 

and β positions to the urethane groups shift downfield and upfield, respectively, thus 

allowing the identification of signals corresponding only to the polymer backbone. 

 

 

Figure 8. 13C NMR (in acetone-d6) of PGPE samples of similar molecular weights 

obtained in the a) absence and b) presence of iBu3Al (Entries 3 and 8, respectively). 
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4. BDS analysis of chain dipolar microstructure 

 

Figure 9 shows the BDS results in a wide frequency and temperature range for PGPE 

obtained in the absence of iBu3Al (Entry 3, Table 1), as a representative sample.  

Figure 9. BDS data corresponding to a PGPE sample (Entry 3) in the temperature range 

285 K – 335 K (5 K steps). a) Real part of the complex permittivity. b) Imaginary part of 

the complex permittivity. c) Data in the -∂ε′/∂logω representation. 

 

Figure 9a depicts the real part (ε′) of the complex dielectric permittivity, where the 

relaxation processes are observed as steps. Figure 9b shows the imaginary part (ε″) of 

the complex dielectric permittivity. Here, relaxation processes are present as peaks. In 

this representation, conductivity from free charge carriers has contributions also, 

affecting the definition of the lower frequency relaxation peaks strongly. To ease the 

analysis of the dielectric spectra, van Turnhout and Wübbenhorst proposed the 

following relation:20,25 
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−
𝜕𝜀′

𝜕 log𝜔
≈ 𝜀′′2 Eq. 1 

 

where ω = 2πf. This relation holds that a relaxation peak in ε″ gives a maximum in 

−∂ε′/∂log ω. Because of the square in ε″ in Eq. 1, the derived maxima will be narrower 

than its corresponding peak in the raw ε″ data. Therefore, closely adjacent peaks will 

be better resolved. Finally, dc conductivity contributions following ε″ ∝ 1/ω do not 

contribute to this formalism. Moreover, possible interfacial polarization phenomena 

overlap less on the dipolar contributions. Figure 9c shows the BDS data in the  

−∂ε′/∂ log ω representation. In this representation a lower frequency relaxation peak is 

better resolved, in contrast to ε″, since the low-frequency increase is dramatically 

reduced. 

In the temperature range depicted in Figure 9c, the sample showed two relaxation 

processes. The peaks located at high frequencies (around 104-105 Hz), correspond to 

the segmental (α) relaxation of PGPE. The peaks located at lower frequencies  

(101-103 Hz range) were assigned to the NM relaxation. This assignment is based on 

previous reports on PGPE dielectric relaxations. 17,21 All the samples presented in the 

current work showed these two relaxation processes, with the following general 

features. First, the α-relaxation peak appeared at higher frequencies the lower the 

molecular mass was. This dependence relates to variations in Tg, as expected in this Mn 

range,21 i.e. polymers with lower Mn have lower Tg and thus faster dynamics. Second, 

BDS results showed that the NM relaxation was also faster, the lower the molecular 
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weight was. This is in line with the predictions of the Rouse model for unentangled 

polymer chains (fNM ∝ Mn
−2).26  

Figure 10 shows BDS data at 305 K for a l-2a-PGPE sample (Entry 4, Table 1) and a  

l-1a-PGPE sample generated by initiation with N3TBAN (Entry 7, Table 3, chapter II). The 

two samples have comparable molecular weight (around 7 kDa). For both samples, the 

maxima of the α-relaxation peaks are in the same position. This result indicates that a 

possible change in the dipolar microstructure does not affect the segmental relaxation 

of the chain as expected. However, the maxima of the NM relaxation peaks are clearly 

in different positions. This first observation already suggests the formation of two 

distinct dipolar microstructures for the two initiation systems as described below. 
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Figure 10. Comparison of the dielectric response at 305 K of a l-2a-PGPE (Entry 4,  

Table 1) open circles and a l-1a-PGPE (Entry 7, Table 3, Chapter II) solid triangles. 

 

An analysis of the PGPE dielectric relaxations for all the samples presented in Table 1 

was performed. For each one, the relaxation time () of the segmental and NM 

relaxations as a function of the temperature (280  T (K)  380) was evaluated. The 

relaxation time was estimated from the frequency of the maximum (𝑓𝑚𝑎𝑥) of each 

relaxation peak ( = 
1

2𝜋𝑓𝑚𝑎𝑥
).  

In particular, the segmental relaxation peak was observed in the temperature range of 

280  T (K)  320. Its temperature dependence was analyzed under the Vogel-Tamman-

Fulcher (VFT) law:  
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𝜏α(𝑇) = 𝜏0exp [
𝐷 𝑇0

𝑇 − 𝑇0
]  Eq. 2 

 

where  0 is the pre-exponential factor and D the fragility parameter. In the case of PGPE 

those parameters were fixed as 0 = 10-14 s and D = 6.1 as previously reported.17,21 The 

so-called Vogel temperature (T0) was the only free parameter for the fitting procedure. 

From the VFT results, the dynamic glass transition temperature (Tg-BDS) was calculated 

as the temperature at which the relaxation time (𝜏𝛼 in Eq. 2) equals 100 s (Table 3). 

Slightly higher Tg-BDS values were found for samples synthesized in the absence of iBu3Al. 

The results obtained from the VFT analysis indicate that possible changes in the dipolar 

microstructure do not have a detectable impact on the segmental relaxation of this 

polymer, as expected.  

The NM relaxation appeared in the temperature range of 300  T (K)  380. Its 

temperature dependence was analyzed under the Williams-Lander-Ferry (WLF) law:  

𝜏NM(𝑇) = 𝜏NM(𝑇Ref)exp [−
𝐶1(𝑇 − 𝑇Ref)

𝐶2 + 𝑇 − 𝑇Ref
]  Eq. 3 

 

where C1 and C2 are the WLF constants, and Tref is the reference temperature. C1 and C2 

parameters are found to take values which are not changing much from polymer to 

polymer when the TRef = Tg.20 In the current study TRef was taken as the dynamic glass 

transition (Tg-BDS). In the case of PGPE, C1 = 30 and C2 = 34.8 were found to be adequate 

values. From these fittings, the NM relaxation time at the glass transition temperature 
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(𝜏NM(Tg-BDS)) was obtained, which is the single fitting parameter in Eq. 3. Table 3 presents 

the summary of all the obtained results. As it can be seen, samples prepared with t-Bu-

P4 / ethylene glycol in the absence of iBu3Al showed lower values of 𝜏NM(Tg-BDS), in 

comparison to those prepared in the presence of iBu3Al. Considering that the NM 

relaxation can account for changes in the PGPE architecture, as reported previously,17,21 

the changes in 𝜏NM(Tg-BDS) serve as an indication that different synthesis routes affect 

the resulting PGPE molecular structure.  

 

Table 3. Relaxation time of the NM at the dynamic glass transition temperature. 

Entry iBu3Al 
narms 

(BDS)c 

Tg-BDS 

(K  0.5) 

𝜏NM(Tg-BDS) 

(s) 

𝜏NM(Tg-BDS)/Mn
2 

(s/kg2mol-2) 

1 

No 2 

275.0 195 29 

2 278.5 1380 37 

3 277.0 1072 37 

4 278.0 1549 29 

5 278.0 1820 43 

6 

Yes m 

277.0 10233 173 

7 277.0 3631 101 

8 276.0 3548 106 

9 277.0 2884 62 

10 278.5 12023 109 

cNumber of arms determined by BDS. m = mixture of 1 and 2 arms 
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To further evaluate the PGPE topology from BDS data, Figure 11 shows 𝜏NM(Tg-BDS)/M2 

as a function of M, in an ln-ln graph, M being the molecular mass. In this plot, error bars 

were calculated taking into consideration the uncertainties in the evaluation of 𝜏NM, as 

well as the corresponding values of Ð (Table 1). In this representation, the Rouse model 

predicts that for a given monodisperse molecular structure the data-points must lie 

within a horizontal line.  

 

Figure 11. Architecture evaluation for PGPE samples under the Rouse model. Error bars 

correspond to the propagation of the experimental errors from 𝜏NM(Tg-BDS) and Ð.  
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Solid triangles in Figure 11 show the NM analysis of l-1a-PGPE samples presented in 

chapter II. The straight line at ln[𝜏NM(Tg-BDS)/M2] = 4.93 corresponds to the trend 

expected from the Rouse model in this case. Taking the 1-arm result as a reference, it 

is possible to determine the topology of PGPE samples synthesized in presence/absence 

of iBu3Al. Briefly, if for purely symmetric dipole-inverted 2-arm polymers only even-

numbered Rouse modes contribute to the NM relaxation, then the NM dynamics should 

be faster by a factor of 4.27 In other words, the trend ln[𝜏NM(Tg-BDS)/M2] = 4.93 of the  

l-1a-PGPE must be reduced by ln[4] ≈ 1.4. This corresponds to the line drawn at 

ln[𝜏NM(Tg-BDS)/M2] = 3.53 in Figure 11. Samples prepared in the absence of iBu3Al (open 

circles) agree very well with this expectation. This confirms that these polymers are 

mostly made by 2 symmetric arms, each containing half of the monomers. Solid circles 

in Figure 11 show the PGPE samples prepared in the presence of iBu3Al. These points 

deviate from the 2-arm expectation, mostly lying in between the two trends. According 

to BDS data, samples synthesized in the presence of iBu3Al are either composed of 

asymmetric 2 arm chain or a mixture of one and two arm polymers. 

The impurities observed in PGPE samples initiated with t-BuP4/ethylene glycol in the 

absence of iBu3Al corresponded to water initiation. However, as it will be presented in 

Chapter IV, these water-initiated chains are also composed of two symmetric arms. For 

that reason, these impurities did not cause deviations of the expected ln[𝜏NM(Tg-BDS)/M2] 

value for two-arm PGPE. 
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5. Conclusions 

 

Taking advantage of the dielectric relaxation associated with the chain mode exhibited 

by some linear regio-regular polyethers, broadband dielectric spectroscopy was used 

to assess and verify the symmetrical bidirectional growth of α,ω-dihydroxy telechelic 

poly(glycidyl phenyl ether) obtained by initiation with ethylene glycol and t-BuP4. Such 

verification can hardly be performed with other conventional spectroscopic techniques, 

demonstrating the complementarity of BDS with other commonly used methods for the 

characterization of polymer architectures. The combination of BDS and MALDI-ToF MS 

confirmed that in the absence of the well-known monomer activator iBu3Al, the 

synthesized polymer is mainly composed of two symmetric arms but in the presence of 

iBu3Al, the polymerization leads to a number of byproducts characterized by 

unidirectional growth.  
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As seen in Chapter III, the initiation of residual water is difficult to avoid when using 

phosphazene base as a catalyst for the polymerization of epoxide monomers. In this 

Chapter, water is directly used to initiate the polymerization of glycidyl phenyl ether in 

the presence of a phosphazene base (t-BuP4). The formation of polymer chains 

displaying a dipole inversion along the chain contour is demonstrated and the obtained 

linear polymers are used as precursor for the synthesis of macrocyclic polymers 

displaying a normal mode relaxation. 

1. Introduction 

 

In contrast to macrocycles having all monomers oriented the same way (Figure 1a), 

dipole-inverted macrocycles present a net dipole moment proportional to the ring 

diameter vector, 𝑃𝐴
⃗⃗⃗⃗ ∝ 𝑅𝑁/2

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ where 𝑃𝐴
⃗⃗⃗⃗  is the dipole moment associated to the main 

chain and 𝑅𝑁/2
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ is the end-to-end vector of the subchain or arm (Figure 1b). 

Consequently, dipole-inverted macrocycles will exhibit a dielectric normal mode (NM) 

relaxation, which specifically reflects the fluctuations of the ring diameter. Moreover, 

this characteristic will enable the evaluation of macrocyclic chain dynamics in a broad 

time-frequency domain by broadband dielectric spectroscopy (BDS), which is otherwise 

more difficult with other frequency-dependent techniques (e.g. rheology, neutron 

scattering).1–6  
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Figure 1. Dipolar microstructures for macrocyclic chains generated from linear chains 

constituted by a) one arm or b) two arms with dipole inversion. 

