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LABURPENA

Giza historia osoan zehar, gure behaketa-gaitasunak begi hutsez hauteman
genezakeenera mugatuak egon dira. XVII. mendean, optikan egindako aurrerapenei
esker, kosmosa aztertzeko gai ziren teleskopioak garatu ziren, eta baita bizitzaren
oinarrizko mekanismoak argitzea ahalbidetu zuten mikroskopioak ere. Mikroskopia
optikoak biologian eta medikuntzan ekarpen nabarmenak egin dituen arren, Abbe-
ren difrakzio-mugak tresna hauen bereizmena murrizten du [1]. Izan ere, argiaren
uhin-izaera dela eta, uhin-luzeraren erdia baino distantzia laburragoaz banandutako
ezaugarriak ezin dira bereizi lente optiko konbentzionalen bidez. Maiztasun
optikoen kasuan, difrakzio-muga hau ehunka nanometroetan dago kokatuta. Beraz,
mikroskopia-teknika alternatiboak behar dira nanoeskalako objektuak behatu eta
manipulatzeko. Metodo horien bilaketa eta aplikazioa nanofotonikaren oinarrian
dago.

Testuinguru horretan, nanopartikula eta gainazal metalikoak nanofotonikaren
erdigune bilakatu dira, plasmoiak jasateko gaitasuna baitute. Plasmoiak
elektroi-hodeiaren oszilazio kolektiboak dira, argiaren uhin elektromagnetikoekin
akoplatu daitezkeenak. Modu hauen bitartez, posible da argi erasotzailearen
eremu elektromagnetikoa areagotzea eta uhin-luzera baino txikiagoak diren
eskualdetan lokalizatzea [2]. Ezaugarri berezi horiek nanopartikula plasmonikoak
osagai giltzarriak bihurtzen dituzte espektroskopiako eta mikroskopiako hainbat
teknikatan, hala nola gainazalak areagotutako Raman espektroskopian (ingelesez
Surface-Enhanced Raman Spectroscopy, SERS) [3] edo gainazalak areagotutako
fluoreszentzian (Surface-Enhanced Fluorescence) [4]. Horrez gain, egitura
plasmonikoek etorkizun handiko aplikazioak dituzte hainbat eremutan, adibidez
biomedikuntzan [5] edo telekomunikazioetan [6, 7].

Normalean, nanopartikula plasmonikoen erantzun optikoa zehazki deskribatzen
da Maxwell-en ekuazioen bidez, elektromagnetismo klasikoaren esparruan [8].
Hala ere, nanofabrikazioaren aurrerapen etengabeek gailuen miniaturizazioa
molekula bakarreko eskalara bultzatu dute [9], non efektu kuantikoak —besteak
beste elektroien tunel-efektua [10-13], erantzun optikoaren ez-lokaltasuna [14-16],
edo elektroien isurpena (spill-out) [17, 18— agertzen hasten diren elektroien
uhin-izaeraren ondorioz. Fenomeno horiek guztiak kontuan hartzeko, mekanika
kuantikoan oinarritutako materiaren erantzun optikoaren deskribapena behar da.
Zoritxarrez, dauzkagun ordenagailuekin, ezinezkoa da Schrédingerren ekuazioa
zuzenean ebaztea elektroi gutxi batzuk baino gehiago dituzten sistementzat. Ab



initio metodoek problema sinplifikatzen dute magnitude fisiko garrantzitsuak
elektroi dentsitatetik eratorriz, gorputz anitzeko uhin-funtzioa erabili ordez,
eta, beraz, tresna oso arrakastatsuak dira nanostestrukturen erantzun optikoa
adierazteko [19-21].

Zehazki, tesi honetan denboraren mendeko dentsitatearen funtzionalaren
teoria (time-dependent density-functional theory, TDDFT) erabiliko dugu egitura
nanometrikoen erantzun optikoa deskribatzeko. Nanopartikularen xehetasunak
atomoaren mailan kontuan hartzen ditu metodologia honek, eta eremu hurbilaren
banaketa eta puntu beroen eraketa, azpiko eremu plasmonikoen efektua
areagotuz [22], zehazki deskribatzea ahalbidetzen du. Nanofotonikaren arloan
TDDFT hainbat fenomeno desberdin aztertzeko erabili da, hala nola karga-
transferentzia lotura metalikoetan [23], metalezko nanopartikulen eta molekulen
arteko akoplamendu sendoa (strong coupling) [24, 25|, eramaile beroen sorrera
metalezko nanopartikuletan [26], edo pikobarrunbeen erantzun optikoa [27].

