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RESUMEN

La interacciéon entre el campo de vacio electromagnético y un emisor cudntico
de dos niveles constituye uno de los ejemplos canénicos de interaccién cudntica
entre luz y materia. El andlisis de esta interacciéon permite comprender conceptos
fundamentales en éptica cudntica como, por ejemplo, la emisiéon espontanea de
fotones por parte del emisor. Asimismo, este andlisis revela que un emisor cudntico
de dos niveles no puede emitir més de un fotén simultdneamente, lo que puede
permitir manipular de forma precisa el estado cuantico de la luz fotén a fotén.
Este hecho hace que los emisores cuanticos sean candidatos muy adecuados para el
desarrollo de fuentes de luz cuantica, capaces de generar luz en estados cuanticos
especificos y con correlaciones cuanticas. En particular, las fuentes de fotones
individuales presentan aplicaciones relevantes en campos como la comunicacion
y la computacién cuanticas, razén por la que los emisores cuanticos aislados han
sido objeto de una intensa atenciéon durante las ultimas décadas. Ademas, la
interaccién entre varios de estos emisores posibilita nuevas oportunidades para
la manipulaciéon de estados cudnticos de la luz, ya que esta interacciéon modifica
los niveles de energia, tiempos de vida y acoplamientos a campos externos de los
emisores. Esta fenomenologia hace que la radiaciéon de luz pueda volverse mas
compleja y sorprendente. Si a esto le sumamos los recientes avances experimentales
en el control del acoplamiento entre emisores cuanticos, el desarrollo de un anélisis
tedrico exhaustivo de la radiacion de estos sistemas resulta especialmente oportuno.
Por todo ello, en esta tesis se desarrolla un estudio teérico de la radiacion de luz
por parte de dos emisores cuanticos acoplados, con lo que se pretende conseguir dos
objetivos principales: profundizar en la comprension fundamental de esta radiacion,
y explorar el potencial de estos emisores acoplados como fuente de luz cuantica
para aplicaciones tecnoldgicas.

En el capitulo 1, se realiza una descripcion detallada de la cuantizacién del campo
electromagnético, tanto en ausencia como en presencia de fuentes de radiacién. Para
ello, se adopta un formalismo de segunda cuantizacién y se deriva el Hamiltoniano
estandar que describe la interacciéon entre el campo de vacio electromagnético y
un emisor cudntico de dos niveles. Este formalismo permite introducir los fotones
como excitaciones fundamentales del campo electromagnético, asi como analizar
de forma rigurosa la influencia del vacio cudntico sobre los emisores. Por ejemplo,
en este capitulo se presta especial atencién a la descripcién del fenémeno de la
emisién espontanea de fotones por parte de un emisor. Para ello, se adoptan dos
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métodos alternativos: la aproximacién de Wigner-Weisskopf y la ecuacién maestra
markoviana. Por un lado, la aproximacién de Wigner-Weisskopf permite derivar la
dindmica conjunta del emisor y del campo electromagnético, partiendo de un estado
inicial especifico. Considerando que el emisor se encuentra inicialmente excitado,
se demuestra que la probabilidad de que continte en el estado excitado decae
exponencialmente en el tiempo. Este decaimiento va acompafiado por la excitacién
de los modos del campo electromagnético de vacio con diferentes probabilidades, lo
que corresponde a la emisién espontdnea de un fotén. Por otro lado, la ecuacién
maestra markoviana se basa en eliminar los grados de libertad de un subsistema
que, de esta manera, puede ser tratado como ambiente externo. De esta forma,
considerando al campo electromagnético de vacio como el ambiente del emisor,
se puede obtener una descripcién de la dindmica del emisor directamente en su
espacio de Hilbert, la cual también captura el fenémeno de la emisién espontéanea.
Aunque la ecuacién maestra markoviana no proporciona informacién sobre qué
modos especificos del campo electromagnético se excitan (ya que se han eliminado
de la descripcién), este método simplifica notablemente la resolucién de la dindmica
del emisor, asi como la descripcion de su interacciéon con un laser. Usando esta
ecuacion maestra, se examina cémo el laser puede modificar los niveles de energia
y los autoestados del emisor.

En el capitulo 2, se presenta una introduccién a las funciones de correlacion
del campo eléctrico, que sirven para cuantificar el grado de coherencia 6ptica vy,
por tanto, son esenciales para caracterizar las fuentes de luz cuéntica. Se comienza
describiendo el experimento de interferencia de Young, en el cual la luz emitida por
dos fuentes puede producir un patrén de interferencia de franjas sobre una pantalla.
La aparicién de este patron depende del grado de coherencia de primer orden de la
luz, cuantificado por la funcién de correlacién de primer orden. A continuacion,
se introduce la funcién de correlaciéon de segundo orden, también conocida como
correlacién de intensidad, que juega un papel crucial en esta tesis. Esta funcién
mide la correlacién en la intensidad de la luz que llega a dos detectores, lo que
proporciona informacién adicional sobre la estadistica de la emision de la fuente
de luz. Mas concretamente, la correlacion de intensidad nos permite distinguir
entre tres tipos cualitativamente diferentes de estadistica de emisién: (i) fuente de
luz coherente, en la que la emisiéon de un fotén es completamente independiente
de los procesos de emisiéon previos, como es el caso de la luz emitida por un laser;
(ii) fuente de luz agrupada (bunched light, en inglés), caracterizada por una mayor
probabilidad de emitir dos fotones dentro de un intervalo de tiempo corto en
comparacién con la luz coherente; y (iii) fuente de luz desagrupada (antibunched
light, en inglés), en cuyo caso esta probabilidad es menor que la de la luz coherente,
reflejando un comportamiento puramente cudntico. Cabe destacar el interés de
analizar tanto la correlacién de intensidad de todos los fotones emitidos por la
fuente como la correlacién de intensidad de fotones de frecuencias especificas. Esta
ultima, denominada correlacién de intensidad resuelta en frecuencia, puede medirse
con la ayuda de filtros 6pticos. Para ilustrar las correlaciones de intensidad, se
analiza el caso de un emisor cudntico aislado (es decir, que no interactia con otros
emisores cudnticos). Por un lado, la correlacién de intensidad que tiene en cuenta
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todos los fotones emitidos por el emisor revela que la probabilidad de detectar dos
fotones simultaneamente es nula, confirmando que los emisores cudnticos aislados
se comportan como fuentes ideales de fotones individuales. Por otro lado, la
correlacién de intensidad resuelta en frecuencia proporciona informacién sobre
los mecanismos de emisién del sistema, capturando en su descripcion tanto las
transiciones de un fotén, que suelen ser reveladas también por el espectro de emisiéon
estandar, como otras transiciones menos obvias de dos fotones a través de estados
virtuales intermedios.

En el capitulo 3, se aborda el estudio del sistema de principal interés en
esta tesis: dos emisores cudnticos acoplados. Para ello, primero se presenta una
derivacién detallada del Hamiltoniano que describe la interaccién entre el campo
electromagnético de vacio y dos emisores cudnticos de dos niveles. A continuacion,
se eliminan los grados de libertad electromagnéticos y se obtiene una ecuacién
maestra que gobierna la dindmica de los dos emisores. Ademds de capturar la
emision espontanea de cada emisor, esta ecuacién maestra revela que el campo
electromagnético de vacio puede mediar una interaccién dipolo-dipolo entre emisores
cuanticos que estan separados por distancias pequenas en comparacion con la
longitud de onda caracteristica de la luz. Se desarrolla también una modificacién
efectiva de esta ecuacién maestra para tener en cuenta la influencia de los modos
vibracionales internos de los emisores y de los modos fonénicos del medio que
rodea a los emisores. Estos modos pueden jugar un papel relevante en el caso
de emisores de estado sélido. Bajo esta descripcién efectiva, los emisores siguen
siendo modelados como sistemas de dos niveles, pero el acoplamiento dipolo-dipolo
se renormaliza mediante el factor combinado de Debye-Waller /Franck-Condon.
Dicho factor se corresponde con la fraccién de fotones emitidos desde el estado
electrénico excitado al estado electrénico fundamental (sin asistencia de niveles
vibracionales o fonénicos), transicién que se conoce como Linea de Cero Fonones.
Esta descripcién efectiva resulta muy util para describir la emision de luz en la
Linea de Cero Fonones.

A continuacion, se describe cémo el acoplamiento entre los emisores puede
modificar los autoestados del sistema. En particular, el acoplamiento puede dar
lugar a estados hibridos en los que una excitacién estd deslocalizada entre ambos
emisores. Estos estados hibridos tienen energias y tiempos de vida modificados
respecto al caso de los emisores desacoplados, asi como diferentes fuerzas de
acoplamiento a la iluminacién externa. Por ejemplo, cuando los momentos dipolares
de transicién de los emisores no son ortogonales, uno de los estados deslocalizados
decae mas rapidamente que el otro. El estado con decaimiento més rdapido se conoce
como estado superradiante, mientras que el estado con decaimiento més lento se
conoce como estado subradiante. Se muestra también que el factor combinado de
Debye-Waller/Franck-Condon puede influir de manera significativa en los tiempos
de vida de estos estados, lo que pone de manifiesto la necesidad de considerar este
factor en la descripcién de los emisores de estado sélido acoplados. La apariciéon de
los estados hibridos puede dar lugar a nuevas posibilidades para la manipulacion de
estados cuanticos de la luz, asi como para la generacién de fotones con correlaciones
cuanticas. Para explorar estas posibilidades, se analizan en primer lugar las
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correlaciones de intensidad de los fotones emitidos por el sistema acoplado, lo que
permite una mejor caracterizacién de las propiedades estadisticas de la emision,
y posteriormente se examina la generacion de fotones que exhiben correlaciones
cuanticas no locales, lo que se conoce como entrelazamiento fotonico, y juega un
papel clave en diversas aplicaciones de las tecnologias cuanticas.

En este capitulo, se lleva a cabo un andlisis sistemdtico de las correlaciones
de intensidad de los fotones emitidos en la Linea de Cero Fonones. Para ello, se
considera el caso en el que los emisores tienen momentos dipolares de transicién
paralelos y estan separados por una distancia muy pequena, lo que da lugar a la
formacién de un estados superradiante y un estado subradiante. De esta manera,
se encuentra que la correlaciéon de intensidad que no distingue en la frecuencia
de emision puede tomar valores muy distintos, dependiendo de la frecuencia y la
intensidad del laser. En concreto, se muestra que cuando la frecuencia del laser
es igual a la de la transicion del estado superradiante, los emisores acoplados se
comportan efectivamente como un tnico emisor de dos niveles, generando fotones
en la Linea de Cero Fonones de forma individual (es decir, el sistema acoplado emite
antibunched light). En cambio, cuando la frecuencia del ldser es igual a la mitad
de la frecuencia de transicién entre el estado fundamental y el estado doblemente
excitado, lo que se conoce como resonancia de dos fotones, la probabilidad de emitir
fotones agrupados aumenta considerablemente con respecto a la luz coherente (es
decir, el sistema acoplado emite bunched light). Curiosamente, el comportamiento
de esta correlacion de intensidad se vuelve mucho més complejo cuando la frecuencia
del laser es la de la frecuencia de transicién del estado subradiante, lo que se debe a
una influencia significativa de la coherencia cuantica entre los estados superradiante
y subradiante en este caso. Finalmente, en este capitulo se analiza la correlacién de
intensidad resuelta en frecuencia también en funcién de la frecuencia e intensidad
del laser. Este andlisis revela un panorama muy rico de mecanismos de emisiéon del
sistema estudiado, incluyendo una amplia variedad de transiciones de dos fotones
mediadas por estados virtuales intermedios. Por ejemplo, se encuentra que cuando
la frecuencia del laser coincide con la de la transicién del estado subradiante, la
correlacién de intensidad resuelta en frecuencia puede identificar transiciones de
un fotén que permanecen ocultas en el espectro de emision estandar debido a que
ocurren con una probabilidad extremadamente baja. Esto demuestra la mayor
sensibilidad de la correlacién de intensidad resuelta en frecuencia, en comparacién
con el espectro de emision a la hora de revelar transiciones que ocurren con una
probabilidad muy baja.

Con el objetivo de ampliar la caracterizacion de la estadistica de la luz emitida
por dos emisores cuanticos acoplados, en el capitulo 4 se analiza la correlacién de
los fotones emitidos debido al decaimiento desde el estado electréonico excitado a
un nivel vibracional/fonénico en el estado electrénico fundamental. Estos fotones,
que son de menor energia que aquellos emitidos en la Linea de Cero Fonones, se
conocen como fotones Stokes. El desarrollo de un modelo que describa de forma
precisa la correlacién de fotones Stokes es particularmente relevante para entender
muchos de los tipicos experimentos de fluorescencia, en los que los emisores son
excitados en resonancia al estado excitado y, ademads, se utilizan filtros épticos
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para evitar la deteccién de los fotones del laser (que de otro modo perturbarian la
caracterizacion de la luz radiada por los emisores). Con el objetivo de desarrollar
tal modelo, en este capitulo se refina la descripcion de la estructura energética de
los emisores incluyendo estados adicionales para cada emisor, que corresponden a
niveles vibracionales o fondnicos en el estado electronico fundamental. Este modelo
refinado permite abordar tanto la correlacién de fotones emitidos en la Linea de
Cero Fonones (con resultados que coinciden con los de la descripcién basada en
sistemas de dos niveles), como la correlacion de fotones Stokes. Es importante
destacar que este modelo refinado captura el papel de la coherencia cuantica en
la emision de fotones Stokes, cuya influencia ha sido desestimada en modelos
previos en la literatura. Usando este nuevo modelo, se analizan las correlaciones
de los fotones Stokes radiados por dos emisores acoplados con momentos dipolares
paralelos y separados por distancias nanométricas. De esta forma, se demuestra que
la coherencia cuantica puede jugar un papel significativo en la emisién de fotones
Stokes. Los hallazgos teodricos de este capitulo estan respaldados por los resultados
de las mediciones experimentales realizadas por el Bordeaux Nanophotonics Group,
dirigido por Brahim Lounis, en el Institut d’Optique Graduate School (CNRS).
También se analiza el caso de dos emisores lejanos, no acoplados, y se muestra que la
coherencia cudntica puede modificar también en este caso la estadistica de emision
de fotones Stokes. Este andlisis ayuda, ademas, a clarificar la discrepancia entre
las predicciones tedricas y las observaciones experimentales sobre la correlacién de
fotones radiados simultaneamente por dos emisores independientes. Finalmente,
se realiza una comparacién de la correlacién de los fotones Stokes radiados por
dos emisores acoplados con la de los fotones radiados en la Linea de Cero Fonones,
demostrando que estas dos correlaciones pueden ser drasticamente diferentes, lo
que pone de relieve la importancia de desarrollar una descripcién tedrica detallada,
y adaptada a cada configuracién experimental.

Finalmente, en el capitulo 5 se investiga el uso de emisores cuanticos acoplados
como fuente de fotones entrelazados, destacando el potencial de estos sistemas para
manipular los estados cuanticos de la luz y generar correlaciones cudnticas de fotones.
Para ello, se proporciona una introduccién al concepto de entrelazamiento, asi como
a diferentes métodos que sirven para cuantificar el grado de entrelazamiento de
dos fotones. A continuacién, se aplica la aproximacién de Wigner-Weisskopf para
derivar el estado cuantico completo del campo electromagnético obtenido tras la
relajacién de dos emisores inicialmente excitados. El estado de dos fotones obtenido
mediante la aplicacion de esta aproximacion permite el cdlculo de las probabilidades
de emisién de dos fotones en direcciones, frecuencias y modos de polarizacién
arbitrarios. Tras esta introduccion se aborda el caso en el que los emisores tienen
momentos dipolares de transiciéon perpendiculares y estan separados entre si por
distancias cortas, de tal forma que presentan una clara interaccion. Se demuestra
de esta manera que un estado de dos fotones altamente entrelazados puede ser
postseleccionado a partir de la radiacion de estos dos emisores usando filtros épticos.
El grado de entrelazamiento foténico permanece en gran medida inalterado por
pequenas variaciones en la orientacién relativa de los momentos dipolares, asi como
por cambios en el valor del factor combinado de Debye-Waller/Franck-Condon.
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Finalmente, se verifica que el estado postseleccionado de dos fotones tampoco se
ve significativamente afectado por pequenos cambios en la direccién de deteccion,
lo que sugiere que las lentes 6pticas comunes pueden ser utilizadas en la practica
para mejorar la recoleccion de estos fotones sin reducir notablemente el grado de
entrelazamiento fotonico.

En resumen, los resultados presentados en esta tesis profundizan en la
comprensién fundamental de la radiacién de luz de dos emisores cuanticos acoplados,
con especial atencion a las correlaciones foténicas, incluyendo tanto las correlaciones
fot6nicas de segundo orden (correlaciones de intensidad) como las correlaciones
cudnticas no locales (entrelazamiento foténico). Por ende, estos resultados revelan
la gran versatilidad que presentan los emisores cuanticos acoplados como fuentes
de luz cudntica. Tal y como se analiza en esta tesis, estos sistemas podrian generar
tanto pares de fotones entrelazados como fotones individuales, dependiendo de la
configuracion especifica de los emisores y de las condiciones de iluminaciéon. Por
todo ello, este trabajo permite identificar el gran potencial de los emisores cuanticos
acoplados para el desarrollo de un amplio abanico de aplicaciones en tecnologias
cuanticas.
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ABSTRACT

The interaction between the electromagnetic vacuum field and a two-level quantum
emitter represents one of the fundamental cases of quantized light-matter interaction.
The analysis of this interaction enables the understanding of essential concepts in
quantum optics, such as the spontaneous emission of photons from the emitter.
Additionally, this analysis reveals that a two-level quantum emitter cannot emit
more than one photon at a time, which allows for manipulating light at the single-
photon level. This degree of control makes quantum emitters promising candidates
for the development of quantum light sources that generate photons in specific
quantum states and with non-classical correlations. For example, single-photon
sources find applications in quantum communication and quantum computing,
which have motivated extensive research on light emission from isolated two-level
quantum emitters over the last decades. Moreover, the energy levels, lifetimes, and
coupling strengths to external fields of the quantum emitters can be modified when
they interact with each other. In this case, light emission from this coupled system
becomes even more complex, opening up new possibilities for manipulating and
engineering non-classical states of light. Additionally, the analysis of light emission
from interacting quantum emitters is particularly timely, as experimental control
over emitter interactions has advanced significantly in recent years. Taking all this
into account, this thesis focuses on the theoretical analysis of light emission from
two interacting quantum emitters, with two main objectives: (i) achieving a deeper
fundamental understanding and improved characterization of light emission from
these coupled systems, and (ii) exploring their potential as sources of quantum
light for applications in quantum technologies.

First, a comprehensive review of the quantization of the electromagnetic field,
both in the absence and in the presence of radiation sources, is provided. Specifically,
a second quantization formalism is adopted and the standard Hamiltonian describing
the interaction between the electromagnetic vacuum field and a single two-level
quantum emitter is derived. This formalism allows for introducing photons as the
fundamental quantum excitations of the electromagnetic field and analyzing how
the electromagnetic vacuum field influences quantum emitters. In particular, a
thorough description of the spontaneous emission of photons from the emitter is
provided. To this end, two alternative approaches are considered: the Wigner-
Weisskopf approximation and the Markovian master equation. On the one hand,
the Wigner-Weisskopf approximation enables the derivation of the dynamics of the
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entire system, including the quantum emitter and all modes of the electromagnetic
vacuum field, starting from a given initial state. When the emitter is initially
excited, it is shown that the probability of finding the emitter in the excited state
decreases exponentially over time. This decay is accompanied by the excitation of
the electromagnetic modes of the vacuum field, each with a different probability
amplitude, corresponding to the spontaneous emission of a photon. On the other
hand, the Markovian master equation relies on tracing out the degrees of freedom
of a subsystem that acts as a reservoir. By treating the electromagnetic vacuum
field as the reservoir and reducing the description of the system to the Hilbert
space of the emitter, it is shown that this approach also captures the phenomenon
of spontaneous emission. In this way, information about which electromagnetic
modes become excited is sacrified, but the description of the dynamics of the
emitter is greatly simplified, and the excitation of the system by a laser can be
straightforwardly included. This methodology serves to examine how the laser
modifies the energy levels and eigenstates of the emitter, giving rise to the so-called
dressed states.

Next, an in-depth introduction to the correlation functions of the electric field is
provided. These correlation functions are key for the characterization of quantum
light sources, as they quantify the degree of optical coherence in the quantum realm.
Young’s interference experiment is described, showing how light emitted from two
sources can produce an interference pattern of fringes on a screen. The emergence
of this pattern depends on the degree of first-order coherence of the light, which
is quantified by the first-order correlation function. The second-order correlation,
also known as the intensity correlation, is then introduced. This function measures
the correlation in the intensity of light arriving at two detectors, and plays a crucial
role in this thesis because it provides key information about the statistics of photon
emission. More specifically, the intensity correlation allows for distinguishing
between three qualitatively different types of light sources: (i) a source of coherent
light, in which the emission of each photon is completely independent of previous
emissions, as it is the case for laser light; (ii) a source of bunched light, where
the probability of emitting two photons within a short time interval is increased
compared to a source of coherent light; and (iii) a source of antibunched light, in
which this probability is reduced, reflecting a purely non-classical behaviour. One
can measure the intensity correlation of all photons emitted from the source, which
is referred to as color-blind intensity correlation, or the intensity correlation of
photons at specific frequencies by including optical filters, which is called frequency-
resolved intensity correlation. To illustrate these concepts, the intensity correlations
of light emitted from a single quantum emitter are analyzed. On the one hand, it
is shown that the color-blind intensity correlation exhibits perfect antibunching
in this case, meaning that the probability of emitting two photons simultaneously
is zero and confirming that single quantum emitters serve as ideal single-photon
sources. On the other hand, the frequency-resolved intensity correlation provides
information about the emission mechanisms of the system, as it nicely captures the
one-photon transitions of the system, typically revealed in the standard emission
spectrum, as well as the more involved two-photon transitions through virtual
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intermediate states.

Next, the analysis of the interaction between two quantum emitters, the system
of primary interest in this thesis, is tackled. To this end, a detailed derivation of
the Hamiltonian describing the interaction between the electromagnetic vacuum
field and the two-level quantum emitters is introduced first. Using the Markovian
master equation formalism again, the electromagnetic degrees of freedom are traced
out to obtain a master equation that governs the reduced dynamics of the two
emitters. In addition to capturing the spontaneous emission of photons from
each emitter, this master equation reveals that the electromagnetic vacuum field
can mediate the dipole-dipole interaction between two quantum emitters that are
separated by small distances compared to the characteristic wavelength of light.
An effective modification of this master equation is then developed to account
for the influence of internal vibrational modes of the emitters and phonon modes
of the host medium, which are relevant for typical solid-state emitters. Within
this approach, the emitters are still modeled as two-level systems, but the emitter-
emitter coupling rates are effectively renormalized through the so-called combined
Debye-Waller /Franck-Condon factor, defined as the fraction of photons emitted
from the excited state directly to the purely electronic ground state, known as
Zero-Phonon Line. This approach is appropriate when examining light emitted
into the Zero-Phonon Line.

Following the analysis above, the modification of the eigenstates of the emitters
resulting from the dipole-dipole interaction is described next. In particular, hybrid
states can emerge in which a single excitation is delocalized across both emitters.
These hybrid states exhibit modified energies and lifetimes compared to the non-
interacting case, as well as different coupling strengths to external illumination. For
example, when the transition dipole moments of the emitters are not orthogonal,
one of the delocalized states decays more rapidly than the other. The faster-
decaying state is referred to as the superradiant state, while the slower-decaying
one is known as the subradiant state. Additionally, it is shown that the combined
Debye-Waller /Franck-Condon factor can significantly influence the decay rates of
these delocalized states, highlighting the importance of accounting for this factor
in the description of two interacting solid-state emitters.

As the interaction between two emitters leads to hybrid eigenstates, new
possibilities for manipulating quantum states of light and generating non-classical
photon correlations can emerge from this system. To explore these possibilities, the
intensity correlations of photons emitted from the interacting system are analyzed,
which helps to better characterize the statistical properties of the emission, and the
generation of photons with non-local quantum correlations, which are referred to as
photon entanglement and play a key role in quantum technologies, is also examined.
In this context, a systematic analysis of both the color-blind and the frequency-
resolved intensity correlations of photons emitted into the Zero-Phonon Line is
performed. The case in which the emitters have parallel transition dipole moments
and are separated by a very short distance is considered, leading to the formation
of superradiant and subradiant states. It is found that the color-blind intensity
correlation from this system can be tuned across a wide range of values, from
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strong antibunching to strong bunching, depending on the frequency and intensity
of the excitation laser. Specifically, it is shown that when the laser is tuned to the
two-photon resonance (i.e., to half the frequency difference between the ground state
and the doubly excited state), the Zero-Phonon-Line emission can become strongly
bunched, as the probability of cascade photon emission is enhanced. In contrast,
when the laser is tuned to the transition frequency of the superradiant state,
the Zero-Phonon-Line emission is generally strongly antibunched, as the system
effectively behaves as a two-level emitter, resulting in highly pure single-photon
emission. Interestingly, a more complex behaviour emerges when the laser is tuned
to the transition frequency of the subradiant state, due to the significant influence
of the quantum coherence between the superradiant and subradiant states in such
a case. Next, the frequency-resolved intensity correlation is analyzed as a function
of both the laser frequency and the laser intensity. This analysis reveals the rich
landscape of emission mechanisms in the coupled system, including a variety of two-
photon transitions through virtual intermediate states. When the laser is resonantly
tuned to the subradiant state, the frequency-resolved intensity correlation unveils
one-photon transitions that remain hidden in the standard emission spectrum
because they occur with extremely low probability. This highlights the higher
sensitivity of the frequency-resolved intensity correlation to reveal transitions that
occur with very low probability as compared to the emission spectrum.

With the objective of extending the characterization of the statistics of light
emitted from two interacting quantum emitters, the correlation of the photons
emitted due to the decay from the electronic excited state to a vibrational/phononic
level in the electronic ground state is tackled next. These photons, which are
red-shifted compared to the Zero-Phonon-Line photons, are referred to as Stokes-
shifted photons. Developing an accurate model of the Stokes-shifted correlation
is particularly relevant for describing usual fluorescence experiments, where the
emitters are resonantly driven to the excited state and optical filters are used
to avoid detection of laser photons that would disturb the characterization of
light scattered from the emitters. To this end, the description of the emitters is
refined, going beyond the previously shown two-level-system description. This is
implemented by including additional states for each emitter representing vibrational
or phononic levels in the electronic ground state. This refined model allows for
addressing both the Zero-Phonon-Line correlation (with results matching those
of the two-level-system description) and, crucially, the Stokes-shifted correlation.
Importantly, the refined model captures the role of quantum coherence in the
emission of Stokes-shifted photons, whose influence has been neglected in previous
models in the literature. Using this new model, the correlation of Stokes-shifted
photons is analyzed for two interacting emitters with parallel dipole moments
and separated by a very short distance. It is shown that quantum coherence can
play a significant role in the emission process of these photons. These theoretical
findings are supported by results from experimental measurements performed by the
Bordeaux Nanophotonics Group, led by Brahim Lounis, at the Institut d’Optique
Graduate School (CNRS). Additionally, two distant, non-interacting emitters are
considered, where it is shown that quantum coherence can also influence the photon
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statistics in such a case. This analysis helps to clarify the discrepancy between
theoretical predictions and experimental observations concerning the correlation of
photons emitted simultaneously by two uncorrelated emitters. Finally, a comparison
of the correlation of Stokes-shifted photons emitted from two interacting emitters
with that of photons emitted into the Zero-Phonon Line is shown. These correlations
can differ drastically, stressing the importance of developing a detailed theoretical
description particularly tailored to each experimental configuration.

Finally, the use of interacting quantum emitters as a source of entangled photons
is investigated, highlighting the potential of this system for the manipulation of
quantum states of light and the generation of non-classical photon correlations. To
this end, an introduction to the concept of entanglement, as well as to different
approaches to quantifying the degree of photon entanglement, is provided. Next,
the Wigner-Weisskopf approximation is applied to derive the full quantum state
of the electromagnetic field resulting from the relaxation of two initially excited
emitters. The two-photon state obtained using this approximation encodes the
probabilities of emitting two photons at arbitrary directions, frequencies, and
polarization modes. Particular attention is placed on the case where the emitters
have perpendicular transition dipole moments and are separated by short distances,
so that they can interact. It is demonstrated that a highly entangled two-photon
state can be post-selected from the emission of these two emitters using optical
filters. The photon entanglement remains largely unaffected by small variations in
the relative orientation of the dipole moments, as well as by changes in the value of
the combined Debye-Waller/Franck-Condon factor. Finally, it is verified that the
two-photon post-selected state is not significantly affected by small variations in the
detection direction, suggesting that typical lenses can be used in practice to enhance
photon collection without notably reducing the degree of photon entanglement.

Overall, the results developed in this thesis help to deepen the fundamental
understanding of light emission from interacting quantum emitters, with a special
focus on photon correlations, including both second-order photon correlations
(intensity correlations) and quantum non-local photon correlations (entanglement).
These results highlight the remarkable versatility of interacting quantum emitters
as sources of quantum light. For instance, it is possible to generate either entangled
photon pairs or single photons, depending on the specific configuration of the
emitters and on the illumination conditions. Therefore, this thesis can help
to uncover potential applications of interacting quantum emitters in quantum
technologies.






INTRODUCTION

At the heart of this thesis lies the study of light, which refers to any class of
electromagnetic radiation!. The primary source of light in our daily lives is natural
and beyond our control: the Sun. This star governs the Earth’s seasons, as well as
the cycle of day and night. Throughout history, humans have devised controllable
sources of light. The earliest one was fire, which provided both illumination
and warmth in caves. Much later, the invention of the light bulb enabled us
to illuminate the night using electricity. More recently (in 1905), Albert Einstein
posited that light consists of particles, that we now call photons, to explain the
photoelectric effect [2]. A few years later, Niels Bohr postulated the quantum
nature of atoms and molecules [3-5]. These discoveries marked the beginning of
the development of a full quantum theory of the interaction between light and
matter, with pioneering contributions by Paul Dirac, Werner Heisenberg and
Enrico Fermi, among many others (e.g., see Refs. [6-18]). The understanding of
quantized light-matter interaction has led to the development of light-emitting
technologies with a high degree of sophistication. Some examples are the laser
[19, 20], which produces highly monochromatic and directional light through the
process of stimulated emission, and the light-emitting diode (LED) [21-25], which
relies on the recombination of electrons with holes in semiconductor materials.
Moreover, in recent decades, the second quantum revolution and the advent of
quantum technologies have motivated the development of new sources of quantum
light [26-30], capable of emitting photons in well-defined quantum states and
exhibiting non-classical correlations. A particularly important type of quantum
light source is one that emits photons individually, known as a single-photon source
[31]. This type of source is a promising candidate for applications in quantum
communication [32-37] and quantum computing [37-40]. Notably, this source
should generate identical single photons on demand in order to be practical for
many applications [31, 37, 41]. This means that each time a physical system acting
as a single-photon source is excited, it should emit exactly one photon, always
in the same electromagnetic mode, and that photon should be collected with
perfect efficiency. Finding a physical system that meets all these requirements is a
significant challenge. For example, parametric down-conversion (PDC) is frequently

I The term light is sometimes used to refer specifically to electromagnetic radiation within
the frequency range detectable by the human eye. In this thesis, this range is termed the visible
range, and the corresponding radiation as wvisible light.
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used to generate single photons, but this generation is not on-demand, which limits
its suitability for many applications. More specifically, in PDC, a pump photon
interacts with a nonlinear crystal and is converted into two lower-energy photons
[42-44], conserving both energy and momentum. As the two photons are emitted
in different directions, the detection of one photon can then signal the presence of a
single photon in the other direction [45, 46]. However, the conversion of the pump
photon into two photons is a statistical process that occurs with low probability.

Quantum systems with only two relevant energy levels, known as two-level
quantum emitters, are promising candidates for achieving on-demand single-photon
emission. In such two-level systems, the excitation of the upper electronic state is
followed by radiative decay to the ground state, resulting in the emission of a single
photon. For instance, highly pure and indistinguishable single-photon emission
can be obtained from individual alkali atoms in ultra-high vacuum, coupled to an
optical cavity that is resonant with an atomic transition [47-49]. Notably, atoms
in vacuum are free from internal vibrations and do not couple to environmental
phonons. One of the primary drawbacks of such systems lies in the complexity of
the required experimental setup. Furthermore, their excited-state lifetimes are on
the order of tens of nanoseconds, which limits the achievable photon generation rate.
Single photons can also be generated from individual ions confined in radiofrequency
traps [50-52]. These are also gas-phase systems and share similar advantages and
limitations with alkali atoms.

Quantum emitters that emit on-demand single photons can also be realized
from localized electronic states in condensed matter, commonly referred to as
solid-state quantum emitters. Examples include organic molecules embedded in
crystals [31, 41, 53-55], vacancies or defects in inorganic crystals (such as nitrogen-
vacancy centers in diamond [56, 57]), quantum dots (consisting of nanometer-
scale regions where a low-band-gap semiconductor is surrounded by a high-band-
gap semiconductor, forming a potential well that confines electrons and holes
analogously to an atom) [58-60], and defects in two-dimensional materials such as
hexagonal boron nitride [61, 62]. In contrast to alkali atoms, solid-state emitters
interact with phonon modes of the surrounding material and can also support
internal vibrational modes. As a result, these systems may exhibit more complex
behaviour than that of a simple two-level system. Indeed, a common challenge
arising from these electron-phonon interactions is the broadening of the electronic
emission line, a phenomenon known as dephasing, which significantly reduces
photon indistinguishability. To mitigate this effect, solid-state emitters are typically
operated at cryogenic temperatures, where dephasing becomes negligible. A key
advantage of solid-state quantum emitters is their relative ease of manipulation
compared to alkali atoms or trapped ions, even when cryogenic operation is required.
Moreover, they generally allow for faster single-photon emission rates.

Furthermore, solid-state quantum emitters can interact electromagnetically
with one another when they are separated by sufficiently short distances (in
comparison to the wavelength of the light that they emit), through the modes of
the electromagnetic vacuum field. The interaction between quantum emitters
can also emerge when they couple with a common electromagnetic mode of
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a resonator or waveguide. These emitter-emitter interactions open up new
possibilities for manipulating non-classical photon states and correlations. For
example, these interacting systems could open new directions for the generation
of entangled photons [63—65], which exhibit non-local quantum correlations and
are key components in quantum communication [34-36, 66-70], with additional
applications in quantum sensing and imaging [71-77]. Further, interacting quantum
emitters can also be used in quantum computing [78-83], quantum metrology [84],
quantum information storage [85-87], and in the design of light-harvesting systems
[88-91]. Early experimental demonstration of vacuum-induced interaction between
two organic molecules was reported over two decades ago [92], and a few years
later experimental evidences of interaction between quantum dots mediated by
cavities or waveguides were also provided [93-96]. However, achieving efficient
control over such interacting systems is highly challenging, for example, due to
dephasing and inhomogeneous broadening caused by interactions with the solid-
state environment [97, 98]. Fortunately, substantial progress has been made in
recent years in manipulating these interactions. For instance, vacuum-induced
coupling between two molecules can now be tailored by tuning the transition
frequency of the emitters [1, 99]. Furthermore, the ability to induce long-distance
interactions through resonator and waveguide modes has advanced significantly
for organic molecules [100, 101], quantum dots [102-106] and color centers in
crystals [107-109]. Beyond cavity and waveguide-mediated coupling, alternative
approaches are also under investigation, such as molecule-molecule coupling enabled
by scanning tunneling microscopy setups [110].

The characterization of light emission from two interacting solid-state quantum
emitters is therefore of significant practical interest, especially given the recent
experimental progress in achieving precise control over such systems. As a
consequence, this thesis presents a detailed theoretical analysis of light emission from
such a coupled system under a broad range of configurations, including different
emitter arrangements, illumination conditions, and detection schemes. We aim
to advance the fundamental understanding and characterization of light emission
from such systems, thereby contributing to the identification and realization of
potential technological applications, particularly those based on the manipulation
of photon states and correlations. The structure of the thesis is as follows:

e In Chapter 1, we quantize the electromagnetic vacuum field in the absence
of radiation sources, starting from Maxwell’s equations. We then extend
this procedure to include the presence of radiation sources, enabling the
description of the interaction between the vacuum field and an ideal two-level
quantum emitter, such as a single atom in vacuum. Several aspects of this
interaction are analyzed, including the electric field radiated by the quantum
emitter and the concept of spontaneous emission. The latter is introduced
using the Wigner-Weisskopf approximation, as well as the Markovian master
equation. Finally, we examine the interaction between the quantum emitter
and a continuous-wave laser, and discuss how this excitation affects the
dynamics of the emitter.
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e In Chapter 2, we introduce the correlation functions of the electric field,
originally formulated by Roy J. Glauber in the 1960s [111-114], which have
since become essential tools for characterizing the coherence properties of
quantum light. Special emphasis is placed on the normalized second-order
correlation function, also known as intensity correlation, which plays a key
role in this thesis as it provides information about the statistical properties
of light emission. Specifically, we examine two distinct types of intensity
correlations: one that considers all photons emitted by the source, termed
color-blind intensity correlation, and another one that focuses on correlations
of photons at specific frequencies, referred to as frequency-resolved intensity
correlation. Both magnitudes are illustrated through the example of a single
two-level quantum emitter, showing that such systems emit one photon at a
time.

e In Chapter 3, we address the case of two interacting solid-state quantum
emitters. To this end, we first describe the interaction between the
electromagnetic vacuum field and two two-level quantum emitters. We next
derive the Markovian master equation governing the reduced dynamics of the
emitters. This demonstrates how the electromagnetic vacuum field mediates
an effective interaction between closely spaced emitters. We then introduce
a method to model the electronic dynamics of two solid-state emitters,
incorporating the combined Debye-Waller/Franck-Condon factor. This factor
represents the fraction of photons emitted into the Zero-Phonon Line,
corresponding to the transition between the electronic excited and ground
states without the assistance of vibrational modes. Afterwards, we investigate
both the color-blind and the frequency-resolved intensity correlations of light
emitted from two interacting solid-state emitters into the Zero-Phonon Line.
Specifically, we provide a thorough analysis of these quantities for different
regimes of laser frequency and intensity. In this way, we show that the color-
blind intensity correlation can be tailored over a wide range of values, from
strong single-photon emission to pronounced photon bunching. Moreover, we
demonstrate that the frequency-resolved intensity correlation can reveal both
single-photon transitions and two-photon transitions via intermediate virtual
states that remain hidden in the emission spectrum.

e In Chapter 4, we extend the description of two interacting solid-state quantum
emitters by incorporating vibrational/phononic levels into the electronic
ground state. The primary objective of this extension is to address the
situation in usual fluorescence experiments, in which the electronic excited
states of the solid-state emitters are resonantly driven and optical filters are
employed to suppress laser photons during detection. In these experiments,
only the photons emitted due to decay to a vibrational/phononic level
in the electronic ground state, referred to as Stokes-shifted photons, are
measured. Notably, we demonstrate that quantum coherence between the
emitters, as well as first-order coherence between the photons emitted, can
influence the correlation of Stokes-shifted photons, in contrast to previous
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assumptions in the literature. This result is corroborated by comparison with
experiments conducted by the Bordeaux Nanophotonics group. Furthermore,
we compare the correlations of Zero-Phonon-Line photons and Stokes-shifted
photons emitted from two interacting solid-state emitters, revealing significant
differences between them.

In Chapter 5, we introduce the concept of entanglement and show that
two interacting quantum emitters can serve as a source of polarization-
entangled photons. To demonstrate the generation of polarization-entangled
photons from two interacting emitters, we consider again the Hamiltonian
describing the interaction between the electromagnetic vacuum field and two
two-level quantum emitters, and apply the Wigner-Weisskopf approximation
to derive the complete two-photon state resulting from the relaxation of
the two emitters. By considering emitters with perpendicularly oriented
transition dipole moments and incorporating optical filters, we show that
a highly entangled two-photon state can be post-selected. We verify that
this entanglement remains robust under small misalignments in the dipole
orientations and under deviations in the detection direction. Notably, we
also confirm that the photon entanglement is robust against the influence
of the combined Debye-Waller/Franck-Condon factor, indicating that the
polarization-entangled photons can be generated from the Zero-Phonon-Line
emission of any pair of interacting solid-state emitters.

11






CHAPTER

INTERACTION BETWEEN LIGHT
AND QUANTUM EMITTERS

In 1905, Albert Einstein extended Max Planck’s concept of energy quantization to
explain the photoelectric effect, proposing that light consists of discrete packets of
energy, now known as photons [2, 115]. In the following decades, significant efforts
were made to develop a quantum-mechanical description of the electromagnetic field
[3-18], transitioning from the classical wave description formulated by Maxwell to
one that accounted for the particle-like nature of the field. This quantum-mechanical
framework led to the discovery of several novel phenomena, such as spontaneous
emission, quantum coherence, and the development of the laser. In this chapter,
we provide a comprehensive review of the quantization of the electromagnetic field.
We place special emphasis on the interaction of this field with quantum emitters,
which allows us to introduce the spontaneous emission of photons. In this way,
this chapter lays the foundation for the analysis of light emission from quantum
emitters, which is the main focus of this thesis.

We first present the quantization of the electromagnetic field in the absence of
radiation sources, which we then extend to the case in which radiation sources are
present. Afterwards, we focus on the case where the radiation sources are modeled
as a single two-level quantum emitter (QE), and we provide a detailed description
of the dynamics and light emission from this system. Notably, we explore the
spontaneous emission of photons from the QE using two different approaches: the
Wigner-Weisskopf approximation (WWA) and the Markovian master equation
(MME). Finally, we investigate the interaction between the QE and an external
laser, showing how this external illumination can strongly influence the dynamics
of the emitter as well as its light emission.

13



Chapter 1. Interaction between light and quantum emitters

1.1 Quantization of the free-space
electromagnetic field

In this section, we present the formalism of second quantization for the
electromagnetic field in free space, following mainly the procedure described in
Refs. [116-120]. The starting point of this procedure is the classical Maxwell’s
equations, which yield a homogeneous wave equation for the vector potential in
the absence of radiation sources. Next, we impose periodic boundary conditions
to solve this wave equation and express the energy of the electromagnetic field
as that provided by an infinite collection of classical harmonic oscillators. The
promotion of the canonical position and momentum of such harmonic oscillators to
quantum-mechanical operators yields the Hamiltonian of the quantized free-space
electromagnetic field, which is given in this case as an infinite collection of quantum
harmonic oscillators. In this formulation, the field amplitudes become operators
that create and annihilate quantum excitations, which is the essence of the second
quantization formalism. Finally, we introduce photons as the elementary quantum
excitations of the electromagnetic field.

1.1.1 General Maxwell’s equations

We describe in this section some general aspects of Mazwell’s equations, before
focusing on the case in which no radiation sources are considered. Maxwell’s
equations constitute a set of coupled differential equations relating the electric
E(r,t) and magnetic B(r,t) fields, at position r and time ¢, through their curl
and divergence. In SI units, which are adopted throughout this thesis, Maxwell’s
equations are given as [121]

V- E(r,t) = o (1.1a)
0
V- -B(r,t) =0, (1.1b)
V x E(r,t) = —%B(r,t), (1.1c)
10 1.

Here, ¢ is the vacuum permittivity, c is the speed of light in vacuum, - is the
dot product, x is the cross product and V = ex% + eya% + 62% is the nabla
operator, with e;, e, and e, the unit vectors along the Cartesian coordinates. The
radiation sources are introduced through the charge density o(r,t) and the current
density j(r,t), which are related through the continuity equation

Eg(r,t)—&-v-j(r,t) =0. (1.2)
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1.1. Quantization of the free-space electromagnetic field

This equation can be derived from Maxwell’s equations by taking the divergence
on both sides of Eq. (1.1d) and, then, using Eq. (1.1a) and the identity

V. (VxF)=0, (1.3)

which holds for an arbitrary vector field F'.

Moreover, the Helmholtz theorem states that any vector field F' can be
decomposed into a transverse component F'| (which is curl-free) and a longitudinal
component F (which is divergence-free) [121], which can be summarized as

F(r,t) = F\ (r,t) + F)(r,t), (1.4)

with
V.F(r,t)=0, (1.5a)
V x F(r,t) = 0. (1.5b)

The physical meaning of this decomposition can be better understood in the
reciprocal space (which is discussed in Section 1.2.1), as the longitudinal component
of the field Fj is parallel to the direction of the wavevector k, whereas the transverse
component F'| is perpendicular to such vector. Importantly, according to Eq. (1.1b),
the longitudinal component of the magnetic field vanishes B (r,¢) = 0. Thus, the
magnetic field is always purely transverse:

B(r,t) = B (r,1). (1.6)

The solution of Maxwell’s equations is facilitated by introducing the vector
potential A(r,t). This vector is defined through its relation with the magnetic field
B(r,t), which is given as

B(r,t) =V x A(r,1). (1.7)

This expression guarantees that Eq. (1.1b) is satisfied, as can be checked using the
identity in Eq. (1.3). Additionally, substituting Eq. (1.7) into Eq. (1.1¢) yields

0
V x E(r,t) = -V x aA(r,t). (1.8)
Taking into account that the curl of a gradient vanishes (i.e., V x V¢ = 0, with ¢
an arbitrary scalar function), then the electric field E(r,t) and the vector potential
A(r,t) are related through the expression

E(r,t) = —%A(r, t) — Vo(r,b), (1.9)

where we have introduced the scalar potential ¢(r,t).
Importantly, there is not a unique pair of potentials A(r,¢) and ¢(r,t) that
determine the electric and magnetic fields in Egs. (1.7) and (1.9). Indeed, E(r,t)
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and B(r,t) remain unchanged under the transformation

Al(r,t) = A(r,t) — VE(r, 1), (1.10a)
# 1) = 606, 1) + 0= (e, ), (1.10b)

with Z(r,t) being an arbitrary function of space and time. The transformation
in Egs. (1.10a)—(1.10b) is called gauge transformation and Z(r,t) gauge function.
The quantization of the electromagnetic field is facilitated in the Coulomb gauge
(also called radiation gauge), which is defined by choosing that the vector potential
is purely transverse A(r,t) = A (r,t). Equivalently, the Coulomb gauge can be
defined from

V.-A(r,t)=0. (1.11)

We demonstrate in Section 1.2 that an advantage of this choice is that the
two terms on the right-hand side of Eq. (1.9) can be directly identified as the
transverse E| (r,t) and the longitudinal Ej(r,¢) components of the electric field
[see Eqgs. (1.76a)—(1.76b)].

In the rest of this section, we focus on the simpler case in which no radiation
sources are considered. The effect of radiation sources is further analyzed in Section
1.2.

1.1.2 Maxwell’s equations in free space

We derive in this section a wave equation for the vector potential A(r,t) in free
space, where no radiation sources are present [i.e., o(r,t) =0 and j(r,t) = 0]. In
this case, Maxwell’s equations reduce to

V -E(r,t) =0, (1.12a)

V -B(r,t) =0, (1.12b)

V x E(r,t) = —%B(r, t), (1.12¢)
10

V x B(r,t) = EEE(r,t). (1.12d)

Notably, Eq. (1.12a) implies that the electric field is purely transverse in free space,
so that
E(r,t) = E, (r,1). (1.13)

Next, we substitute the expression that relates the electric field with the vector
and scalar potentials [Eq. (1.9)] into Eq. (1.12a), which yields

—%V-A(r,t) — V- (Vé(r, 1)) = 0. (1.14)

Thus, the free-space scalar potential satisfies the Laplace equation V-(Vo(r,t)) =0
in the Coulomb gauge, where by definition V - A(r,t) = 0. In this gauge and in
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1.1. Quantization of the free-space electromagnetic field

the absence of charges, we are then allowed to choose that the scalar potential
vanishes,
o(r,t) =0, (1.15)

which further simplifies the derivation and solution of the wave equation for A(r,t).
Last, substituting Eqgs. (1.7), (1.9) and (1.15) into Eq. (1.12d), we obtain the
homogeneous wave equation

1 02
2 _
Here, we have used the identity V x (V x A) = V(V - A) — V2A. Therefore,
free-space Maxwell’s equations in the Coulomb gauge can be solved directly from
Eq. (1.16).

1.1.3 Periodic boundary conditions

We impose in this section periodic boundary conditions on the electromagnetic field
to solve the wave equation for A(r,t¢) [Eq. (1.16)]. With this purpose, a common
approach relies on considering that free space is divided into very large cubes of
volume V = L3, with L the side of each of these cubes. This artificial condition has
no physical consequences in the large box limit (L — oo) and, crucially, it yields
the periodic boundary conditions

A(r,t) = A(r+ Le,, t) = A(r + Ley, t) = A(r + Le., t). (1.17)

Under these periodic boundary conditions, the solution of the wave equation for
A(r,t) [Eq. (1.16)] can be given by a Fourier series. Specifically, the vector
potential can be expressed as

Art) =) e Ars(H)e™ ™ + Af (t)e ™7, (1.18)
k,s

where Ay;(t) is the complex amplitude of the component with wavevector k and
polarization s. Here, the wavevector k satisfies the periodic condition

2
k = (kg,ky, k) = f(mx,my,mz), (1.19)
with (mg,my,m;) a set of integer numbers. Additionally, s = 1,2 indexes

two independent polarization directions with unit vectors ey, which satisfy the
transversality condition

k- ey, =0, (1.20)

as can be derived by substituting Eq. (1.18) into Eq. (1.11). Further, the two
polarization modes must be orthogonal, so that

€ks - Cks! = 55,3’7 (121)
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and they form a right-handed system, such that
ex1 x exz = k/k, (1.22)

with k = |k|. Throughout this thesis, we choose eys to be real. Importantly,
an electromagnetic field mode is thus specified by a particular wavevector k
(determining the propagation direction) and by a particular polarization mode s.

Moreover, substituting the Fourier expansion in Eq. (1.18) into the homogeneous
wave equation in Eq. (1.16), we find that the equation of motion of the amplitude
Aks(t) is that of a simple (undriven) harmonic oscillator:

2

)
@Aks(t) + Wi Ays(t) =0, (1.23)

with wy = ck. Thus, we obtain
A (1) = Aoe™, (1.24)

with Axs = Axs(0). Importantly, substituting this solution for Ay, (t) into
Eq. (1.18), we find that the vector potential becomes a sum of plane waves
expli(k - r — wyt)].

Last, we substitute Eqs. (1.18) and (1.24) into Egs. (1.9) and (1.7). In this way,
we find that the free-space electric and magnetic fields can also be expressed as
plane-wave expansions:

E|(r,t) = ZZ Wiels[Apse! KTkt _ A pmillker—wid)) (1.25a)
k,s

B(r,t) = zZ(k X ey ) [Ayse!Twit) _ gy pmilker—wit)] (1.25b)
k,s

1.1.4 Energy of the electromagnetic field in free space

In order to introduce the canonical quantization of the free-space electromagnetic
field, the next key step consists in expressing the energy of this field as that of an
infinite collection of harmonic oscillators. To this end, we recall that the energy of
the electromagnetic field is in general (even in the presence of radiation sources)
given by [121]

1 1

Hp = 7/ |:€0E2(I‘,t) + —B?(r,t)|dr, (1.26)

2 )y Ho
with pg the vacuum permeability, which is related with the vacuum permittivity
€o and the speed of light in vacuum ¢ as

1
\/60Mo’

(1.27)
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1.1. Quantization of the free-space electromagnetic field

The first term on the right-hand side of Eq. (1.26) corresponds to the electric
energy, while the second one corresponds to the magnetic energy. Additionally, Hg
can be decomposed into the transverse and longitudinal field contributions

HF:HFL+HF|\- (128)

Specifically, these contributions are given by
1 2 L oo
Hp) = - | dr|eoE | (r,t) + —B*(r,t)|, (1.29a)
2 )y Ho
1
Hp) =5 /v dreoEj(r,1), (1.29b)
where we have taken into account that the magnetic field is always purely transverse
[Eq. (1.6)], as discussed in Section 1.1.1. Crucially, the electric field is also purely

transverse in free space [Eq. (1.13)]. Therefore, Hr = Hp | .
Substituting Eqgs. (1.25a)—(1.25b) into Eq. (1.29a), we find

1 1 .
HFJ_ = _§ Z Z {Eowkwk/eks cey/s T+ %(k X eks)(k/ X ek/S/) :|
k,s k’,s’
% / dr |:Aksei(k~r—wkt) _ Altse—i(k~r—wkt):| |:Ak/slei(k’.r—wk/t) _ AI*(ISIe—i(k’.r—wk/t):| )
%
(1.30)

Additionally, under the boundary condition in Eq. (1.19), the spatial integrals in
the above expression satisfy the relation

/V dre' )T =y (1.31)

where & i 18 the Kronecker delta of the vectors k and Fk'. As a consequence,
we obtain

y 1 #

Hp, = 3 E E |:500kak’eks “epy + ;(k X exs) (k' X exry) }

0
k,s k’,s’

x [513;,1{/ [Aks (£) Ao (8) + A () Arerr ()] = 0 e [Aws (1) Awrs () + A (1) Ao (t)]]

1% 1
= 5 Z Z{ [50w£eks s eks + %(k X eks)(k X eksl)*} [AkSAltS/ + Al*csAks’]

k,s s’

— [awieks ce_kg + i(k X eks)(—k X eksl)*] [Aks (t)Aksl(t) + Aiis (t)AiiS/ (t)]}
(1.32)
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Furthermore, the vector identity
(AxB)-(CxD)=(A-C)(B-D)-(A-D)(B-C) (1.33)
provides the relations

(k X eks) . (k X eks/) = k25s,3/, (134&)
(k X eks) . (—k X e,ks/) = —k2€k5 c€_ks/- (134b)

These relations, together with the orthogonality condition in Eq. (1.21), allow for
simplifying the expression of the electromagnetic energy in Eq. (1.32). Specifically,
this energy becomes a summation over the time-independent contributions from
each individual electromagnetic mode (k, s), such that

Hp, =V ) wp (A;;SAks + AkSAl’;S> . (1.35)
k,s

At this point, we have decomposed the energy Hr, of the electromagnetic field
into independent contributions from each electromagnetic mode [Eq. (1.35)], each
of these contributions being expressed in terms of the complex amplitudes Ay, and
A} .. These complex amplitudes evolve in time as simple harmonic oscillators [Eq.
(1.24)], as discussed in Section 1.1.3. Finally, we show that Hp, can indeed be
expressed as a summation over the energies of simple harmonic oscillators, which
facilitates the quantization of the electromagnetic field. To this end, we define the
real variables

qxs = VeoV(Aks + Axy), (1.36a)
Pks = *Z'wk\/ €0V(Ak5 — Aik(s) (1361’))

These new variables allow us to rewrite Hp | as

1
Hpi =5 kz:(pis + Widics)- (1.37)
)8

Importantly, from Egs. (1.36a)—(1.36b) and (1.37), we can verify that gxs and pis
satisfy the Hamilton’s equations in classical mechanics, which are given by

dgws OHFp.
= 1 .
dt apks ’ ( 38&)
dpys OHp
= — . 1.38b
dt 6qks ( )

Therefore, qxs and pys correspond to the canonical position and canonical
momentum, respectively. The latter enables to identify that the Hamiltonian
in Eq. (1.37) corresponds to an infinite summation over the energies of simple
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1.1. Quantization of the free-space electromagnetic field

harmonic oscillators of unit mass.

1.1.5 Quantization of the electromagnetic field in free space

So far, we have shown that the energy of the classical electromagnetic field
in free space can be expressed as the energy of a continuum set of harmonic
oscillators. We demonstrate in this section that the quantized electromagnetic field
in free space becomes a continuum of quantum harmonic oscillators. To this end,
the canonical variables qxs and pxs are promoted to Hilbert space operators Gy
and pyxs, with commutator ¢4 according to the principles of quantum mechanics
[122, 123]. Additionally, the Hilbert space operators of two different electromagnetic
modes (k, s) and (k’, s") commute with each other, as the corresponding classical
electromagnetic harmonic oscillators are uncoupled. The commutation relations of
the canonical quantum-mechanical operators can be summarized as

[Cjksvﬁk’s’] = ihéi,k’és,s’a (1393«)
[Gicss Qi 5] = [Pes» Prst] = 0. (1.39b)

The quantum-mechanical Hamiltonian of the electromagnetic field in free space,
also called vacuum field, is thus given by

f 2 1 A 2 22

Hy =Hp, =3 Z(Pks + Wilics)- (1.40)
k,s

This Hamiltonian is often rewritten in terms of the annihilation operator ays and

the creation operator &Ls of photons in mode (k,s), which are non-Hermitian

operators that can be expressed in terms of gyxs and pis as

. 1 R A
aks = W(quks + Zpks)7 (1-413«)
" 1

aks = W(quks — /Lﬁkg) (141b)

As a direct consequence of Egs. (1.39a)—(1.39b) and Egs. (1.41a)—(1.41b), these
operators satisfy the commutation relations

[Gxs, &Ls/] = 6li,k’ Os,s' (1.42a)
s o] = [l al, ) = 0. (1.42b)
The Hamiltonian of the vacuum field can then be rewritten as
A ha .+ . e 1
HV = Z T (aLsakS + aksa/i'-(s) = Z h/.dk (aLsaks + 2) . (1.43)
k,s k,s

The comparison of the expressions for the quantized vacuum-field Hamiltonian
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Chapter 1. Interaction between light and quantum emitters

A

Hy [Eq. (1.43)] and for the energy of the classical free-space electromagnetic field
[Eq. (1.35)] allows for interpreting dys and &Ls as the Hilbert-space operators to
which the classical amplitudes Ay, and Ay, are promoted. More specifically,

h
kaEOV

h
Af, =/ al . 1.44
ks - kaEQV aks ( b)

Therefore, the vector potential in Eq. (1.18) becomes the quantized vector potential

operator:
A E ' / h A _ikr | AT _—ikr
A(I’) = - 2wk€()veks [akse + ay € ], (145)

which is written in the Schrédinger picture (see Appendix B for a brief review of
the dynamical pictures in quantum mechanics). Similarly, the quantized electric
field operator and the magnetic field operator become

a . Tw ~ ik-r A —ik-r
Ei(r)= zzwlﬁeks[aksek —alT(se ker) (1.46)
k,s

s y h PN ik-r ~ —ik-r
B(r)=i)y 4/ 3y (K e e ™ af e ], (1.47)
k,s

with forms analogous to the classical electric and magnetic fields in Eqgs. (1.25a)—
(1.25Db), respectively.

Moreover, the Heisenberg-picture dynamics of an arbitrary operator O (with no
explicit time dependence) is governed by the Heisenberg equation (see Appendix B)

Aws — ks, (1.44a)

Low = Lo, ), (1.48)

where H is the Hamiltonian of the closed system. (For an open quantum system, the
Heisenberg-picture dynamics is governed by the adjoint master equation introduced
in Section 1.4.4). Applying Eq. (1.48), we find that the time evolution of the
operators dgs and &LS is analogous to the time evolution of the classical complex
amplitudes Ay, and Aj, in Eq. (1.24). More specifically, we obtain

ges () = s (0)e ™7, (1.49a)
(0)ewxt, (1.49b)

At the initial time, the Heisenberg-picture operators coincide with their
representations in the Schrodinger picture, so that dxs(0) = dks and d};s (0) = dLS

(see Appendix B).
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1.1. Quantization of the free-space electromagnetic field

1.1.6 Spectrum of the vacuum field Hamiltonian

In this section, we describe the spectrum and eigenstates of the vacuum-field
Hamiltonian Hy, which enables the introduction of the concept of photon. To this
end, we first derive the set of eigenstates of the Hermitian operator 7y, = &Ls&ks.
According to Eq. (1.43), the eigenstates of the vacuum-field Hamiltonian coincide
with the eigenstates of M.
We denote the eigenvalues of fixs by nis and the eigenstates (normalized to
unity) as |nis). Thus,
ks |nks> = Nks ‘nks> 5 (150)

with (ngs|nks) = 1. Next, using the commutation relations in Eqgs. (1.42a)—(1.42b),
we obtain

sy, [nics) = Al (s 4 1) [aes) = (s + 1)a1, |nies) » (1.51)

which implies that d;r( 5 |nis) is an eigenstate of fiys with eigenvalue nys+1. According
to Eq. (1.50), &Ls |nks) is thus proportional to |ngs + 1). The proportionality
constant is obtained by evaluating the norm of dLS |nks), which yields

<nks| &ksdir(s |nks> = <nks| (ﬁks + 1) |nks> = Nks + 17 (152)

where we have used again the commutation relations in Egs. (1.42a)—(1.42Db).
Consequently, we have demonstrated that

&Ls |nk5> = VNks + 1 |nks + 1> . (153)

This procedure can be repeated iteratively, yielding that |nxs + N) is also an
eigenstate of this operator with eigenvalue nys + N, with N any natural number.
In other words, the spectrum of eigenvalues nys of 7y is unbounded from above.

We can follow a similar argument to demonstrate that éaxs [nks) is also an
eigenstate of |nys), in this case proportional to |nys — 1). From the commutation
relations in Eqs. (1.42a)—(1.42b), we obtain

Akslis [Mks) = ks (ks — 1) [nks) = (Nis — 1)axs [nks) (1.54)

and
(s | G e |ics) = M- (1.55)

As a consequence,
dks |nks> = V/Nks |nks - ]-> . (156)

Again, by applying the operator dys iteratively, we obtain that if |nys) is an
eigenstate of fis with eigenvalue nys, |nks — N) is also an eigenstate of this
operator with eigenvalue nys — N. Importantly, according to Eq. (1.55), the norm
of the state dxs |nks) IS nks, which implies that nys — N cannot take negative values
(otherwise, the corresponding state |nys — V) would have a negative norm). As a
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Chapter 1. Interaction between light and quantum emitters

consequence, ngs cannot take non-integers values because the iterative applications
of Gxs would eventually yield eigenstates with non-integers negatives eigenvalues.
In contrast, we do not encounter this problem by considering that nys are integer
numbers. Specifically, the iterative application of dxs over a non-negative integer
number eventually yields

dks |Oks) = 0, (1.57)

terminating the sequence. Therefore, |Oys) is the eigenstate of 7y, with the lowest
eigenvalue and the spectrum of the operator 7y corresponds to the infinite set of
non-negative integer eigenvalues. Ny is called number operator and its eigenstates
|nks) are named Fock states.

Furthermore, the Hamiltonian of the electromagnetic vacuum field is given
by a linear combination of number operators. Consequently, this Hamiltonian is
diagonalized as

Hy [{ns}) Z(wak(nks + ;)) [{rucs}) - (1.58)
k,s

Here, we have defined the eigenstate |[{nys}) as the product state

‘{nks}> = Qks |nks> 5 (159)

with ®ys the tensor product over the (infinite) modes (k, s).

1.1.7 Vacuum state and photons

We have reached at this point the fundamental quantum-mechanical description
of the electromagnetic field in free space or vacuum field. We now introduce the
concepts of vacuum state and photons. On the one hand, the ground state of the
vacuum field Hamiltonian Hy is called vacuum state and is represented as |vac).
In this state, all the occupation numbers nys are equal to zero, namely

[vac) = [ {Oks) - (1.60)

According to Eq. (1.58), the energy of the vacuum state is

1
Ezp = 3 kz hw, (1.61)

which is known as zero-point energy and has no classical analogue. Notably, although
|vac) is a stationary state of the Hamiltonian of the free-space electromagnetic field
(with energy Fzp), this state is neither an eigenstate of the electric field operator
E(r,t) [Eq. (1.46)] nor of the magnetic field operator B(r,t) [Eq. (1.47)]. As a
consequence, the electric and magnetic fields do not have definite values in the
vacuum state, which leads to the so-called vacuum fluctuations (see Refs. [116-119]
for further information).
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emitter

On the other hand, photons are introduced as elementary excitations or quanta
of the electromagnetic field. In particular, a quantum state accounting for the
presence of a single photon of energy fwy, wavevector k and polarization s is
described by the Fock state

ks, {Owrsr2xcs }) = @i, |vac) . (1.62)

The total number of photons in the field is given by the expectation value (7) of
the total number operator

= fi. (1.63)
k,s

We emphasize that the operators dyxs and &Ls lower and raise the number of photons
in the field, which is the reason why they are called annihilation and creation
operators. More specifically, dxs destroys a photon in the electromagnetic mode
(k, s), while &Ls creates a photon in the same mode. Importantly, the eigenvalues
of the number operator 7 in mode (k, s) are unbounded, implying that more
than one photon can be found in the same quantum state. Therefore, photons are
bosons and follow Bose-Einstein statistics.

Last, we introduce the linear momentum of photons. The quantization of the
classical linear momentum P = ¢ [, drE(r,t) x B(r, t) results in the Schrédinger-
picture operator [116, 119]

. 1
P=>)" hk(dLS&kS + 2) = ki, (1.64)
k,s

k,s

where the 1/2 factor cancels in the last equality because for each k term there
is an opposite contribution from the —k term in the summation. Equation
(1.64) indicates that each photon in mode (k, s) possesses fik linear momentum.
Additionally, the relativistic energy-momentum relation E? — (Pc)? = (mgc?)?,
where E represents the energy and mg the invariant mass, indicates that photons
are massless, as E = fiw, and P = hik [119].

1.2 Interaction between the quantized
electromagnetic field and a quantum emitter

In this section, we describe the interaction between the quantized electromagnetic
field and a quantum emitter with two-level-system behaviour. To this end, we first

derive the total energy of the electromagnetic field in the presence of radiation
sources. Here, we mainly follow the procedure described in Refs. [116, 119, 120].
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Chapter 1. Interaction between light and quantum emitters

1.2.1 Maxwell’s equations in the reciprocal space

We have shown in Section 1.1 that the free-space electric field is purely transverse
[Eq. (1.13)]. Here, we demonstrate that in the presence of radiation sources
E|(r,t) does not vanish. To this end, we write the general Maxwell’s equations
[Egs. (1.1a)—(1.1d)] in the reciprocal-space representation, where any function (such
as the charge density or the Cartesian components of the electric and magnetic
fields) is obtained from the Fourier transform of its real-space representation.
More specifically, the real-space representation F(r,t) and the reciprocal-space
representation F(k, t) are related as

F(k,t) = W / drF(r,t)e” kT, (1.65)

The breve symbol — is used to emphasize that the function is expressed in
the reciprocal space. Additionally, in the reciprocal space, the operator V is
transformed into ik. Maxwell’s equations in the reciprocal space thus become

y 5(k
ik Bk, ¢ = 20t (1.66a)
€0
ik -B(k,t) =0, (1.66b)
ik x E(k,t) = f%]f%(k,t), (1.66¢)
K x Bkt = = LB + ik (1.664)
! T 2 Ot ’ 5002‘7 e ’

Furthermore, the conditions V x Ej(r,t) = 0 and V-E (r,t) = 0 that define the
longitudinal and transverse electric fields, respectively, are given in the reciprocal

space as .
1k X EH(k’ t) = O, (167)

ik-E, (kt) = 0. (1.68)

These conditions clarify the geometrical reason behind the labels longitudinal
(meaning that the field is parallel to k) and transverse (meaning that the field is
perpendicular to k). Additionally, as the longitudinal component of the electric
field is parallel to k, we can write

k- BE(k,t)

E|(k,t) =
H( t) k|2

k. (1.69)
Substituting Eq. (1.66a) into Eq. (1.69) we obtain

E)(k,t) = — o(k,1), (1.70)

7
ki
€0|k|2

which reveals that the longitudinal component of the electric field is determined by
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1.2. Interaction between the quantized electromagnetic field and a QE

the charge density.

We next obtain the real-space representation of the longitudinal electric field in
Eq. (1.70). The real-space representation of g(k,t) is directly o(r,t), whereas the
inverse Fourier transform of the other terms in Eq. (1.70) yields

! /dke“‘*[—k ! }: (2m)*? (1.71)

(2m)3/2 co|k? dmeg |r3

The product of two reciprocal-space functions F (k,t) and é(k, t) corresponds in
the real space to the convolution of their real-space representations F(r,t) and
G(r,t) [120], namely

o “ 1
F(k,t)G(k,t) = i /dr’F(r',t)G’(r —1',t). (1.72)
Therefore, we obtain
E((r,t) = L/dr’ R Rl (1.73)
A5 ~ drweg ar v —r/|3° '

This expression is independent of the choice of gauge.

Finally, we discuss some further insights into the electric field provided by the
reciprocal-space representation. To this end, we transform into reciprocal space
the expression that connects the vector potential with the electric field [Eq. (1.9)],

which yields
E(k,t) = —%A(k, t) — ikd(k, t). (1.74)

The decomposition of this expression into transverse and longitudinal components
leads to

0

E,(kt) = faAL(k,t), (1.75a)
E|(k,t) = f%A”(k, t) — iko(k, t). (1.75b)

Therefore, we obtain EH (k,t) = —z'kqvb(k, t) in the Coulomb gauge, where AH (k,t) =
A (r,t) = 0. Thus, the transverse and longitudinal components of the electric field
in the real-space representation become

E,|(r,t) = f%A(r,t) = f%AL(r,t), (1.76a)
E|(r,t) = =Vo(r,1). (1.76b)

Last, substituting Eq. (1.73) into Eq. (1.76b), we obtain

o(r,t) 1 /dr’g(r’, t) , (1.77)

~ dne |r —r/|
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Chapter 1. Interaction between light and quantum emitters

which reveals that, in the Coulomb gauge, the scalar potential is equivalent to the
Coulomb potential of the charge distribution.