As presented in Chapter III, the combination of ethylene glycol with the phosphazene 

base t-BuP4, allows the preparation of poly(glycidyl phenyl ether) (PGPE) with two 

symmetric arms. In these structures, the ethylene glycol moiety marks the center of the 

chain and the chain dipolar inversion, as demonstrated by BDS analysis.7 In that 

polymerization system, co-initiation from residual water was sometimes unavoidable, 

even by working with the outmost care.7 This undesired initiation has been frequently 

found in polymerization systems catalyzed by t-BuP4.8,9 

Because of the dihydrogenated nature of water, it should be able to initiate the 

polymerization of epoxide monomers upon deprotonation with a phosphazene base 
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(PB) to produce a two-arm polymer structure. It is expected that initiation first occurs 

by the attack of a PB-activated water molecule (or a hydroxide)10 to the epoxide ring 

and then to the formation of a dihydroxide molecule. This bifunctional molecule will 

then have identical probability to promote the chain growth in both directions from the 

deprotonated hydroxyl functionalities and to form the desired two-arm polymer 

structure. Shimada and coworkers11 found that the ring opening polymerization (ROP) 

of cyclotrisiloxane initiated by water and a PB catalyst generated hydroxyl telechelic 

polysiloxanes as a result of the activation of water molecules by the PB during initiation 

and the subsequent activation of terminal silanol groups during propagation. The ROP 

of epoxides such as ethylene oxide, propylene oxide or allyl glycidyl ether using a 

combination of water as initiator, organobases as catalyst and triethylborane as 

monomer activator was reported by Zhang et al.12 However, t-BuP4 was not considered 

due to its extremely high basicity promoting transfer reactions. 

In this Chapter, the combination of t-BuP4 and water is used to initiate the 

polymerization of glycidyl phenyl ether (GPE) and generate monodisperse PGPE 

polymers formed by two symmetric arms (l-2a-PGPE). Then, macrocyclic structures are 

prepared via end group modification and ring closure through Glaser coupling. This 

series of samples will be named c-2a-PGPE. The structural chemical analysis was 

performed by matrix-assisted laser desorption ionization−time-of-flight mass 

spectrometry (MALDI-ToF MS), nuclear magnetic resonance (NMR), and size exclusion 

chromatography (SEC). However, only BDS analysis of the synthesized linear polymer 

was capable to validate the formation of dipole-inverted two-arm structures and 

therefore to confirm the symmetrical growth of two PGPE subchains initiated by water. 

Moreover, BDS analysis of dipole-inverted macrocycles showed slower NM relaxations 
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at the glass transition temperature than their linear dipole inverted analogues. This 

important result implies that the cyclic topology presents slower fluctuations of the 

𝑅𝑁/2
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ vector than the linear chain, a result that has not been anticipated by 

theory/simulations for these relatively small ring sizes.13,14 This finding has been 

possible thanks to the fact that the dielectric relaxation of the dipole inverted ring 

reflects directly the fluctuation of the ring diameter vector 𝑅𝑁/2
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ without any additional 

contributions that are very relevant for other experimental methods applied in the 

investigation of the cyclic chain dynamics.  

 

2. Experimental section 

 

GPE, THF and toluene (Sigma-Aldrich) were distilled from CaH2 under reduced pressure 

and stored under a nitrogen atmosphere. 1-tert-Butyl-4,4,4-tris(dimethylamino)-2,2-

bis[tris(dimethylamino)-phosphoranylidenamino]-2λ5,4λ5-catenadi(phosphazene)  

(t-BuP4) (Sigma-Aldrich) was stored in a glovebox and used as received. 

Dichloromethane, propargyl alcohol (Sigma-Aldrich) and 1,8-diazabicyclo[5.4.0]undec-

7-ene (DBU) (Fluka) were used as received. 
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2.1. Synthesis of α,ω-hydroxy poly(glycidyl phenyl ether)  

 

In a typical experiment, distilled water (3 mg; 1.7 × 10−4 mol) and 180 μL of t-BuP4 

solution (0.8 mol/L in hexane) were transferred to a round-bottom flask containing 0.9 

mL of THF and equipped with a magnetic stirrer in a glovebox. The obtained solution 

was stirred at room temperature for 30 min. GPE (1 mL; 7.0 × 10−3 mol) was added 

under a nitrogen atmosphere. The reaction was performed at room temperature  

for 48 h. After reaction, the highly viscous liquid was dissolved in THF (2 mL) and the 

reaction was quenched by addition of an HCl solution in methanol (0.5 M). The polymer 

was precipitated into hexane, recovered and dried at 40 °C under vacuum. Different 

molecular weight polymers were prepared by adjusting the monomer to water ratio. 

 

2.2. Propargylation of end groups: formation of α,ω-alkyne 

poly(glycidyl phenyl ether)  

 

Propargylation of l-2a-PGPE samples was performed as follows. A solution of  

α,ω-hydroxy poly(glycidyl phenyl ether)   (194 mg; 3.6 x 10-5 mol) and NaH (52 mg;  

2.2 x 10-3 mol) was stirred at 40 °C for 1 h in THF (30 mL) under an inert atmosphere. 

Then, propargyl bromide (200 mg; 1.68 x 10−3 mol) was added. The reaction was stirred 

for 24 h at room temperature. Then 10 mL of a 0.1 M HCl solution was added to the 

flask, the THF was evaporated under reduced pressure, and the polymer was extracted 
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with dichloromethane. Finally, the solution was concentrated and precipitated into 

hexane. 

 

2.3. Cyclization of α,ω-alkyne poly(glycidyl phenyl ether)  

 

Cyclization of propargylated l-2a-PGPE samples was performed as follows. In a round-

bottom flask, CuBr (14 mg; 9.8 x 10-5 mol), PMDETA (0.02 mL; 1 x 10-4 mol) and DBU 

(0.01 mL; 6.7 x 10-5 mol) were dissolved in dichloromethane (3 mL). In a second flask, 

α,ω-alkyne poly(glycidyl phenyl ether)  (25 mg; 3.2 x 10-6 mol) was dissolved in 

dichloromethane (3 mL). This solution was slowly added (at 2 mL/h) via a syringe pump 

to the CuBr solution. After all the solution was added (1.5 h) the reaction was stirred at 

room temperature for 2 h. The copper catalyst and the amine were removed by 

extraction with a saturated ammonium chloride solution. The organic phase was dried 

with magnesium sulfate. Finally, the solution was concentrated and precipitated into 

hexane. To remove high molecular weight impurities coming from interchain coupling, 

cyclic polymer samples were fractionated by using a recycling preparative GPC.  
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2.4. Characterization  

 

SEC measurements were performed using two different SEC equipment, a SEC-MALS-RI 

located at the University of the Basque Country, Spain, and a SEC-RI located at Tulane 

University, USA. SEC−MALS-RI data were acquired with an Agilent G-1310A HPLC pump 

connected to miniDAWN MALS and Optilab rEX dRI detectors from Wyatt. All the 

detectors were at 25°C. PLgel 5µm 500Å and PLgel 5µm Mixed-C columns were used for 

separation, both kept in a column heater at 30 °C. THF (1.0 mL/min) was used as an 

eluent. ASTRA software (Wyatt, version 6.1.2.84) was used for data collection and 

processing. A differential refractive index (dn/dc) value for PGPE of 0.136 mL/g was 

used, as previously determined.15  

SEC-RI data were acquired with a Waters model 1515 isocratic pump (Milford, MA). THF 

(1.0 mL/min) was used as the eluent with columns heated at 30 °C by a column oven. 

This system was operated with a set of two columns in series from Polymer Laboratories 

Inc., consisting of PSS SDV analytical linear M (8 × 300 mm) and PSS SDV analytical 100 

Å (8 × 300 mm) columns. A model 2487 differential refractometer detector was used as 

a refractive index detector. The instrument was calibrated with Waters polystyrene 

ReadyCal standards. 

Fractionation of c-2a-PGPE samples was performed using two different GPC equipment. 

The first one is located at Tulane University, USA and the second one at the University 

of the Basque Country, Spain. The first equipment is a Waters model 1515 isocratic 

pump (Milford, MA). THF (8.0 mL/min) was used as the eluent with columns heated at 
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a constant 30 °C by a column oven. This system was operated with three columns in 

series from Polymer Laboratories Inc. consisting of three PSS SDV analytical 5 μm 500 Å 

(8 × 300 mm) columns. A model 2487 differential refractometer detector was used as a 

refractive index detector. 50 mg of c-2a-PGPE was dissolved in 2 mL of THF and filtered 

through an AGILENT 0.2 µm filter before injection. 

The second equipment is a recycling preparative GPC LaboACE LC-5060 from Japan 

Analytical Industry (JAI) equipped with an UV-VIS4ch LA detector. To fractionate the 

sample, 40 mg of c-2a-PGPE was dissolved in 4 mL of chloroform and filtered through 

an AGILENT 0.2 µm filter. Then, the polymer solution was injected into the equipment 

and separated by a combination of JAIGEL 2.5 HR and JAIGEL 3 HR columns at a flow 

rate of 10 mL/min. After 3 cycles, the desired fraction was collected. The solvent was 

evaporated and the polymer fraction was dried in a vacuum oven. 

MALDI-ToF MS measurements were performed on a Bruker Autoflex III MALDI−TOF 

mass spectrometer (Bruker Daltonics, Billerica, MA. Spectra were acquired in reflector 

mode. Trans-2-[3-(4-tert-Butylphenyl)-2-methyl-2-propenylidene]malononitrile (DCTB, 

Fluka) was used as a matrix. Sodium trifluoroacetate (NaTFA) (Aldrich) was added as the 

cationic ionization agent (∼2 mg/mL dissolved in THF). The matrix was dissolved in THF 

at a concentration of 20 mg/mL. Polymer samples were also dissolved in THF at a 

concentration of ∼10 mg/mL. In a typical MALDI experiment, the matrix, salt, and 

polymer solutions were premixed at a 20:5:10 ratio. Approximately 1 μL of the obtained 

mixture was hand spotted on the ground steel target plate. MALDI−TOF MS data were 

calibrated against SpheriCal dendritic calibrants (Polymer Factory, Sweden). For each 

spectrum 10000 laser shots were accumulated. 
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1H NMR spectra were acquired at 25 °C on a Bruker Avance 400 in deuterated 

chloroform. 

Differential scanning calorimetry (DSC) measurements were carried out on ~5 mg 

specimens using a Q2000 TA Instruments. All samples were measured by placing the 

samples in sealed aluminum pans, cooling to −100 °C at 20 °C/min, and heating to  

150 °C at 20 °C/min (first run). Then, samples were cooled back to −100 °C at 20 °C/min 

(second run) and finally heated to 150 °C at 20 °C/min (third run). A helium flow rate of 

25 mL/ min was used throughout. The glass transition temperature (Tg) was evaluated 

in the third run. 

BDS experiments were carried out over the frequency range (f) 10-1 - 107 Hz using a 

Novocontrol Alpha spectrometer. The typical BDS protocol was as follows. First, the 

sample was heated in the BDS cell from room temperature to 420K at 3 K/min. This final 

temperature was kept for 15 min to dry the sample and let the evaporation of possible 

residual solvent. Then, dielectric experiments started in 5 K isothermal steps from  

420 K to 180 K. To maintain the sample capacitor thickness, a teflon cross-shaped spacer 

(100 μm thick) was used. The frequency dependent complex permittivity  

ɛ*(w) = ɛ´(w) − i ɛ´´(w) characterizing the dielectric properties of the material was 

measured, where w = 2π f, ɛ´(w) is the dielectric dispersion and ɛ´´(w) the dielectric loss.  

The relaxation times from BDS measurements were obtained from the maximum of the 

isothermal relaxation loss peaks (τmax = 1/wmax). The temperature dependence of the 

segmental (α) relaxation times was fitted to a Vogel-Fulcher- Tamman (VFT) 

equation,16–18 
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𝜏𝑚𝑎𝑥
𝛼 = 𝜏0 exp [

𝐷𝑇0

𝑇 − 𝑇0
] Eq. 1 

where τ0 is a pre-exponential factor of the order of the vibrational times, D is usually 

referred to as fragility parameter, and T0 is the so-called Vogel temperature. Eq. 1 

provides a way of evaluating the dynamics glass transition temperature Tg-BDS as that 

corresponding to a segmental relaxation time of 100 s, i.e., 𝑇𝑔−𝐵𝐷𝑆 = 𝑇0 +
𝐷𝑇0

ln(100/𝜏0)
 . 