Aipatutako abantailen ondorioz, TDDFT atomistikoa bereziki egokia da
nanoegitura plasmonikoen eta igorle kuantikoen (hala nola molekula organikoak
edo puntu kuantiko erdieroaleak) arteko elkarrekintzak ikertzeko. Azken urteotan,
barrunbe plasmoniko eta igorle kuantikoez osatutako sistema hibridoek arreta
handia erakarri dute, igorle kuantikoaren propietateak barrunbeak sortutako
eremu elektromagnetiko biziekin akoplatuz alda daitezkeelako. Akoplamendu
sendoko erregimenean, elkarrekintza horrek polaritoi izeneko [28] argi-materia
egoera hibridoak sortzen ditu, energia-maila doigarriak dituztenak eta materiaren
propietate kimikoak alda ditzaketenak [29, 30]. Ondorioz, sistema horiek
aplikazio ugari aurkitu dituzte fotokimikan [31-33], fotoi bakarreko igorpenean
[34], elektrolumineszentzian [35], eta elektroien garraioan [36], besteak beste.
Akoplamendu sendoko muturreko kasuetan, hala nola nanobarrunbe plasmonikoetan
molekula bakarrak kokatzean sortzen direnetan, sistemaren eskala txikiak mekanika
kuantikoan oinarritutako tratamendu zehatza eskatzen du, barrunbearen ezaugarri
atomistikoak kontuan hartzen dituena, eta TDDFT atomistikoaren metodologiak
eskaera horiek guztiak modu naturalean betetzen ditu.

Nanopartikula plasmonikoen beste aplikazio giltzarri bat molekulen seinale
bibrazionala areagotzeko gaitasunean datza, SERS teknikan bezala, non eremu
plasmonikoek 10%-ko edo gehiagoko areagotze-faktoreak eragin ditzaketeen,
molekula bakarren detekzioa ahalbidetuz [37, 38]. SERS-ek aplikazio ugari bultzatu
ditu [3, 39, 40], eta berezko esparru oparo batean bilakatu da. Nahiz eta TDDFT
metodo atomistikoak maiz erabiltzen diren SERS konfigurazioak aztertzeko beren
doitasun eta moldakortasunagatik [41], kalkulu horiei lotutako konputazio-kostu
handia dela eta, normalean sistema errealen eredu sinplifikatuak erabiltzera dira.
Hori bereziki egia da sistema periodikoak aztertzen direnean, hala nola monogeruza
automihiztatuak (self-assembled monolayers, SAMs) [42] edo nanopartikula-ispiluan
(nanoparticle-on-mirror) izeneko konfigurazioak [43], sarritan molekula bakar batez
edo eskukada batez osatutako sistema finitu gisa modelatzen direnak [44, 45]. Tesi
honetan, hurbilketa horien egokitasuna ebaluatzen dugu, metalezko gainazaletan
adskribatutako molekula-monogeruzen eredu periodikoen zein finituen espektroak
konputatuz.
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Nanoegitura plasmonikoak ezaugarritzeko teknika erabilienetako bat Elektroien
Energia-Galera Espektroskopia (Electron Energy-Loss Spectroscopy, EELS) da,
non elektroi-zunda bat lagin batekin elkarregitean galtzen duen energia neurtzen
den. Teknika honek abaintail handiak eskaintzen ditu. Bereizmen espektral eta
espazial bikainak izateaz gain [46-49], erantzunaren espektro osoa eskuratzeko
gaitasuna eskaintzen du, modu plasmoniko “ilunak” eta nanoegituraren barrualdera
mugatutako moduak barne, espektroskopia optiko konbentzionalekin kitzikatzen ez
direnak [50-52]. Azken urteotan, elektroi-sorta azkarrek kitzikatutako metalezko
nanopartikula txikien gainazaleko plasmoi lokalizatuen (localized surface plasmon,
LSP) azterketak arreta handia erakarri du [53-55], eta ikerketa batzuek nabarmendu
dute TDDFT atomistikoaren gaitasuna egitura hauen erantzuna simulatzeko.
Hala ere, elektroi sorta sarkorrek mnanopartikularen bolumenaren barruan
mugatutako elektroi-dentsitatearen oszilazio kolektiboak ere kitzikatu ditzakete,
hots, konfinatutako bolumeneko plasmoiak (confined bulk plasmons, CBPs) [52, 56].
Modu horiek arreta mugatua jaso dute argiarekin duten akoplamendua eraginkorra
ez delako [57], eta oraindik garatzear dago nanopartikula txikietan CBP-en elektroi
sorta sarkorren bidezko kitzikapenaren erabateko ulermena. Tesi honetan, frogatzen
dugu metodo atomistikoek zehazki deskribatu ahal dutela metalezko nanopartikula
txikien erantzun plasmoniko osoa, elektroien ibilbidea nanopartikulatik urrun
pasatzen denean eta baita ibilbide sarkorrentzat ere. Gure analisia biribiltzeko,
kalkulu osagarriak egin ditugu, eredu hidrodinamiko klasiko batean [58, 59] zein
jellium TDDFT eredu batean [60, 61] oinarritutak.