1.2.2 Periodic boundary conditions

In this section, we impose periodic boundary conditions on the electromagnetic field
in the presence of radiation sources, in a similar way to the procedure described
in Section 1.1.3. These periodic boundary conditions facilitate the quantization
of the field. First, we recall that in free space a homogeneous wave equation
can be derived for the vector potential A(r,t) = A (r,¢) in the Coulomb gauge
[Eq. (1.16)]. In the presence of radiation sources, this wave equation becomes
inhomogeneous. To show this, we substitute the expressions relating the vector
potential with the magnetic field [Eq. (1.7)] and with the electric field [Eq. (1.9)]
into the Maxwell’s equation (1.1d) and decompose the resulting expression into
transverse and longitudinal components. In this way, we obtain

1 0? 1.
V2AJ_(r,t) - ?ﬁAL(I‘, t) = %?Jl(r,t% (178)
0 1,
aEH(I‘,t) = g]H(I‘,t). (179)

On the one hand, Eq. (1.78) is the inhomogeneous wave equation for the vector
potential, with driving proportional to 7, (r,t). On the other hand, Eq. (1.79) can
be related with the continuity equation [Eq. (1.2)], as the longitudinal electric field
is determined by the charge density o(r,t) in the Coulomb gauge [Eq. (1.73)].

Next, we impose periodic boundary conditions by considering again that the
electromagnetic field is contained in a box of side L. As discussed for the free-space
electromagnetic field in Section 1.1.3, these periodic boundary conditions yield
k = 2n(my, my, m,)/L, with my, m, and m, integer numbers. In this way, the
vector potential can be written as a Fourier series

AL(rt) =) ewsArs(t)e™ ™ + Ap (e ™). (1.80)
k,s

Notably, in the presence of radiation sources Ay(t) follows the equation of motion
of a driven harmonic oscillator, according to the inhomogeneous wave equation
given in Eq. (1.78). This contrasts with the simple equation of motion of an
undriven harmonic oscillator that Ay (t) follows in the absence of radiation sources
[Eq. (1.23)]. Consequently, in the presence of radiation sources, A (r,t) no
longer corresponds to a simple expansion of plane waves (see Ref. [120] for further
information).

Moreover, substituting the above Fourier series into the expressions relating
the vector potential with the transverse electric field [Eq. (1.76a)] and with the
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1.2. Interaction between the quantized electromagnetic field and a QE

magnetic field [Eq. (1.7)], we obtain

E|(r,t) =i )  wiews[Aws(t)e’™™ — Ap (e ™7], (1.81)
k,s
B(r,t) =i ) (k X ejq)[Aws ()™ — A (t)e 7). (1.82)
k,s

These expressions, valid in the Coulomb gauge, are identical to the free-space
expressions in Egs. (1.25a)—(1.25b), except for the different time evolution of Ay ()
in both cases.

1.2.3 Quantization of the electromagnetic field in the
presence of radiation sources

We describe in this section the canonical quantization of the electromagnetic field
in the presence of radiation sources. With this purpose, we first derive the energy
of the electromagnetic field Hr, which can be decomposed into transverse Hp |
and longitudinal Hp components [Eqgs. (1.29a)-(1.29b)].

On the one hand, to obtain Hpr | we follow an analogous procedure to the one
described in Section 1.1.4. Substituting the expressions of the transverse electric
and magnetic fields in the presence of radiation sources [Egs. (1.81) and (1.82)]
into the expression of the transverse electromagnetic energy in Eq. (1.29a), we
obtain

Hp, =V ) wp (A;;SAkS + AkSA;;S> , (1.83)

k,s

which is formally identical to the expression of Hp, in free space [Eq. (1.35)].
Thus, we can introduce the canonical position and momentum variables as in
Section 1.1.4 and promote them to quantum-mechanical operators that satisfy
the canonical commutation relations given in Eqgs. (1.39a)—(1.39b). Consequently,
the annihilation and creation operators can be introduced from gy, and pys again
through Eqgs. (1.41a)—(1.41b), with commutation relations given in Eqgs. (1.42a)—
(1.42b). Therefore, we obtain that the quantum-mechanical Hamiltonian of the
transverse electromagnetic field is formally identical to the free-space Hamiltonian
[Eq. (1.43)], namely .

Hp, = ; hwoy (@] anes + 3)- (1.84)
Thus, the eigenstates of this Hamiltonian are again the product of Fock states
{nks}), with nys the occupation number of photons in mode (k,s). In the
Schrédinger picture, the transverse vector potential, the transverse electric field
and the magnetic field operators are also formally identical to that obtained in free
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space [Egs. (1.45), (1.46) and (1.47), respectively]. Therefore,

A A zk r —zk-r 1.85

0 =410 =2, e Fagee L (L8)
) Py A ikr At —iker

=1 kz; 7250]/'31“ [Gkse —a,e 1, (1.86)

> . h ~ ik-r ~ —ik-r
r)= zé \/ oV (k X eys)[axse™ T — a;r(se ker) (1.87)

However, we emphasize that the time evolution of axs(t) and aks( ) in the
Heisenberg picture is no longer described by the free-space expressions given
in Egs. (1.49a)—(1.49Db), as in the presence of radiation sources these operators
correspond to driven harmonic oscillators rather than to simple harmonic oscillators
(see Ref. [120] for further information).

On the other hand, the presence of radiation sources becomes explicit in the
longitudinal electromagnetic energy Hp, which vanishes in free space. According
to Eq. (1.70), the longitudinal electric field (in the reciprocal space) is related to
the charge density, resulting in

€0 =2 1 é*(k7t)é(k7 t)
Hpy = — kE,(k,t) = — k——"—F " 1.

Using Eq. (1.72) and the Parseval-Plancherel identity, given by

/ e F* (v, 1)G(x, 1) = / k™ (k, )G (k, 1), (1.89)

we can rewrite the longitudinal electromagnetic energy in the real-space

representation as
o(r, t o(r, t)o(r', 1)
H drdr’ . 1.
I = Srea / / =Y (1.90)

Therefore, the longitudinal electromagnetic energy corresponds to the Coulomb
electrostatic energy of the system of charges [121]. In Section 1.2.6, we discuss the
quantization of Hp| in the case of a set of charged particles corresponding to a
two-level quantum emitter.

1.2.4 Interaction between the electromagnetic field and a
system of moving charged particles

We derive in this section the quantum-mechanical Hamiltonian describing the
interaction between the electromagnetic field and NV charged and moving particles.
We consider that these particles are indexed by ¢ = 1,..., N and that particle 7 has
mass m; and charge ¢;. Additionally, this particle has time-dependent canonical
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1.2. Interaction between the quantized electromagnetic field and a QE

position r; = r;(¢) and velocity ©; = 1;(¢), although we do not explicitly write
the time dependence of these quantities, for simplicity. This system of radiation
sources is described by the charge density

o(r,t) =Y qid(r — i), (1.91)
and by the current density

j(r,t) = Z Gitid(r — ;). (1.92)

The total energy H of the system can be decomposed into the electromagnetic
energy Hp and the kinetic energy Hy of the particles. Thus,

1
H=Hp+ Hg :HF+Z§mii~f, (1.93)

with the kinetic energy determined by the mass and velocity of the particles.

Next, we derive the expression of the canonical momenta of the particles p;,
which allows us to quantize the kinetic Hamiltonian in Eq. (1.93) by promoting r;
and p, to Hilbert-space operators. In general, the a-Cartesian component of the
canonical momentum p, (with a = z,y, 2z) can be obtained from the Lagrangian
L of the system and the canonical position as p; o = (0L£)/(97;,«). One can show
that a suitable Lagrangian describing the classical dynamics of the moving particles
and the electromagnetic field is given by [119, 120]

1 1 1
£:/|:€ :E2 I‘,t _7B2 I',t:|d1‘+ {mlrf—k iA I‘i,t 'fi_i r;)|.
3 J, 0B ) = B e+ 2| G+ A £~ bl

(1.94)

This Lagrangian satisfies the principle of least action, is consistent with the Lorentz
force, and is also consistent with the classical Hamiltonian in Eq. (1.93). From this
Lagrangian, we find that the canonical momentum of particle 4, in the Coulomb
gauge [Eq. (1.11)], is given by

p; = mit; + ;A | (1, 1), (1.95)

where the first term on the right-hand side corresponds to the kinetic momentum
in Newtonian mechanics. In this way, the kinetic energy of the charged particles
[last term on the right-hand side of Eq. (1.93)] can be rewritten as

Hy = Zziﬁb(p inl(ri,t)>2. (1.96)

%

We now promote the canonical position and momentum of each particle to Hilbert-

31



Chapter 1. Interaction between light and quantum emitters

space operators I; and p,; that satisfy the canonical commutation relation
[P0 D g = 1h0; jOap- (1.97)

Moreover, we decompose the quantum-mechanical Hamiltonian of the
electromagnetic field Hp into its transverse component Hp, [Eq. (1.84)] and
its longitudinal component H 7| [given by the quantized Coulomb electrostatic
energy of the system of charges in Eq. (1.90)]. In this way, we obtain the total
quantum-mechanical Hamiltonian (in the Schrédinger picture)

2
Zhwk aksaks + + HF” + Z ( 1A(f‘1)> s (198)

k,s

which is called the minimal coupling form of the Hamiltonian. The first term on
the right-hand side of Eq. (1.98) is formally identical to the quantum-mechanical
Hamiltonian of the free-space electromagnetic field, as discussed above. Additionally,
the quantum-mechanical Hamiltonian

A2
Frme p; ]
ape = Z o, T I (1.99)

involves only the degrees of freedom of the charged particles and, thus, is usually
identified as the Hamiltonian of the set of particles. More specifically, the first
term on the right-hand side of this equation involves only the degrees of freedom
of the motion of the particles, whereas H | corresponds to the quantized Coulomb
electrostatic energy of the charged particles [Eq. (1.90)]. Last, the remaining terms
in Eq. (1.98), namely

=

are interpreted as the interaction Hamiltonian (as they involve degrees of freedom
of the particle and of the field), written in the minimal coupling form.

( i A(#:) + A(# >+Z 4 i A2(3 (1.100)

2m;

1.2.5 Power-Zienau transformation

In this section, we present the Power-Zienau transformation, which leads to a more
familiar form of the interaction Hamiltonian than that in Eq. (1.100). To this end,
we assume that the total charge of the system of particles vanishes (i.e., Y . ¢; = 0),
as in the case of neutral atoms or molecules. Additionally, we denote by Ry.x the
largest distance of the charged particles from the center of mass ry and assume
that the particles couple significantly only to electromagnetic modes of wavelength
larger than Rpyax, which is known as the long-wavelength approximation. As a
consequence, we can replace the Schrodinger picture operator A(f‘z) by A(ro) [116],
which is identified as the electromagnetic vacuum field. The total Hamiltonian in
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the minimal coupling form then becomes

2

N U N I .

a7 =3 hu, (aﬂsaks + 2) +Hpp+ ) DT (pi - in(rO)) . (1.101)
k,s i g

Next, we introduce the unitary operator governing the Power-Zienau
transformation (see Appendix C for a review of unitary transformations in quantum
mechanics). This operator is given by

T = exp { — %ﬂ . A(ro)] = eXp[Z :\Ls&ks — 5\1(5&{(3], (1.102)
k,s

where we have introduced the electric dipole moment of the system of charges
= Zqif'i, (1.103)

and we have defined )
As = ——e
Qhwké‘ov

The Hamiltonian is transformed as

—ik-ro A

- exs. (1.104)

e = PHT

2
(f)i - in(r0)> T,

(1.105)

. T e e 1
_ t s
-7 § b (ay,, Gies + 5)TT +THp T+ T E T

k,s

where mp stands for multipolar form.
In the following, we compute each of the terms in the last equality of Eq. (1.105)
separately. To this end, we use the expansion theorem

2

000 = Q + 2[0, Q] + %[07 0,0]] + ... (1.106)

First, we find
Tanes T = s + Mo (1.107a)
Tal Tt =al, + .. (1.107b)
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Chapter 1. Interaction between light and quantum emitters

As a consequence, the first term in the second line of Eq. (1.105) becomes

. e 1+ . o <
T hwy(af, nes + §)TT =" hwi [(af(s + M) (s + i) + 3
o o (1.108)

A 1
= Z hwy (8] aws + =) + Z o (8] Ais + resAL,) + Z R AL s,
k,s k,s

where we have used that the Power-Zienau transformation is unitary and thus
TOQTY = TOTTTQTT, (1.109)

with O and Q arbitrary operators. Crucially, using Eq. (1.102), we can rewrite the
second term in the second line of Eq. (1.108) as

Zhwk akSAkg +akg ks = Z 24/ 9% V“ eks —ik-rg 7&kseik-r0)

- (1.110)

= —H-El(ro)-

Here, we have used the expression of the transverse electric field operator [Eq.
(1.86)] in the long-wavelength approximation. Moreover, the last term in the second
line of Eq. (1.108) does not depend on photon annihilation or creation operators.
Instead, this term depends on the dipole operator fi, namely

PPN 1
ép = Zm‘}k)\isAks - Z % V(I'L eks)2> (1111)
k,s

which can be interpreted as the dipole self-energy of the system [120].
_ Next, we compute the second term in the second line of Eq. (1.105). Since
Hp) depends only on the quantum-mechanical position operators of the charged

particles, it follows that [ﬁpH,T] = (. Thus, we find
THpT" = Hgy. (1.112)

Last, we analyze the third term in the second line of Eq. (1.105). The canonical
momentum of particle 7 is transformed as

TP, 1" =p; — — [ - A(ro), ;] = b; + i A (o). (1.113)
Additionally, [T, A(ro)] = 0. Thus, A(ro) remains invariant under the Power-

Zienau transformation: . .
TA(rg)TT = A(rg). (1.114)

As a consequence, we obtain that the third term in the second line of Eq. (1.105)
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1.2. Interaction between the quantized electromagnetic field and a QE

becomes )
. 1 . . 1
T —(p, — ;A TT=N"_—_p? 1.11
; 2mi (pz q (ro)) Z 2mi P> ( 5)
where we have used again that the Power-Zienau transformation is unitary [Eq.

(1.109)].
Therefore, the transformed Hamiltonian becomes

N ~ A ~ 1 A N
0 = 0= S b (al v+ 3) + BB, (L16)
k,s

which is known as the multipolar form of the Hamiltonian. Here, we have defined
the multipolar form of the Hamiltonian of the charged particles as

2 I o A .
P = mepi + Hp +é,, (1.117)
. (3

3
which depends uniquely on particle operators and not on photon creation or
annihilation operators. Crucially, the interaction Hamiltonian in the multipolar
form is given directly by the scalar product of the dipole moment operator of the
system of charges and the transverse electric field operator:

H'" = —ji- B (rg). (1.118)

Thus, this form of the interaction Hamiltonian is formally analogous to the potential
energy of an electric point dipole in the presence of an external electric field [121].
In this thesis, we generally prefer to use the multipolar form of the interaction
Hamiltonian over the minimal coupling form.

1.2.6 Interaction between the vacuum field and a two-level
quantum emitter

Next, we consider that the system of N charged particles (with center of mass at )
corresponds to a quantum emitter (QE) whose electronic dynamics can be described
well by only two states (ground and excited). This two-level approximation is
usually well justified for describing the dynamics and light emission from a QE
(such as an atom or a molecule) that is driven near resonance to its lower-energy
electronic excited state, with the higher electronic excited states being far off
resonance with this external driving [124]. This approximation is well suited to
the QEs that we consider in this thesis.

We call ground state to the lower energy electronic state |g) of the QE, while
the higher energy electronic state |e) is called excited state. We consider that the
transition frequency between these two states is wg, as shown in the schematic
representation in Fig. 1.1. Under this two-level approximation, the Hamiltonian in
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Chapter 1. Interaction between light and quantum emitters

vacuum field

|2k8>
|1k8>
|0k8>
Hryg,

Figure 1.1: Schematic representation of the interaction between a quantum emitter (QE) and
the electromagnetic vacuum field. The electronic dynamics of the QE is assumed to be well
described by two states. The lower energy state is called (electronic) ground state |g), whereas
the higher energy one is named excited state |e). These two states have transition frequency

wp and, thus, the Hamiltonian of the QE is I:IQE = M;lfrz. The electromagnetic vacuum field,

with Hamiltonian Hp | = Zk s F’uuk(diS&ks + 1/2), consists of an infinite collection of quantum

harmonic oscillators of frequency wy, with &LS and dys the creation and annihilation operators of

photons with wavevector k and polarization mode s. The Hamiltonian describing the interaction
between the quantum emitter and the vacuum field in the multipolar form is Hlmp =—4-E; (ro),
with fi the electric dipole moment operator of the QE, E | (ro) the transverse electric field operator,
and ro the position of the QE.

Eq. (1.117) becomes
A ~ w w Wo .
Hp" — Hoe = h=g |e) (e| = h=3 lg) (9] = h=3'6-, (1.119)

with 6, = |e) {e| — |g) (g| the z-Pauli matrix and the level of zero energy fixed at
half the energy between |g) and |e). The fermionic lowering and raising operators
of the two-level electronic dynamics are & = |g) (e| and 6T = |e) (g|, respectively.
The commutation relations of these fermionic operators are given as

6,6T] = —6., (1.120a)
6.,6] = —26, (1.120b)
6.,61] =267, (1.120c)

Additionally, the time evolution of the lowering and raising operators in the
Heisenberg picture is obtained using the Heisenberg equation [Eq. (1.48)]. Ignoring
the interaction of the emitter with the electromagnetic field (whose influence is
latter discussed), we obtain

%6(7?) _ —%[6(1&), Hos] = —iwos(t), (1.121a)
%&T(t) = —%[&T(t),ﬁQE] = iwod (1) (1.121b)



1.2. Interaction between the quantized electromagnetic field and a QE

As a consequence, these operators are given in the Heisenberg picture by

o (t)
&(t) =

Since the Heisenberg and Schrédinger pictures coincide at the initial time, we have
5(0) = & and 67(0) = 67 (see Appendix B).

Next, we derive the Hamiltonian H 77 describing the interaction between the
QE and the vacuum field in the multipolar form. To this end, we first analyze
the dipole moment operator fi of a general two-level QE. On the one hand, the
diagonal elements of this operator, (g| i |g) and (e| ft|e), are related to the presence
of permanent dipole moments in the emitter [125-130], as is the case for polar
molecules [127, 128] or asymmetric quantum dots [130]. However, in this thesis, we
are interested in QEs that do not have permanent dipole moments, and thus these
diagonal elements vanish. On the other hand, the off-diagonal element p = (g| i |€)
of this operator couples the electronic ground and excited states of the QE. pu is
known as transition dipole moment, and its value can be related to the spontaneous
decay rate of the QE, which is discussed in Section 1.3. Thus,

I
S

(0)e w0t (1.122a)
5t (0)e" . (1.122b)

o= pé+ pol. (1.123)

Substituting this expression into Eq. (1.118), we obtain

= (” o W) 21y el —af e, (1.124)

where we have also used the expression of the transverse electromagnetic field
operator E | (ro) given in Eq. (1.86).

Last, according to the expression of the total Hamiltonian in Eq. (1.116),
the Hamiltonian describing only electromagnetic degrees of freedom is Hp | [Eq.
(1.84)]. The total Hamiltonian (in the multipolar form) describing the interaction
between the electromagnetic field and the two-level quantum emitter thus becomes

- - - A N 1 wo L
A™ = Hpy + Hop + H}'" = hwy (af{saks + 2) +h 6

hw , )
k,s

This Hamiltonian facilitates the analysis of light emission from a quantum emitter
and, thus, is crucial in this thesis. For example, it facilitates (i) to obtain the
Heisenberg picture of the transverse electric field operator E 1, as shown in Section
1.2.7, and (ii) to introduce the concept of spontaneous emission, as shown in
Sections 1.3 and 1.4.5.

(1.125)
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Chapter 1. Interaction between light and quantum emitters

1.2.7 Electric field emitted from a two-level quantum
emitter

In this section, we derive the electric field emitted from a quantum emitter (QE)
using a fundamental approach based on the interaction between the QE and the
vacuum field. We begin by recalling that, in the Schrédinger picture, the transverse
clectric field operator E 1 (r) is given by a sum of annihilation dys and creation &LS
operators and it is formally identical in both free space [Eq. (1.46)] and in the
presence of radiation sources [Eq. (1.86)]. However, as discussed in Section 1.2.3,
the time evolution of ays and dLS is influenced by the presence of radiation sources.
Indeed, we next show that by deriving the Heisenberg evolution of the electric field
operator E | (r,t) in the presence of a QE, we can determine how the QE affects
the total electric field and extract the expression of the electric field radiated from
the QE.

To facilitate the derivation of the Heisenberg-picture operator E, (r,t), we
first consider the usual decomposition into two adjoint operators that are known

- (+
as positive-frequency transverse electric field operator E(l )(r,t) and negative-

frequency transverse electric field operator ]:35__)(1‘, t). In the Schrodinger picture,
this decomposition can be expressed as

(r), (1.126)

where

N i )
B () = i) \ ﬁ Qg™ Texcs, (1.127a)
k,s
(= i ‘
B0 =Y \/; ol ey, (1.127b)
k,s

We recall that, throughout this thesis, the polarization unit vector ey is chosen to

be real. The operators ES_JF) (r) and Ef) (r) are referred to as positive-frequency and

negative-frequency operators because in free space the former rotates at ‘positive
frequencies’ [proportional to exp(—iwgt)], whereas the latter does it at ‘negative
frequencies’ [proportional to exp(iwit)]. As these operators are adjoint to each

other (which is preserved by the time evolution), we focus here on the calculation

- (+
of ES_ )(r, t).

- (+

Moreover, the calculation of E(L )(r,t) is further simplified by performing
the rotating-wave approzimation (RWA) in the Hamiltonian that describes the
interaction between the QE and the electromagnetic vacuum field [Eq. (1.124)].
The RWA consists in neglecting the terms that simultaneously involve (i) a photon
creation operator &LS and the raising fermionic operator ¢, and (ii) a photon
annihilation operator axs and the lowering fermionic operator . These terms do

not conserve the total number of excitations in the full system (including photons
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1.2. Interaction between the quantized electromagnetic field and a QE

and emitter excitations). The Schrodinger-picture interaction Hamiltonian under
the RWA thus becomes

.FIFWA = FLZ |:gks(l‘0)6'Tdks + gis(rg)ﬁﬁzié} 5 (1128)
k,s

where we have defined the coupling coefficient

, k * ikr
J(r) = —i [ = e 1.129
(4% (I‘) g 250hv €ks€ ( )

- (+
As already mentioned, we focus on deriving the Heisenberg picture of E(l )(r),
which is proportional to the operators axs. The equation of motion of dy, is given
by the Heisenberg equation [Eq. (1.48)], which yields

d i . .
77 s = _ﬁ[aks,HQE + Hpy + HYA

= —1 aksawk/&;ifs,&k/s’ + g;s(ro)aﬁl,s, (1130)

= —iwklks — iglts(r())&a

where we have used the commutation relations of the annihilation and creation
photonic operators [Egs. (1.42a)—(1.42b)]. In the last line of Eq. (1.130), we can
identify a term that is proportional to dys, which comes from the Hamiltonian
Hp | in the commutator in the first line and, provides the free-space contribution
to the positive-frequency electric field operator. Additionally, another term appears
in the last line of this equation, which is proportional to the lowering operator &
of the QE and emerges from the contribution from the interaction Hamiltonian
ﬁIRWA in the commutator in the first line. Integrating in time Eq. (1.130), we
obtain

t
e (8) = € — e 1) [ dra(rete. (1.131)
0

Next, substituting Eq. (1.131) into Eq. (1.127a), we find

t
£ () = B () +Z ko™ g (o) / dr6(r)e,
0

(1.132)
with E(l Eree( ) the free-space contribution, which is given by
Bt Z aks eilkr—wit)g (1.133)

Additionally, the last term in Eq. (1.132) can be identified with the electric field
operator (evaluated at position r) of light emitted from the QE, which in the
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Chapter 1. Interaction between light and quantum emitters

following we denote as ]:](LJF()QE(I", t).

- (+
Next, we focus on simplifying the expression of E(L()QE(r, t). To this end, we

transform the summation over k into an integral, according to

Vv /27r /71' . /oo )
- — do dfsin 6 dkk”. 1.134
g’; (2m)3 ZS: 0 0 0 ( )

This transformation is well justified because we assume very large quantization
volumes (V — ©0), as discussed in Section 1.1.3. 6 and ¢ are the polar and
azimuthal angles of the wavevector

k = k(sin 6 cos pe, + sin 6 sin pe, + cosfe;). (1.135)

Furthermore, we assume that r — rg is aligned along the z-axis, without loss of
generality. In this way,

~(+) Ty iker —idwt ’ A Wi T
E| qr(rt) = Z 2€0Vek86 Irs(ro)e ; dré(r)e
k,s

- o) t 27 T
c ~ iker . i S * *
= m/o dkk?’/0 dTO'(T)eZkC /0 dd)/o d sin ekt cos 0 g (U - exs) exs,
(1.136)

with R = |r — rg|. To compute the integral in k-space we need to choose some
polarization unit vectors ey fulfilling the transversality condition in Eq. (1.20)
and the orthonormality condition in Eq. (1.21). Here, we select

éx1 = — cos 0 cos pe, — cos fsin ge, + sinfe., (1.137a)
éka = sin ge, — cos pe,,. (1.137b)

In this way, we find that the integrals over the angles 8 and ¢ become

1 2T T 4
47 0 d¢/o desinﬁzs:(u* .eks)*elchose
27 P
- L el / df sin ge’k Tt cos? [( sin ¢e, — cos (i)ey) < sin ¢p,; — cos d)ﬂy)
4 Jq o

+( — cos B(cos pe, + sin e, ) + sin 9ez> < — cos 0(cos Py + sin o) + sin Huz)]

sin(kR) — kR cos(kR kR)? — 1] sin(kR) + kR cos(kR
- ez:uzz ( ) (kR)3 ( ) + (emﬂx + eyﬂy) [( ) ] (i(R))3+ ( ) .

(1.138)

This expression can be further simplified in the far-field limit (kR > 1), where the
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1.2. Interaction between the quantized electromagnetic field and a QE

properties of light emitted from the QE are typically measured. In this limit, we
obtain

27 ) ‘ in(kR
- d¢/ d6 Smez )" ety BT (€xfis + eyﬂy)smlfR >7
(1.139)

which have vanishing contribution in the z-direction, as we have assumed R =
r—ry = Re,. We note that e, +eyu, = —Rx (Rx u)/R?, which can be used to
generalize Eq. (1.139) to arbitrary orientations of R. Thus, the positive-frequency
transverse electric field operator in the far-field limit becomes

-~ (+) kR>1 icR X R X @) 3 zkc(‘r t) SILKL) sin(kR)
_ 2 / dka/ dri(r ( K[R+e(r—t)] _ eik[—R—&-c(-r—t)]).
wwo
(1.140)
Here, we have introduced
wilul
Eu(r)=—2""_er x (er x e,), (1.141)

4megRe?

where eg = R/|R| and e,, = p/|p| are the unit vectors along the directions of R
and p, respectively. Notably, the positive-frequency electric field radiated from a
classical point dipole, with dipole moment g and rotating at frequency wy, is [124]

|N| —i(wot—k- —i(wot—k-
B 00) = 12 e x (e x e)e™ (0 R ) g (e R (11g2)

Thus, £, (r) corresponds to the positive-frequency electric field radiated from this
classical point dipole, except for the phase e *«ot=KR) Within the quantum-
mechanical description, this phase is encoded in the Heisenberg-picture evolution
of the operator &, as shown below [Eq. (1.147)]. Hereafter, we refer to £,(r) as the
vector amplitude of the (positive-frequency) electric field operator radiated from a
classical dipole in the far-field zone.

We recall at this point that the interaction Hamiltonian is considered under
the RWA, which neglects the terms proportional to axs6 and &LSN. If these terms
were considered, a term proportional to & would emerge in Eq. (1.130) and the
whole derivation would become more intricate. However, the effect of these terms
can be compensated within the RWA by extending the lower limit of the k-integral
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from 0 to —oo, see Ref. [117]. In this way, we obtain

3 t [e'e]
ES:F()QE(ra t) kR>1 _ gl»l'(r)2c / dT@'(T) / dk k2 (eik[R-‘rC(T—t)] _ eik[_R+C(T—t)])
’ 27TW0 0 — 0

gl—b(r)cg ¢ A~ 1 d2 o 1k[R4+c(T7—t ik[—R+c(T—t
=— Sros? /(JdTU(T)gﬁ[mdk eiklBE+e(r=t)] _ gikl (r=t)l

= Jgt:?[m&(ﬂ(ﬁ(&(f +T—t) —6(—§ +r—t))7

(1.143)

where, to obtain the equality in the second line, we have used the Leibniz integral
rule, and to obtain the equality in the third line, we have used

/ dre'™ = 216(x). (1.144)

Using the properties of the Dirac delta distribution and again the Leibniz integral
rule, one can show for an arbitrary function f(z) that [131]

b d?*5(x — x0) *% if g € [a, b]
/ def(e)——s5— = e—y . (1.145)
“ 0 if xo ¢ [a, b]
In this way, the electric field operator in Eq. (1.2.7) becomes
- (+) kr>1 Eulr) &,
ELQE(I‘, t) —_— — Z% ﬁU(T) n . (1146)

To solve the time derivative of 6(7) in this expression, the usual approximation
consists in neglecting the interaction of the QE with the electromagnetic field [117].
From Eq. (1.121a), this approximation yields %6(7) = —iwpd (7). We find

B () 2 £, o - 1), (1.147)

Therefore, we have demonstrated that, in the far-field limit, the positive-frequency

electric field operator (evaluated at position r and time t) of light radiated from the

QE is given by the product of (i) the vector amplitude &€ ,(r) of the field radiated

from a classical electric point dipole, and (ii) the lowering operator 6(t — R/c)
evaluated at the retarded time ¢t — R/c [121, 132].

In summary, the total transverse electric field operator in the Heisenberg picture

is obtained as the sum of the free-field operator and the field radiated from the QE

EJ_(I”, t) = EJ_,free(ry t)+ EJ_,QE(ra t), (1.148)
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where the second term is given in the far-field limit as

. R R
B, qu(r t) 25 £, (r)6(t — D HELmETE- 7). (1.149)

1.3 Wigner-Weisskopf approximation and
spontaneous emission from a single quantum
emitter

We introduce in this section the concept of spontaneous emission of photons
from the QE. To this end, we assume that the QE is initially inverted (which
means that the electronic excited state |e) is totally populated at time t = 0)
and that the electromagnetic field is in the vacuum state |vac). Thus, at time
t = 0, the complete system is in the product state |¢)(0)) = |e) |vac). Next, we
compute the time evolution of the quantum state |1(t)) using the Wigner- Weisskopf
approzimation (WWA), which was originally introduced in Ref. [16]. In this way,
we show that the population of the electronic excited state decays exponentially in
time due to the interaction with the electromagnetic modes of the vacuum field.
We mainly follow the procedure described in Refs. [119, 124].

In a nutshell, the WWA relies on proposing an ansatz for |¢(¢)), whose equation
of motion is then derived using the Schrodinger equation and solved assuming
that the dynamics of the system is Markovian. The full derivation is facilitated by
considering the interaction Hamiltonian under the rotating-wave approximation
(RWA). Importantly, the RWA does not affect the spontaneous emission rate
of photons from the QE, which is shown in Section 1.4.5. Additionally, the
application of the WWA is simplified in the interaction picture, where the interaction
Hamiltonian (under the RWA) is given by

N 1 A . . 1 A .
H?WA(t) = exp [ﬁ(HQE + HFJ_)t:| HFWAeXp[ — ﬁ(HQE + HFJ_)t:|
‘ . (1.150)
= hz [gks(ro)(ﬁ&ksel(“o_“k)t + glﬁs(ro)A&Tkse_z(“’o_‘“k)t] .
k,s

In the interaction picture, the dynamics of the quantum state is governed by the
Schréodinger equation

P2 19(0) = AT [(t) (1151)

The interaction picture is discussed in more detail in Appendix B.

The next step consists in proposing an ansatz for |1 (t)). Taking into account
that, under the RWA, the interaction Hamiltonian conserves the total number of
excitations of the system (between photons and emitter excitations) and that we
assume that the initial state is [1(0)) = |e) |vac) (i.e., with one excitation in total),
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we propose
[h(t)) = c°(t) |e) |vac) +chs )g) af, |vac) . (1.152)

The first term on the right-hand side of Eq. (1.152) corresponds to the electronic
excited state still being populated at time ¢, with probability amplitude ¢¢(¢). In
contrast, the emitter is in the electronic ground state |g) in each term in the sum
over (k,s) in Eq. (1.152). Each of the states in this summation thus corresponds to
the emitter having already relaxed at time ¢ via a radiative decay from the excited
state to the ground state, which leads to the emission of a photon in electromagnetic
mode (k, s) and has probability amplitude ¢j (t). The equations of motion of the
probability amplitudes are obtained by substituting the proposed ansatz into the
Schrodinger equation in Eq. (1.151). In this way, we find

z—c chs gxs(ro)e 1(“’0_““”, (1.153a)

d |
i3 (1) = (D) g (o )e T 0, (1.153b)

Moreover, we formally integrate in time both sides of Eq. (1.153b), which yields

t
e (1) = g (x0) [ e (@) (1.154)

Substituting this expression into Eq. (1.153a), we obtain
t ‘ )
- / Aty |gies (o) [P (1 )0 =), (1.155)
0 k,s

We now introduce the change of integration variable 7 =t — ' and, additionally,
transform the summation over k into an integral by using Eq. (1.134). In this way,
we find

d 1 2m ™
—c(t) = ——— d dfsin 0| - eys)?
dtc ( ) (27TC)3250h ;/0 ¢/0 S |[.L €k, |

(1.156)
t 0o
X / dref(t — T)ei“‘”/ dwywi e xT,
0 0

Here, we have used the expression for gis(ro) given in Eq. (1.129). The frequency
integral in Eq. (1.156) diverges at 7 = 0, whereas for increasing values of 7 it
decays rapidly due to the oscillations provided by exp(—iwy7) (see Refs. [124, 133]
for further discussion). Consequently, we assume that ¢°(t — 7) evolves much
slower than the other terms inside the 7-integral in Eq. (1.156), which allows us
to replace c¢(t — 7) by ¢¢(¢). Additionally, the contribution to this integral for
increasing values of 7 becomes negligible compared to the divergent contribution at
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7 = 0, allowing us to extend the upper limit of the 7-integral from ¢ to co. These
approximations result in

d . . 1 2m ™ ) )
ac (t) = —C (t)@mwlgé dd)A d081n9|llr'eks|

o0 oo .
X / dwkwﬁ/ dret@o—wT,
0 0

On the right-hand side of this equation, only c(¢) depends on time. Thus, with the
approximations introduced above, ¢(t) necessarily follows an exponential decay in
time, which agrees very well with the experimental measurements for the type of
QEs in which we are interested in this thesis. Small deviations from this exponential
decay can be obtained going beyond these approximations [119, 134, 135], which is
beyond our scope.

In the following, we derive the expression of the rate of the exponential decay of
c¢(t) by solving all the integrals in Eq. (1.157). To evaluate the time integral, we
apply the Sokhotski-Plemelj theorem from complex analysis [136—138], which yields

(1.157)

/ dLUf(OJ) / dt/ei(wo*w)(tft’) — / dwf(w) |:776(w0 — w) + ’LpV
0 0 0

wo—w|’

(1.158)

where f(w) is a function of w, and p.v. denotes the Cauchy principal value of the
w-integral. Consequently, we obtain

d 1 27 T
—cf(t) = —c*(t) ———— d df sin 6
at© ®) i )(27rc)32€0h;/0 ¢/0 St

N (1.159)
X / dwic|p - exs|*wi [W&(wo — wk) +ip.v.
0

1

W — Wk '

The contribution from the principal value integral yields a shift in the transition
frequency of the QE, known as Lamb shift. This perturbation in the transition
frequency can be better understood taking into account that the quantum emitter
is not an isolated system, but it interacts with the electromagnetic field, which
has non-zero energy even in its ground state |vac) [Eq. (1.61)]. Importantly, this
frequency shift is typically very small for QEs with optical transition frequencies
and, additionally, the frequency value that can be measured in experiments (for
example, via the emission spectrum described in Section 2.1.5) contains the effect of
this shift. Thus, we ignore in the following the effect of such principal value integral
and consider that wqy already includes the Lamb shift induced by the vacuum field
(see Refs. [119, 124] for further discussion).

Additionally, to compute the integral proportional to §(wg — wg), we use the
units vectors ey, in Egs. (1.137a)—(1.137b). In this way, we can solve the integrals
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in the polar and azimuthal angles in Eq. (1.159), which yields

2 ™ 2m T
Z/ d¢/ d@sin@\u~eks|2:Z/ qu/ df sin 0
— Jo 0 - Jo 0
X {ui (cos? O cos® ¢ + sin? ¢) + ,uz(cos2 6 sin? ¢ + cos? ¢) + p? sin? @

+ g pty (c08® O — 1) cOS @SN ¢ — fu 1, cOS OSin O cos ¢ — fuy p1, cos O sin O sin ¢

87
_ 2
= |pl 5

(1.160)

Substituting this result into Eq. (1.159) and using the properties of the Dirac delta
distribution to evaluate the k-integral, we find

d C 287T & 3
—c(t) = —c* () ———— — dkk°md -k
GO =~ ) gt WP [ e — )
(1.161)
— () wi lpf®
6eohme3

Finally, by integrating both sides of this equation over time and imposing the
initial condition ¢¢(0) = 1, we find that the population of the electronic excited
state |e) at time t is given by

2 e()]2 W8|N|2
[ {e[y()) |7 = |c“(t)|" = exp| — Wt =exp| —Yot|, (1.162)
where we have defined e
WolM

The population of the electronic excited state |e) of the QE decays exponentially
in time with rate 7, which thus corresponds to the spontaneous emission rate of
the QE. We emphasize that the loss of population of the QE is balanced with the
increase of population of the modes (k,s) of the vacuum field and, thus, spontaneous
emission can be interpreted as induced by vacuum fluctuations [119]. Additionally,
substituting

(t) = exp[ - 72015} (1.164)
into Eq. (1.153b), and solving the time integral, we find
. I (r0) Y .
9 (4) = — s 1-— — =+ - t)]. 1.165
ol = =iz et s [1 - (- R )| a0

Thus, the probability that the radiative decay of the QE leads to the emission of a
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1.4. Markovian master equation

(d) A =Hs+Hp+Hpp (b)
) losses
r Hp pp Yap()

Figure 1.2: Schematic representation of an open quantum system. (a) A system of interest
S (red box) interacts with a bath B (blue box). The system of interest is described by the
Hamiltonian Hg and its dynamics by the density matrix pg = Trp(p), with p the density matrix
of the global system S + B and Trp the partial trace over the Hilbert space of B. On the other
hand, the bath is described by the Hamiltonian Hp and its dynamics by the density matrix
pB = Trs(p). The interaction is governed by the Hamiltonian H;. (b) The application of the
Markovian master equation (MME) reduces the Hilbert space to that of the system of interest
alone. The Hamiltonian of S is transformed to H s + fILamb, where Hpamp is the Lamb-shift
Hamiltonian. Additionally, the MME governing the reduced dynamics of S includes incoherent
terms (losses), with decay rates represented by v45(w).

photon in mode (k,s) is

|gks(r0)|2
(70/2)? + (wo — wi)?

1 _ 67[%+i(w07wk)]t

| (vac] aws [9(1)) * = |, (1) =

(1.166)
which has a Lorentzian distribution with central frequency wg and linewidth ~y.

1.4 DMarkovian master equation

We introduce in this section the Markovian master equation (MME), which is
a useful tool to address the dynamics of open quantum systems and plays an
important role in this thesis. For example, the MME can be used to trace out
the electromagnetic degrees of freedom in the description of the interaction of a
quantum emitter with the vacuum field, obtaining an alternative derivation of the
spontaneous decay rate 7 to that presented in the previous section. To introduce
the MME, we first present the concept of open quantum system.

1.4.1 Open quantum systems

An open quantum system is any system of interest S (for instance, a quantum
emitter) that interacts with another quantum system B that is not of interest. The
latter system is often called bath, reservoir or simply environment and can involve
a finite number of degrees of freedom (e.g., particular modes of an optical cavity)
or an infinite number of degrees of freedom (e.g., the vacuum field). The Hilbert
space of the total system S + B is given by the tensor product Hg ® Hp, with Hg
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Chapter 1. Interaction between light and quantum emitters

the Hilbert space of S and Hp the Hilbert space of B, as schematically depicted in
Fig. 1.2a. Additionally, we denote by Hyg the Hamiltonian of the system of interest,
by Hpg the Hamiltonian of the bath and by H 1(t) the interaction Hamiltonian, so
that the total Hamiltonian (in the Schrodinger picture) is given by

H(t) = Hs + Hp + H;(1). (1.167)

Further, the state of the total system can be described in general by a density
matrix p (see Appendix A for a review of the density matrix formalism). The time
evolution of p is governed the von Neumann equation

Do) = A1), (1), (1.168)

as described in Appendix B. Solving this equation can be very complicated. However,
taking into account that only the subsystem S is considered of interest, different
techniques can be applied to trace out the degrees of freedom of the bath and solve
the reduced density matriz ps = Trp(p), with Trp the partial trace over the Hilbert
space of the bath (see Appendix A). These techniques rely on different assumptions
regarding the system and the reservoir [139]. In particular, the Markovian master
equation (MME) that we use in this thesis is mainly based on assuming that the
interaction between S and B is weak, and that the decay time of B is much faster
than the decay time of S. Applying the MME reduces Eq. (1.168) to the Hilbert
space Hg. In this way, the Hamiltonian in the commutator does not include
the bath Hamiltonian and neither the interaction Hamiltonian. In contrast, this
commutator includes only the original system Hamiltonian Hg and an additional
Hamiltonian IflLamb, called Lamb-shift Hamiltonian, which accounts for the effect
of the bath on the coherent dynamics of S. Apart from the commutator, additional
terms emerge in the equation that governs the dynamics of the reduced density
matrix ps = Trp(p) resulting from the application of the MME. These latter
terms make the time evolution of the reduced system non-unitary and describe the
incoherent dynamics of the system, which can be a consequence of the transfer
(loss) of energy from S into B, see Fig. 1.2b.

1.4.2 Microscopic derivation of the Markovian master
equation

The derivation of the MME that we present here is based on the procedure described
in Ref. [139]. This derivation is facilitated by the use of the interaction picture
(see Appendix B for a brief introduction to the interaction picture). Once the final
form of the MME is obtained, we then come back to the Schrédinger picture.
The starting point to derive the MME is the von Neumann equation in the
interaction picture [labeled with the superscript (I)], which is given by

G000 =~ 0,50 1) (1.169
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1.4. Markovian master equation

Here, we have introduced the density matrix in the interaction picture

p(t) = exp {Z(ﬁs - ﬁs)] p(t)exp [ - %(ﬁs + ﬁg)} : (1.170)

as well as the interaction Hamiltonian in the same picture

it
h

1t

() = eXP[ =

(Hs + I?IB)} ﬁ,(t)exp[ (Hs + ﬁB)} : (1.171)
with the initial time fixed at t; = 0. This derivation assumes that both the
system and bath Hamiltonians are time-independent, as otherwise the calculation
of the interaction picture density matrix (/) (¢) and interaction Hamiltonian H’}I) (t)
become more complicated [139-141].

Next, integrating both sides of Eq. (1.169) results in

.t

. . v A .

PO =p"0) - / dt' [ (t'), 5 (t')). (1.172)
0

This expression can be inserted again into Eq. (1.169) to obtain

1

d A . T L .
—p D) = == | B (1), 5D (0) - & / a' (@), )@ (1.173)
dt h o

Taking the partial trace over the bath Hilbert space (Appendix A) on both sides of
this equation leads to

D)l

(1.174)

At this point we introduce the key assumptions that are made to derive the

MME. First, we note that without loss of generality, the interaction Hamiltonian
(in the Schrodinger picture) can be written as

>

d . i N . . N
gi?s (O =3 Tali0.500)] - 5 | dt'Te [HI(” (1), 1" (¢,

H =Y Sa®Ba, (1.175)

with S’Q = 5’& and éa = é& Hermitian operators acting on Hg and Hp
Hilbert spaces, respectively. The first assumption consists in considering that
the expectation values of the bath operators vanish at all times (see Appendix B),
such that

(B,) (t) = 0. (1.176)

As a result, the first term on the right-hand side of Eq. (1.174) vanishes.

The second assumption is known as the Born approrimation and is based on
considering that the coupling between the system of interest and the bath is very
weak, such that the effect of the interaction on the reduced density matrix of
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Chapter 1. Interaction between light and quantum emitters

the bath p A( ) = Trg [p)(t)] can be neglected. This approximation allows us to
appr0x1mate the total density matrix as a tensor product:

R (I (I

PO = p) (1) © ply, (1.177)
where ﬁg) is time-independent (e.g., a thermal state). The first two approximations
together simplify Eq. (1.174) to

d (1 1 (1 (T (I (I
S0 =~ [ a0, 1O 0] )

which is known as Redfield equation.

The third assumption is known as Markovian approximation and consists in
assuming that the dynamics of the system does not depend on the state at past
times. More technically, this assumption requires that the time scale over which
ﬁg)(t) varies appreciably is much larger than the decay time of the two-time

bath correlation functions (3&1) (t)BéI)(t'» and, thus, than the time in which the

integrand on the right-hand side of Eq. (1.178) vanishes. Thus, ,43591) (t') inside the
integral on the right-hand side of Eq. (1.174) can be replaced by ﬁg)(t). Further,

introducing the change of integral variable 7 =t — t/, we obtain

0 =

4 [ arm 00 - )] )

Th2
The fast decay assumed for the bath correlations additionally allows for extending
the upper integral limit from ¢ to oo, which finally yields the Markovian master
equation

o0
G000 = [ arma | B ¢ -0 000w as0)
We emphasize that, as a consequence of the Markov approximation, the MME
cannot be used to resolve the dynamics of ,ﬁ(s]) (t) over times in the order of the
decay rate of the bath correlation functions. Equation (1.180) enables to address
the reduced dynamics of the system of interest via the interaction Hamiltonian in
the interaction picture.

Furthermore, the application of the MME to each particular scenario can
be facilitated by rewriting the general form in Eq. (1.180) in terms of the
eigenoperators of the system of interest. To this end, we again use the expression
of the interaction Hamiltonian in Eq. (1.175) and the spectral decomposition of
the system Hamiltonian (in the Schrodinger picture), which is given by

Hg = Ze e} {e] . (1.181)

€
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1.4. Markovian master equation

The set of differences between eigenenergies of the system Hamiltonian {fiw = ¢’ —¢}
is known as Bohr frequencies of the system. For each system operator S, and Bohr
frequency w, we define the operator

Z | | S |6 | 56/,e+wha (1182)

where the expression inside the summation on the right-hand side is nonzero only
for those pairs of eigenstates |¢') and |e) whose eigenvalues yield a Bohr frequency
w = (¢’ —€)/h. Importantly, S, (w) is an eigenoperator of the system Hamiltonian,
meaning that [Hg, Sq(w)] = —wSs(w). These operators satisfy

Sa = Salw), (1.183)

which is a consequence of the completeness relation of the eigenstates of Hs.
The operator S, (w) in the interaction picture becomes

S (wit) = exp [it(f{s + ﬁB)] S (w)exp [ —it(Hg + ﬁB)] = e S (), (1.184)

which can be obtained using the expansion theorem in Eq. (1.106). Thus, the
interaction Hamiltonian in the interaction picture can be written as

A0 =Y 8D (wst) @ BO @) Ze*wts (1) (1.185)

a,w

Next, we substitute the expression of IA{I(I)(L‘) into the MME [Eq. (1.180)], which
yields

< =2 > T Ty >(Sﬁ< )b (I)(t)gi(w’)—Sl(w’)s’ﬂ(w)ﬁg)(t))

w,w’ a,B

+ h.c.,
(1.186)

where h.c. represents the Hermitian conjugated expression. Additionally, we have
defined

N

~ drer (BO®BY (- 1)), (1.187)

corresponding to the Fourier transform of the bath correlation function. If
[Hp, pp] = 0 (meaning that pp is a bath stationary state), we can simplify

(BO MBS (t =) = (B (1) By (0)), (1.188)

which ensures that I',3(w) becomes time-independent.
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Chapter 1. Interaction between light and quantum emitters

The MME [Eq. (1.186)] can thus be rewritten as

d (1 T A (I
%pg)(t) =~z [HLamb;pg)(t)]

oo Las(W) + Th, (W) N ) (1.189)
+ Z Ze ( )t 5 D[SB(OJ), Sa(w/)]pgf) (t),

w,w’ a,B

where we have introduced the Lamb-shift Hamiltonian

] (w—w’ Faﬂ(W) - *a(w/) A ~
Hyomp = »_ Y el 5 b T (W')8s(w), (1.190)

w,w’ a,B
as well as the dissipator superoperator D, whose action is defined as
D[01,05)p = 20190} — 0§01 — pOL 0. (1.191)

The Lamb-shift Hamiltonian fILamb describes the effect induced by the bath in the
coherent dynamics of S. In contrast, the second line in Eq. (1.189) corresponds to
the incoherent dynamics induced by the bath in S, which can be due to the loss of
energy from S to the bath and that implies that the evolution of the open system
is non-unitary.

Importantly, the MME does not guarantee the complete positivity of the reduced
density matrix at any time ¢ [139, 142, 143], which could yield eigenstates with
unphysical negative populations. To solve this problem, an additional assumption
is required, which is known as rotating-wave approximation (RWA)!'. The RWA
consists in neglecting the rapidly oscillating terms in Eq. (1.189), which are those
at w # w’. This approximation is valid as long as the relaxation time of S is much
faster than 1/(w — w’). The master equation thus reduces to

G000 =3 [ A, 60 0| + 5 % 25 DI85 ). 8, @10, (1192)

dt ey

where we have introduced the decay rates

Yap(w) = Tap(w) +Tha(w), (1.193)

and the Lamb-shift Hamiltonian under the RWA
HEVA =373 Aup(w)Sh(w)Ss(w), (1.194)

w a,p

I This is the second rotating-wave approximation (RWA) introduced in this thesis. On the
one hand, we have applied the RWA to the Hamiltonian describing the interaction between the
QE and the electromagnetic vacuum field [Eqgs. (1.128) and (1.150)] in Sections 1.2.7 and 1.3,
which neglects terms that do not conserve the total number of excitations. On the other hand,
the RWA applied here consists in neglecting fast oscillatory terms induced by the bath in the
reduced dynamics of the open system, both in the Lamb-shift Hamiltonian and in the dissipators.
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1.4. Markovian master equation

with frequency shifts given by

Pap () = Tja(e)

Aap(w) = 5; (1.195)

The master equation in Eq. (1.192) is written in the interaction picture. Coming
back to the Schrodinger picture, we obtain
d v A - R Yap(W & & R
Gos0) = 1 | s+ A1 s(0)] + 3 50 22D ), 8wl
w a,p

(1.196)

The Lamb-shift Hamiltonian (before and after the RWA) is equal in the interaction
picture and in the Schriédinger picture because [E[Lamba-ﬁs] = 0. Finally, we
note that the Schrédinger-picture evolution of the density matrix pg(t) allows
for deriving time evolution of the expectation value (O) (t) = Tr{Opg(t)} of any
operator O in Hg. Specifically, using Eq. (1.196), we obtain

h
+ 25022 (18100, 018 @)ps(0) } + T 810 8s(las(0)} ).

w a,p

%000 = prvf f1s + A, Olostt)

1.4.3 Lindblad master equation

In this section, we present the Lindblad master equation, which is an alternative
form of the MME in Eq. (1.196). This equation provides further insights into the
dynamics of open quantum systems.

To derive the Lindblad master equation, we first construct a set of matrices
[7(w)], each with elements v,5(w) [Eq. (1.193)]. We then diagonalize the transpose
of each of these matrices. In particular, we express the unitary transformation that
brings [y(w)]7 into diagonal form as [U(w)][y(w)]T [U(w)]" and denote the resulting
eigenvalues as v, (w). We then use the unitary matrix [U(w)] to compute the set of
operators

La(w) =Y Uss(w)85(w), (1.198)
B

which are called Lindblad operators .
Importantly, this unitary transformation enables to rewrite the MME in Eq.
(1.196) as
d i

s == | Hs+ ffﬁm,ﬁs@)} 2 Wit wipst), 1109)
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Chapter 1. Interaction between light and quantum emitters

which is called Lindblad master equation. Here, we have introduced the Lindblad
dissipator

D[f/a (W)lps = D[ﬁa (w), Lq (w)]ps

. . . . . . 1.200
= 2L (w)psL (w) — LI (W) Lo (w)ps — psLl (w)La(w). ( )

We emphasize that Eq. (1.199) involves a single summation over « (apart from the
summation over the Bohr frequencies), instead of the double summation over «
and f in Eq. (1.196).

Last, we discuss two interesting properties of the Lindblad master equation:

o The quantities v, (w) are non-negative, as the matrices [y(w)] can be shown
to be positive [139]. This property reinforces the interpretation of v, (w) as
decay relaxation rates, corresponding to the inverse of some relaxation time.

e The dynamics of the system is invariant under inhomogeneous transformations
of the form [139]
La(w) = La(w) + la(w), (1.201a)
ﬁs + ﬁll?:yn‘?) — ffs + IEIE{:YH‘?)

+ 252 3D valw) <z;(w)ﬁa(w) — za(w)ﬁ;(w)>, (1.201b)

with I, (w) a complex number. This property allows for choosing traceless
Lindblad operators, which eventually can help to simplify the analytical
calculation of the time evolution of pg(t).

1.4.4 Adjoint master equation

In this section, we introduce the extension of the Heisenberg equation [Eq. (1.48)]
to the case of open quantum systems. To this end, we consider an open system
whose Schrédinger-picture dynamics is governed by the Markovian master equation
in Eq. (1.196). The Heisenberg-picture evolution of an arbitrary operator O in Hg
can be obtained as [139]

d A _ bA ] FTRWA
S0(t) = —+(0(), Hs + A

#3030 229 (1500, 001850 + SO0, st

w a,pf
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1.4. Markovian master equation

which is known as adjoint master equation. From this equation, we can derive the
time evolution of the expectation value of O as

4 (010 = {15 + AR, OColps |

+ 305 229 (11810 001Sa(wlps | + Tr{ 8100, Satwlls } ).

w a,p

(1.203)
We emphasize that the time evolution of (O) (t) can be obtained either using the
Heisenberg picture, through Eq. (1.203), or using the Schrodinger picture, through
Eq. (1.197), with identical results.

1.4.5 Spontaneous emission from a single quantum emitter

We use in this section the Markovian approximation to trace out the electromagnetic
degrees of freedom and derive a MME that describes the reduced dynamics of a QE.
Thus, the QE plays the role of system of interest here, whereas the electromagnetic
vacuum field is considered as a thermal bath at temperature T'. In this way, we
obtain an alternative derivation of the spontaneous decay rate ~yy of the QE to that
derived using the WWA in Section 1.3.

The first step to derive the MME consists in decomposing the Hamiltonian
(in the Schrédinger picture) describing the interaction between the QE and the
electromagnetic vacuum field as a summation of Hermitian system (QE) operators
S, and bath (field) operators B.,, as described in Eq. (1.175). Importantly, we
consider here the complete interaction Hamiltonian H}*” [Eq. (1.124)], without
applying the RWA that neglects the terms that do not conserve the number of
excitations (6dys and 6T&Ls). In particular, we use the decomposition

H™ =1 Sis ® Bus, (1.204)
k,s

where the system and bath operators are given as

Sis =85, = 11 - exs6 + p* - exs6, (1.205a)

A pt Wk . iker At —iker
Bys = By, = —i,/ ENAY {akse o — a;r{se of. (1.205b)

Notably, as the electromagnetic field is assumed to be at thermal equilibrium (at
temperature T), the bath is here in the stationary state

sth _ exp(—Hpy /kpT)
P Trfexp(—Hpy [kpT)]’

(1.206)
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w=( —¢)/h e/h e'/h ley | |€")
wo —wo/2 | wo/2 | |g) | le)

—wo wo/2 | —wo/2 | le) | |g)

0 —wo/2 | —wo/2 | |g) | |9)

0 wo/2 | wo/2 |le) | le)

Table 1.1: Bohr frequencies w of the Hamiltonian ﬁQE = WQ—O&Z of the QE considered as the

system of interest. |¢) and |¢’) are eigenstates of Hqp, whereas ¢ and € are its eigenvalues.

which is a thermal state, with kg the Boltzmann constant and H F1 given in Eq.
(1.84). The bath operators satisfy (Bi) (t) = Tr[B(I)( t)p%] = 0, as required to
apply the MME [see Eq. (1.176)].

Next, we compute the set of Bohr frequencies of H QE = %0.. This Hamiltonian
has eigenstates |g) and |e), with eigenvalues —fiwg /2 and hwg /2, respectively. Thus,
the Bohr frequencies are wg, —wqg, and 0, as summarized in Table 1.1. In this
way, the eigenoperators of the Hamiltonian of the system of interest [Eq. (1.182)]
become

Sis(wo) = 19) (9] Skes €} (€] = - exs6, (1.207a)
Sis(—wo) = le) {e| Sws 1) (g = 1" - exsd ™, (1.207b)
Sies(0) = 19) (9] Skcs 19) (gl + le) (€] Sics le) (e] = 0. (1.207¢)

Moreover, we compute the bath correlation functions

5D (RO VWkWk
BY(r)B =
(Bus (1) B (0)) = S0

. . A A
% <|:aksez(k-rowk‘r) _ a;f(sez(k-rowk‘r):| |:aL’s’eZk ‘ro ak/s’elk B >

— e g e+ (14 e
(1.208)

where, in the last line, we have used the commutation relations in Eqgs. (1.42a)—
(1.42b). Additionally, we have introduced the electromagnetic thermal population
in mode (k,s) as

exp [ - ]Z:‘Zi}

1 —exp{— ,?;"l}}

nilh = Tr(aksaksﬁgb) = (1.209)

As a consequence, the decay rates in Eq. (1.193), which are given by the Fourier
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1.4. Markovian master equation

transform of the bath correlation functions [Eq. (1.208)], become

> iwt AU 23¢4
(@) = [ dre (BB 0)

oo (1.210)
=5 K058/ =57 Vﬁ [ 5w+ wi) + (14 n)6(w — wi) |,
where we have used [ dwe™ = 2m§(x) [138].

At this point, we have all the ingredients necessary to compute the MME in
the Schrodinger picture, which is given in Eq. (1.196). Indeed, ignoring again the
Lamb shift induced by the vacuum field in the transition frequency of the QE
[encoded in the Lamb-shift Hamiltonian|, we obtain

PN

d Vs, ks (wo) wo .
e iy § , :
JpPeE = h QE; PQE] + D[Sks(wo) Sies (wo)]

’yks,ks —w Q q D
+ Z %D[Sks(fwo), Sks(—wo)]PqE

(1.211)
(I N Ek,SVks,ks(WO)W'eksP A
= _%[HQEJ)QE] + 9 D[UaU]PQE
Z S’yks,ks(_WO)‘lJ/'eks|2 ot a1 A
+ =k ’D[UT,UT},OQE.

2

Here, we have defined pqg as the reduced density matrix of the QE.

Finally, taking into account that the electromagnetic modes at the frequencies
of typical optical transitions in QES have negligible thermal populations even at
room temperature, we can assume n © — 0. This thermal population also vanishes
for any QE assuming T'=0. As a consequence we find

2
D s ks (wo) |1 - e 32/ dq§/ d951n9/ dk k*

k,s
(e — il e (1.212)
1 8r [
= mwf?/o dwkw1§5(wo - Wk) = "0,

where we have converted the sum over k into an integral [Eq. (1.134)] and used
Eq. (1.160) to perform the resulting solid-angle integral. Importantly, we have also
identified the expression of the spontaneous emission rate v [Eq. (1.163)] obtained
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Chapter 1. Interaction between light and quantum emitters

by using the WWA in Section 1.3. On the other hand,

V 27 T ] e}
Z’Yks,ks(—wo)\u’eksF — Wz/o d(;ﬁ/o dQSmG/O dk k?
w

k,s

k _ Cev.|? 1.213
stha(wo W) | - excs| ( )

B 1 o 81 [ 3 B
_(27r)3c350h|u| 3/0 dwyw;d(wo + wy) = 0.

X

In this way, we arrive to the MME (in the Schrédinger picture) that governs the
dynamics of the QE
dop = Hog, p W prs1p 4
2 Pqe = —7[Hae, Aqe] + 5 DIo]hqe, (1.214)
where the Lindblad dissipator D[6]pqE is defined according to Eq. (1.200).

We conclude that the coherent dynamics of the reduced density matrix pqg of
the QE is governed by the Hamiltonian ﬁQE = %26, where wy is the transition
frequency obtained from experiments and that includes the Lamb shift induced
by the vacuum field, as discussed in Section 1.3. The spontaneous emission of
the QE (with rate ) is accounted for through the Lindblad dissipator D[§]pqe.
Notably, the spontaneous emission rate has been derived in this section by using
the MME and considering the complete expression of the multipolar form of the
interaction Hamiltonian. The spontaneous emission rate obtained here is the same
than as that derived in Section 1.3 using the WWA and the multipolar form of the
interaction Hamiltonian under the RWA. Thus, the spontaneous emission rate is
not affected by simplifying the multipolar form of the Hamiltonian through the
RWA.

1.5 Interaction of a quantum emitter with a laser

At this point, we have reached the fundamental formulation of the interaction
between the vacuum field and a QE with two-level behaviour. We have also shown
that the vacuum field induces the spontaneous emission of photons from the excited
state of the QE. Moreover, the description of light emission from quantum emitters
illuminated by a continuous-wave laser is also of considerable interest for this thesis.
In this section, we derive the Hamiltonian that describes the interaction between
such an external illumination and the QE. Further, we introduce the concepts
of dressed states and of saturation of the QE. To this end, we mainly follow the
procedure described in Ref. [124].
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1.5. Interaction of a quantum emitter with a laser

1.5.1 Interaction Hamiltonian

The electric field generated by a laser can be described classically. We consider that
this classical field has frequency wy,, wavevector ky,, polarization ey and amplitude
Er(r). Under the long-wavelength approximation described in Section 1.2.5, such
electric field can be assumed to be constant within the spatial extension of the QE.
At the position of the center of mass of the QE, rq, the laser electric field can be
written as
E o _ 5[,(1‘0) iwpt —iwpt
1(ro,t) = Er(ro) cos(wrt)er = T(e +e Jer. (1.215)
The interaction between the QE and the laser can thus be described, in the
multipolar form, by the Schrédinger-picture interaction Hamiltonian

) ) M(eiwmf + efith)eL_ (1216)

Hi(t) = —fr- By (ro,t) = — (6 + p*6' 5

Moreover, the lowering and raising operators evolve [in the Heisenberg picture]
as 6(t) = exp(—iwot)G(0) and 67(t) = exp(iwgt)5T(0) in the absence of driving
[Eqs. (1.122a)-(1.122b)]. Thus, the terms de~ = and 6Te™r? in H(t) provide
much faster oscillations than e’rt and 6fe=*2t. The terms Ge "Lt and 5Te’wrt
can then be neglected under the RWA, so that the Hamiltonian describing the
interaction between the QE and the laser reduces to

HEVA() = 2 (mew 4 Q*aTe—W) . (1.217)
Here, we have defined
£ .
Q- L(rogi“ e (1.218)

which is called Rabi frequency. Further, the laser intensity I, and the field amplitude
Er(rg) are related as [121, 124]

1
I = §€OC|5L(I‘O)|2. (1.219)

Thus, the norm of the Rabi frequency 2 is proportional to the square root of the
laser intensity. More specifically, || and Iy, are related by

I6mc2y
Q=4 ——. 1.22
1 = /25 (1.220)

Finally, the total Hamiltonian describing the interaction between the QE and
the electromagnetic field (including both the vacuum field and the laser) is given by
the sum of the Hamiltonian in Eq. (1.116), corresponding to the interaction between
the QE and the vacuum field, and HEVA(t). Notably, HEWA(t) is time-dependent
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Chapter 1. Interaction between light and quantum emitters

(a) bare states (b) dressed states
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Figure 1.3: Schematic representation of the bare and dressed states. (a) The bare states correspond
to the eigenstates of the Hamiltonian ﬁQE, which describes the coherent dynamics of the QE
in the absence of laser driving. These states are thus the electronic ground state |g) and the
electronic excited state |e). The difference of energy between the bare states is fuwg. (b) The
dressed states, which are denoted by |24 ) (higher energy) and |Q2_) (lower energy), correspond
to the eigenstates of ﬁQE + ﬁBWA, describing the coherent dynamics of the QE under laser
driving. The dressed states are given as linear combinations of the bare states, as shown in

Egs. (1.223a)-(1.223b), and the difference of energy between them is fiy/w? + |22

in the Schroédinger picture, which complicates the exact derivation of the MME
describing the reduced dynamics of the driven QE (Section 1.4.2). However, to
the best of our knowledge, the laser driving affects the spontaneous emission of
the QE only under very extreme conditions, such as when the laser frequency is
comparable to 7o and the laser intensity is very high [144, 145]. Thus, for the type
of QE and illumination conditions considered in this thesis, it works extremely
well to directly incorporate the driving Hamiltonian fIEWA(t) into the MME in Eq.
(1.214) (derived in Section 1.4.5 considering no driving). This approach leads to
the effective MME

d 1 |: wo .

h ; —i o
—PoE = —= |h—6, — — [ Qae™rt 4 Q* 6Tewrt ) 5 + —=D[6|por. (1.221
dthE h h2 i 2< € © )’pQE} 2 [1pq. ( )

1.5.2 Bare states and dressed states

We show in this section that the laser driving can modify the eigenstates of the
QE. We first recall that, in the absence of laser illumination, the eigenstates of the
two-level QE are the electronic ground state |g) and the electronic excited state |e),
with energies —hwg/2 and hiwg /2, respectively. These states are usually referred to
as bare states and schematically represented in Fig. 1.3a. However, under laser
driving, the total Hamiltonian describing the dynamics of the QE is diagonalized
as

A - wd + Q2 w? + Q2
g + AP =V 10 g a0 0 am)
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1.5. Interaction of a quantum emitter with a laser

The eigenstates of the driven QE are known as dressed states and are given by

|21) =sin®© |g) + cosOle), (1.223a)
|Q_) =cosOlg) —sinOle), (1.223b)

where © € [0,7/2] is called Stiickelberg angle. This angle is defined by the ratio of
the Rabi frequency 2 (proportional to v/I;) to the transition frequency of the QE.

More specifically,
tan(20) = |Q]/wp. (1.224)

The energies of the dressed states [Q4) are £hy/w3 + |Q[2/2. Thus, the energy
splitting between the dressed states is iy/wg + |Q2]2, as depicted in Fig. 1.3b. This
energy splitting increases with the Rabi frequency. One can check that, in the limit
of no driving, the dressed states become again the bares states, as [2;) — |e) and

10.) = |g), and +hy/wg + [Q2/2 = +hwy /2.

1.5.3 Rotating frame at the laser frequency

As pointed out in Section 1.5.1, the Hamiltonian describing the laser driving is
time-dependent even in the Schrédinger picture. This time-dependency complicates
any analytical or numerical calculation and, thus, the analysis and characterization
of light emission from the QE. We show in this section that a unitary transformation
can be performed to obtain a time-independent HAamiltonian.

The effect of a general unitary transformation T in an arbitrary Hamiltonian H
is discussed in detail in Appendix C. In a nutshell, the Hamiltonian is transformed
according to

~

2 dT = 2 oA B
H= ihETT +THT". (1.225)

We emphasize that the measurable quantities in experiments, which correspond to
the expectation values of Hermitian operators (observables), are not affected by
unitary transformations, just as they are independent of whether the Heisenberg
or Schrodinger picture is used in the calculations.

In particular, we consider in this section the unitary transformation

T = exp (ztw;a> (1.226)
which can be interpreted as a change of reference frame. More specifically, it can be

interpreted as moving to the reference frame that rotates in time at the frequency
wy, of the laser. Using the expansion theorem in Eq. (1.106), we find

T6T" = ge—iont, (1.2272)
TotTt = teiwrt, (1.227h)
T6.T" = 6,. (1.227¢)

61



Chapter 1. Interaction between light and quantum emitters

In this way, Hor + HRVA(t) is transformed to

2 2 A h
Hoe + HEY = h=26. — o

(Q6 +Q*&'), (1.228)
where we have defined the frequency detuning between the transition frequency of
the QE and the laser frequency as

AO = Wy — W[,.- (1229)

Therefore, the Hamiltonian in Eq. (1.228) is time-independent and the MME
governing the dynamics in such rotating frame becomes

N i [ A
d~ Z|:h0A h

2 sop = —~ =205 + 06N | + L2Dlslpow. 1.2
hn =5 |50 - 5(@0 + 60| + PDllies. (1230

2

Notably, the new dressed states (i.e., the eigenstates of fIQE + I;T?WA) are formally
identical to the ones given in Egs. (1.223a)—(1.223b), but with the Stiickelberg
angle redefined as tan(20) = |Q|/A. Additionally, the frequency splitting between
the dressed states in the rotating frame becomes

Qr = /AZ + QP2 (1.231)

which is known as generalized Rabi frequency and is responsible for the emergence
of oscillations in the populations of the bare states, as discussed below.