The NM relaxation characterizes the slowest dipole moment fluctuation. Its 

temperature dependence was fitted to a Williams-Lander-Ferry (WLF) equation,19,20 

which is commonly used to describe the temperature dependence of the terminal 

relaxation of the polymer: 

𝜏𝑚𝑎𝑥 
𝑁𝑀 = 𝜏𝑁𝑀(𝑇𝑟𝑒𝑓) exp [−

𝐶1(𝑇 −  𝑇𝑟𝑒𝑓)

𝐶2+ 𝑇 −  𝑇𝑟𝑒𝑓
] Eq.2 

C1 and C2 are the WLF constants, and Tref is the reference temperature. In the current 

study Tref = Tg-BDS was used. It is important to note that Eq. (1) and Eq. (2) are 

mathematically equivalent, but they are applied for the analysis of different processes 

only for convenience.21,22  

For the fittings of BDS data 0 = 10-14 s, D = 6.1, C1 = 30, and C2 = 34.8 K were used, as 

previously found in the dielectric analysis of PGPE samples.15,23 

 



Cyclic poly(glycidyl phenyl ether) with a dipole inverted microstructure 

141 

 

3. Results and discussion 

 

3.1. Synthesis of α,ω-hydroxy poly(glycidyl phenyl ether) 

 

The polymerization of GPE was performed in dry THF at room temperature by using  

t-BuP4 / H2O as initiation system. Table 1 shows the molecular characteristics of 

synthesized samples. 

Initially, 0.8 equivalents of t-BuP4 per 1 equivalent of water were used, and then, the 

amount of t-BuP4 was lowered to 0.3 and 0.1 to reduce the basicity of the system, as 

explained below. Different molecular weights with low polydispersity indexes (Ð) were 

obtained by adjusting the monomer to water ratio. The reaction time depended on the 

target molecular weight and the initial amount of t-BuP4. Although the molecular 

weight could be controlled for low molecular weight targets (i.e. 2 kDa < Mn < 6 kDa), 

when higher molecular weights were targeted (i.e. Mn > 6 kDa), the observed molecular 

weight reached a plateau around 6 kDa, as for the polymerization of GPE initiated by 

ethylene glycol and t-BuP4 presented in Chapter III and reported in reference [7]. 
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Table 1. Polymerization of GPE initiated by t-BuP4 / H2O. Molecular characteristics of  

l-2a-PGPE samples. 

Entry 
[GPE]0/[H2O]

/[t-BuP4] 

[GPE]0 

(mol/L) 

Mn(obs)
a 

(kDa) 

Mn(theo) 

(kDa) 
Ð 

Timeb 

(h) 

Yield 

(wt%) 

1 66/1/0.8 7.8 6.2 10 1.09 120 99 

2 66/1/0.8 3.5 6.6 10 1.02 320 97 

3 39/1/0.8 7.8 5.7 5.8 1.06 48 98 

4 39/1/0.8 7.8 5.5 5.8 1.03 48 96 

5 13/1/0.8 7.8 2.2 2.0 1.12 48 98 

6 13/1/0.8 3.5 2.5 2.0 1.05 48 95 

7 13/1/0.3 7.8 2.5 2.0 1.04 48 97 

8 13/1/0.1 7.8 6.2 2.0 1.06 80 98 

a Determined by SEC-MALS-RI  
b Time at which the reaction was stopped after observing high viscosity. 

 

Figure 2 depicts a likely mechanism of polymerization of GPE with t-BuP4 / H2O following 

the hypothesis suggested in the introductory part. In the scheme, the t-BuP4 forms 

activated water molecules (or hydroxide species)10 that are able to attack the epoxide 

ring and to form a dihydroxyl molecule. Deprotonation of one of two hydroxides 

generates two different monoalkoxides, a secondary alkoxide and a primary alkoxide. 

Each alkoxide will be able to attack other epoxide ring and to propagate the 

polymerization. Taking into account that the most probable attack occurs to the 

methylene carbon of epoxide, the primary alkoxide will form a symmetric molecule with 

dipolar inversion and the secondary alkoxide an asymmetric molecule that does not 
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exhibit dipolar inversion. The equilibrium of protonation-deprotonation provided by 

the PB will favor that both hydroxide groups at the chain ends will be equivalent and 

that a two-arm PGPE structure (l-2a-PGPE) with dipolar inversion will be formed. This 

hypothesis is demonstrated below.  

 

Figure 2. Polymerization mechanism of glycidyl phenyl ether (GPE) initiated by water in 

the presence of t-BuP4 phosphazene base (PB). 

 

MALDI-ToF MS analysis of synthesized l-2a-PGPE samples confirmed the formation of 

chains terminated by two hydroxyl groups. Adequate parameters for MALDI-ToF MS 

analysis were obtained as described in Appendix 2. High intensity signals corresponding 

to sodium-complexed l-2a-PGPE of mass = 150 n + 18 + 23 (n times the unit mass of GPE 

+ the mass of one water molecule + the mass of one sodium cation) revealed the 

formation of a unique polymer population (Figure 3).  
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Figure 3. MALDI-ToF MS of water-initiated PGPE (Table 1, Entry 3). 

 

When low molecular weight polymers were targeted, a second population was formed. 

Figure 4a shows the MALDI-ToF MS data of a sample of 2.2 kg/mol (Entry 5, Table 1) 

exhibiting two main mass populations. The highest intensity signals correspond to the 

sodium-complexed PGPE terminated in two hydroxyl groups. The second signal 

distribution exhibits a shift of –17.98 Da with respect to previous dihydroxide species, 

which can be assigned to sodium complexed PGPE chains terminated in alkene moieties 

(A-PGPE, Figure 5). These species are known to be formed by transfer to monomer 

reaction under basic conditions24,25 and are highly undesired for two reasons: a) the 

chain ends cannot be transformed in clickable groups and therefore these chains cannot 

form macrocyclic structures, and b) A-PGPE chains do not have a two-arm structure 

with chain dipolar inversion. 
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Figure 4. MALDI-ToF MS spectra of a) Entry 5, b) Entry 7 and c) Entry 8 of Table 1 

showing the influence of the relative amount of GPE / t-BuP4 on the transfer to 

monomer reactions. 

 

 

Figure 5. Transfer to monomer reaction leading to A-PGPE. 
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 GPE/t-BuP4 = 50 

 GPE/t-BuP4 = 125
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By reducing the amount of t-BuP4 in low molecular weight samples, the transfer to 

monomer reaction was notably decreased, which was not the case when higher 

monomer dilution was used (entry 6, Table 1, data not shown). MALDI-ToF MS spectra 

of samples obtained with 0.3 and 0.1 equivalents of t-BuP4 per 1 equivalent of water 

(entries 7 and 8, Table 1) are exhibited in Figure 4b and 4c, respectively. The data show 

a significant decrease of the relative peak intensity of A-PGPE specimens indicating that 

by reducing the amount of PB in the system, the transfer to monomer reaction can be 

avoided. This result was further confirmed by 1H NMR (Figure 6). The signals h and g 

assigned to the alkene group at 5.4 ppm and 6.6 ppm respectively, decreased in 

intensity with the reduction of t-BuP4. The signal h’ and g’ at 5.0 ppm and 6.5 ppm 

respectively correspond to the trans alkene proton.24 However, the reduction of t-BuP4 

led to larger polymerization times likely due to slower initiation caused by lower 

amounts of active species. As a consequence, the molecular weight of l-2a-PGPE 

increased twice than that calculated theoretically indicating the loss of control over the 

polymerization reaction.  

The analysis of the regiosequences in water initiated PGPE was performed by by  

13C NMR (Figure 7). The data revealed the appearance of signals that correspond to a 

configuration produced by only head-to tail or tail-to-head enchainment as observed 

by the appearance of sharp methylene (CH2O) and methine (CHO) peaks of GPE 

repeated units in the main chain. Assignment of triad regiosequences was done 

according to previous study.15 End groups were identified by comparing the 13C NMR 

spectra obtained prior and post addition of small amounts of trichloroacetyl isocyanate 

(TAI) derivatizing reagent. Upon the addition of TAI, the terminal hydroxyl groups are 

transformed into urethane groups, allowing their identification. 



Cyclic poly(glycidyl phenyl ether) with a dipole inverted microstructure 

147 

 

 

Figure 6. 1H NMR data of low molecular weight PGPE obtained with different amounts 

of t-BuP4 a) Entry 5 b) Entry 7 and c) Entry 8 of Table 1. 

 

Figure 7. 13C NMR (in acetone-d6) of PGPE samples initiated by H2O/tBuP4 (Entry 4,  

Table 1). a) In the absence of TAI and b) in the presence of TAI. 
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Finally, to elucidate whether the growth of water-initiated l-2a-PGPE occurred in one 

or two directions (without or with dipole inversion), the obtained polymers were 

analyzed by BDS. As a remainder, according to the Rouse model for unentangled 

polymers, only odd modes contribute to the end-to-end chain relaxation. For linear and 

regio-regular samples, the end-to-end chain motions involve the dipole moment 

fluctuation, which results in a dielectric relaxation with a main relaxation time 

 𝝉𝑵𝑴 ∝ (
𝑴

𝒑
)
𝟐

, with p = 1.22,23,26 However, for polymers composed by two symmetric 

dipole-inverted arms, the NM relaxation would be described by even modes. In this 

case, the main dielectric relaxation time is 𝝉𝑵𝑴 ∝ (
𝑴

𝒑
)
𝟐

, with p = 2.23,27 Consequently, 

the dielectric NM relaxation should be faster by a factor of 4 than the end-to-end vector 

fluctuation.  

For a proper comparison of different samples, the NM relaxation at Tg-BDS was 

evaluated. This parameter takes into account the small but significant changes in the 

glass transition temperature. For one-arm regio-regular linear PGPE samples a mass-

independent value of ln[𝜏NM(Tg-BDS)/M2] ≈ 4.9 is expected.7,23 Correspondingly, a mass-

independent value of ln[𝜏NM(Tg-BDS)/M2] ≈ 3.5 is expected for polymers constituted by 

two symmetric dipole-inverted arms.7,23 

Figure 8a shows the relaxation spectra at 310 K for two water-initiated l-2a-PGPE of 

different molecular weights. The results are very similar to those of ethylene glycol-

initiated l-2a-PGPE presented in Chapter III and in reference [7], suggesting that water-

initiated PGPE also contains a dipole-inverted structure. Note that for an easiest 

spectral analysis, the data of −
𝝏𝜺′

𝝏𝒍𝒏𝒇
 as a function of f are also represented.28 In this 
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representation the derived maxima will be narrower than its corresponding peak in the 

raw ε″ data. In addition, the obtained data will be free of direct current conductivity, 

importantly contributing to ε″, mainly at low frequencies (Figure 9). 

 

 

Figure 8. a) BDS spectra at 310 K of l-2a-PGPE of different molecular weight (Entries 4 

and 7, Table 1). Solid line is a fitting of the higher molecular weight sample as a 

superposition of NM (dotted line), α-relaxation components (dashed line) and a low 

frequency power law. b) Corresponding relaxation plot exhibiting the α-relaxation 

(open symbols) and the NM (close symbols) for both samples. Solid lines were obtained 

by fitting the data to Eqs. 1 and 2, respectively. 
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Figure 9. BDS data of l-2a-PGPE (Entry 8, Table 1). Comparison between ’’ and −
𝝏𝜺′

𝝏𝒍𝒏𝒇
 

representations. 

 

The dielectric relaxation spectra of Figure 8a exhibit two well resolved relaxation peaks 

corresponding to the NM and segmental  relaxation of PGPE7,15,24 in going from lower 

to higher frequency. The peak maxima of the  relaxation appear at frequencies (fmax) 

that are similar for the two samples, as expected from their close glass transition 

temperatures. Contrarily, the peak maxima of the NM relaxation clearly depend on the 

molecular weight (see arrows in Figure 8a). A way to visualize this information in the 

whole temperature range where samples were analyzed is by plotting the relaxation 

times from the peak maxima for both, the  and the NM (Figure 8b). As observed, the 

two samples exhibit similar time-temperature dependence of both relaxations. The 

analysis of the dielectric data by means of Eq.1 and Eq.2 for the two l-2a-PGPE samples 

resulted in values of ln[𝜏NM(Tg-BDS)/M2] ≈ 3.5 (Table 2, see fitting curves in Figure 8b), 
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which confirms both, the two-arm architecture and the high regio-regularity of each 

arm. A detailed analysis of the NM peak component has been performed in reference 

[29] to confirm the symmetric nature of the two arms in agreement with previous study. 

Namely, a Havriliak-Negami (HN) function was used to account for the α-relaxation 

contribution whereas the NM was described according to the Rouse model with mode 

components symmetrically broadened (see fitting curves in Figure 8a).7,23 

 

Table 2. Parameters obtained from DSC and BDS analysis for water-initiated l-2a-PGPE. 