Tesi honek nanofotonikan interes handia duten sistema plasmoniko kanonikoen
hautespen baten azterketa atomistikoa aurkezten du, nano- eta piko-eskalen arteko
interfazean agertzen diren efektu kuantikoen oinarrizko ulermen sakonagoa lortzeko
helburuarekin, egitura atomistikoaren garrantzia azpimarratuz. Tesia honela dago
egituratuta:

1. kapituluan, nanoeskala mailan argia eta materiaren arteko interakzioan
agertzen diren fenomenoak eta oinarrizko kontzeptuak berrikusten ditugu. Hasteko,
metalezko nanopartikula esferikoen eta dimeroen erresonantzia plasmonikoen
deskribapen elektromagnetiko klasikoa erabiliz, tesian zehar agertuko diren
plasmoi mota desberdinak aurkezten ditugu. Horrez gain, molekulen eta metal—
molekula sistema hibridoen kitzikapenak aurkezten dituge ere, eta akoplamendu
sendoaren fenomenoa azaltzen dugu. Halaber, tesi honetan kontuan hartutako
hiru espektroskopia-tekniken azalpen laburra ematen dugu: espektroskopia optikoa,
EELS eta SERS.

2. kapituluak tesi honetan erabili ditugun metodologia teorikoak aurkezten ditu.
Hasteko, TDDFT atomistikoaren oinarri teorikoak azaltzen ditugu, aztertutako
sistemen eta argiaren edo elektroi-sorten arteko elkarrekintza modelatzeko erabili
duguna. Ondoren, sistema periodikoen Raman espektroa kalkulatzeko erabili
dugun perturbazio-teorian oinarritutako metodologia azaltzen dugu. Bestalde,
aurkezten dugu metodologia bat, optimizazio Bayesiarrean oinarritzen dena,
metalezko gainazaletan adsorbatutako molekula-monogeruzenen ergia baxueneko
konfigurazioak bilatzeko erabiltzen duguna.

3. kapituluan, sistema hibrido baten espektro optikoa aztertzen dugu, bi
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zilarrezko nanopartikulen arteko barrunbean porfina molekula bat kokatuz
osatua. Ezaugarri atomistikoek akoplamendu elektromagnetikoaren indarrean duten
eraginean zentratzen gara, bereziki bi konfigurazio desberdinen konparaketa eginez,
aurpegi—aurpegi eta punta—punta deiturikoak. Gure emaitzek agerian uzten dute
sistemaren erresonantzia plasmonikoa bi polaritoietan banatzen dela, akoplamendu
elektromagnetikoaren ondorioz. Espektro optikoa oszilatzaile harmoniko akoplatuen
eredu batekin konparatuz, ikusten dugu argia eta materiaren arteko akoplamendua
aztertutako barrunbeen zabalera guztietarako akoplamendu sendoko erregimenean
dagoela, eta barrunbearen konfigurazio geometrikoak eragin nabarmena daukala.
Horrez gain, konfigurazioak beste fenomeno kuantikoen agerpena determinatzen
du ere, halaber, karga-transferentziako plasmoiak (charge transfer plasmons, CTP)
energia baxuetan, aurpegi—aurpegi konfigurazioan bakarrik ikusten direnak. Oro
har, azterketa honek agerian uzten du morfologia atomistikoaren garrantzia
nanobarrunbe plasmonikoen muturreko kasuetan.

4. kapitulua sodiozko nanopartikula txikien elektroien energia-galera
probabilitatearen espektroan zentratzen da, batez ere elektroien ibilbideak partikula
zeharkatzen duenean. Urruneko elektroiek kitzikatutako gainazaleko plasmoiez
gain, erakusten dugu elektroi sarkorrek konfinatutako bolumeneko plasmoiak
eta energia handiagoko gainazaleko erresonantziak kitzikatzen dituztela baita
ere. Eredu hidrodinamiko osagarri batetik eratorritako elektroien energia-galera
probabilitaterako adierazpen analitikoen laguntzaz, espektro atomistikoaren
gailurrak osatzen dituzten CBP modu ongi definituak identifikatzen ditugu,
eta elektroien ibilbidearen talka-parametroak bere kitzikapenean duen eragina
aztertzen dugu. Horrez gain, jellium TDDFT eredu baten laguntzarekin, maila
handiagoko gainazaleko erresonantziak Bennett plasmoiak bezala identifikatzen
ditugu. Ikerketa honek CBP-en eta Bennett plasmoien portaeraren ulermen
sakonagoa eskaintzen du, eta ez-lokaltasuna kontuan hartzen duten eredu teoriko
desberdinen arteko adostasun kualitatiboak —eta baita kuantitatiboak ere—
sodiozko nanopartikuletan aztertutako fenomenoen sendotasuna azpimarratzen du.
Gainera, gure karakterizazio kontzeptualak hainbat nanoegituratan esperimentalki
behatutako bolumeneko plasmoien urdinerazko lerrakuntzak azaltzen lagundu
dezake, eta nanopartikula metalikoen EELS-n ezaugarri plasmonikoen analisi eta
ustiapen sakonago baterako oinarriak ezartzen ditu.