In the following, we use the Python package QuTiP [146] to numerically solve
the MME in Eq. (1.230) and analyze the dynamics of the driven emitter. To this
end, we fix the decay rate at vo/(27) = 21.5 MHz and wy at a value corresponding
to a vacuum wavelength of 618 nm. These parameters are based on experiments
performed with dibenzanthanthrene (DBATT) organic molecules in Ref. [1]. These
molecules are taken as a reference throughout this thesis. We assume that the
emitter is initially inverted (equivalently, the state |e) is initially excited). We first
plot in Fig. 1.4a the time evolution of the population of |e) (solid blue line) and of
lg) (dashed grey line) under no driving (€2 = 0). We find that the population of
the excited state decays exponentially to zero with rate g, as expected from the
analysis in Section 1.3. In contrast, the population of the ground state increases
exponentially, becoming equal to 1 at sufficiently long time. Next, we analyze
how the dynamics of the populations of |e) and |g) are affected by the driving
of a resonant laser (w;, = wp). In Fig. 1.4b, we fix 2/~ = 1 and omit the
dissipator DI[5] 5QE in the simulation of the dynamics to more clearly reveal the
influence of the driving on the dynamics of the QE (without the influence of the
spontaneous emission). We find that the populations of the two bare states oscillate
in time between 0 and 1 with a period of 2m/Qg. These oscillations are commonly
referred to as Rabi oscillations. We include the dissipator D[F] f)QE again in the
simulations in Fig. 1.4c and fix /9 = 1. In this case, the population of |e) decays
exponentially in time and, in addition, exhibits Rabi oscillations. Importantly, at
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Figure 1.4: Time evolution of the populations of the bare states of the QE. We take a DBATT
molecule as a reference QE, with v9/(27) = 21.5 MHz and wp corresponding to a vacuum

wavelength of 618 nm. The dashed grey lines correspond to the population of the ground state |g)
and the solid blue lines to that of the excited state |e). The emitter is undriven in (a) and driven
resonantly in (b)-(d). The losses are artificially set to zero in the simulation in (b) to highlight
the effect of the laser driving in the time evolution of the populations of the bare states. The
driving strength is fixed at ©/v9 = 1 in (b) and (c), and at Q/vo =5 in (d).

long times, the population of the excited state becomes non-zero in contrast to the
case of no driving in Fig. 1.4a. Last, we increase the driving strength to Q/y9 =5
in Fig. 1.4d and find more pronounced oscillations of the populations. Additionally,
at long times the population of |e) reaches a larger value than in Fig. 1.4c, which
is analyzed in the next section.

1.5.4 Saturation of a quantum emitter

In this section, we analyze the behaviour of the population of |e) at the steady
state (t — oo) for increasing values of driving strength. We show that this
population cannot be larger than 1/2, which enables to introduce the concept
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Chapter 1. Interaction between light and quantum emitters

of saturation of the QE. To this end, we first derive the equation of motion of
&t6 = |e) (e|, which gives the time evolution of the population of |e) because,
in the Schrodinger picture, (676) (t) = Tr[676pqr(t)] = (e| pqr(t) |e). We also
calculate the equation of motion of the off-diagonal element of the density matrix
(el pam(t) g = Tr[afqu(t)] = (&) (t). Using Ba. (1.197), we find

G 0= 0|50 0-F e s
% (&) (1) = — {720 + mo] (6) (t) —iQ* (676) (t) + 27 (1.232b)

Next, the steady-state population of |e) can be obtained taking into account
that the time-derivatives of all the elements of the density matrix vanish in the
steady state [139]. In this way, we obtain

Q Q*
0= 30 (670}~ i[5 (@)~ G 61 (1.233)

*

0=~ |3+ it] @), -0 010}, + i (1.2330)

2

where the expectation values are evaluated in the steady state (indicated by the
subscript ‘ss’). Solving this system of equations, we find

1 Q2 1 sp
616), == = 1.234
) = S AP A0/2P A 21t ss (234
where we have introduced the saturation parameter
1 Q|2
sp = # (1.235)

2 (70/2)? + A

which is proportional to |Q2]? and, thus, to the laser intensity I, [see Eq. (1.220)].
Equation (1.234) indicates that the steady-state population of the excited state
of a QE driven by a laser is smaller or equal than 1/2. Thus, the steady-state
population of |e) cannot be larger than the steady population of |g), but they
become equal at very strong laser driving (s;, — 00). Additionally, the value of
laser intensity Iy, for which s;, =1 (i.e., (676) = 1/4) at resonant driving (Ag = 0)
is referred to as saturation intensity, Is. Using Eq. (1.220), we obtain

h‘*’g%
127c?”

(1.236)

Isat =
Accurately calibrating the laser intensity at the position of the QE is often

challenging in experiments, and so is estimating the Rabi frequency directly through
Eq. (1.220). However, the comparison between experimental results and theoretical
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predictions can be facilitated by expressing the Rabi frequency in terms of the ratio

I, 2107
= . 1.237
Isat '7(% ( )
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CHAPTER

QUANTUM OPTICAL COHERENCE
AND LIGHT STATISTICS

In classical optics, coherence describes the ability of light to interfere [147]. In the
1960s, Roy J. Glauber revisited the concept of optical coherence and extended it to
the quantum realm [111-114], an achievement widely recognized as the foundation
of quantum optics. In this chapter, we review the n*"-order coherence function
introduced by Glauber, which has become an essential tool for characterizing
quantum light. We place particular emphasis on the second-order coherence function,
which plays a key role in Chapters 3 and 4 of this thesis.

We first present the first-order coherence function, both the classical formulation
and the quantum-mechanical formulation. Additionally, the first-order coherence
function allows us to introduce the usual emission spectrum. We then generalize
the coherence function to second and higher orders. Afterwards, we describe the
working principles of the Hanbury-Brown Twiss interferometer that measures the
second-order coherence function of light from the correlation of the intensities
detected by two separate detectors, and analyze the insights that this function
provides into the statistical properties of light. We also describe a modification of
the standard Hanbury-Brown Twiss interferometer that enables the measurement
of the second-order coherence function for photon pairs at specific frequencies.
This approach reveals additional information about the emission mechanisms of a
system. Moreover, we analyze the second-order correlation of light emitted from
a single quantum emitter and measured in the standard Hanbury-Brown Twiss
interferometer, as well as the behaviour of this correlation when it is measured in
the modified Hanbury-Brown Twiss interferometer.
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screen

|r1 — 74l
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Figure 2.1: Schematic representation of the Young’s interference experiment. Light emitted from
a source impinges into two slits S1 (red) and Sy (blue), at positions r1 and ra, respectively. Light
is then scattered from the slits and arrives to a screen (green), where a detector is located at
position rq. The optical path from slit S; to the detector is [r; —rg|.

2.1 First-order coherence and emission spectrum

In this section, we first analyze the concept of classical optical coherence by
addressing the Young’s interference experiment. Afterwards, we present a quantum
description of the process of photodetection, which enables an intuitive introduction
of the first-order coherence tensor and function in the quantum realm. Additionally,
we present the usual emission spectrum, which can be obtained from the first-order
coherence function and serves to characterize the spectral properties of light. We
mainly follow Refs. [111, 114, 117, 120, 148] in this section.

2.1.1 Young’s interference experiment from a classical
perspective

An illustrative example of the ability of classical light to interfere is provided by the
Young’s interference experiment [147, 149]. In this experiment, light emitted from
a source impinges into two slits, S; and S5, at positions ry and ro, respectively. We
consider that both slits have identical geometry and size. Light is then scattered
from the slits according to Huygen’s principle [147], as schematically represented
in Fig. 2.1. Last, scattered light arrives at a screen in the far-field region, where a
detector at position ry is used to measure light intensity. The total electric field at
the position of the detector can be expressed as

E(I‘d7t) :KE(I‘ht—Atl)+KE(I‘27t—At2), (21)

where E(r;, t—At;) is the electric field scattered from slit S;, with At; = |r; —r4|/c
the time that light takes to travel from this slit to the detector. Additionally, K is
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2.1. First-order coherence and emission spectrum

a complex coefficient that depends on the size and geometry of the slits, as well as
on the distance between the slits and the detectors.

In general, the intensity of a classical electromagnetic field is defined as the
rate of energy carried by the electromagnetic field per unit of time and area. For
propagating electromagnetic fields, the intensity is proportional to the square of
the magnitude of the electric field [121, 147]. Thus, the average intensity measured
by the detector for very long times can be obtained as

I(rq) o< (|E(rq, 1)]?),.. (2.2)

Here, we have introduced the classical temporal average of an arbitrary function of
time f(t) as [116, 147]

(f#)e = lim = [ f(t)dt, (2.3)

where the subscript ¢ emphasizes that (f(t)), is a classical average, instead of the
expectation value of a quantum-mechanical operator. This average is stationary,
as it is independent of the origin of the time axis [116, 118, 147]. By substituting
Eq. (2.1) into Eq. (2.2), we obtain that the average intensity at the position of the
detector is

I(I‘d) = Il(l‘d) + Ig(rd) +2 Il(rd)Ig(rd)Re[gﬁl)(rl,t - Atl; I‘g,t — Atg)], (24)

with I1(rq) and Is(ry) the average intensities of light scattered independently from
slit S; and Ss, as if the other slit did not exist. Further, we have introduced in
Eq. (2.4) the complex function

<E(I‘1, t — Atl) . E(I‘Q,t — AtQ))c
VAE(t = At)P) ([E(r2,t - At) ),

which is determined by the average of the product of the electric field scattered from
both slits and normalized by the squared roots of the intensities of light emitted
from each slit. The average (E(r1,t — At1) - E(ro,t — Aty)), in the numerator of
Eq. (2.5) is usually referred to as mutual coherence function or first-order correlation
of the electric fields, while ggl)(rht — Aty;re,t — Aty) is known as normalized
first-order classical correlation function. Equation (2.4) indicates that the light

g (1t = Atyirg, t — Aty) = (2.5)

scattered from the two slits interferes if gﬁl)(rl, t — Atq;ro,t — Ats) does not vanish.
As a consequence, this function can be used to quantify the degree of coherence
between both classical light beams, as discussed below.

In the Young’s experiment, the interference between light scattered from both
slits is reflected by the emergence of fringes on the screen. The contrast of the
fringes is given by the difference between light intensity of the minima and maxima
in the pattern [147, 150]. Specifically, the contrast of the fringes around the position
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ry of the detector can be quantified through

max{I(rq)} — min{I(ry)}

Vire) = max{I(ry)} +min{I(ry)}’

(2.6)

which is known as wvisibility. Here, max{I(rqy)} and min{I(ry)} are the maximum
and minimum values, respectively, that the average intensity takes around the
position of the detector rq. The intensity I(rq) given in Eq. (2.4) results in

max{I(rq)} = I (rq) + L(rq) + 2/T1 (ra) Lo (ra)|gM (r1,t — Aty;ra,t — Aty)],

(2.7a)
min{I(rq)} = I, (rq) 4+ Iz(rq) — 2\/T1(ra)I2(rq) gt (r1,t — Aty;ra, t — Aty)).
(2.7b)
As a result, the visibility becomes
2y/T1 (ra)1
Virg) = IO )y At At 23)

I (rq) + Iz(rq)

Thus, the contrast of the fringes in the Young’s experiment is determined by the
norm of gél)(rl, t — Aty;rg,t — Ats) and by the ratio between the intensities of light
scattered from each slit. Notably, if I1(ry) = I2(rg), the visibility thus reduces
directly to V(rq) = \ggl)(rl,t — Aty;ra,t — Atg)|.

We conclude that the normalized first-order classical correlation function
gél) (r1,t—Aty;ra,t— Atg) describes the emergence of the interference between light
emitted from the two slits in the Young’s interference experiment. More generally,
this quantity can be used to quantify the degree of coherence between light emitted
from two arbitrary sources. Notably, the normalization of g((;l) (r1,t—Aty;re, t—Ats)

in Eq. (2.5) is chosen such that |g£1)(r1,t — Aty;ra,t — Atg)| is bounded as [116]
0< [gi (r1,t — Atysra, t — Aty)[ < 1. (2.9)

If |g£1)(r1,t — Aty;ra,t — Atg)| = 1, we say that classical light is completely
coherent. In contrast, if \gél)(rl,t — Aty;ra,t — Aty)| = 0, light is said to be
completely incoherent. For intermediate values, classical light is partially coherent.
As an example, we consider a monochromatic electromagnetic plane wave, with
frequency w and linear polarization along some direction e,. In this case, E(r,t) =
|E(r, t)|eqexpli(wt — k - r)] and, as a consequence, g£1)(r1, t— Aty;re, t — Aty) =
expli(w(At;y — Ata) — k- (r; — ra))]. Thus, this electromagnetic plane wave is

completely coherent because |g£1)(r1,t — Aty;ra,t — Atg)| = 1.
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2.1. First-order coherence and emission spectrum

2.1.2 Photodetection

We describe in this section the process of photodetection using the atom detector
model, which facilitates the introduction of the first-order coherence function in
the quantum realm. In experiments, the detection of photons typically relies on
the absorption of photons by some system. Within the atom detector model, the
detection system is a two-level atom, which allows for describing the fundamental
aspects of photodetection in a simple way.

First, the atom in the detector is typically described as a two-level system, with
ground state |gq), excited state |eg) and transition frequency wg. The Hamiltonian
of this atom detector (in the Schrodinger picture) can be written as

Hy = hH({1E = N, (2.10)

with ¢ = |gq) (eq] and (T = |eq) (dg| the lowering and raising operators in the
Hilbert space of the two-level atom detector. Additionally, the probability of
photon absorption by this atom is independent of the photon frequency or, in other
words, the atom detector is color-blind. (This model is extended to the case of
frequency-resolved detection in Section 2.4.) Further, the atom is assumed to have
negligible size in comparison to the wavelength of light and, thus, its interaction
with the electromagnetic field can be described by the Hamiltonian

Hyp = —fia-EL(ra), (2.11)

which corresponds to the interaction Hamiltonian in the multipolar form described
in Sections 1.2.5 and 1.2.6. Here, ry4 is the position of the detector and

fua = pa + pict (2.12)

is the dipole moment operator of the atom detector, with pg the corresponding
transition dipole moment. Moving to the Heisenberg picture (see Appendix B), we
thus obtain

A 2 s ~ (=) A (+)
Hyrp(t)=— (udC(t) + udCT(t)> . (El (rq,t) + E| (rq, t))7 (2.13)
where the operators ¢ (t) and C (t) correspond to the Heisenberg picture

representation of the lowering and raising operators of the atom detector, and

~ (+ ~A(—
Eg_ )(rd, t) and E(l )(rd, t) are the positive-frequency and negative-frequency electric

field operators (see Section 1.2.7), respectively. These operators are written also in
the Heisenberg picture and evaluated at the position of the detector. By applying
the rotating-wave approximation (RWA) (Section 1.2.7), this Hamiltonian becomes

TRYVA (1) = —paC (OB (v, 1) — sl (OB (v, 1). (2.14)

We consider that initially the atom detector is in the ground state |g4) and the
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Chapter 2. Quantum optical coherence and light statistics

electromagnetic field is in some pure state |7). According to perturbation theory
in quantum mechanics [122, 151, 152], the atom detector becomes excited (i.e., a
photon from the field is absorbed) with a probability proportional to

> 1eas fl Hap(t) 19a,7) [* = | (eal il (1) |9a) GIEY @at) ) P (215)
!

Here, {|f)} is the set of final states of the electromagnetic field, which is complete
(L=2;1f)(f]). We remark that quantifying the absolute transition probability
is not needed because the first-order correlation of the electric field operators is
normalized in practice, in such a way that it does not depend on the absolute value
of this transition probability, which is discussed in Section 2.1.4.

We next assume that the coupling between the field and the detector is
sufficiently weak such that: (i) the time evolution of the lowering operator of the
atom can be approximated as T (t) = exp(iwgt)Ct, implying that | (eq| CT(£) [gq) |2 =
1; and (ii) the time evolution of Ef)(rd, t) is not affected by the atom detector. As
a consequence, the probability of absorbing a single photon becomes proportional
to

P =Y G ) 1)1 (o) i) = 1B (0, 9B (v 1), (2.16)
f
. ~(+) o ()
where we have taken into account that (f|E| "(rq,t) i) = ({|E| "(rq,t) |f) and
that the set of final states |f) is complete. The expectation value of the operator

frat) =B wa t) - B (vas ) (2.17)

in the last equality of Eq. (2.16) is proportional to the average intensity of light
arriving to the detector located at position rg at time ¢ (equivalently, to the number
of photons counted by the detector). I (rq,t) is sometimes simply referred to as
intensity operator, although we emphasize that its expectation value is proportional
(not equal) to the light intensity at the detector. Therefore, Eq. (2.16) indicates
that the probability of absorbing a single photon is proportional to the expectation
value of this intensity operator, evaluated at the position of the detector ry and at
the initial field state |i).

In the more general case, where the electromagnetic field is in a mixed state,
described by a density matrix pr (see Appendix A), the photodetection probability
is again proportional to the expectation value of I (rq,t). In this case, we obtain

Pr = (I(ra,t)) = Te[E(ra, ). (2.18)
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2.1. First-order coherence and emission spectrum

2.1.3 Young’s interference experiment from a quantum
perspective

We next revisit the Young’s interference experiment described in Section 2.1.1 using
now the quantum description of photodetection presented in Section 2.1.2. At
the position rg of the detector (see Fig. 2.1), the positive-frequency and negative-
frequency electric field operators can be decomposed into contributions from the
field scattered by the two slits S; and Ss, at positions ry and rs, similarly to the
classical electric field in Eq. (2.1). More specifically,

B at) = KE (01,0 — At + KB (v, 1 — Aty), (2.192)

et — At + KB (10, — Ata), (2.19D)

£ (va,t) = KB
with K a factor that depends again on the size and geometry of the slits and with
Atj:\rj—rd|/c. R
The expectation value of the intensity operator I(rg,t) at the position of the
detector can thus be expressed as

(F(rat)) oc (BY (0t - An) B (v, - An))
4 B (vt — Aty) - B (12, £ — Aty)) 2.30)
+ B et = At B (1t — At)) .
+ (E (J)(r%t — Aty) - E(j)(rht — Aty)),

where the proportionality constant is simply |K|?. The first two terms on the
right-hand side of Eq. (2.20) are proportional to the intensity of light arriving
from each slit independently to the detector, as if the other slit did not exist. In
contrast, the last two terms correspond to the contribution from the correlation
between the light emitted from the two slits and give rise to interference effects.
More specifically, these latter terms can lead to oscillations in the light intensity on
the screen and, thus, to the emergence of fringes. Notably, the form of Eq. (2.20) is
analogous to the form of the classical expression in Eq. (2.4), which allows for the
extension of the normalized correlation g£1)(r1, t1; T2, t2) to the quantum realm, as
we discuss in the following section.

2.1.4 First-order correlation tensor and function

In this section, we introduce the concept of first-order coherence following the
procedure discussed by Glauber in Ref. [111]. This procedure accounts for the
effect of polarization of light, which is often ignored in textbooks by assuming
scalar electric fields.

We first define the first-order correlation temsor G(l)(rl,tl;rg,tg), whose
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elements are given by

G ) (r1,tisra 1) = (B7) (v, 01) B (x2, 12)) - (2.21)

[0

Here, o and S label three-dimensional spatial coordinates (e.g., Cartesian
coordinates). G&lﬁ)(rl, t1;ra, tg) measures the correlation between the a-component
of the negative-frequency electric field at position r; and time t; and the -
component of the positive-frequency electric field at position ro and time t5. This
correlation could be analyzed, for example, in the Young’s interference experiment
including polarizers to select the photons emitted with a-polarization from one
slit and with (-polarization from the other. By normalizing the correlation
tensor G(l)(rl, t1;To,t2), we obtain the normalized first-order correlation tensor
g (r1,t1;19,t5), whose elements are given by

G(lﬁ)(rl, t1; Iro, tg)

e

\/G((,tloz(rlatl; 1'17?51)G§31/; (ro,t2;ra,t2)

gfxlg)(rl,h;rz,tz) =

(2.22)

Further, since the density matrix is a positive semi-definite and Hermitian
operator (see Appendix A), a large number of inequalities for the correlation tensor
can be derived [111, 114]. Notably, G(alg (r1,t1;r9,t0) satisfies the Cauchy-Schwarz
inequality

GS[;(I‘htl;I‘ht1)GSL3(I'2,t2;P27t2) > |G;15(F17t1;r27t2)|2- (2.23)

As a consequence, the norm of the elements of the normalized first-order correlation
tensor is bounded by

0 < (gl (re, trira, t)] < 1. (2.24)

If all the elements of the normalized first-order correlation tensor satisfy
\gélg(r1,t1;r2,t2)| = 1 for any choice of basis of three-dimensional spatial
coordinates for a and § (i.e., for any choice of reference frame), we say that
light is completely first-order coherent. Crucially, complete first-order coherence
is obtained if and only if all the tensor elements Gsﬁ) (r1,t1;r9,t2) factorize into a

product of expectation values of the field at ry and r,, such that G((llﬁ) (r1,t1;12,t2) =

(E‘S__) (r1,1)) <EA‘5_J)”/)3(r2, t2)). Importantly, complete first-order coherence leads to

NeY
maximum interference. Conversely, if | QS/B) (r1,t1;r2,t2)| = 0 for all components «
and [ we say that light is incoherent, which yields no interference. For intermediate
values of |gsﬂ) (r1,t1;19,t0)|, light is first-order partially coherent.

Furthermore, we can define a scalar quantity that measures the correlation
between the total electric field, without discriminating on the polarization
of the photons, which is known as normalized first-order correlation function
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2.1. First-order coherence and emission spectrum

g (ry,t1;19,t5). This quantity can be obtained as

~ () ~ (+)
(E| (r1,t1) - E} (ra,t2))

A

(
Vs 1) ((ra.t))
_ > nglo)z(rhtl;rmb)

\/Za Gglo)‘(rh tl? ry, tl) Zﬁ G(ﬁlﬁ) (rQa t2a r27t2)

This expression extends the normalized first-order classical correlation function
ggl)(rl, t1;12,t2) [Eq. (2.5)] to the quantum realm. Therefore, first-order coherence
provides again information about interference and, its interpretation is closely
related to the traditional notion of optical coherence discussed in Section 2.1.1.
We anticipate that higher-order coherence serves to further characterize light (e.g.,
second-order coherence provides information on the statistical properties of light,

as discussed in Section 2.3).

9(1)(1‘1,151; ro,ty) =
(2.25)

2.1.5 Emission spectrum

We introduce in this section the usual emission spectrum S(w) that provides
information on the frequency distribution of light emitted from any source.

In classical optics, the Wiener-Khintchine theorem shows that the classical
emission spectrum S.(w) can be obtained from the Fourier transform of the
classical temporal average correlation (E(rg,t1)-E(rg,t2)), [116, 153], with ry
again the position of the detector. Equivalently, S.(w) can be obtained from
the Fourier transform of the normalized first-order classical correlation function
ggl)(rd, t1;rg,t2) [Eq. (2.5)]. Notably, if the electric field is stationary, as it is the
case when the light source is in the steady state, g((;l)(rd, t1;rg,t2) depends only
on the time difference 7 = t5 — t; and the detection position ry. As a result, the
stationary emission spectrum can be calculated as

Su(w) = % [ " dre T (B(ra, 0) - E(ra, 7)), . (2.26)

We show next that the direct extension of this classical emission spectrum to the
quantum realm, where the classical electric fields are replaced by quantized electric
fields, carries information on the frequency distribution of photons emitted from
the source. To this end, we note that the negative-frequency and positive-frequency
free-space electric field operators [Eq. (1.133)] satisfy

oy
2Veg

(B (v tr) - B (14, 12)) = 37 oy eion(ti=ta), (2.27)

k,s

with ny, = (&Lsdkg the average number of photons in electromagnetic mode (k,
s). According to Eq. (1.134), the summation over k can be transformed into an
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integral, which yields
(=) ~(+ ) zw(t—t)
E I‘d,tl -E I‘d,tg S kif1—iz dwk. 2.28
1 1

Here, we have introduced the function

2T
S(wk) = @n 350 Z / d¢ 0 sin 0 Ny, (2.29)

which gives information about the frequency distribution of light, as its value at wy
is determined by the number of photons nys of frequency wy in the vacuum field,
propagating from the source to the detector.

We now consider that the light source is in the steady state (ss), which is reached
at very long times t; and t5. As in the classical case discussed above, the correlation
(Ef)(rd, t1) - E(j)(rd, ts)) thus depends only on the time difference ™ = t5 — #1,
apart from the detection position ry. Additionally, taking into account that no
photons are emitted at w < 0 (i.e., nks vanishes for w < 0), we can extend the
frequency integral in Eq. (2.28) from 0 to —oo. In this way, by inverting Eq. (2.28),

we find that the emission spectrum S(w) can be obtained from the Fourier transform

of (Ef)(rd, 0) - ES_JF) (rq, 7))y Equivalently, S(w) can be obtained from the Fourier

transform of the first-order correlation G4 (rq,0;rq,7) [Eq. (2.21)], so that

1 > IWT /T =) ()
S(w) = ;/ dre’” (E| (rq,0)-E| (rq, 7))
) o (2.30)
_ d wT G(l) L0514, 7).
- /_OO Te Z aalrg, 0514, 7)

«

. (=) ~(+) . .
The field correlation (B "(rq,0) - E; "(rq, 7)), can be measured in experiments
using different interferometer setups [116, 154, 155]. By performing then the Fourier
transform to this correlation, the emission spectrum can be obtained. Last, we
note that time-dependent emission spectra can be also defined for non-stationary
states of the system [156-159], but this is beyond the scope of this thesis.

2.1.6 First-order coherence and light emission spectrum
from a single quantum emitter

In this section, we characterize the normalized first-order correlation function
g(l)(rd, 0;rg4, 7) and the emission spectrum S(w) of light emitted from a single QE
in the steady state. Under weak driving, ¢™")(r4,0;r4,7) and S(w) indicate that
photons are emitted via radiative decay from the bare excited state |e) to the bare
ground state |g). In contrast, under strong driving, these quantities reveal the
emergence of a wider variety of emission processes, which are related to radiative
decays between the dressed states introduced in Section 1.5.2. We focus directly on
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2.1. First-order coherence and emission spectrum

g (rg,0;ry,7), instead of analyzing the two-times evolution of g™ (rg, t1;1r4,t2),
because in the steady state the temporal evolution of the normalized first-order
correlation function depends only on the time difference 7 =t — #1.

According to Eq. (2.25), g™ (rg,0;14,7) is determined by the electric field

operators Eg_i()QE (rq,0) and EY()QE (rq,7) of light scattered from the emitter. As
discussed in Section 1.2.7, the positive-frequency transverse electric field operator
describing the light emission from the QE is ]:]gj()QE(rd, t) =Eu(rq)6(t—|rqg—rol|/c),
where £, (rq) is the vector amplitude of the positive-frequency electric field radiated
by a classical electric point dipole, and §(t — |rq — ro|/c) is the lowering operator
of the QE in the Heisenberg picture, evaluated at the retarded time |rqy — ro|/c.
In the steady state, the time evolution of the normalized first-order correlation
function depends only on the time difference 7 between the evaluation times of the
negative-frequency and positive-frequency electric field operators. Thus, the effects
of the retardation time in the two operators cancel out and can be directly ignored
in the calculation. Additionally, the contributions from £, (rq) in the numerator
and in the denominator of g™ (ry, 0;14,7) [Eq. (2.25)] also cancel each other. As a
result, g(l)(rd, 0;r4,7) becomes also independent of the detection position in this
case. (We remark that the detection position ry may become significant when
analyzing light emission from more complex systems, such as two QEs.) Therefore,
we conclude that the normalized first-order correlation function [Eq. (2.25)] of light
emitted from a single QE becomes

5T 06 (1
g(l)(T) = g(l)(rd,O;rd,T) = mﬁgogizz, (2.31)

Further, only a single matrix element of the normalized first-order correlation
tensor g™ (rq,0;14,7) [Eq. (2.22)] becomes non-zero when using a basis of spatial
coordinates that includes the unit vector of £,(rq). This non-zero element is equal
to the first-order correlation function g™ (rg, 0;rg, 7) in Eq. (2.31).

The emission spectrum S(w) of light scattered from the QE can next be
obtained from the Fourier transform of (E(L_,ng(rd, 0) - E(ﬁ()QE(rd, 7)) [Eq. (2.30)].
Specifically, we find

5(w) = EeEOE [ dretor 51 015,

_ 3ﬁw070 ler x eR x eu)l?
~ (4m)2g0c

(2.32)

/ dre™ (61 (0)6(r)),

where we have used the expression for &£,(rq) given in Eq. (1.141), and the
expression of 7o given in Eq. (1.163). Additionally, R = rq — r¢ is the relative
position vector between the emitter and the detector in the far-field region, with
unit vector eg = R/R and norm R = |R|. The factors outside the integral in
Eq. (2.32) are typically ignored, and arbitrary units are adopted.
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Figure 2.2: Normalized first-order correlation function and incoherent emission spectrum of
light emitted from a single QE under weak driving strength. The QE is modeled as a two-
level system, as schematically represented in the inset in (b), with transition frequency wp and
spontaneous emission rate vo. The laser resonantly drives the emitter (wy, = wg), with Rabi
frequency ©Q = ~0/10. (a) Dependence on 7 of the normalized first-order correlation function
gD (1) = g (rg,0;14,7). (b) Incoherent emission spectrum S;(w) scaled by R2eqc/(fiwo), so
that the results are independent of the specific value of distance R to the detector in the far-field
region, and by 10°.

Moreover, we can rewrite the lowering and raising operators of the QE as

5(t) = (8), + 66(t), (2.33a)
51(t) = (1), + 66T (1), (2.33b)

where 06(t) and §67(t) are called fluctuation lowering operator and fluctuation
raising operator, respectively. These fluctuation operators have vanishing steady-
state expectation values by definition. Notably, the contribution from (67)_, (6).,
in Eq. (2.32) yields a Dirac delta peak in the emission spectrum S(w). Thus, it
is often useful to focus on the contribution of the fluctuations operators to the
emission spectrum, which is referred to as incoherent emission spectrum and is
given by

Si(w) =

3hwoyo |er X (er x €,)[? /°° iwr 15T (V5
() 2e0c 2 . dre*™™ (667(0)66 (7)), - (2.34)

The incoherent emission spectrum S;(w) is identical to S(w), apart from the absence
of the Dirac delta peak.

We now analyze g™ (7) and S(w) of light emitted from a single quantum emitter.
We compute these quantities by solving numerically (with the Python package
QuTiP [146]) the Markovian master equation (MME) in Eq. (1.230), which includes
the effect of laser driving (treated classically) and is written in the rotating frame
at the laser frequency wy. We first consider the emission of the QE under weak
driving, fixing Q = 70/10, with - the spontaneous emission rate of the emitter
[Eq. (1.163)]. Additionally, we consider that the laser is resonantly tuned to the
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Figure 2.3: Normalized first-order correlation function and incoherent emission spectrum of light
emitted from a single QE under strong driving. The two-level QE (with transition frequency wo and
spontaneous emission rate 7g) is driven resonantly with Rabi frequency € = 5v9. (a) Dependence
on time delay 7 of the normalized first-order correlation function g(*) (1) = g1 (ry,0;r4, 7). (b)
Incoherent emission spectrum S;(wo) scaled by R2egc/(hwo), so that the results are independent
of the specific value of distance R to the detector in the far-field region, and by 102. This
spectrum shows a three-peaks structure known as Mollow triplet. The arrows indicate the
transitions between dressed states in (c) that give rise to each of the Mollow peaks. (c) Schematic
representation of the dressed states in the rungs n and n + 1 and the one-photon transitions that
lead to the emission of photons at frequencies wg (orange arrows), wo — |€2| (green arrow) and
wo + 92| (blue arrow).

transition frequency of the QE (wy, = wp). Figure 2.2a shows the dependence of
the normalized first-order correlation function g™ (7) on the time delay 7. We find
that g (1 = 0) = 1, which means that at 7 = 0 light is first-order coherent. At
increasing delay times 7, g(l)(T) decays exponentially to approximately ~ 0.98,
without exhibiting oscillations. Additionally, we plot the incoherent emission
spectrum S;(w) in Fig. 2.2b and find that it exhibits a single peak centered at
w = wy. Therefore, the scattering of light from the QE under weak driving is due
to the radiative decay from the bare excited state |e) to the bare ground state |g),
see the inset of Fig. 2.2b.

We next analyze the normalized first-order correlation function under strong
driving strength, again at wy = wy. As discussed in Section 1.5.2, the eigenstates
of the system are modified from the bare states |g) and |e) under strong driving.
The new eigenstates, |Q24) and |Q2_), are known as dressed states and correspond
to linear combinations of |g) and |€) [Eqgs. (1.223a)—(1.223b)]. In the rotating frame
at the laser frequency, the frequency splitting between |2, ) and |[2_) is given by
the generalized Rabi frequency Qg = /A2 + Q2, where Ag = wy — wy, vanishes
under resonant driving. Further, we discussed in Section 1.5.3 the emergence of
oscillations of frequency Qg in the populations of the bare states when the QE is
strongly driven (Fig. 1.3). Such oscillations are known as Rabi oscillations. Figure
2.3a shows the normalized first-order correlation function ¢(*) (1) at Q = 5vo, which
also exhibits Rabi oscillations, indicating that the intensity of light at the detector
oscillates when the emitter is strongly driven. Further, (! (7) again reaches the
maximum value of 1 at 7 = 0, as under weak driving, but its minimum value is
significantly lower (approximately 0).

Finally, we plot in Fig. 2.3b the incoherent emission spectrum S;(w) under
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Chapter 2. Quantum optical coherence and light statistics

strong laser driving (2 = 579). After moving back to the original, non-rotated
frame, S;(w) exhibits two new peaks at w = wy £ Q = wy £ 5y (indicated by
green and blue arrows), in addition to the peak at the resonance frequency w = wy
(indicated with an orange arrow and found also at weak laser driving). This
triple-peak structure is known as Mollow triplet and can be interpreted more
intuitively by considering the quantum nature of the laser field illuminating the
system [160, 161]. In the following, we briefly discuss the form of the Hamiltonian
describing the interaction between the quantum emitter and the quantized laser
field.

The Hamiltonian of the laser is given as hw LdTLd L, with &TL and ay, creation and
annihilation operators of photons of frequency wy,, wavevector k;, and polarization
er,. The Hamiltonian describing the interaction between the laser field and the QE
can thus be written as

; R RWA an . Ata
Hy,=—4-Ep(ro,t) —— —gLaaE —gietag, (2.35)

where in the last equality we have performed the RWA and introduced the coupling
coefficient gr. This Hamiltonian is equivalent to that in Eq. (1.217), where the
laser field is described classically, because the laser field is completely coherent to
all orders, which we discuss in Section 2.2.3. As a consequence, Gy, can be replaced

by \/(alaz), with the number of photons in the laser field n = (a} ar) being very

large [124].
The total Hamiltonian of the emitter interacting with the laser can thus be
rewritten as w
H= hg‘)az + hwralarn — groal —gietar. (2.36)
The eigenstates of this Hamiltonian are infinite and can be distributed in sets of
states having the same number of total excitations (adding up photon and emitter
excitations). These sets are usually referred to as rungs or manifolds. If the laser
field and the emitter do not interact (g;, = 0), the eigenstates in the rung n (with
n excitations) are |g,n) and |e,n — 1). These states are equivalent to the bare
states |g) and |e) discussed in Section 1.5.2, obtained by treating the illumination
classically and by considering very weak illumination. Moreover, we also discussed
in Section 1.5.2 (again by treating the laser illumination classically) that the laser
driving can modify the eigenstates of the system, leading to the emergence of the
dressed states |Q21) and |Q2_) [Egs. (1.223a)—(1.223b)]. We now analyze the form
of the dressed states when the laser is considered as quantized. To this end, we
derive the eigenstates of the full Hamiltonian in Eq. (2.36). The eigenstates in the
rung n are

|Q$L)> =sin®, |g,n) + cos O, le,n — 1), (2.37a)
107)) = cos O, |g,n) —sin O, |e,n — 1), (2.37b)

where the Stiickelberg angle O, is given by tan(20,) = 2nl|gp|/A¢. The
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eigenenergies of |Q$L)> and [2") are

2 2
E(0) = hn — Ly + n Y S0 T AnlgLP

v 5 5 , (2.38a)
VAS + dnjgr?
E(Q™)) = h(n — %)WL - h%%”'g”, (2.38b)

respectively. Thus, the energy splitting between |Q$L)> and \Q(_n)> is given by

Qi) = B(Y)) = BIQ™)) = hy /A% + anlg 2. (2:39)

For a very large number n of photons in the laser field, the value of lef) becomes
nearly identical for subsequent rungs. As a result, by comparing this energy
splitting with the generalized Rabi frequency Qr = /A3 + |Q2, which gives
the energy splitting between the dressed states under classical laser illumination
[Egs. (1.223a)—(1.223b)], we obtain the correspondence |gr,|?4n = |Q]2.

Figure 2.3 shows a schematic representation of the dressed states in rungs n
and n + 1 obtained under resonant driving (Ag = 0). The one-photon transitions
\QTH)) — |Q$L)> and |Q(_"+1)> — |Q(_n)) (indicated by orange arrows in Fig. 2.3c)
give rise to the emission of photons of frequency w; = wg and, thus, to the
central peak in the Mollow triplet. Remarkably, additional transitions are allowed,
which are responsible for the emission of photons at wgy % |2 and, thus, of the
two side peaks in the Mollow triplet. In particular, the one-photon transition
\QSF"H)) — |Q(f)> (blue arrow) leads to the emission of a photon of frequency

wo + || and the one photon transition |Q(_"+1)> — |Qf)) (green arrow) leads to
the emission of a photon of frequency wg — |£2|. We emphasize that, although the
emission spectrum in Fig. 2.3b is better understood from this picture where the
laser field is quantized, this spectrum has been numerically calculated using the
MME in Eq. (1.230), where the laser illumination is described classically, as both
descriptions of the laser illumination are equivalent.

2.2 Second-order and higher-order coherence

We have shown in Section 2.1 that first-order coherence is connected to the
photodetection of photons by a single detector. In this section, we introduce
the concept of coincident photodetection by two detectors. This approach allows
us to better interpret the normalized second-order correlation tensor and the
normalized second-order correlation function, the latter of which plays a key role in
this thesis. Additionally, we present the generalization to the n*P-order correlation
function and tensor. We mainly follow Refs. [111, 114, 117, 120, 148].
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2.2.1 Coincident photodetection by two detectors

To describe the process of coincident photodetection, we consider two atom detectors

(labeled by j = 1,2) at positions ry ), with electronic ground states | g[(lj )), electronic

excited states |egj )>, transition frequencies wflj ), and dipole moment operators
ﬂg ). These detectors are again color-blind. The interaction Hamiltonian in the
multipolar form can thus be written as

Hap ==Y a{ BL@ 0. (2.40)
J

We focus first on describing the case in which a photon with polarization «
arrives to detector j = 1 at time ¢ and, additionally, a photon with polarization 3
arrives to detector j = 2 at time ¢’ > t. We recall that o and 3 represent three-
dimensional spatial coordinates, such as Cartesian coordinates. In experiments,
polarizers can be used to distinguish the directions in which the photons are
polarized. Assuming again that the electric field is initially in some pure state |i)
and that the detectors are in their ground states, perturbation theory [151, 152, 162]
yields that the probability of such double (coincident) photodetection is proportional

to

1 1 2 1 2) .
Z\ M e, fIHN) 190, P my (g8, P m| () 1657, g8 i) 12
—ZW Yy () (FIETL D ) Im) (m] E) (8D, ) [i) 2 (2.41)

1 2 . 1 Fa 2 + 2 ~(+ 1
~ m&iu&y%wi’( W OE P ET e O EC) @D ) 10,

where |m) is an intermediate state of the electromagnetic field and ugj)a is the

a-component of (e (J)| L \g(j)> To obtain the equality in the third line we

have taken into account that the set of intermediate states |m) is complete and,
additionally, we have assumed that the coupling between the field and detector
is weak enough, as we did in Section 2.1.2. The latter assumption allows for
approximating (Aj(t) R exp(iwc(lj)t)c , with CT |e(J)> (g (J)| the raising operators of
detector j.

Therefore, we obtain that the probability of such coincident detection becomes
proportional to

PO )= (ET) eV 0EC e O EG el O EF) e ). (242)

This expression is also valid if the electric field is in some mixed state. Further, the
total probability of two-photon detection at times ¢ and ¢/, without discriminating
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in polarization, is proportional to

PO ¢) =S POt ) = (T : 1P, )i, ¢) 1), (2.43)
a,

where we have used the expression of the intensity operator I (rg), t) in Eq. (2.17)
and we have introduced the time-ordering superoperator T, as well as the normal-
ordering superoperator ::. On the one hand, 7 orders negative-frequency operators
(e.g., creation operators) in forward time. For example, T[a'(t)a'(t")] = af(¢)al(t)
whether ¢ < t. Further, 7 orders positive-frequency operators (e.g., annihilation
operators) in backward time. For instance, T[a(t)a(t")] = a(t)a(t) if ' > ¢.
Notably, 7 guarantees that Eq. (2.43) is valid also at ¢’ < ¢. On the other hand,
the normal-ordering superoperator orders negative-frequency operators to the left
and positive-frequency operators to the right. For example, : aa' := afa. Therefore,
we conclude that the probability of double photodetection is proportional to the
correlation between the intensity of light arriving at each of the detectors.

2.2.2 Second-order coherence

The expression for PO%) (t,t') in Eq. (2.42) can be mathematically generalized
to the case in which each electric field operator is evaluated at a different time,
position and polarization, which gives rise to the second-order correlation tensor
G(2)(x1; Z9;X3;L4), With 2; =r;,t;. The elements of this tensor are given by
G pgers @123 25520) = (B (20) B (02) BT (w0) EY) (24)) . (244)
Qo230 T1;T2; T35 T4 oy \T1 1,a T2 1,as 1,0 . :
The normalization of G (x1;xo; 23; 24) facilitates the comparison between

experiments and theoretical calculations. The elements of the normalized second-
order correlation tensor g (x1; xo; x3;14) are

(2) R
Ga1a2a3a4 ('7317 €25 T35 $4)

1
/G, (2 2;)

g(()z21)a2a3a4('r1;x2;$3;x4) = (245)

The condition for complete first-order coherence discussed in Section 2.1.4 can be
extended to second order [111]. In this case, light is said to be completely second-
order coherent if all the elements qf the seconc}—order correAlation tensor factorize
a5 Qoo (122 2si20) = (BT (@) (B, (w2)) (BT, (29)) (B, (@),
which yields |g((,,21)a2(13(,¢4 (x1;x9;23;24)] = 1 for all elements of the normalized
second-order correlation tensor and for any choice of reference frame [111].
Furthermore, from the total probability of double photodetection P (t,#') at

(€] (2) [

two detectors at positions r,’ and r;” [Eq. (2.43)], we can define the normalized
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second-order correlation function as

(T 10 101D 1) )
e ) @ 1))

This quantity corresponds to the normalized correlation of the intensities measured
by the two detectors, taking into account all the photons arriving to the detectors
(independently of their polarization directions). Thus, g(z)(r(l) t1; r( ), to) is often
referred to as intensity correlation. In practice, second-order coherence is more
usually quantified through this normalized second-order correlation function, instead
of by measuring all the elements of the tensor g(®) (z1;zo; x3;24). Light is then

g @M ;0P 1) = (2.46)

usually said to be completely second-order coherent if g(2)(r((11)7 ty;r r? ), t2) = 1 at all
t1 and ty times. The latter only occurs if the numerator in Eq. (2. 46) factorizes as
(T : I(r&l), )I(r((f), ta) 1) = (I(rg),tl» <I(r&2), ta)) at all t; and o times. Notably,
this factorization always holds at very large time differences (|to —t;| — o), which
yields

|t27t1 |*>OO
=,

g e 1) 1. (2.47)

In the steady state, the temporal evolution of the above expression depends
only on the time delay 7 = t; — t;. Thus, in the steady state, the normalized
second-order correlation function can be simplified to

(7 1,001, ).>ss.
de o (e )

9@ ), 0 r) = (2.48)

Interestingly, both the normalized second-order correlation function and the
normalized second-order correlation tensor provide information on the statistical
properties of light, which is discussed in Section 2.3.

2.2.3 Higher-order coherence

In this section, we briefly present the generalization of the correlation tensor and
correlation function to higher orders. In the general case, n detectors are considered,
each at position r§d) (with j =1,2,...,n) and with dipole moment operator N(J).
The probability of n-photon detection with each detector capturing a photon at
time t;, is proportional to

POty ty) = (T 1M i) 1P 1) Fe 1) ) (2.49)

Additionally, the second-order correlation tensor G (x1; xo; z3; 24) [Eq. (2.44)] can
be generalized to the n*"-order correlation tensor G(”)(xl; ...} Tay), with elements

G (@15 20) = (B (1) - ES) () ESD) (g0 - ESE) (w20)) -
(2.50)
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2.2. Second-order and higher-order coherence

Moreover, the elements of the normalized n*'-order correlation tensor
g™ (z1;...;2,) are then given by

G o (13- 3 220)
2n 1
152\ Goa, (g, 25)

This quantity measures the normalized correlation of photons with specific
polarization directions. In contrast, the normalized correlation of all photons
arriving at the detectors, independently of their polarization directions, is given by
the normalized n*P-order correlation function, defined as

s

gy (155 T2p) = (2.51)

(71l ). I ) )
<f<r§%t1>> A )

Notably, as the density matrix is a positive semi-definite operator,
g™ (rgll),tl; .. ( ) ,tn) is always non-negative [111, 114].

Furthermore hght is said to be completely n"-order coherent if the numerator
in Eq. (2.52) factorizes as

g™ Wt el ) = (2.52)

(T iU ) 1@ ) ) = FeW, ) (Fe ). (2.53)
In such a case, g(”)(r((il), t1;...; r((in), t,) =1 for all t1,ts,...,t,. Importantly, we

say that light is coherent to all orders if g(”)( ) St r&"),tn) = 1 for every

order n. The states of light that are completely coherent to any order correspond
to eigenstates of the positive-frequency electric field operator EA(f)(r, t), and are
simply referred to as coherent states. The expression of the free-space electric field
operator in Eq. (1.133) allows us to express these states as

o) = @k |oks) 5 (2.54)

where |ays) is an eigenstate of the operator dxs, such that

&ks |aks> = Oks |aks> . (255)

By using Eq. (1.56) and the normalization condition (ays|aks) = 1, we obtain

|ones) = Z s —“ks/2|nks>, (2.56)

with |nk s) the Fock states introduced in Section 1.1.6. In this way, the action the
electromagnetic vacuum field in Eq. (1.133) into the coherent state |a) yields

B, free(T, 1) ) _12,/2 Veké e TRt gf e—(ker—ad)] |0} (2.57)

85



Chapter 2. Quantum optical coherence and light statistics

By matching the eigenvalue of B 1 free(T', t) on the right-hand side of this equation
with the Fourier expansion of the classical electric field that we discussed in Section

1.1.3 [Eq. (1.25a)], we find
hwk
Ao = 1/ X 2.58
k 2€0Vak ( )

where Ay, is the complex amplitude of the classical transverse vector potential
[Eq. (1.18)]. Therefore, we conclude that classical electromagnetic fields are
characterized by large values of oy because in the classical limit we take h — 0,
which must be compensated by a value of ay, comparable to 1/v/A [114]. This
large value of ay in the classical limit is the reason why we assumed a large value
of (d}&m in the description of the quantized laser field in Section 2.1.6.

2.3 Light statistics and color-blind intensity
correlation

In this section, we discuss how the intensity correlation g(2)(r£il), 0; r((f), 7),
introduced in Section 2.2.2, can reveal information about the statistical properties of
light. To this end, we first describe the usual Hanbury-Brown Twiss interferometer
and then introduce the concepts of antibunching and bunching. Finally, we analyze
the intensity correlation of light emitted from a single quantum emitter and show
that this system represents an ideal single-photon source. The analysis of light
statistics plays a key role in Chapters 3 and 4 of this thesis.

2.3.1 Hanbury-Brown Twiss interferometer

We introduce in this section the Hanbury-Brown Twiss (HBT) interferometer, which
is typically used in experiments to measure the intensity correlation of light. This
interferometer is based on the pioneering work of Hanbury-Brown and Twiss in the
1950s, which aimed to quantify the angular diameter of the star Sirius through the
measurement of the intensity correlation of light emitted from this star [163-165].

In the HBT interferometer, light emitted in some particular direction from
a light source impinges on one of the input ports of a 50:50 beam splitter, as
schematically represented in Fig. 2.4. The light then has an equal probability of
being reflected or transmitted through the two output ports of the beam splitter.
Additionally, a detector is placed on each of the two paths that the light can follow
after the beam splitter. These two detectors are placed symmetrically with respect
to the beam splitter, leading to ry = r((il) = rEIQ) in the expression of the intensity
correlation in Eq. (2.48). Light intensity is then measured at both detectors over a
time interval. By using a correlator [166], the HBT intensity correlation can be
finally obtained as the product of the intensities arriving at each of the detectors
with some time delay 7. This product is normalized by the light intensities arriving
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Hanbury-Brown Twiss interferometer

beam
photons splitter detector 1

. . D_
(2)
detector 2 v P (T)

Figure 2.4: Schematic representation of the Hanbury-Brown Twiss (HBT) interferometer, which
is typically used to measure the color-blind intensity correlation g(® () of photons emitted from
any given source. The light emitted in some particular direction impinges on a 50:50 beam splitter
and then can be either reflected or transmitted, with equal probability, from it. Two detectors
are symmetrically located from each of the output ports of the beam splitter. The intensities of
the light beams arriving at the two detectors are measured during a certain time interval, which
enables the measurement of the intensity correlation 9(2)(7) by using a correlator. Circles of
different colors represent photons with different frequencies.

at each of the detectors. In this way, the HBT intensity correlation is given by

~

<T.f(rd7 ) A( ) >s_ (259)
(1(ra,0)), (1(ra, 7))

We note that rg can be simply interpreted as the position of the beam splitter, as
detection takes place in the far-field region and the two detectors are symmetrically
arranged around it [i.e., only the direction of ry affects the spatial dependence of
9@ (rg,0;rq,7)).

Further, the elements g((foz 88 (rg,0;ry,7) of the normalized second-order
correlation tensor can be measured with the HBT interferometer by placing a
polarizer in each of the two possible paths that light can follow after the beam
splitter (one polarized in the a-direction and the other in the S-direction). If the
electric field scattered from the light source is a scalar field (as typically assumed in
the literature), then the normalized second-order correlation tensor has a single non-
zero element under the proper choice for the basis (reference frame) of polarization
unit vectors. This single non-zero element of the tensor is equal to the normalized
second-order correlation function.

In this thesis, we focus on the intensity correlation measured using an HBT
interferometer and adopt the simpler notation

9P (ra,0;r4,7) =

9?(7) = ¢® (x4,0;14,7), (2.60)
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Chapter 2. Quantum optical coherence and light statistics

where the dependence on the detection direction is implicit. Additionally,
we emphasize that g(2)(7) measures the correlation between all the photons
emitted from the light source towards the beam splitter, without discriminating
in polarization and, importantly, neither in frequency. Thus, this quantity is
sometimes referred to as color-blind intensity correlation. In Section 2.4, we discuss
a modification of the usual HBT interferometer that can be used to measure
the intensity-correlation of photons emitted at specific frequencies, the so-called
frequency-resolved intensity correlation.

2.3.2 Bunching and antibunching

We describe in this section the connection between the color-blind intensity

correlation ¢(®)(7) and the statistical properties of light. To this end, we first

consider a source of light emitting photons only in electromagnetic mode (k, s). In

this case, the positive-frequency and negative-frequency transverse electric field

~ (+ A (—

operators are E(l )(rd7 0) x axs and ES_ )(rd7 0) x &LS, according to Eqs. (1.127a)—
(1.127b). Thus, the color-blind intensity correlation at delay 7 = 0 becomes

st oAt oA s SN2 R

9(2)(0) — %‘“G;% — 14 ((Afiges)?) g — <nks>ssl

A~ 2
(] s (ks )

(2.61)

To derive the last equality in the above equation, we have used 7xs = &Lsdks
and the commutation relations in Egs. (1.42a)—(1.42b). Additionally, we have
introduced the variance of the number operator (Appendix A), which is given by

<(Aﬁk5)2>ss = <ﬁ12(s>ss - <ﬁks>§s ° (262)

Therefore, the color-blind intensity correlation g(2)(0) is determined by the
expectation value and the variance of the photon number operator. We next
show that ¢(®(0) allows for distinguishing between different types of statistical
distributions that can be followed by the number of photons emitted by the source.

We first take into account that the equality between the expectation value and
the variance is a fundamental characteristic of a Poissonian distribution. According
to Eq. (2.61), the number of photons emitted by the source follows a Poissonian
distribution if, and only if, ¢®*(0) = 1. Thus, the following two conditions are
equivalent:

(es)gs = ((Aiies)) g & 9P(0) = 1. (2.63)

Notably, one can show that the coherent state |ays) in Eq. (2.56) results in a
Poissonian photon distribution. More specifically, the probability of finding n
photons in mode (k, s) provided by the coherent state |ays) is given by

|05ks ‘ 2nks

' 3
Nks-

2 —|aks|?

| (nis|oks) [© =e (2.64)
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2.3. Light statistics and color-blind intensity correlation

which is exactly a Poissonian distribution with |auxs|? = (nks)y = (Afiks)?) .-
Crucially, Poissonian distributions are characteristic of statistical processes where
events occur independently of each other, or, in other words, where the occurrence
of an event is not influenced by the timing of past events. Therefore, we reach an
important conclusion: the number of photons emitted from a source of coherent
light at a given time is completely independent of the number of photons emitted
at past times and satisfies ¢g(*)(0) = 1. Further, a coherent source of light has
intensity correlation g(? (1) equal to 1 at all time delays [116]. This is the case for

laser light.
Furthermore, Eq. (2.61) also indicates that the following conditions are

equivalent:
(Afgs)?) > (Pes) o & 92(0) > 1. (2.65)

Thus, if the intensity correlation of light emitted from a certain source yields
g (0) > 1, the probability of emitting n photons follows a super-Poissonian
distribution [((Afxs)?)., > (fks)]- This source then has a greater tendency to
emit photons in bunches than a source of coherent light (i.e., a laser). A notable
example is thermal light, which yields ¢(® (0) = 2 [118, 167]. In the opposite case,
we obtain

(Afee)?) s < (Maes)ys < 92(0) < 1. (2.66)

Thus, if ¢®(0) < 1, the photon distribution is sub-Poissonian [((Afks)?),, <
(Mks)y]- In this case, the source exhibits a lower tendency to emit photons in
bunches compared to a coherent light source. Importantly, 9(2)(0) < 11is a signature
of quantum light, as classical light obeys the inequality (I(t)2) > (I(¢))°, implying
g (0) > 1 [118]. The lowest limit ¢(®(0) = 0 is characteristic of single-photon
sources [31], which emit one photon at a time, with no possible coincident detection
at 7 = 0. We show in Section 2.3.3 that QEs with two-level behaviour are ideal
single-photon sources.

In this thesis, we follow a common convention and refer to light as bunched
if it follows a super-Poissonian distribution, and as antibunched if it follows a
sub-Poissonian distribution, as it has a larger or smaller tendency, respectively, to
emit photons in bunches than coherent light. However, the rigorous definitions
of bunching and antibunching rely on comparing the value of the normalized
second-order correlation function at 7 = 0 with its value at 7 # 0. More specifically,
light is said to be bunched if ¢(®(0) > ¢ (7), and antibunched if ¢®(0) < ¢ (1)
[118, 168]. Typically, the practical convention that we use in this thesis and the
rigorous definitions of bunching and antibunching agree because g(2)(7 —o0)=1
[which is a consequence of Eq. (2.47)].

The connection between light statistics and the normalized second-order
correlation function discussed above is based on a single electromagnetic mode (k,
s). Next, we briefly describe how this connection can be generalized to the case of
an infinite number of modes. To this end, we substitute the complete expressions
of the positive-frequency and negative-frequency transverse electric field operators
[Egs. (1.127a)—(1.127b)] into the expression for the color-blind intensity correlation
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Chapter 2. Quantum optical coherence and light statistics

[Eq. (2.59)]. In this way, we obtain

g(2) (O) _ Zk)s Zk/’sl Wi Wy’ <&L5&L/s’&k/5’ &ks>ss

Zk,s Zk’,s’ WkWk’ <dLS&ks>SS <aL's’ak’3/>ss

2
Ek,s Zk’,s’ Wi Wi <’ﬁ‘k5ﬁk’5'>ss - ( Zk,s Wi <ﬁk5>ss) - Ek,s wl% <ﬁ’k5>ss
2
( Zk,s Wk <ﬁk5>ss)

)

(2.67)

where we have used again the commutation relations in Eqgs. (1.42a)—(1.42b). Thus,
in the general case we find again a connection between the number of photons in
each mode and the color-blind intensity correlation. Additionally, assuming that
only electromagnetic modes of very similar frequency contribute significantly to
the summations in the above expression, we find

gP0) =1+

(2.68)

where 1 = Zhs fiks is the total number operator. The above expression is formally
identical to the one in Eq. (2.61) obtained for a single electromagnetic mode.
Therefore, the conditions in Egs. (2.63), (2.65) and (2.66) are also valid for the
total number operator.

2.3.3 Color-blind intensity correlation from a single
quantum emitter

In this section, we investigate the HBT intensity correlation of light emitted from a
resonantly driven QFE and show that this system constitutes an ideal single-photon
source. Additionally, we show that Rabi oscillations emerge in the time evolution
of g (7) for increasing driving strength.

As shown in Section 1.2.7, the positive-frequency electric field operator of
light scattered from a QE is E(j,()gE(rd,T) = E,(rq)6(1T — |rg — ro|/c), where
&, (rq) is the vector amplitude of the positive-frequency electric field radiated at
rq from a classical electric point dipole at ro. The contributions from &,(rq)
in the numerator and in the denominator of ¢®(7) [Eq. (2.59)] cancel out.
Additionally, the retardation time |rq —ro|/c in the intensity operators I(rg,7)
61 (1 —|rqg —ro|/c)6 (T — |rqg —ro|/c) and I(r4,0) oc 6T (—|rg —1ro|/c)6(—|rqg —1r0o|/C)
that appear in the numerator of g(? (1) also cancel each other, as we focus on
the steady state, which only depends on the time difference at which these two
operators are evaluated [similarly to the cancellation of the retardation times in
the normalized first-order correlation function g(l)(rd7 0;rg4,7), see Section 2.1.6].
Thus, the retardation times can also be ignored in the calculation of the color-blind
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Figure 2.5: Color-blind intensity correlation ¢(2) (1) = g(® (rg,0;rg, 7) of light emitted from a
driven QE. The QE has two-level-system behaviour, as schematically represented in the inset in
(a), with transition frequency wg and spontaneous decay rate vo. Additionally, the QE is driven
resonantly (wr, = wp), with Rabi frequency Q. (a) The QE is weakly driven at Q = v0/10. A clear
minima is obtained at short delay times, with 9(2)(7' = 0) = 0, characteristic of single-photon
emission. (b) The QE is strongly driven at Q = 5. Rabi oscillations emerge in the time evolution
of the intensity correlation due to the dressing of the states, which is represented in the inset.

intensity correlation of light emitted from a single QE. We obtain

O T e 200

Importantly, the numerator vanishes at 7 = 0 and, thus, g(® (0) = 0, independently
of the strength of the driving. Therefore, two-level QEs are ideal single-photon
sources. This can be easily understood by taking into account that the relaxation
from |e) to |g) leads to the emission of a single photon, and the QE cannot be
reexcited to emit another photon faster than the lifetime of the excited state |e),
which is given by 1/v9. Thus, at 7 = 0, coincident detection of photons is not
possible.

The expression of the color-blind intensity correlation in Eq. (2.69) can be
evaluated using the Markovian master equation in Eq. (1.230), which includes the
laser driving. We plot in Fig. 2.5a the time evolution of 9(2)(7) of light emitted
from a resonantly driven QE at weak driving strength, Q = 7,/10. We find a
dip at 7 = 0, with no oscillations as |7| increases because the eigenstates of the
system can be well approximated as the bare states |g) and |e) (see the inset in Fig.
2.5a), and thus Rabi oscillations are not expected. We next increase the driving
strength to = 57 (Fig. 2.5b), which is sufficient to modify the eigenstates of the
emitters. Specifically, the eigenstates are distributed in infinite rungs, as described
in Section 2.1.6 and schematically represented in the inset of Fig. 2.5. We find that
the intensity correlation vanishes again at 7 = 0 and, importantly, we observe the
emergence of Rabi oscillations due to the modification of the eigenstates induced
by the strong driving.

(o)
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Frequency-resolved Hanbury-Brown Twiss interferometer

beam optical detector
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Figure 2.6: Schematic representation of the frequency-resolved Hanbury-Brown Twiss
interferometer, which can be used to measure the frequency-resolved intensity correlation
g(2)(w1,w2;7) of photons emitted from any source with delay T and specific frequencies w;
and wy. Optical filters with mean frequencies w; and ws are used, so that the photons of
frequency wi (red circles) arrive at one of the detector and the photons of frequency wa (blue
circles) arrive at the other detector. The measurement of the intensities at each of the detectors
enables to finally obtain the frequency-resolved intensity correlation g(2)(w1,w2; 7), for example,
by using a correlator. Circles of different colors represent photons with different frequencies.

2.4 Frequency-resolved intensity correlation

In this section, we include optical filters in the setup of the HBT interferometer
to analyze the intensity correlation of photon pairs at specific frequencies, which
is known as frequency-resolved intensity correlation (FRIC). The analysis of the
FRIC provides great information about the emission processes of the system. In
addition to gathering information about one-photon emission processes [which is
typically also provided by the emission spectrum S(w) discussed in Section 2.1.5],
the FRIC can also unveil complex two-photon emission processes.

2.4.1 Frequency-resolved Hanbury-Brown Twiss
interferometer

The FRIC can be obtained experimentally including an optical filter in each of
the two paths that light can follow after passing through the beam splitter in the
standard Hanbury-Brown Twiss interferometer, as depicted in Fig. 2.6. In this
thesis, we consider that the filters have a Lorentzian profile with mean frequency
w; and linewidth I'; (here j = 1,2 labels each of the two filters), which is the
case, for example, of Fabry-Pérot cavities with reflection coefficient tending to one
[147, 158]. The positive-frequency and negative-frequency transverse electric field
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operators, including the effect of filter j, are given by [158]
- (£ r;, [~ (£
B Ty3t) = 2 / dt' e~ (it TS (), (2.70)
0

where fl stands for filter. These filtered electric field operators allow for introducing
the filtered intensity operator as
Tn(w; Tyira, ) = B h(w; Tyst) - B (wr, Tyt 2.71
fl(o‘)]’ J7rd?7—)_ J_,fl(wja Js ) J_fl(wja Js ) ( . )
The FRIC can then be obtained in an analogous way to the color-blind intensity
correlation ¢®)(7) in Eq. (2.59), but replacing the intensity operators I(rg,0) and
I(r4,7) by the filtered intensity operators Ifl(wl,Fl, rq,0) and Ifl(UJQ,FQ, rg,T),
respectively. Thus, the FRIC is defined as

(T : In(wi,T1sra, 0 pu(wa, Uaira, 7) 3)y (2.72)

9P (w1, we;T) = = =
<Ifl(w1, Fl; ry, 0)>SS <Ifl(w2, FQ; ryg, T)>SS
We emphasize that ¢(?) (w1, w2; T) depends on the linewidth of the filters I'; and
also on the detection direction ry. In the limit of infinitely large linewidth of the
filters (T'; — 00), the value of the FRIC g(?)(wy,ws; ) tends to the value of the
color-blind intensity correlation g () [169].

The direct calculation of the FRIC through the rigorous expression in Eq. (2.72)
requires to compute complicated four-dimensional time integrals, which have been
solved for the case of resonance fluorescence of a single two-level quantum emitter
[159, 170, 171]. However, the calculation of these time integrals for more complex
systems usually becomes unpractical. We discuss an alternative approach in the
next section.

2.4.2 Sensor method

We describe in this section a formalism that can be used to obtain the FRIC of
complex systems. This formalism is known as sensor method and was introduced
in Ref. [169]. It considers two two-level atoms that act as detectors (indexed by
j =1,2), as in Section 2.2.1. The raising and lowering operators of these atom
detectors are denoted CT |e(3)>< (])| and (j = |g(3)> (e&j)|, respectively. The
Hamiltonian of these atom detectors is given by H = j wjgt}fj. The sensor
method relies on an effective Hamiltonian that describes the interaction between
the detectors and the electromagnetic field scattered from the system .S, whose
FRIC is of interest. Taking into account that the positive-frequency component of
the dipole moment operator of atom detector j is proportional to @T , and the the

negative-frequency component is proportional to fj, the multipolar form of this
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effective interaction can be written under the RWA as

Hs_p=h> en(Cls; + s, (2.73)
J

where €y, is the effective coupling strength. €y; is considered identical for the two
detectors, for simplicity, and small enough compared to any decay rate of .S and to
the linewidth I';, so that the atom detectors do not influence the dynamics of S.
Additionally, §; and §; are lowering/annihilation and raising/creation operators in
the Hilbert space of S that describe the positive-frequency and negative-frequency
electric field operators of light scattered from S, respectively. For example, in the
case of a single two-level quantum emitter 3; = &, as we showed in Section 1.2.7
that the positive-frequency electric field scattered from the QE is proportional to
the lowering operator & [Eq. (1.147)].

Moreover, the dynamics of the entire system is governed by the Markovian
master equation

%ﬁ =Lp= —%[Hs +Hyp + Hs_yg1,p) + E(sfn)ﬁ + nglzn)ﬁv (2.74)
where p is the density matrix of the entire system (comprising the complete Hilbert
space given by the tensor product of the Hilbert space of S and the Hilbert space
of the two-level detectors) and Hg is the Hamiltonian of the system of interest.
Additionally, we have defined the superoperator £, which provides the full time
evolution of p and is known as Liouville superoperator. Further, ﬁg") accounts
for the incoherent dynamics of S, which can emerge from tracing out the degrees
of freedom of the electromagnetic field (as well as possible additional reservoirs),
whereas r

g =3 5Pl (2.75)

J

accounts for the losses of the atom detectors, with D[fj] the Lindblad dissipator
defined in Eq. (1.200) and I'; the linewidth of the filters. We emphasize that within
the formalism presented in this section, the probability of photon absorption by the
atom detectors is no longer independent of the photon frequency (as in Sections
2.1.2 and 2.2.1), but it obeys a Lorentzian distribution, with linewidth I'; and
central frequency w;.

The sensor method enables to calculate g(®)(wy,ws;7) from the two-time
correlation of the operators @@ (t) = |e((f )> (e((f )| (t) of the two atom detectors.
More specifically,

L FTA At A .
9(2) (Wl, Wa; T) _ hm <7: .A41 Cl(o)ggcg (T) '>ss . (276)
7170 (G (0) (G (7))

Equation (2.76) resembles the original expression of 9@ (w1, we;7) in Eq. (2.72),
but the filtered intensity operators I (w;,T';;rq,t) are replaced by the operator
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fjfj(t) of the atom detector j, which corresponds to the projector onto the excited
state of this detector. Equation (2.76) can be intuitively understood taking into
account that the population of each detector can be expected to be proportional
to the number of photons that would be detected after the filtering process. A
demonstration of the mathematical equivalence between Egs. (2.72) and (2.76) can
be found in Ref. [169].

Therefore, we conclude that the sensor method allows us to compute the FRIC
without the necessity of solving complicated four-dimensional integrals at the price,
in principle, of enlarging the Hilbert space. This drawback is completely relaxed in
the following section.

2.4.3 Sophistication of the sensor method

We describe in this section an approach based on the sensor method that allows
for computing the FRIC within the Hilbert space of the system of interest S. This
approach was introduced in Ref. [172]. We first rewrite the MME in Eq. (2.74) as

. . AT .
Lp=Lsp+Lpp—[Hs—s. 0, (2.77)

where the Liouville superoperator
Lop=—L1As, 5+ L5V (2.78)
acts only on the Hilbert space of .S, whereas the Liouville superoperator
Lop=— h[Hfz, A+ L) (2.79)

acts only on the Hilbert space of the atom detectors. Additionally, we decompose
the steady-state density matrix as

Aln 1 1 2 2
oo X X ek e m?) ], (280
ke{g.e} le{g,e} me{g,e} ne{g,e}
where we have defined the steady-state reduced density matrix

Al ~k,m (1)

o = (rye = (k8D P s 18,0y (2.81)

which belongs to the Hilbert space of S, with k,I,m,n € {g,e}.

In the following, we focus on the case of zero delay time 7 = 0. (The extension
of this procedure to 7 # 0 has been derived in Ref. [172], but it is not used in this
thesis). The numerator of ¢ (wy,ws;0) in Eq. (2.76) can be obtained from the
trace of one of the reduced density matrices in Eq. (2.81) as

((161(0)36(0)) = Trpee. (2.82)
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Similarly, the denominator of ¢(®)(wy,ws;0) in Eq. (2.76) can be calculated from

(C11(0)), = Trply, (2.83a)
(C3C2(0)),, = Trp2e. (2.83)

We next describe how to compute the reduced density matrices ﬁf,cr;n within the
Hilbert space of S. 7

First, we compute separately the action of the full Liouville superoperator £ in
Eq. (2.77) on each of the sixteen terms in the summation on the right-hand side of
Eq. (2.80), which yields:

~ 1 1 2 2 ~ 1 1 2 2
z@%®@»@n@@w@02@0%®m»@nwgw@ﬂ
. ~ A~ 1 1 2 2 ~ ~ 2 2
—wﬂGmm®wyM¢H®@b@vaﬁﬂ®w?M#H®MB@yQ

. ~ A 1 1 2 2 ~ ~ 1 1 2 2
—uﬂGw%®m9M¢H®ébwyvm%£®mywﬁw®ﬁb@yo,
(2.84a)
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The summation over the right-hand sides of the sixteen expressions in Egs. (2.84a)
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(2.84p) vanishes, as Lpss = 0. As a consequence, we can reorder this summation into
sixteen vanishing terms, each one proportional to a different product of the form

\kl(il)> (lgl)\ ® |m&2)) (nf) |. We obtain the following hierarchy of coupled equations:
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Solving this system of equations would provide the sixteen density matrices ﬁﬁﬁn

However, the direct resolution of such a system of equations is not simple. In
the limit of weak coupling €y; in which we are interested, these equations can be
simplified by neglectlng some terms More specifically, we take into account that
the density matrix pk m scales as e 1> with IV the number of indices k, [, m, n that
corresponds to an excited state [172]. We then approximate all the above equations
to leading order in €. In this way, we first approximate Eq. (2.85a) up to e?cl
order, which yields

Lspyy = 0. (2.86)

Thus, p79 is an eigenoperator of Lg with vanishing eigenvalue. As a result, 579
corresponds to the steady state of S in the absence of the atom detectors.
Moreover, approximating Egs. (2.85b)—(2.85¢) up to e}l order leads to

r N .