Comparison to previous results on ethylene glycol-initiated l-2a-PGPE.7 

Entry Initiation 
Mn(obs)

a 

(kDa) 

Tg-DSC 

(K)  

Tg-BDS 

(K) 

NM(Tg-BDS) 

(s) 
ln[𝜏NM(Tg-BDS)/M2] 

3 H2O 5.7 274 275 11 × 102 3.5 

4 H2O 5.5 276 275 9.7 × 102   3.5 

7 H2O 2.5 271 271 2.2 × 102 3.6 

8b ethylene 

glycol 

5.9 277 277 1.1 × 103 3.4 

a Determined by SEC-MALS-RI 
b Table 1, Entry 3, Chapter III 
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3.2. Cyclization of α,ω-alkyne poly(glycidyl phenyl ether) 

 

After modification of the hydroxide end groups of l-2a-PGPE into alkyne with propargyl 

bromide and NaH (Figure 10), Glaser coupling was used to form cyclic 2-arm PGPE  

(c-2a-PGPE). The experimental conditions of this reaction were adjusted as described 

below. 

 

Figure 10. Propargylation of end groups and cyclization leading to c-2a-PGPE. 

 

3.2.1. Optimization of the cyclization reaction 

 

In order to minimize intermolecular coupling, different parameters were examined and 

their influence on cyclic purity was verified by GPC. PGPE samples of 5 kDa were used 

in all the experiments. The influence of the atmosphere was first evaluated by 

performing the Glaser coupling reaction under nitrogen or air. For this first set of 
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experiments, the concentration of the linear precursor solution was fixed at 4.10−3 M in 

2 mL of dichloromethane (DCM). In a second flask, 50 equivalents of Cu(I)Br respect to 

the alkyne function were dissolved in 2 mL of DCM. Then, the polymer solution was 

added to the copper solution at 6 mL/h (20 µmol/h) under nitrogen atmosphere or 

under air. Figure 11a shows the GPC of the obtained products and the linear precursor.  

 

 

Figure 11. SEC data (nomalized RI) showing the influence of a) the atmosphere and b) 

the concentration on the Glaser coupling reaction. Data recorded on a SEC-MALS-RI. 

 

A shift toward lower retention time was observed when the reaction was performed 

under an inert atmosphere. Under those conditions, only intermolecular coupling 

occurred increasing the molecular weight of the polymer chains. When performed 
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under air, no clear shift was observed, and an intense shoulder indicated the presence 

of a large proportion of higher molecular weight impurities. Nevertheless, the Glaser 

coupling was faster when performed under air than under nitrogen likely because the 

presence of oxygen allows the oxidation of Cu(I) into Cu(II).30 When the concentration 

of the linear precursor solution was lowered to 2 mM and the addition speed to 1 mL/h 

(2 µmol/h) (Figure 11b), a very slight shift of the main peak toward higher retention 

time was observed suggesting a minor formation of cyclic chains contaminated with a 

large amount of high molecular weight impurities. 

According to Bolhmann et al.,31 the first step of the Glaser coupling is the  

π–coordination of triple bound to a copper (I) species followed by the activation of the 

terminal C-H bound by an external base. Although the exact explanation is yet to be 

elucidated, various studies showed a faster kinetics for the Glaser coupling under basic 

conditions,32,33 even in the absence of metal catalyst.34 Based on this, for the second 

set of experiments, DBU was added to the copper solution. The linear precursor 

solution (2 mM) was added to the copper catalyst solution at 1 mL/h (2 µmol/h) in air, 

as in previous experiment of Figure 11b. Figure 12 shows the GPC data of cyclic 

polymers synthesized in the presence of 5 equivalents and 50 equivalents of DBU 

respect to the alkyne groups. 
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Figure 12. SEC data (nomalized RI) showing the influence of the organic base DBU on 

the Glaser coupling reaction. Data recorded on a SEC-RI. 

 

A clear shift toward higher retention time was observed for both samples indicating the 

formation of cyclic chains. The shoulder at the high molecular weight side was less 

intense in the case where 50 equivalents of DBU were added to the copper solution. 

This result confirms the faster kinetics of Glaser coupling under basic conditions. 

Although intermolecular coupling could not be completely avoided for samples of 5 

kDa, the addition of DBU improved drastically the cyclic purity. Moreover, this set of 

conditions allowed the synthesis of pure cyclic polymers of lower molecular weight  

(Mn = 2.5 kDa) as shown below. 
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3.2.2. Preparation of pure cyclic poly(glycidyl phenyl ether) by Glaser coupling 

 

Based on the results obtained during the optimization of the Glaser coupling reaction, 

cyclic PGPEs were prepared as follows. Cu(I)Br was used as a catalyst and the amine 

PMDETA was used to increase the solubility of the copper salt into dichloromethane. 

The reaction was performed under air to allow the oxidation of Cu(I) into Cu(II) and 

speed up the reaction.30 Finally,  DBU was also added to the catalyst solution to further 

increase the reaction rate.32,33 The solution containing the propargylated l-2a-PGPE was 

slowly added (2 µmol/h) to the copper catalyst solution, using a syringe pump, based 

on Huang et al. work.35 c-2a-PGPE up to 2.5 kDa with a very low proportion of linear 

chains was generated, as observed in the GPC trace of Figure 13a. The data exhibits a 

higher retention time for the cyclic polymer compared to its linear precursor as a result 

of its lower hydrodynamic volume. The lack of any distinguishable shoulder at the 

higher molecular mass side indicates the absence of intermolecular coupling.  
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Figure 13. a) SEC of c-2a-PGPE (solid line) and its propargylated l-2a-PGPE precursor 

(dash line) of two molecular weights (data recorded on a SEC-RI). b) SEC of c-2a-PGPE 

purified by fractionation on a preparative GPC (data recorded on a SEC-MALS-RI).  

 

Increasing the chain length decreases the probability of the two ends to meet and, as a 

consequence, the percentage of pure cycle polymer decreases.36 To limit the probability 

of two linear chains to react, the synthesis of higher molecular weight c-2a-PGPE 

samples was performed with a larger dichloromethane volume in the copper solution 

compared to that used for 2.5 kDa polymer sample. In those conditions, higher 

molecular weight c-2a-PGPE (Mn = 5.5 kDa) was successfully obtained as observed by a 

clear shift in the retention time of Figure 13a. However, a shoulder at shorter retention 

time suggests the formation of higher molecular weight impurites indicating 

intermolecular coupling.  
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The successful formation of cycles via Glaser coupling was also confirmed by MALDI-

ToF MS. Figure 14 shows the mass spectra of c-2a-PGPE and its linear precursors before 

and after end group modification with propargyl bromide (Entry 4, Table 1). Figure 14a 

shows the data corresponding to the propargylated l-2a-PGPE. After end group 

modification, a shift of +75.92 mass units confirmed the quantitative propargylation of 

hydroxyls at both end groups. Upon cyclization via Glaser coupling the loss of two 

protons (-2 m/z) was detected (Figure 14b).  

 

Figure 14. MALDI-ToF MS of (a) propargylated l-2a-PGPE and (b) c-2a-PGPE. The spectra 

were recorded in reflector mode. 
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To identify the nature of species appearing at shorter retention times upon cyclization, 

a c-2a-PGPE species was fractionated using a preparative GPC and the collected fraction 

(between 33 and 35 min) was analyzed by MALDI ToF MS (Figure 15). The figure shows 

the mass data of pure macrocyclic structure, its linear propargylated precursor and the 

collected GPC fraction. The latter exhibits a shift of + 91.82 m/z from the propargylated 

l-2a-PGPE and +93.70 from the cyclic structure. The mass distribution of the collected 

fraction can be assigned to sodium complexed PGPE dimer terminated in two alkyne 

groups (Figure 16). This impurity was successfully removed with a preparative GPC 

allowing the BDS analysis of a pure cyclic sample with very low polydispersity, Ð = 1.01 

(Figure 13b). It is worth to note that cyclic dimers were not detected. 

 

 

Figure 15. Identification of linear dimers in a c-2a-PGPE sample generated from that of 

Entry 8, Table 1 using MALDI-ToF MS and preparative GPC fractionation (at Tulane 

University). 
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Figure 16. Linear dimer formed upon intermolecular of two linear chains during Glaser 

coupling. 

 

3.3. Ring dynamics study by BDS analysis 

 

Figure 17 shows the BDS results obtained on a purified cyclic sample c-2a-PGPE  

(Mn = 5.5 kDa, Ð = 1.01) in comparison with that of its corresponding propargylated 

linear counterpart, l-2a-PGPE. The overall aspect of the BDS data in Figure 17a is the 

same in both polymers, with a small shift in the α-peak frequency as it would reflect the 

expected increase of Tg upon cyclization. This change in Tg is confirmed in Figure 17b 

when fitting the peak relaxation times of these two samples. A difference of about 3 K 

in Tg was observed, the cyclic polymer presenting a higher value (Table 3). This result is 

in line with previous finding on PGPE polymers without dipole inversion.24  
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Figure 17. a) BDS spectra at 305 K for c-2a-PGPE (red circles) and propargylated  

l-2a-PGPE (blue squares) of Mn = 5.5 kDa (Entry 4). Solid line is a fitting as a 

superposition of NM (dotted line), α-relaxation components (dashed line) and a low 

frequency power law. b) Relaxation plot exhibiting the α-relaxation (open symbols) and 

the NM (close symbols) for both samples. Solid lines were obtained by fitting the data 

to Eqs. 1 and 2, respectively. 

 

Table 3. Parameters obtained from BDS analysis for propargylated l-2a-PGPE and  

c-2a-PGPE. 
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ln[𝜏NM(Tg-BDS)/M2] 

Entry 4 
linear 5.5 274 274 9.0 × 102 3.4 

cyclic 5.5 277 277 14 × 102 3.8 

Entry 3 
linear 5.7 274 275 11 × 102 3.5 

cyclic 5.7 276 276 15 × 102 3.8 
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The fitting lines in Figure 17b also allowed the comparison of the NM relaxation time at 

Tg. In the case of dipole-inverted chains, the NM represents the fluctuations of 𝑅𝑁/2
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ 

(Figure 1). Whereas in the linear polymer both arms share a single end at the dipole 

inversion point, in the cyclic structure both ends of the two arms are linked together. 

BDS results show that the NM of cyclic chains at Tg is a factor of 1.5 slower than that of 

linear chains (Table 3), which clearly indicates a slower fluctuation of 𝑅𝑁/2
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ in the rings. 

In order to analyze in more detail other possible effects of the chain topology on the 

NM relaxation, the BDS data of both samples were fitted following the same procedure 

used above (see Figure 8a). The same fitting approach worked well for both linear and 

cyclic topologies. Moreover, the fitting parameters were very similar for both 

topologies except the relaxation times (see relaxation components in Figure 17a). These 

results confirm, on one hand, previous findings concerning the effect of cyclic topology 

on the α-relaxation of this type of polymers,15 as expected from ring polymer theory.37 

On the other hand, the fact that the NM of rings can be well described in terms of the 

Rouse model is in agreement with theoretical expectations13 and molecular dynamic 

simulations14 on relatively short polymer rings. However, it is expected (from both 

theory and simulations) that the relaxation times of the ring diameter vector will be ¼ 

of the whole end-to-end vector of the linear chain.7 This is also the expectation for the 

relaxation of the 𝑅𝑁/2
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ of the two-arm linear chain. Contrarily to those expectations, it 

was found that the relaxation of 𝑅𝑁/2
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ in the ring is 1.5 times slower than in the linear 

analogue. Note that this comparison is made at Tg, which represents an iso-frictional 

situation. This 1.5 factor results in a value of ln[𝜏NM(Tg-BDS)/M2] ≈ 3.5 + ln 1.5 ≈ 3.8 for 

the cyclic polymer, which would be independent of the molecular weight of rings. 

Moreover, this characteristic 3.8 value for rings was confirmed in a second batch of 
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sample of similar molecular weight (Table 3). These results evidence the presence of 

additional constrains associated to the ring topology for ring sizes far below the 

entanglement mass of linear PGPE (Me=39 kDa).23  The role played by side groups in 

these results deserves further investigation. 

4. Conclusions 

 

Two-arm linear poly(glycidyl phenyl ether)s with an inverted-dipole microstructure 

were synthesized using t-BuP4 phosphazene base and water as initiation system. 