(Ls — ?1 —iwy)pld = de 1819979, (2.87a)
ry

(Ls— 5 + w1 )Pyl & —iep Py ‘751, (2.87b)
D N9~ e go 599

(Ls — 5~ iwa) Y ~ i€ 152009, (2.87¢)
Iy .

(Ls — ?2 +iwg) pire & —iep Pl gsz (2.87d)

Thus, the density matrices pZ:9, p39, pg Z, and pg¢ can be calculated from pg-9

This calculation is performed directly in the Hilbert space of S. Further, we
approximate Egs. (2.85f)—(2.85k) up to efcl order and obtain

<gs ERLLEL w2>>ﬁz;s ~ e (mg;g " p) (2.88a)
<IJS - % i(wr + w2 >pg G~ e <PZ o8] + ﬁ_f,:i’,%) (2.88b)
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(Cs — I‘1>p 0 e <§1ﬁ2’,3 pg’gs‘;) (2.88¢)
<£5 - rg) I ~ e <§2ﬁg;g 993 ;) (2.88f)

These equations allow us to solve the density matrices p2'Z, poo, p2g, Pge, Pery,
and pg¢ from the density matrices that have been prev1ously calculated using
Eqgs. (2.86) and (2.87a)—(2.87d). The calculation is again carried out in the Hilbert
space of S. Importantly, we recall that the density matrices pg9 and pg:¢ give the
denominator of g(® (wy,ws;0) [Egs. (2.83a)-(2.83b)]. Furthermore, approximating
Egs. (2.851)-(2.850) to e:;cl order yields

Lo (5 o) = e )t e (10 + s — petsl). (2500)

(2.89¢)

(ES L4+ zwl)pg ¢ ~ieg <52pg 5 ﬁgzzg{ Pgds ), (2.89b)
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(- @0+ By wien )t mien(suags - gl - egsh) . (2s00)
These equations enable to obtain pf¢, pgc, pef, and pgg. The latter density
matrices can be substituted in Eq. (2. 85p) which finally allows us to compute pg’¢
and, thus, the numerator (6{51(0)@62(0»55 of ¢ (w1, ws;0) [Eq. (2.82)].

In summary, the procedure described in this section allows us to calculate in
succession the sixteen density matrices ﬁﬁc’?n, starting from p%9, which describes
the steady state density matrix of S in the absence of detectors. Importantly,
the calculation of these matrices can be done directly in the Hilbert space of S.
9@ (w1, ws;0) can then be obtained from the traces of three of these matrices
(namely, of p¢-9, po-c, and pgc) using Egs. (2.72), (2.82), (2.83a) and (2.83b). Last,
we note that the resulting g( )(wl,wg; 0) is independent of the specific value of €y,
as the dependence on €y of the numerator [0 €};] and of the denominator [o €};]

of g (wy,ws;0) cancel out.

2.4.4 Frequency-resolved intensity correlation of light
emitted from a single quantum emitter

In this section, we calculate the FRIC of light emitted from a single QE and
show that the analysis of ¢(®) (w1, ws;0) as a function of w; and wy provides useful
information on the emission mechanisms of the system.

We first analyze the FRIC for relatively weak laser intensity, so that the
eigenstates of the driven QE correspond to the bare states (as described in Section
1.5.2). In particular, we consider a laser resonantly tuned to the transition frequency
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of the QE (wyr, = wp) with Rabi frequency fixed at Q = ~y/10. We recall that the
dynamics of the driven QE in the rotating frame at the laser frequency is governed
by the MME in Eq. (1.230). We use this MME to compute ¢ (wy,ws;0) using
the procedure described in Section 2.4.3, with the effective Hamiltonian describing
the interaction between the QE and the detectors given as

Hs pi=hYy en(ljo+(60), (2.90)
J

Thus, the system operators in Eq. (2.73) are §; = 6 and §; = &1, Additionally, we
fix the linewidth of the filters at I'; = 7,/10.

The top panel of Fig. 2.7a shows the incoherent emission spectrum S;(w) of
the single quantum emitter [Eq. (2.34)], which is the same as in Fig. 2.2b and
is discussed in Section 2.1.6. In the bottom panel of Fig. 2.7a, we plot a map
showing the dependence of ¢(®)(wy,ws;0) on w; and wy. The z-axis in this map
corresponds to the normalized laser detuning of the photons arriving at detector
j=1, (w1 —wr)/v = (w1 —wo) /70, while the y-axis corresponds to the normalized
laser detuning of the photons arriving at detector j = 2, (we—wp,)/v0 = (w2—wo)/Yo-
In the FRIC map, we use the standard color convention [173-178], where the blue
color corresponds to antibunched emission [¢(%) (wy,ws;0) < 1], red to bunched
emission [g(?) (w1, ws;0) > 1], and white to Poissonian statistics [¢(*) (w1, ws;0) = 1].
To improve the visibility of both the antibunched and bunched emissions, we
additionally make use of a linear scale in the range 0 < g(2)(w1, w2;0) <1 and a
logarithmic scale in the range 1 < g(z)(wl, wa3;0) < 50.

We find that the FRIC map in Fig. 2.7a exhibits a strongly antibunched
background, which can be understood from the value of the color-blind intensity
correlation ¢(®)(0) = 0 provided by a single QE (see Section 2.3.3). On top of
this strongly antibunched background, different lines emerge, which constitute a
signature of the different mechanisms of photon emission from the driven QE. To
analyze these lines, it is convenient to consider the laser field to be quantized,
so that the eigenstates of the system are distributed in infinite rungs, each rung
with a fixed number of total excitations (including photons, see Section 2.1.6).
Under weak enough laser driving, we recall that the eigenstates in the rung n
(with n excitations) correspond to the bare states |g,n) and |e,n — 1), which are
schematically represented in Fig. 2.7b. As |g,n) and |e,n — 1) are degenerate in
energy (for wy, = wyp, as chosen here), the one-photon transitions from eigenstates
of subsequent rungs (e.g., from |e,n) to |g,n)) leads to the emission of photons
of frequency wy = wp, which is represented by a solid orange arrow in Fig. 2.7b.
Notably, the emission of one photon due to such a one-photon transition does
not influence the frequency of the next emitted photon. As a consequence, the
correlations g(® (w1 = wp,ws = w’;0) and ¢ (w; = W', wy = wp;0) are mostly
independent of w’, which gives rise to a vertical line and a horizontal line at w; = wq
and wy = wy, respectively. These one-photon transitions can also be identified by
the peaks in the emission spectrum of the system, shown on top of Fig. 2.7a.

Moreover, the FRIC map in Fig. 2.7a also exhibits an antidiagonal line at
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Figure 2.7: FRIC for a resonantly driven two-level QE. [(a),(c)] Incoherent emission spectra (top
panels) and FRIC maps (bottom panels) for Rabi frequency (a) = 0/10, and (¢) Q = 5v0. The
incoherent emission spectra S;(w) are scaled by R2eqc/(hwo), with R the distance to the detector
in the far-field region, and additionally by 10% in (a) and by 102 in (c). In the FRIC maps, we
follow the standard color convention, where blue color means antibunched emission, red color
bunched emission, and white Poissonian statistics. In the color bar, we use a linear scale in the
interval 0 < g(2)(w1,WQ; 0) <1 and a logarithmic scale for 9(2)(0.21,0.22; 0) > 1. Solid arrows are
used to mark the horizontal and vertical lines in the FRIC maps, while dashed arrows are used
for the antidiagonal lines related to two-photon processes through intermediate virtual states.
Black dotted arrows indicate the diagonal line at w; = wa, corresponding to the detection of two
photons of identical frequency. We consider filters with linewidth I'; = ~9/10. [(b),(d)] Schematic
representations of the eigenstates in rungs n — 1, n, and n + 1, together with the corresponding
one-photon transitions between eigenstates (solid arrows) and two-photon transitions through
intermediate virtual states (dashed arrows). In (b) the eigenstates in rung n correspond to the
bare states |g, n) and |e,n — 1), whereas in (d) the eigenstates in rung n correspond to the dressed

states |Q$L)> and \Q(_n)>
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w1 +ws = 2wy, (indicated by a dashed orange arrow), which reveals the emergence of
two-photon transitions through intermediate virtual states, called leapfrog processes
[173]. More specifically, antidiagonal lines unveil the emission of a photon of
frequency w; (w9) due to a transition from an initial eigenstate in the rung n + 1
to a virtual state, followed by the emission of a photon of frequency ws (w1) due to
relaxation from the virtual state to another eigenstate in the rung n — 1 (see the
dashed orange arrow in Fig. 2.7b). The frequency difference between the initial and
final eigenstates determines the value of wy +ws satisfied along the antidiagonal line.
Throughout this thesis, dashed arrows in FRIC maps indicate leapfrog processes,
while solid arrows indicate one-photon emission processes. Additionally, as these
antidiagonal lines correspond to the correlated emission of two photons, they are
usually characterized by strong bunching. Importantly, these two-photon processes
cannot be identified in the emission spectrum, nor in the color-blind intensity
correlation, which highlights the advantages of the FRIC in providing additional
information about the emission mechanisms of the system.

We next explore in Fig. 2.7¢ the incoherent emission spectrum (top panel) and
the FRIC map (bottom panel) of the QE under strong driving. We fix Q = 5vq, so
that the eigenstates of the system are modified by the laser driving and correspond
to the dressed states described in Sections 1.5.2 and 2.1.6. Specifically, the two
eigenstates in the rung n are the dressed states |QS;’)> and |Q(f)> [Egs. (2.37a)-
(2.37b)], with frequency splitting |€2|, as schematically represented in Fig. 2.7d.
As discussed in Section 2.1.6, the frequency splitting between the dressed states
enables the emission of photons at frequencies wy, — 2 = wy — 2 (marked with
solid green arrows in Figs. 2.7c and 2.7d) and wr + Q = wy + Q (solid blue
arrows), in addition to the photons emitted at wy = wy (solid orange arrows). As
a consequence, the Mollow triplet emerges in the incoherent emission spectrum on
top of Fig. 2.7c. Importantly, the large variety of one-photon emission processes
under strong driving also gives rise to the emergence of three horizontal lines and
three vertical lines in the FRIC map on the bottom panel of Fig. 2.7c. Similarly,
the FRIC map in Fig. 2.7c exhibits two additional antidiagonal lines (compared to

the FRIC map in Fig. 2.7a), one corresponding to a leapfrog process with |Q$L+1))

as initial state and \QT71)> as final state [which fulfills wy + we = 2wy, + | and is
represented with a dashed blue arrow in Fig. 2.7b] and another antidiagonal line
corresponding to a leapfrog process with |Q(_n+1)> as initial state and with |Q$ﬁl)>
as final state [which fulfills w; + we = 2wy, — || and is represented with a dashed
green arrow in Fig. 2.7b].

Finally, we note that diagonal lines at w; = ws can be observed in the FRIC
maps shown in Figs. 2.7a and 2.7c (hardly observable in Fig. 2.7a), which are
marked with dotted black arrows. These lines correspond to the simultaneous
detection of two identical photons. The intensity correlation along this diagonal
line is twice that at the nearby points in the map [173, 174]. The reason is that a
coincidence is counted no matter which photon arrives at detector 7 = 1 and which
one arrives at the detector j = 2, in contrast to the case in which w; # ws, which
doubles the probability of a coincidence in the detectors.
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CHAPTER

INTENSITY CORRELATION OF
ZERO-PHONON-LINE PHOTONS
FROM TWO INTERACTING
QUANTUM EMITTERS

We analyze in this chapter the statistical properties of the light emitted into the
Zero-Phonon Line (ZPL) from two quantum emitters separated by short distances.
To this end, we first derive the Hamiltonian that describes the interaction between
the electromagnetic vacuum field and the quantum emitters. We then trace out
the degrees of freedom of the electromagnetic vacuum field using the Markovian
master equation formalism, revealing that the vacuum field mediates the dipole-
dipole interaction between the two emitters. Additionally, we discuss how the
dipole-dipole interaction can modify the eigenstates of the emitters, as well as
their energies and lifetimes. Notably, we introduce in this analysis the combined
Debye-Waller /Franck-Condon factor, which effectively accounts for the influence of
the internal vibrations of the emitters and the phonons of the host medium on the
dipole-dipole interaction.

Afterwards, we perform a systematic analysis of both the color-blind intensity
correlation and the frequency-resolved intensity correlation (FRIC) of light emitted
into the ZPL from two interacting quantum emitters. On the one hand, we find
that the color-blind intensity correlation can be tailored from strong antibunching
to strong bunching by tuning the laser frequency and intensity. On the other
hand, the analysis of the FRIC provides further information about the different
relaxation processes underlying photon emission, allowing us to unveil one-photon
and two-photon emission processes that cannot be retrieved from either the emission
spectrum nor the color-blind intensity correlation. These results show that two
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interacting emitters are a versatile and practical source of quantum light and
highlight the usefulness of the intensity correlation in unveiling complex dynamics
in this system.

3.1 Dynamics of two interacting quantum
emitters

We show in this section that the electromagnetic vacuum field mediates the dipole-
dipole interaction between two quantum emitters. Our starting point is the
minimal coupling form of the Hamiltonian that describes the interaction between
the electromagnetic field and a set of charged particles (Section 1.2.4). We consider
that these charged particles are distributed into two separated space regions,
representing two different neutral systems (e.g., two atoms). We then apply the
Power-Zienau transformation (Section 1.2.5) and derive the multipolar form of the
Hamiltonian. This latter Hamiltonian is used to trace out the Hilbert space of the
electromagnetic vacuum field and derive the Markovian master equation (MME)
that governs the reduced dynamics of the emitters. This MME includes a term in
the Hamiltonian that describes the coherent dipole-dipole interaction, as well as
dissipators that capture the incoherent dipole-dipole interaction. The emergence
of these terms thus shows that the emitter-emitter interaction is mediated by the
electromagnetic vacuum field.

3.1.1 Minimal coupling form of the Hamiltonian for two
separated systems of charges

In this section, we present the minimal coupling form of the Hamiltonian describing
the interaction between the electromagnetic field and two separated systems of
charged particles. The general form of the minimal coupling Hamiltonian H™¢ has
been derived in Section 1.2.4 and is given in Eq. (1.98). In general, this Hamiltonian
can be decomposed into three terms, namely H™me = Hp| + ﬁpu + Hg. Here,
Hp corresponds to the contribution from the transverse electromagnetic vacuum
field and is formally identical to the Hamiltonian of the electromagnetic field in
the absence of radiation sources (Section 1.1.5), whereas H || accounts for the
contribution from the longitudinal electromagnetic field and can be identified as the
quantized Coulomb electrostatic energy of the charges [Eq. (1.90)]. Additionally,
Hy corresponds to the kinetic Hamiltonian of the particles and accounts for the
interaction of the particles with the electromagnetic field.

We now consider two systems, labeled by j = 1,2, of separated charged particles.
Each of these two systems has center of mass at ré] ) and neutral global charge.
Under the long-wavelength approximation (Section 1.2.5), the Hamiltonian of the
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3.1. Dynamics of two interacting quantum emitters

two separated systems of charges can be written in the minimal coupling form as

H™ = Hp) + Hy + I;IFH

2
Na G A 3.1
=S el +3)+ 2350 i (00 A 4t

k,s

where m(-j ) and q(j ) represents the mass and charge, respectively, of the particle

~(7)

i of system j, whereas p,”’ is the canonical momentum operator of the same
particle. The first term in the second line of Eq. (3.1) corresponds to Hp,,
whereas the second term corresponds to Hy. Importantly, the contribution from
the longitudinal electromagnetic field can be decomposed as

g =B £ g® 4 gi2)
Hp| = HFH + HFH HFH , (3.2)

where Hl(vu) and HI(,H) are the Hamiltonian resulting from the quantization of the

Coulomb electrostatic energy of each of the system of charges (as if the other system

were not present), whereas Hl(FII is given by the quantization of the electrostatic

interaction energy between the two system of charges. More specifically, HI(TIHQ)
can be obtained by taking the classical expression describing the electrostatic
interaction energy between two dipoles (each representing the net dipole moment
of each system of charges) [121, 132] and promoting the classical dipole moments

1M and p® to quantum-mechanical operators i(t) and f1(2). We obtain

a2 _ L () @) ga0) . @)
HFH 47T507all32 (l’l' K 3(11’ el‘12)(/1' erlz) ; (33)

where 712 and e,,, denote the norm and unit vector, respectively, of r19 = rél) —ré2).
Thus, r12 represents the distance between the two dipoles.
The electric dipole moment operator of each system is given by

A = 3 g0 5.4

as in Section 1.2.4. Here, r(J ) is the canonical position operator of the particle i of

system j. The dipole moment operators satisfy two relevant properties: (i) they

~(7)

are Hermitian operators, since the operators &;”’ are also Hermitian; and (ii) they

commute with each other,
[, ] =0, (3.5)

which is a direct consequence of the commutation relations of the position operators
[Eq. (1.97)].
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3.1.2 Multipolar form of the Hamiltonian for two separated
systems of charges

In this section, we derive the multipolar form of the Hamiltonian describing the
interaction between the electromagnetic vacuum field and the two separated systems
of charges. To this end, we apply the Power-Zienau transformation introduced in
Section 1.2.5. For two separated system of charges, the unitary operator governing
this transformation is given by

exp|: Zu (J) } exp{ZZS\&)TA )\(J)aks , (3.6)
7 k,s

where we have introduced

SO 2t el p0) gy 3.7
ks 2hwk€ove a « ( )

The multipolar form of the Hamiltonian can then be obtained as
P = PEMT = T T 1 THET + T hp, 7. (3.8)

We next compute each term on the right-hand side of this equation separately.
First, we recall that Hp| ultimately depends only on the canonical position

operators of the particles (Section 1.2.5). As a consequence, [ﬁFH,T] = 0, and
thus, o .
THpT" = Hpy. (3.9)

Moreover, using the expansion theorem in Eq. (1.106), we find [T, A(rgj))] =0.
Additionally, as [f‘E]) oA(réj)),f)z(»])] = ihA(r(()J)) (Section 1.2.5), we obtain

T =T (o A DEE ZZ(W) (3.10)

We next compute TH F lTT. To this end, we use again the expansion theorem
[Eq. (1.106)], which yields

T Tt = s + AL + 27, (3.11a)
Tal Tt =af + AT+ A2 (3.11b)

Taking into account that the Power-Zienau transformation is unitary (i.e., T = 1),
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3.1. Dynamics of two interacting quantum emitters

we obtain

1 boa(d) . o(d
THFLTT Zhwk aksakg 5) +szk(als/\l(é) +aks)\l((jsﬁ)
7 k,s

()150) (3R | 3@
+ZmeAkJSA’+Zm( Mot + N )\ks).

(3.12)

The first term on the right-hand side of this equation is again bii F1, Whereas
the second term gives rise to the multipolar form of the interaction Hamiltonian
between the electromagnetic field and the charges. Namely,

al AU i @ ,_(') )
Z hwk(a};s)\l(js) + Gges )\(J)T Z - exs (@ ikerl a’kselk r{ )

(3.13)

where E J_(réj )) is the transverse component of the electromagnetic field evaluated
at r(J) [Eq. (1.86)]. Further, the third term on the right-hand side of Eq. (3.12)
yields the dipole self-energies s(] ) of each of the emitters [Eq. (1.111)]. Specifically,

ZZ’W /\(J)T/\(J) ZZ 250V ) - ers)? = Zg&j)_ (3.14)
k,s J

J

So far, the application of the Power-Zienau transformation to each of the
terms of the minimal coupling form of the Hamiltonian in Eq. (3.1) is a direct
generalization of the transformation of the single-emitter Hamiltonian (Section
1.2.5), except for one important difference. This difference lies on the last term in
Eq. (3.12), which consists of cross terms between the two systems of charges. We
show next that this term is opposite to Hl(w” ) [Eq. (3.3)] and, thus, the two terms
cancel each other out. To show this, we first use the expressions of the operators

;\1(35) given in Eq. (3.7) and find

S e (AR 4 A1)
k,s

71712k €rqg €—1T12k~€r12

= 1), (2 . PN ) I ~(1)
Z ( 2hegwV (f2 exs) (/1 es) + eV (f exs)(ft eks)) .
(3.15)

We next transform the summation over k into an integral [Eq. (1.134)], which
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yields
(132 4 5130 o
g;hwk<)\ Aol + AT >_E§h250 27 CBZ/ d951n9/ de
00 w3 )
" ( o, / dur— 2 eimkeens (30 e V(3@ - ex) (3.16)
0 w — CUk

e’} wS .
V. d k —irik-ery (4 (2) | s NN s .
+ p.v /0 wkw+w}(e (f exs)(f exs)

Here, we have additionally introduced the parameter w in the denominators to
facilitate the calculation of the integrals, as discussed below. Once the integrals
are solved, the limit of this parameter to 0 is taken. Next, we perform the change
of variable wy — —wy in the frequency integral appearing in the last line of the
above equation. Additionally, taking into account that (") and (®) commute [Eq.
(3.5)], we find

1 o wd
oo [ADTAR) 4 3@ i . / oy, i
Z Wi ( + s 2e0(2m)3 53 PV wkw—wk

— 00

2m
x / df sin 0 / dpy e (p) e ) () - exs).
0 0 s

To further facilitate the evaluation of the integrals, we consider e,,, = e, (that
is, the vector pointing from one center of mass to the other is oriented along
the z-axis). Using the expressions for the polarization unit vectors ey in Eqs.
(1.137a)—(1.137b), we carry out the solid angle integral and obtain

S e (A2 32T ) = =ty o [

k,s

~(1) A ( ) (1) A (2) Sin(k?ﬂlg) _ Sin(k?ﬂlg) COS(k'f’lQ) (318)
XK% MY )( kria (kria)? | (kriz)?

- (sm(km) cos(kr2) ﬂ |

+2a) A

(k’l“lg)?’ (kT12)2

Furthermore, to solve the frequency integral we take into account that [179]

. /oo dwkw wi (asin(wkrlg/c) cos(wiri2/c) N bsin(wkr12/0)>

— Wk wiria/c (wkr12/c)? (wkr12/c)? (3.19)
S (acos(wkT12/c) N asin(wkrlg/c) N bCOS(Wk’I"lz/c)) .
wir12/c (wr12/c)? (wriz/e)® )’
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Taking the limit w — 0, we finally obtain

e e n A0 4@ _3aM . (2 .
W52 |, s@ism) _ - p (B - er,) (' - er,)
kES:hwk ()‘ks Aks Ak /\ks> == pr——", = 220 (3.20)

This term is identical to —ﬁgl‘?) [Egs. (3.3) and (3.9)], so the two terms cancel
each other out.
Therefore, the multipolar form of the Hamiltonian of two separated systems of

charges becomes

. ~ A ~ 1 N N
H™ = TH™TT =3 hon(agg i + 5) + Y HpY + Y HY, (3.21)
k,s J J

where we have defined

() \ 2
rmp P; r(3) 1 a3
HEP =" ((J)> +HY D, (3.22)
i \2my,
and . o 4
Ay =~ - EL(x)). (3.23)

We have grouped the terms in this way so that Hp? and H}" are direct
generalizations of the multipolar Hamiltonians in Eqgs. (1,.117) and (11.118)7 which
were derived in Section 1.2.5 for a single system of charged particles.

We emphasize that the interaction between the two systems of charges is
mediated by the electromagnetic field. To illustrate how this interaction is mediated,
we note that the Hamiltonian ﬁ;"lp is given by the product of the dipole moment

operator 1)) of the system of charges j = 1 and the electric field operator E L(rgl)),
which is evaluated at the center of mass of this same system of charges. Crucially,
E, (rél)) includes the influence of the field radiated by the system of particles j = 2,
giving rise to the interaction between the two system of charges. Similarly, ﬁ}nf
is given by the product of 42 and the electric field operator E | (r((f)), which is
evaluated at the center of mass of the system of charges 7 = 2 and accounts for the
field radiated by the system of charges j = 1.

3.1.3 Multipolar form of the Hamiltonian for two quantum
emitters

In this section, we derive the multipolar form of the Hamiltonian when considering
that each system of charges represents a quantum emitter (QE) with two-level
system behaviour. We label the QEs by j = 1,2, in the same way as the systems of
charged particles. Each QE has electronic ground state |g,) and electronic excited
state |e;), with transition frequency we ;, as schematically represented in Fig. 3.1.
Similar to the case of a single QE (Section 1.2.6), we identify the multipolar form
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A mp
Hyq

electromagnetic vacuum field

Figure 3.1: Schematic representation of the interaction between two quantum emitters and the
electromagnetic vacuum field. The emitters are labeled by j = 1,2. Emitter j has electronic ground
state |g;) and excited state |e;), with transition frequency we ;. The transition frequencies can
be different, with detuning § = we,1 — we,2. The interaction of emitter j with the electromagnetic
vacuum field is described by the multipolar interaction Hamiltonian H }T’Ljp [Eq. (3.26)].

of the Hamiltonian of the system of charges j with the Hamiltonian of the emitter
j. Namely,

Apr - AY) = h"’;j Gajs (3.24)
where 6. ; = |ej) (e;| — |9;) (g;] is the z-Pauli matrix in the Hilbert space of the

emitter j.
Moreover, we consider again that the QEs have no permanent dipole moments.
Thus, the dipole moment operator of emitter j can be expressed as

a9 = p;6; + el (3.25)

with () the transition dipole moment between the electronic excited state |e;)
and the ground state |g;), and 6; = |g;) (e;| and 6; = |e;) (g;] the corresponding
lowering and raising operators, respectively. Substituting this dipole moment
operator into the multipolar form of the interaction Hamiltonian H}" [Eq. (3.23)]

and using the expression for the transverse electric field operator in Eq. (1.86), we
find

(i m 54t TR e ot e

HIp_)ZHI,JP:_Z<I"’jU+“jUT> .Zl ﬁeks[aksékr] _a;r(se zkr]]'
J j k,s

(3.26)

J
For simplicity, we have replaced the notation of the center of mass of r(()j ) by r;.
Therefore, we find that the complete Hamiltonian (in the multipolar form)
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3.1. Dynamics of two interacting quantum emitters

describing the interaction between the electromagnetic vacuum field and two
quantum emitters is given by

we»j &

9 Yz

k,s 7
. wat [ hwy A iker; At —iker;
_zj:(“jgj +“j0j> -;Z\/ meks[aksez =gy em ).
,8

We emphasize that this Hamiltonian does not include any direct coupling between
the emitters. This interaction is mediated by the vacuum field, as we show in the
following section.

R 1
A =" hewy (], s + )+ dh
(3.27)

3.1.4 Markovian master equation: dipole-dipole interaction
induced by the vacuum field

We derive in this section the Markovian master equation (MME) that describes
the reduced dynamics of the two quantum emitters. To this end, we apply the
formalism described in Section 1.4 to trace out the degrees of freedom of the
electromagnetic vacuum field, which extends the derivation in Section 1.4.5 from
one to two QEs. The resulting MME shows that the electromagnetic field is
responsible for mediating the dipole-dipole interaction between the emitters, in
addition to inducing their spontaneous emission of photons.

Bohr frequencies, eigenoperators and bath correlation functions

We first derive the elements required for the calculation of the Lamb-shift
Hamiltonian and the dissipators arising from tracing out the electromagnetic
vacuum field. We consider that the entire system is divided into a system of interest,
consisting of the two emitters, and a bath, corresponding to the electromagnetic
vacuum field. More specifically, the electromagnetic vacuum field acts as a thermal
bath at temperature T, with Hamiltonian Hp, [first term on the right-hand side
of Eq. (3.27)] and in the stationary thermal state

o exp(=Hp i /kpT)
B Trfexp(—Hp, /kpT))

(3.28)

On the other hand, the system of interest is described by the Hamiltonian
Hy = fl&% + I;T(Q% = h); %526, . The eigenstates |e) of this Hamiltonian
are |g192), |g1€2), |e1g2), and |ejes), with spectral decomposition given as

. 1)
Hy = hwy ( leres) (e1€2]—|g192) <9192|) +ﬁ§ ( le1g2) (e192|—|g1e2) <91€2|>- (3.29)
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w=(—¢€)/h| €/h e'/h l€) l€")
We,1 —wo | 0/2 | |g192) | lerg2)
We,1 —5/2 | wo lgre2) | |eiez)
—We,1 6/2 | —wo | le1g2) | 9192)
—We,1 wo | —0/2 | lere2) | |gre2)
We,2 —wo | —6/2 | [g192) | |g1e2)
We,2 6/2 wo | lerge) | |eiez)
—We,2 —0/2 | —wo | |gie2) | |g192)
—we’g wo (5/2 ‘€1€2> ‘6192>
é =6/2 | 6/2 | |gie2) | le1g2)
=0 6/2 —0/2 | |e1g2) | |g1€2)
2w wo —wo | |9192) | leiez)
—2wp wo —Wo \€1€2> |9192>
0 —wo | —wo | |9192) | |9192)
0 —0/2 | =0/2 | |gie2) | |gre2)
0 5/2 5/2 |€192> \6192>
0 Wo wo ‘6162> |€1€2>

Table 3.1: Bohr frequencies w of the Hamiltonian ﬁo = H'Sé + ﬁgg = Zj w;’j 6,5 of the QEs,

which are considered as the system of interest. |¢) and |¢’) are eigenstates of Hy, whereas e and
¢/ are their corresponding eigenvalues. § = we,1 — we,2 is the frequency detuning between both
emitters, and wp = (we,1 + we,2)/2 is the arithmetic average frequency.

Here, we have introduced the arithmetic average transition frequency

o We,1 + We,2

SR (3.30)

Wo
as well as the detuning
6= We,1 — We,2 (331)

between the two transition frequencies. The spectral decomposition of Hy in Eq.
(3.29) yields that the Bohr frequencies of the system of interest are twe 1, fwe 2,
+0, +2wp and 0, with corresponding eigenstates given in Table 3.1. The Bohr
frequencies are required later in this derivation.

Next, we rewrite the interaction Hamiltonian ff}ﬂp [Eq. (3.26)] as a summation
of Hermitian operators S; ., and Bj s that belongs to the Hilbert space of the
system of interest and to the Hilbert space of the bath, respectively. We find

H' = 1) ) Sjke ® Bjs, (3.32)
7 ks
with
(3.33a)

Sj,ks = Hj - eks(a—j + 6;)7
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N . Wik ~ ik r; AT —iker;
Bjxs = —1t SEWAY {akse’ Y—ay e (3.33b)
Here and in the rest of this thesis, we assume that p; is real, for simplicity. On the
one hand, S} ks allows us to compute the eigenoperators S; ks(w) of Hy [Eq. (1.182)],
with w any Bohr frequency. We find that the only non-vanishing eigenoperators
are

A

Sjks(We,j) = pj - €xsb;, (3.34a)
gj,ks(*we,j) = K- eksﬁj, (3.34b)

which are key elements in the derivation of the MME. On the other hand,
the operators Bjyxs allows us to compute the bath correlation function

(E]( IZS( )BJ(I)k,q, (0)), whose Fourier transformation also play a critical role in this

derivation. Here, B(lz is the interaction-picture representation of BJ ks (Appendix

B), and it is given by

A](‘,IIZS(T) = eXp[it(ﬁFJ_ + ﬁO)]Bj,kseXp[—it(I:IFJ_ 4 I;[O)]

Wk s i(krj—wer) _ at o —(iker—wier)
2e0hV {akse ies® ‘

(3.35)

Thus, the bath correlation function becomes

N £/ WrWyk’
o) = 2e0Vh

« <|:aksei(k-rj—wk7') _ d}:se—i(k-rj—wk‘r):| |:CA1L,S,€ ik vy akls/ezk’.rj/:|> (336)

(B (r)BY)

’ ks’

=~ 51?;’1(/(5579 2% Vh

exp {zk (rj —rj)— iwkT} ,

where we have used the commutation relations in Egs. (1.42a)—(1.42b). Additionally,
in the last line of Eq. (3.36), we have assumed that the thermal populations of
the modes of the electromagnetic vacuum field excited by the QEs are negligible
(as it is the case for QEs with transition frequencies near the visible range), as in
Section 1.4.5. The Fourier transform of this bath correlation function results in

X iwr (AU 1
ijs,j’k/s’(w) :/0 dre <B](IZS( )B§’,)l(’s’(0)>

y (3.37)
K ik (i1 .
~ 613;1(,65,5, 2€0Vhezk =15 | 1§ (w — wi) + i p.v.

)
W — Wk

where we have used Eq. (1.158) to compute the time integral.
So far, we have derived the non-vanishing eigenoperators S ks(£we ;) and the
Fourier transform of the bath correlation functions I'jxs j/k’s(w). In the following,
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we substitute these quantities into the MME in Eq. (1.189), which does not consider
the effect of the rotating-wave approximation (RWA). We choose this form of the
MME because the terms neglected by the RWA are crucial to capture the coherent
interaction between emitters, as we show next.

Coherent dipole-dipole coupling

We now focus on deriving the Lamb-shift Hamiltonian in Eq. (1.190), which gives
rise to the coherent dipole-dipole interaction between the emitters. We obtain

z(w W't jksj/k/ ( )_F"k/s’,jks<w/) ot A
Lamb - Z Z Z 2% Sjks(w )Sj/k/sl ((U)

w,w’ j,k,s j" k' s’

*
Z Z l(we = We 4t FJkS J'k's’ (We,j) - ]‘—‘j’k’s’,jks(weﬁj’)
- 2i
J.k,s 5/ ks’

X 8o (we 1) Sjneer (we 5)

+ Z Z e~ we,j—we 1)t ijSJIk/S/(_wefj) — F;'k/s';jks(_we’j/)
j.k,s j' k' s’ 2i
X Sles(—we 1) Sinersr (—we )
(3.38)

The terms in the last equality of this equation for which the eigenoperators are
evaluated at the same frequencies [i.e., at we jy = we ; and at —w, j» = —we ;] give
rise to the Lamb shift induced by the vacuum field in the transition frequency
of each emitter. As discussed in Section 1.3, the values of these shifts are very
small for QEs with optical transition frequencies and, additionally, they are already
accounted for in the values of transition frequencies measured in experiments. We
thus neglect such terms, which yields

i Diks ok (We,1) =I5 We,2
HI(,Qm :6;&161& E E (K2 - exs)" (p1 - ews) sty (We1) : 2k'S’,1ks( e2)
k,s k',s’ 24
6’ 61 L5t§ :2 : s - e p,l ex )Fka,lk/sl(—we’Q) — FTk’s’,ka(_we,l)
k’s s .
k,s k’,s’ 21
&Ta. —idt e evr )Fkaxlk’s’(we,2) — FTk’s’,ka(we,l)
1 } : E : Kks) " (12 - ey 5
k,s k/ s’
& Gpe"i0t Z Z ere ) (a - € )F1k5,2k«5/(—we,1) - ng's/,1ks(—we,2)
I
k's 2 * €ks %
k,s k/ s’

= 6164V + 616000V
(3.39)
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Notably, this Hamiltonian contains terms proportional to the operators Er]{c}z and
g1 &;, which represent the excitation of one emitter and the relaxation of the other
one. Thus, this Hamiltonian describes the coherent transfer of energy between the
emitters. Importantly, as this Hamiltonian emerges in the reduced Hilbert space
of the emitters after tracing out the degrees of freedom of the electromagnetic
vacuum field, the vacuum field can thus be interpreted as responsible of mediating
such transfer of energy or, equivalently, as responsible of mediating the coherent
interaction between the emitters.

Next, we develop the expression of the coupling coefficient V' in Eq. (3.39) by
using the expressions of I'ji, j/ks (w) in Eq. (3.37) and considering § < wy. The
latter allows us to substitute we ;1 and we2 by the arithmetic average transition
frequency wg. In this way, we obtain

1 . .
Ve g S e ) [rlks,zkfsf (wer) — r%,s,,lks(we,z)}
,S ,s!

1 * *
+ % kz: kZ:,(IM : 6k's') (1 - €ks) |:F2ks,1k’s’(_we72) - Flk’s’,2ks(_w€,1>:|
8 ,8

—_— wk . * .
= ;2&01)7?(“2 exs) (11 - exs)

X {eik'(“”z) p.v. ! el by 1}

Wo — Wk " —wp — Wi
(3.40)

We now transform the summations over k into an integral [Eq. (1.134)], which
results in

V o] 9 ™ ) 2 Wk
= — k k . * .
vV @ zsz/o d /0 do s1n9/0 d¢2€OVh(;L2 exs) (11 - exs)

> [eik-(rlrg) p.v. 1 — e ik (ri—r2) p.V.1:|
Wo — Wk . wo + ka (3.41)
1 © w N "
= pv. [ don—"— [ dfsing [ dpe T2
(2mc)32e0h Py \/700 o — o 0 o 0 ve

X Z(HQ “eks)" (K1 - exs).

To integrate over the solid angle, we assume r; — ro = r12e, and, additionally, we
use the expressions of the polarization unit vectors eys in Egs. (1.137a)—(1.137b).
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We find

1 [e%s) OJ3 T ) 27
V=—ooo0 " pv. d k dO sin Getwxr12 cos 9/0/ d
(2me)32e0h p-v /_Oo wka — wy /0 smue 0 ¢

X Z(H2 - eks) (11 - exs)

T oo w3 ™ . 0/
- Sy d k dg : 0 WK T12 COS c
(2mc)32e0h p-v /_OO okao — Wk /0 e

(3.42)
X |:(,u,17mu2’m + /Jfl,y,UZ,y) (1 + cos? 9) + ’LLLz/,LQ’Z2 sin? 6‘:|
2 o0 wd sin(kria)  cos(kria)
= ——————Dp.V. d k 201 242, —
(271'0)360th ~/—oo UJk(.OO wk|: H1.zH2, ( (kT’lg)S (k’l’12)2 )
sin(kris) = cos(kriz) = sin(kria)
+ (NI,IMQ,I + Ml,yﬂZ,y) ( (kT12)3 + (kT12)2 + k’r'12 .
The frequency integral can be solved using Eq. (3.19), which yields
wi cos(kori2)  sin(koriz)
T dndeoh| 21,2112,z (kor12)>  (kori2)?
(3.43)

cos(koriz)  sin(keriz)  cos(koriz)
+(H1,r#27r+#17yﬂ2,y)< (ko’l"lg)?’ + (k0T12)2 k0r12 5

with kg = wg/c the wavenumber corresponding to the arithmetic average transition
frequency wy. Finally, using the expression of the decay rate 7y of a two-level
QE with transition frequency wg [Eq. (1.163)] and taking into account that we
considered r; — ro to be aligned in the z-axis, we obtain

cos(kori2)

3%
V= T |:< —€uy " €py + (eul : el‘12)(ell-2 : erlz)) KoT12

cos(kori2)  sin(koriz)
(koﬁQ)B (k07"12)2 )] ,

where e, corresponds to the unit vector of p; and ey,, to the unit vector of ry —rs.
The expression for the dipole-dipole coupling strength V' in Eq. (3.44) is identical
to the expression of the electromagnetic interaction between two classical electric
point dipoles, including retardation effects [121, 132].

(3.44)

+ <eH1 "€y T 3(6H1 ! el‘12)(eu2 : el‘u)) <
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3.1. Dynamics of two interacting quantum emitters

Dissipative dipole-dipole coupling

We focus next on the calculation of the second line in Eq. (1.189), which corresponds
to the dissipators describing the losses of the quantum emitters. We obtain

(o —w' F’ks, "k’s’(w)‘i‘l—"‘f/krsf »ks(w’) N .
ZZ Z gl 5 222 D[Sjirs (w), Sjks(w')]

!4 s !
w,w’ j.k,s 5’ k' ,s’

Diies,1es (We,1) + Ty 1is (Wet) o X
=22 He) D[S1104 (Wer ), Siics (we1)]

2
ks k',s’
F2k 5,2k’ s’ (CJJ672) + F;k/ ’ 9k \(we,Z) A~ A
+ Z Z i ® 2 2,088 D[SQk’s’ (w6,2)7 SQkS(w€72)]
ks ks’
Fka s (We,1) + Mg g (We,2) &
+ Z Z 5 b D[S1x s (we,1), Saks (We,2)]
k,s k’,s’
. Flk( 721(/(/((4}6,2) + F*k’ / 1k (We,l) ~ A
n Z Z . ist s s 5 2k’s’,1ks D[SQk’s’ (we,Q); Slks(we,l)]-
k,s k’ s’

(3.45)

Substituting the expression for I'jxs ji s (w) from Eq. (3.37), we find

i(w—w’ r ks, .,k/s,(w) + F%’k/s’ ’ks(w/) A N
Z Z Z € ( U - 2 . 2 D[Sj/k/s/(u}); Sjks(w/)]

w,w’ j,k,s j' k' s’

|1 - exs|*wi
0(we1 —
Z 8()Vh T eVh " (w 1 Wk)

|N2 €ks| Wk
E 70 (We.o —
€0Vh (OJ 2 wk)

m (B2 - excs) (B - exs) Wi
W0t~ YA A s s ik (r1—r2)
D E _
+e 5 [61,62] 3 2oVh mo(wo — wi)
72’6151 A (“’1 ’ eks)(“Q : eks)*wk ik-(r1—rs) _
+e 2D[02,01] g VR e mo(wo — wi)-
k,s

(3.46)

In the summations in the last two lines of this equation we have assumed again
d < wp and replaced we ; by wo.

We now compute separately each of the summations on the right-hand side of
Eq. (3.46). On the one hand, the decay rate associated with the dissipator D[]

121



Chapter 3. Intensity correlation of ZPL photons from two interacting QEs

becomes

|l‘l’j eks| Wk T

Z oo MOWes W) = o
oo 27

X/ dwrwild (we,; — Z/ d(b/ dfsin | p; - exs|? (3.47)
0

_ ws,j|l‘j|2
3meohed

Here, we have used Eq. (1.160) to solve the solid angle integrals. Notably, the
resulting expression in the third line of this equation corresponds to the spontaneous
emission rate of a two-level emitter with transition frequency w. ; and transition
dipole moment p; [Eq. (1.163)], which we denote by ~;. Specifically,

2 ilmsl? |1 - exs|wx
e E T (We.j — . A4
W= 37760503 €0Vh (w d Wk) (3 8)

On the other hand, to compute the decay rate associated with D[51, 9] in
Eq. (3.46), we consider again that e, , is aligned along the z-axis and use the
expressions of the polarization unit vectors in Egs. (1.137a)—(1.137b). We obtain

(1o - eks)(ul eks) Wk o=k ( ) ™
ry—r2 5 _ — _
Z eoVh md(wo — wi) (2mc)3eoh

k,s

00 T 2
X / dwkwﬁé(wo — wk) / df sin fe Tz COSG/C/ d¢z P2 - exs)(p - exs)”
0 0

w2 o0 3 T .
B m/o duicwii6 (wo _wk)/o df sin 0

X <(M1,zﬂ2,x + pi1ytin,y) (1 + cos® 0) + 1 -2 -2 in 9)

1 o0 Sin(kT’12) COS(leg)
= 0 d 35 - 2 -
2meghe? 0o Wk){ u172#272< (kry2)3 (kry2)?

sin(kria)  cos(kria)  sin(kriz)
+(M1,w/~1/2,w + Ml,y/”’Q,y) ( (kT12)3 + (kT12)2 + k’)"lg .

(3.49)
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3.1. Dynamics of two interacting quantum emitters

As e,,, has been fixed along the z-axis, we can now rewrite this expression as

—Z (baz - o) g1 €e)"e e~k 5 (g — wy) =

€0Vh

Sin(ko’f‘lg)

7370
— 5 |:<6H1 6”2 (e;“ el‘12)(eﬂ2 er12)) k07"12

sin(kgri2)  cos(koriz)
+<6M1 TCeuy — 3(eﬂ1 . erlz)(eﬂz : 61‘12)) ( - (k(),,,12)3 + (k07112)2

(3.50)

where we have defined this decay rate as 4. In a similar way, one can show that
the decay rate associated with dissipator D[d9,51] is again ¥ [Eq. (3.50)].

Therefore, we conclude that, in addition to the spontaneous emission of each
emitter (with rate 7;), the electromagnetic vacuum field also mediates an incoherent
or dissipative dipole-dipole interaction between the emitters, with rate 4. This
interaction is accounted for in the MME through dissipators that mix lowering and
raising operators of both emitters.

Final form of the MME

The Lamb-shift Hamiltonian and dissipators derived above by tracing out the
degrees of freedom of the electromagnetic vacuum field lead to the interaction-
picture MME

d i
iy {C) R it 5,64 it AT (1) Vi A(I)
P = h[hV( e’ L+ e 69), E D6
(3.51)
'~Vei5t A A 1A(]) :Ye_iét PPNEING |
+ D[61,62]p"" + D[63,61]p",

where p(0) is the reduced density matrix of the emitters in the interaction picture.
Transforming this MME to the Schrédinger picture yields

d ~ A s
aP:*ﬁ[Ho+Hmt, Z%D (D[Ul,ffz]PJrD[Uz,Ul]P), (3.52)

where we recall that Hy = H(l) + H( ) = = h) ;%516 is the unperturbed
Hamiltonian of the quantum emltters and

N

Hiy = hV((AH&; + CATJ{(ATQ) (3.53)

corresponds to the Lamb-shift Hamiltonian in the Schrédinger picture, which is
identified as the interaction Hamiltonian between the two emitters mediated by
the electromagnetic vacuum field. This interaction Hamiltonian can modify the
eigenstates of the quantum emitters, which we discuss in detail in Section 3.2.1.
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Chapter 3. Intensity correlation of ZPL photons from two interacting QEs

3.1.5 Effective description of the electronic dynamics of two
interacting solid-state quantum emitters

In the previous section, we have derived the Markovian master equation (MME)
governing the reduced dynamics of two quantum emitters in vacuum [Eq. (3.52)],
assuming that they behave as ideal two-level systems. This two-level description
can be directly applied to model the dynamics of atomic systems. However, in this
thesis, we focus on characterizing light emission from solid-state quantum emitters,
which can support internal vibrational modes. Additionally, these emitters are
embedded in a host matrix with refractive index n # 1, supporting phononic modes
that also affect the emitter dynamics. In this section, we adapt the MME in Eq.
(3.52) to effectively incorporate the impact of the vibrational and phononic modes
in the dynamics of the pure (0-phonon) electronic states, so that the emitters can
be treated as perfect two-level systems after modifying appropriately the value of
different parameters.

The interaction of the electronic states |e;) and |g;) with internal vibrational
modes and with phononic modes of the host matrix results in additional decay
channels for the emitters. Specifically, in addition to the purely electronic transition
lej) — |g;), known as Zero-Phonon Line (ZPL), the electronic excited state |e;)
can also relax to vibrational or phononic levels in the electronic ground state. The
probability that the relaxation of the electronic excited state occurs via the ZPL
is quantified by the combined Debye-Waller/Franck-Condon factor apw [1, 180].
This factor is bounded between 0 (|e;) always decays to vibrational or phononic
levels) and 1 (|e;) always decays into the ZPL).

Hereafter, we consider that «y; corresponds to the total emission rate from the
pure electronic excited state |e;), which includes the decay into the ZPL and also
the decay to the vibrational and phononic levels in the electronic ground state. ;
thus corresponds to the inverse of the lifetime of |e;). As a result, the effective
decay rate into the ZPL is obtained from ~y; and apw as

VJZPL = QDpWj- (3.54)

Using Eq. (3.48), the ZPL transition dipole moment of emitter j is thus given by

2P| = 'ijPL?Kmeohcf’: apw;3meohc® (3.55)
J wg}jn wg’,jn ’

where we have also included the influence of the refractive index n # 1 of the
host medium (which can differ from that of vacuum), by replacing ¢ — ¢/n and
g0 — gon? [31, 181]. Importantly, within the framework adopted in this chapter,
the emitters are always treated as two-level systems and no vibrational or phononic
states are directly included in the MME. As a consequence, we consider that
the decay rate associated with the Lindblad dissipators D[§;]p in the MME [Eq.
(3.52)] is the total emission rate v; (instead of ’ijPL, which would yield an incorrect

lifetime for |e;)).
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3.1. Dynamics of two interacting quantum emitters

Furthermore, we consider in this thesis situations in which the coherent dipole-
dipole coupling is much weaker than the decay rates of the vibrational or phononic
modes that can couple to the electronic states. As a result, the coupling mediated
by vibrational or phononic levels can be neglected, and we consider that the
emitters interact only through the ZPL. We thus modify the expressions for
the coherent dipole-dipole coupling [Eq. (3.44)] and the dissipative dipole-dipole
coupling [Eq. (3.50)], replacing the total dipole moments by ,U,jZPL. In this way, we
obtain that the effective expressions for the coherent and dissipative dipole-dipole
couplings become

37

cos(kor
Vow = apwV = aDW% |:( T €py €y + (6#1 : erlz)(euz : er12)> M

kor12
cos(koriz)  sin(kgriz) >}
(kor12)3 (kor12)?

(e e = 3lens - endlens en) )
(3.56a)

3 Sin(k07'12)

~ _ . "o
DW = GDW7Y = ODW €y " Cuy — (eH1 ' e!‘12)(elt2 ! el‘u)
2 kori2

+ (eI—H "€uy — S(eﬂl : 61‘12)(6#2 : 61‘12)) ( -

sin(korlz) cos(kori2) ]

(k07’12)3 (kori2)?
(3.56D)

where kg = nwg/c corresponds to the wavevector in the homogeneous medium,
with refractive index n # 1. Therefore, the key change with respect to the MME
derived for ideal two-level quantum emitters is a decrease in the coherent and
dissipative couplings by a factor of apw, as V' is replaced by Vpw and 4 by dpw-.

Finally, at very short separation distances between the emitters (kori2 < 1),
the expressions of the coherent and dissipative couplings are substantially simplified.
Taking the limit kori2 — 0 in Egs. (3.56a)—(3.56b), we find

Ko712—0 370
VDW ore aDW (kO 3 ) (eﬂl “€uy — 3(6#1 : erlz)(eﬂz '61‘12)>7 (3573‘)
1o
kor
YDW S > ADWY0€u; " €ps- (357b)

We emphasize that the effective MME introduced in this section works well
to describe the dynamics of the pure electronic states |e;) and |g;) and, thus, to
characterize the light emission into the ZPL. In Sections 3.3 and 3.4, we use this
framework to analyze the statistics of the light emitted into the ZPL from two
strongly interacting emitters under different illumination schemes. In Chapter 4,
we present a refined model that allows us to additionally analyze the statistics of
light emitted due to the decay from the electronic excited state to vibrational or
phononic levels in the electronic ground state.
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Chapter 3. Intensity correlation of ZPL photons from two interacting QEs

(a) non-interacting (b) interacting
lejeg) = |E) |E)
We,2
el . A
le1g2) g1es) |A4) AL
We,1
l9192) = |G) |G)

Figure 3.2: Schematic representation of the eigenstates of two quantum emitters. (a) In the
absence of dipole-dipole interaction, the eigenstates are |g1g2), |gie2), |e1g2), and |eie2). The
emitters have transition frequencies we,1 and we 2, with detuning § = we,1 — we,2. Blue arrows
represent the one-photon transitions, with «o the total spontaneous emission rate of each emitter
(assumed to be identical for both of them). (b) Under dipole-dipole interaction, the eigenstates of
the system become |G) = [g1g2), |A—), |A+), and |E) = |ere2). The transition frequencies from

|G) to [A+) are wr = wo + A, with wo = (we,1 + we,2)/2 and A = / V2 + (6/2)2. The decay
rate of the one-photon transitions |E) — |A+) and |[A+) — |G) is v+ [Eq. (3.64)].

3.2 Dynamics of the superradiant and subradiant
states under laser driving

We show in this section that the dipole-dipole interaction between the two emitters
can result in the emergence of new eigenstates with modified energies, lifetimes,
and coupling strengths to the driving laser. Notably, we discuss the emergence
of superradiant and subradiant states when the transition dipole moments of the
two emitters are not perpendicular. Moreover, we describe the interaction between
the emitters and a laser, which leads to the emergence of the dressed eigenstates.
Finally, we derive the equations of motion for all the elements of the density matrix,
which are then used in Section 3.3 to gain analytical insights into the behaviour of
the color-blind intensity correlation.

3.2.1 Superradiant and subradiant states

In this section, we show that the dipole-dipole interaction can significantly impact
the eigenstates of the emitters. To this end, we first recall that, in the absence
of the dipole-dipole interaction, the emitters are described by the Hamiltonian
Hy = flg) HgE = ;1”576 ;, whose eigenstates are |ere), [e1g2), |g1e2),
and |g192), as schematlcally represented in Fig. 3.2a. Additionally, the coherent
dipole-dipole mteractlon between the emitters is described by the Hamiltonian
Hyyw = hVDw(Jle + 0102) (Sections 3.1.4 and 3.1.5). Under dipole-dipole
interaction, the eigenstates of the emitters are thus obtained by diagonalizing
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3.2. Dynamics of the superradiant and subradiant states under laser driving

the total Hamiltonian PIO + ﬁint. By doing this, we find
Ho + Hins = Fao(|E) (| — |G) (G]) + BA(AL) (Ay| — [A) (A_]),  (3.58)

where wy = (we,1 +we,2)/2 is again the arithmetic average transition frequency and,
additionally, we have introduced the ground state |G) = |g1g2), the doubly-excited
state |E) = |eres), and the single-excitation states

|A4) = cos©Oy |gies) +sin Oy le1g2) , (3.59a)
[A_) = —sin Oy |gie2) + cos Oy |e1ga) . (3.59b)

Here, the angle ©, fulfills

sin(204) = Vpw/A, (3.60a)
cos(20,) = —3/(2A), (3.60b)

with § = we;1 — we,2 the detuning between the two transition frequencies. The
states |Ay) and |Ay) are quantum superpositions of the states |gie2) and |e1gz),
for which one of the emitters is in the excited state and the other one is in the
ground state. Thus, |Ay) and |A_) are usually referred to as delocalized states.
The energy difference between |A;) (higher energy) and |[A_) (lower energy) is

given by
20 =\ /AVEy, + 62 (3.61)

The transition frequency from the state |G) to |A1) is given by
wy =wg kA, (3.62)

as schematically represented in Fig. 3.2b.

Next, we derive the decay rates for the delocalized states |A4) and [A_). To
this end, we rewrite the dissipators in Eq. (3.52) using the new basis of eigenstates
|E), |Ay), |A-), and |G). Assuming o = 1 = 72, we obtain

Z %D[ﬁj]ﬁ %TW (D[51,52]ﬁ + D[62, 51},5)
J

— %(D[ﬁm]ﬁ + D[6+E]ﬁ) + %('D[ﬁcf]ﬁ + D[&iE]pA)

+ %(D[ﬁc+,6+E]ﬁ + D645, 66+1p) + %(D[&G—Ma'—]f]ﬁ + Do, 66-1p)
+ % (Dl6G—,64+E]lp+ Dl64E,66-1p) + % (Dlécy,6-plp+ D6, 6a+1p)

+ % (Dl6¢+,6¢-]p+ Dl6G-.66+1p) + % (D64 5,6_plp+ D65, 648]p)-

(3.63)

Here, 645 = |a) (b|, where the subscripts a,b = E, G refer to the states |E) and
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Chapter 3. Intensity correlation of ZPL photons from two interacting QEs

|G), and the subscripts a,b = =+ refer to |Ay). Additionally, in Eq. (3.63),
we have defined the decay rates 4+ = Apw £ Y0sin(20,), 50 = 7o cos(20,),
12 = Ypw €0s(20, ) and

Y+ =0 £ Ypwsin(20,) =y + WDWVDTW- (3.64)
Notably, the dissipators in Eq. (3.63) with decay rates 1 correspond to one-photon
transitions between states of the interacting basis (see Fig. 3.2b). In contrast,
the rest of the dissipators in Eq. (3.63) (with decay rates denoted with tilde
symbol) represent incoherent cross processes in the interacting basis. Crucially, Eq.
(3.64) indicates that the decay rates v4 and v_ of the delocalized Ay and A_ are
different to each other when both the coherent dipole-dipole coupling Vpw and
the dissipative dipole-dipole coupling 4pw are not negligible. These conditions are
well satisfied when the emitters are separated by short distances (koris < 1) and
their transition dipole moments are not oriented perpendicularly [Eq. (3.57b)]. In
this case, the delocalized state with larger decay rate is called superradiant state,
whereas the delocalized state with smaller decay rate is known as subradiant state.
As the subradiant state has a longer coherence time, it could turn into a good
candidate for applications in quantum information storage [85-87]. The specific
configuration of transition dipole moments (relative orientation) determines which
delocalized state (|[A4) or |A_)) is the superradiant state and which one is the
subradiant state.

Finally, we note that for short separation distances between the emitters and
parallel transition dipole moments, the decay rates of the delocalized states become
v+ = Y(1 £ apwVpw/A) [from Eq. (3.57b)]. Additionally, if the emitters are
identical (6 = 0, yielding A = |Vpw|), the decay rates of the superradiant and
subradiant states become vo(1 + apw) and vo(1 — apw), respectively. This result
highlights the strong impact of the combined Debye-Waller /Franck-Condon factor
on the dynamics of the system.

3.2.2 Interaction of two quantum emitters with a laser

We introduce the Hamiltonian that describes the interaction of the two emitters
with a laser, as well as the final form of the master equation that we use to analyze
the intensity correlation of the Zero-Phonon-Line photons emitted from two strongly
interacting emitters in Sections 3.3 and 3.4. To this end, we consider that the two
quantum emitters are illuminated by a laser of frequency wy, and intensity I;,. The
Hamiltonian describing this driving laser is obtained straightforwardly from the
discussion in Section 1.5.1, and it is given by

2

2 S Nj.gLAiwt ~t —iwrpt

Hp=-h El 5% (655" +Gje "), (3.65)
3=
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3.2. Dynamics of the superradiant and subradiant states under laser driving

where £, = Eper [Eq. (1.215)], with ey, the polarization unit vector of the laser
field and &, = £, (r1) = €L (r2) the amplitude of the laser field at the position of
the emitters (assumed to be the same at both positions). Notably, Eq. (3.65) does
not include any relative spatial phase because we consider that the laser impinges
normally to the plane in which the emitters are located (i.e., the laser wavevector
k;, is perpendicular to r; — ra).

Furthermore, we assume that both emitters have identical transition dipole
moments (@1 = po) and that the electric field is linearly polarized in the same
direction than the transition dipole moments. In this configuration, both Rabi
frequencies become equal to Q = ;- £ /h = po - € /h. Further, including the
influence of the refractive index (n # 1) of the host in Eq. (1.220), Q can be related
to the laser intensity I, as

I;6mc? 1172
Q] = /22200 \/ L7 (3.66)

hwg'fl2 ZIsat ’
where the saturation intensity of each emitter is given by

hwg 70712

Torc (3.67)

Isat =

To gain insights into the effect of the excitation laser on the delocalized states,
we rewrite Hy, [Eq. (3.65)] in the interacting basis {|E),|Ay),|A_),|G)}. We find

N Q ) )
Hy=-h ) 7’€ [(&Gk + 6kp)e 't + (6re + 6mr)e . (3.68)
ke{+,—}

Here, we have introduced the effective pumping rates
Qy = Q(cosOp £5inB,), (3.69)

with Q4 the driving strength of the transitions |G) — |A4) and |[AL) — |E), and
Q_ the driving strength of the transitions |G) — |A_) and |A_) — |E). These
effective pumping rates can be related to the laser intensity as

0% = 0?[1 £5in(20,)] = ygiu - VLW). (3.70)
2Isat A

We move next to the rotating frame at the laser frequency wy by applying the
unitary transformation Uy, = expliwpt(|E) (E| — |G) (G])] (the effect of unitary
transformations is discussed in Appendix C). In this way, the full Hamiltonian
becomes

H = hAo(|E) (E| = |G) (G]) + RA(JA+) (Ay| = [A-) (A_])
Qk
~h ) Tk(ffck + 0kE + kG + GER), (8.71)
ke{+,—}
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Chapter 3. Intensity correlation of ZPL photons from two interacting QEs

where Ay = wg — wy, is the laser detuning with respect to the mean frequency
wp. The terms in the first line of Eq. (3.71) represent the undriven Hamiltonian,
including the dipole-dipole interaction between the two emitters, while the terms in
the second line account for the laser driving. In this rotating frame, the dynamics
of the interacting emitters is finally governed by the Markovian master equation

Zh=—7[H.0+ ij LDlo)p+ 5% (D[m, 62)p + D6, 61]ﬁ)- (3.72)
The full Hamiltonian H [Eq. (3.71)] in this MME is time-independent, which
facilitates the numerical calculation of the dynamics of the emitters, as well as
the derivation of the analytical equations of motion of the elements of the density
matrix, as we show next.

The expectation values of the operators 6., = |a) (a| give the populations of
the states of the interacting basis (i.e., the diagonal elements of the density matrix).
In contrast, the expectation values of the operators 64, (@ # b) correspond to
the off-diagonal elements of the density matrix and correspond to the coherence
between difference states of the basis (Appendix A). To derive the time evolution
of these expectation values, we apply Eq. (1.197), which yields

G 08) = ~20 O] + 1557 | Gma) = (04| + 175 | (05-) — (0-)]

dt 2
(3.73a)
G Oy == (00— (om)| - 22621+ 010
55 @a) = Gma) + ©4c) - 01, (3.73b)
G 0=y ==-[to-0) — (o) - B2 [ t6-0) + 0]
+i% [ 0m) — ) + 60 - (0], (3.73¢)
G (056) = (056 (1280 —0) + 155 (05) — (02} +i75 | 62) — (01,
(3.73d)
G084 = =it | = (0pr) + (@as) = (9r0) | —i%5 (0-)
+ 050 [it80 = 8) =20 —12/2] - 1 05, (3.73¢)
% (6p-) = —i% :— (GEE) +(6--) — <&EG>: Z%r (64-)
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+om) 180+ 8) =0 =1 /2] - 22 (o), (3.736)
% (61a) = *i% [ = (644) +(6ce) + <‘A7EG>} + Z% (64+-)

(3.73g)
% (6-c) = it [ —(6--) +{6ga) + <3EG>] + 7+ (6-+)
#[ita0 = 0) =12 /2) 6-0) = B2 (0) 43 (05-) 430 0.
(3.73h)
G 00 = =5 65+ (o) | + i e + 10201
+ (028 =0 (1) + 22 [2(088) (010 - (o) (3.731)

This system of equations is valid for arbitrary laser intensity and frequency, but its
exact analytical resolution leads to very complex expressions. In Section 3.3.1, we
discuss some approximations that allows us to solve this system of equations in
the steady state.

3.2.3 Dressed states of the interacting emitters under laser
driving

We discuss in this section two different approximations for deriving the eigenstates
and eigenenergies of the full Hamiltonian H in Eq. (3.71), which is written in
the rotating frame at the laser frequency. Diagonalizing the total Hamiltonian
helps to understand the emission mechanisms of the system and is particularly
valuable for interpreting the frequency-resolved intensity correlation in Section 3.4.
To diagonalize the Hamiltonian, we consider specifically that the dipole moments
are parallel and aligned in the same direction as r;3 = r; — ro, which is called
J-configuration, as schematically represented in Fig. 3.3a. In this configuration,
the coherent dipole-dipole coupling Vpw is negative [Eq. (3.56a)], the lower-energy
delocalized state |A_) corresponds to the superradiant state, and the higher-energy
delocalized state |A1) to the subradiant state. In Sections 3.3 and 3.4, we analyze
the intensity correlation of light emitted into the ZPL from two interacting emitters
in a J-configuration.

Laser resonantly tuned to the superradiant or subradiant states

We first introduce an approximation valid under weak enough illumination and
when the laser is resonantly tuned either to the transition frequency of the
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Chapter 3. Intensity correlation of ZPL photons from two interacting QEs

superradiant state (w;, = wp — A) or to the transition frequency of the subradiant
state (wr, = wo + A). Under these laser frequencies and intensities, the Hamiltonian
in Eq. (3.71) has two pairs of degenerate eigenstates at energies +A (in the rotating
frame at the laser frequency wy,). Namely, if the laser is tuned to the transition
frequency of the superradiant state |[A_) (Ag = A), the states |G) and |A_) become
degenerate (with energy —A) and the states |E) and |AL) become degenerate (with
energy A). In contrast, if the laser is tuned to the transition frequency of the
subradiant state |A;) (Ag = —A), the states |E) and |A_) become degenerate
(with energy —A) and the states |G) and |A) become degenerate (with energy A).

We then neglect the driving terms in the second line of Eq. (3.71) that connect
states that are not degenerate under weak enough illumination. As a consequence,
if the laser is tuned to the transition frequency of the superradiant state |A_), the

driving Hamiltonian becomes fIL = —h%&E+ — h%&g_ + h.c.. In contrast, if
the laser is tuned to the transition frequency of the subradiant state |Ay), the laser
Hamiltonian is approximated as Hj = 771%6’@.._ — h%&E_ + h.c. The resulting

total Hamiltonian (in the rotating frame at the laser frequency wy) can then
be analytically diagonalized in both cases. Notably, we find that the eigenstates
correspond to symmetric and antisymmetric combinations of the pairs of degenerate
states. Specifically, the eigenstates can be written as

Axs) = (1X) — 1AV, (3.740)
Sx4) = (1IX) +A)/V2, (3.74b)
[Sy_) = (1Y) +A)/V2, (3.74c)
Ay_) = (1Y) — [A-)/V2, (3.74d)

where X = F and Y = G if the laser is tuned to the transition frequency of the
superradiant state |[A_), whereas X = G and Y = E if the laser is tuned to the
transition frequency of the subradiant state |A,). The corresponding eigenenergies
are equal to

E(|Ax1))=A+ %(cos Op +sin©,), (3.75a)
B(Sxs)) = A — %(cos Or +5inO4), (3.75)
E(|Sy-)) = —-A— %(cos@/\ —sin©,), (3.75¢)
E(|Ay_)) = —-A+ %(COS Op —sinB,). (3.75d)

The energy splitting between the two higher-energy states |Ax4) and [Sxy) is
equal to |[Q2(cos ©p + sin ©y )|, while the energy splitting between the lower-energy
states |Sy_) and |Ay_) is equal to [2(cos @ —sin G, ).

Next, we compare the eigenenergies obtained analytically in Egs. (3.75a)—(3.75d)
with the eigenenergies E; (i € {1,2,3,4}) of the exact eigenstates |E;) obtained
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Figure 3.3: Eigenenergies and eigenstates of two interacting emitters when the laser is tuned
resonantly to the transition frequency of one of the delocalized states. (a) Schematic representation
of the two emitters in a J-configuration. The transition dipole moments are aligned along the
z-axis, and the emitters are separated by 18.5 nm along this same axis. The combined Debye-
Waller /Franck-Condon factor is apw = 0.3, yielding Vpw = —20v0, and the detuning between the
emitters is § = 107yp. The laser wavevector k;, and the detection direction r, are aligned along the
y-axis, such that their corresponding unit vectors are ex, =k /|kr| = ey and eg =rgq/|rq| = ey,
respectively. (b) Eigenenergies F; (normalized by A and obtained numerically) of the Hamiltonian
in Eq. (3.71) as a function of the laser intensity I, with the laser tuned either to the transition
frequency of the superradiant state or to that of the subradiant state (E; are identical for both
laser frequencies). (c) Energy splitting (normalized by |Q2|) obtained numerically, between the
more energetic eigenstates |E3) and |E4) (purple line) and energy splitting between the less
energetic eigenstates |E1) and |E2) (brown line). Horizontal black dashed lines represent the
same energy splittings calculated using the analytical expressions in Eqs. (3.75a)—(3.75d). (d)
Deviation of the eigenstates [Ay_),|Sy_),|Sx+),|Ax+) (obtained analytically) from the exact
eigenstates |E1),|E2),|E3),|F4) (obtained numerically) as a function of the laser intensity Ir,.
The deviation is estimated as the difference between 1 and the squared overlap of the analytical
eigenstate and the corresponding numerical eigenstate. For the case in which the laser is tuned to
the transition frequency of the superradiant state |[A_) then X = E and Y = G, whereas if the
laser is tuned to the transition frequency of the subradiant |[Ay) state then X =G and Y = E.

numerically. To this end, we consider as a reference two DBATT molecules with
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dipole-dipole coupling Vpw = —20p, molecular detuning § = 107y, and combined
Debye-Waller/Franck-Condon factor apw = 0.3 (see Section 3.3). We plot in Fig.
3.3b the exact numerical eigenenergies E; (normalized by A) and in Fig. 3.3c the
numerical energy splitting (normalized by the absolute value of the Rabi frequency
I2]) between the two higher-energy states (purple line), as well as between the
two lower-energy states (brown line). Figure 3.3c shows that the energy splittings
obtained numerically (solid lines) are in excellent agreement with that obtained by
using the analytical expressions in Eqgs. (3.75a)—(3.75d) (horizontal dashed black
lines) up to a laser intensity I, &~z 100 54 .

Last, we test the accuracy of the analytical eigenstates in Eqs. (3.74a)—(3.74d)
by computing the difference between 1 and the squared overlap of the numerical
and analytical eigenstates. For example, for the lowest-energy state, the deviation
of the eigenstate |Ay_) (obtained analytically) from the exact eigenstate |E1)
(calculated numerically) is given by 1 — | (Ay_|E;)|?>. We plot these deviations
in Fig. 3.3d, which shows that these analytical eigenstates are a very accurate
approximation of the exact eigenstates of the system under weak and moderate
laser intensities. These approximate eigenstates are therefore used in Sections 3.4.1
and 3.4.2 to develop a better understanding of the FRIC maps obtained for these
laser frequencies.

Laser tuned to the two-photon resonance

We now describe an approximate diagonalization of the Hamiltonian in Eq. (3.71),
which is written in the rotating frame at the laser frequency wy,, for a laser tuned
to half the frequency between |G) and |E) (wp = wp). We refer to this laser
excitation as two-photon resonance, because it enables the resonant excitation of
the doubly-excited state |E) through a two-photon process.

To diagonalize the Hamiltonian in Eq. (3.71), we neglect the terms that are
proportional to 24 in this case. The reason is that both the superradiant state
|A_) and the subradiant state |A;) are non-resonantly driven and, additionally,
the effective pumping €, through the subradiant state is considered to be
much smaller than the effective pumping 2_ through the superradiant state.
Specifically, for the two interacting DBATT molecules considered here (with
Vow = —207 and 6 = 107), Q4 is approximately one order of magnitude
smaller than Q_ [Eq. (3.69)]. By neglecting these terms and fixing the laser tuned
to the two-photon resonance (Ag = 0), the Hamiltonian in Eq. (3.71) becomes
H = hA(AL) (A ] =AY (A_|) =1 (66— +6_p+6_G+6p-). This Hamiltonian
can be diagonalized analytically, which yields that the eigenenergies are given by

me A Y (%) 3700

By =0, (3.76b)

m= A (3) (%) 700
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Figure 3.4: Dependence of the eigenenergies of two interacting emitters on the laser intensity for
a laser tuned to the two-photon resonance (wy = wp). Solid lines represent the eigenenergies
(normalized by A) of the full Hamiltonian in Eq. (3.71), obtained numerically. Dots represent the
eigenenergies obtained using the analytical approximations given in Egs. (3.76a)—(3.76d). The
dipole-dipole coupling is Vpw = —2070, the detuning between the emitters is § = 1079, and the
combined Debye-Waller /Franck-Condon factor is apw = 0.3.

Ey = A. (3.76d)

We plot in Fig. 3.4 the eigenenergies obtained analytically (dots) and numerically
(solid lines), which shows that they are in very good agreement. The corresponding
analytical eigenstates result in:

1 O
|Ey) = W(ﬂ IA_) + E3|Sga)), (3.77a)
|E2) = |Apq) , (3.77b)
|E3> = ; - FE |SEg>), (3.77C)

S

Q_
S va
|A+>a

where |Sge) = (|E) + |G))/v2 and |Agg) = (|E) — |G))/v/2. Equations
(3.77a)—(3.77d) show that |Agg) and |AL) are eigenstates of the system for
any laser intensity, whereas the other two dressed eigenstates (|E1) and |E3))
are superpositions of |Sgg) and |A_), with coefficients that depend on the
laser intensity. Additionally, we note that under weak enough illumination, the
eigenstates |Es) = |Agg) and |Es) = |Sgpa) become degenerate in energy (in the
rotating frame at the laser frequency).

|Es)

(3.77d)
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Chapter 3. Intensity correlation of ZPL photons from two interacting QEs

3.3 Color-blind intensity correlation

We perform in this section a systematic analysis of the color-blind intensity

correlation g(ZZP)L(O) of Zero-Phonon-Line (ZPL) photons emitted from two strongly

interacting emitters. Specifically, we investigate the dependence of ggP)L(O) on the
laser intensity I, and detuning § between the transition frequencies of the emitters
for different values of laser frequency wy,. This analysis shows that the statistics of
light emitted into the ZPL from these two emitters can be tailored over a very large
range of values, from strong antibunching to strong bunching. Additionally, we also
discuss the impact of the combined Debye-Waller/Franck-Condon factor apw on
the color blind-intensity correlation. Thus, the systematic analysis presented in this
section extends previous theoretical studies of the color-blind intensity correlation
of light emitted by two interacting quantum emitters, which have primarily focused
on atomic systems (with apw = 1) and on the case where the laser is tuned to the
two-photon resonance (wr, = wy) [182-190].

As an example of application of our system, we focus on two dibenzanthanthrene
(DBATT) molecules embedded in a naphthalene film with n = 1.5. We consider that
r12 = r1 — Iy is oriented parallel to the transition dipole moments (J-configuration),
with both r15 and the dipole moments aligned along the z-axis, as schematically
represented in Fig. 3.3a. The laser is incident along the direction normal to the
dipole orientation, and the emitted light is detected along the same direction. More
specifically, the laser wavevector k; and the detection direction rg are aligned
along the y-axis, such that ex, =k /|k;| = e, and eq =rq/|rq| = €,. In this J-
configuration, the lower-energy delocalized state |A_) is the superradiant state and
the higher-energy delocalized state |A4) is the subradiant state. We also assume the
following parameters, based on the experiments in Ref. [1]: (i) the mean frequency
wp corresponds to a vacuum wavelength of A\g = 618 nm; (ii) the spontaneous decay
rate is vo/(2m) = 21.5 MHz; (iii) the combined Debye-Waller/Franck-Condon factor
is apw = 0.3; and (iv) the dipole-dipole coupling is Vpw = —207, as provided
by a separation distance ri2 ~ 18.5 nm. We emphasize that the results in this
section are also valid for any other pair of quantum emitters having the same
coupling strength Vpw and combined Debye-Waller /Franck-Condon factor apyy.
Additionally, equivalent results are obtained for the case of a molecular H-aggregate
configuration (r12 is perpendicular to the transition dipole moments), with the only
difference that in this case the superradiant state is the higher-energy delocalized
state |A4) and the subradiant state is the lower-energy delocalized state |[A_).

3.3.1 Color-blind intensity correlation for parallel dipole
moments

We derive in this section the expression for the color-blind intensity correlation
géQP)L(O) of ZPL photons emitted from two interacting emitters with parallel
transition dipole moments. The resulting expression can be directly used to

perform numerical calculations, as well as to develop deeper analytical insights

136



3.3. Color-blind intensity correlation

into the behaviour of géZP)L(O) under various illumination conditions, which we also
discuss in this section.
In general, the color-blind intensity correlation can be obtained from the positive-

- (+
frequency and negative-frequency transverse electric field operators E(L )(rd, t) and

]:](l_)(rd,t) (Section 2.3). These two operators are Hermitian conjugate of each
other. In the far-field region, the positive-frequency electric field operator of ZPL
light scattered from emitter j (Section 1.2.7) is given by the product of (i) the vector
amplitude £ p7eL (rq) of the positive-frequency electric field radiated by a classical

point dipole ujZ-PL at the position r; of the emitter [see Egs. (1.141) and (3.55)],
with rq the detection position, and (ii) the lowering operator 6;(t — |r; — rq|n/c),
with |r; — rg|n/c the retardation time experienced by a photon propagating from
the emitter to the detector through a host medium of refractive index n. As a
result, the positive-frequency electric field operator of light emitted from the two
emitters into the ZPL becomes

& () A A
EL,ZPL(rdvt) = (‘:H%PL (rd)Ul(t7|r17rd|n/c)+£ugm (I‘d)O'Q(t7|I‘27[‘d|TL/C). (378)

Notably, the color-blind intensity correlation of ZPL photons emitted from two
emitters depends on the detection position ry [191], in contrast to the case of a
single quantum emitter discussed in Section 2.3.3. This dependence arises because
(i) €,zrL(rq) and & zee(rq) can be different in general, and (ii) the operators
61(t—|r1 —rg|n/c) and 62(t—|ra —rg4|n/c) have different time arguments, with their
difference depending on the detection position. We next introduce an approximation
that allows us to evaluate the operators 61(t — |r1 —rq|n/c) and do(t —|ra —rg|n/c)
at the same time argument.

In the far-field region, the distance between emitter j and the detector can be
approximated as |r; — rq| = |rq| — eq - r; [192], with eq = rq/|rq| the unit vector
of the detection position. This approximation holds as long as the origin of the
coordinate system is close to the positions of the quantum emitters. As a result,
we obtain

Gi(t—|r; —rqln/c) = 6;(t — |rg|ln/c+eq-rin/c). (3.79)

Additionally, we consider that the evolution of this operator during the time
eq - r;n/c is not perturbed by the electromagnetic vacuum field, and thus simply
follows an oscillatory behaviour, according to Egs. (1.122a)—(1.122b). Consequently,
this approximation yields

Gi(t —|ragln/c+eq-rqn/c) = 6;(t — |rq|n/c)exp(—iwe jeq - rjn/c), (3.80)

with we ; the transition frequency of emitter j. Substituting Eqgs. (3.79) and (3.80)
into Eq. (3.78), we find

~ (+) . .
ELZPL(rd, t) = (‘:H%PL (rq)61(t — |rg|n/c)exp(—iwpeq - rin/c) (3.81)

+ €21 (rq)02(t — [ra|n/c)exp(—iwoeq - ran/c).
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For simplicity, we have taken into account here that the transition frequencies
we,1 and weo are almost identical and, thus we have replaced them by the
arithmetic average transition frequency wg. This approximation is valid as long as
0 = We,1 —We,2 < wp. Importantly, the operators 61(t —|rq|n/c) and &2(t — |rgn/c)
in Eq. (3.81) are now evaluated at the same time argument.

We consider next that the transition dipole moments are identical (@1 = p2).
As a consequence, & zr1(rq) = € ,zr1(ra), as long as the distance to the detector
is much larger than the separation distance r12 = |r; — ra| between the emitters
[Eq. (1.141)]. The positive-frequency electric field operator in Eq. (3.81) then
reduces to

o~ () i+
E) 7pp(ra,t) = 65uE5_,%PL(rd7t)a (3.82)

where we have defined eg,, = € ,ze1(ra)/|€ yzr1 (ra)| = € zrL(ra)/|€ yzr1(rq)| and
the scalar positive-frequency electric field operator

B ) o (rast) = Ezp1 <61(t Iraln/c) + 6 (t — rd|n/c)ewm) L (3.83)

with
£ZPL = exp(fiwoed : r1n/C)|8H%PL (I‘d)|, (384)

and
YzPL = Woeq - (r1 —r2)n/c. (3.85)

Additionally, we consider that light is detected in the normal direction to the
plane in which the dipoles are contained (i.e., e, is orthogonal to p; = po and
to r1 —ra). For this detection direction, ¢zpr, = 0 [Eq. (3.85)]. Thus, the scalar
positive-frequency electric field operator simplifies to

= &zpL (61(15 — |rgn/c) + Go(t — |rd|n/c)>.

(3.86)

We now focus on the expression of the color-blind intensity correlation [Eq.

(2.60)]. As the positive-frequency and negative-frequency electric field operators

have the same polarization at all times [Eq. (3.82)], the intensity correlation of

ZPL photons at delay 7 can be directly calculated from the scalar electric field
operators [Eq. (3.86)] as

EA‘(L,L%PL (t)= E(Lf%PL (ra,t)

pzrL=0

P (— - £ (4

g(z) (r) = <E5_,%PL(O)ES_,%PL(T)ES_,%PL(T)EE_,%PL(0)>SS (3.87)

7ZPL - _ _ 9 .
(B (0B o (0)) (B e (N E o (1)

S S

where the expectation values are calculated in the steady state (ss). We emphasize
that the retardation times |rg|/c on the right-hand side of the expression of the
scalar electric field operators in Eq. (3.86) do not influence the value of géQP)L(T)7 as
their contribution to the positive-frequency electric field operators cancel with their

contribution to the negative-frequency electric field operator (see Section 2.3.3).
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As a consequence, the intensity correlation at delay 7 = 0, which is given by

0 o B e OB (0B (0B 0),,
97p1(0) = = 5 = 7 (3.88)
<EL,ZPL(O)EL,ZPL(O)>SS
can be obtained using directly the electric field operators
ES_JT%PL(O) = &{zpL (§1 (0) + &2(0)), (3.89a)
B 0 = o (4100) +01(0)). (3.89b)

Further, by substituting Eqgs. (3.89a)-(3.89b) into Eq. (3.88), one can obtain after
some algebra

2 4pE
41 (0) = 5
2pp + (14 sin(204))pa, + (1 —sin(204))pa_ — COS(?@A)Rep+]
(3.90)
where pp = (k| pss |k) are steady-state populations (with |k) a state of the

interacting basis {|E),|Ay),|A-),|G)}), and py— = (Ay|pss |A_) is the steady-
state coherence between the delocalized states. Therefore, Eq. (3.90) indicates that

the behaviour of gZPL( ) can be completely understood from the steady state of the
system. However, the exact solution of the steady state of the interacting molecules
is very intricate in general, as it requires to solve the complete set of equations
in Egs. (3.73a)—(3.73i). In the following, we discuss different approximations to

obtain further analytical insights into this steady state and, thus, into g%L(O).

Weak and intense laser intensities

First, under weak laser intensity (I, < Isat), we find numerically that pg and py—
are much smaller than the population of (at least) one of the delocalized states
|A+). Thus, the intensity correlation can be approximated under weak illumination
as

@) _ dpp

0| T m@em, + (0 sm@e, P O
The numerator in Eq. (3.91) accounts for the probability of emitting two photons,
which is proportional to the steady-state population pgp of the doubly-excited
state |E). In contrast, the denominator is related the probability of single-photon
emission and is given by the steady-state populations py_ and pa, of the single-
excitation delocalized states |A_) and |Ay). Equation (3.91) indicates that, if
the population of the doubly-excited state is much smaller than the square of the
steady-state populations of the delocalized states, then the intensity correlation
becomes strongly antibunched. In the opposite limit, strong bunching occurs.
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Figure 3.5: Absolute value of the steady-state coherences as a function of the laser intensity
for different laser detunings. The laser is tuned to: (a) the two-photon resonance, (b) the
transition frequency of the superradiant state |A_), and (c) the transition frequency of the
subradiant state |A4). The insets in (a)-(c) illustrate the different resonant excitation processes
promoted by the different laser frequencies. Solid lines represent the coherences that involve

the subradiant state |Ay), namely (red) py— = (Ay|pss|A=), (purple) prg = (A4 pss |G)
and (brown) pgt = (E|pss |A+). Dashed lines represent the coherences that do not involve
the subradiant state, namely (orange) p_g = (A_|pss |G), (green) pp— = (E|pss |[A—) and

(blue) pra = (E| pss |G). The dipole-dipole coupling is Vpw = —2070, the combined Debye-
Waller /Franck-Condon factor is apw = 0.3, and the molecular detuning is § = 10~o.

On the other hand, under very intense laser intensity (I > Ist), the
populations of the molecular excited states saturate and become equal to 1/2
(Section 1.5.4). In this limit, the populations of the interacting system becomes
PE,PA,,PA_, PG — 1/4, whereas py_ — 0. Substituting these values into Eq.
(3.90), we find

2
g5 (0) =1 (3.92)
I,>Isat

Laser tuned to the two-photon resonance and to the superradiant state

We describe next an approximation that relies on the value of the laser frequency
and that is valid for all laser intensities. Specifically, when the laser is either
tuned to the two-photon resonance (wy, = wp) or to the transition frequency of
the superradiant state |[A_) (wy = wo — A), the steady-state coherences between
the subradiant state |A;) and any other state are much smaller than the largest
coherence of the system (in the interacting basis). We have verified the validity
of this approximation by computing numerically the steady-state populations
and coherences as a function of the laser intensity and frequency, with molecular
detuning fixed at § = 107p. The resulting coherences p,, = Tr(G4pPss) are plotted
in Fig. 3.5, which confirms that we can neglect the steady-state coherences related
to the subradiant state (p4—, pyq, pry) for these two laser detunings (Ag = 0 and
Ag = A). In this way, the set of Egs. (3.73a)—(3.73i) is reduced in the steady-state
to

0=—2vopg — Q_Impg_, (3.93a)
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3.3. Color-blind intensity correlation

0=—v+(pr, —PE), (3.93Db)
0=—y-(pa_ = pp) + Q-(Impp_ — Imp_g¢), (3.93¢)
0= (i2A0 — Y0)pECG + i%(ﬂEf —p-c)s (3.93d)
0= —i%(—pE +pa_ — pEG) + [I(Ao +A) —v0 —v-/2]pE-—, (3.93e)
0= " (~pa_ +pa+pea) + (B0~ A) 7 /2p-c +5-pp-.  (3.98)

Notably, Eq. (3.93b) yields pr = pa,. We use Egs. (3.93a)—(3.93f) in Sections
3.3.3 and 3.3.4 to derive analytical expressions for the steady-state populations
and for the color-blind intensity correlation géQP)L(O).

3.3.2 Color-blind intensity correlation under different laser
frequencies

In this section, we provide a general overview of the rich landscape of values that

géQP)L(O) can exhibit for the pair of quantum emitters with parallel transition dipole

moments studied here, from almost perfect antibunching [g(zsz(O) ~ 0] to extreme

bunching [gézp)L(O) > 1]. To this end, we compute numerically gggL(O), using
Eq. (3.88), for three different laser frequencies, namely: (i) half the frequency
between |G) and |E) (two-photon resonance); (ii) the transition frequency of the
superradiant state |[A_); and (iii) the transition frequency of the subradiant state
Ay,

We first fix the laser frequency at the two photon resonance (wy, = wp), which
enables to resonantly excite the doubly-excited state |E) through a two-photon

process. In Fig. 3.6a, we plot the dependence of géQP)L (0) on the laser intensity
I;, and the molecular detuning § for this laser frequency. We note that ¢ can be
tuned in experiments, for instance, via the Stark effect [1, 99, 100, 105]. Under
weak illumination, we find that géQP)L(O) is strongly bunched, which reveals that
the emission of photons in cascade is strongly enhanced with respect to light
emission obeying Poissonian statistics. Additionally, the difference between the
laser frequency wy, = wg and the resonance frequencies w4+ = wg + A of the single-
excitation states |AL) increases with the molecular detuning. Thus, the ratio
between two-photon emission processes and single-photon emission processes grows
with the molecular detuning. As a consequence, Q%L (0) also increases with the
molecular detuning ¢, as shown in Fig. 3.6a. In Section 3.3.3, we analyze in more
detail the light statistics for this laser frequency.

Next, we fix the laser frequency at wy, = wg— A, for which the laser is resonantly
tuned to the superradiant state |A_). Figure 3.6b shows the behaviour of g(ZQP)L(O) for
this laser frequency, revealing that the emission is strongly antibunched under weak
illumination. Consequently, the two coupled molecules act as a single-photon source
for this laser frequency, as it occurs for a single molecule with two-level-system
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Figure 3.6: Color-blind intensity correlation géQFzL(O) of light emitted into the ZPL from two

interacting emitters with parallel transition dipole moments, as a function of the laser intensity
I1, and molecular detuning 6. In (a) the laser is tuned to the two-photon resonance (wr, = wo),
which leads to bunched emission. In (b) the laser excites resonantly the superradiant state |A_)
(wp = wo — A) giving rise to antibunched emission. In (c¢) the laser is tuned to the transition
frequency of the subradiant state |[At) (wp = wo + A) and g(ZQP)L(O) shows a more complex
dependence on the laser intensity and molecular detuning. In (a)-(c), color blue represents

antibunched emission [g(Z2P)L(0) < 1], red bunched emission [géQP)L(O) > 1], and white Poissonian

statistics [géQP)L(O) = 1]. Cuts of the results in (a)-(c) for § = 107 (along the dashed black
lines) are plotted in (d), where the red line corresponds to a laser tuned to the two-photon
resonance, the blue line is obtained for a laser tuned to the superradiant state and the green line
corresponds to a laser tuned to the subradiant state. In (d), red and blue shaded background
corresponds to bunched and antibunched emission, respectively. The insets illustrate the different
laser detunings considered. The dipole-dipole coupling is Vpw —207v0 and the combined
Debye-Waller /Franck-Condon factor is apw = 0.3.

behaviour (Section 2.3.3), but with a larger decay rate vo(1 + apw|Vbow|/A) and
larger transition dipole moment. Thus, the emission of single photons is accelerated
by a factor 1+ apw|Vbw|/A with respect to the case of a single emitter. In Section
3.3.4, we quantify analytically the small deviation of the light statistics from that

of an ideal single photon source [with gg}zL (0) = 0] for this laser detuning, as well

as the increase of gé?L(O) observed in Fig. 3.6b for increasing laser intensities.
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3.3. Color-blind intensity correlation

Moreover, Fig. 3.6c shows that a more complex dependence of ggP)L (0) on the
laser intensity and on the molecular detuning is found when the laser is tuned to
the transition frequency of the subradiant state |Ay) (wr, = wg+ A). In this case,
if the two molecules are very far from resonance (|d| > 307,), the system behaves
again similar to a single TLS and the emission is strongly antibunched under weak
illumination. In the opposite case, if the molecules are identical (6 = 0) the light
emitted has approximately Poissonian statistics [géQP)L (0) = 1]. Interestingly, if the
molecules are slightly off-resonance, then both bunched and antibunched emission
can be obtained for resonant excitation of the subradiant state, depending on
the value of laser intensity I;,. The complex behaviour of gggL (0) for this laser
frequency is analyzed in detail in Section 3.3.5.

Notably, Fig. 3.6 indicates different ways to tune the emission from antibunching
to bunching. For example, for two slightly detuned emitters and a laser tuned
to the transition frequency of the subradiant state, we can obtain both types of
light statistics by modifying the laser intensity. As another example, we can use
weak illumination and tune the laser either to the two-photon resonance or to the
superradiant state in order to obtain extreme values of bunching and antibunching,
respectively. This level of controlled cross-over between bunched and antibunched
emission depending on a reasonable variation of experimental parameters can be of
potential technological interest in engineering photon sources. Alternative physical
configurations to achieve this cross-over include tuning the relative phase between
the light scattered coherently and incoherently by an ensemble of trapped ions in
a nanofiber [193], manipulating the position of the detector for the case of two
trapped ions [191], controlling the temperature of a thermal atomic vapor in a
cell [194] or tailoring the laser polarization and the material gain of a plasmonic
nanosphere close to two quantum emitters [195].

To summarize the broad range of color-blind intensity correlations that can
be obtained by tuning the laser frequency and intensity, we fix § = 107, in Fig.
3.6d and plot the dependence of ggP)L(O) on the laser intensity for a laser tuned
to (red line) the two-photon resonance, (blue line) the transition frequency of the
superradiant state and (green line) the transition frequency of the subradiant state.
For this value of molecular detuning, sin(20,) = —0.97 and cos(20,) = —0.24 in
Eqgs. (3.90) and (3.91). In Sections 3.3.3-3.3.5, we analyze more extensively the
behaviour of g(Zzp)L (0) shown in Fig. 3.6d for the three laser frequencies and with
support of analytical equations.

3.3.3 Laser resonantly tuned to the two-photon resonance

In this section, we consider that the molecules are driven by a laser tuned to the
two-photon resonance (wy;, = wg, which yields Ag = 0) and discuss in detail the
dependence of gézp)L(O) on the laser intensity at § = 107 (red line in Fig. 3.6d and
black solid line in Fig. 3.7a). To this end, we first derive analytical expressions for
the steady-state populations using Egs. (3.93a)—(3.93f).
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Figure 3.7: Dependence on the laser intensity of (a) g(ZQPzL(O) and (b) the steady-state populations

when the laser is tuned resonantly to the two-photon resonance. In (a), the solid black line is
obtained numerically using Eq. (3.90), whereas blue dots are calculated with the full analytical
expression in Eq. (3.100). The inset in (a) represents the excitation at the two-photon resonance
(wr, = wo). In (b), blue corresponds to the steady-state population of the superradiant state |A_),
green to that of the subradiant state |A4), red to that of the doubly-excited state |E) and pink
to absolute value of the real part of the steady-state coherence p4_ = (Ay|pss|A—). Solid lines
correspond to the numerical calculations, whereas dots represent the analytical results obtained
from the expressions in Egs. (3.94) and (3.95). We consider Vpw = —20v9, apw = 0.3 and
6 = 1070.

Derivation of the analytical steady-state populations

We first substitute Ay = 0 into Eqgs. (3.93a)—(3.93f). By solving the resulting set
of equations, we find that the populations of |E) and |A) are equal and given by

2PR
= DAy

2PR O

T AT 1202 40 (470 + 37— — 45) + (dyoA)2’

PE (3.94)

with 2PR standing for two-photon resonance. These populations converge to 1/4 for
sufficiently strong laser intensities (22— much larger than all the other parameters).
On the other hand, the population of the superradiant state |[A_) becomes related

to the populations in Eq. (3.94) as
2PR 29 2
1+ == ) 3.95
(5 a5

This expression also converges to 1/4 for sufficiently strong laser intensities.
Additionally, Eq. (3.95) indicates that the population of the superradiant state is
much larger than the population of the subradiant state and of the doubly-excited
state under weak laser intensities.

The steady-state populations obtained in Eqgs. (3.94) and (3.95) are plotted
with dots in Fig. 3.7b, showing a good agreement with the numerical results that
we discuss below (solid lines in Fig. 3.7b).

2PR

ba_ =DPE
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3.3. Color-blind intensity correlation

Color-blind intensity correlation under weak illumination

Under weak laser intensity (/1 < Isat), the analytical expression in Eq. (3.95) for
the population ps_ reduces to

(3.96)

PR (Q_>2 Ip 1—sin(20,)
pA7 = =

ﬁ Lsat 22 ’

I < Isat

where we have used Eq. (3.70) to relate Q2 with the laser intensity. Further, we
have defined

2A
Yo

Equation (3.96) reveals that the superradiant state is excited through single-photon
processes in this intensity regime (I, < Isy4), as its steady-state population
increases linearly with the laser intensity. Further, for the same intensity range, we
obtain that the doubly-excited state |E) is excited through two-photon processes
because its population depends quadratically on the laser intensity

TR (92N I} (1-5sin(204)) (3.8)
4’}/0A ’ '

s (3.97)

PE e 16¢2

sat

I < sat

which is obtained from Eq. (3.94).

Additionally, within this intensity range (I, < Isat), we observe in Fig. 3.7b
that the population pa, of the subradiant state |A,) is two orders of magnitude
smaller than the population p,_ of the superradiant state |[A_). As a consequence,
pa, can be neglected in the calculation of the intensity correlation in Eq. (3.91).
Both the numerator [4pg| and the denominator [p3 (1 — sin(20,))?] in Eq. (3.91)

thus scale quadratically with the laser intensity and géQP)L(O) becomes independent

of the specific value of Iy, /Is,. The resulting expression is given by

2PR c 2
Y (N E— (3.99)
Iy <L, (1 - S1n(2@A))

Qgp)L(O)

which agrees with the numerical results in Fig. 3.7a and becomes equal to 439.5 in
our configuration. Equation (3.99) shows that the emission is strongly bunched if
the splitting 2A is much larger than the spontaneous emission rate o (as it occurs
when Vpw > 70), so that ¢ > 1. Interestingly, Eq. (3.99) can be used to estimate
molecular parameters in experiments. For example, the distance between the

two emitters 15 and the molecular detuning ¢ could be simultaneously estimated
through the measurement of Q%L(O)EE%IW and the splitting 2A = \/4Vi5y + 62
between the transition frequencies of the superradiant and subradiant states.
Alternatives to extract r15 are based on superresolution imaging techniques [1, 92],

which are time demanding.
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Chapter 3. Intensity correlation of ZPL photons from two interacting QEs

Color-blind intensity correlation for increasing laser intensities

For increasing laser intensities (I, > 1071 I, ), the intensity correlation strongly
decreases. Figure 3.7b shows that the population pg of the doubly-excited state
|E) becomes comparable to the population py_ of the superradiant state |[A_) in
this case. As a consequence, Eq. (3.91) is no longer a good approximation. By
substituting the analytical populations in Egs. (3.94) and (3.95) into the expression
of the color-blind intensity correlation in Eq. (3.90), with Rep;_ = 0, we obtain

@ () QL+ 0250(290 + 37-/2 - 27-) + (270A)?
Jzpr 02 +72(1 — sin(26,))]2
1

- [(2 + I/ Isat) (1 — sin(204))70]? x| (11— Sin(2@A))273(IL/Isat)2

+ (4A) + 230(1 — sin(20,4)) (270 + 39 /2 — 292 )(I1 /Tut) .
(3.100)

with y_ = 5 — v 8in(20, ). Figure 3.7a shows the excellent agreement between Eq.
(3.100) (blue dots) and the numerical results (black solid line) for any laser intensity,

including the convergence to gé2P)L(O) = 1 for strong enough laser intensities.

3.3.4 Laser resonantly tuned to the superradiant state

We examine in this section the color-blind intensity correlation géQP)L (0) of light
emitted into the ZPL when the laser is tuned to the transition frequency of the
superradiant state |[A_) (wy, = wp—A). In this case, the single-excitation delocalized
state |A_) (which couples more efficiently to light than |Ay) and, additionally,
is excited resonantly) dominates the response under weak enough illumination,
with negligible effect of the doubly-excited state |E) and of the subradiant state
|A;). The system thus behaves in close analogy to a resonantly driven TLS,
with strongly antibunched emission, as shown by the solid black line in Fig. 3.8a
(corresponding to the blue line in Fig. 3.6d). To gain analytical insights into the

behaviour of g%L(O), we first derive the expressions of the steady-state populations
for arbitrary laser intensity, as we did in Section 3.3.3 for the case of two-photon
resonance illumination. We then use these expressions to discuss the behaviour of
the color-blind intensity correlation at weak and increasing laser intensities.

Derivation of the analytical steady-state populations

To derive the analytical expressions of the steady-state populations, we solve the
set of Eqgs. (3.93a)—(3.93f) with Ag = A. The resulting populations of the doubly
excited state and the subradiant state are given as

)
= pas

IA-) o4
T A0% 1 202[(26)2 + y0(7- — 45-)] + (2k7_)2

PE (3.101)
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Figure 3.8: Dependence on the laser intensity of (a) g(ZQPzL(O) and (b) the steady-state populations

when the laser is tuned resonantly to the superradiant state |[A_). In (a), the solid black line
is obtained numerically using Eq. (3.90), while orange dots are calculated with the analytical
expression in Eq. (3.107) and blue dots with the analytical expression in Eq. (3.108). The
resonant excitation at the transition frequency of the superradiant state is illustrated in the inset
in (a). In (b), blue corresponds to the steady-state population of the superradiant state |[A_),
green to that of the subradiant state |A4), red to that of the doubly-excited state |E), and pink to
the absolute value of the real part of the steady-state coherence py_ = (A4 |pss|A—). Solid lines
correspond to the numerical calculations, whereas dots represent the analytical results obtained
from the expressions in Egs. (3.101) and (3.103). We consider Vpw = —2070, apw = 0.3 and
§ = 10p.

with

k= (20)2+ (0 +7-/2)2. (3.102)

These populations converge to 1/4 for strong laser intensities. Additionally, the
population of the superradiant state is

[A=)
= DPE

1A-) 02 (2x)?
T I 207 (20 T (- — )] T @)

PA_ (3.103)

These analytical steady-state populations are plotted with dots in Fig. 3.8b,
showing an excellent agreement with the numerical results (solid lines).
Color-blind intensity correlation under weak illumination

In the laser intensity range I, < sy, the analytical expressions in Egs. (3.101)
and (3.103) reduce to

A 2 N2 201 —sin(20,))) 2
PE = DA = =72 1 , (3.104)
I < gat I, < Igay 2"4’7— sat RY—
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and

Y-

(3.105)

A=) (Q_)2 I, 72(1 —sin(204))
PA_ = .

Isat 273

I < Isat

Thus, the population pa_ of the superradiant state |[A_) depends linearly on the
laser intensity, and the population pg of the doubly-excited | E) does it quadratically,
as in the case of weak laser intensity and illumination tuned to the two-photon
resonance (Section 3.3.3). The population of the subradiant state |A,), which can
be safely neglected in the denominator of Eq. (3.91), also depends quadratically
on the laser intensity, because it is populated through the relaxation of the doubly-
excited state |E) for these laser intensities. Thus, both the numerator and the
denominator scale quadratically in Eq. (3.91) and, as a result, the intensity

correlation ggP)L(O) becomes independent of the laser intensity:
@ [A_) 5 2
97p1.(0) = [_] . (3.106)
ZPL <L k(1 —sin(20,))

Equation (3.106) becomes equal to 2.5 x 10~* for our molecular configuration.
Crucially, this equation shows that, as long as the losses are much smaller than s
(e.g., strong dipole-dipole coupling), the intensity correlation is characterized by
strong antibunching (in contrast to the bunching obtained when the laser is tuned
to the two-photon resonance). Thus, the coupled emitters behave in this case as a
single-photon source with larger emission rate and transition dipole moment than
a single emitter.

Color-blind intensity correlation for increasing laser intensities
The value of gézp)L(O) increases for stronger laser intensities (I, = 1071 /;). This
increase is due to the fact that the population py_ of the superradiant state |A_)
reaches a maximum value of 0.49 (which is very close to the excited-state population
of a saturated TLS, see Section 1.5.4) and remains almost constant, while the
population of the doubly-excited state |E) now increases linearly with the laser
intensity due to the large and constant population of the superradiant state. As a
consequence, géQP)L(O) also increases linearly with the laser intensity. Specifically, it
is given by
A .
2 ol RO L
ZPL <l k2(1 —sin(204))?

(3.107)

We plot the dependence of géQP)L(O) on the laser intensity according to this equation
(orange dots) in Fig. 3.8a, which shows an excellent agreement with the numerical
results (solid black line) up to Iy, ~ 103 Iy.

For even stronger laser intensities, Eq. (3.91) is no longer a good approximation
because the contributions of the population of the doubly-excited state and
subradiant state to the denominator of Eq. (3.90) need to be accounted for.
By substituting the expressions of the steady-state populations in Eqgs. (3.101) and
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(3.103) into Eq. (3.90), we obtain

o2 (o 2 AR 202 (02 + 0y — 470+ (20 )
ZPL 4[02 + (1 — sin(20,))k2]?
_ 1 . 2,41 _sin 2
" = sm@on Pl(Ie T g + 27 |1/ 2011 7 ZOn)
+ (I /T3 (1 = 5in(20,4))[(28)% + 70(1- — 43)] + (267-)? |

(3.108)

This expression reproduces the numerical results for arbitrary laser intensity
(compare blue dots and black line in Fig. 3.8a), including the saturation to

g%L(O) =1 for very large intensities.

3.3.5 Laser resonantly tuned to the subradiant state

In this section, we analyze the complex behaviour of the color-blind intensity
correlation when the laser is tuned to the transition frequency of the subradiant
state. We show that this behaviour is due to the competition between two excitation
mechanisms: (i) the resonant excitation of the subradiant state |A), a state that
couples very inefficiently to light; and (ii) the non-resonant excitation of the
superradiant state |A_), which couples very well to light. We first develop an
analytical model to derive the steady state under weak illumination and, afterwards,
we investigate numerically the behaviour of géZP)L (0) at increasing laser intensities.

Weak illumination

To derive the steady-state populations under weak illumination and for a laser tuned
to the transition frequency of the subradiant state |A), we calculate the populations
of two independent three-level systems. One of these three-level systems consists of
the states {|G),|A1),|E)}, corresponding to the excitation of the doubly-excited
state via the resonantly pumped subradiant state. The second three-level system
is composed by the states {|G),|A_),|E)} and represents the excitation of the
doubly-excited state via the non-resonantly driven superradiant state |A_). The
pumping rates for the transitions |G) — |Ay) and |AL) — |E) are Q4 and the
decay rates of the transitions |E) — |A1) and [AL) — |G) are 4.

The dynamics equations of the elements of the density matrix for the first
three-level system {|G),|Ay),|E)} are given by:

G (08) =~ ) 5 | 0m) - 0151, (3.109)
G 00) = = (021) = 050 | + 15| (018) — 0m2) + (010D - (0],

149



Chapter 3. Intensity correlation of ZPL photons from two interacting QEs

G (026) =~ | = (02 + bce) + om)] - 1 (sa). (3.109¢)
G 00) =15 (08 — (02 + (050) | = (28 + 22/ 0],
G 056) =55 | 1m4) = G| - (242072 (s, (3.109)

Next, by neglecting the steady-state coherence pgg = (F|pss|G) between the ground
state |G) and the doubly-excited state |E), we solve the steady-state density matrix.
The resulting steady-state populations can be additionally simplified assuming
A > 79, which leads to the steady-state population of the subradiant state |A;)

[A4) 2
14 (Q4/4A
pa.| = (A 2/ ) 5, (3.110)
24 3(Q24/470)% + (v+/Q4)
and to the steady-state population of the doubly-excited state |E)
A
) e (24 /40) (3.111)
z 2+ 3(0, JAA) + (74 /)2 |

Here, we have introduced the superscript (+) to stress that p(EJF)||A+> corresponds

to the contribution to the total steady-state population of the doubly excited state
arising from excitation via |AL).

We follow the same procedure with the three-level system {|G),|A_),|E)}.
The transition |G) — |A_) is non-resonantly pumped (with detuning 2A), whereas
the transition |[A;) — |E) is resonantly driven. The dynamics equations are then
given by:

9 (oee) = - (ome) +ive [<&E_> - <&_E>] (3.112a)

o)== o~ ome) | + 5 (-8 — o) + (60— (00,
(3.112b)

G (0-6) =~ | = (6-) + (00c) + (o50) | - (28 +7-/2 (0-c) . (1120

G 05) =i Gew) — o) + )| - 5 02, (3.1124)

d . Q-1 . . . R

S (omc) =i [(01;} - <aG>] ~(i2A + 7 /2) (66) - (3.112¢)

In this case, we do not neglect any coherence and only assume that A > ~q. The
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steady-state population of the superradiant state |[A_) is thus given by

[A+) 1
| = A (3.113)
and the population of the doubly-excited state |E) by
|Ay) 4
(=) _ 2(02_/4A)
PeC| T 330 /AN + (/AN (3.114)

Here, the superscript (—) is introduced to remark that pf,;)||A+> corresponds to
the contribution to the steady-state population of |E) that is excited via [A_).

Therefore, the total population pg of the doubly-excited state |E) is understood
as the sum of the population pg) excited via the resonantly driven subradiant state

|A1) and the population p(f) excited via the non-resonantly driven superradiant
state |[A_). Thus, this population is given by

[A+)

[A)
+py)

[A+)
(h . (3.115)

PE =PE

We now take the weak intensity limit (I, < Ist) in these expressions. In this
way, we find that the populations py, and pa_ of the single-excitation delocalized
states |[A;) and |A_) scale linearly with the laser intensity. Specifically, we find

[A4) T 2 :
L Y5 (1+sin(204))
== A1
DA, o T ~ ; (3.116)
L sat
[A+) 201 _ o
o _ I, ~v5(1 —sin(204)) (3.117)
et Isat 2(40)? ’

where we have assumed A > ~q, for simplicity. Notably, the population of the
subradiant state |A1) (green line in Fig. 3.9b) is two orders of magnitude larger
than that of the superradiant state |[A_) (blue line), since the former is driven
resonantly and the later non-resonantly (with laser detuning equal to 2A). On the
other hand, in the denominator of géQFzL(O) in Eq. (3.91) the population py_ of
the superradiant state |A_) is multiplied by a factor 1 —sin(20,) ~ 1.97, which is
two orders of magnitude larger than the factor 1 + sin(20,) ~ 0.03 multiplying
the population pa, of the subradiant state |A,), since the superradiant state
couples much more efficiently to light. Both delocalized states thus contribute
comparably to the denominator of Eq. (3.91) and need to be taken into account in

the calculation of gg—gL (0).
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Further, taking the limit I, < It in Eq. (3.115), we obtain

(3.118)

L _n {(usm(z@ma]: 13 [u—sm(m))

T2, 8AY, 2, 2(4A)? ’

sat sat

I <L Isat

where the first term of the right-hand side accounts for the population excited via
the subradiant state |A;) (through a two-photon process) and the second term via
the superradiant state |A_) (through a two-photon process as well). According
to Eq. (3.91), g(Zzp)L(O) therefore becomes independent of the laser intensity under
weak illumination and can be obtained as

2 2
1-sin(20,4) 1+4sin(20,)
A4) ((4A>) +<4A7+)
=4

2 292"
I < ot |:<lsin(2(—)A)> +(1+sin(29A)> }
4A T+

Notably, the intensity correlation under weak illumination can reach a much

larger value [gZPL( )|‘1122< 1., = 0.25 for our specific molecular parameters] than

when the laser is tuned to the transition frequency of the superradiant state

2
QéPBL(O)

(3.119)

[g ZPL( )|1L<<I> .~ 2.5x107"], which emphasizes that the dynamics of the coupled
molecules is now more complex than that of a single TLS-like emitter. The simple
expression of gZPL(O) in Eq. (3.119) can also be used for the experimental estimation
of molecular parameters, in a similar way to the analytical expression in Eq. (3.99)

of Q%L (0) for a weak laser tuned resonantly to the two-photon resonance.

Increasing laser intensities

We now analyze the behaviour of gé2p)L(0) for increasing laser intensities by using
numerical calculations. In the range of laser intensity 107! < Ip/Isas S 10!, Fig.
3.9b shows that the slope of the population pg of the doubly-excited state |E) scales
superquadratically, which indicates that the excitation of the doubly-excited state
|E) can no longer be understood as resulting from two independent two-photon
processes (i.e., pg does not correspond to the sum of the populations provided
by two independent three-level systems). In contrast, the excitation of |E) via
the resonantly driven subradiant state |A;) and via the non-resonantly driven
superradiant state |[A_) coherently interfere. This effect is revealed, on the one hand,
in the increase in the slope of the real part of the coherence p;_ = (A4 |pss|A=)
between the superradiant and subradiant states (represented with a pink solid line
in Fig. 3.9b). On the other hand, the interference between the excitation of the
doubly-excited state from the superradiant state and from the subradiant state also
has an effect in the complex interplay between the imaginary part of the coherence
pE+ = (E|pss|A+) (related to the excitation of the doubly-excited state via the
subradiant state |A;)) and the imaginary part of the coherence pp_ = (E|pss|A—)
(related to the excitation via the superradiant state |[A_)). These latter coherences
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Figure 3.9: Color-blind intensity correlation g,p; (0) and steady-state populations and coherences
when the laser is tuned resonantly to the subradiant state [Ay). (a) Dependence on the laser

intensity of the color-blind intensity correlation 9<2sz(0) of ZPL photons. The solid black line is
obtained numerically using the exact expression in Eq. (3.90), whereas the dashed blue line is
calculated numerically using the approximate Eq. (3.91). The inset illustrates the laser frequency
used. (b) Dependence on Iy, of the steady-state populations of (blue) the superradiant state |[A_}),
(green) the subradiant state |A4), (red) the doubly-excited state |E), and (pink) the absolute
value of the real part of the steady-state coherence p1_ = (A4 |pss|A—). Solid lines correspond to
the exact numerical calculations, whereas dots represent the analytical results obtained using Egs.
(3.110), (3.113) and (3.115). Black dashed lines represent the linear and quadratic scaling of pg

with laser intensity. (c) Dependence on the laser intensity of the coherences (dashed orange line)

7;2770ImpE, and (solid purple line) %ImpE+, whose difference corresponds to (red solid line)
the population of the doubly-excited state according to Eq. (3.120). The inset corresponds to a

zoom (within the interval from Iy, /Isat = 7 X 1072 to I, /Isat = 10~ 1) showing that 7;277011’1’1pE7

is slightly larger than %Impbur. We consider Vpw = —20v0, apw = 0.3 and é = 107 in all
panels.

contribute to the population of the doubly-excited state as

pE = —;Z—JrImpEJr — &ImpE,7 (3.120)
Yo 270

obtained from the exact expression in Eq. (3.73a) by taking % (6gp) = 0. Figure
3.9¢ shows that the two terms on the right-hand side of Eq. (3.120) are of opposite
sign and are comparable in magnitude. Under very weak illumination, both terms
scale quadratically with the intensity and thus so does pg, as the negative term
is slightly smaller in magnitude than the positive one (see inset in Fig. 3.9c).
For increasing laser intensities the slope of the negative term starts to decrease
and thus its cancellation with the larger positive term is reduced, which leads
to the superquadratic behaviour of pg with the laser intensity. Additionally, the
populations of the single-excitation delocalized states |Ay) and |A_) still depend
linearly on the laser intensity (see Fig. 3.9b) and thus the superquadratic scaling
of the doubly-excited state leads to an increase in the intensity correlation (see
Fig. 3.9a), according to Eq. (3.91). Importantly, g%L (0) eventually crosses from
antibunching to bunching, which indicates that the correlation can be of either
one type or the other for this laser frequency and molecular detuning (§ = 10vo),
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Chapter 3. Intensity correlation of ZPL photons from two interacting QEs

depending on the intensity of the laser. This cross-over is also captured by the
simplified Eq. (3.91) (dashed blue line in Fig. 3.9a), which shows a good agreement
with the results obtained with the exact Eq. (3.90) for Iy, < Isat-

For laser intensities larger than 1015, the population ps, of the subradiant
state |A) reaches a maximum value of 0.33. Additionally, the population of the
doubly-excited state |E) becomes linearly dependent on the laser intensity due
to the large population of the subradiant state for these laser intensities. The
intensity correlation then reaches a maximum value of 3.71. For even larger laser
intensities (I, > 103I,4), all populations converge to 0.25 (i.e., both molecules
become saturated and thus uncorrelated) and, as a result, the intensity correlation
converges to ggp)L (0) = 1. Notably, the evolution of gézp)L(O) from its maximum
value to 1 is not a simple decay, but it reaches a minimum before growing again,
which highlights the complexity of the excitation and emission processes between
states for this laser detuning.

3.3.6 Influence of the combined
Debye-Waller /Franck-Condon factor

In this section, we analyze the impact of the combined Debye-Waller/Franck-Condon
factor apw on the color-blind intensity correlation géQP)L (0) of light emitted into
the ZPL from the two interacting emitters with parallel transition dipole moments.
Figure 3.10 shows the dependence of géZP)L (0) on the laser intensity I, and apw,
calculated at § = 10y. We fix the dipole-dipole coupling at Vpw = —207 [i.e.,
the intermolecular distance rqs is modified simultaneously with apw according to
Eq. (3.56a)] to focus on the impact of apw on the decay rates y_ and 74 of the
superradiant state |[A_) and the subradiant state |A,), respectively. For identical
emitters (§ = 0) and apw = 1, as often assumed in the literature, the decay rate of
the superradiant state yields y_ = 27, at very short distances, while the decay rate
of the subradiant state vanishes (i.e., infinite long lifetime). In contrast, smaller
values of apw reduces considerably the difference between v_ and v, according to
Y+ = Y0 (1 £ apw sin(204)). Here, sin(20,) = Vpw/A = —0.97.

We find that the modification of v4 through apw does not significantly impact
on the color-blind intensity correlation géQP)L(O) when the laser is tuned to the two-
photon resonance (Fig. 3.10a) or to the transition frequency of the superradiant
state |[A_) (Fig. 3.10b). In contrast, when the laser is tuned resonantly to the
subradiant state |A;), Fig. 3.10c shows that the minimum and maximum values
of g(ZQgL(O) can be notably modified by apw. However, the qualitative behavior,
including the presence of a cross-over from antibunched emission (for weak enough
laser intensities) to bunched emission (for increasing laser intensities), is maintained
when apw is changed.

To emphasize this behaviour, we plot in Fig. 3.10d cuts of the results in Figs.
3.10a-3.10c at Iy = 1073 [4s. gézp)L(O) is almost constant when the laser is tuned
to the two-photon resonance (red solid line) and increases slightly with apw [from

g2 (0) ~ 1.5 x 104 when apw — 0 to gi4; (0) & 6 x 10~* at apw = 1] if the
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Figure 3.10: Dependence of the color-blind intensity correlation gézp)L (0) of a pair of interacting
emitters on the combined Debye-Waller/Franck-Condon factor apw and on the laser intensity
I1,. The laser is tuned to (a) the two-photon resonance (wp = wp), (b) the transition frequency
of the superradiant state |A_) (wr, = wg — A) and (c) the transition frequency of the subradiant

state [A4+) (wr, = wo + A). In (a)-(c), color blue represents antibunched emission [géQFzL(O) < 1],
red bunched emission [g(ZQP)L(O) > 1] and white Poissonian statistics [géQP)L(O) = 1]. We use a
logarithmic scale in the color bars in (a)-(b). We use a linear scale in the interval 0 < géQP)L 0)<1

and a logarithmic scale for g(ZQP)L(O) > 1in (c¢). Cuts of the numerical results in (a)-(c) for
I;, = 10~ 315s¢ are plotted in (d), where the red line corresponds to a laser tuned to the two-
photon resonance, the blue line is obtained for a laser tuned to the superradiant state and
the green line corresponds to a laser tuned to the subradiant state. Dots in (d) correspond to
analytical results obtained with (red) Eq. (3.99), (blue) Eq. (3.106) and (green) Eq. (3.119). In
(d), red and blue shaded backgrounds represent bunched and antibunched statistics, respectively.
The insets illustrate the different laser detunings considered. The molecular detuning considered
is 6 = 107p and the dipole-dipole coupling is Vpw = —207 [i.e., the modification of apw is
accompanied by a modification of the distance between the emitters according to Eq. (3.56a)].
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Chapter 3. Intensity correlation of ZPL photons from two interacting QEs

laser is tuned resonantly to the superradiant state |A_) (blue solid line). More
significantly, when the laser is tuned to the transition frequency of the subradiant
state |Ay) (green solid line), ggP)L(O) decreases considerably with apw [from ~ 0.4
when apw — 0 down to ~ 73 /(2A)? ~ 6 x 10~% at apw = 1]. The analytical
results (dots in Fig. 3.10d) obtained with (red) Eq. (3.99), (blue) Eq. (3.106)
and (green) Eq. (3.119) show an excellent agreement with the numerical results
for all values of apw. Therefore, these results show that the color-blind intensity
correlation of light emitted into the ZPL from two interacting emitters can be
especially sensitive to the combined Debye-Waller /Franck-Condon factor when the
laser is tuned resonantly to the subradiant state.

3.4 Frequency-resolved intensity correlation

In this section, we investigate the frequency-resolved intensity correlation (FRIC)
of photons emitted into the ZPL from two strongly interacting emitters at delay
7 = 0 and detected along the direction normal to the plane in which the emitters
are located. In contrast to the color-blind intensity correlation examined in
Section 3.3, the FRIC measures the correlation between pairs of photons of specific
frequencies wy and we, providing great information on the emission mechanisms of
the system (Section 2.4). We take as reference emitters the same pair of interacting
DBATT molecules as in Section 3.3, and focus again on analyzing the role of the
laser frequency and intensity, thus complementing previous studies of FRIC from
interacting emitters, which have focused either on excitation at the two-photon
resonance [178] or on emitters under incoherent pumping [173].

The numerical calculations of the FRIC gézp)L(wl,wg;O) in this section are
performed following the approach described in Section 2.4.3. As the positive-
frequency electric field operator of light scattered from the two emitters in the
normal direction to the plane in which thy are located is proportional to &1 + G2
[Eq. (3.86)], the system operator that describes the interaction of the emitters
with the n-th detector is §,, = 1 + &2, with n € {1,2} [Eq. (2.73)]. Additionally,
we fix the linewidth of the two filters at I' = ~,/10, as we did in Section 2.4.4.

3.4.1 FRIC when the laser is resonantly tuned to the
superradiant state

In this section, we analyze the FRIC when the laser frequency corresponds to
the transition frequency of the superradiant state |A_) (w;, = wy — A), for weak,
moderate and strong laser intensities.

Weak laser intensity

We first examine the FRIC at Ij, = 0.11s,¢. Figure 3.11a shows the normalized
incoherent emission spectrum (top) and the FRIC map (bottom). As in Section
2.4.4, the xz-axis and y-axis of the FRIC map correspond to the normalized laser
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Figure 3.11: FRIC for a laser tuned to the transition frequency of the superradiant state |[A_),
wr, =wp — A. [(a),(c),(e)] Normalized incoherent emission spectra (top panel) and FRIC maps
(bottom panel) for laser intensity (a) It = 0.11gat, (¢) Ir, = 501sat and (e) I, = 1000sat. The
inset in (a) illustrates the molecular energy levels |G) and |A_) and the resonant excitation of
the superradiant state. In the FRIC maps the standard color convention is used, where blue
color represents antibunched emission, while red color bunched emission and white Poissonian

statistics. In the color bar, we use a linear scale in the interval 0 < gé2P)L(UJ1,WQ; 0) <1 and

a logarithmic scale in the range 1 < g(ZZPzL(wl,wQ;O) < 100. We consider a filter of linewidth
I’ = ~0/10. [(b),(d),(f)] Schematic representation of the eigenstates (accounting for the quantum
nature of the laser field) in rungs n — 1, n and n + 1 for laser intensity (b) I, = 0.1lat, (d)
I1, = 50Isat and (f) I, = 10001sat. Each rung contains four eigenstates with equal number of
excitations. Solid arrows are used to mark the horizontal and vertical lines in the FRIC maps,
the peaks in the incoherent emission spectra and the one-photon transitions in the diagram of
the eigenstates, whereas dashed arrows are used for the antidiagonal lines and the two-photon
processes through virtual states. The dipole-dipole coupling is Vpw = —20v0, the combined
Debye-Waller /Franck-Condon factor is apw = 0.3 and the molecular detuning is § = 10o.

detuning of the photons arriving at detector 1, (w1 — wr)/A, and at detector
2, (w2 — wr)/A, respectively. Additionally, we use again the standard color
convention [173, 175-178], where the blue color represents antibunched emission

[géQP)L(wthJg;O) < 1], red bunched emission [géQP)L(wl,wg;O) > 1] and white

Poissonian statistics [géQP)L(wl,wg;O) = 1]. To improve the visibility of the
antibunched emission as well as of the bunched emission, we use of a linear

scale in the range 0 < géQP)L (w1,w2;0) < 1 and a logarithmic scale in the range

1< gg‘gL (w1,ws;0) < 100. Regarding the incoherent emission spectrum (Section
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2.1.6), it is computed as

Si(w) o / dr OB o (OB o (0)) e, (3.121)

S
— 00

and it is normalized in such a way that [196]
/ dwS;(w) = Y0 (061061 + 663069) .. + Apw (061062 + 665661) . (3.122)
0

We use the bar symbol to stress that this incoherent spectrum is normalized. This
normalization facilitates the comparison between the peak amplitudes of different
incoherent emission spectra.

The FRIC map in Fig. 3.1la is characterized by a strongly antibunched
background, which can be understood from the very small value of the color-
blind intensity correlation for these laser parameters [gg}zL (0) ~ 107*, Fig. 3.8a].
On top of this strongly antibunched background we observe a vertical line at
w1 = wr, a horizontal line at we = wy, (marked by solid grey arrows) and a bunched
antidiagonal line (dashed grey arrow) at wy + wy = 2wy,. These lines constitute a
signature of the mechanisms of photon emission and to analyze them is convenient
to account for the quantum nature of the illumination, as discussed in Section
2.4.4. The eigenstates of the full quantized system are distributed in infinite rungs,
with the eigenstates that belongs to the same rung having equal number of total
excitations (i.e., molecular excitations plus photons in the laser field). For example,
the eigenstates in the rung with n excitations (rung n) under weak illumination are
the hybrid states {|G,n),|A_,n —1),|Ay,n —1),|E,n —2)}, with |n) the n-Fock
state of the laser field. Notably, for this laser frequency and intensity, the states
|A_,n — 1) and |G, n) become degenerate in energy, as well as the states |E,n — 2)
and |Ay,n — 1) are also degenerate. These two pairs of degenerate states are
analogous to those obtained by treating the laser excitation classically and moving
to the rotating frame at the laser frequency (namely, in this case |A_) and |G)
are degenerate in energy, and so are |E) and |A), see Section 3.2.3). Further, for
these laser parameters, each rung is composed by two doubly degenerate states.
The eigenstates of three subsequent rungs are depicted in the level scheme in Fig.
3.11b.

On the one hand, the frequencies at which the horizontal and vertical lines
emerge in the FRIC map correspond to the frequencies of the one-photon transitions
between eigenstates of the system (Section 2.4.4), such as the transition from the
superradiant state |[A_,n) in the rung n + 1 to the ground state |G, n) in the rung
n. Like in all FRIC maps in this thesis, we use solid arrows in Figs. 3.11a and
3.11b to represent these one-photon transitions in the level scheme as well as to
mark the corresponding horizontal and vertical lines. These one-photon transitions
can also be identified by the peaks in the emission spectrum of the system, shown
on top of Fig. 3.11a.

On the other hand, the antidiagonal line in the FRIC map at wy + ws = 2wy, is
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a signature of relaxation processes known as leapfrog process, which consists in
the emission of a photon of frequency w; (w2) due to the transition from an initial
eigenstate in the rung n + 1 to a virtual state and the emission of a photon of
frequency wy (w1) due to the relaxation from the virtual state to another eigenstate
in the rung n—1 (Section 2.4.4). The energy difference between the initial and final
eigenstates determines the value of wy + wo satisfied along the antidiagonal line.
This antidiagonal line and the corresponding two-photon transition are marked with
dashed arrows in Figs. 3.11a and 3.11b, and throughout this thesis. Additionally,
as these antidiagonal lines correspond to the correlated emission of two photons,
they are usually characterized by strong bunching. Importantly, these two-photon
processes cannot be unveiled in the emission spectrum, and neither in the color-
blind intensity correlation, which stresses the advantages of the FRIC to gain
additional information about the transitions in the system.

Comparing these results with those in Section 2.4.4, we thus find that the FRIC
map of the two coupled molecules when the laser is tuned to the superradiant
state (Fig. 3.11a) resembles that of a TLS (Fig. 2.7a) when both are under weak
illumination. For these laser parameters, the two interacting molecules thus behave
almost as a single TLS, with a very low impact of the subradiant state and the
doubly-excited state on the FRIC map in Fig. 3.11a. For example, the horizontal
and vertical lines related to the decay from the weakly populated subradiant state
|A1,n) to the ground state |G,n) (marked with pink arrows) are not appreciated

in the FRIC map because the associated increase of ggP)L(wl, wo; 0) is too small.

Moderate laser intensity

We next plot the FRIC map for I;, = 50, in Fig. 3.11c. Under this
laser intensity, the eigenstates of the emitters become appreciably dressed
and they are described as different linear combinations of the bare states
{IG,n),|A_,n—1),|A;,n—1),|E,n—2)}. Specifically, the eigenstates can be
accurately described by antisymmetric and symmetric states analogous to those in
Egs. (3.74a)—(3.74d), with X = F and Y = G. Namely, the dressed states in the

n*P-rung are given by

AS)Y = (|B,n—2) — [Ayp,n— 1)) /V2, (3.123a)
1S5 = (|B,n — 2) + [Ap,n — 1)) /V2, (3.123b)
1S5y = (1G,n) + [A_,n—1))/V2, (3.123¢)
1AD)Y = (1G,n) — |A_,n—1))/V2, (3.123d)

and they are schematically represented in Fig. 3.11d. At this laser intensity,
the dressed states |Sén_)> and \A(C?l) have a significant energy splitting equal to
|(cos©Op — sin©, )] ~ 0.11A [Egs. (3.75a)—(3.75d)], in contrast to the case of
weak illumination where they are degenerate in energy. The one-photon transitions
\Sglb — |ngl)> and |A(£z> — |A(£:1)> (marked with solid grey arrows in Fig.
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3.11d) lead to the emission of photons of frequency w; = wy — A, whereas the
one-photon transitions |Sgb_)> — \Agl__l)> and \Agﬂ) — |Sé"__1)> give rise to the
emission of photons of frequencies wy, 4 |(cos O —sin Op )| ~ wy, + 0.11A (dark
green arrow) and wy, — |[(cos O — sin O, )| ~ wy, — 0.11A (light green arrow),
respectively. As a consequence, three peaks emerge near wy, = wy in the emission
spectrum on top of Fig. 3.11c, which are analogous to the Mollow triplet in the
emission spectrum of a single TLS under strong enough illumination (Section 2.1.6).
In the FRIC map, these one-photon transitions lead to a broad vertical line and a
broad horizontal line, which emerge due to the overlapping of three vertical and
horizontal lines at frequencies wy, and wy, & |(cos Oy —sin©)Q| ~ wy, + 0.11A.

Moreover, new antidiagonal lines emerge in the FRIC map satisfying wy + ws =
2wy, £ |(cos Oy — sin Oy )Q| (see the light green and dark green dashed arrows in
Fig. 3.11c). These new lines unveil additional two-photon transitions through
virtual states and emerge due to the energy splitting between the dressed states
\S(Gn_)> and |Aglz>, which are linear combinations of the superradiant and ground
molecular states. These lines are also analogous to the ones emerging in a single
TLS under the same laser intensity (Section 2.4.4).

On the other hand, we observe additional lines in the FRIC map that are due
to the non-negligible effect of the subradiant state and of the doubly-excited state
for this laser intensity. First, we observe two horizontal and vertical lines centered
at frequency wy, + 2A, which corresponds to the one-photon transitions from one
of the dressed states |Agl4)r> and |Sgﬁ> to one of the dressed states \ng”) and

\Agf”} in a lower rung. The FRIC map also exhibits two additional antidiagonal
lines corresponding to the two-photon transitions from \Agj1)> and \Sgﬂjl)) to

one of the dressed states \ng”) and |AgL:1)> through an intermediate virtual
state. In summary, the FRIC map in Fig. 3.11c mostly resembles the FRIC map
of a TLS consisting of the ground and the superradiant state, driven resonantly
under the same laser intensity, but with additional lines accounting for the impact
of the subradiant state and the doubly-excited state on the light emission.

Interestingly, not all the transitions between eigenstates are reflected in the
FRIC map. In particular, we do not observe horizontal and vertical lines centered
at frequency wy, — 2A = wg — 3A, corresponding to the one-photon transitions from
\Sglb or |A(C?l> to \Ag:l)> or |S’§5nJ:1)>. Similarly, no peak appears at frequency
wr, — 2N = wg — 3A in the emission spectrum on top of Fig. 3.11c. To understand
this effect, we calculate the probability of these transitions using Fermi’s golden rule
[151, 162], which states that the transition probability between an initial eigenstate
i) and a final eigenstate |f) is proportional to | (f| (61 + 62) |i) |?. The emission
operator can be written in the interacting basis as

01+ 62 = (COS@A + sin@A)(|G> <A+| + |A+> <ED

3.124
+ (cosOp —sin Op)(|G) (A_| + |A_) (E]). ( )
As a consequence, <Sgn_;1)\ (61 + 62) |Sén_)> = (Ag:l)| (61 + 62) |Sé;n_)>
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(S (61 + 62) [AG)) = (AL TV (61 + 62) [AG)) = 0, which means that all the
one-photon transitions with energy difference wy, — 2A = wy — 3A are forbidden.
Finally, we note that the FRIC map does not show antidiagonal lines corresponding
to two-photon transitions from the states |S(”_+1)> or |Agfj1)) to any of the states

‘SEE"_; 1)> or |A§En_:1)>, which indicates that these transitions are also forbidden.

Strong laser intensity

Last, we plot in Fig. 3.11e the FRIC map for intense laser illumination, I, = 103 Iy.
For this laser intensity, we obtain the dressed eigenstates |E2(n)> numerically. One
of the main differences with respect to the case of moderate laser intensity is that
the three Mollow-like vertical, horizontal and antidiagonal lines (marked with light
green, grey and dark green arrows) in the FRIC map do not overlap and can be
clearly distinguished. This separation arises because the energy splitting between
the dressed states |E§n)> and |E§”)> is much larger than for the case of moderate
laser intensity.

Another noticeable effect of the increase of laser intensity is that we observe a
wider variety of vertical, horizontal and antidiagonal lines in the FRIC map. There
are two main factors involved in the emergence of new lines. The first one is the
larger energy splitting between |E§n)> and |Ein)), which was negligible in the case
of moderate intensity, and allows for resolving new transitions. The second factor
responsible of the emergence of new lines in the FRIC map is that the forbidden
transitions for moderate laser intensities now become allowed due to the more
complex nature of the dressed eigenstates, which under strong illumination are not
simple symmetric and antisymmetric combinations of two states of the interacting
basis {|G,n),|A_,n—1),|[Ar,n—1),|E,n—2)}.

The diagonal bunched line at w; = ws corresponds to the simultaneous detection
of two identical photons (Section 2.4.4). The value of the intensity correlation
along this diagonal is twice that at nearby points on the map [169, 173, 174].
This increase occurs because a coincidence is counted no matter which photon
arrives at detector 1 and which one arrives at detector 2 (in contrast to the case in
which w; # ws), a situation which doubles the probability of a coincidence in the
detectors.

3.4.2 FRIC when the laser is resonantly tuned to the
subradiant state

Next, we analyze the FRIC for a laser tuned to the transition frequency of
the subradiant state |Ay) (wyp = wg + A). For this laser frequency, the FRIC
maps become more complex than for the previous detuning due to the emergence
of additional lines and also to the possibility of having FRIC maps with both
antibunched or bunched background depending on the laser intensity.
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Weak laser intensity

In the same way as when the laser is resonantly tuned to the superradiant
state (Section 3.4.1), the eigenstates of the full quantized system are
{IG,n),|A_,n—1),|Ay,n—1),|E,n — 2)} under sufficiently weak illumination.
However, when the laser is resonantly tuned to the subradiant state, the states
|G,n) and |A;,n — 1) in the rung n are degenerate in energy and, in the same
way, so are the states |[A_,n — 1) and |E,n — 2), which contrast with the pairs
of degenerate states when the laser is resonantly tuned to the superradiant state
(Section 3.4.1).

We plot the FRIC map at I, = 0.1l in Fig. 3.12a, and a scheme of the energy
levels in Fig. 3.12b. The background of the FRIC map is antibunched, which is
consistent with the value of the color-blind intensity correlation, Q%L(O) ~ 0.3, for
these laser parameters. Over this background, three horizontal, three vertical and
three antidiagonal lines emerge. Thus, in contrast with the case in which the laser
is resonantly tuned to the superradiant state, this FRIC map does not resemble
the one of a TLS under weak illumination. The reason for this is the competition
between the resonant excitation of the subradiant state and the non-resonant
excitation of the superradiant state (which couples very efficiently to light), as
discussed for the color-blind intensity correlation in Section 3.3.5. Both excitation
pathways can lead to the emission of photons of frequency wy = wp + A giving
rise to the central horizontal and vertical lines in the FRIC map. Additionally,
the central antidiagonal line in the FRIC map corresponds to the emission of
two photons of frequencies w; and wo, via an intermediate virtual state, fulfilling
w1 + wy = 2wy, so that the final state is the same as the initial one but two rungs
down. Further, photons of frequency wy, — 2A = wy — A can also be emitted (lines
marked with solid red arrows in the FRIC map and also in Fig. 3.12b), as well as
leapfrog processes fulfilling wy + ws = 2wy, — 2A can take place (red dashed arrows).

Moreover, the excitation of the subradiant state |Ay,n) in rung n can lead to
the emission of photons of frequency wy, + 2A = wy 4+ 3A due to the transition to
any of the states |[E,n —2) or |[A_,n — 1) in rung n — 1, which gives rise to the
horizontal and vertical lines marked with purple solid arrows in the FRIC map in
Fig. 3.12a. However, the emission of these photons is not reflected in the emission
spectrum on top of Fig. 3.12a and, additionally, these lines should not appear in the
FRIC map according to the Fermi’s golden rule (following similar arguments than
in Section 3.4.1). We attribute the emergence of these lines in the map to the very
small modification of the eigenstates {|G,n),|A_,n—1),|[Ay,n—1),|E,n—2)}
due to the weak illumination (Section 3.2.3), so that the transition is no longer
strictly forbidden. Therefore, for this laser detuning, the FRIC map reveals one-
photon transitions that occur with very low probability and which are hidden in
the emission spectrum. Similarly, two-photon transitions via intermediate virtual
states satisfying wy +we = 2wy, + 2A are also allowed due to the very small dressing
of the eigenstates (marked with the dashed purple arrows).
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Figure 3.12: FRIC for a laser tuned to the transition frequency of the subradiant state |Ay),
wr, = wo + A. [(a),(c),(e)] Normalized incoherent emission spectra (top panel) and FRIC maps
(bottom panel) for laser intensity (a) Iy, = 0.1[sat, (¢) I, = 50Isat and (e) Ir, = 10001sas. We
depict the molecular energy levels |G) and |A1) and the resonant excitation of the subradiant
state in the inset in (a). We follow the standard color convention in the FRIC maps and use
blue color to represent antibunched emission, red for bunched emission and white for Poissonian

statistics. In the color bar, a linear scale is used in the range 0 < gézp)L (w1,w2;0) <1 and a

logarithmic scale in the interval 1 < g(ZQP)L (w1,w2;0) < 100. We consider a filter with linewidth

' = ~0/10. [(b),(d),(f)] Diagrams of the eigenstates, with the laser field quantized, in the rungs
n —1, n and n + 1 for laser intensity (b) Iy, = 0.1/sat, (d) I, = 50Isat, and (f) I, = 1000sas.
Each of the rungs have four eigenstates with equal number of excitations. Solid arrows are used
to mark the horizontal and vertical lines in the FRIC maps, the peaks in the incoherent emission
spectra and the one-photon transitions in the diagrams of the eigenstates, while dashed arrows are
used for antidiagonal lines related to leapfrog processes. We consider Vpw = —20v0, apw = 0.3
and § = 10vp.