Transfer to monomer reactions were completely avoided by adjusting the initial 

amount of phosphazene base yielding hydroxyl-terminated chains with high end-group 

fidelity. BDS analysis of the generated linear structures confirmed the formation of 

regio-regular microstructures composed by two symmetric subchains with opposite 

dipole moment orientation. This result supports a polymerization mechanism 

dominated by t-BuP4 driven protonation-deprotonation allowing that both hydroxide 

groups at the chain ends are equivalent. It is important to note that the validation of 

such structures can hardly be performed with other conventional techniques, 

demonstrating the complementarity of BDS for the characterization of polymer 

architectures. 

Once validated both, the formation of two symmetric arms and the high end-group 

fidelity, the two terminal hydroxyl groups in poly(glycidyl phenyl ether)s were 

quantitatively modified into alkyne groups. Finally, macrocycles with inverted-dipole 

microstructure were generated at high dilution in the presence of Cu(I) and Cu(II) 
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through intramolecular alkyne-alkyne coupling (i.e. Glaser coupling). The optimization 

of cyclization reaction was achieved by using PMDETA, DBU and air conditions. Low 

molecular weight cycles of 2.5 kDa were generated with high cyclic purity, although 

intermolecular coupling could not be avoided at molecular weights higher than 5 kDa. 

Nevertheless, pure rings (used in BDS analysis) were attained by fractionation in a 

preparative GPC.  

Finally, thanks to the fact that the dielectric relaxation of dipole-inverted polymer 

chains directly reflects the fluctuations of the ring diameter vector, it was demonstrated 

that the topological constrains affect the dynamics for ring lengths far below the 

entanglement mass of linear PGPE. These results, although exemplified in a specific 

polyether structure, provides some general and physically sound directives for the 

study of fundamental questions in polymer ring dynamics.  
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In this thesis, cyclic poly(glycidyl phenyl ether)s (PGPEs) having controlled dipolar 

microstructures were synthesized via the ring closure technique. An important part of 

this work focused on the characterization of linear precursors to ensure their high end-

group fidelity, since it is an essential parameter for the synthesis of pure monocyclic 

chains via the ring closure technique. Anionic ring opening polymerization of glycidyl 

phenyl ether (GPE) was chosen as a strategy for the synthesis of linear PGPE precursors. 

Matrix assisted laser desorption ionization - time of flight mass spectrometry (MALDI-

ToF MS) and NMR were used to verify the end-group fidelity of the polymer chains after 

synthesis. 

In particular, two cases were studied. First, polymers having every monomer unit 

aligned in the same direction resulting in a non-inverted dipole microstructure. Second, 

polymer chains presenting a dipole inversion in the middle of the chain. For the first 

series of samples, it was demonstrated that α-azide, ω-hydroxy PGPEs with high end-

group fidelity were obtained when using tetrabutylammonium azide and the well-

known monomer activator triisobutylaluminum (iBu3Al) to avoid transfer to monomer 

reactions during polymerization. However, for the second series of polymers this 

strategy was inappropriate. Indeed, it was found that in the presence of the 

phosphazene base t-BuP4, used for the preparation of α, ω-hydroxy PGPEs, iBu3Al 

promoted several side reactions resulting in poor end-group fidelity. In this case, 

transfer to monomer reactions were completely avoided by maintaining a ratio of  

GPE / t-BuP4 > 50, thus guaranteeing high end-group fidelity. Finally, using broadband 
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dielectric spectroscopy (BDS), the dipole orientation along the chain contour was 

evaluated  directly after synthesis. 

After modification of the hydroxy end groups of linear precursors into alkynes, cyclic 

polymers without dipole inversion were prepared either by copper(I)-catalyzed azide-

alkyne cycloaddition, while cyclic chain presenting a dipole inversion were synthesized 

by intramolecular alkyne-alkyne coupling (i.e. Glaser coupling). The formation of high 

molecular weight chains by intermolecular coupling is one of the major sources of 

impurities during cyclization by the ring closure technique. To tackle this problem, a 

series of experiments was performed to monitor the influence of different parameters 

over the cyclic purity. Ultimately, the importance of the oxidation state of the copper 

catalyst was highlighted in both coupling reactions and the optimum experimental 

conditions for the preparation of pure monocyclic chains were determined as 

demonstrated by GPC and MALDI-ToF MS.  

Finally, the BDS study of the alpha dielectric relaxation and the normal mode relaxation 

of the synthesized cyclic regio-regular polymers allowed to clearly identify the 

formation of the desired dipole microstructures. In cyclic polymers with non-inverted 

dipoles, the dipole moment along the chain is canceled, leading to disappearance in the 

normal mode. These results were used to validate the cyclic purity of these polymers, 

which further showed for the first time the utility of BDS for this unconventional 

purpose. In the case of cyclic polymers presenting a dipole inversion, they exhibit a 

normal mode relaxation that specifically reflects fluctuations of the diameter of the 

ring. This important characteristic allowed evaluation of ring dynamics, which resulted 

in a relaxation 1.5 times slower than the analogous relaxation in the linear precursor at 
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the glass transition temperature. These results show the potential of inverted dipole 

macrocycles in the study of fundamental physical problems in cyclic polymers.
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Cyclic polymers are typically synthesized by three main approaches, ring chain 

equilibration, ring expansion polymerization and ring closure. During the last few 

decades, enormous efforts have been made to produce rings in high yields and high 

purity. The development of a large variety of chemical reactions has allowed the 

preparation of cyclic polymers having different backbones. In this section, some 

examples of cyclization reactions are presented with the intention to show the 

extended literature available in this field of polymer chemistry. 

1. Ring chain equilibration 

 

Step growth polymerization is a type of mechanism where polymer chains are formed 

upon reaction between functional groups of the monomer. The first theory on step 

growth polymerization comes from the work of Carothers1 and Flory.2,3 It is assumed 

that linear monomers react to form linear oligomers and later linear polymers. Even 

though no cyclization reaction was first taken into account, it was later observed that 

cyclic oligomers were formed by backbiting of linear chains. This process is occurring 

throughout the whole step growth polymerization and includes a ring chain 

equilibration. Therefore, as an equilibration reaction, the population of reaction 

products represents the thermodynamic minimum energy. For that reason, step growth 

polymerization can be classified as a thermodynamically controlled polymerization. 

Years later, Jacobson and Stockmayer, observed that in every thermodynamically 

controlled polymerization cyclic chains were formed via backbiting,4,5 but preparation 

of cyclic samples with such a strategy remained difficult because of the large amount of 
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linear chains formed and the broad molecular weight distribution of the final product. 

For that reason, extensive purification is required and low yields are achievable. Only 

low molecular weights cyclic chains were obtained with high polydispersity. Moreover, 

the linear precursor could not be properly isolated making the characterization of the 

cyclic chains complicated.  

One early example of cyclic polymers prepared by ring chain equilibration is cyclic 

poly(dimethylsiloxane)s (PDMS) (Figure 1).6 Since then, this synthesis strategy was used 

to synthesize a wide range of cyclic PDMS.7,8 The reaction product is composed of linear 

PDMS of high molecular weight and low molecular weight cyclic chains, mostly 

tetramers, pentamers and hexamers. 

 

Figure 1. Formation of cyclic PDMS by ring chain equilibration reaction 

 

Although a large set of physical properties of cyclic polymers could be studied thanks 

to those works, the presence of linear chains in a cyclic sample, even at low 

concentration, can modify the physical properties of the polymer sample.9,10 For that 

reason, it is crucial to synthesize ring polymers with high topological purity. 
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2. Ring expansion polymerization 

 

2.1. Ring expansion polymerization with metal-based catalysts  

 

Originally, Kricheldorf and Lee prepared macrocycles of different (thio)lactones using 

tin heterocyclic initiators.11,12 The monomer units were inserted into the Sn-O bond of 

the initiator, which is highly reactive toward various electrophilic reagents (Figure 2). 

The cyclic structure was confirmed by size exclusion chromatography (SEC) and 1H 

nuclear magnetic resonance (NMR) analysis. Similar method was used to prepare 

complex cyclic topologies using lactone and lactide based monomers.13–15 The use of 

the same tin based catalyst was expanded for the synthesis of cyclic poly(ethylene 

glycol),16 cyclic poly(tetrahydrofurandiol)17 and cyclic poly(siloxane),18 as well as the 

corresponding copolymers.  In order to stabilize the macrocyclic product, Kricheldorf 

and co-workers replaced the tin catalyst by a bis-functional phthalate thioester after 

polymerization.19 A ring-exchange process allowed the formation of a more stable 

macrocycle without intermediate ring opening reaction.  
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Figure 2. First synthesis of cyclic lactone by ring expansion polymerization 

 

Other metal alkoxides have been used for the successful preparation of macrocycles. 

The insertion of lactide into an aluminum based catalyst20 (Figure 3) yielded cyclic 

polymers of 39 kDa with polydispersity index around 1.5. The molecular weight was 

dependent of the monomer over catalyst ratio and could be controlled by adjusting this 

parameter. The same mechanism of insertion-coordination followed by 

transesterification led to the formation of cyclic chains.21 It was demonstrated that the 

rate-determining step was the rearrangement of the aluminum based catalyst during 

insertion of the monomer unit. 

 

Figure 3. Aluminum based catalyst for the ring expansion polymerization of lactide 
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Continuous efforts on the development of new catalysts opened new possibilities for 

the synthesis of cyclic polymers. Salicylaldiminato tin(II) complex was used to catalyze 

the REP of L-lactide and ɛ-caprolactone in solvent free polymerizations.22 Tin is known 

to favor transesterification at high conversion, making it a metal of choice for the 

synthesis of high molecular weight cyclic polymers. The tin complex contains an alkoxy 

side chain that initiates the polymerization (Figure 4). The length of this side chain 

determines the distance between the tin atom and the growing polymer chain. This 

parameter will impact the intramolecular transesterification reaction at the end of the 

propagation step leading to the final cyclic product. Complexes with a shorter alkoxy 

chain were found to successfully promote the REP of both L-lactide and ɛ-caprolactone. 

This result highlights the importance of the transesterification reaction for the 

formation of ring polymers by REP, a reaction that is usually undesired in regular 

polymerizations. Matrix assisted laser desorption ionization - time of flight mass 

spectrometry (MALDI-ToF MS) analysis showed an increase of the amount of 

macrocycles with reaction time, confirming that transesterification leading to the 

formation of the final macrocyclic product took place at high conversion.  
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Figure 4. Tin-based catalyst containing an alkoxy side chain that initiates the REP of 

lactide 

 

The organotin-based ring expansion was then adapted for the preparation of catenated 

rings (Figure 5). A newly synthesized catenated initiator allowed the ring expansion 

polymerization of lactide and ɛ-caprolactone.23 Later, the same authors expanded this 

strategy for the preparation of more complex structures using a bis-copper templated 

initiator.24 
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Figure 5. Catenated cyclic poly(lactide) departing from a tin based catenated catalyst 

 

In 2015, borohydride complex catalysts of group II metals and lanthanides have been 

used for the REP of lactide.25 Bulk polymerization of L-lactide at 130 °C afforded the 

synthesis of cyclic polymers with molecular weights as high as 30 kDa. Interestingly, the 

high activity of the lanthanide complexes made this process viable for extrusion 

polymerization. The purity of the cyclic polymer was confirmed by MALDI-ToF mass 

spectrometry and NMR spectroscopy. 
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2.2. Ring expansion methathesis polymerization 

 

The ring expansion methathesis polymerization (REMP) is applicable in solution and in 

the melt. The potential of this method to achieve high molecular cyclic polymer was 

demonstrated by Grubbs et al. with the REMP of cis-cyclooctene using a ruthenium-

based catalyst26 (Figure 6). This approach relies on the metathesis of alkenes for 

inserting the monomer into the metallacycle ring. In other worlds, the double bonds of 

the monomer and the ruthenium catalyst rearrange, linking the catalyst and the 

monomer to form a cyclic molecule that will grow into a macrocycle upon addition of 

monomer. During the final step, the macrocyclic ruthenium complex undergoes an 

intramolecular cross-metathesis to regenerate the ruthenium catalyst and yield the 

cyclic polybutadiene. This work established the first route to extremely high molecular 

weight cyclic polybutadiene, over 100 kDa, although with a relatively high polydispersity 

(around 2).  
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Figure 6. Ring expansion metathesis using a Ru-based catalyst for the synthesis of high 

molecular weight cyclic polyolefin 

 

Later, the same authors extended this approach to the REMP of 1,5-cyclooctadiene 

(COD).27 Linear byproducts were formed by polymerization of 4-vinylcyclohexane (4VC), 

an impurity contained in COD. The formation of those linear impurities was avoided 

when using 1,5,9- trans-cis-trans-cyclododecatriene (CDT) as monomer, since it is free 

of 4VC and form the same cyclic polybutadiene upon REMP.27  

Veige and coworkers,28 developed a tungsten catalyst for the REMP of norbornenes. 