Moderate and strong laser intensities

We present in Fig. 3.12¢ the FRIC map for a moderate laser of intensity I, = 50154.
For these laser parameters, the dressed eigenstates can be approximated again
as symmetric and antisymmetric combinations of the states that are degenerate
under weak illumination, in analogous way to the dressed states obtained in Egs.
(3.74a)—(3.74d) (with X = G and Y = F)) in the rotating frame at the frequency of
the laser. In this way, we obtain that the eigenstates in the rung n are

[AG]) = (1G,n) = [Ay,n = 1))/V2, (3.125a)
1SSy = (IGyn) + [Apyn — 1)) /V2, (3.125b)

163



Chapter 3. Intensity correlation of ZPL photons from two interacting QEs

1580 = (|B,n —2) + |A_,n — 1)) /v/2, (3.125¢)
1AMy = (|B,n —2) — |A_,n — 1))/V2. (3.125d)

In contrast to the case in which we tune the laser to the transition frequency of
the superradiant state with the same laser intensity, we observe that the FRIC
map in Fig. 3.12¢ is bunched [gézp)L(wl,wg;O) > 1] for most pairs of filtered
frequencies wy and wy. This general bunching can be expected from the bunched
color-blind intensity correlation for these laser parameters (see Fig. 3.9a). Over
this general bunched background, a variety of horizontal, vertical and antidiagonal
lines are again observed. Similar to the case of moderate laser intensity in Section
3.4.1, this wide variety of lines emerge due to the significant energy splitting
|Q2(cos Oy —sin Oy )| = 0.11A between the dressed states |SgL_)> and |A%Ll> This
energy splitting increases the number of different transitions that lead to emission
of photons (see Fig. 3.12d), with respect to the case of weak laser intensity.

Finally, we present in Fig. 3.12e the FRIC map for I;, = 1000/,t, which also
exhibits a significant bunching for almost every pair of filtered frequencies. For
this intensity, the numerical calculation of the dressed eigenstates |E1(n)> in rung n
is again necessary. The energy splittings between all the dressed eigenstates |Ez(n)>
become significant, as schematically represented in Fig. 3.12f. As a consequence,
in the FRIC map we observe more horizontal, vertical and antidiagonal lines than
in the case of moderate laser intensity, with the corresponding one-photon and
two-photon transitions depicted in Fig. 3.12f.

3.4.3 FRIC when the laser is resonantly tuned to the
two-photon resonance

In this section, we discuss the FRIC when the laser is tuned to the two-photon
resonance (wr, = wp), which has been analyzed in detail in Ref. [178]. First, we
plot in Fig. 3.13a the incoherent emission spectrum S; (w) and the FRIC map for
I, = 0.115,¢. This map is in general strongly bunched, which can be expected from
the strongly bunched color-blind intensity correlation for these laser parameters
(see Fig. 3.7a). Over this strongly bunched background, we can distinguish two
vertical and two horizontal lines, for which the correlation takes much lower values.
On the one hand, the lines at wy = wy, (here, wy, = wp) and we = wy, (marked by
grey solid arrows) are related to the one-photon transitions depicted with grey
arrows Fig. 3.13b, which includes the transition from the state |[A_,n —2) (in
the rung n + 1) to the state |[A_,n — 1) (in the rung n), for instance. On the
other hand, the one-photon transitions related to the lines at w; = wy — A and
wo = wy, — A are indicated with light green solid arrows in Fig. 3.13b, as for
example the transition from the state |[A_,n — 2) to the state |G,n — 1). Further,
we observe in the incoherent emission spectrum on top of Fig. 3.13a a third
peak at frequency w; = wy + A, related to the one-photon transitions from the
subradiant state |Ay,n) in rung n + 1 to the ground state |G, n) in rung n, whose
corresponding horizontal and vertical lines (marked by dark green solid arrows)
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Figure 3.13: FRIC for a laser tuned to the two-photon resonance, wy, = wo. [(a),(c),(e)] Normalized
incoherent emission spectra (top panel) and FRIC maps (bottom panel) for laser intensity (a)
I1, = 0.1Lat, (¢) I, = 50Isat and (e) I, = 1000/sat. The inset in (a) illustrates the molecular
energy levels and the resonant excitation of the doubly-excited state |E) with two-photons. In
the FRIC maps the standard color convention is used, where blue color represents antibunched
emission, while red color bunched emission and white Poissonian statistics. In the color bar,
we use a linear scale in the interval 0 < gész(wl,wg;o) < 1 and a logarithmic scale in the
range g(Z?L(wl,wg;O) > 1. We consider a filter linewidth I' = 70/10. [(b),(d),(f)] Schematic
representation of the eigenstates (accounting for the quantum nature of the laser field) in rungs
n — 1, n and n + 1 for laser intensity (b) I, = 0.11sat, (d) I, = 50Isa¢ and (f) Ir, = 1000gas.
Each rung contains four eigenstates with equal number of excitations. Solid arrows are used to
mark the horizontal and vertical lines in the FRIC maps, the peaks in the incoherent emission
spectra and the one-photon transitions in the diagrams of the eigenstates, whereas dashed arrows
are used for the antidiagonal lines related to the two-photon processes through virtual states. We
consider Vpw = —20vp, apw = 0.3 and § = 10~p.

cannot be distinguished in the FRIC map due to the strong background bunching.
In contrast, three antidiagonal lines with stronger bunching than the background
emerge in the FRIC map in Fig. 3.13a (see the broad line marked by a dashed
grey arrow and the subtle lines marked by a dashed light green arrow and a dashed
dark green arrow) corresponding to three different types of leapfrog processes that
can take place for these laser parameters.

As the laser intensity is increased up to I;, = 501g.¢, the eigenstates of the
system become slightly dressed, according to Eqgs. (3.77a)—(3.77d). Figure 3.13c
shows the corresponding incoherent emission spectrum and the FRIC map for
I, = 501y, and Fig. 3.13d the energy level structure. Notably, as the value of

the color-blind intensity correlation géQP)L (0) decreases, the value of the frequency-
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resolved intensity correlation géQP)L (w1, ws;0) of the background of the FRIC map

also decreases and the three horizontal and three vertical lines can now be clearly
distinguished. This map is very similar to the one discussed in Ref. [178] for
identical emitters driven by a laser tuned to the two-photon resonance. For even
stronger laser intensities, the eigenstates of the system become strongly dressed
and a variety of horizontal and vertical lines emerge in the FRIC map [178]. We
plot in Fig. 3.13e the emission spectrum and the FRIC map for I;, = 1000/5,t, with
the corresponding one-photon transitions as well as leapfrog processes illustrated
in Fig. 3.13f.

3.4.4 Influence of the combined
Debye-Waller /Franck-Condon factor

Last, we analyze the impact of the combined Debye-Waller /Franck-Condon factor
apw on the FRIC map for a laser tuned to the transition frequency of the subradiant
state. We choose this laser frequency because of the large sensitivity of the color-
blind intensity correlation to apw found in Fig. 3.10 for this laser frequency. As
in Section 3.3.6, we focus on analyzing the impact of apw on the decay rates vy_
and -4 of the superradiant state |[A_) and the subradiant state |A, ), respectively.
To this end, we fix the dipole-dipole coupling at Vpw = —207, and modify the
intermolecular distance 712 simultaneously with apw according to Eq. (3.56a).
Additionally, we consider again weak laser intensity Iy, = 0.11g,4.

Figure 3.14a shows the FRIC map at apw = 0.05, which is very similar to
the FRIC map obtained at apw = 0.3 in Fig. 3.14b, corresponding to the FRIC
map in Fig. 3.12a. This large similarity is attributed to the relatively small
difference between the v_ /v, ratio in both cases (y—/v+ &~ 1.1 when apw = 0.05,
while v_/vy+ =~ 1.8 when apw = 0.3). However, Fig. 3.14c shows that the
FRIC map is substantially modified at apw = 0.75 (v—/~v+ =~ 6.3), with a more
strongly antibunched background. Most notably, neglecting the combined Debye-
Waller/Franck-Condon factor (apw = 1) leads to a drastically different FRIC
map (Fig. 3.14d). In this case v_/v4+ ~ 66 and the FRIC map exhibits a single
antidiagonal line (which is not bunched) and a single horizontal/vertical line. We
conclude that the FRIC map can thus be drastically different when apw = 1, as
typically assumed in the literature. These results emphasize the importance of
accounting for apw in the description of the interacting solid-state emitters when
intensity correlations are investigated.

3.5 Summary and conclusions

We have shown in this chapter that the electromagnetic vacuum field mediates
the dipole-dipole interaction between two quantum emitters separated by short
distances and, additionally, we have characterized the intensity correlations of
light emitted into the Zero-Phonon Line from these two interacting emitters under
different illumination conditions. To this end, we have first derived the multipolar
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Figure 3.14: Influence of apw on the FRIC maps when the laser is tuned to the transition
frequency of the subradiant state |[Ay). The inset in (a) illustrates the laser frequency. The
combined Debye-Waller/Franck-Condon factor is fixed at (a) apw = 0.05, (b) apw = 0.3, (¢)
apw = 0.75, and (d) apw = 1. We follow the standard color convention in the FRIC maps.
According to this convention, blue color means antibunched emission, red bunched emission and
white Poissonian statistics. A logarithmic scale in the color bar is used in the complete range of
values of gggL(whwz; 0). We consider Vpw = —2070, 6 = 1070, I, = 0.11gat and I' = 0.17p in
all the panels.

form of the Hamiltonian describing the interaction between two quantum emitters
and the electromagnetic vacuum field. Then, we have derived a Markovian master
equation in the reduced Hilbert space of the emitters, by tracing out the degrees of
freedom of the electromagnetic vacuum field. In the resulting Markovian master
equation, the coherent and dissipative dipole-dipole couplings induced by the
vacuum field emerge explicitly, as well as the spontaneous emission of each emitter.
Afterwards, we have introduced an effective approach to adapt this Markovian
master equation for describing the electronic dynamics of solid-state emitters
supporting vibrational/phononic modes. Within this effective framework, the
coherent and dissipative dipole-dipole couplings are modified by the combined
Debye-Waller /Franck-Condon factor.
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We next have shown that, at short separation distances, the dipole-dipole
interaction between the emitters is strong enough to modify their eigenstates and
eigenenergies. Notably, when the transition dipole moments are not perpendicularly
oriented, the dipole-dipole interaction leads to the emergence of superradiant and
subradiant states. These states are single-excitation states with the electronic
excitation delocalized between both emitters. The decay rates of these two states,
as well as their coupling strengths to the laser field, differ from each other and
from the case of no interaction.

Furthermore, we have analyzed the intensity correlations of light emitted into
the Zero-Phonon Line from solid-state quantum emitters that strongly interact. We
have demonstrated first that the color-blind intensity correlation can be tailored
from extreme bunching to strong antibunching by modifying the laser parameters.
We have also shown that this dependence can be altered by changing the frequency
detuning between the two emitters. For weak enough laser intensities, the color-
blind intensity correlation is characterized by an extreme bunching if the laser
is tuned to the two-photon resonance. In contrast, if the laser is tuned to the
transition frequency of the superradiant state, the intensity correlation becomes
strongly antibunched, so that the system behaves as a single-photon source with
larger decay rate than that of a single emitter. For these two laser detunings, we
have derived analytical expressions, valid for non-identical molecules, apw # 1
and arbitrary laser intensity, which accurately reproduce the numerical intensity
correlation. Further, we have shown that the combined Debye-Waller/Franck-
Condon factor can influence the behaviour of the color-blind intensity correlation,
specially when the laser is tuned to the transition frequency of the subradiant state.

Additionally, we have found that the color-blind intensity correlation exhibits
a more complex dependence on the laser intensity and on the detuning between
the emitters when the laser is tuned to the transition frequency of the subradiant
state. For this laser detuning, the light emitted into the ZPL can be either
bunched, antibunched or Poissonian, which is a signature of the complexity of
the excitation and emission processes at this laser frequency. These emission and
excitation processes may become even more complex in the presence of dephasing
effects, which have been neglected in this analysis and require a more sophisticated
description [197, 198]. Further, we have derived an analytical expression of géQP)L(O)
when the laser is tuned resonantly to the subradiant state at weak laser intensities.
This expression, as well as analogous expressions for the other laser detunings, can
help to experimentally determine the distance and detuning between the emitters.

Finally, we have also explored the frequency-resolved intensity correlation
(FRIC) for the three laser detunings and shown that it provides further information
on a variety of relaxation processes of the driven, interacting emitters. For a laser
tuned to the transition frequency of the superradiant state, we have demonstrated
that the FRIC generally resembles that of a resonantly driven TLS, but it also
exhibits some differences due to the influence of the subradiant state and the doubly-
excited state. Interestingly, for weak and moderate laser intensities, the FRIC
maps indicate that some of the transitions are forbidden (absence of lines at certain
frequencies), which is consistent with the peaks in the emission spectrum. On the
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other hand, when the laser is tuned to the transition frequency of the subradiant
state the FRIC becomes more complex due to the important competition between
the resonant excitation of the subradiant state and the non-resonant excitation
of the superradiant state. We have found that the FRIC can unveil one-photon
transitions that occur with such low probability that they are not resolved by
the emission spectrum. Thus, the FRIC manifests a stronger sensitivity to reveal
transitions that occur with very low probability. Interestingly, we have shown
that the FRIC can be strongly influenced by the combined Debye-Waller /Franck-
Condon factor again when the laser is tuned to the transition frequency of the
subradiant state. These results stress the interest of the intensity correlations to
better characterize and understand the emission from interacting quantum emitters.

169






CHAPTER

INTENSITY CORRELATION OF
STOKES-SHIFTED PHOTONS FROM
TWO QUANTUM EMITTERS

We have analyzed in Chapter 3 the correlation of photons emitted into the Zero-
Phonon Line (ZPL) from two interacting quantum emitters. In addition to the
ZPL photons, solid-state quantum emitters can also scatter photons due to the
radiative decay from the electronic excited state to a vibrational/phononic level in
the electronic ground state. These photons are red-shifted with respect to the ZPL
and are referred to as Stokes-shifted photons. We develop in this chapter a model
to analyze the correlation of Stokes-shifted photons scattered from two quantum
emitters. This model is of significant experimental interest, as usual experiments
involving light emission from solid-state quantum emitters rely on the measurement
of the Stokes-shifted emission, particularly when the emitters are driven by a
laser resonantly tuned to their electronic excited state. In this case, optical filters
are employed to eliminate the laser photons in the detection process, which also
discard the ZPL photons because their frequency is nearly identical to that of the
resonant laser. For example, available experiments on the correlation of photons
emitted from two quantum emitters that interact via vacuum-induced dipole-dipole
coupling rely on the detection of Stokes-shifted photons [1, 99, 199, 200].

We first provide a description of the emission of Stokes-shifted photons from
solid-state emitters. Additionally, we review a method that has been used in Refs.
[1, 92, 199] to obtain an approximate description of the correlation of Stokes-shifted
photons emitted from two interacting emitters, which neglects the influence of the
quantum coherence between the emitters, as well as the first-order coherence of light
scattered from the two emitters. We next present the model that constitutes the
core of this chapter, which enables a more complete description of the correlation of
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Stokes-shifted photons, as it accounts for the full influence of quantum coherence.
Afterwards, we use this model to demonstrate that quantum coherence can indeed
play a significant role in the emission of Stokes-shifted photons from two interacting
emitters, as well as from two non-interacting emitters. Further, we compare the
correlation of ZPL photons (which has been already analyzed in detail in Chapter 3)
and that of Stokes-shifted photons emitted from two strongly interacting emitters,
revealing that they can exhibit substantial differences. Last, we analyze the impact
of considering a large number of vibrational modes on the correlation of Stokes-
shifted photons, and extend the model to the case of an arbitrary number of
interacting emitters.

4.1 Stokes-shifted photons from solid-state
quantum emitters

In this section, we describe the emission of Stokes-shifted photons from solid-state
quantum emitters that support vibrational and/or phononic modes. We also
review an approach that provides an approximate description of the correlation
of Stokes-shifted photons emitted from two interacting quantum emitters, which
relies on neglecting the influence of quantum coherence and is referred to as
conditional-probability approach.

4.1.1 Description of the emission of Stokes-shifted photons

The electronic excited state |e) of solid-state quantum emitters can relax through a
radiative decay, either directly to the pure (0-phonon) electronic ground state |g),
emitting a Zero-Phonon-Line (ZPL) photon, or to a 1-phonon level in the electronic
ground state, emitting a Stokes-shifted photon. These different relaxation processes
are revealed in the emission spectrum of the quantum emitter. For example, Fig.
4.1a shows the emission spectrum of a single DBATT molecule embedded in a
naphthalene crystal at a temperature of 1.7 K. This figure is adapted from Ref.
[201] and reproduced with permission from Springer Nature. The spectrum of
the DBATT molecule exhibits a sharp peak at A ~ 618 nm, corresponding to the
photons emitted into the Zero-Phonon Line (Je) — |g)). This transition is marked
with a blue arrow in the schematic representation of energy levels in Fig. 4.1b.
Notably, the emission spectrum in Fig. 4.1a reveals additional peaks at increasing
wavelengths, constituting a signature of the red-shifted emission of Stokes-shifted
photons. We illustrate the corresponding transitions, from |e) to 1-phonon levels
in the electronic ground state, with red arrows in Fig. 4.1b.

Moreover, developing a model that accurately describes the correlation of Stokes-
shifted photons is of significant experimental interest. In particular, usual resonance
fluorescence experiments, where the electronic excited state |e) of the emitter is
resonantly excited, rely on the analysis of Stokes-shifted light scattered from the
solid-state quantum emitters [54, 202-204]. In these experiments, optical filters
are employed to remove the laser photons, ensuring that only photons scattered by
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Figure 4.1: Zero-Phonon Line (ZPL) and Stokes-shifted emission from a solid-state quantum
emitter. (a) Experimental emission spectrum of a single DBATT molecule embedded in a
naphthalene crystal at 7' = 1.7 K. Figure adapted from Ref. [201] and reproduced with permission
from Springer Nature. (b) Schematic representation of the pure (0-phonon) electronic excited
state |e), the pure (0-phonon) electronic ground state |g), and three different 1-phonon levels
in the electronic ground state. The ZPL corresponds to the transition from |e) to |g) and is
indicated with a blue arrow. The Stokes-shifted transitions (from |e) to a 1-phonon level in the
electronic ground state) are indicated with red arrows.

the emitters arrive to the detectors. As a consequence of this filtering, the ZPL
photons are also excluded in the detection process, since their frequency closely
matches that of the resonant excitation laser.

Notably, available experiments investigating the correlation of two solid-state
emitters with vacuum-induced electromagnetic interaction are based on this
excitation and filtering scheme [1, 92, 99, 200]. This is the case, for example,
of the experiments presented in this chapter (Figs. 4.5, 4.6, and 4.8), where the
correlation of Stokes-shifted light emitted from two DBATT molecules is measured.
These molecules are embedded in a thin naphthalene crystal film, and the system is
cooled to cryogenic temperatures (I' = 3.2 K). In addition to the photon correlation
measurements, the one-photon excitation spectra of the coupled molecules can
also be recorded at various laser intensities, which enables the estimation of the
molecular parameters [1]. These experiments were conducted by the Bordeaux
Nanophotonics Group, led by Brahim Lounis, at the Institut d’Optique Graduate
School (CNRS) in Bordeaux, France.

4.1.2 Conditional-probability approach to the
Stokes-shifted correlation

We review in this section the method used in Refs. [1, 92, 199] to describe the
correlation of Stokes-shifted photons emitted from two interacting emitters, referred
to as conditional-probability approach. This approach does not take into account
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the quantum coherence between the states of the two emitters, nor the influence of
the first-order coherence of the light they emit (i.e., interference effects, see Section
2.1.4). As a consequence, it fails to describe experiments where these coherences
become important, as we show in Section 4.3.

The calculation of the intensity correlation within the conditional-probability
approach is based on the reset matriz formalism [187, 205], which calculates the
conditional probability of emitting a photon at time ¢+ 7, assuming that the system
has emitted a photon at an earlier time ¢. At the steady state (ss), the reset matrix
formalism yields

(2) o TI“{I(I‘d, T)ﬁrcsct}
greset(T) - 2 ’ (41)
(I(ra,0)),,

with ry the detection direction in the far-field region. The denominator on the
right-hand side of Eq. (4.1) is the steady-state expectation value of the Schrodinger-
picture intensity operator I(rq,0) [Eq. (2.17)], whereas the numerator represents
the expectation value of the Heisenberg-picture operator I (rgq,7) for an initial state
Dreset- Importantly, preset is referred to as reset density matriz and describes the
state of the system right after emitting a photon, provided that the system was in
the steady state before the emission.

Further, within the conditional-probability approach, the emitters are again
described as two-level systems, whose dynamics is described by the Markovian
master equation derived in Sections 3.1.4 and 3.1.5. The correlation of ZPL photons
can thus be obtained using the electric field operator in Eq. (3.81), as described
in Section 3.3.1. Crucially, the conditional-probability approach assumes that
the emission of Stokes-shifted photons is an incoherent process and obtains the
correlation of Stokes-shifted photons by subtracting the influence of quantum
coherence from the ZPL correlation. This quantum coherence is encoded in the
off-diagonal elements of the density matrices in the uncoupled (localized) basis
{lere2), le1g2) , |g1€2) ,|g192)}, which contain the coherence between the emitters
(Appendix A), as well as in the off-diagonal elements of the intensity operator in
the same basis, which contain the first-order coherence of the electric field (as we
discuss below).

On the one hand, by neglecting the off-diagonal elements of the steady-state
density matrix in the uncoupled basis {|ejes),|e1g2),|g1€2) ,|9192)}, the steady-
state density matrix results in

Pss = Pee |e162) (€162|+Deg |€192) (€192] +Pye |g1€2) (g1ea]+Dgg |9192) (9192], (4.2)

where the bar symbol in p, is introduced to indicate the use of the conditional-
probability approach, and p., = (a1b2|pss|arbe) (with a,b € {e, g}) is the steady-
state population of |a1be). Further, to derive the reset density matrix we take into
account that the doubly-excited state |ejes) can decay either to |ejg2) or to |e1gs),
which would reset the state to pee |€192) (€1g2| or t0 pee |g1€2) (g1€2], Tespectively.
Similarly, both |e;g2) and |g1ea) can decay to the ground state |g1g2), reseting the
state to peg |g192) (9192 and pge |g192) (g192], respectively. As a result, the reset

174



4.1. Stokes-shifted photons from solid-state quantum emitters

density matrix becomes [199]:

Dee |€192) (€192] + Dec [91€2) (g1€2] + Peg 19192) (9192] + Pye 19192) (9192
2Pee + Deg + Dyge

preaet -

(4.3)

On the other hand, the intensity operator I(rq,7) [Eq. (2.17)] can be obtained

from the transverse electric field operators derived in Section 3.3.1. Specifically,

by considering that the two emitters have identical transition dipole moments
(n1 = p2), we obtain

2
i_%PL,] (ra,7) Z Eﬁj%PL,l(rdy T)

.Mm
Dj

2 (- +
Igpr(ra,7) = B Yoy (va, 7V E oy (ra,7) =

i (— +
= E(L,%PLJ( )E(L %PL 1( d>T)

A (— +
+ E(L,%PL,l(rda T)E(L,%PLQ(rdv 7)

where ET%PL(rd, 7) is the positive-frequency scalar electric field operator of light
scattered from the two emitters into the ZPL [Eq. (3.83)]. We have decomposed
this operator in Eq. (4.4) as Ei+%PL(rd,T) = E(E:%PLJ(I‘d,T) + E(f%PL o(ra, 7),
with

EA‘(j,_%PL,l(rda 7) = &zpL01(T), (4.5a)
Eﬁ%PL,Q(rda T) = &zpLba(T)e P (4.5b)

Here, &zp1, is the complex coefficient in Eq. (3.84) and ¢zpr, = wopeq - (r1 — ra)n/c
is the relative phase between the two lowering operators due to the two different
positions r; and ry of the emitters, with e = rg/|ry| the unit vector along the
detection direction, n the refractive index of the medium in which the emitters
are embedded and c the speed of light in vacuum. Additionally, we note that the
influence of the retardation time |r4|n/c on the lowering and raising operators of
the emitter on the right-hand sides of Egs. (4.5a)—(4.5b) has been ignored, as it
does not affect the result of the intensity correlation (Section 3.3.1). Importantly,
the terms

A A+ (- £ (+
Ei% PL 1(rdaT)E(l,%PL,1(rd’T) + E(L,%PLQ(rdvT)E(L,%PL,Q(rd’T) = |&zpL]?
(4.6)
x |2 ]erez) (ere2] (1) + [e192) (e1g2| (T) + |gre2) (g1€2] (T)

in Eq. (4.4) describe the intensity of light scattered independently from each emitter,
as discussed in Section 2.1.3. The right-hand side of this equation indicates that
these non-interfering light intensities depend only on operators that are diagonal
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Chapter 4. Intensity correlation of Stokes-shifted photons from two QEs

in the uncoupled basis. In contrast, the terms
(- £ (+ i(— i+
Ei,%PL,l(rd’ T>Eﬁ_,%PL}2(rdv )+ Ei,%PLQ(rdv T)ES_,%PL,I(rda 7) = |&zpL]?
_ _ (4.7)
x| le1g2) (grea| (1) + |gre2) (e192| (T)e™" 7"

depend only on off-diagonal operators (in the uncoupled basis) and describe the
interference of light scattered from the two emitters. Thus, Eq. (4.7) is associated
with the degree of first-order coherence (Sections 2.1.3 and 2.1.4). Crucially, these
terms are neglected within the conditional-probability approach. As a result, the
Stokes-shifted intensity operator is identified as

Tse(7) = |€zp ] |2 eres) (eres] (7) + lerga) (erga] (7) + |grea) (grea] (T)] (4.8)

within the conditional-probability approach. In the steady state, the expectation
value of this operator becomes

<jSt(O)>ss = |£ZPL|2 |:2pee +peg + pge:| . (49)
Finally, by substituting Egs. (4.3), (4.8) and (4.9) into Eq. (4.1), we obtain

that the Stokes-shifted correlation within the conditional-probability approach is
given by

_(2) o Dee <€192| jSt(T) |€192> Dee <g162| I:St(T) |91€2>
gSt (T) - 2 + =
<ISt (0)>gq [2pee + DPeg +pge] <ISt (0)>99 [2pee + Peg +pge]
Peg (9192] Ist(7) |9192) 4 Poe {9192] Isi(7) [9192)
<jSt(O)>SS [2pee + Peg + pge] <jSt(0)>SS [2pee + Peg + pge}

(4.10)

This expression has an intuitive statistical interpretation, associated with the
contribution of each allowed one-photon transition (in the uncoupled basis) to
increase the probability of having coincidences in the Hanbury-Brown Twiss
interferometer used to measure the intensity correlation. More specifically, the
expression on the right-hand side of Eq. (4.10) is decomposed in four terms with
equal denominator and whose numerators are given by products of steady-state
populations and diagonal elements of the intensity operator. In the numerator
of each of these terms, the steady-state population is associated with the initial
state of a one-photon transition, whereas the diagonal element of the intensity
operator is associated with the final state of that same transition, as schematically
represented in Fig. 4.2. For example, pee (e192| Isi () |e1g2) corresponds to the
contribution to the numerator of the intensity correlation from the one-photon
transition |ejes) — |e1g2).

In the next section, we develop a more complete model to describe the correlation
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leres)
Pee(e192|Isi(T)|e1g2) pee(gie2|Isi(T)|g1€2)
o )
‘ 192> |91€2>
Peg(9192|I5¢(7)|9192) Pge(9192|L5:(7)|9192)

\9192)

Figure 4.2: Schematic representation of the one-photon transitions and their contribution to the

numerator of the Stokes-shifted correlation §(2)(7—) within the conditional-probability approach.
The one-photon transition |a1b2) — |c1dz2) (with a,b,c,d € {e, g}) contributes to the numerator of

gé?(T) as pap {c1da|Is (T)|c1da), with pay, = (a1b2|pss|a1be) the steady-state population of |a1bs)

and (c1 d2|f3t (7)|c1d2) a diagonal element of the operator Isy(7) that describes the Stokes-shifted
intensity within the conditional-probability approach [Eq. (4.8)].

of Stokes-shifted photons, which incorporates the influence of quantum coherence
between the state of the two emitters, as well as the coherence between the electric
field scattered from the two emitters. When the effects of quantum coherence are
discarded again within this more complete model, the results of the conditional-
probability approach can be retrieved.

4.2 Model of the correlation of Stokes-shifted
photons

We present in this section a model to describe the correlation of Stokes-shifted
photons emitted from two quantum emitters, as well as the correlation of ZPL
photons, which accounts for the influence of quantum coherence.

4.2.1 Markovian master equation

We consider two almost identical quantum emitters, with pure electronic ground
and excited states denoted again as |g;) and |e;). The two emitters have equal
spontaneous decay rate 7, identical transition dipole moments (@1 = p2).
and slightly different electronic transition frequencies w1 and we 2, with § =
We1 — We,2 K We,1,We,2. Crucially, we consider an additional state |v;) for each
emitter, which corresponds to a 1-phonon level in the electronic ground state, with
vibrational mode of frequency w, and decay rate ~,, see Fig. 4.3a.
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(a)

|6162

0
le1) l:ff::::::::.'::::.'::.''._ lea)

1 ’617]2 |1}162>

apwo| |(1 — apw)y apwo| |(1 — apw)yo ’6192 i§—|9162>
’Ul>—v“— y J 'v'—’,U2>
- - [W - [-L |vva> )y
) = 92) [v19). g1v2)
|9192>

Figure 4.3: Schematic representation of the energy levels of the two quantum emitters in the
absence of interaction and within the model proposed to address the correlation of Stokes-shifted
photons. Blue arrows correspond to ZPL radiative transitions, red arrows to radiative Stokes-
shifted transitions, and green arrows to transitions from a l-phonon state to the pure electronic
ground state. The states are represented in (a) in the reduced Hilbert space of each emitter, and
in (b) in the total Hilbert space of the two emitters. § = we,1 — we,2 is the frequency detuning
between the electronic transition frequencies we,1 and we,2 of the two emitters. w, and 7, are
the frequency and decay rate of the vibrational/phononic mode analyzed. apwo is the decay
rate of the ZPL transition of the emitter j, with o the total decay rate of the electronic excited
state |eg) and apw the combined Debye-Waller/Frank-Condon factor. (1 — apw)yo is the decay
rate of the Stokes-shifted transition within this model.

The unperturbed Hamiltonian of the system can be written as

HO—hZ[

Further, the coherent dipole-dipole interaction between the two emitters is described
again by the Hamiltonian

2wy — We,j
) (es] = lgz) (g5) + fj [vg) (v5l]- (4.11)

Hine = Wow (6165 + 6161), (4.12)

with Vpw the coupling strength in Eq. (3.56a), which includes the influence of
the combined Debye-Waller/Franck-Condon factor apw. Notably, this interaction
Hamiltonian considers that the emitters couple only through the purely electronic
states. The coupling through the 1-phonon levels is not taken into account because
it does not affect the dynamics of the emitters nor their light emission, as we
consider short-lived vibrations with w,,, Yo > fyo, VDW Further the Hamiltonian
describing the laser excitation is again Hy = -3 Z] 1(Q* Sy + Q;6 e,
with wy, the laser frequency and €2; the Rabi frequency of emltter J [Eqs. (1.218)
and (3.66)]. The total Hamiltonian thus becomes

H=Hy+ Hp + Hy,. (4.13)

We next move to the rotating frame at the laser frequency wy, by using the
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4.2. Model of the correlation of Stokes-shifted photons

unitary transformation
A LWL
U1 = exp it ( lej) (es] — lgg) {31 = o3) (w1 ) | (4.14)

The total Hamiltonian H in this rotating frame is calculated following the general
procedure described in Appendix C. We obtain

2
2w, — A
Z{ (lej) ej‘_|gj><9j|)+#|vj vjl]

[ V)

Z O' 1, i65) —|—Hm'57

Jj=1

M\D?‘

(4.15)
with A; = w. j — wr, the detuning of the electronic transition frequency of emitter
j with respect to the laser frequency.

Furthermore, the dynamics of the density matrix describing the state of the
two emitters is governed by the Markovian master equation

d 2 3 aDWY0 (1 —apw)o
4= 21+ Z( Dlo,) + L0 0p fe)
i =1 (4.16)
TDW s A i A
+ 3 5 Dla 0] + 0l (ol

k]

where 7y, is the total decay rate from the excited state |e;) and also from the state
lea) (Section 3.1.5). Notably, as the combined Debye-Waller /Franck-Condon factor
apw corresponds to the fraction of photons emitted into the ZPL line, we have
fixed apw~o as the decay rate into the ZPL [first dissipator in Eq. (4.16)] and
(1 — apw)7o as the decay rate into the 1-phonon level [second dissipator]. The last
dissipator in Eq. (4.16) accounts for the relaxation from the vibrational state |v;)
to |g;). Additionally, 4pw is again the crossed-decay rate including the effect of
apw [Eq. (3.56b)].

4.2.2 Calculation of the intensity correlation

The calculation of the intensity correlation is performed through the general
expression in Eq. (2.60), instead of the reset matrix formalism [Eq. (4.1)]. As
the emitters have identical transition dipole moments (p1 = p2), the intensity
correlation can be calculated using scalar electric field operators, as discussed in
Section 3.3.1. Specifically, the intensity correlation can thus be obtained as

(B (xa, 0) B ) (rg, 1) EC) (g, 1) BT (r4,0))
2

9P(7) = s (4.17)

This equation can be used to compute the correlation of ZPL photons (y = ZPL), as
well as the Stokes-shifted correlation (x = St). In experiments, these two situations
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7 Hanbury-Brown Twiss
° 1 filter interferometer

provapTey

/|
\,

o O O\ [© O

LY .

r\@/‘

D)

o

wr, ® ZPL photons
Stokes-shifted photons

Figure 4.4: Schematic representation of light emitted from two interacting emitters, the filtering
of this light and the measurement of the intensity correlation g§<2) (7). A laser beam at frequency
wr, (in blue) excites resonantly the pure electronic excited state of the quantum emitters, which
then can emit a photon at the same frequency (blue circles) or a Stokes-shifted photon (red
circles). A filter selects either the ZPL (x = ZPL) or Stokes-shifted (x = St) light (grey circles
represent these filtered photons).

correspond to the use of different optical filters before light passes through the beam
splitter in the Hanbury-Brown Twiss interferometer, as schematically represented
in Fig. 4.4.

On the one hand, the correlation of ZPL photons can be obtained by using the
positive-frequency electric field operator

B (ka7 = Ezpr- ( l92) {e] (7 — [raln/c) + €977 |go) {ea] (7 — rd|n/c>),

(4.18)
which describes the radiative transitions from the pure electronic states
lej) to the pure electronic ground states |g;) (Section 3.3.1), with {zpr, =
|€ yzri(ra)lexp(—iwoeq - rin/c) and zpr = woeq - (r1 —r2)n/c. Here, eq = rq/[ra|
is the unit vector along the direction of detection, and 8”%pL (rq) is the vector
amplitude of the positive-frequency electric field [see Eq. (1.141)] radiated from a
classical point dipole u#l [Eq. (3.55)] and evaluated at position r4 in the far-field
region. Additionally, we recall that SMZPL (ry) = &€ pzPL (rq), as both transition
dipole moments are identical. The calculation of the 7PL correlation within this
model yields the same results as that obtained in Chapter 3 with the two-level
description of the emitters.

On the other hand, the correlation of Stokes-shifted photons can be obtained
by using instead the positive-frequency electric field operator

B (ra, ) = Esie < [v1) (ea] (7 — [raln/c) + €5 [va) {ea| (7 — Irdn/6)>’ (4.19)
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4.3. Influence of quantum coherence on the Stokes-shifted correlation

describing the radiative transitions from the pure electronic states |e;) to the
vibrational /phononic states |v;). The complex coefficient {s; and the phase gy
can be obtained following the same procedure used to derive £zpr, and @zpr, in
Section 3.3.1, which yields

€st = exp[—i(wo — wy)eq - r1n/c]|€ 45t (ra), (4.20a)
st = (wo — wy)eq - (r1 —ra2)n/c. (4.20b)

Here, £,5:(rq) is again the vector amplitude of the classical electric field radiated
by a point dipole in the far-field region [Eq. (1.141)], but in this case the magnitude
of the dipole moment is given by

3
w&jn

(1 — OéDw)’)/Q?)?TthC?’
5] = \/ : (4.21)

We emphasize that the specific values of the coefficients £zp;, and &gy do not
affect the intensity correlations géQFEL(T) and géi)(T), as their contribution to the

numerator in Eq. (4.17) cancel out with their contribution to the denominator.

4.3 Influence of quantum coherence on the
Stokes-shifted correlation

In this section, we first show that the analytical expression of the Stokes-shifted
correlation provided by the model presented in Section 4.2 can be decomposed
into contributions that are dependent or independent of quantum coherence. This
decomposition allows us to characterize the influence of quantum coherence in the
intensity correlation. We show next that the contributions that are influenced by
quantum coherence can play a significant role in the correlation of Stokes-shifted
photons emitted from two interacting emitters, as well as in the case in which the
emitters do not interact.

4.3.1 Decomposition of the Stokes-shifted correlation

We focus in this section on the case in which light is detected in the direction
ry perpendicular to the plane in which the transition dipole moments and the
molecules are contained. As a result, ps; = 0, which facilitates the analytical
expressions of the contributions in which the Stokes-shifted correlation gg) (1) is
decomposed in this section. These expressions can be generalized to arbitrary
values of pgs.

We first define the positive-frequency Stokes-shifted electric field operator at
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wst =0 as

+
ES_ S)t( ) = Ei+s)t(rd77')

~ e < j01) {e1] (7—[ealn/c)+luz) (ea <r|rd|n/c>>.

(4.22)
By substituting this electric field operator into the expression of the intensity
correlation in Eq. (4.17), we obtain

pst=0

9 (7) = (4.23)

Additionally, according to Eq. (2.17), the operator associated with the intensity of
Stokes-shifted light can be introduced as

Ise(r) = BT (1) BT, ()

= |€sel? < lex) (v1| (7) + |ea) (va] (7-)) <U1> (e] (7) + |vs) (eal (T))' (4.24)

We substitute now this intensity operator into Eq. (4.23), yielding that the Stokes-
shifted correlation can be rewritten as

G& (r)
g (r) = = (4.25)
(Ist(rq, 0))
where the numerator is given by
St( ) < J_S( ) St( ) J_,St( )>SS (4.26)

= [€se|? ((lex) (vi| + le2) (va]) Ise (7) (Jv1) (ea| + [v2) (e2])),,

and the steady-state expectation value of the Stokes-shifted intensity in the
denominator is

<fSt(0)> = |§St|2 (2pee +peg + DPge +pe'u +pve + 2Repev,ve) . (427)

Here, pap = (a1ba|pss|aibe) is the population of the state |a;bs) of the uncoupled
(localized) basis, with a,b € {e,g,v}, and pey ve = (€1V2|Pss|v1€2) is the steady-
state coherence between |ejve) and |v1ez). This coherence vanishes as long as the
emitters couple only through the ZPL, as we consider in this chapter.

We next use the cyclic property of the trace to rewrite G(SQt) (1) [the numerator
in Eq. (4.25)] as a function of matrix elements of the steady-state density matrix
pss and of the intensity operator Is(7). To this end, we choose the uncoupled
basis because the first-order coherence between the light scattered by the two
emitters is associated with the off-diagonal elements of the intensity operator in

182



4.3. Influence of quantum coherence on the Stokes-shifted correlation

this basis (Section 4.1.2). Additionally, as we consider that the emitters couple
only through the ZPL, the emission of a Stokes-shifted photon projects the system
into a localized state of the uncoupled basis and the coherence between the two
emitters can be attributed to the off-diagonal elements of the density matrix in
this basis [199]. In this way, we obtain

GO (1) /|€se]* = pee (viea] Tse(7) [v1€2) + Pee (e10a] Ts (7) [e1v2)
+ Deg (v192] Tsi(7) [v192) + Pge (102 It (7) |9102)
+ Pev (0102 Tse () [v102) + Pue (0102 Ise(7) [v102)

+ ((viea| Ise(7) lerva) + (e1va] It (7) [v1€2))pee
+ Peg,ee[(vi€2] Ise(7) [v1g2) +
+ Pge,cel () lg1v2) +
+ Pee,eql(V192] fSt(T) le1vz)
[ (

+ Pee.gel{g1val Isi () lerva)

e102| It (T) [v1g2)
7) |g1v2)
)

61’02| fSt(
vlgz\ fSt(T) |U162
(

( ]
<v162‘ ISt ]
( + ]
( + (g1va| Ise(7) [vie2)] (4.28)

+ (pee,ve + pee,ev U11)2| ISt T

)| lurea) + (V10| Ise(7) [erva)]
pve,ee + pe'[},ee)[ ‘

( (
<31’U2|ISt<T V102 <U1€2|fSt(7') |v1v2)]
Peg,ev T Peg,ve <U1U2|ISt(T [v1g2
(v1v2] ISt(
( (
( (

7) |g1v2

{
{
{
{
)
)
)
Pge,ev + Pge,ve )
)

- — —

+(
(
(
(

_|_
+
+ Pev,eg +pve7eq U192|ISt T |’01’U2
+

(pev,ge + Poe,ge 91U2| ISt T) |U1v2>

+ Peg.ge (9102] It (7) [V192) + pge.eq (v192] I (7) [g102)
+ (pev,ve + Pue,ev <'U1'U2| ISt(T) |'Ul'U2> )

)
)
)
)
(
)
where papca = (a1ba]pss|cidz), with a,b,c,d € {e,g,v}. This expression can be
decomposed into three different contributions

Gy (1) = G (1) + GGl () + GG, (7). (4.29)
so that the Stokes-shifted correlation becomes decomposed as well into three

contributions @ @
G(2)(T) Geoni(1) G (1)
2 coh,I coh,
g5y (1) = —d g oy e (4.30)
(Ise(0)) (Ise(0))  (Is4(0))
On the one hand, G,(f)(T) involves the terms on the right-hand side of Eq. (4.28)
that involve diagonal elements of p,s and of st () in the uncoupled basis. Thus,

this contribution is influenced neither by the quantum coherence between the
emitters nor by the first-order coherence of the light they scatter. Specifically,
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Gf)(T) is given by

G (7)/I€st]* = Pee (vr€a] It (7) [v1€2) + Dee (102] Tst (T) [e1v2)
+ Deg <U192\ fSt(T) \U192> + Pge <91U2| jSt(T) \glv2> (431)
+ Pew (0102 Ise (T) [0102) + Poe (V102 Ise (T) [0102) -

The six terms on the right-hand side of this expression are products of steady-state
populations pap and diagonal elements (¢;ds| Is¢(7) |e1ds) of the intensity operator
Is¢(7). Thus, G((f)(T) has the same intuitive interpretation as the Stokes-shifted
correlation obtained using the conditional-probability approach (Section 4.1.2),
with each of these six terms on the right-hand side of Eq. (4.31) being related to one
of the Stokes-shifted transitions in Fig. 4.3b. For example, pee (v1e2] jSt(T) lviea)
accounts for the contribution of the one-photon transition |ejeq) — |viea) to
increasing the Stokes-shifted correlation. Even more, taking into account that
terms in the last line of Eq. (4.31) are negligible in comparison to the other
four terms (because the steady-state populations of the 1-phonon levels are much
smaller than the steady-state populations of the pure electronic states), and that
the 1-phonon states decay very fast to the pure ground state, we can approximate

G512)(7—)/|£St|4 ~ Pee (g162] Ise(T) [gr€2) + pee (€192 Ise(T) |€192)

A A (4.32)
+ Deg (9192] Ise (T) |9192) + Pge (9192 Ist(T) |g192) -

The right-hand side of this expression corresponds indeed to the numerator of
the Stokes-shifted correlation gg)(r) obtained with the conditional-probability
approach [Eq. (4.10)].

Moreover, the second term on the right-hand side of the correlation numerator
in Eq. (4.29) involves diagonal elements of the density matrix (populations) and

off-diagonal elements of the operator Ig; (7). Specifically,
G 1(1)/1€st]* = pee((vrea| Ise() lerva) + (e1va| Ise(7) [vrea)). (4.33)

Interestingly, Ggi)hl(T) can be interpreted as due to the quantum interference

between the emission paths of the two quantum emitters, which is usually referred
to as Hanbury-Brown Tuwiss effect [164, 206, 207]. Last, Gg?ﬂ’p(ﬂ is given by the
rest of terms in Eq. (4.28), which include off-diagonal elements of the steady-state
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density matrix. More specifically, a®?

coh,p(T) is defined as

<€1U2| fSt (T) |71192>]
)]
)]

, )
G ()] 1€se|! = pegrecl(viea] Tse(7) [v1g2

)+
+ pecel(viea] It (T) |g1v2) + (e1va| Ise(7) |g1v2
+ pee.cgl (V192 Tse(7) [e1va) + (v1ga| s (7) [vre2

( (1) lervz) + (1)

+pee,ge[glv2|js T ‘61112

[
[

91U2| fSt T |’U1€2>]

+ (pee,'ue + Pee,ev Ulv2| ISt T

Poerce + Pev.ce)(€1v2] Isy (T) [v102 vieg| I (7) [v1v2)]

Peg,ev + Peg,ve

(

(

(

) [vrea) + (vr1va| Iy (7) [e1va)]
) (

)

)

)

)+
7) |v1g2)
)
)

(
+( (
( (
(Pge,ev + Pgewe) (V1V2] Isi(7) |g1v2
( (
(

v19a| I (7) [v102

(
(
+ 12| s
+ (
+ (
+ (

(pev,ge + Pue,ge glv2| ISt T) |U1U2>

+ peg.ge (9102] Ise(T) [U192) + Pye.eq (V192 Ise(T) |g102)

)
)
)
)
Pevieg + Pue,eg)
)
(
+ (Pev,ve + Pve,ev) (V1v2] ISt(T) |v1va) .

(4.34)

The contributions G’S)il (1) and G2

coh,p(T) thus account for the influence of quantum

coherence to the correlation of Stokes-shifted photons, in contrast to fo) (7).
Therefore, if quantum coherence is neglected (as done within the conditional-

probability approach in Section 4.1.2), GS){I (1) = G((f)h »(7) =0 and the Stokes-
shifted correlation reduces to

@) P (r)
D (1) = —d 4.35
S = 0) )

To gain further insights into the three contributions in which we have

decomposed G(Si)(T), we evaluate them at delay 7 = 0. On the one hand, we

find that all the elements (a1bs| Is(7) |e1ds) in Eq. (4.34) vanish at 7 = 0, which
results in

(0)=o0. (4.36)

At different delay times, Gcoh »(T) can become nonzero and comparable to G((f)(T),

as we show below. On the other hand, we find that G((f)(()) and Ggi)}l’I(O) are
identical and given by

G2 (0)/I€se]* = G2} 1(0)/[€se]* = 2pee. (4.37)

Thus, G2 (0)/|és:|* is equal to 4pee.
We compare in the next section the behaviour of the complete Stokes-
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Chapter 4. Intensity correlation of Stokes-shifted photons from two QEs

shifted correlation gé%)(T), including the influence of quantum coherence, and

the approximate Stokes-shifted correlation gé%)d (1), which neglects the influence of
quantum coherence, of photons emitted from two quantum emitters at different

separation distances.

4.3.2 Two emitters separated by short distances

We first consider two DBATT molecules separated by a short distance along the -
axis (r12 = 27 nm) and in a H-configuration, so that the transition dipole moments
of the two molecules are oriented along the perpendicular z-axis. Additionally,
we consider that the excitation laser impinges in the normal direction to the xz-
plane in which the transition dipole moments and the molecules are contained, as
schematically represented in Fig. 4.5a. Thus, we fix that the laser wavevector kj,
is aligned along the y-axis, so that ex, = kr/|kz| = e,. We also consider that
light is detected in the normal direction to this plane, which yields ¢g; = 0. The
values of Vphw, 4pw, and 0 are obtained (with an uncertainty of approximately
2 %) through independent experimental measurements of the excitation spectra at
different values of laser intensity and they are specified in the second row of Table
4.1.

We plot in Fig. 4.5b the correlation of Stokes-shifted photons for this molecular
pair when the laser is resonantly tuned to the two-photon resonance (wy; = wp)
and in Fig. 4.5d when the laser is slightly detuned from the two-photon resonance
(wr, = wo — 0.9379), respectively. For the simulations in these two figures we
consider the DBATT vibrational mode fiw, = 31.86 meV [208], and 1/, = 10 ps
based on experiments in Ref. [209]. Additionally, the values of the Rabi frequencies
2; are estimated from the values of the laser intensity used in the experiment
(I, = 60 W/cm®) and the experimental saturation intensity (Isa; = 14 W/cm?),
using Eq. (1.237).

Figure 4.5b shows that the simulated géi)(T) [Eq. (4.30), which includes the
influence of quantum coherence] (red line) exhibits a very good agreement with the
experimental measurements (grey line), except for the emergence of an extremely
narrow peak at 7 = 0 in the simulation. This narrow peak cannot be resolved
in the experiments due to the insufficient time resolution of the detectors, as we

discuss in Section 4.3.3. Notably, the simulation obtained with gé?d(r) [Eq. (4.35),

Figure /gl | r2 nm] | Vow /v | i/ | 9/70 | /70 | ex,
4.5, 4.6, 4.9a e, 27e, 2.98 0.29 5 1.5 ey
4.7, 4.9b e, 400e,, —0.04 —1073 5 1.5 e,
4.8 e, 19.8e, —17 0.3 14 3.15 ey

Table 4.1: Molecular and laser parameters used in the simulations in Figs. 4.5, 4.6, and 4.9a
(second row), in Figs. 4.7 and 4.9b (third row), and in Fig. 4.8 (fourth row). In all the cases
Y0/(27) = 21.5 MHz, apw = 0.3, fw, = 31.86 meV, 1/, = 10 ps.
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Figure 4.5: Impact of quantum coherence on the correlation of Stokes-shifted photons emitted
from two interacting DBATT molecules. (a) Schematic representation of the molecular pair
analyzed in (b), (c), and (d). The molecules are in a H-configuration and separated by r12 = 27
nm. The laser excitation impinges in the normal direction to the zz-plane in which the molecules
are located, and light is detected also in the normal direction to this plane. The laser is tuned to
the two-photon resonance (wy, = wp) in (b) and (c¢) and slightly detuned from the two-photon
resonance in (d), where wy, = wg — 0.9370. The rest of the parameters are detailed in the second
row of Table 4.1. [(b),(d)] Dependence on the time delay 7 of the simulated Stokes-shifted

correlation gé?(T) (red lines), which is obtained with the complete model [Eq. (4.30)] and
includes the influence of quantum coherence, of the simulated Stokes-shifted correlation gé%) a(™)

(green lines), which is obtained with the approximation that removes the influence of quantum
coherence [Eq. (4.35)], and of the experimental Stokes-shifted correlation (grey lines). The
experiments were conducted by the Bordeaux Nanophotonics Group, led by Brahim Lounis, at
the Institut d’Optique Graduate School (CNRS). (c) Dependence on the time delay 7 of the

different contributions in which gg)(f) (red line) can be decomposed according to Eq. (4.30).

Green line corresponds to géi)d(’r) = Gf)(r)/ <f5t(0)>2, orange line to Ggi] 1)/ <fSt(O))2, and

dashed purple line to Ggil p(T)/ (Ist (0))2.

which neglects the influence of quantum coherence] (green line) exhibits appreciable
differences with the experimental measurements. Specifically, we observe that when
quantum coherence is neglected (i) the amplitude and period of the oscillations
are notably modified, and (ii) a broad peak is found at delay 7 = 0, whereas the
experiments show a dip at 7 = 0.

We next analyze the behaviour of the three contributions in which we have
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Chapter 4. Intensity correlation of Stokes-shifted photons from two QEs

decomposed the Stokes-shifted correlation in Eq. (4.30) to better characterize the

origin of the different behaviour exhibited by the exact gé%) (7) and the approximate

gé?d (1) simulations of the Stokes-shifted correlation in Fig. 4.5b. To this end,
we plot in Fig. 4.5¢ Géi)hI(T)/ (fSt(0)>2 (orange line), G,(f)(T)/ <fst(0)>2 = gg?d(T)
(green line), and Gg%hp(r)/ (fSt(0)>2 (dashed purple line) as a function of the
time delay 7. We find that G2} (1)/ (Is:(0))” and G (7)/ (Is,(0))°, which

coh,p
are the contributions affected by quantum coherence, vanish at large delay times.

Additionally, Gii{lyl(T) / (st (0))2 is only non-zero at very short delay times, being
responsible of the extremely narrow peak exhibited by gg)(r) at 7 = 0. On the

other hand, Gf:iL’p(T)/ (fSt(O)>2 is zero at 7 = 0, but it becomes important in the
timescale of the lifetime of the electronic excited states (nanoseconds) and can
take either positive and negative values. Thus, accounting for the influence of the
quantum coherence encoded in Ggizl o(7)/ <f3t(0)>2 is crucial to capture well the
experimental measurements in Fig. 4.5D.

Moreover, the results in Fig. 4.5d, which are obtained for a laser slightly
detuned from the two-photon resonance (wr, = wg — 0.937), shows again that the
experimental Stokes-shifted correlation is better reproduced by the simulation of

gé%) (7) obtained with the complete model. The only significant difference between

gg) (1) and the experiments is again the extremely narrow peak obtained in the
simulation at 7 = 0, which is not observed in the experiments due to the insufficient
temporal resolution of the detectors. Further, when the influence of quantum
coherence is neglected, two bumps emerge at 7 ~ £10 ns (see the green arrows).
These bumps are clearly not measured in experiments and are not exhibited by
the complete simulation including quantum coherence, which highlights again the
importance of quantum coherence in the Stokes-shifted correlation.

4.3.3 Influence of the time resolution of the detectors

We discuss in this section the influence of the detector resolution on the Stokes-
shifted correlation and find that the main effect is that it prevents the experimental
observation of the narrow peaks exhibited by the simulated correlations gé%)(T) at
7 = 0 in Figs. 4.5b and 4.5d. A precise description of the influence of the two
detectors in the Hanbury-Brown Twiss interferometer is complex, as it involves
the independent convolution of the intensity operators associated with the light
arriving at each detector. This difficulty is analogous to that encountered in the
calculation of the frequency-resolved intensity correlation (FRIC), where integrated

electric field operators E(f;l (w;,T;t) [Eq. (2.70)] are required to account for the
effect of the optical filters (see further discussion in Sections 2.4.1 and 2.4.2). Thus,
to asses the influence of the detectors resolution on the intensity correlation, we
avoid this complication by adopting a simpler, effective approach that we believe
incorporates the main effect of the convolution.

To check in a simple way that the detector resolution only limits the observation
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Figure 4.6: Influence of the detector resolution on the Stokes-shifted correlation. g( )(T) (solid red
line) is the simulated correlation obtained with the complete model, which 1ncludes the influence of
(2)

St,d
obtained by removing the influence of quantum coherence and without considering the convolution.

quantum coherence, while g¢;’ (7) (solid dark green line) is the approximate simulated correlation

C[géi)(r)] (dashed orange line) and C’[gst d(7')] (dashed light green line) are the corresponding
convolved Stokes-shifted correlation, obtained according to Eq. (4.39) with a time resolution of
the detector Aty = 400 ps. We consider in (a) the same molecular and laser parameters as in

Fig. 4.5b, while we consider in (b) the same parameters as in Fig. 4.5d. These parameters are
detailed in the second row of Table 4.1.

of the narrow peaks around 7 = 0, we directly calculate the convolution of the
resulting intensity correlation ¢(®)(7) with a Gaussian function h(t) having a full-
width at half maximum (FWHM) of v/2At4, where Aty = 400 ps is the detector
resolution. The factor /2 accounts for the combined effect of using two detectors
in the Hanbury-Brown Twiss interferometer, since the convolution of two Gaussian
functions yields another Gaussian with a FWHM scaled by /2. As a result, the
function h(t) is given by

h(t) = exp{ (“ﬁf) ] , (4.38)

and the convolution is calculated as
9@ (r / h(t)g? (r — t)dt. (4.39)

We plot in Figs. 4.6a (using the same laser and molecular parameters as in
Fig. 4.5b) and 4.6b (same parameters as in Fig. 4.5d) the convolved Stokes-shifted
correlation C [gé%)( )] (dashed orange lines, including the influence of quantum
coherence) and C [géi)d( )] (dashed light green lines, neglecting the influence of

quantum coherence). For reference, we also plot the correlations gg)(T) (solid

red lines) and géi?d(T) (solid green lines) that do not consider the effect of the
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convolution, as well as the experimental results (grey lines). Figure 4.6 shows
that the only significant impact of the convolution is the disappearance of the
narrow peaks predicted at 7 = 0 when quantum coherence is taken into account.
The linewidth of these peaks is comparable to the vibrational lifetime (tens of
picoseconds) and, thus, much narrower than the detector resolution (400 ps).
Notably, the bumps exhibited by gé%?d(r) at 7 &~ +10 ns in Fig. 4.5d (which
are not found in the experiments nor in the simulations with the complete model
including quantum coherence) are also exhibited by C [gé?d(T)], see Fig. 4.6b. Thus,
the absence of these bumps in the experimental data is not due to the detector
resolution, strongly supporting that quantum coherence plays a significant role in
the emission of Stokes-shifted photons.

4.3.4 Two emitters separated by large distances

We analyze in this section the correlation of Stokes-shifted photons emitted from
two distant emitters and find that quantum coherence again plays an important role.
This analysis is motivated by the discrepancy between the theoretical predictions
and experimental measurements of the intensity correlation of light emitted from
ensembles of uncorrelated emitters at delay 7 = 0. Specifically, theoretical
descriptions of light emission from N resonantly driven uncorrelated two-level
quantum emitters yield g (7 = 0) = 2(1 — 1/N) [210-212], as long as the emitters
are almost identical and equally pumped. Thus, 9(2)(7' = 0) = 1 is expected in
the particular case of N = 2 uncorrelated emitters. However, as far as we know,
available experiments up to date have reported g(Z)(T = 0) ~ 0.5 independently of
the particular implementation of the two-level quantum emitters [50, 51, 213, 214].
To shed light into this discrepancy, we consider a situation where rio = 400
nm (which yields a negligible dipole-dipole coupling). Additionally, we consider
again that the laser excitation impinges perpendicularly to the plane in which
the transition dipole moments and the molecules are contained, and that light is
detected also in this normal direction, as sketched in Fig. 4.7a. The detuning
between the transition frequencies of the two emitters is 0 = we 1 — we 2 = 579 and
the laser frequency is fixed at wy, = wo = (We,1 + We,2)/2. The rest of parameters
are specified in the third row of Table 4.1.

We plot in Figs. 4.7b and 4.7c the simulation of géi)(T) obtained with the
complete model (red lines, including the influence of quantum coherence) and

with the approximate expression gé?d (1) (green lines, neglecting the influence of

quantum coherence). The complete model yields gé%) (t =0) =1, with a fast decay
in the time scale of the vibrational lifetime (tens of picoseconds) to 0.5 (i.e., to the
value measured in available experiments [50, 51, 213, 214]). To better characterize
the origin of this fast decay, we plot in Fig. 4.7d the behaviour of each of the
contributions in which we have decomposed gé? (1) in Eq. (4.30). We obtain
that GE(Q)L,I(T) is again responsible of this fast decay. Specifically, we find that the

coherence encoded in Géi)h’l(’l') at 7 =0 [Eq. (4.37)] is lost in the timescale of the
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Figure 4.7: Impact of quantum coherence on the correlation of Stokes-shifted photons emitted
from two distant DBATT molecules. (a) Schematic representation of the molecular pair analyzed
in (b), (c¢) and (d). The molecules are in a H-configuration and separated by r12 = 400 nm in the
z direction. The laser excitation impinges in the normal direction to the zz-plane in which the
molecules are located and tuned to the two-photon resonance. Additionally, light is detected also
in the normal direction to this plane. The rest of the parameters are detailed in the third row of

Table 4.1. (b) Dependence on the time delay 7 of the simulated Stokes-shifted correlation gg)(‘r)

(red lines), which is obtained with the complete model [Eq. (4.30)] and includes the influence of
(2)

St,d
is obtained with the approximation that removes the influence of quantum coherence [Eq. (4.35)].
(c) Zoom of the results in (b) from 7 = 10™* ns to 7 = 10° ns. A logarithmic scale is used in the
z-axis of this figure to facilitate the analysis. (d) Dependence on the time delay 7 of the different

quantum coherence, and of the simulated Stokes-shifted correlation gg,’;(7) (green lines), which

contributions in which géi)(T) (dashed red line) can be decomposed according to Eq. (4.30). The

green line corresponds to gé%)d(T) = Gg2)(7')/ (Isy (0))27 the orange line to ngl (m/ (Isy (0))27

and the dashed purple line to G((i?n p(T)/ (Iss (O))Q.

vibrational lifetime, which can be attributed to the vibrational modes acting as a
dephasing channel [210]. Notably, this fast decay cannot be resolved in available
experiments due to the time resolution of the detectors, as discussed in Section
4.3.3. Therefore, we conclude that the discrepancy between theoretical predictions
and experimental measurements of the intensity correlation of light emitted from
two uncorrelated emitters at delay 7 = 0 is due to the insufficient time resolution
of the detectors.

Furthermore, at times longer than the vibrational lifetime (on the nanosecond
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timescale), the Stokes-shifted correlations shown in Fig. 4.7b exhibit pronounced
oscillations at a frequency given by the generalized Rabi frequency [Eq. (1.231)],
which at this laser frequency is Qr = /(6/2)? + |©2;|2. Importantly, the oscillations

exhibited by gg)(T) (red line) and by gg)d(T) (green line) strongly differ in
amplitude, which indicates that quantum coherence also influences the correlation
of Stokes-shifted photons emitted from two non-interacting emitters at long times.

Figure 4.7d shows that the coherence encoded in Ggi)h ,(7) [Eq. (4.34)] is responsible
(2)

for the difference at long times in the amplitudes of gs’(7) and géi?d(T) in Fig.
4.7b.

4.4 Comparison between ZPL and Stokes-shifted
correlations

So far, we have presented in Section 4.2 a model that allows us to compute
the correlation of Stokes-shifted photons and that of ZPL photons emitted from
solid-state quantum emitters, and we have analyzed in Section 4.3 the influence of
quantum coherence in the emission of Stokes-shifted photons, which is ignored by the
conditional-probability approach. In this section, we now compare the correlation
of ZPL photons and of Stokes-shifted photons emitted from two interacting DBATT
molecules and show that these two correlations can be drastically different. To
this end, we simulate the experimental configuration in Ref. [1], which measured
the statistics of the Stokes-shifted photons emitted from two strongly interacting
molecules in a J-configuration, as sketched in Fig. 4.8a. Additionally, light is
detected again in the normal direction to the plane in which the molecules and
the transition dipole moments are contained (pzp1, = @st = 0), and the excitation
laser impinges also in the normal direction to this plane. The rest of molecular and
laser parameters are specified in the fourth row of Table 4.1. Notably, the Rabi
frequencies ); are again estimated from the value of the laser intensity used in
the experiment and the experimental saturation intensity, which in this case are
I, =60 VV/cm2 and I, = 14 W/cm2, using Eq. (1.237).

4.4.1 Laser resonantly tuned to the superradiant state

We first plot in Fig. 4.8b the intensity correlation when the laser is tuned resonantly
to the superradiant state, which in the J-aggregate configuration corresponds to
the delocalized state |[A_) = —sin©Oy |g1ea) + cos Oy |e1g2) [Eq. (3.59b)], with
the angle ©, defined in Egs. (3.60a)—(3.60b). The transition frequency of this
state is wo — A (Section 3.2.1). We find that the intensity correlation of Stokes-
shifted photons (dashed red line) is almost identical to the correlation of ZPL
photons (solid blue line), both exhibiting antibunching and Rabi oscillations due
to the approximately TLS-like behaviour of the interacting system under this
laser frequency and intensity, as discussed in detail in Section 3.3.4. The intensity
correlation obtained experimentally in Ref. [1] (solid grey line) is well reproduced

192



4.4. Comparison between ZPL and Stokes-shifted correlations

(a) (b) 37—
kel _— _chi
1o ":6 Stokes-shifted
v 2
€k, = €y 1 e =ey §
>  — oz
; 1 un 17
: : 5
ez ey AS nm £
e 960 40 -20 O 20 40 60
€T
T (ns)
() 2 (d 6
c C
kel o
e T4
S S
o v
> >
3 G 2
5 5
EO W wrp=wo+A ’S‘O wr, = Wy
-60 -40 -20 O 20 40 60 -60 -40 -20 O 20 40 60
T(ns) T(ns)

Figure 4.8: Comparison of the correlation of ZPL photons and of Stokes-shifted photons emitted
from two strongly interacting DBATT molecules. (a) The two molecules are in J-configuration.
The laser excitation impinges in the normal direction to the plane in which the molecules and
the transition dipole moments are contained. Light is detected also in the normal direction to
this plane. The laser is tuned resonantly to the (b) superradiant state |[A_) (wp = wo — A), (c)
subradiant state |[A4) (wp = wo + A), and (d) two-photon resonance (wr, = wp). The simulated
intensity correlation of ZPL (solid blue line) and Stokes-shifted (dashed red line) light are plotted
as a function of the time delay 7. Solid grey line corresponds to the experimental results reported
in Ref. [1]. All the parameters are specified in the fourth row of Table 4.1.

by the two simulations.

4.4.2 Laser resonantly tuned to the subradiant state

We next plot in Fig. 4.8c the intensity correlation when the laser is tuned resonantly
to the subradiant state |A;) = cos Oy |g1ea) + sin Oy |e1g2) [Eq. (3.59a)], with
transition frequency wg + A. In this case, the simulated correlation of ZPL photons
and of Stokes-shifted photons show a very different behaviour. The correlation of
Stokes-shifted photons exhibits again antibunching, Rabi oscillations and, crucially,
an excellent agreement with the experimental measurements. In contrast, the
correlation of ZPL photons shows g(Zzp)L(O) ~ 1 and oscillations with two different
timescales, one corresponding to Rabi oscillations and the other to much faster
oscillations of frequency 2A. The faster oscillations can be attributed to the
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significant interference between the superradiant and the subradiant states obtained
under this laser frequency, which is discussed in detail in Section 3.3.5. These
interference processes do not affect the Stokes-shifted correlation because the
emitters couple only through the ZPL.

To gain further insights into the different value of the two correlations at 7 =0
in Fig. 4.8c, we derive analytical expressions of the Stokes-shifted correlation and
the ZPL correlation at delay 7 = 0. On the one hand, by rewriting Eq. (3.90) in
the uncoupled basis, we obtain that the ZPL correlation at 7 = 0 is

Apee
95, (0) = : (4.40)

2
|:2pee + Deg + Dge + 2]-:{e,oeg,ge:|

On the other hand, by using Eqs. (4.25), (4.27), (4.36), and (4.37), we obtain that
the Stokes-shifted correlation at 7 = 0 is given by

2 4pee
95, (0) = 5 (4.41)
[217@.3 + Peg + pge:|

The populations p., and p,. are neglected here, as they are much smaller than the
populations of the pure electronic states. Importantly, the coherence between |ejvs)
and |vyes) does not affect the denominator in Eq. (4.41) because the emitters couple
only through the purely electronic states, as discussed in Section 4.3.1. Equations
(4.40) and (4.41) indicate that the correlation of ZPL and that of Stokes-shifted
photons can be different at 7 = 0 if the coherence Repey 4c is comparable to the
value of the steady-state populations p.y and pge. As discussed in Section 3.3.5,
the coherence between the superradiant and subradiant states is significant when
the laser is tuned resonantly to the transition frequency of the subradiant state,
as it is the case in Fig. 4.8c. Particularly, for the laser parameters in this figure,
Repeg,ge is negative and comparable to the values of the steady-state populations
Peg and pge, decreasing the denominator of the ZPL correlation in comparison
to the denominator of the Stokes-shifted correlation. As a result, the value of
ZPL correlation at 7 = 0 significantly increases with respect to the value of the
Stokes-shifted correlation.

4.4.3 Laser tuned to the two-photon resonance

Last, we show in Fig. 4.8d the intensity correlation when the laser is tuned to
the two-photon resonance, wy = wy. In this case, both the correlation of ZPL
photons and of Stokes-shifted photons are bunched, as this laser frequency enables
the resonant excitation of the doubly-excited state |ejes) through a two-photon
process, which strongly increases the probability of emitting photons in cascade
(Section 3.3.3). Additionally, the two correlations exhibit oscillations of frequency
A, corresponding to the detuning between the laser frequency and the transition
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frequency of the superradiant state. However, the ZPL correlation exhibits more
pronounced oscillations and does not capture well the experimental measurements,
whereas the Stokes-shifted correlation reproduces them very well. These results
reveal that the correlation of Stokes-shifted photons and of ZPL photons emitted
from two strongly interacting quantum emitters can be very different and emphasize
the importance of an accurate description of each experimental configuration.

4.5 Extension of the model to a larger number of
emitters and vibrational modes

We have analyzed so far the correlation of Stokes-shifted photons emitted from
two solid-state emitters due to the decay from the electronic excited state to a
specific vibrational /phononic mode. However, many vibrational/phononic modes
can couple with the electronic states of solid-state emitters, giving rise to the
emission of Stokes-shifted photons at different frequencies. We examine in this
section the influence of a larger number of vibrational modes on the Stokes-shifted
correlation of photons from two interacting emitters. Finally, we extend the model
to the case of an arbitrary number of quantum emitters, each one supporting an
arbitrary number of vibrational/phononic modes.