The reaction of a trianionic pincer-supported tungsten alkyliyne complex with CO2 

generated an active tungsten-oxo alkylidene catalyst. The obtained cyclic polymers 

showed great control over their structures, cis-selectivity and syndiotacticity over 98%, 

and molecular weights up to 578 kDa with relatively low polydispersity (around 1.2). 
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The insertion of the monomer unit into the highly hindered metal complex is believed 

to provide cis selectivity, whereas the change of configuration of the metal center after 

each monomer unit addition gives a syndiotactic cyclic polymer. Shortly after, the same 

authors demonstrated that CO2 was not mandatory to obtain a tungsten catalyst 

capable to initiate the REMP, while producing polymers with high cis selectivity and 

syndiotacticity.29 This method presents the advantages of the controlled polymerization 

of norbornenes by ring opening metathesis (ROMP) and of the synthesis of ring 

polymers. Optimization of the synthesis of the tungsten catalyst allowed the 

polymerization of alkynes via the same method.30 A variety of poly(acetylene)s could 

be obtained with molecular weights up to 350 kDa. 

 

2.3. Radical ring-expansion polymerization 

 

Radical polymerization involves a reversible hemolytic bound cleavage, propagation 

and radical recombination. For that reason, it is a suitable strategy to prepare cyclic 

polymers by ring-expansion strategy.  In 2003, Pan et al.31 used a modified reversible 

addition-fragmentation chain-transfer (RAFT) technique where 60Co γ–rays where used 

to trigger the polymerization of methyl acrylate. A cyclic dithioester initiated the 

polymerization at a low temperature (- 30 °C) to avoid the intermolecular 

recombination of radicals (Figure 7). Thanks to the great versatility of controlled radical 

polymerization, a large variety of monomers can be polymerized through this method 

including copolymers. Although a significant amount of linear impurities was detected 
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by MALDI-ToF mass spectrometry, this study represents an early example of ring-

expansion by radical polymerization.  

 

 

Figure 7. Radical polymerization triggered by 60Co γ–rays for the synthesis of cyclic 

poly(methyl acrylate) 

 

Nitroxide-mediated controlled radical polymerization was found to be viable for the 

synthesis of cyclic polystyrene via ring-expansion.32 A cyclic initiator prepared by a 

multistep synthesis initiated the polymerization and yielded cyclic polymers with 

molecular weight up to 65 kDa. Linear impurities were detected by SEC and MALDI-ToF 

MS and were attributed to the intermolecular recombination of radicals. In 2016, the 

same authors reported a modified version of the initiator which also allowed the 

preparation of cyclic polymers.33 

Advincula et al. used xanthate-based cyclic chain transfer agent for the synthesis of 

cyclic poly(vinylcarbazole).34 Molecular weights up to 33 kDa were obtained and the 

living character of the polymerization was demonstrated by the linear increase of 

molecular weight as a function of time. In this example, the presence of linear 

impurities caused by the intermolecular recombination of radicals was also detected.  
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Because the two chain ends are neither ionically nor covalently bound during 

polymerization, the radical mediated ring-expansion technique is subject to the 

entropic constrains of ring closure. For that reason, linear impurities are more likely to 

be obtained when synthetizing cyclic polymers by this method.  

 

2.4. Zwitterionic ring opening polymerization (ZROP) 

 

For a large majority of polymerization reactions, the counterion is ionically bounded to 

the chain end. In the case where each counterion is covalently bounded to the chain, 

the polymerization is considered macrozwitterionic.35 This polymerization route offers 

new possibilities for the synthesis of cyclic polymers. As early as 1960, Szwarc suggested 

that the charge cancellation of the zwitterionic chain may lead to cyclic structures.36 

 

2.4.1. Nucleophilic zwitterionic ring opening polymerization  

 

The reaction between a neutral nucleophile and a neutral cyclic monomer, leads to the 

formation of a zwitterionic species. After propagation and monomer depletion, the 

cyclic product is obtained following the charge cancelation between the two chain ends. 

In 2007 Waymouth described the synthesis of cyclic poly(lactide) using N-Heterocyclic 

carbene (NHC) organocatalysts as nucleophiles.37 Attack to the carbonyl of the lactide 
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monomer by the N-heterocyclic carbene formed the zwitterionic active chain (Figure 

8). After the release of the catalyst, the cyclization of macrozwitterions resulted in cyclic 

structures. MALDI-ToF MS, SEC and NMR confirmed the cyclic topology of the obtained 

material.  

 

 

Figure 8. Zwitterionic ring-opening polymerization of lactide to yield cyclic chains 

 

Although the ZROP initiated by N-heterocyclic carbenes is fast, high molecular weights 

are difficult to obtain. Other nucleophiles such as amidine38 and pyridine39 were used 

for the synthesis of cyclic poly(lactide) and poly(thioglycolide) respectively. However, 

linear chains were formed as well during polymerization. 

For a successful cyclization of high molecular weight polymers during ZROP, 

propagation must by faster than the cyclization process by charge cancellation. This is 
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favored when the electrophile formed after the first attack of the nucleophile initiator 

contains a poor living group.40 On the other hand, if the zwitterionic intermediate is not 

capable of cyclization, other termination steps will lead to linear polymer chains. 

Kricheldorf demonstrated this case for the polymerization of pivalactone initiated by 

pyridine, where cyclic chains were not obtained.41 

The combination of different monomers and initiators were then investigated to 

increase the purity of final cyclic products. 1,8- diazabicycloundec-7-ene (DBU) was 

successfully used for the polymerization of N-butyl N-carboxyanhydride leading to cyclic 

poly(N-butylglycine).42 The cyclic polymer exhibited controlled molecular weight and 

narrow polydispersity. Additionally, the growing chain was successfully extended with 

N-propargyl N-carboxyanhydride, a monomer that contains an alkyne group allowing 

post polymerization reactions. The authors reported that the polymerization of N-butyl 

N-carboxyanhydrides proceeded via ZROP reaction mechanism although they noted 

higher rates of reaction as well as improved moisture/air stability compared to 

previously reported NHCs initiated ZROP. Later, Waymouth et al.43 found out that the 

use of bicyclic isothioureas, which are less nucleophilic than DBU, helped minimizing 

the formation of linear chains due to a proton abstraction of the DBU moiety by the 

chain end as depicted in Figure 9. Following this strategy, cyclic polymers of  

Mn = 66 kDa were synthesized.  
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Figure 9. DBU as initiator for the ZROP of lactide leading to a mixture of linear and cyclic 

chains 

 

Highly active N-heterocyclic carbine has been used to prepare cyclic poly(alkylene 

phosphates)44 and cyclic poly(carbonate)s45 with molecular weights as high as 200 kDa 

and 96 kDa respectively. 

 

2.4.2. Electrophilic zwitterionic ring opening polymerization  

 

As opposed to the nucleophilic ZROP, the electrophilic ZROP (EZROP) involves an 

electrophile which will activate a cyclic constrained monomer towards ring-opening. 

This process generates a zwitterionic species capable of growing and undergoing 

cyclization. In 2014, the first successful EZROP allowed the preparation of cyclic 



Appendix 1   

190 

 

poly(glycidyl phenyl ether)46 under anhydrous conditions. The catalyst B(C6F5)3 

activated the epoxide monomer initiating the polymerization.  The cyclic topology was 

maintained throughout the whole process via ionic bound of the two chain ends (Figure 

10). It is worth to mention that the presence of adventitious water led to the formation 

of linear chains. When the polymerization was performed in THF or 1,4-dioxane, a 

copolymer of the solvent and the monomer was obtained. However, homopolymers of 

the solvent molecules could not be synthesized by this method. The following year, 

same authors, Barroso-Bujans et al., reported the synthesis of cyclic copolymers of THF 

and glycidyl phenyl ether.47 Molecular weights ranging from 31 kDa to 330 kDa were 

achieved. However, MALDI-ToF MS revealed the presence of a high percentage of linear 

chains for higher molecular weight samples. In that case the very long polymer chains 

were less likely to undergo cyclization. 

 

Figure 10. EZROP of glycidyl phenyl ether catalyzed by B(C6F5)3 
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In 2013, Sawamoto et al.48 combined ring-expansion cationic polymerization initiated 

by a hemiacetal cyclic initiator and the use of a Lewis acid, SnBr4. After activation of the 

initiator a zwitterionic species was formed. This strategy was used for the synthesis of 

cyclic poly(isobutyl vinyl ether) (Figure 11). The living character of the polymerization 

was demonstrated by a kinetic study and sequential monomer addition. Cyclic polymers 

with broad polydispersity were obtained. Upon hydrolysis, monodispersed linear chains 

were recovered. This result suggested the fusion of rings during polymerization. Later, 

it was demonstrated that the fusion of cyclic chains can be suppressed by tuning the 

initiator concentration.49 Further investigation by the same authors proved that pure 

monodisperse cyclic polymers can be prepared by diluting the reaction system.50 

 

Figure 11. “Ring fusion” during ring expansion polymerization of poly(isobutyl vinyl 

ether) using SnBr4 as Lewis acid catalyst 
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A similar strategy was used by Moore et al. for the synthesis of cyclic 

poly(phthalaldehyde).51 Using BF3OEt3 and tin chloride catalyst, cyclic polymers of  

109 kDa were obtained with a high polydispersity (> 2.0). Interestingly, it was 

demonstrated that the cyclic chains could be reopened and extended to higher 

molecular weight or even depolymerized to lower molecular weights. 

 

2.4.3. Lewis pair-mediated zwitterionic ring opening polymerization 

 

The use of organic Lewis acid/base pairs for the polymerization of lactones and 

methacrylates is already well documented in the literature.52,53 In 2013, Bourissou et al. 

used this synthetic route for the preparation of cyclic poly(lactide), cyclic poly(ɛ-

caprolactone) and their copolymers.54 The combination of Zn(C6F5)2 with an organic 

base (an amine or a phosphine) catalyzed the ring-opening of the cyclic monomer. 

Different rate of reaction were observed depending on the used base. The cyclic 

topology was proved by MALDI-ToF MS and NMR analysis, as no linear chains were 

detected. Concerning the copolymers, NMR analysis revealed the absence of 

heterodyads. This proved a sequential polymerization of the two monomers, with no 

monomer alternation and therefore the formation of a di-block copolymer. This work 

demonstrated that a chain extension rather than a reinitiation is possible when using 

Lewis acid/base pairs. 

Following the work of Bourissou, Li and coworkers55 extended this strategy to other 

Lewis bases such as 7-methyl-1,5,7-triazabicyclo[4.4.0]decane-5-ene (MTBD),  
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1,3-bis(2,4,6-trimethylphenyl)imidazol-2-ylidene (MesNHC) and DBU. The more sterically 

hindered bases DBU and MTBD showed a higher polymerization activity. The authors 

proposed a mechanism of reaction where the Lewis pair dissociates to activate the 

monomer towards ring-opening and to form a zwitterionic species that will maintain 

the cyclic topology during polymerization (Figure 12).  

 

 

Figure 12. Proposed mechanism for the ring-expansion of lactide catalyzed by Lewis 

pair 
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3. Ring closure approach 

 

3.1. Bimolecular homodifunctional coupling 

 

In 1980, Höcker et al.56 and Rempp et al.57 reported simultaneously the first cyclic 

polystyrene with α,α’-dihalo-p-xylene as bifunctional coupling agent (Figure 13). To 

generate a dianionic “living” chain, the anionic polymerization of styrene with sodium 

naphthalene was performed under argon atmosphere. A solution of the obtained 

polymer was then added simultaneously with an equimolar solution of the coupling 

agent into pure tetrahydropyran, where cyclization took place under high dilution. 

Cyclic polymers from 3 to 25 kDa with polydispersities below 1.2 were obtained, but 

with rather low yields of cyclization (< 50%). After the addition of one equivalent of 

coupling agent, the presence of styryl anion was still detected by means of colorimetry. 

The presence of unreacted anions is a sign of acyclic living chains.  By adding an excess 

of coupling agent, linear chains with much greater molecular weight than the cyclic 

product were formed and could be efficiently separated by fractionation. A few years 

later, a similar method was used to synthesize cyclic polystyrene of 450 kDa by replacing 

the α,α’-dihalo-p-xylene by dimethyldichlorosilane.58 However, the yields of cyclization 

remained low. 
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Figure 13. Synthesis of the first cyclic polystyrene via bimolecular ring closure using 

α,α’-dihalo-p-xylene as bifunctional coupling agent 

 

Following a similar procedure, many groups have synthesized a diversity of cyclic 

homopolymers such as: poly(butadiene),59 poly(2-vinylpyridine)60 and poly(isoprene).61 

In order to increase the yields of cyclization, Ishizu et al. proposed an interesting variant 

of the bimolecular ring closure technique.62 In this study, intermolecular 

oligomerization was limited by the use of a biphasic system. Linear dibromobutyl 

polystyrene was first prepared by direct coupling of the polystyryl dianion with a large 

excess of 1,4-dibromobutane (Figure 14). Then, the cyclization of dibromobutyl 

polystyrene with hexamethylene diamine as coupling agent was performed via 

interfacial polymerization. This term refers to a step-reaction polymerization carried 

out at the interface between two immiscible liquid phases. The organic phase, a mixture 

of toluene and dimethyl sulfoxide (DMSO) contained the difunctional polystyrene while 

the coupling agent was dissolved in an aqueous solution of sodium hydroxide. The two 

liquid phases were stirred at 80 °C. The polymer was obtained after concentrating the 

organic phase. The authors demonstrated high yields of cyclization (> 90 %). Moreover, 
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with this strategy the concentration of linear precursor was as high as 10-3 M, while 

other coupling strategies typically require much lower concentration (around 10-6 M) 

to avoid intermolecular coupling. The same authors extended this strategy to the 

synthesis of polystyrene-b-poly(isoprene) copolymer.63  

 

 

Figure 14. Cyclization of polystyrene using interfacial polymerization   

 

The bimolecular approach was used for the preparation of cyclic block copolymers such 

as cyclic polystyrene-b-poly(2-vinylpyridine),64 cyclic polystyrene-b-poly(ethylene 

oxide),65 cyclic poly(propylene oxide)- b- poly(ethylene oxide),66 cyclic poly(butadiene)-

b-polystyrene67 and cyclic poly(dimethylsiloxane)-b-polystyrene 68,69  

 

Tezuka et al.70 proposed a strategy minimizing the intermolecular oligomerization and 

giving access to other complex structures besides monocyclic architectures. A 

bifunctional poly(tetrahydrofuran) [poly(THF)] was synthesized by cationic ring opening 

polymerization of THF with trifluoromethanesulfonic anhydride as initiator  
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(Figure 15).71 The termination reaction with N-phenylpyrrolidine produced the 

bifunctional poly(THF) with N-phenylpyrrolidinium salt end groups. An ion exchange 

reaction was performed to replace the trifluoromethanesulfonate counteranion by a 

dicarboxylate previously synthesized. High dilution conditions favored the formation of 

electrostatic pre-assembly with the smallest number of components and having a 

balanced charge as represented in Figure 15. The formation of this particular 

electrostatic pre-assembly composed of one poly(THF) chain and one dicarboxylate 

counteranion allowed the preparation of highly pure cyclic product. Upon heating the 

dilute solution, the attack of the carboxylate to the pyrrolidium end-group was 

triggered, forming the neutral diester cyclic product. The authors have then extended 

this method to other cyclic polymers such as cyclic polystyrene.72 The electrostatic self-

assembly helped to minimize the formation of linear impurities, however only polymers 

with molecular weights below 5 kDa were achievable with this strategy. 

 

Figure 15. Cyclization via electrostatic self-assembly covalent fixation (ESA-CF) 
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Figure 16 shows how the use of higher functionality for the poly(THF) with  

N-phenylpyrrolidinium end-groups (represented in red) and the carboxylate species 

with the corresponding functional groups (represented in blue) allowed the synthesis 

of more complex polymer structures.70 

 

 

Figure 16. Different architectures accessible via electrostatic self-assembly covalent 

fixation (ESA-CF) 

 

The use of the extremely fast thiol-Michael coupling reaction for the preparation of 

cyclic poly(lactide) was first reported by Stanford et al.73 Under high dilution, high yield 

of cyclization (>95 %) was obtained. An advantage of using the thiol-ene “click” reaction 

is the absence of copper catalyst and the mild conditions that are compatible with 

sensitive polymer backbones containing ester functions for example. 

More recently a self-accelerating double strain-promoted azide–alkyne cycloaddition 

(DSPAAC) reaction was used for the preparation of cyclic polystyrene (Figure 17).74 An 
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α,ω dibromo polystyrene was prepared by atom transfer radical polymerization (ATRP). 

The two terminal bromides were modified into azide upon reaction with sodium azide. 

Cyclic polystyrene was then synthesized via DSPAAC reaction using sym-dibenzo-1,5-

cyclooctadiene-3,7-diyne (DBA) as coupling agent. The intermolecular coupling 

between one end of the polymer chain and DBA activated the second alkyne group, 

which reacted much faster than the original alkyne. Thanks to this process, exact 

stoichiometry between the polymer chain and the coupling agent was no longer 

necessary. Therefore, an excess of DBA can be introduced to accelerate the first 

intermolecular reaction and to increase the efficiency of the cyclization reaction. Using 

the same strategy, multicyclic structures were obtained by using linear precursors with 

higher functionality.  

 

 

Figure 17. Cyclization of polystyrene via double-strain-promoted azide−alkyne click 

reaction 

 

Later, this strategy was extended to the preparation of cyclic poly(L-lactide)75 as well as 

several vinyl monomers.76–78 Finally in 2019, a combination of ring-opening metathesis 

polymerization (ROMP) and DSPAAC reaction was developed for the synthesis of well-
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defined cyclic poly(norbornenes)79 with molecular weight around 8000 Da and low 

polydispesity index < 1.1. 

 

3.2. Homodifunctional unimolecular ring closure 

 

An early example of homocoupling cyclization was demonstrated by Tezuka et al.80 This 

study involved the metathesis condensation of allyl end group of a bifunctional 

poly(THF). The reaction was performed under high dilution using Grubb’s Ru-based 

catalyst. Cyclization was demonstrated via a clear shift in retention time in SEC 

measurements. The quantitative conversion of the allyl groups was monitored by 1H 

NMR and MALDI-ToF MS. Concentration below 0.2 g/L was required to minimize the 

formation of linear impurities. This method was then extended to the preparation of 

cyclic poly(methyl acrylate) (PMA).81 The linear PMA precursor was first prepared via 

ATRP using dimethyl-2,6-dibromoheptanedioate as initiator to yield a telechelic 

polymer ended in allyl groups. Then, the cyclization was realized via ring closure 

metathesis (RCM) using the Grubb’s Ru-based catalyst, as in Tezuka work80 (Figure 18). 

Later, the RCM was adapted to the synthesis of cyclic polystyrene,82 poly(ɛ-

caprolactone)83 and poly(phosphoesters).84 
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Figure 18. Synthesis of cyclic poly(methyl acrylate) combining ATRP and RCM 

 

The formation of a carbodiimide bound through the coupling of isocyanate-terminated 

poly(propylene oxide) allowed the formation of cyclic polymers of low molecular 

weights, below 2000 Da (Figure 19).85 

 

Figure 19. Isocyanate coupling for the synthesis of cyclic poly(propylene oxide) 

 

In 2010 the coupling of radicals was also used for the preparation of cyclic polystyrene.86 

Later, a radical trap-assisted atom transfer radical coupling (RTA-ATRC) was developed 

to increase the yield of polymerization.87 A nitroso radical trap was included at one end 

on the chain, which increased the reaction rate of the intramolecular coupling. 

Interestingly, the linear precursor could be recovered by heating the obtained cyclic 

product.  
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3.3. Heterodifunctional unimolecular ring closure 

 

The first example of successful cyclization via this approach was performed by Deffieux 

et al.88 Linear poly(2-chloroethyl vinyl ether) (PCEVE) was synthesized using 1-vinyl-4-

(((vinyloxy)methoxy)methyl)benzene in the presence of hydrogen iodide to form a well-

defined linear precursor containing an iodo group at one end of the chain and a styrenyl 

group on the other end (Figure 20). Then, the iodo end group was activated towards 

terminal styrenyl group with SnCl4 under high dilution to produce cyclic PCEVE. Finally, 

the reaction was quenched with sodium methoxide to yield a stable macrocyclic 

polymer. Later, similar approach was used for the synthesis of cyclic polystyrene89 with 

molecular weights as high as 12 kDa and high purity > 95 %. This work afforded cyclic 

polymers without needing further purification.  

 

 

Figure 20. Synthesis cyclic PCEVE via heterocoupling of a difunctional linear precursor 
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In 2001, Schappacher and Deffieux90 synthesized α-acetal,ω-bis(hydroxymethyl) 

heterodifunctional linear polystyrene by living anionic polymerization of styrene using 

3-lithiopropionaldehyde diethyl acetal as initiator. The coupling of the two 

complementary chain ends gave the desired cyclic product forming a cyclic acetal 

linkage. 

The coupling of amine and carboxylic acid was reported by Kubo et al.91 to prepare cyclic 

polystyrene. The polymerization of the linear precursor was initiated by 3-

lithiopropionaldehyde diethyl acetal to introduce the acetal functionality, further 

converted into carboxylic acid. The amine functionality was introduced using 2,2,5,5-

tetramethyl-1-(3-bromopropyl)-1-aza-2,5-disilacyclopentane. The coupling of the two 

end groups was done under high dilution in the presence of 1-methyl-2-chloropyridium 

iodide as catalyst (Figure 21). The formation of the amide linkage was confirmed by 1H 

NMR.  

 

 

Figure 21. Amide linkage for the formation of cyclic polystyrene 
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The synthesis of linear polystyrene precursor by NMP for the preparation of cyclic 

polymer was reported by Lepoittevin et al.92 The controlled polymerization was 

mediated by 4-hydroxy-2,2,6,6-tetramethylpiperidinyloxyl (4-hydroxy-TEMPO) (Figure 

22). The obtained α-hydroxy-ω-carboxyl polystyrene was added dropwise into a 

solution containing 1-methyl-2-chloropyridium iodide to yield cyclic chains of very high 

purity.  

 

 

Figure 22. Linear polystyrene synthesized via NMP for the preparation of cyclic chains 

 

Other polymerization techniques such as NMP93 of styrene and ROP of lactones83,94–96 

have been reported in combination with copper(I)-catalyzed alkyne-azide cycloaddition 

(CuAAC) “click” chemistry to prepare cyclic polymers. Cyclic poly(N-

isopropylacrylamide)97 and cyclic polystyrene98 were synthesized combining RAFT 

polymerization and CuAAC. The azide end group was directly incorporated by using an 

azide containing chain transfer agent. The complementary alkyne group was introduced 

at the other chain end upon end group modification. A similar strategy was employed 

by Monteiro et al.99 for the synthesis of cyclic and multicyclic polystyrene (Figure 23). 
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Multicyclic structures were obtained from propargylated moieties linking a previously 

synthesized cyclic chain.  

 

 

Figure 23. Combination of RAFT polymerization and CuAAC “click” chemistry to 

generate cyclic and multicyclic polystyrene. 1) AIBN, bulk polymerization at 65 °C for 

15.5 h, 2) glycidyl methacrylate, hexylamine, TEA and TCEP in DMF at 25 °C, 3) NaN3-

NH4Cl in DMF at 50 °C, 4) CuBr, PMDETA in toluene at 25°C, feed rate = 0.1 mL/min over 

4.17 h and then kept for 3 h, 5) 2-bromo-propionyl bromide, TEA in THF at 0 °C-RT for 

48 h, 6) NaN3 in DMF at 25 °C for 16 h 7) CuBr in DMF, at 25 °C for 1 h, and 8) CuBr-

triazole in toluene at 25 °C for 12 h. 
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Furthermore, the CuAAC “click” chemistry was also compatible for the preparation of 

cyclic block copolymers such as cyclic poly(methyl methacrylate)-b-polystyrene,100 

cyclic poly(2-(2-methoxyethoxy)ethyl methacrylate)-b-poly((ethylene glycol) methyl 

ether methacrylate),101 cyclic polystyrene-b-poly(isoprene),102 and cyclic poly(ethylene 

gylcol)-b-poly(caprolactone).103 

The Diels-Alder reaction discovered in 1928104 is known to be one of the simplest 

reactions forming carbon-carbon bonds.105 Mizawa et al.106 prepared cyclic poly(methyl 

methacrylate) via Diels-Alder reaction. A complex synthesis of the linear precursor 

made the overall cyclization process difficult. Years later, a more efficient procedure 

combining living radical polymerization and Diels-Alder coupling was reported (Figure 

24).107 The linear α-anthracene-ω-bromide polystyrene was prepared by ATRP. An end 

group modification reaction was performed to introduce an azide function at the ω-end 

of the chain. A maleimide function was then clicked to the polymer using the CuAAC 

reaction. Finally, Diels-Alder coupling between the anthracene and the maleimide end-

groups was performed to generate the cyclic polymer. 
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Figure 24. Diels-Alder click reaction for the synthesis of cyclic polystyrene 

 

The cyclization was confirmed by means of SEC and 1H NMR. However, the low 

reactivity of the diene resulted in a long reaction time (48 h) and low amounts of cyclic 

polymer.  