4.5.1 Influence of a larger number of vibrational modes

To illustrate the influence of a larger number of vibrational modes on the Stokes-
shifted correlation we first consider two quantum emitters, each of them supporting

(1) and w(2)

two vibrational modes of frequencies wy The corresponding 1-phonon
states of these modes are denoted by \vj >, where j = 1,2 labels each of the
emitters and m = 1, 2 each of the vibrational modes. We represent an scheme of the
energy levels of the uncoupled emitters in the inset of Fig. 4.9a. The Hamiltonian

of the system (in the rotating frame at the laser frequency) can be written as

2 2
Z{ (les) (el = lgi) o) + > o — 8y 8™y ™|+ Hig + Ay,

Jj=1 m=1
(4.42)
where the interaction and laser Hamiltonians are again given as H, int = hVbw (61&2—1—
6163) and Hy = e 1(92; a + €276;), respectively. The Markovian master

equation including the d1551pat1ve processes and governing the dynamics of the
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Figure 4.9: Comparison of the simulated correlation of Stokes-shifted photons emitted from two
DBATT molecules when different numbers of 1-phonon states are considered. Red lines represent
simulations obtained using the model presented in Section 4.2, where a single 1-phonon state
is considered in each emitter (specifically, the vibrational mode at 257 cm~ ! of the DBATT
molecules). Additionally, we perform simulations using the master equation in Eq. (4.43), where

(1)

two 1-phonon states are considered, \1);1)) (with frequency wy ’ corresponding to the vibrational

mode at 257 cm ™! of the DBATT molecules) and |v§2)) (with frequency wl(,z) corresponding to

the vibrational mode at 1331 cm™! of the DBATT molecules). In the inset in (a) we depict the
energy levels, the different Stokes-shifted transitions (red arrows) and the ZPL transitions (blue
arrows). We use the model that includes two 1-phonon levels for each emitter to simulate the
correlation of Stokes-shifted photons in two different scenarios: (i) considering the Stokes-shifted
photons emitted due to the assistance of the two vibrational levels of each emitter (solid pink
lines); and (ii) considering only the Stokes-shifted photons emitted due to the assistance of the
vibrational mode of frequency wf,l) (dotted cyan lines), which experimentally corresponds to
filtering only the Stokes-shifted photons from this vibrational mode. In (a) we fix the molecular
configuration to that used in Fig. 4.5b, where two interacting molecules are driven by a laser
tuned to the two-photon resonance wy, = wg (all the parameters are detailed in the second row
of Table 4.1), and in (b) we simulate the molecular configuration used in Fig. 4.7b, where the
two emitters are at very far distances and again wy, = wo (all the parameters are specified in the
third row of Table 4.1).

system is given as

2
d. . ia ADWYO 151 s 1 gl NP
o=l + 3 (2Dl o+ Y Dl )
j=1 k#j
NP i (4.43)
— &DW )"0 m P v N H
#3050 (0D e+ Y 0lap) 7 10).
j=1m=1

where we have assumed that the vibrations have identical decay rate 7, and that
the decay rate from |e;) to |v§1)> is (1 — apw)70/2 and identical to the decay rate
from |e;) to \v§2)>. These latter dissipation processes are represented by red arrows
in the inset in Fig. 4.9a, whereas the dissipation into the Zero-Phonon Line (having
decay rate apwno) is represented with blue arrows.
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We next simulate the correlation of Stokes-shifted photons emitted from two
DBATT molecules at cryogenic temperatures. We use hw,(,l) = 31.86 meV and
hw752) = 165.02 meV, which correspond to the DBATT vibrational modes at
257 cm™! and 1331 em™! [208], respectively. In Fig. 4.9a we fix the same
molecular H-configuration as in Fig. 4.5b, where the two molecules strongly
interact, and in Fig. 4.9b we use the same molecular parameters as in Fig.
4.7b, where the two molecules are separated by a large distance (see the second
and third rows of Table 4.1 for further details on the parameters considered).
In both cases, the laser is tuned to the two-photon resonance w; = wg. We
use El St( )/t = Do, |v§m)> (e1] (¢) + |v2m)> (e2]| (t) to calculate the intensity
correlation of Stokes-shifted photons emitted from the two molecules due to the
assistance of the two-vibrational modes. At delay times larger than the lifetime
of the vibrations (|7]| > 1/7,), the resulting intensity correlation (solid pink line)
shows the same behaviour than the simulation obtained in Fig. 4.5b (red solid line),
where a single vibrational mode was considered in the master equation. However,
on the timescale of the vibrational lifetime, we find that the decay of the intensity
correlation to half its 7 = 0 value (which is due to the loss of coherence, as discussed

in Section 4.3) is accompanied by fast oscillations at frequency w(2) (1)

Furthermore, we calculate the intensity correlation using £ i St( )/&st =

\v%”) (e1] () + \vé”) (e2] (t) (cyan dotted line), which represents the correlation
of Stokes-shifted photons that are due only to the assistance of the vibrational
mode at 257 cm~!. We find that this latter simulated intensity correlation is
identical to the one obtained in Fig. 4.5b (red solid line) using a Markovian master
equation that includes a single vibrational mode. Therefore, we conclude that
the Stokes-shifted correlation of light emitted from two quantum emitters is well
described by using a single vibrational mode in the model (as we do in Sections 4.3
and 4.4), except for the exact behaviour of the correlation at times comparable to
the lifetime of the vibrations. The behaviour at this timescale is hard to capture in
experiments, due to the limitations of the time resolution of available detectors (see
Section 4.3.3), and depends on the exact filtering scheme used in the experiment,
as shown in Figs. 4.9a and 4.9b.

4.5.2 Extension of the model to an arbitrary number of
emitters

We extend in this section the model described in Section 4.2 to the case of an
arbitrary number N > 2 of almost identical emitters. Additionally, we consider
that the emitter j supports an arbitrary number M; of vibrational/phononic modes.
In this case, the total Hamiltonian (in the rotating frame at the laser frequency) is
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Chapter 4. Intensity correlation of Stokes-shifted photons from two QEs

given by
N M; 2w (J;
Z{ (lej) (ejl —1g;) (g;]) + ] |U ><Uj(-m)| +Hiw+Hp,
=1 m=1
(4.44)
where w(J ™) is the frequency of the vibrational/phononic mode m of the emitter j.

The laser Hamiltonian can be written as

N
N h R .
H, = -3 Z(Qjo; + jUj). (4.45)

Jj=1

Additionally, the interaction Hamiltonian Hiy in Eq. (4.44) includes all possible
dipole-dipole couplings between different emitters. Specifically,

Hiny = hz Z Vow,i; (6765 + 51‘5;-)7 (4.46)

i j<i
where

3 cos(ko 4574
Vow,ij = apwo [— (eui cep; — (e, er;)(ey, 'em)> coslko.iiy)

ko,ij7ij
sin(koiﬂ‘) cos(ko i;7i5)
—i—ei.e.—?)ei'eri'e"eﬁ")( .Y jj
( w 1 ( " ])( g ]) (kO,ijrij)2 kO 1]7"13

is the strength of the coherent dipole-dipole coupling between emitters ¢ and j,
which have transition dipole moments p; and p;, and are located at positions r;
and r;. In Eq. (4.47), we have also introduced the wavenumber ko ;; = 27/(nwo,i;),
with wo ij = (We,i +we,;)/2 the arithmetic average between the transition frequency
we,; of emitter ¢ and the transition frequency we ; of emitter j, as well as the unit
vectors ey, = pi/|pil, en, = m;/p;l, and er; = (ri —r;)/ri;, with ri; = |r; —r;|
the distance between the emitters ¢ and j.

Moreover, the Markovian master equation in Eq. (4.43) can be directly
generalized as

. N
d AP OéDW“Yo 5,1 'YDW
h=—3H.5+) p+§ Y XD(6;,64]p

Jj=1 J=1i#j
4.48
N M (Jﬂn) () N M (Jm) | (4.48)
£ 22 25Dl esllo+ 0 3 5 Pllag) (vl
j=1m=1 j=1m=1
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where the dissipative dipole-dipole coupling between emitters ¢ and j is given by

3
iaDW’YO €p; " €p; — (eﬂ'i : e""ij)(el"'j ' 67‘7‘4)

TOW.ig Ko,ij7j
cos(ko,ijrij)  sin(ko,ijrij)
+<em e Bl en)en, .er”)) < (koisriy)?  (kogyrig)® /]

(4.49)

Further, 'yq(,j ™ in Eq. (4.48) is the decay rate of the vibrational/phononic mode m

of the emitter j (i.e., 1/75"™ is the lifetime of this vibrational/phononic mode),
(@ m)

while 4,77 is the decay rate of the excited state |e;) into the 1-phonon level |vj(»m)>.
Notably, as the total decay rate of emitter j is 79 and the decay rate into the ZPL
is apwo, the set of decay rates into of 1-phonon levels satisfy

Z 787 = (1 - apw)o. (4.50)

Assuming again that all the molecules and their transition dipole moments are
contained in the same plane and that light is detected in the normal direction to
this plane, the correlation of ZPL photons can be then obtained by substituting
the positive-frequency electric field operator EJ_ ZPL( )/&zpL, = Z;V:1 lg;) (ej] (7)

into the expression for g%L(T) in Eq. (4.17). In the same conditions, the positive-

frequency electric field operator in Eq. (4.19), which describes the Stokes-shifted
scattering from two emitters that support a vibrational mode each, can be extended
to the case of an arbitrary number of emitters and vibrations as

BN (r ZZ we“;”( wéf””)) 0™ (e (7). (4.51)

j=1m=1

Here, we have taken into account that the vector amplitude £, of the positive-
frequency electric field radiated from a classical point dipole with decay rate

'yéj’zl) and frequency wy — w"™ in the far-field region is proportional to

\/'ye;v)(wo —wf,j’m)) [see Egs. (1.141) and (1.163)]. This square root factor
has been neglected in Section 4.5.1 for simplicity, as its value is almost identical
for the two molecular vibrations considered there and, thus, it does not notably
affect the intensity correlations in Figs. 4.9a and 4.9b.

4.6 Summary and conclusions
We have analyzed in this chapter the correlation of Stokes-shifted photons emitted

from two solid-state quantum emitters. The main interest of this analysis relies
on the interpretation of state-of-the-art experiments with quantum emitters that
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Chapter 4. Intensity correlation of Stokes-shifted photons from two QEs

interact through vacuum-induced dipole-dipole coupling, where the emitters are
excited on resonance to their electronic excited state and only the Stokes-shifted
light is detected due to the use of optical filters. First, we have reviewed the
conditional-probability approach used in previous works to address the correlation
of Stokes-shifted photons [1, 92, 199], which does not account for the influence of
quantum coherence in the Stokes-shifted emission. Afterwards, we have presented
a versatile model that can be used to describe the correlation of Stokes-shifted
photons and also that of ZPL photons from two quantum emitters. Importantly,
this model accounts for the influence of quantum coherence.

By using this complete model, we have shown that quantum coherence can
indeed significantly impact the correlation of Stokes-shifted photons emitted from
two interacting quantum emitters. To this end, we have compared the results of
experimental measurements of the Stokes-shifted correlation from two interacting
DBATT molecules with those from the simulations of the complete model introduced
here. In this way, it has been revealed that including the influence of quantum
coherence provides a better agreement with experimental results. Furthermore,
we have shown that quantum coherence can also impact the correlation of Stokes-
shifted photons emitted from two non-interacting emitters. We have also found
that the discrepancy between theoretical and experimental intensity correlations of
light from two uncorrelated emitters at delay 7 = 0 is due to the insufficient time
resolution of the detectors in available experiments.

Moreover, we have revealed that the correlation of Stokes-shifted photons
scattered from interacting emitters can exhibit significant differences with respect
to the correlation of ZPL photons, depending on the molecular and laser parameters.
These results emphasize the importance of an accurate description of each
experimental configuration.

We have also shown that when Stokes-shifted photons of different frequencies
(arising from the decays into different vibrational levels) are collected, the behaviour
of the intensity correlation at very short timescales (on the order of the lifetime of
the vibrations) becomes more involved. Specifically, we have found fast oscillations
with a period given by the difference in frequency of the different vibrational modes.
In contrast, at delay times that are much larger than the lifetime of the vibrations,
the Stokes-shifted correlation is unaffected if Stokes-shifted photons from a single
or from several vibrational/phononic modes are measured. Last, we have presented
the extension of the model to the case in which an arbitrary number of emitters
and vibrational modes are considered, which can be used in future works to explore
more involved experimental configurations.
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CHAPTER

GENERATION OF ENTANGLED
PHOTONS FROM TWO
INTERACTING QUANTUM
EMITTERS

We have analyzed the normalized second-order correlation of Zero-Phonon-Line
photons (Chapter 3) and of Stokes-shifted photons (Chapter 4) emitted from two
interacting quantum emitters. This analysis has demonstrated that the statistics
of light emitted from this system can be tailored across a wide range of regimes.
In this chapter, we expand our analysis of light emission from interacting quantum
emitters and its relevance for quantum technological applications. Specifically,
we show that two interacting emitters can generate entangled photons, which are
crucial elements in quantum communication, quantum cryptography, and other
applications in quantum technologies.

We first introduce the concept of quantum entanglement and discuss the
significance of designing sources of polarization-entangled photons. Next, we
provide an intuitive explanation of how polarization-entangled photons can be
generated from the decay into the Zero-Phonon Line from two interacting quantum
emitters with perpendicular transition dipole moments. This relative orientation
between the transition dipole moments contrasts with the parallel one considered
in Chapters 3 and 4. Additionally, we rigorously verify the intuitive picture of
the generation of two entangled photons by deriving the exact two-photon state
of the electromagnetic vacuum field provided by the relaxation of two initially
excited quantum emitters. To this end, we use the Wigner-Weisskopf approximation
(WWA).

Moreover, we demonstrate that a highly entangled photon pair can be post-
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Chapter 5. Generation of entangled photons from two interacting QEs

selected using optical filters. We verify that this high degree of entanglement is not
significantly affected by small changes in the orientation of the transition dipole
moments or by the influence of the combined Debye-Waller/Franck-Condon factor.
Further, we also show that the photon entanglement is not significantly affected by
small changes in the detection directions, which indicates that a lens can be used
to improve the collection efficiency in experiments without significantly reducing
the high degree of photon entanglement.

Finally, we show that entangled photons can also be generated from two non-
interacting emitters with perpendicular transition dipole moments. However, in
this case the two-photon entangled state is less robust against small changes in
the detection direction, which reduces its practical utility as compared to the
entanglement produced by interacting emitters.

5.1 Photon entanglement

We introduce in this section the concept of quantum entanglement, with a special
focus on entanglement between the polarization degree of freedom of two photons.
Additionally, we describe a fundamental measure of the degree of polarization
entanglement in a two-photon state, which is known as entanglement entropy, as
well as a more practical measure, so-called concurrence.

5.1.1 Separable and entangled states

Entanglement refers to the non-local quantum correlation between the state of
N > 2 distant quantum systems. We focus here on the simplest case, provided by
N = 2 systems. We refer to the two systems as A and B, with Hilbert spaces H 4
and Hp, respectively. The Hilbert space of the whole system, H ap, is given by
the tensor product of H 4 and Hpg:

Hap =Ha®@Hp. (5.1)

Importantly, the two systems are spatially separated, so that their states can be
measured independently. The observer who can measure the state of A is commonly
referred to as Alice, while the observer who can measure the state of B is called
Bob.

Moreover, we consider that A and B have two-dimensional Hilbert spaces.
Two-dimensional quantum systems are the fundamental building blocks of quantum
information and quantum computing, and they are typically referred to as qubits.
Examples include the electronic ground and excited states of two-level quantum
emitters, the spin-up and spin-down states of spin-1/2 particles, and two orthogonal
polarization modes of photons. Notably, photons are promising candidates for
processing and distributing entanglement, as their quantum state is not significantly
altered while photons travel long distances. Thus, we consider in this section two
polarization-entangled photons as a representative example of qubits to illustrate
entanglement in two-qubit systems. The polarization state of each photon can be
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5.1. Photon entanglement

described in the orthonormal basis {|H) ,|V) } (with x € {A, B}), where H and
V' denote horizontal and vertical polarizations, respectively.
An arbitrary two-photon pure state |¢) ,5 € Hap can be written as

V) ap = cum |H) , ® |H)p +cuv |[H),@|V)p
tevu V)@ [H)g+evv V), @[V)p (5.2)
=cpp |HaHB) + cuv |[HaAVE) + cvu |VaHp) + cvv [VaVs),

where we have chosen the two-photon state basis {|H), ® |H)y = |HaHp),
H),®|V)p =|HaVB), V), ®|H)p = [VaHp), V) ,®|V)p = |[VaVp)}, and we
have introduced the two-photon probability amplitudes css, with s,8" € {H,V'}
labeling the polarization mode (as in Chapters 1-3). Notably, |¢) ,5 is called
separable if it can be written as a tensor product of two individual states
[(A)) | € Ha and |P)) 5 € Hp, which belong to the individual Hilbert spaces of
A and B, respectively. Thus, the following equivalence holds:

1) 4 is separable < [¢) , 5 = [v™)) , @ [vB)) . (5.3)

For example, |[HxHp) = |H) , ® |H) 5 is a separable state. Similarly, if any one of
the probability amplitudes css in Eq. (5.2) equals 1 and the rest are zero, the state
is separable. Another example of separable state occurs when all the probability
amplitudes c¢sy equal 1/2; because in this case

1 1 1 1
V) an =3 |HaHg) + 3 |[HaVB) + 3 \VaHp) + 3 [VaVi)

CHH=CHV=CcvH=cyvv=L1/2

V) H)p + V)

a V2 V2
(5.4)

However, |¢) 45 cannot always be written as a tensor product of two individual
states. In such a case, |1) 4 5 is said to be an entangled state, that is:

V) 4 is entangled < |¥) 45 # |w(A)>A ® |¢(B)>B. (5.5)

An entangled pure state is written as a coherent superposition of separable pure
states. Consequently, the measurement of the individual state of either subsystem
A or B has more than one possible outcome, regardless of the measurement basis.
Crucially, measuring the individual state of one subsystem leads to the collapse of
the entire quantum state |¢) , 5 into a separable state. This collapse determines
the state of the other subsystem, without need of an individual measurement of its
state. For example, the two-photon state

V) AB =cuu |HaHB) + cyvv [VaVa), (5.6)

cav=cy =0
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which has non-zero two-photon probability amplitudes cgy g and cy v, is an entangled
state because it cannot be written as tensor product of two states. In this case, the
measurement of the polarization state of photon A in the basis {|H) ,,|V) 4} can
yield both horizontal and vertical polarizations as outcomes, and so does measuring
the state of photon B. However, once a measurement is made on A, the entire
two-photon state collapses, determining the outcome of a measurement of the
state of B. Specifically, if the outcome of the measurement of A gives horizontal
polarization, this implies that the two-photon state |¢) 4 glcny=cvw=0 [Eq. (5.6)]
has collapsed into |H4Hpg), determining an horizontal-polarization outcome for
a measurement on B. In contrast, if the measurement of the polarization state
of photon A in the two-photon entangled state |1)|c,v=cyy=0 [Eq. (5.6)] yields
vertical polarization, the two-photon state |1)|c,\ =c, y—=0 collapses into |V4Vpg)
and, thus, photon B is also vertically polarized. We emphasize that the outcome
of measuring B was not determined prior to the measurement on A. Thus, as
the measurements on the two systems are not independent in this case, but are
correlated even if A and B are far apart, we say that there exists a non-local
quantum correlation between the two systems. This non-local quantum correlation
is commonly referred to as entanglement.

5.1.2 Bell states

We show in this section that the correlation between the outcomes of individual
measurements on an entangled state is not equally strong for every entangled state.
Importantly, we introduce a set of orthonormal two-photon states that exhibit
maximal non-local quantum correlation.

We consider again two photons in the state [¢) 4 glegy =cv =0 [Eq. (5.6)]. In this
case, the measurement of the individual state of photon A has a probability |crz|?
of yielding horizontal-polarization for the two photons as outcome and a probability
levv|? of giving vertical-polarization as outcome (again for the two photons).
Notably, as |cgp|? increases and |cyv|? decreases, the state [¢) 45leny =cy n=0
becomes closer to the separable state |[H4Hp). As a consequence, the non-local
quantum correlation between the outcomes of the measurement decreases, because
the repetition of the experiment will yield most of the times the same outcomes as
those provided by the separable state |H4Hpg). In contrast, the non-local quantum
correlation maximizes at |cgp|* = |cvv|? = 1/2, as in this case the probability of
measuring horizontal or vertical polarization for one of the photons (which leads
to the collapse and determination of the state of the other photon) are equal.
Additionally, if we fix real probability amplitudes for simplicity, we find that the
condition |cgg|? = |eyy|? = 1/2 can be satisfied by two orthogonal states: one
with ¢y = cyy = 1/4/2 and another with cyg = —cyy = 1/v/2. Namely, these
two states can be written as

|¢ > B |HAHB> + |VAVB>
+/AB — ﬂ )

(5.7a)
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5.1. Photon entanglement

|¢ > _ |HAHB>_|VAVB>
—)AB \/E .

We emphasize that these states exhibit maximal non-local quantum correlation
and, as a consequence, they are referred to as maximally entangled states. In
contrast, any state with |cgy|? = |eyg|? = 0 and unequal non-zero probabilities
lerrm|? # |evy|? is called partially entangled.

So far, we have focused on entangled states for which the two-photon probability
amplitudes cgy and cy gy vanish. However, two-photon states involving |H 4 Vi) and
|VaHp) can also exhibit maximal entanglement. Considering again real probability
amplitudes, these states are

(5.7b)

HaV, VaH
|¢+>AB:| 2 B>\_/|—§| 4 B>7 (5.8a)

) 4 = |[HaVB) — |VaHp)
Vg = 7% .

For these two-photon states, the measurement of the polarization state of A can
yield horizontal or vertical outcomes with equal probability again. As a result
of this measurement, the two-photon state collapse and the state of B becomes
determined. Therefore, the states |¢}) 4,5 and |¢_) , 5 are maximally entangled,
like |¢1) 45 and |¢_) 4 5. The key difference between the states [11) o5 and the
states |¢+) , 5 is that in the ¢ states, photons A and B share the same polarization
outcome upon measurement, while in the ¢ states, their polarization outcomes are
orthogonal and thus they show different polarization upon measurement. These
four maximally entangled states are known as Bell states.

(5.8b)

5.1.3 Degree of entanglement of pure states

We describe in this section how to quantify the degree of entanglement of two-qubit
pure states, which is of great interest for technological applications because perfect
maximally entangled states do not exist in practice.

Fidelity with respect to a maximally entangled state

A simple way to gain an intuition on the degree of entanglement of a two-photon
state is to evaluate its similarity with respect to a maximally entangled state. A
standard measure of the similarity between two states is the so-called fidelity F,
which we describe in detail in Appendix A. The fidelity between two arbitrary pure
states |a) and |b) is defined as

F(la), b)) = [ {alb) [*. (5.9)

This quantity ranges from 0 to 1. It reaches its maximum value when |a) and |b) are
identical up to a global phase, and equals to zero when the states are orthogonal.
The fidelity of an arbitrary two-photon state |¢) , 5 with respect to a maximally
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entangled state can thus provide information about the degree of entanglement
of |¢) 45. For example, F(|¥) s5.|¢-)45) = 1 [with |¢_) 5 the Bell state in
Eq. (5.7b)] implies that [¢) , 5 is also a maximally entangled state. Further, if
F(¥) sp»|6—) 4p) is close to one, we can reasonably conclude that the degree
of entanglement of |¢) , 5 is large. However, this approach is limited because it
quantifies the similarity with respect to a single reference state. Indeed, a low value
of F(|) up » |#—) 45) does not necessarily mean that the degree of entanglement of
|t) 4 is small, as |1¢)) , 5 may be more similar to another maximally entangled state
different from |¢_) , 5. Therefore, fidelity alone does not constitute a complete or
general measure of entanglement.

Entanglement entropy

Quantifying the degree of entanglement is a challenging task in general [63—65].
However, in the simplest case of systems composed of two qubits, well defined
measures of the degree of entanglement have been established. In the case of
two-qubit pure states [¢)) 45, the entanglement entropy E(|1) 45) is the standard
measure of the degree of entanglement. This measure relies on the von Neumann
entropy S (Appendix A), which serves to quantify the entropy of any quantum
system. Specifically, this quantity is defined in general as

S(p) = ~Tr(plogy p) = = Y _milogy mi, (5.10)

where p is an arbitrary density matrix, with eigenvalues {n;}. Importantly, the
von Neumann entropy vanishes for pure states and reaches its maximum value,
log, dim(#H), for maximally mixed states, with dim(#) the dimension of the
corresponding Hilbert space.

The entanglement entropy FE(|1)),5) of a two-photon pure state [1)) 5 is
obtained as the von Neumann entropy of the reduced density matrix of any of the

two photons, pa = Tre(|¢)) 45 (¥|4p) OF pB = Tra(|¥)) sp (¥]45), Wwith Tr, the
partial trace over the Hilbert space H, (Appendix A). Thus, E(|¢) 45) is given by

E([¢)ap) = S(pa) = S(pn). (5.11)

Importantly, the reduced density matrix of a separable state always yield a pure
state. As a result, the von Neumann entropy of the reduced states vanishes, and
so does the entanglement entropy. In contrast, the partial trace of a maximally
entangled state [such as the Bell states in Egs. (5.7a)—(5.7b) and Egs. (5.8a)—(5.8b)]
always yields a maximally mixed state, with von Neumann entropy log, 2 = 1 in the
case of two-qubit systems. We thus obtain that the entanglement entropy is bounded
in this case between 0 (separable state) and 1 (maximally entangled state). Further,
E(|¢)) ) can be intuitively interpreted by considering that Alice and Bob can use
a large amount of Bell states (which have maximal degree of entanglement) and of
separable states (with no entanglement), and they aim to produce N, copies of the
two-photon state |1) , 5 by using only classical communication and performing only
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local unitary transformations on each of the qubits. The entanglement entropy
of |¢) 45 gives a number m = N, - E(|¢)) 45) of Bell states needed by Alice and
Bob to produce these N, copies of [¢),5 [65, 215, 216]. This interpretation
can be rigorously demonstrated [215], although it goes beyond the scope of this
introduction.

Concurrence

The entanglement entropy in Eq. (5.11) can be written as [216-219]

E(16) ,p) = HE(l 4+ 4/1— [2(7(|¢>AB)]2)_ (5.12)

Here, we have introduced the binary entropy function
Hg(z) = —zlogy x — (1 — ) logy(1 — ), (5.13)
as well as the function

C([¥) ap) = 2lcancvy — cavevl. (5.14)

This function C(|¢) ,5) is bounded between 0 and 1, as E(|¢) ,5). Crucially, the
entanglement entropy E(|¢) ,5) in Eq. (5.12) is monotonically related to C(|v) 45)
and, as a consequence, C(|1)) ,5) can be understood as a measure of the degree of
entanglement of the pure state ¢ ap) [217, 218].

The function C(|%) 4 5), which is referred to as concurrence, can provide further
insights into the two-photon entanglement. For example, Eq. (5.14) indicates
that the two-photon pure state |¢) ,5 in Eq. (5.2) is separable if, and only if,
cggcyy = cgyveyg- Additionally, the concurrence facilitates the quantification of
the degree of polarization-entanglement for two-photon mixed states, as we show
in the following section.

5.1.4 Degree of entanglement of mixed states

We have focused so far on describing entanglement in two-photon pure states.
However, all quantum systems are in mixed states in practice, described by density
matrices (Appendix A). In this section, we present an intuitive extension of the
concurrence to the case of mixed states.

We have classified in Section 5.1.1 two-qubit pure states as separable or
entangled, depending on whether they can be written as tensor products of two
individual qubit states that belong to the individual Hilbert spaces of A and
B. This notion of entanglement can be extended to the case of two-qubit mixed
states in a straightforward manner. Specifically, a two-qubit mixed state, with
density matrix pap € Hap, is separable if pop can be written as a summation of
density matrices that are related to separable states only. Specifically, the following
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condition holds:

pap is separable & pap = > T, (™), 0P| @107 5 WP,

' (5.15)
= Z Yipia ® pi,B,

(2

where Y; are non-negative real coeflicients, and |1/)1(X)>X and p;, belong to the
Hilbert space H,. In the opposite case, we can say that p4p is entangled and the
equivalence

pap is entangled < pap # Z Yipi,a ® pi,B (5.16)

(2

holds. Notably, establishing well-defined measures of the degree of entanglement
for two-qubit mixed states becomes drastically more complex compared to the case
of pure states [65, 216]. A very common and practical measure of the degree of
entanglement of two-qubit mixed states results from extending the concurrence
C defined in Eq. (5.14) for pure states. In the following, we present a intuitive
description of the concurrence for mixed states. A rigorous derivation of this
quantity can be found in Refs. [218, 219].

The expression of the concurrence C(|¢) 45) of a two-qubit pure state in Eq.
(5.14) can be rewritten as

C(1¥) ap) = \/F(|¢>AB D) ap) =1 Wlap ) ap | (5.17)

where we have used the expression of the fidelity between two pure states in Eq.
(5.9), and we have defined the state

D) 4p = (6% ® 6%)1% V) ap - (5.18)

Here, K transforms all the probability amplitudes of [¢) ,5 to their complex
conjugates, with [¢) , 5 written in a basis of separable states, such as {|HaHp),
|HaVE), |VaHR), |VaVE)} in the case of photon polarization, which we take again
as a reference of qubit. Namely, the action of K on the state |Y) 45 in Eq. (5.2) is:

K ) op = i |HAHB) + v [HaVi) + ¢y IVAHB) + ¢y [VaVe) . (5.19)

Additionally, 6y = —i|H), (H|, +i|V), (V] in Eq. (5.18) is the y-Pauli matrix
in the Hilbert space H,. Interestingly, Eq. (5.17) indicates that the concurrence
of [¢) 45 is determined by how much this state is affected by the transformation
(64 ® &yB)R . For example, if this transformation modifies [¢) , 5 only through
a difference of global phase, the fidelity F(|1) ,5,[1)) 1) is one and the state is
maximally entangled. In contrast, if the transformation leads to an orthogonal
state, 1) 4 g is separable.
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5.1. Photon entanglement

We now consider an arbitrary density matrix pap describing a general two-
photon state. This matrix is transformed by (6% ® 6%)K as

pap = (6% ©6%)p45(6Y ® &%), (5.20)

with p% p obtained by complex conjugating all the elements of p4p in the basis
{|HaHB), |HAVE), |VaHB), |VaVp)}. Further, the fidelity between two mixed
states is in general defined as (Appendix A)

2

F(pr, p2) —(Tr \/ﬁiﬁzﬁl> : (5.21)

Thus, the square root of the fidelity between p4p and p? 5 is given by

4
\/ F(paB, paB) = TY\/\/ papap\pas =Y _ M, (5.22)
i=1

where {);} are the eigenvalues of \/v/pan ﬁ 4BV PpAp. Importantly, the concurrence

C(pap) does not directly corresponds to \/.F(ﬁAB,ﬁABL which would be a

straightforward extension of the concurrence of two-photon pure states [Eq. (5.17)].
Instead, the concurrence of a general two-photon state is given by [218, 219]

C(pap) = max{0,2\1 — \/ F(paB, pan)} (5.23)

with Ay = max{\;} the largest eigenvalue of VPaspasVpan. We emphasize that
if pap describes a two-photon pure state (i.e., pap = |¥) 45 (¥| 45), the general
expression of the concurrence in Eq. (5.23) reduces to the simpler expression for
two-photon pure states in Eq. (5.17).

5.1.5 Generation of entangled photons

Early evidence for the existence of quantum entanglement was provided by a
series of experiments conducted between the 1960s and 1980s [220-225], in which
polarization-entangled photons were generated from the cascade emission from
calcium and mercury atomic beams. These experiments spurred the development
of quantum technologies, where photons play a key role in processing and
distributing entanglement. The applications of entangled photons include quantum
communication [34-36], quantum cryptography [66-70], and quantum sensing and
imaging [71-77]. However, the atomic beams used in the pioneering experiments
on quantum entanglement exhibit isotropic emission due to the randomness of the
orientations of the transition dipole moments of the atoms. Further, the degree
of polarization drastically decreases in this case if photons are not emitted back
to back (i.e., in exact opposite directions) [226, 227]. Consequently, the collection
efficiency of entangled photons from atomic beams is very low, which reduces the
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Chapter 5. Generation of entangled photons from two interacting QEs

technological utility of atomic beams as sources of entangled photons. Significant
efforts have thus been made in the last few decades to design more practical sources
of entangled photons [227-229].

Nowadays, the most common source of entangled photon pairs is based on
parametric down-conversion (PDC), which is a nonlinear optical process in which a
photon pumps a nonlinear crystal, leading to the scattering of two photons [42-44].
In this process, both energy and momentum are conserved, imposing constraints
on the directions of the two scattered photons [227]. Two types of PDC can be
distinguished depending on whether the two scattered photons have parallel (type
I) or perpendicular (type II) polarization directions. The second type of PDC
can be used to generate polarization-entangled photon pairs [230-234]. However,
entangled photons generated from PDC suffer from several drawbacks, the main
one being the intrinsic probabilistic nature of this non-linear process.

To overcome the drawbacks of PDC, biexciton quantum dots (QDs) have
attracted much attention over the last two decades [235-238], as they can be used
to generate entangled photons deterministically. In this case, entangled photons
are generated from the cascade emission of the biexciton (doubly excited state) of
the QD, in a similar manner to the cascade emission from atomic beams. However,
in quantum dots, the control over the directions of emission is improved compared
to atomic beams. The collection efficiency in these systems, however, often remains
low, as they are typically embedded in a host medium with a high refractive index.
Optical cavity structures have been shown to improve the collection efficiency
of entangled photons emitted from QDs [239-242], but challenges remain, and
further research is required in this regard. Additionally, the emission of entangled
photons from biexciton QDs faces further challenges, such as the usual fine structure
splitting that can reduce photon entanglement [242-244), and the range of operation
typically limited to the infrared.

Notably, a deterministic source of entangled photons in the visible range could
find applications in different contexts. In quantum communication, such a source
would facilitate the interfacing between light and quantum nodes with optical
transition frequencies [245, 246], and it could also facilitate the quantum-enhanced
imaging of biological samples [247, 248]. However, only a few sources of entangled
photons operating in the visible regime have been proposed [249-251], aside from
the probabilistic PDC [230, 252, 253].

In the following, we show that pairs of photons entangled in polarization can be
generated by two interacting quantum emitters with two-level-system behaviour.
These emitters can represent a variety of systems, such as trapped ions, atoms and
solid-state emitters, including organic molecules or defects in inorganic crystals.
This variety of possible implementations offers large technological versatility, for
instance, in choosing the spectral emission regime. In particular, the application
of our proposal in state-of-the-art experiments with interacting organic molecules
(e.g., DBATT molecules) at cryogenic temperatures would allow for the emission
of entangled photons in the visible regime [1, 92, 99, 200], as these molecules have
optical transition frequencies.
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quantum emitters

5.2 Analysis of the generation of entangled
photons from two interacting quantum
emitters

We show in this section that two interacting emitters can be used to generate a
two-photon state that is entangled in frequency and polarization. To this end, we
focus again on the analysis of light radiated into the Zero-Phonon Line (ZPL) from
the two emitters, as in Chapter 3. We first provide an intuitive description of the
generation of this two-photon state. Afterwards, we use the Wigner-Weisskopf
approximation (WWA) to rigorously derive the exact two-photon state provided by
the relaxation of two emitters with arbitrary relative orientation of their transition
dipole moments. We then verify that this exact two-photon state is indeed entangled
in frequency and polarization if the transition dipole moments are perpendicularly
oriented.

5.2.1 Intuitive picture of the generation of entangled
photons from two interacting quantum emitters

We consider two two-level quantum emitters (labeled by 7 = 1,2). Emitter j
is located at position r; and has electronic excited state |e;) and ground state
lg;), as in previous chapters. For simplicity, the emitters have identical transition
frequencies we,1 = we,2 = wWo, and transition dipole moments of the same magnitude
|t1] = |p2] = p. The two emitters are contained in the zz-plane, with ris = r; —ry
aligned along the z-axis and separated by a distance r12 = |r12|, as schematically
represented in Fig. 5.1a. The two transition dipole moments are also contained
in the xz-plane, with mutually perpendicular orientation, which contrasts with
the parallel dipole moments analyzed in Chapters 3 and 4. More specifically,
we fix gy = pu(e, +e.)/vV2 and py = (e, —e.)/v/2. As discussed below, this
configuration of perpendicular dipoles allows for detecting photons polarized in the
x-direction, as well as in the z-direction, opening up the door to generate a photon
pair that is entangled in polarization.

We plot in Fig. 5.1b the dependence of the coherent dipole-dipole coupling V'
[black line, obtained from Eq. (3.44)] and of the dissipative dipole-dipole coupling
4 [brown line, Eq. (3.50)] on the distance ri12 between the two emitters in the
configuration of perpendicular transition dipole moments. We consider again two
DBATT organic molecules as reference emitters and use the molecular parameters
specified in Section 3.3, except for the Debye-Waller /Franck-Condon factor, which is
fixed at apw = 1 here (changing the value of apy is equivalent to slightly modifying
the distance, as we show in Section 5.4.2), yielding V = Vpw and 4 = 4pw. Figure
5.1b shows that the dissipative coupling 4 is very small in comparison to the
spontaneous emission rate 7 of each of the emitters, even at very short distances.
In contrast, the coherent coupling strength V', can be significantly larger than ~q if
the distance 15 between emitters is much smaller than the vacuum wavelength
Ao associated to the transition frequency wg of the emitters, \g = 2m¢/wg. As we
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Figure 5.1: Photon emission from the symmetric and antisymmetric hybrid states of two DBATT
molecules. (a) Schematic representation of two emitters located in the xz-plane, with their
relative position vector ri2 aligned along the z-axis. The transition dipole moments are oriented
perpendicularly to each other, given by p1 = u(e; + e;)/v2 and ps = u(ex — e:)/v/2. (b)
Dependence on the distance r12 = |ri2| between both emitters (normalized by the vacuum
wavelength A9 = 618 nm) of the coherent dipole-dipole coupling V' (black line) and of the dissipative
coupling 4 (brown line). V and #4 are normalized by the spontaneous emission rate vo. We fix
the combined Debye-Waller /Franck-Condon factor at apw = 1 and the refractive index of the
surrounding medium at n = 1.5. (c) Schematic level structure and relaxation paths of the coupled
system. The initial state |eje2) can relax via the symmetric state |S) = (|g1e2) + |e1g2))/V2
(transitions indicated with purple arrows) generating two photons with polarization state |es)
(corresponding to the direction of the transition dipole moment of the symmetric state, written in
purple). |eje2) can also relax via the antisymmetric state |A) = (|g1e2) — |e1g2))/V/2 (transitions
indicated with green arrows), which leads to the emission of a photon with polarization state |e.)
(corresponding to the direction of the transition dipole moment of the antisymmetric state, written
in green) and another photon with polarization state — |e.) (opposite direction to the dipole
moment of the antisymmetric state). [(d),(e)] Radiation patterns of electric point dipoles oriented
along (d) p1 + p2 x ez, corresponding to the transition dipole moment of the symmetric state
(marked by a purple arrow), and (e) @1 — p2 < e, corresponding to that of the antisymmetric
state (marked by a green arrow). The squared amplitude of the classical electric field generated
by these electric point dipoles is denoted as (d) |€ 44y |? and (€) |Ep; —ps|?, as defined in Eq.
(1.142). The grey dashed arrows indicate the y-axis direction.
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5.2. Analysis of the generation of entangled photons from two interacting QEs

consider in this chapter that the emitters have identical transition frequencies (no
detuning, § = 0), the coherent interaction leads to the formation of delocalized
states that correspond to symmetric (S) and antisymmetric (A) superpositions of
the uncoupled localized states |e1g2) and |gies) [Egs. (3.59a)—(3.59b)], which can
be written as

_ lg1ea) +1e1g2)
\/i )
\A> _ |91€2> - |€192>

= (5.24b)

Crucially, these delocalized states have almost identical decay rates v + 4 ~ 7o
(1S)) and vo — 5 = 7o (|A)), as the dissipative coupling ¥ is negligible for these
perpendicular dipole moments p; = p(e, +e.)/v2 and py = p(e, — e.)/V2.
Thus, in contrast to Chapters 3 and 4, the hybrid states that emerge when
quantum emitters with perpendicular dipole moments interact do not correspond
to superradiant and subradiant states.

We now focus on analyzing the light emitted into the Zero-Phonon Line from
two emitters separated by a short distance, starting from the doubly-excited state
lerea). The system can be prepared in this state, for example, using a pulsed laser
with frequency resonantly tuned to the two-photon resonance (w; = wp), as in
usual experiments with biexciton quantum dots [236, 241, 254]. As the hybrid
states |S) and |A) have similar decay rate for these emitters with perpendicular
transition dipole moments, the initial doubly-excited state |eje2) can decay with
almost the same probability to |S) and |4). Notably, the radiative decay from
lerea) to |S) produces a photon of frequency w_ = wy — V [Egs. (3.61) and (3.62)]
and polarization state (|e,, ) +|eu,))/V2 = |e,), which is followed by the relaxation
from |S) to |g1g2) that leads to the emission of a photon of frequency wy = wo+V
and identical polarization state (|e,) + |eu,))/V2 = |e,). This cascade emission
is schematically indicated with purple arrows in Fig. 5.1c. On the other hand,
the radiative decay from |ejes) to |A) produces a photon of frequency w; and
polarization (|e,, ) —|eu,))/v2 = |e.), which is followed by the relaxation from |A)
to |g192) that leads to the emission of a photon of frequency w_ and polarization
(lews) — lew,))/V2 = — |e) (green arrows in Fig. 5.1c). Therefore, this intuitive
analysis suggests that the two-photon state is given by

1S) (5.24a)

— |ew’w+> |ex,w_> — |ez,w_> |eZ’w+>

7 ;

where |e,,w) represents the state of a photon polarized along the direction e, and
of frequency w. |¢™%) is entangled in frequency and polarization. Notably, if the
frequency degree of freedom is erased, [¢™") reduces to the Bell state |¢_) 4 in
Eq. (5.7b). We emphasize that the intuitive argument on the generation of the
entangled photon pair provided in this section lacks information of, for example, the
directions of emission. This argument also neglects the possibility of two-photon

o) (5.25)
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emission through intermediate virtual states. These aspects will be incorporated
in the following sections.

We provide next a simple analysis of the directions of emission that are expected
to yield higher collection efficiency. To this end, we note that an electric point dipole
has a doughnut-shaped radiation pattern, with maximum (and equal) radiation
strength in the plane perpendicular to the orientation of the point dipole [121, 132].
We plot in Fig. 5.1d the radiation pattern of the transition dipole moment g1 + o
of the symmetric state |S), which is oriented along the z-direction. The radiation
from this dipole is maximal in the yz-plane. Similarly, Fig. 5.1e shows the radiation
pattern of the transition dipole moment gy — po of the antisymmetric state |A),
which is oriented along the z-direction and has maximal radiation in the xy-plane.
As a consequence, e, and —e, can be expected to be optimal directions of photon
emission because they are directions of maximal radiation for the transition dipole
moments of both hybrid states |S) and |A) (see dashed grey arrows in Figs. 5.1d
and 5.1e).

In the following, we derive the exact two-photon state resulting from the
relaxation of the two emitters, including the photon degrees of freedom of frequency,
polarization, and propagation directions. We then use the exact analytical expression
obtained to rigorously verify the intuitive arguments presented in this section on
the generation of entangled photons.

5.2.2 Wigner-Weisskopf approximation for two quantum
emitters

We derive in this section the two-photon state provided by the relaxation of two
initially excited quantum emitters. To this end, we apply the Wigner-Weisskopf
approximation (WWA), which was used in Section 1.3 to derive the spontaneous
emission rate 7o of a single emitter. We choose here the WWA over the Markovian
master equation approach, employed in Chapters 3 and 4, because the WWA
allows for a complete characterization of the electromagnetic vacuum field state,
capturing the probabilities of photon emission at arbitrary directions, frequencies,
and polarizations.

We consider that the transition dipole moments of the two emitters have the
same magnitude, p, and are contained on the xz-plane, with arbitrary orientation.
More specifically, the transition dipole moments are given by

p; = p(cosaje, +sinaje,), (5.26)

with arbitrary values of a; and as (i.e., the transition dipole moments g1 and o
are not necessarily orthogonal within this derivation). Further, the emitters are
located at positions r; within a homogeneous medium with refractive index n, with
ris =r; — Iy = ri2€, oriented again along the z-axis, as schematically represented
in Fig. 5.2. We derived in Section 3.1.3 the multipolar form of the Hamiltonian
describing the dynamics of the emitters and the electromagnetic vacuum field [Eq.
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5.2. Analysis of the generation of entangled photons from two interacting QEs

Figure 5.2: Schematic representation of the two-photon emission from two initially excited quantum
emitters. The emitters (indexed by j = 1,2) behave as two-level systems, with transition dipole
moment pt; = p(cos ajez + sinaje;), and they are located at positions r;, with 712 =71 — 72
oriented in the z-direction (axis indicated at the bottom). The relaxation of the emitters generates
two photons in electromagnetic modes (k, s) and (k’, s’) with probability amplitude ¢f? ,_,,
where s and s’ are the polarization modes and k and k’ are the wavevectors. Additionally, 6
and ¢ represent the polar and azimuthal angles, respectively, of the wavevector k in spherical
coordinates. In Sections 5.2.1, 5.2.3, 5.3, 5.5 and 5.6, we focus on the case of perpendicular
transition dipole moments, with a3 = —ap = 7/4.

(3.27)]. Particularly, the multipolar form of the interaction Hamiltonian is given by

- R n . hwy o ikrs At —ikers
H" = —Z(ujaj +/,LjUJT-> -Zz 250Tveks[akse“‘ i — a;f{se ki) (5.27)
J k,s

where we have included the influence of the refractive index n ## 1 of the host
medium by replacing ¢ — ¢/n and g9 — gon?. We recall that dLS and ags are
the creation and annihilation operators of photons in mode (k,s), and that the
wavevector can be written in spherical coordinates as

k = k(sin 6 cos e, + sin 0 sin e, + cos fe,)

5.28
= n—t}k (sin @ cos ge, + sin 8 sin pe,, + cosfe,), (5.28)

with 6§ and ¢, respectively, the polar angle with respect to the z-axis and the
azimuthal angle (see Fig. 5.2), and k = nwy/c. Additionally, the index s = 1,2
labels two orthogonal polarization modes of the wavevector k, with unit vectors
exs [Eqs. (1.137a)—(1.137b)].

The Wigner-Weisskopf approximation (WWA) consists in assuming an ansatz
|th(¢)) for the time evolution of some initial excited state [1)(0)). The ansatz is then
solved by using the Schrédinger equation, as discussed in Section 1.3 for the case
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of a single emitter. Here, we are interested in the initial state

[¥(0)) = [erez) [vac) , (5.29)

with |vac) the electromagnetic vacuum state [Eq. (1.60)]. Notably, considering
the complete interaction Hamiltonian H}"" [Eq. (5.27)] complicates the direct
application of the WWA, since this complete Hamiltonian requires a unpractical
ansatz, including states with two photons in the field and the two emitters in the
excited state, for example. This ansatz does not yield a closed system of coupled
differential equations for the probability amplitudes. Crucially, the application of
the WWA is facilitated by using the interaction Hamiltonian under the rotating-
wave approximation (RWA), which neglects the terms that are proportional to
Gjaks and to O'T T . in Eq. (5.27). More specifically, the interaction Hamiltonian
under the RWA becomes

ARWVA ZZ(gfﬁﬁ Tas + 90 650 ks) (5.30)

with coupling coefficient

Wk
QEQTLQ hY

9 = gus(r) = =

- exse™ T (5.31)
The RWA allows us to consider a practical ansatz [¢(t)), consisting of a
superposition of pure states with a fixed number of excitations (between photons
and emitters excitations). Notably, the calculations in Section 3.1.4 (where we
traced out the Hilbert space of the electromagnetic vacuum field and derived the
Markovian master equation governing the reduced dynamics of the two emitters)
showed that the RWA does not affect the spontaneous emission rate 7y, nor the
dissipative coupling 7. However, the terms neglected by the RWA in the interaction
Hamiltonian were required to capture the right coherent dipole-dipole coupling
V. Fortunately, Milonni and Knight showed a simple approach in Ref. [179] that
enables the application of the WWA together with the RWA, retrieving the correct
value of V', which we apply and discuss below. Thus, we use both the RWA and
the WWA here.
The proposed ansatz is

() = (1) exea) [vac) + Z(c§z<t> le1ga) + (1) |gle2>)&Ls jvac)

k,s
(5.32)
+Z Z Cks k’s’ |gng> aircs k vl |VaC>
k,s (k/ /)
>(k,s)

which only contains terms with two excitations in total (between photons and
emitter excitations), as the RWA is considered. ¢®¢(t) is the probability amplitude
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of finding the system still in the initial state |ejes) [vac) at time ¢, which satisfies
c(0) =1 [see Eq. (5.29)]. ¢ (t) and ¢ (t) are the probability amplitudes of
states in which, respectively, the second or the first emitter have relaxed, leading
to the generation of a photon in mode (k, s). Last, cfiz s (1) is the probability
amplitude of a state in which both emitters have relaxed, giving rise to two photons
in modes (k, s) and (k’, s’), respectively. We are mainly interested in the analytical
expression of this two-photon probability amplitude ¢? Ko (1), as it contains all the
information of the two-photon emission. We remark that in the double summation
in the second line of Eq. (5.32) each state appears and is counted only once [255],
which is indicated by the compact notation (k’, s ") > (k, s). In other words, only
one of the terms |g1 go) aLSak, [vac) and |g1g2) @ ak, ,aks |vac) [with (k,s) # (k',s")]
appear in this summation because they represent the same physical state, as
(@, ] = 0.

Next, to obtain the analytical expressions of the probability amplitudes in
Eq. (5.32), we use the Schrodinger equation in the interaction picture (Appendix
B), which is given by

P R(0) = HFN @) (o) (53)
with

ARVA() = exp {i(ﬁo + I—ifm)t/h} ﬁFWAexp[ —i(Ho + ﬁFi)f/h]
| (5.34)
_ ZZ<QEJ&? eiwomnt 4 g5 al e Z(wowk)t)
k,s j

On the one hand, the substitution of the ansatz [1(¢)) [Eq. (5.32)] on the left-hand
side of Eq. (5.33) yields

. d
dt

D100 = 15 (¢ feres) fvac) + Zz 2 (68) lerga) i, [vac)

—i—Zz ) lgrea) akG [vac) +Z Z ck9 Ks') |glgg>a};g ay [vac) ,
k,s (k',s')
>(k,s)
(5.35)
where all the probability amplitudes are evaluated at time t. On the other hand,
substituting the ansatz [1(¢)) [Eq. (5.32)] on the right-hand side of Eq. (5.33), we
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find

H™A (1) Ze““’“ )t [gi?cf;iwi?cks] le1es) [vac)

+ Z e womwn)t [91((1/): lg1ea) + 91((2/?: |€192>] c““al,, |vac)

K/ s
)

: - " 1 2 ~ A A~
+ Z Z Z el(wo i)t |:gl(<s) |6192> + gl(cs) 91€2>:| CﬁZk/s/ak//S,/aLsaL’sz |V&C>

k,s (k/,s/) k' s
>(k,s)

—i — Wy 1 2)* A PN
Ty D Y e [giﬁ*ciﬁ+g££ ] |9192) al, . af, [vac)
k,S (k/,s/) k”,s”

>(k,s)
(5.36)
Matching Eqs (5.35) and (5.36) and taking into account that [d;[(s, dysr] = Ok 05,0
and [aks, ] 0, we obtain the set of coupled differential equations
Z*C ZC 1) z(wo wk)t-’-ZCEg 2) z(wg wk)t (5373)
k,s
d .
Z@Cii(t) —¢ —i(wo— wk)t ee (2) + Z i(wo—wyr) gk/)lcks s /( )e(ks,k's'),
k', s’
(5.37b)
d 4 . ,
iﬁcii(t) _ e—l(wo—UJk)tcee(t)gl(i;) + Z el(wo_ww)tglglfcliz,k/s/(t)e(ksvklsl)v
k', s’
(5.37¢)
4 g 1 (1)« — Ot (L)% —i(wo —wi)t
Z%dﬁi,k’s’ (t) = M[ (t>gk’ i(wo—wys) + Ck/ /( )gks i(wo—wx)
1 € (2)*  —i(wo—wys (2)* —i(wo—wx)t
+(kk)[ (D)ggr e TN 7 (£)gye e 0T

(5.37d)

where e(ks,k’s’) is the Einstein function [255], which is equal to 2 if k = k'’
and s = s’, whereas it becomes equal to 1 in any other case. We have checked
that reducing the above system of differential equations to the case of a single
polarization mode s leads to the same system of equations provided in Ref. [255].

We next formally integrate the differential equation of the two-photon probability
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amplitude ¢ .. (t) [Eq. (5.37d)], which yields

Ao () =— ks, 05 k’ - / dt/ e~ (wo—wi)t! [ (¢ )gl({/)f%-c (¢ )91(«1’]
(5.38)

—(wop—w 1)* 2) %
ks k/ /dt/ (wo— kt[cig/( )gl((s) +Ck’/( )gl((s)}

Further, we substitute this equation into the differential equations of ¢;7 (¢) and
cpe(t), which are given in Egs. (5.37b) and (5.37c), respectively. Here, we describe
in detail the procedure followed after the substitution into the differential equation
of ¢;? (t) [an identical procedure is followed after the substitution into the differential
equation of ¢f(¢)]. The result of this substitution is

eg(t) _ e—z(wg wk)t ee 2)* Zzez(wg wk/)t (1)
k/ -/

|:/ dtlci‘i gkll)* —i(wo— wk/)t / dt/cii 91(3 Te—z(wo wyer )t

# [t el et s [t e e
(5.39)

The terms in the last line of this expression vanish, as demonstrated in Ref. [256].
After this demonstration, the authors in Ref. [256] limit themselves to the case in
which both transition dipole moments have identical polarization, which is not our
case.

We now assume that the probability amplitudes vary much slower in time than
the other terms inside the time integral in Eq. (5.39). As described in Section 1.3,
this approximation works very well and, additionally, allows us (i) to replace ;% ()
and ¢ (t') in Eq. (5.39) by ¢, (¢) and ¢f(t), and (ii) to extend the upper limit of
the time integral in this equation to co. As a consequence, Eq. (5.39) becomes

Z*Cii (t) _ efi(wofwk)tcee (t)g@)*

lu} w / 1 2)x
_ZZ/ dt/ 0~ Wk t t) eg( )|gk/€/‘2+c ()gl((/l/gl((/i/ .
k’s’

(5.40)

At this point, we transform the summation over k into an integral in k-space
[Eq. (1.134)]. Additionally, the calculation of the time integrals in Eq. (5.40) is

219



Chapter 5. Generation of entangled photons from two interacting QEs

facilitated by the Sokhotski-Plemelj theorem in Eq. (1.158). In this way, we obtain
d @) 2
il = e Tl T e > / d¢’ / do’ sme’/ dk' (k')
s'=1,2

2 1 (2
(wo — wk/)} |:Ck£;|gk’ "+ ciigk’s’gk’s/:|7

X |m0(wg — wir) + i p.v.
(5.41)

where all the probability amplitudes are evaluated at time ¢. Next, we decompose
the integral in the k-space on the right-hand side of Eq. (5.41) into different
contributions, which are calculated separately. Each of these contributions emerges
from the multiplication of the different terms in brackets inside the integral in
Eq. (5.41). First, the term proportional to |gk, I>p.v.{(wo — wir) "} is ignored
because it prov1des the Lamb shift induced by the free-space electromagnetic
field in the transition frequency of emitter j = 1, as described in Section 1.3.
This frequency shift is negligible for emitter transitions at optical frequencies and,
additionally, the transition frequencies estimated from experiments (e.g., via a
one-photon spectrum) already include this small shift. Thus, we consider that wg
in our model already contains the Lamb shift. Second, the term proportional to
| gk, |26(wo — wyr) provides the spontaneous emission rate g of emitter j = 1. To
demonstrate this, we use the general polarization vectors in Eqs. (1.137a)—(1.137b),
which yields

27
o Z/ d¢>/ d9'51n9’/ K’ (K')?|9), 178 (wo — wier)

s'=1,2

= v ! . — /Qﬂ / / / . 2
B (277)3/0 di'(K')* 2egn2hV mo(wo — wi) d¢’ df’ sin 6 Z 1) - ews|

s'=1,2

_ WV|NJ‘|2 /OO i ()2 —% 5wy — wir) /27r de’ /Tr df' sin 0’ | sin” o sin? ¢’
(271')3 0 annQIiV 0 0 !

2 2 p/ 2 4/ 02 7 : /s / /
+ cos® aj(cos® 0’ cos® ¢' + sin” ¢’) — 2 cos ¢y sin o cos 6’ sin @ COS¢:|

V|l’/j|2 8 /OO 12 Wk UJS’|N'|2” Y0
- T (1) 2wy — ) = SO0
" 3 ), BE) Gt mwe) = 5ot E =

(5.42)

The remaining two contributions of the integral in Eq. (5.41) are obtained
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5.2. Analysis of the generation of entangled photons from two interacting QEs

integrating the term proportional to 91(</)/ gl(f,)f. In this case, we find

2m 1
E Z/ d¢/ d951n9/ dk' ()2 gk, /gl((, T8 (wo — wie ) + i p.v.

Wy — w
5=1,2 0 K

V. o dpP / ')
- k' (K')3[r6 (wo — wie
(2r)3 YegP Ty “[mo(wo —wi) +ip.y.

Wo — Wk’
sin(k'ria)  cos(k'riz) sin(k’r12)>
(lelZ) (k/7‘12) (k/ﬁz)
sin(k'r12)  cos(k'rq2)
(Kr12)3  (K'r1a)? ﬂ

/ dwew [16(wo — wier) +ip.v.

X [cos Q1 COS a2<

+ 2sin o sin a2<

3%
47rw0

wo — Wy’
|: < sm(k 7’12) COS(k 7’12) Sin(k/T12)>
X | CcOStp COStg| — 7 3 7 3 7
(k 7’12) (k 7‘12) (k 7’12)
sin(k'ri2)  cos(k'r12)
(k'r12)3 (k/T12)2 ’

+ 2sin oy sin as (
(5.43)

The direct calculation of the frequency integral in this expression does not give the
exact dipole-dipole coupling V' [Eq. (3.44)], due to the terms ignored by the RWA
in the interaction Hamiltonian (which are proportional to &;axs and to aTaLs) as
described above. Milonni and Knight pointed out in Ref. [179] that extendmg the
lower limit of the frequency integral from 0 to —oo captures in an effective way
the contribution of the terms neglected by the RWA (as we did in the derivation
of the electric field radiated from a quantum emitter in Section 1.2.7), leading to

the rigorous expression of the coherent dipole-dipole coupling V. Following this
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argument in Eq. (5.43), we obtain

370
4w

oo
/ dwew [76(wo — wi) + i p.v.————
— 00 wo — Wk’

sin(k'ry2) n cos(k'r12) n Sin(k/Tm))
(kK'r12)3 (K'ry2)? (kK'r12)

) . sin(k'r12)  cos(k'ri2)
2 _
+ 2sIn o Sin ap < (k/’l’12)3 (k’r12)2

X {cosal cosag( -

_ 3%,

cos(kor12)
= | —cosaicosaz—r

(kor12) (5.44)
Sin(koTlg) COS(kOT12)>_
(kor12)? (kor12)?

+ (cos vy cos g — 28in g sin ag) <

Sin(ko?“lg)

370

+ -
(ko?"lg)

cos(koriz)  sin(koriz) ) T

1 {cos (1 COS iy

+ (cos a1 cos g — 2sin o sin ag)( Foria)? — Foria)?

, v
:ZV+§,

where kg = nwg/c is the wavenumber at wg. In the evaluation of the complex
integral in Eq. (5.44), we have used [179]

> 3 1 Sin(kT’12) COS(leg) sin(krlg)
3 _ _
[m dwiwi [T (wo — wi) + 4 p.v.wO — Wk] <q (kra)? q (kri)? +p (kr1a)

_ 7Tw3 (qSin(koTlg) . qCOS(koTlg) psin(k0r12)>
O\" (koria)3 (kor12)? (kor12)
) 3( cos(kori2) sin(kor12) cos(korlg)>
— MWy { 4 3 q 5 TP
(kori2) (kori2) (kor12)

(5.45)

Additionally, in Eq. (5.44) we have identified the coherent dipole-dipole coupling V/
[Eq. (3.44)] and the dissipative dipole-dipole coupling 4 [Eq. (3.50)]. Particularly,
for the transition dipole moments considered in this section [Eq. (5.26)] and
ri2 = r12€,, the coherent dipole-dipole coupling reduces to

_ 3% cos(kor1a)

14 — COS (¥] COS Qip
(kor12)

(5.46)

sin(k s(k
+ (cos vy cos g — 28in g sin ag) (bm( orz) | €os( 0T12)>}

(ko7“12)2 (koﬁz)?’
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and the dissipative dipole-dipole coupling to

~ 3"}/0 Sin(korlg)
5= COS (v] COS g ——————+
2 (ko’l"lg)
. (5.47)
+ (cos a1 cos g — 28in aq sin ag) cos(koriz) _ sin(koriz)
' ? ' 2 (kor12)? (kor12)?
Substituting Eqgs. (5.42), (5.43) and (5.44) into Eq. (5.41) we obtain
d ; 5
i () = e o (g8 — i (1) D+ iV —ig).  (5.48)

Similarly, after applying the same procedure to the differential equation of
cpe(t) in Eq. (5.37¢), we find

J | )
e () = e o (gl — i (1) D+ LDV —ig).  (5:49)

Therefore, Egs. (5.48) and (5.49) provide a pair of differential equations for the
probability amplitudes ¢;? () and cj(t), respectively, that depend only on these
same probability amplitudes and on ¢#¢(t). The coherent dipole-dipole coupling V',
the dissipative coupling 4 and the spontaneous emission rate vy appear explicitly
in these differential equations.

Furthermore, we consider that the population |c®¢(¢)|? of the doubly-excited
state |ejea) decays with rate 27y, which can be verified for example using the
Markovian master equation to trace the electromagnetic degrees of freedom and
reduce to the Hilbert space of the emitters, as done in Section 3.1.4. Specifically,
this can be checked by simplifying Eq. (3.73a) to the case of no driving. We thus
consider

c(t) = e 0 c(0) = e 0F, (5.50)

which yields |c®¢(t)|? = exp(—27ot). Consequently, we obtain the set of coupled
differential equations

d e —i(wo—w - 2)* e
() = e omedle 0t (D> _ckg(t)§ — iV + 2)%() (5.51a)
d ge —i(wo—w - 1)* e
e (0) = it stemg e X0 v+ s, (5510)

These differential equations couple only a pair of probability amplitudes, ¢, (¢) and
cpe(t), and can be solved analytically without further approximations [in contrast
to the set of infinite coupled differential equations in Egs. (5.37a)—(5.37d)]. The
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solution of this system is

2ic 7 (t) = Sl((;)exp — (M +iV)t| — ;Ag)exp[ — (% — iV)t}

I 2
_ S(*) _A(+) _ . . 9
(Sis” = Aiy )exp| — (70 + i(wo — wi))t |, (5.52a)
2ic]S(t) = Sl(;)exp — (’Yo ;— Ty V)t + Al(:g)exp [ — (70 2_ T iV)t]

(55 4 A Jexp [ ~ (ho— (w0 — wk»t} 7 (5.52b)

where we have introduced
1)* 2) %
) _ s + 94
ks (’yoj:'y)/2+z(woj:V—wk)’
(1) (2)%
() _ Iks  — Iks (5.54)
O ()24 i(wo £V —wi)’
which are Lorentzian distributions related to the emission of a single photon of
frequency wy centered around wg + V', with linewidth v & 7.
Finally, we substitute Eqs. (5. 2(1) (5.52b) into the differential equation of
2 oo (t) [Eq. (5.37d)] and solve the resulting time integral. We find

(5.53)

2e(ksk’s") )9, . (1) = — <1 — exp [ - [M +i(wo — wir + V)] })Sl(;)sl((z),

2
1 Yo+7 V S( )S(+

— exp [T +i(wp — wk + ety
+ (1 — exp [702_ +i(wo — w — ] Al({t)AfJS),
R R e O 2
+ (1 —exp| — [0 + i(2wo — wi — wk')ﬂ)
X |:S ks k/ 'k + S ’ )/SI(((?S‘)k/ - A +)A£3 'k - AkTS)/AkOS)k/:l .

(5.55)
Here, we have introduced the Lorentzian distributions
(1)= (2)*
0 Jus TG
e = : (5.56)

Yo + 1(2wo — wk — wi)’
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(1)* (2)x

AO, = T e 5.57
ksk Yo + 7:(2(4.10 — Wi — wk’) ( )

which are related to the emission of two photons at frequencies wy and wy satisfying
energy conservation wy + wy = 2wg. These two-photon emission processes can
be mediated by intermediate virtual states rather than by real eigenstates of the
system, as the leapfrog processes described in Sections 2.4.4 and 3.4.

At sufficiently long times (¢ — oo), we find that both emitters have relaxed

[i.e., ¢®¢(00) = ;7 (00) = f5(c0) = 0] and the two-photon state becomes
B =3 3 el (00) lorge) sl lvac) (5.58)
k,s (k,75/)
2 (k,s)

with the two-photon probability amplitudes given by
12|52 = 5 + 5225 - 50
2¢e(ks, k’s’)
()| 4(=) (0) +) -) (0)
Aks |:Ak’s’ - Ak’s’k:| + Af(’s’ |:A£(5 - Aksk’:|
2¢(ks, k's’)

Ciia s (00) = —
(5.59)

+

These probability amplitudes carry all the information of the two-photon emission:
directions of emission, frequencies and polarizations. As a consequence, they encode
as well the information of the degree of two-photon entanglement.

In the following, we use the analytical expression of the two-photon probability
amplitude ¢f ., (00) [Eq. (5.59)] to characterize the two-photon state resulting
when the emitters are perpendicularly oriented (Section 5.2.3), as well as to quantify
the degree of entanglement of the two-photon post-selected state obtained after
including the influence of optical filters and erasing the frequency degrees of freedom
(Section 5.3).

5.2.3 Rigorous analysis of the generation of entangled
photons from interacting quantum emitters

We show in this section that the two-photon steady state |¢)(c0)) derived in Section
5.2.2 is consistent with that expected from the intuitive argument in Section 5.2.1,
when the transition dipole moments are perpendicularly oriented.

To better characterize the two-photon state [¢(o0)) [Eq. (5.58)], we first
define the probability density for each pair of frequencies, polarization modes
and directions of emission. To this end, we use the normalization condition
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| (1h(00)[1(c0)) |2 = 1, which yields

1= > 18y ()

k,s k/ s’

[ s B (o) PV
= dQ/dQ’/ dk/ dk’ ksk's ,
/ 0 0 Z (27T)6

s,s’

(5.60)

with dQ2 and d€)’ differential solid angles that are integrated in the full space. In
the second line of this expression we have transformed the summations over k and
k' into integrals by using Eq. (1.134). Therefore, we can define

K2 (K)o (00) PV

Pk, s k' s') =
( ) S5 78) (271')6

(5.61)

as the probability density of emission of two photons in modes (k,s) and (k’,s’).
The integral of P over all degrees of freedom is one. Further, by integrating over the
full range of absolute values of the wavevectors, and summing over the polarization
modes, we can introduce the probability density for emission of two photons at
directions (0,¢) and (¢’,¢'):

D(0,¢:0',¢") = /OOo dk/ooo k' " P(k,s;K,8). (5.62)

s,s’

In contrast to P(k,s;k’,s’), the probability density D(0,#;0’,¢’) distinguishes
neither the frequencies of the photons (encoded in the absolute values of the
wavevectors) nor their polarization modes.

We consider next that the transition dipole moments are perpendicularly
oriented to each other and contained in the zz-plane, as in Section 5.2.1. Specifically,
we fix again p; = p(e, +e.)/v2 and ps = (e, — e.)/+/2, which corresponds to
oy = —ag = /4 in Eq. (5.26). We first verify that the dominant directions of
photon emission are those perpendicular to the xz-plane, as expected from the
dipole radiation patterns in Figs. 5.1d and 5.1e. To this end, we fix r12 = 0.075\¢,
yielding V' =& 3.579, and also § = ¢ = 7/2, corresponding to the wavevector
direction ex = k/|k| = e, (i.e., along the y-axis perpendicular to the xz-plane).
We plot in Fig. 5.3 the resulting probability density D as a function of #’ and ¢'.
Figure 5.3 shows two regions where the probability density D becomes larger, which
are around the directions e = k'/|k'| = e, (at 0/ = ¢/ = 7/2) and e = —e,
(¢/ = —¢' = 7/2), as expected from the simple argument in Section 5.2.1. We
emphasize that D(6, ¢; 0, ¢’') has been defined so that integrating this function
over the four angle arguments is equal to one.

Next, we analyze the two-photon state [i(c0)) for emission directions fixed
at ex = e, and ey = —e,, with intermolecular distance along the z-axis fixed
again at r12 = 0.075)\g. To this end, we plot in Fig. 5.4a the probability density
P [Eq. (5.61)] as a function of the photon frequencies wy = ke/n and wyr = k'c/n
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Figure 5.3: Dependence of the probability density D(0 = w/2,¢ = w/2;0’,¢’) on 0’ and ¢’ for two
DBATT molecules separated by a distance ri2 = 0.075\¢ along the z-axis and with perpendicular
transition dipole moments (a1 = —ag = w/4 in Fig. 5.2). These molecules have spontaneous
emission rate vo/(27) = 21.5 MHz, transition frequency wo = 2m¢/Ag corresponding to a vacuum
wavelength Ao = 618 nm, and are embedded in a naphthalene crystal with n = 1.5. We neglect
here the influence of the combined Debye-Waller /Franck-Condon by fixing apw = 1.

considering that the polarization modes s and s’ of both photons are polarized along
the z-axis direction. Specifically, we set exs = exsr = e,. We find that P takes
maximal values =~ 3.5 - 10~2 when one of the photons has frequency w, = wg + V
and the other photon w_ = wg—V, consistent with the two-photon emission via the
symmetric state |S), see purple arrows in Fig. 5.1c. We find a similar dependence
on wy and wys of P for the case in which both s and s’ are polarized along the
z-axis (i.e., exs = exsr = €), which is shown in Fig. 5.4b. The maxima have
again a value of ~ 3.5 - 1072 and are found for a photon of frequency w, and
another photon of frequency w_, related in this case to the cascade emission via
the antisymmetric state |A), which is indicated with green arrows in Fig. 5.1c.

The probability density P drastically decreases if one of the photons has a-
polarization and the other photon z-polarization. To this end, we plot in Figs.
5.4c and 5.4d the dependence of P on the photon frequencies wy = ke/n and
wir = kK'¢/n when s is polarized along the z-axis (exs = e,), and s’ along the z-axis
(exws = e;). In Fig. 5.4c, we use a colorbar with the same scale as in Figs. 5.4a
(where exs = exw s = e;) and 5.4b (where exs = ey = €,). We find that the
probability density P becomes negligible when s and s’ are orthogonal modes, in
comparison to the cases in which they are parallel. Further, we modify the scale
of the colorbar in Fig. 5.4d, which allows to quantify that the maximum values
of P when s and s’ are orthogonal (exs = e, and exss = e,) are 30 orders of
magnitude smaller than the maximum values of P at parallel s and s’ polarization
modes (Figs. 5.4a and 5.4b). Identical behaviour of P is obtained at ey, = e, and
€Ekrgt = €4.
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Figure 5.4: Characterization of the two-photon emission probability density P at directions
ex = ey and ey = —ey. We consider two DBATT molecules with perpendicular transition
dipole moments, with a1 = —a2 = 7/4 in Eq. (5.26). These molecules have o /(27) = 21.5 MHz,
vacuum wavelength A\g = 618 nm and they are embedded in a naphthalene crystal with refractive
index n = 1.5. Additionally, we fix the intermolecular distance at 712 = 0.075\g, and neglect the
influence of the combined Debye-Waller /Franck-Condon factor by fixing apw = 1. We plot P as
a function of the photon frequencies wy = ke/n and wys = k’c/n, with the polarization modes
s and s’ polarized along the directions (a) exs = ey = ez, (b) exs = ex/ys = €, and (c,d)
exs = e, and ey/yr = e,. In (c) we use a colorbar with the same scale as in (a) and (b). Panel
(d) is identical to panel (c) except that we modify the scale of the colorbar 30 orders of magnitude
to emphasize how small the values are.

Therefore, we conclude that two photons emitted along the directions ex = e,
and ey = —e, have negligible probability of having mutually orthogonal
polarization (in the basis e, and e,) in comparison to having parallel polarization,
which is consistent with the entangled photon-state in Eq. (5.25) expected from
the intuitive analysis in Section 5.2.1.

To further characterize the two-photon state |1)(c0)) at the directions of emission
ex = e, and ey = —e,, we analyze the behaviour of the complex phase of
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Figure 5.5: Characterization of the complex phase of the two-photon probability amplitude
cf(i Ks! (00). We focus on the directions of emission ex = e, and ey, = —ey, and plot the relative

phase A [Eq. (5.63)], which corresponds to the difference between the complex phase of the
two-photon probability amplitude ciik,s, (00) at exs = eyxryr = e and the complex phase of the
two-photon probability amplitude at exs = exryr = e,. In the right panel we show a zoom of
this relative phase around wy = wo — V and wyr = wo + V (highlighted with a green box in the
left panel). The parameters used in the simulations correspond to two DBATT molecules with
perpendicular transition dipole moments, a1 = —a2 = 7/4 in Eq. (5.26). These molecules have
~Y0/(27) = 21.5 MHz, vacuum wavelength Ao = 618 nm and they are embedded in a naphthalene
crystal with refractive index n = 1.5. Additionally, we fix the intermolecular distance along the
z-axis at r12 = 0.075\g, and neglect the influence of the combined Debye-Waller/Franck-Condon
factor by fixing apw = 1.

cﬁik/s/(oo). In Fig. 5.5, we plot the relative phase A between the two-photon
probability amplitude at exs = ex’sr = e, and the two-photon probability amplitude
at exs = ey = €,, again as a function of the frequency of the two photons. More
specifically,

A = phase [cﬁ’k,s, (oo)]
Ex=—€y/ =€y ,ks—€y/ /=€y

(5.63)
— phase [cﬁ‘g,k,s, (oo)]

Ex=—"E€y/ =€y, ,Exs=E€y/ s =E>

We find A = 7 near the photon frequencies that yield maximal probability density
P of two-photon emission (i.e., one photon at w; and another photon at w_),
as can be more easily appreciated in the zoom in the right panel of Fig. 5.5.
This difference of phase agrees with the relative phase between |@,w_) |z,w;) and
|z,wy) |z, w_) in Eq. (5.25). However, deviations in the photon frequencies of the
order of ~ vy are sufficient to strongly modify the relative phase, which implies
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deviating from the maximally entangled state in Eq. (5.25). Consequently, filters
with very narrow linewidths are needed to post-select a highly entangled state, as
we show in the next section.

5.3 Post-selection of a highly entangled
two-photon state

We show in this section that a two-photon state highly entangled in polarization
can be post-selected using optical filters and color-blind detectors. We consider
that Alice detects light propagating in the direction e, and Bob does it in the
direction —e,, as schematically represented in Fig. 5.6. The post-selected state is
based on the detection of a single ZPL photon by Alice and a single ZPL photon
by Bob. Thus, this state is determined by the two-photon probability amplitudes
o (00) with ex = e, and e = —e,. Additionally, Alice (A) and Bob (B) use
optical filters with Lorentzian profiles given by

r/2

(I'/2) +i(w —wy)’
r/2

(T'/2) +i(w—w-)"

Fy(w) = (5.64a)

Fp(w) = (5.64b)
These profiles assume that both optical filters have the same linewidth I', but while
Alice filters light around w4, Bob does it around w_.

Moreover, as the detectors are color-blind, the post-selected state has only
polarization degrees of freedom and is thus properly described by a two-photon
density matrix ppost (rather than by a pure state) due to the erasure of frequency
information (Appendix A). To obtain the post-selected state, we follow the usual
tomography procedure [257, 258]. In the orthogonal basis of polarization formed
by the e, and e, directions (which are also orthogonal to the detection directions
ex = e, and ey = —e,), the elements of the density matrix ppos; are given by

1

<uul| ﬁpost |35l> =

post/o de/O dwk/ <u(wk)u/(wk’)‘w((}0)>
X (1(00) s wi)s' (wie)

where u, u’, s, and s’ are polarization modes with unit vectors e, or e.. Additionally,
|s(wi) s’ (wyr)) is a two-photon pure state that (i) involves a photon of frequency wy
propagating towards Alice (ex = e,) and a photon of frequency wys propagating
towards Bob (e = —e,), and (ii) accounts for the influence of the optical filters.
More specifically, this state is given by

(5.65)

|s(wi)s' (wie)) = Falwi) Fp(we)al afl,, [vac) . (5.66)

k=e,nwy/c,k'=—eynwy/c
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Figure 5.6: Schematic representation of the post-selection procedure. The transition dipole
moments of the emitters are assumed to be contained in the xz-plane and perpendicularly oriented
to each other (w1 = —a2 = /4 in Fig. 5.2). Blue circles represent photons emitted at frequency
& wy = wo + V, while red circles correspond to photons emitted from the interacting system at
frequency ~ w_ = wg — V. Alice detects only photons emitted at ex = ey and Bob does it at
ey = —ey. Additionally, Alice uses a filter with Lorentzian profile F4 (w), with linewidth I" and
central frequency w4, whereas Bob uses a filter with Lorentzian profile Fg(w), with linewidth T'
and central frequency w_.

Last, we have included in Eq. (5.65) the normalization factor
Mo =3 / dio, / duse | (46(00)s(wn)s” (wie)) [ (5.67)

which guarantees that Trppest = 1.

We quantify next the degree of entanglement of the two-photon post-selected
state ppost and its dependence on the separation distance 712 between the emitters
as well as on the linewidth I" of the filters. To this end, we compute the concurrence
C(ppost) [Eq. (5.23)], which quantifies the degree of polarization-entanglement
between the two photons (0 < C < 1, with C = 1 for maximum entanglement, as
discussed in Section 5.1). We consider again two DBATT molecules and plot in
Figure 5.7a the dependence of 1 — C(ppost) on I' (normalized by ~yg) and on 12
(normalized by Ag). We find that filters with very narrow linewidth (I'/~yo < 0.1) are
needed to obtain a highly entangled post-selected state (1—C < 1072). Additionally,
at I'/vo < 0.1 the dependence of the concurrence on 719 is very small for the range
of distances analyzed here (the behaviour at larger separation distances is analyzed
in Section 5.6). We attribute the necessity of very narrow filters to the high
sensitivity to the frequency dispersion of the relative phase A between the two-
photon probability amplitude ¢g? ., (00) at s = s’ = e, and the corresponding
e (00) at s = 5" = e, [both of them evaluated at ex = —ew = e, see Eq.
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Figure 5.7: Characterization of the two-photon post-selected state ppost. The dependence on the
linewidth I' of the filters (normalized by the spontaneous emission rate 7o) and on the distance
r12 along the z-axis between the two emitters (normalized by \g) is plotted for (a) 1 — C(ppost)
[where C(ppost) is the concurrence], (b) 1 — F(ppost, |¢*%) (¢*?*|) [where F(ppost, |¢*%) (¢*7]) is the
fidelity of ppost With respect to the Bell state |¢*?) = (|ezes) — |e-e=))/v/2], (c) the normalizing
factor Npost of the density matrix divided by its maximum value Ng;gf in the I and r12 range
plotted here, and (d) 1 — P(ppost) [where P(ppost) is the purity of ppost]. The two emitters
are DBATT molecules, with v9/(27) = 21.5 MHz, vacuum wavelength Ao = 618 nm, and
embedded in a naphthalene crystal with refractive index n = 1.5. The transition dipole moments
of these molecules are contained in the xz-plane and perpendicularly oriented to each other

(a1 = —ag = w/4 in Fig. 5.2). Alice detects only photons emitted at ex = e, and uses a
Lorentzian filter centered around w4 = wg + V, whereas Bob detects only photons emitted at
ey’ = —ey and uses a Lorentzian filter with central frequency w_ = wg — V.

(5.63)]. As discussed in Section 5.2.3 and shown in Fig. 5.5, if one of the photons
has frequency wy and the other one w_ we find A ~ 7 (corresponding to a Bell
state, with maximum entanglement), but small deviations in the photon frequencies
drastically change this value of relative phase.
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5.3. Post-selection of a highly entangled two-photon state

Moreover, to further verify the simple argument in Section 5.2.1, we analyze
the similarity between the post-selected state ppost and the polarization Bell state

_ |exe:c> - |ezez>

V2

expected from Eq. (5.25) once the frequency degrees of freedom are erased. |¢*?*)
corresponds to the Bell state |¢_) [Eq. (5.7b)], with horizontal polarization in the
x-axis (H = e,) and vertical polarization in the z-axis (V = e,). We compute the
fidelity of ppost With respect to such state, which is given by

F(Ppost: [92) (9Z]) = | {Z] post 192, (5.69)

according to Eq. (5.21). Figure 5.7b shows the dependence on T'/~q and on r12/\g
of 1 — F(ppost, |¢™%) (¢*?]). We find again that very narrow filters are required
to minimize the deviation of the post-selected state from |¢**). Additionally,
decreasing the intermolecular distances ri5 for such narrow filters (I'/vy < 0.1)
further minimizes the deviation of the post-selected state from |$*?).

These findings indicate that filters with very narrow linewidths are required to
obtain a highly polarization-entangled post-selected state. However, the probability
of Alice and Bob receiving a single photon each decreases as the filters become
narrower. To quantify how much this probability is reduced in comparison to the
case in which broad filters are used, we analyze the factor Npest, given by the trace
of ppost before normalization [Eq. (5.67)]. We plot in Fig. 5.7c the dependence on
['/~0 and on 712/Ag of Npest, divided by its maximum value Nyt obtained within
the range of linewidth and intermolecular distance explored in this figure. For very
narrow filters (I’ ~ 10*2%), Npost can be up to 6 orders of magnitude smaller
than for broad filters (I" = 10vy). Thus, to choose the optimal spectral widths
of the filters in experiments, it is necessary to balance the degree of two-photon
entanglement obtained and the probability of detecting two photons, as decreasing
values of I' increase the concurrence of the post-selected state but at the cost of
lowering Npost/Npoat -

Last, to gain additional information on the post-selected state ppost, we analyze
the loss of purity that occurs due to the erasure of the frequency information
induced by the post-selection. To this end, we use the standard measure of purity
of a quantum state (see Appendix A), which is defined as

|¢™*) , (5.68)

P(ﬁpost) = Tr(ﬁ}%ost)a (5.70)

and known as purity. P(fpost) is bounded between 1/2 (maximally mixed state)
and 1 (pure state). We plot in Fig. 5.7d the dependence of 1 — P(ppost) on I'/vo
and on 713/XAg. We find that the purity of the post-selected state decreases with
the linewidths of the filters and that 1 — P(ppos;) exhibits a very similar behaviour
to that of 1 — C(ppost) in Fig. 5.7a.
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Chapter 5. Generation of entangled photons from two interacting QEs

5.4 Robustness of the photon entanglement

We have shown in Section 5.3 that a two-photon state highly entangled in
polarization can be post-selected if the transition dipole moments of the emitters
are perpendicularly oriented. Additionally, we have neglected the influence of the
combined Debye-Waller /Franck-Condon factor in this analysis, by setting apw = 1.
We now show that the high degree of photon entanglement is robust against small
misalignments in the orientation of the transition dipole moments, as well as against
the value of the combined Debye-Waller/Franck-Condon (apw # 1).

5.4.1 Misaligments in the orientation of the transition
dipole moments

We first verify that the high values of concurrence and fidelity are robust against
small misalignments in the orientation of the transition dipole moments. To this
end, we recall the general expressions of the transition dipole moments in Eq. (5.26),
where the angles a; and ay describe the orientation of the dipole moments within
the xz-plane. Following the same procedure as in Section 5.3, we compute the
post-selected state ppost as a function of a; = —ap, again at detection directions
ex = e, and ey = —e,, which are perpendicular to the xz-plane in which the
molecules are contained.

We plot in Fig. 5.8a the dependence on a3 = —ag of 1 — C(pPpost) (blue
dots) and 1 — F(ppost, |¢**) (¢**|) (orange dots), which reach minimal values at
a1 = —ag = w/4, corresponding to perpendicular transition dipole moments.
Crucially, we find very low values of 1 — C(ppost) and 1 — F(ppost |¢*%) (¢**|) also
for moderate deviations from «; = —ae = 7/4, which indicates that the two-
photon post-selected state is highly entangled even if the dipoles are not exactly
perpendicular.

5.4.2 Influence of the Debye-Waller/Franck-Condon factor

We show next that the combined Debye-Waller /Franck-Condon factor apw does
not affect significantly the high values of concurrence obtained in Section 5.3. The
theoretical description of the interaction between the two emitters can effectively
account for the influence of apw by modifying the expressions of the coherent
dipole-dipole coupling V' [Eq. (5.46)] and the dissipative coupling 4 [Eq. (5.47)],
as discussed in Section 3.1.5. More specifically, both coupling parameters are
additionally multiplied by apw, so that V is replaced by Vpw = apwV and 7 is
replaced by Apw = apw?. As discussed in Section 5.2.1, the dissipative coupling
4 is small in comparison to the spontaneous emission rate 7 for perpendicular
transition dipole moments (see the brown line in Fig. 5.1b). As a consequence,
changing apw mostly affects the coherent dipole-dipole coupling Vpw, in a similar
way as changing the distance r12 between the emitters. Thus, if we consider
apw # 1, the results obtained in previous sections can be reproduced to good
accuracy by modifying 715 appropriately so that the coherent dipole-dipole coupling
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Figure 5.8: Robustness of the polarization-entanglement of the two-photon post-selected state
Ppost- The two emitters are DBATT molecules, with ~/(27) = 21.5 MHz, vacuum wavelength
Ao = 618 nm, and embedded in a naphthalene crystal with refractive index n = 1.5. The detection
directions are fixed at e = ey and ey, = —ey. Filters with linewidth I'/4o = 10~2 are considered.
(a) Behaviour of 1 —C(ppost) (blue dots) and 1 —F (ppost, |¢*7) (¢*%|) (orange dots) as a function of
the angles oy = —ag, with intermolecular distance fixed at r12 = 0.05A\¢ and apw = 1. Here, o;
gives the orientation of the transition dipole moment p; = p(cos ajey +sin aje;) on the zz-plane.
Thus, the emitters are perpendicularly oriented at a1 = —a2 = /4. C(Ppost) is the concurrence
and F(ppost, |¢*%) (¢*?|) is the fidelity of the post-selected state pposy with respect to the
maximally entangled state |¢*#). (b) Dependence on apw of (Clapw]—Clapw = 1])/Clapw = 1],
corresponding to the deviation of the concurrence C(ppost) from its value at apw = 1 [which is
fixed in the rest of this chapter, including panel (a) of this figure]. The coherent dipole-dipole
coupling is fixed at Vpw = Vapw = 11.17vp, which corresponds to r12 = 0.05\9 at apw = 1.
Alice detects only photons emitted at ex = e, and uses a Lorentzian filter centered around
wy = wo + Vpw, whereas Bob detects only photons emitted at ey, = —e, and uses a Lorentzian
filter with central frequency w_ = wp — Vpw.

remains fixed according to

3 in(k k
Vow = aDW% (cos @y cos g — 2 sin arg sin arg) (Sl(iirjgz) C(()li(()r?;n)l;)>
cos(korlg)]

— COS (¥ COS (g (kor1a)
0712

(5.71)

To rigorously verify that the influence of apw in 4pw does not alter the high
values of concurrence reported in Section 5.3, we plot in Fig. 5.8b the deviation
of C(pPpost) from its value at apw = 1 for different values of combined Debye-
Waller /Franck-Condon factor. Additionally, we have fixed I' = 10~27, and the
dipole-dipole coupling at Vpw = 11.17p, the same as in Fig. 5.7 (where apw = 1
and 115 = 0.05\g). As Vpw is fixed, the variation of apw in Fig. 5.8b only affects

235



Chapter 5. Generation of entangled photons from two interacting QEs

the weak dissipative dipole-dipole coupling, according to

COS(k()TlQ) B Sin(korlg) >
(kor12)? (kor12)?

- 30 . .
TpW = apw =~ (cos a cos ag — 2 sin v sin )

Sin(k0T12):|
+ cos a1 COS g ————
! > (kor12)

(5.72)

Figure 5.8b shows that the maximum deviation of the concurrence with respect to
the value that it takes at apw = 1 is ~ 6 - 10~® and occurs at apw — 0. Thus,
the only relevant effect of apw for perpendicular transition dipole moments is the
scaling between Vpw and ri2, as expected from the simple arguments in Section
5.2.1.

5.5 Effect of a lens on the two-photon probability
amplitudes

We have focused so far on characterizing the degree of entanglement of the post-
selected state ppost when Alice and Bob detect the photons emitted at directions
ex = e, and ey = —e,, respectively. We have shown that a highly entangled
two-photon state can be post-selected by using filters with very narrow bandwidth
(Fig. 5.7a), but these narrow filters notably reduce the photon collection (Fig.
5.7¢). In experiments, light is collected by a lens, whose numerical aperture is key
(together with the filters width) to determine the collection efficiency. A complete
analysis on the influence of lenses in the photon entanglement goes beyond the scope
of this thesis. However, to gain an understanding of the expected impact of the
lens on the two-photon probability amplitudes, we consider in this section the effect
of deviations in the detection direction and show that moderate values of them are
not expected to significantly affect the high values of fidelity F(ppost, |¢**) (¢**])
of the post-selected state ppost With respect to the Bell state |¢**). We focus on
the analysis of the fidelity F(ppost, |¢*7) (¢*?|) because this quantity measures the
similarity between between ppos; and a fixed state (in our case, |¢*?)). Thus, we
expect that if the fidelity is high over all individual angles collected by a lens of a
given numerical aperture, the fidelity with respect to this same state will also be
high. For example, if the state of the emitted light (after the lens) is |¢**) for all
angles, we expect that the whole collected beam will be maximally entangled and
that this entanglement can be easily measured by using two polarizers.

More specifically, we consider that Alice detects light propagating in some
direction ex = ex(d,¢) satisfying ex - e, > 0, whereas the detection direction
of Bob is again fixed at eys = —e,. Additionally, Alice and Bob measure the
polarization of photons in the same basis {|e;),|e.)}. However, the polarization
directions of the photons propagating towards Alice are generally different to e,
and e, (except at § = ¢ = w/2, which is the case analyzed in previous sections).
To collimate the photons and rotate their directions of polarization, guaranteeing
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5.5. Effect of a lens on the two-photon probability amplitudes

that they are polarized in the zz-plane, we consider that Alice uses a lens oriented
normally to the y-axis. The effect of the lens is included through the application
of a unitary transformation to the two-photon probability amplitudes of the post-
selected state, as we show next.

We first recall that the probability amplitude ¢}, ., (c0) [Eq. (5.59)] can be
obtained for any two polarization modes indexed by s, with unit vectors ey, as
long as these unit vectors are mutually perpendicular and also perpendicular to
ex. The same holds for the two polarization modes indexed by s’. For example,
in the calculations performed in Sections 5.2.3-5.4, we used e, and e, as the two
ey unit vectors, as well as the two ey unit vectors. The reasons for this choice
were that e, and e, are orthogonal to the propagation directions ex = —ey’ = e,
considered in those sections, and also that Alice and Bob measured the polarization
in the basis {|e;),|e.)}. Here, we use again the polarization units vectors e,
and e, in the calculation of the two-photon probability amplitudes ¢f?,, ., (c0)
for the photon propagating towards Bob (ex = —e,), who does not use any
lens. In contrast, regarding the photon propagating towards Alice, we choose that
its polarization unit vectors are given by the usual transverse-electric (TE) and
transverse-magnetic (TM) modes (before passing through the lens). Thus, these
unit vectors are perpendicular (exTr) and parallel (exrm) to the optical plane of
incidence, which is formed by the wavevector ex (8, ¢) and the direction e,, which
is normal to the lens. In this way, these unit vectors are given by

exTE X cos fe, — sin 6 cos ¢e,, (5.73a)

ext™ X sin’  cos ¢ sin e, — (cos® § + sin? f cos® ¢)e, + sin 6 cos sin pe.,
(5.73D)

as schematically represented in Fig. 5.9a.

This choice of polarization unit vectors for the photon propagating towards
Alice facilitates the calculation of the influence of the lens on the two-photon
probability amplitudes. On the one hand, the TE-mode is not affected by the lens
[132]. Thus,

el = exrn, (5.74)

where (1) is used to label the direction of the polarization after passing through
the lens. On the other hand, the TM-mode becomes perpendicular to the y-axis
and to the TE-mode after passing though the lens [132] and can be obtained as
eﬁ%M o sin 0 cos e, + cosfe.,. (5.75)
Importantly, the two-photon probability amplitude ¢/9,, , (co) associated with the
photon propagating towards Alice with polarization s = TE before passing through
the lens coincides with the two-photon probability amplitude after the photon has
passed the lens and is polarized along the direction el({lr)FE. In the same way, the
two-photon probability amplitude ¢4, (co) for the photon propagating towards
Alice in the TM-mode is equal to the two-photon probability amplitude of the
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Figure 5.9: Effect of the detection direction on the two-photon post-selected state. (a) Scheme
of the considered setup, including the rotations in the polarization unit vectors of the photon
propagating towards Alice produced by a lens oriented perpendicular to the direction e,. The
photon detected by Alice is emitted in the direction ex = ek (0, ¢) (in blue), where 6 and ¢ are
the polar and azimuthal angles of the wavevector k (see the Cartesian coordinate system plotted
in grey). This photon has orthogonal polarization modes TE (with unit vector perpendicular
to the plane of incidence formed by ey and ey) and TM (with unit vector contained in the
plane of incidence). The TE and TM polarization modes have unit vectors exrg (in purple)
and exrM (in green), respectively. The lens (dashed grey line) rotates such unit vectors, so
that the photon propagates along the y-axis and it becomes polarized in the xz-plane. The

l(cl")[‘E and el Bob detects a photon

polarization unit vectors after the lens are denoted as e KTM*

propagating in the direction ey = —e, (in red). Alice and Bob use a Lorentzian filter each,
centered around wy = wo + V (Alice) and w— = wg — V' (Bob). (b) Dependence on the detection
direction ex = ek (0, ¢) of Alice of the deviation of the post-selected state ppost from the Bell

state |¢*%) = (leses) — |e-e.))/v/2, which is quantified through 1 — F(ppost, |¢*%) (¢*2]).

photon polarized along the direction el((lq):M after the lens.

Furthermore, as previously mentioned, Alice (and also Bob) measures the
photon polarization in the basis {|e,) ,|e.)}. To obtain the two-photon probability
amplitudes in this basis, a unitary transformation is performed, which can be
written as

Chyme /s CRa—TE K5/
Lgy = } = [R] [ng ' ] : (5.76)
ks=e, k’s’ ks=TM,k’s’
The probability amplitudes on the right-hand side of this equation (values before
the lens) can be calculated directly from the analytical expression in Eq. (5.59).
Importantly, the unitary matrix [R] is exactly the same one that transforms the
unit vectors

@)
e, e
L } RN (5.77)
* kTM
Thus, this matrix is given by
= 1 cosf sin @ cos ¢
= V/cos2 6 + sin? § cos? ¢ {— sinfcos¢  cosf (5.78)

238



5.6. Entangled photons from two distant emitters

Therefore, the post-selected state ppost can be obtained using (i) Eq. (5.65), and
(ii) the two-photon probability amplitudes ¢ _, . and ¢f_, ., obtained from
application of Eq. (5.59) and Eq. (5.76).

We plot in Fig. 5.9b the dependence of 1 — F(ppost, |¢**) (¢**|) on 6 and
¢ for two DBATT molecules at ri2 = 0.05Ag and I' = 1072y,. We find
1 — F(Pposts |¢™) (¢**|) < 1072 over a range of angles covering a large solid angle.
Therefore, one can conclude that collecting the light with a lens of such solid
angle would increase collection while the state can still be expected to be highly
entangled.

5.6 Entangled photons from two distant emitters

In this section, we analyze the fidelity and concurrence of a post-selected state for
larger values of intermolecular distance 715 than those analyzed in previous sections.
This analysis indicates that achieving large entanglement at fixed directions
remains possible, but that the two-photon state is less promising for practical
applications once the effect of a collecting lens is considered. This difference
highlights the advantage of quantum emitters at short separation distances for
practical entanglement generation.

We first give a simple argument to justify why a highly entangled two-photon
state can be again post-selected from the emission of two far away emitters with
orthogonal transition dipole moments p; = p(e,+e.)/v2 and ps = p(e,—e.)/v?2
and identical transition frequencies. At sufficiently large separation distance 712
(along the z-axis), the dipole-dipole coupling becomes negligible (Fig. 5.1a). Thus,
the eigenstates of the system are simply |g1g2) (with eigenvalue —hwy), |g1e2)
(with eigenvalue 0), |e1g2) (with eigenvalue 0) and |ejeq) (with eigenvalue Fuvp),
as schematically represented in Fig. 5.10a. The radiative decay from the doubly-
excited state generates two-photons at frequencies wg, one of them with polarization
ey, and the other one with polarization e,,, as they are generated from the
independent relaxation of each emitter. Thus, the post-selected state becomes a
superposition of two detection possibilities: (i) the photon propagating towards
Alice (in the direction e,) having polarization e,, and the photon propagating
towards Bob (in the direction -e,) having polarization e,,,, and (ii) the opposite
situation, in which the photon propagating towards Alice is polarized along the
direction e,, and the photon propagating towards Bob is polarized along the
direction e,,. Thus, we expect that the two-photon state is given by

. |eu1>A |eu2>B + |euz>A |eu1>B

|¢(7“12 — OO)> - \/i

_ |ex>A |ez>B - ‘eZ>A |62>B = |77

V2

where in the second line we have used [ey,) = (les), + |eZ>X)/\@ and ley,), =
(lez), — |eZ>X)/\/§. We thus obtain that the state [1)(rj2 — o0)) expected for

(5.79)
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Figure 5.10: Characterization of the post-selected state for large separation distances ri2 between
the emitters. (a) Schematic representation of the energy levels and decay paths for two uncoupled
emitters. The emitters are assumed to have identical transition frequencies wo (in brown) and thus
the relaxation of any of the emitters produces a photon with this frequency. The transition dipole
moments of the emitters are perpendicularly oriented to each other, with e;; = (ex + e.)/V2
and ey, = (ep — ez)/\/i. The relaxation of emitter j leads to the emission of a photon with
polarization state |en;). (b) Dependence on r12/Ag of 1 — C(ppost) (blue solid line) and of
1 — F(ppost, |9*%) (¢*?|) (orange solid line). In this panel we consider that Alice detects photons
emitted in the direction e, and Bob does it in the direction —e,. The inset corresponds to a zoom
of 1 —C(ppost) and 1 — F(Ppost, |¢*%) (¢*?|) at the interval 0.05 g < r12 < 0.45X¢, corresponding
to the dashed grey box. [(c),(d)] Dependence of 1 —F(ppost, [¢*7) (¢*?|) [with F(ppost, |¢**) (¢*%])

the fidelity with respect to the Bell state (|ez) 4 |€x) 5 — |ez) 4 |e=)5)/V/2] on the direction of
detection k = k(6, ¢) of Alice for separation distances (c) r12 = Ao, and (d) r12 = 10Xp. 6 and ¢
are the polar and azimuthal angles of the wavevector k in spherical coordinates, see the sketch in
Fig. 5.9a. The direction of detection of Bob is fixed at ey, = —ey. The minimum value of the
colormap in (d) is saturated to facilitate a better comparison with other colormaps in which the
behaviour of the fidelity is also analyzed. In panels [(b),(c),(d)] we consider that the emitters are
DBATT molecules, with v9/(27) = 21.5 MHz, vacuum wavelength A9 = 618 nm, and they are
embedded in a naphthalene crystal with refractive index n = 1.5. Alice and Bob use a Lorentzian
filter each, centered around wi = wp + V' (Alice) and w— = wg — V' (Bob).

emitters separated by very far distance is identical to the state |¢**) expected
for very short separation distances r12 (see Sections 5.2.1 and 5.3), although the
physical mechanism describing the generation of the photon pair is different, as
well as the photon frequencies.

Next, following the procedure described in Section 5.3 of the main text and
considering again two DBATT molecules as reference emitters, we calculate the
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concurrence C(pposy) of the post-selected state (at ex = —eyr = e,) for increasing
separation distances, as well as the fidelity F(ppost, |¢**) (¢**|) with respect to the
Bell state |¢(ri2 = 00)) = [¢*”). Figure 5.10b shows 1 — C(fpost) (solid blue line)
and 1 — F(Ppost, |¢*%) (¢*?]) (orange blue line). We find that the concurrence and
the fidelity, and thus the entanglement, can be maximized in two different ways.
On the one hand, when the coherent dipole-dipole interaction between the emitters
is significant (at short separation distances r12), the photon entanglement increases
for decreasing values of r12 (see the inset in Fig. 5.10b). On the other hand, if the
dipole-dipole interaction is weak (at large separation distances ris), the photon
entanglement increases for larger values of r12, which is consistent with the simple
argument given in the previous paragraph. As a consequence, we observe in Fig.
5.10b that 1 — C(ppost) reaches a maximum value (corresponding to lower photon
entanglement) at an intermediate regime of separation distances (ri2 ~ 0.35X¢),
where the dipole-dipole interaction is not very weak nor very strong.

However, we show next that despite the high values of concurrence obtained
at large separation distances 712, we do not expect such a configuration to be
practical for applications in quantum technologies. To this end, we analyze the
two-photon post-selected state under different detection directions at this large
separation situation. As discussed in Section 5.5, we expect that the two-photon
state measured in experiments including lenses is highly entangled if large values
of fidelity with respect to a fixed Bell state are obtained at all directions over
the solid angle of collection (given by the numerical aperture of the lens). We
plot in Fig. 5.10c the dependence of 1 — F(ppost, |¢™*) (¢*?]) on the detection
direction of Alice at r19 = A\¢ (with the detection direction of Bob again fixed at
ex = —e,), where the fidelity F(ppost, |¢**) (¢**|) with respect to the Bell state
|¢*%) = |1h(r12 — 00)) is obtained following the procedure described in Section 5.5.
We find that 1 — F(ppost, |¢™%) (¢**]) drastically increases [i.e., F(Dpost, |¢**) (¢**|)
drastically decreases| under small deviations from 6 = w/2. This deviation
becomes more extreme for increasing separation distances, as shown in Fig. 5.10d,
where we have fixed r1o = 10)\g. In particular, by examining the variation of
1 — F(ppost, |¢*%) (¢**|) as a function of § at fixed ¢ = 7/2 in Figs. 5.10c and
5.10d, we find that the FWHM of the central dip of 1 — F(pfpost, |¢™) (¢*7]) is
approximately 10 times larger at 712 = Ag (Fig. 5.10c) than at r15 = 10X\ (Fig.
5.10d). Therefore, we expect that obtaining a highly entangled two-photon state
from two quantum emitters separated by large distances might turn out very
challenging in practice, once the collecting lens is accounted for, in contrast to the
case of short separation distances discussed in Section 5.5.

5.7 Summary and conclusions

We have first introduced in this chapter the concept of quantum entanglement,
focusing on the case of two qubits and taking as a reference the polarization degree of
freedom of two photons. Further, we have presented the entanglement entropy and
the concurrence, which serve to quantify the degree of polarization-entanglement
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Chapter 5. Generation of entangled photons from two interacting QEs

between two photons.

Moreover, we have provided a demonstration that two interacting quantum
emitters with two-level-system behaviour can be used as a source of entangled
photons. These quantum emitters can represent a variety of systems (for example,
organic molecules, trapped ions, quantum dots, atoms, and diamond-color centers),
which provides a large technological versatility to implement this scheme for
entanglement generation. For example, emission of entangled-photon pairs in the
visible range could be obtained in state-of-the-art experiments with interacting
organic molecules at cryogenic temperatures [1, 92, 99, 200]. To show the robustness
of the proposal, we have first derived the dynamics of the quantum state of the
electromagnetic field interacting with two quantum emitters using the Wigner-
Weisskopf approximation. Considering that the emitters are initially excited and
have perpendicular transition dipole moments, we have demonstrated that a highly
polarization-entangled two-photon state can be post-selected. More specifically, we
consider that Alice and Bob are located at the normal directions to the transition
dipole moments of the emitters and, additionally, each of them use an optical
filter. We have found that the entanglement (quantified through the concurrence)
increases with decreasing the spectral widths of the filters. Additionally, the fidelity
of the post-selected state with respect to a fixed Bell state approaches the maximum
value of one as the separation distance between the emitters becomes very small.
We have also verified that this fidelity is high even if light is detected with some
deviation from the normal direction to the dipole moments, which indicates that
lenses could provide larger collection efficiencies without disturbing significantly
the photon entanglement. We have also checked that the high photon entanglement
is robust against misaligments in the orientation between the transition dipole
moments and against the influence of the combined Debye-Waller/Franck-Condon
factor.

Importantly, the optimal values of spectral widths of the filters in experiments
require an appropriate balance between the degree of two-photon entanglement of
the post-selected state (which increases with decreasing the bandwidth of the filters)
and the probability of two-photon detection (which decreases with the bandwidth
of the filters). Future theoretical analyses should address the complete impact of
lenses and finite-size detectors and/or the assistance of optical cavities to improve
the collection efficiency without affecting the degree of two-photon entanglement
[259, 260].

These results show that interacting quantum emitters can produce highly
polarization-entangled photon pairs, with large versatility and adaptability, and thus
become very promising building blocks for quantum communication, cryptography,
sensing and imaging.
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We have explored in this thesis the emission of light from two interacting quantum
emitters, with the aim of achieving a more complete fundamental understanding and
characterization of this phenomenon, as well as unveiling potential applications of
interacting quantum emitters as light sources. To this end, we have first established
a solid theoretical framework, which we summarize in the following;:

e In Chapter 1, we have provided a detailed and comprehensive description
of the interaction between the electromagnetic vacuum field and a single
quantum emitter. In particular, we have derived the electromagnetic far-
field radiated by the emitter and introduced the concept of spontaneous
photon emission using two complementary approaches: the Wigner-Weisskopf
approximation and the Markovian master equation.

e In Chapter 2, we have provided the normalized correlation functions
introduced by Glauber to quantify the degree of optical coherence of quantum
light. Special attention has been placed on the description of the second-
order correlation function, or intensity correlation, and its connection with
the photon emission statistics of the source. We have discussed both the
color-blind and the frequency-resolved intensity correlations and illustrated
their behavior for the simple case of a single quantum emitter.

e In Chapter 3, we have derived the standard Hamiltonian describing the
interaction between the electromagnetic vacuum field and two quantum
emitters, which has served as the key starting point for the results obtained
in this thesis. By tracing out the Hilbert space of the electromagnetic vacuum
field, we have obtained the usual Markovian master equation describing
the reduced dynamics of the two quantum emitters. This equation reveals
that the electromagnetic vacuum field can mediate the interaction between
the emitters, in addition to inducing their spontaneous emission. We have
also presented an effective modification of this master equation to describe
the dynamics of two interacting solid-state quantum emitters, incorporating
the influence of the internal vibrations of the emitters and the phonons of
the environment on the emitter-emitter interaction through the combined
Debye-Waller /Franck-Condon factor.
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The main results of this thesis are presented in Chapters 3-5. We discuss in
the following our conclusions and possible future research directions:

e In Chapter 3, we have considered two interacting solid-state emitters with
parallel transition dipole moments, leading to the emergence of superradiant
and subradiant states. We have then performed a systematic analysis of
both the color-blind intensity correlation of Zero-Phonon-Line (ZPL) photons
emitted from these emitters, as well as that of the frequency-resolved intensity
correlation (FRIC).

On the one hand, the values of the color-blind intensity correlation can
range from extreme bunching to strong antibunching, depending on the laser
parameters and on the detuning between the transition frequencies of the
emitters. For example, tuning the laser to the two-photon resonance enhances
cascade emission, resulting in strong bunching at low laser intensities. In
contrast, resonant excitation of the superradiant state can lead to strong
antibunching and single-photon emission, with a decay rate greater than that
of a single emitter. For these two cases, we have derived analytical expressions
that accurately describe the intensity correlations, valid for non-identical
emitters and arbitrary laser intensities. These expressions may be used to
experimentally estimate the distance between emitters. Interestingly, when
the laser is tuned to the subradiant state, the color-blind intensity correlation
displays more intricate behavior, ranging from bunching to antibunching or
Poissonian statistics, which is attributed to the complex competition between
different excitation and relaxation pathways.

On the other hand, the FRIC offers deeper insights into the relaxation
processes of the coupled emitters. When the laser is tuned to the transition
frequency of the superradiant state, the FRIC resembles that of a resonantly
driven two-level system at weak and moderate laser intensities, though
deviations appear due to the influence of the subradiant and doubly-excited
states. At strong laser intensities, the FRIC shows that the laser modifies
the eigenstates of the interacting system, leading to more complex emission
processes. Furthermore, the FRIC becomes even more interesting when
the laser is tuned to the subradiant state. In this regime, in addition
to the emergence of two-photon transitions through intermediate virtual
states, the FRIC can reveal one-photon transitions occurring with extremely
low probabilities, a fingerprint usually not visible in the standard emission
spectrum. These results stress the high sensitivity of FRIC to uncover intricate
emission mechanisms. We have also shown that the FRIC is significantly
affected by the combined Debye-Waller /Franck-Condon factor at this laser
frequency.

Our analysis has neglected dephasing effects, assuming that the emitters are at
sufficiently low temperatures. Interestingly, the signatures of subradiance in
the one-photon spectrum have been shown to be highly sensitive to dephasing
in Ref. [261]. Therefore, the complex behavior that we predict for both the
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color-blind intensity correlation and the FRIC under subradiant excitation
could be modified even by low values of dephasing, making them a subject
of potential further study. We emphasize that such a study would likely
require more sophisticated models that rigorously incorporate the influence
of emitter vibrations and interactions with the phonon environment of the
host medium, as developed in Refs. [197, 198] for the single-emitter case.

Another potential direction for future research involves extending the use of
intensity correlation measurements to estimate a set of emitters’ configuration
parameters, beyond just the distance between the two emitters with parallel
transition dipole moments. A more detailed approach would aim to determine
the full three-dimensional orientation of the dipole moments and the relative
positions of the emitters. This may be achieved by measuring different
components of the normalized second-order correlation tensor defined in Eq.
(2.44), rather than relying exclusively on the scalar normalized second-order
correlation function.

In Chapter 4, we have developed a more sophisticated description of the two
interacting solid-state quantum emitters by incorporating additional states
that represent vibrational or phononic levels in the electronic ground state.
This refinement has enabled the analysis of the correlation of Stokes-shifted
photons, which arise from the radiative decay from the electronic excited state
to these vibrational/phononic levels. This inelastic emission is particularly
relevant in typical fluorescence experiments, where resonant excitation is used
and optical filters eliminate both the laser photons and the ZPL emission due
to their near-identical frequencies. As a result, only Stokes-shifted photons
are detected in such setups.

Using this model, we have demonstrated that quantum coherence can
significantly impact the correlation of Stokes-shifted photons emitted from
two strongly interacting emitters, contrary to what previous models in the
literature had assumed. To confirm this, we have compared the theoretical
predictions with experimental measurements performed by the Bordeaux
Nanophotonics Group, led by Brahim Lounis, and shown that including
quantum coherence leads to better agreement with the data.

Furthermore, we have found that quantum coherence can influence the Stokes-
shifted photon correlations even in the case of two distant, non-interacting
emitters. Additionally, our analysis has shown that the discrepancy between
theory and experiments in the value of the intensity correlation at zero time
delay for light emitted from two uncorrelated emitters can be attributed to
the insufficient time resolution of the detectors used in available experiments
in the literature.

Moreover, we have compared the correlations of Stokes-shifted photons
and ZPL photons emitted from two interacting solid-state emitters and
demonstrated that they can differ substantially. This highlights the need to
develop theoretical models of light emission from solid-state emitters that go
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beyond the typical two-level system framework, particularly to describe usual
fluorescence experiments in which the electronic excited states are resonantly
driven and only the Stokes-shifted photons are measured.

Importantly, the sophisticated description of light emission from solid-state
emitters developed in this chapter opens up a range of promising directions for
future research. For example, a systematic and detailed analysis of the Stokes-
shifted intensity correlations as a function of laser parameters, as provided in
Chapter 3 for ZPL emission, could be of large interest. Additionally, such
a sophisticated description could also be used to explore other aspects of
Stokes-shifted emission, such as the FRIC and the first-order correlation
function. Further, a common future direction for the analysis of both the
ZPL correlation and the Stokes-shifted correlation is the extension to a larger
number of interacting quantum emitters.

e In Chapter 5, we have demonstrated that two interacting quantum emitters
can serve as a source of polarization-entangled photon pairs. To this end,
we have considered the Hamiltonian describing the interaction between the
electromagnetic vacuum field and two quantum emitters, derived in Chapter
3, and used the Wigner-Weisskopf approximation. In this way, we have
obtained the complete two-photon state resulting from the relaxation of two
initially excited emitters, capturing the two-photon emission probabilities
across all frequencies, polarizations, and directions.

Moreover, we have derived the post-selected two-photon state by considering
that (i) the transition dipole moments of the emitters are perpendicularly
oriented, (ii) optical filters are applied, and (iii) light is detected along
directions perpendicular to the dipole moments. The post-selected state
exhibits a high degree of entanglement when narrow-band filters are used,
at the cost of reducing the detection probability. Moreover, we have shown
that this photon entanglement remains largely unaffected by the influence
of the combined Debye-Waller/Franck-Condon factor, indicating that a
broad range of solid-state emitters can be employed to generate entangled
photons. This robustness has also been found for small misalignments in the
relative orientation of the dipole moments. Additionally, we have verified that
moderate deviations in the detection direction only slightly impact the post-
selected state, suggesting that standard lenses can be used in experiments
to enhance collection efficiency without significantly degrading the photon
entanglement.

Future analyses might require addressing the complete influence of lenses and
characterizing the balance between the degree of two-photon entanglement
and the collection efficiency. Another promising line of future research relies
on extending the description in this chapter to the case in which the emitters
additionally interact with an optical cavity, with the aim of improving the
collection efficiency of the entangled photon pairs. Additionally, the extension
of the analysis in this chapter to a larger number of emitters may also unveil
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the possibility of generating multi-photon entangled states from interacting
quantum emitters.

It has been the aim of this thesis that the results found herein contribute to
achieving a deeper fundamental understanding of light emission from two interacting
quantum emitters, as well as to improving the characterization of cutting-edge
experiments involving this type of coupled system. Moreover, these results may help
to advance the implementation of interacting quantum emitters as light sources,
potentially contributing to the development of novel sources of quantum light.
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Appendix A

Density matrix formalism

The state of a closed quantum system S can be generally described by a state
vector |¢), which is called a pure state. However, in practice S usually interacts
with an environment B (Section 1.4.1), whose degrees of freedom we cannot access.
The lack of information about the whole system (S + B) makes that the state
of S cannot be described as a pure state. Instead, the quantum state of S is
described in this case as a statistical mixture of pure states, which is represented
by an operator p called density matriz. In this appendix, we introduce the density
matrix formalism, which plays a crucial role in this thesis. We mainly follow Refs.
[139, 262] to this regard.

A.1 Pure states

The state of a quantum system S is represented by a pure state |¢)) when all
the degrees of freedom of the system are accessible. The norm of this state is
normalized to one, such that

(Yly) = 1. (A1)

We write next [¢) in an orthonormal basis {|c,,)} of the Hilbert space Hg of S.
Here, n labels the different states of the basis, ranging from 1 to the dimension
of Hg, denoted by dim(Hg). As {|c,)} is an orthonormal basis, it satisfies the
completeness relation, given by

Z |Cn> <cn| =1, (AQ)
n
with 1 the identity operator in Hg. Any pure state |1)) can be expressed in this

basis as
|¢> = ch |cn> 5 (A3)

where ¢,, are complex coefficients referred to as probability amplitudes. By using
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Eq. (A.1), we obtain that these coefficients satisfy the normalization condition

> len? =1 (A.4)

n

Importantly, if a measurement is performed in the basis {|c,)}, the pure state i)
collapses into one of the basis states. The probability of collapsing to |c,) is |c,|?,
which is bounded between 0 and 1. These probabilities do not arise from a lack of
information about the system state, but from the intrinsic quantum nature of the
system.

As an example of pure state, within the description of the interaction between
one or two quantum emitters and the electromagnetic vacuum field in Sections 1.3
and 5.2.2, the entire system (including the electromagnetic degrees of freedom)
is described by a pure state. However, when we reduce this description to the
Hilbert space of the quantum emitters by tracing out the electromagnetic degrees
of freedom (Sections 1.4.5 and 3.1.4), pure states are no longer suitable to describe
the state of the emitters.

A.2 Mixed states

The state of a quantum system S is described more generally by a mixture of
pure states |i;,), each one with probability P,,. These probabilities satisfy the
normalization condition ), = P, = 1 and they result from the lack of information
about the state of the system, as it occurs if S interacts with an environment (also
referred to as a bath). In this case, the state of the system is thus referred to as a
mized (instead of pure) one and represented by the operator

p= me |¢m> <"/}m| ) (A'5)

which is called density matriz or density operator. We emphasize that the density
matrix can also be used to describe a pure state, for which a single probability
equals 1. For example, if P; =1, p = |11) (¢1] describes a pure state.

We show next that the diagonal and off-diagonal elements of the density matrix,
when expressed in an orthonormal basis, contain significant information. To this
end, we consider that [i,,) is expressed in the orthonormal basis {|c,)} as

) = 37 e fen) (A.6)

)

Here, the probability amplitudes cE{” are defined as

™ = (enltom) » (A7)

and they satisfy the normalization condition ) ™2 = 1 [Eq. (A.4)]. The
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density matrix p can thus be rewritten in the basis {|c,)} as

Z ZP cme (m)* (en/| = ann/ len) (enrl, (A.8)

n,n’ m n,n’

where we have defined p,,y = {c,| plcn).
The diagonal elements of p in the basis {|c,)} are given by

Pn = Pnn = Cn' P |CTL Z P, |C(m)|2 (A.9)

These elements thus correspond to non-negative real numbers, meaning that p is a
positive semi-definite operator. p,, is referred to as population of the state |¢,,) and
it gives the probability that the density p collapses to |¢,) due to a measurement
in the basis {|c,)}. The sum of all the populations equals one, as

Y =) P Z\C(m)l =y P,=1 (A.10)

m

Additionally, the trace Tr of an operator is defined as the sum of all its diagonal
matrix elements in any chosen basis. Thus, Eq. (A.10) reveals that the trace of
the density matrix is one:

Tr[)zan =1. (A.11)

We emphasize that the trace is independent of the choice of basis.
On the other hand, the off-diagonal elements of the density matrix p in the
basis {|c,)} are complex numbers given by

prns = (cnl P lens) ZP el (A.12)

with n # n’. This equation indicates that p,, = pZ,,,, meaning that the density
matrix is a Hermitian operator:
p=p' (A.13)

Additionally, Eq. (A.12) also indicates that the off-diagonal element p,,s can be
nonzero if at least one of the states |i,,) in Eq. (A.5) is given by a coherent
superposition of |¢,) and |¢,/). As a consequence, p,,,,s can be interpreted as due to
interference effects between |c,) and |¢,,/). The off-diagonal elements of the density
matrix are thus usually referred to as coherences.

A.3 Expectation value
In this section, we describe how to calculate the expectation value (O) of an

arbitrary operator O at an initial time, before the system evolves. The expectation
value at an arbitrary later time is discussed in Appendix B.
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We first consider the case in which the system is in a pure state |[¢)). In this
case, the expectation value of O is simply given by

(0) = W|Oy). (A.14)

More generally, if the system is in a mixed state described by the density matrix p,
the expectation value is calculated as

<O> = Tr(Oﬁ) = Z (cnl O len') prrn- (A.15)

n,n’

When the density matrix corresponds to a pure state, p = |[¢) (1], the expectation
value given by Eq. (A.15) reduces to that in Eq. (A.14). This can be shown
by choosing a basis |c,) that includes the state |¢). For instance, if we take
le1) = |v), then p; = p11 = 1, and all the other matrix elements in this basis are
zero. Therefore, (O) = Tr(Op) = (1| O ) in this case.

Moreover, Eq. (A.15) can be used to demonstrate that Hermitian operators
(O = OT), which are commonly referred to as observables due to their real
eigenvalues, have also real expectation values. Specifically, since 0 = OT, we
can write (¢n| O |en) = ((enr| O |en))*. As the density matrix is also Hermitian [Eq.
(A.13)], it follows that pn., = pk,.. As a result, in the sum in Eq. (A.15), each
term (cp| O |cpr) pprm (With n # n/) has a complex conjugate counterpart:

<Cn| O |Cn’> Pn'n = <<Cn" O |Cn> pnn’) . (A16)

Further, the terms with n = n/ in the sum in Eq. (A.15) are real by themselves,
since both (¢,| O |en) and ppy, correspond to diagonal matrix elements of Hermitian
operators. Consequently, the expectation value of a Hermitian operator is always
real.

For completeness, we finally note that the variance of an arbitrary operator O
(whether Hermitian or not) can be calculated from the expectation value of this
operator and that of O2. Specifically, the variance is given by

A

(80)?) = (0%) - (0)” = Tr(0%p) — [Tx(Op)2. (A.17)

A.4 Purity

We next introduce a quantity P(p), known as purity, which is commonly used to
quantify how pure or mixed a density matrix is. To this end, we recall that a
density matrix p is a Hermitian [Eq. (A.13)] and semi-definite positive operator,
with trace equals to one [Eq. (A.11)]. The eigenvalues of p are thus non-negative
real numbers 7);, satisfying >, n; = 1. We denote by [n;) the 4t eigenvector, which
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has eigenvalue 7;. Thus, the diagonal form of p is

p= Z’?j i) (] - (A.18)

This expression allows us to express the square of the density matrix as
P2 = mmyr Ing) (ilnge) (myel = Ing) (nyl (A.19)
3,3’ J

The trace of p? thus yields
(%) = > 1. (A.20)
J

Taking into account that n; are non-negative real numbers and sum one, we obtain
Tr(p?) < 1. (A.21)

The equality in Eq. (A.21) is obtained if, and only if, p represents a pure state |¢),
so that p = |9) (¢| (i.e., one of the eigenvalues 7; is equal to one and the others
vanish). Additionally, the minimum value of Tr(p?) is:

min{Tr(p%)} = m. (A.22)

This minimum value is obtained if, and only if, the density matrix is p = 1/dim(Hs).
This density matrix p = 1/dim(Hg) corresponds to a mazimally mized state,
which is given by a mixture of dim(Hg) pure states that have equal probability
P,, =1/dim(Hs). Therefore,

P(p) = Tr(5%) (A.23)
is commonly used to quantify the degree of purity or mixedness of a density matrix

p. Notably, as the trace is independent of the choice of basis, so it is P(p).

A.5 Von Neumann entropy

Another quantity that can be used to quantify the degree of mixedness of a density
matrix is the von Neumann entropy S(p), defined as

S(p) = —Tr(plogy p) = — Y milogy n;. (A.24)

This quantity is always nonzero, as 0 < n; < 1. It vanishes for pure states and
reaches its maximum value, log, dim(#g), for maximally mixed states. The von
Neumann entropy can be interpreted as a measure of the information one lacks
about the system, thus extending the classical concept of Gibbs entropy to the
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quantum domain [263]. In Eq. (A.24), the entropy is expressed in units of bits
because the base-2 logarithm is used.

Interestingly, one can show that if S is composed of two subsystems A and B,
such that the Hilbert space S = A+ B is given by the tensor product Hg = HaQH 5,
the von Neumann entropy satisfies the condition

S(p) < S(pa) +S(pp)- (A.25)

Here, p4 and pp are the reduced density matrices of A and B, respectively, which
are obtained as

pa=Trpp= > (balp|bn), (A.26a)

pp="Trap= > (an|plan), (A.26b)

where Tr, corresponds to the trace over only the subsystem x, {|a,)} is an
orthonormal basis of H 4, and {|b,)} is an orthonormal basis of Hp. Tr, is called
partial trace.

Equality in Eq. (A.25) holds only for separable states [Eq. (5.15)]. Therefore,
the following condition applies:

S(p) = 8(pa) +8(pp) & p=pa® pp. (A.27)

This means that the von Neumann entropy does not increase when tracing out
one of the subsystems if the global state p is separable. However, if there is any
non-zero degree of entanglement between subsystems A and B (see Section 5.1),
so that p is not separable, then the von Neumann entropy of the reduced states
increases upon tracing out a subsystem. This reflects the fact that our lack of
information about the system increases when we reduce to the Hilbert space of
only one subsystem (e.g., by applying the Markovian master equation described in
Section 1.4). In other words, tracing out a subsystem yields a mixed state because
the information on the quantum correlations between A and B is lost.

A.6 Fidelity

Last, we introduce a quantity that serves to quantify how similar two quantum
states are, known as fidelity F. In the simplest case, where one deals with two
pure states |¢)1) and |¢)9), fidelity is given by

F(|¢1> ) |7JJ2>) = \ <1/11|7/12> |2- (A~28)

By considering that a system is in state |12), F(|1)1), [t)2)) can be interpreted as
quantifying the probability that |¢2) collapses to |¢)1) as a result of a measurement
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in a basis that contains [¢1). Fidelity is bounded between 0 and 1, reaching the
lowest value (0) if |¢)1) and |1)2) are orthogonal states and the largest value (1) if
they are identical (up to a global phase).

Further, F can be easily extended to the case in which one of the states
represents a mixed state. For example, if the first system is described by the pure
state |11) and the second one is described by the density matrix ps, the fidelity
can be computed as

F(lvn), p2) = (1l p2 |v1) . (A.29)

Thus, the fidelity corresponds again to the probability that the state of the second
system (p2) collapses to |i1) as a result of performing a measurement in a basis
that includes |11). Equivalently, the fidelity is given by the population of |i¢1)
carried by the density matrix pa [see Eq. (A.9)].

The extension of the fidelity to the general case in which both states are mixed
becomes more intricate, both in its derivation and in its physical interpretation.
The fidelity in this case is given by [264, 265]

F(pr, p2) =(Tr\/ \//71/32\/;“71)2 = 24) (A.30)

where {\;} are the eigenvalues of \/p1p2v/p1. These eigenvalues {\;} are as well
the eigenvalues of 1/p1p2. We remark that fidelity is symmetric:

F(p1, p2) = F(p2, p1)- (A.31)

Additionally, F is invariant under unitary transformations, implying that it does
not depend on the choice of basis.
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Schrodinger, Heisenberg and
interaction pictures

We review in this appendix the usual Schrodinger and Heisenberg dynamical
pictures in quantum mechanics. We also introduce the interaction picture, which
becomes of special interest in the context of open quantum systems. A more
detailed discussion on this topic can be found in Ref. [139].

B.1 Schrodinger picture

We consider a general closed quantum system with Hamiltonian H (t), which can
be time dependent in general (as it is the case of a quantum emitter under the
driving of classical light, see Section 1.5). At some initial time %o, the system is
in a pure state |1(t)) independently of the particular dynamical picture. In the
Schrédinger picture, the time evolution is encoded in the quantum state. More
specifically, the time evolution of the state vector is governed by the well-known
Schrodinger equation

in e [0 (0) = ) [ (0), (1)

where the superscript (S) in [¢)()(t)) stresses the use of the Schrodinger picture.
Equation (B.1) provides a set of differential equations for the probability amplitudes
of the state [¢(9)(t)) [Eq. (A.3)]. Alternatively, the Schrodinger equation can be
solved in terms of the unitary propagator [124, 266, 267]

t

Ult, to) = Ht B exp[— ;dtnﬁ(tn)}, (B.2)

n=tlo

which corresponds to a product of exponentials running over infinitesimal time
intervals dt,, = t,41 — t,, with the time intervals ordered increasingly in time
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(i.e., the exponential with the latest time argument appears to the right). If
the Hamiltonians H (t,) at different times commute, one can rewrite the unitary
operator in terms of a time integral:

.ot

U(t,ty) = exp [—;L/ dt/ﬁ(t/)} . (B.3)
to

Furthermore, if the Hamiltonian is time-independent, the unitary propagator simply

becomes

A

U(t,tg) = exp {;(t - to)ﬁ} . (B.4)

The time evolution of the state in terms of the propagator U (t,to) can be
obtained as

[ 5(8)) = Ut to) [4(to)) - (B.5)

In the case of a mixed quantum state described by a density matrix p(*) (t), the
Schrodinger equation (B.1) is generalized to the von Neumann equation:

L) = L), 0] (B.6)

The evolution of the density matrix from the state p(tg) at initial time ¢y can
be obtained using again the unitary propagator U(t,%y). Specifically, the density
matrix at time t is given by

PE(E) = Ut t0)plto) U (¢, to). (B.7)

Moreover, the expectation value of an arbitrary operator O at initial time
(t = to) was described in Section A.3. By using the Schrodinger picture, the
expectation value of O at an arbitrary time ¢ can be obtained as

(0) (t) = TH[Op (1)), (B.8)

with the time evolution fully encoded in the time-dependent density matrix p) (t).

B.2 Heisenberg picture

We next introduce the Heisenberg picture, which enables an alternative derivation
of the expectation value (O) (¢). In this picture, the quantum state remains time-
independent and the time evolution is encoded in the operator. The time evolution

of O(t) is governed by the Heisenberg equation, which is given by

d - i A N
a()(m (t) = —g[O(H)(t)vH(t)]- (B.9)
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The time evolution of O (t) from time ¢, can also be calculated using the unitary
time propagator U (t,tp) as

O (t) = U (t,10)OU (¢, o). (B.10)

In the Heisenberg picture, the expectation value of O at time ¢ can thus be obtained
as
(0) (t) = THO (1)j(to)]. (B.11)

This expression is mathematically equivalent to that of Eq. (B.8), as
Pta)0 (£, 40)U (1, t0)] (B.12)

where we have used that U(t, to) is a unitary operator and that the trace is invariant
under unitary transformations. As a consequence, the Heisenberg and Schrodinger
pictures yield the same results.

B.3 Interaction picture

We next describe the interaction picture, which is particularly useful for describing
interacting systems. To this end, we consider that the Hamiltonian can be
decomposed as . . .

H(t) = Ho + H/(t). (B.13)

Here, H;(t) is the interaction Hamiltonian, and H represents the Hamiltonian
of the systems in the absence of interaction. In the context of open quantum
systems (Section 1.4.1), Hy typically includes the Hamiltonians of both the system
of interest and the bath, while H 1(t) accounts for the interaction between them.
For simplicity, we assume that Hy is time-independent, as otherwise the derivation
becomes considerably more complex [139-141], and beyond the scope of this thesis.

In the interaction picture both the quantum state and the operators evolve in
time. The time evolution of an arbitrary operator O in the interaction picture does
not depend on the interaction Hamiltonian, but it only depends on the Hamiltonian
Hy. More specifically, the time evolution of O can be obtained as

O (t) = U (t,t0)OUs ¢, 1), (B.14)
where '
U (t, to) = exp [ - %(t - to)ﬁo} . (B.15)

For example, the interaction Hamiltonian Hj in the interaction picture can thus
be derived as - R .
H{P () = 0§ (¢ t0) H (4) Do 1, o), (B.16)
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while the density matrix in the interaction picture is related with the density matrix
in the Schrodinger picture as

pO(t) = U (t,10)p D (4)To (£, t0) = U (¢, t0) U (t,t0) plto) ()T (¢, t0) Uo ¢, t(o) |
B.17

The interaction- plcture density matrix p0 (¢ )( ) and the interaction-picture interaction

(1)

Hamiltonian H ;' (t) satisfy the dynamics equation

G000 =~ HP 0,50 1) (B.13)

This equation depends only on the interaction Hamiltonian H }I) (t) in the interaction
picture, rather than on the total Hamiltonian, which usually facilitates analytical
and numerical calculations in the context of interacting systems and open quantum
systems (Section 1.4).
The time evolution of the expectation value of O in the interaction picture is
given by
(0) (t) = TH[OV (1) (1)) (B.19)

This expectation value is equivalent to that obtained using the Schrodinger and
Heisenberg pictures because

THOD ()51 (1)] = Ti] J(m)éﬁ (t,t0)
= T [0 (t,10) 05 (1)U
= TOH (1)) = TH{O™

t
)] (B.20)

where we have used Eq. (B.12), taken into account that Uo(t,to) is a unitary
operator and that the trace is invariant under unitary transformations.
The equivalence between the three pictures is summarized in Table B.1.

Quantity | Schrodinger (X = S) | Heisenberg (X = H) | Interaction (X =1)
(0)(®) Tr[Op) (1)] Te[OU)(8)p(to)] Tr[OW ()" (1)]
PO Ut to)p(to)UT(t ko) | plto) U (¢, 10)p) (1) To(t, o)
0X) 0 Ut (t, t0)OU (t, to) Ul (t,t0)OUy (t, to)

Table B.1: Equivalence between the Schrodinger (S), Heisenberg (H) and interaction (I) pictures.
For an initial state p(tg), the expectation value of an arbitrary operator O at time ¢ can be
calculated as (O) (t) = Tr[0) p(¥)], with X = S, H, I labeling the corresponding picture.

262



Appendix C

Unitary transformations

Unitary transformations are sometimes used to simplify the Hamiltonian that
governs the dynamics of a quantum system, facilitating the calculation of the
expectation values of observables. These unitary transformations can represent a
change of reference frame, such as a change to a reference frame rotating at the
frequency of a laser driving a quantum emitter (see Section 1.5.3). Additionally,
the transformation from a dynamical picture to another (Appendix B) can be
also understood as the consequence of a unitary transformation. Importantly, in
addition to modifying the expression of the Hamiltonian, unitary transformations
also affect the expression of the observables (operators) and that of the quantum
state of the system. However, the expectation value of an arbitrary operator at
any time remains unchanged under unitary transformations because the change in
the Hamiltonian and in the quantum state balance each other. In this appendix,
we derive the effect of unitary transformations in the Hamiltonian, in the quantum
state and in an arbitrary operator.

First, we consider a closed quantum system with Hamiltonian H (¢) and quantum
state |1(t)) at time ¢ in the Schrédinger picture, whose dynamics is governed by
the Schrédinger equation

() = H(1) [0(0)). (1)

The evolution of the quantum state from the initial time ¢y can be obtained
through the unitary operator U(¢,tp) in Eq. (B.2). We consider now a general

linear transformation T(t) and assume that it is unitary, meaning that

T (t) = TT($)T(t) = 1. (C.2)

o

The quantum state |(t)) at time t is transformed by T'(t) as

1B()) = T(1) [(2)) (C.3)
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To obtain the expression of the transformed Hamiltonian ﬁ' (t), we impose next
that [1(t)) and H(t) satisfy the (transformed) Schrédinger equation

in % 10(60) = A0 15(0). ()

The left-hand side of this equation can be rewritten as

A

i 1(1)) = z‘hj{[f(t) )] = in 2 ) - inde) S ) o
= in O ) + Tyt o).

where we have used Eq. (C.1) to obtain the equality in the second line. Substituting
Eq. (C.5) into the left-hand side of Eq. (C.4), we find

d1(t)

ih— = [1(t)) +T(OH) [b(t) = H(b) [$(2)) - (C.6)
Additionally, substituting Eq. (C.3) into the right-hand side of the above equation
one obtains

T

ih

a7 (t)
dt

() + T H(E) [ () = HOT() (1)) - (C.7)

Next, we drop |¢(t)) on both sides of this equation and multiply by Tt (t) to the
right. In this way, we obtain

2 f‘ 2 2 A 2 2 f‘T 2 A 2
b= in? dit)TT )+ THMT () = —z’hT(t)d dt(t) +THH®T(t), (C.8)
where in the last equality we have used that
dT(t) 2 s AT ()
Tt T = .
o7 (t) +T(t) 7 0, (C.9)

which is satisfied by any unitary operator T(t)Tt(t) = 1 [Eq. (C.2)]. The
transformed Hamiltonian H in Eq. (C.8) is the key result of this appendix.
For example, we use the expression for the transformed Hamiltonian in Chapters 1,
3, and 4 when transforming the master equation that governs the dynamics to the
rotating frame at the frequency of the incident laser.

In the following, we consider a more general scenario in which the state of
the system is described by a density matrix p(t) and discuss how it is affected by
unitary transformations. In this case, the dynamics (in the Schréodinger picture) is
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governed by the von Neumann equation [Eq. (B.6)]

& o) =~ 1A, (1) (C.10)

The time evolution of p(t) from the initial time ¢y can be obtained through
the unitary propagator U(t,to) in Eq. (B.2) as p(t) = U(t,to)p(to)UT(t,tg) (see
Appendix B). We impose that an equivalent von Neumann equation is satisfied by
the transformed Hamiltonian H(t) in Eq. (C.8) and by the transformed density
matrix p, namely:

=Ll ). (c.11)

The unitary propagator that provides the evolution of the transformed density
matrix p(t) from the initial time ¢( is given by

~
A~ 2 N

U, (t,t0) = T(HU (¢, 1), (C.12)

as shown below. In this way, the transformed density matrix can be calculated as

~

pt) = Ut t0)p(to)US (¢, to) = T(t)p(t) T (1). (C.13)
In the following, we justify the definition of ﬁp(t, to) in Eq. (C.12). On the one

hand, this definition yields that the left-hand side of Eq. (C.11) can be rewritten
as

(C.14)

|
>
—
o~~~
N
—+
—
~
N
+
o
—
~
N
ey
—~
~
N

In order to obtain the expression in the lastAline of this equation we have used Eq.
(B.2). On the other hand, the definition of U,(t,ty) in Eq. (C.12) implies that the
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right-hand side of Eq. (C.11) is equal to

h
+ %futﬁ(wﬁ(tmw — T T (8) % e
2 ~ R Q,r i s ) A A
= df%ﬁ(t)w(t) + T (t)p(t) de t(t) _ ﬁT(t)[H(t), AT () = % 5 t)’)
C.15

where we have used Eqgs. (C.8) and (C.13) to obtain the expression in the first
line, and we have used Egs. (C.2) and (C.9) to obtain the expression in the last
line. Thus, U,(t,to) in Eq. (C.12) guarantees that an equivalent Von Neumann
equation [Eq. (C.11)] is satisfied in the transformed picture, as desired.

Last, we analyze how an arbitrary operator O (which is written in the

Schrédinger picture) is transformed by T'(t). The expression of the transformed
operator O(t) must leave the expectation value unchanged at any time, so that

Tr[Op(t t)] = Tr[O (t) p(t)]. To this end, we develop the expression of the expectation
value (O) (t) from the original frame as

(0) () = Tr _Oﬁ(t)} —T [Omt,to)ﬁ(to)ﬁ*(t, m]

e[ OF (T 00t 10)pt0) U (2, to)fﬂ(t)} (C.16)

O

=T | FOOT (00, 0)pt0) T} 1.0
Therefore, by defining

O(t) = T(t)OTT(t)7 (C.17)
we obtain

(0) () =12 0pt0)| = v O(0)it0)| (C.18)

We finally note that if the system is considered as open and described by a
Markovian master equation (Section 1.4), all the dissipators D[O1, O2]p(t) [see Eq.

(1.191)] need to be replaced by transformed dissipators D[O1, Oa]p(t).
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List of abbreviations

TLS
QE
WWA
RWA
MME
DBATT
HBT

SS

FRIC
ZPL
FWHM
PDC
QD

TE

™

Two-level system

Quantum emitter
Wigner-Weisskopf approximation
Rotating-Wave approximation
Markovian Master Equation
dibenzanthanthrene
Hanbury-Brown Twiss

steady state

Frequency-resolved intensity correlation
Zero-Phonon Line

Full-width at half maximum
parametric-down conversion
quantum dot

transverse electric

transverse magnetic
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