Glassner et al.108 palliated to this problem by preparing α-maleimide-ω-

cyclopentadienyl functionalized precursors of poly(methyl methacrylate) and poly(tert-

butyl acrylate) via ATRP using a protected maleimide containing ATRP initiator. After 

modification of the bromide end-group into cyclopentadiene, intramolecular Diels-

Alder coupling yielded the corresponding pure monocyclic polymers. The cyclic 

structure was clearly identified by SEC, mass spectrometry and NMR.  

One of the main advantages of Diels-Alder coupling over the CuAAC “click” reaction is 

its catalyst-free aspect. Indeed, the Diels-Alder reaction can be photo-induced.109 In 
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2014, Josse et al.110 used this feature for the synthesis of cyclic polyesters (Figure 25). 

The linear precursors were prepared by ROP of lactone monomers using 2-((11-

hydroxyundecyl)oxy)-6-methyl-benzaldehyde to yield a linear chain bearing a photo-

sensitive group at the α-chain end. The hydroxyl group at the ω-chain end was 

subsequently converted into acrylate, which upon irradiation with UV-light in diluted  

solution (25 mg/L) gave the corresponding cyclic polymer.  

 

 

Figure 25. Photo-induced Diels-Alder coupling for the synthesis of cyclic poly(ɛ-

caprolactone) 

 

Cyclic polymers synthesized through this route were recovered in high yield. Indeed, 

since only the polymer is present in solution, simple solvent evaporation was enough 

and no post reaction purification steps were necessary. Moreover, the photo-initiated 

cycloaddition was irreversible and the product was not susceptible to undergo retro-

Diels-Alder reactions.111,112 
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Since then, this route toward highly pure cyclic polymer has been intensively 

investigated. The mild reaction conditions make this strategy adaptable to a wide range 

of polymer backbones. In 2014, RAFT was combined with the light-induced Diels-Alder 

reaction to generate pure monocyclic chains.113 The photosensitive moiety was 

introduced by a dithioester RAFT agent. A large range of polymer backbones was 

obtained including vinylic, acrylic and styrenic. The rapid kinetics of this ring closure 

technique allowed the preparation of pure cyclic polymers from a 5 g/mL solution of 

linear precursor. Interestingly, this method could also be used as a one-pot technique 

to obtain linear chains in a dilute medium before irradiation to form the corresponding 

cyclic product. In that way intermediate purification steps were avoided. Finally, a 

significant amount of material could be prepared when successive additions of the 

linear polymer were performed after a period of irradiation. A year later, Coulembier et 

al.114 extended the use of this chemistry under sunlight irradiation. 

The base-catalyzed thiol-Michael reaction already used to prepare cyclic polymers via 

the bimolecular approach73 was also used by Monteiro and coworkers in the 

unimolecular approach.115 In this study, the combination of RAFT with thiol-ene or thio-

bromo reactions was used for the synthesis of different cyclic polymers. A previously 

synthesized heterofunctional trithiocarbonate RAFT agent mediated the 

polymerization of styrene, tert-butyl acrylate, N-isopropylacrylamide and N,N-

dimethylacrylamide (Figure 26). An activated acrylate or bromide function was 

introduced at one chain end via post polymerization modification. The cyclization of the 

linear chains was performed in a one-pot reaction, via hexylamine-catalyzed cascade 

aminolysis and thiol-ene Michael or thio-bromo addition sequence. As a result, cyclic 

polymers of around 4 kDa in high yields (>80 %) were generated.  
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Figure 26. RAFT polymerization combined with tiol-Michael reaction for the synthesis 

of cyclic polymers 

 

A similar strategy has been employed for the preparation of cyclic poly(N-

isopropylacrylamide).116 An α-anthracene-ω-thiol linear precursor was synthesized by 

RAFT polymerization followed by an aminolysis sequence. Finally, the intramolecular 

coupling of the two end groups was performed under high dilution.  

In this context of finding alternatives to the CuAAC “click” chemistry, the group of Zhang 

explored the use of thiol-bromomaleimide substitution click reaction.117,118 Using this 

method, cyclic water soluble poly(N-isopropylacrylamide) and poly(N,N-

dimethylacrylamide) were prepared. The linear precursors were synthesized by RAFT 

polymerization (Figure 27). After reduction of the thiocarbonylthio group, the efficient 

thiol-bromomaleimide substitution click reaction afforded pure cyclic polymers. 
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Figure 27. RAFT polymerization combined with thiol-bromomaleimide substitution click 

reaction for the synthesis of cyclic poly(N-isopropylacrylamide) 

 

In the effort to eliminate the use of copper-based catalyst in click reactions for biological 

applications, while retaining the high efficiency of the CuAAC reaction, the strain 

promoted azide-alkyne cycloaddition (SPAAC) reaction was developed. It was 

demonstrated that this new strategy shares the same efficiency as CuAAC.119,120 This 

synthetic route was extended to the preparation of cyclic polymers.121 Well defined 

linear polystyrene having a bromo at one chain end and a cyclopropenone-masked 

dibenzocyclooctyne at the other was prepared by ATRP (Figure 28).  The bromo group 

was modified into azide following the reaction scheme. Then, under UV-irradiation and 

high dilution the cyclopropenone-masked dibenzocyclooctyne was deprotected 

allowing the strained alkyne to react with the complementary azide and to yield the 

corresponding cyclic polymer. Interestingly, a batch procedure where three successive 

additions of the linear precursor (7 mg) into 30 mL of solvent followed by UV-irradiation 

for 5 h gave pure cyclic polymer in high amounts. 
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Figure 28. UV-promoted SPAAC reaction for the synthesis of cyclic polystyrene 

 

More recently, RAFT polymerization was combined for the first time with sulfur(VI)-

fluoride exchange (SuFEx) click reaction122 to synthesize cyclic poly(N-

isopropylacrylamide) and cyclic poly(N-vinylpyrrolidone).123 A new RAFT agent 

containing both ether and sulfonyl fluoride moieties was developed in order to 

incorporate the two complementary end groups at both ends of the chain (Figure 29). 

The SuFEx click reaction presents the advantages of being inert to UV light, insensitivity 

to oxygen and water. Its fast reaction rates at room temperature, high yields, high 

tolerance toward various functional groups, and easy manipulation allow the 

preparation of a large library of cyclic polymers. Moreover, the use of a metal-catalyst 

is not required. The linear precursor was added slowly into a catalyst solution to 

maintain high dilution. Cyclic polymers of 5 kDa with a polydispersity <1.2 were 

obtained.  
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Figure 29. RAFT polymerization and sulfur(VI)-fluoride exchange click reaction for the 

synthesis of cyclic poly(N-vinylpyrrolidone)  
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phenyl ether) initiated by water / t-BuP4 
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During MALDI-ToF MS characterization of poly(glycidyl phenyl ether) (PGPE) initiated 

with water / phosphazene base, the presence of an unknown mass population was 

observed. Initially, the peak mass could not be assigned to any structure. One 

hypothesis was that polymer chains underwent elimination or fractionation and formed 

stable ionized species.1 To clarify this, a series of MALDI-ToF MS data were recorded by 

changing the ionizing agent. 

A water-initiated PGPE (Table 1, Entry 1, Chapter IV) was mixed with a cationizing agent, 

sodium, potassium or lithium, for MALDI-ToF MS measurements (Figure 1a to 1c 

respectively). Trans-2-[3-(4-tert-Butylphenyl)-2-methyl-2-propenylidene]malononitrile 

(DCTB) was used as matrix, and a laser power of 50 % was used to ionize the samples. 

In the three measurements, two mass populations were observed. For the first 

population, the mass peaks depended on the mass of the cation used during sample 

preparation, as expected. This set of peaks was assigned to water-initiated polymer 

(PGPE-OH) ionized with the corresponding cation. However, the second population did 

not exhibit any mass shifts when using different cations. This result proves the presence 

of an additional ion source independent of the cation used for measurements. 

Interestingly, when the polymer sample was mixed with t-BuP4 before measurements, 

only a mass distribution attributed to the second population was observed (named  

P4-PGPE in Figure 1d). Therefore, the unassigned peak distribution can be assigned to 

that produced upon laser ionization of polymer chains in the presence of residual 

phosphazene base. 
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Figure 1. MALDI-ToF MS of water-initiated PGPE in the presence of a) sodium, b) 

potassium, c) lithium and d) t-BuP4 

 

In general, it is recommended to use low laser power during MALDI-ToF MS 

measurements to avoid ionization of potential impurities present at low percentage, or 

to avoid fractionation of polymer chains. A water-initiated PGPE sample was measured 

using different laser power with sodium as ionizing agent (Figure 2). When reducing the 

laser power during MALDI-ToF MS measurement, the intensity of the P4-PGPE signal 

was observed to decrease drastically.  
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Figure 2. MALDI-ToF MS of water-initiated PGPE in the presence of sodium using a laser 

power of a) 80 % b) 50 % and c) 30 % 

Therefore, it can be concluded that the P4-PGPE species is not representative of the 

polymer sample and it is observed due to residual phosphazene base. Moreover, it is 

overrepresented when using high laser power.  

The use of DCTB as a matrix, sodium as ionizing agent and a laser power of 30 % gave 

the best results for the MALDI-ToF MS analysis of PGPE samples prepared in the 

presence of phosphazene base. 
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List of acronyms and abbreviations 

 

ε* complex permittivity  

[η] intrinsic viscosity  

τ relaxation time 

ω radial frequency 

ALK alkyne group 

ATRP atom transfer radical polymerization 

BDS broadband dielectric spectroscopy  

Br bromide 

c-1a-polymer cyclic 1-arm polymer 

c-2a-polymer cyclic 2-arm polymer 

Cu copper 

CuAAC  copper(I)-catalyzed alkyne-azide cycloaddition 

Ð polydispersity index 
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DMSO dimethyl sulfoxide  

DSC differential scanning calorimetry 

DSPAAC double strain-promoted azide–alkyne cycloaddition 

EZROP electrophilic zwitterionic ring opening polymerization 
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FTIR  Fourier-transform infrared spectroscopy 

GPC gel permeation chromatography  

GPE glycidyl phenyl ether 

HN Havriliak-Negami  

l-1a-polymer linear 1-arm polymer 

l-2a-polymer linear 2-arm polymer 

LS light scattering 

MALDI-ToF MS matrix assisted laser desorption ionization - time of flight mass spectrometry 

MALS multi-angle light scattering  

Mn  number-average molar mass  

Mw weight-average molar mass  

N3 azide group 

Na sodium  

NaOH sodium hydroxide 

NM normal mode 

NMP nitroxide-mediated polymerization 

NMR  nuclear magnetic resonance 

OH hydroxy group  

PB phosphazene base 

PGPE poly(glycidyl phenyl ether) 

POx propylene oxide 

RAFT reversible addition−fragmentation chain-transfer  

RCM ring closure metathesis  

ROMP ring-opening metathesis polymerization 
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RTA-ATRC radical trap-assisted atom transfer radical coupling  

SEC size exclusion chromatography 

t-BuP4 1-tert-Butyl-4,4,4-tris(dimethylamino)-2,2-bis[tris(dimethylamino)- 

phosphoranylidenamino]-2λ5,4λ5-catenadi(phosphazene)  

Tg glass transition temperature 

THF tetrahydrofuran 

VFT Vogel-Tamman-Fulcher 

WLF Williams-Lander-Ferry  

ZROP zwitterionic ring opening polymerization 
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