Azkenik, 5. kapituluak TDDFT azterketa atomistikoa aurkezten du, Au(111)
gainazal batean adsorbatutako 4’-zianobifenil-4-tiol molekulen monogeruza
automihiztatuena. Lehenik, optimizazio Bayesiarrean oinarritutako metodologia
bat aplikatzen dugu monogeruza egitura egonkorrenak identifikatzeko. Honek
tokiko energia-minimo batzuk itzultzen ditu, gero erlaxatzen direnak monogeruza-
konfigurazio egokienak aurkitzeko. Haien Raman espektroak konparatuz, egitura
atomistikoa eta molekulen arteko elkarrekintza zehazki modelatzearen garrantzia
aztertzen dugu. Estaldura-dentsitate desberdinak dituzten monogeruzentzat
prozesua errepikatuz, efektu kolektiboen agerpena ikusten dugu Raman espektroan,
eta bibrazio-modu ezberdinen maiztasunen aldaketak aztertzen ditugu. Bukatzeko,
adatomoen bidezko konfigurazio alternatibo bat ikertzen dugu, metalezko
gainazalaren berreraikuntzak espektroei nola eragin diezaiekeen aztertzeko. Oro har,
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aurkeztutako metodologiak monogeruzen egituraren modelatze zehatza ahalbidetzen
du, aldi berean molekulen arteko elkarrekintzak modu naturalean kontuan hartuz,
estaldura-dentsitate handiko monogeruzen simulazio zehatzagoak egiteko bidea
erraztuz.

Gure ustez, hemen aurkezten diren aurkikuntzek argiaren eta materiaren arteko
elkarrekintzaren muturreko kasuetan efektu kuantiko eta atomistikoen eragina
sakonago ulertzen lagundu ditzakete, sistema nanofotonikoak aztertzeko ab initio
metodo atomistikoen eraginkortasuna are gehiago balioztatuz.
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INTRODUCTION

Throughout most of human history, our observational capabilities have been limited
to what we could perceive with the naked eye. It was not until the 17th century
that advancements in optics enabled the development of telescopes for exploring the
cosmos, and microscopes for unveiling the fundamental mechanisms of life. Despite
the remarkable contributions of optical microscopy to biology and medicine, the
resolution of these instruments remains constrained by Abbe’s diffraction limit [1].
Indeed, due to the wave nature of light, features separated by less than half the
wavelength, which for optical frequencies means hundreds of nanometers, cannot
be resolved using conventional optical lenses. Therefore, alternative microscopy
techniques are required in order to observe and manipulate objects at the nanoscale.
The pursuit and application of such methods lies at the core of the field of
nanophotonics.

In this context, metallic nanoparticles and surfaces have become central to
nanophotonics owing to their ability to support plasmons —collective oscillations
of the electron cloud that can couple to incident electromagnetic radiation. This
interaction produces hybrid modes that exhibit pronounced field enhancement and
spatial localization when excited by light or fast electron beams [2]. These unique
properties make plasmonic nanoparticles key components in various spectroscopy
and microscopy techniques, such as Surface-Enhanced Raman Spectroscopy [3]
or Surface-Enhanced Fluorescence [4], with promising applications across diverse
areas including biomedicine [5] and telecommunications [6, 7].

Typically, the optical response of plasmonic nanoparticles is accurately described
by Maxwell’s equations within the framework of classical electromagnetism [8].
However, continuous advances in nanofabrication have pushed the miniaturization
of devices down to the single-molecule scale [9], where quantum effects —such
as electron tunneling [10-13], nonlocal response [14-16], and electronic spill-out
[17, 18]— begin to emerge due to the wave-like behavior of electrons. Addressing
these quantum phenomena requires a quantum-mechanical description of the
response of matter to light. Unfortunately, directly solving the many-electron
Schrodinger’s equation is computationally prohibitive for systems with more than
a few electrons. Ab initio methods simplify the problem by deriving all the relevant
physical quantities from the electron density rather than from the many-body
wavefunction, and have therefore become highly successful tools for addressing the
optical response of nanostructures [19-21]. In particular, time-dependent density-
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functional theory (TDDFT) at the atomistic level allows for an accurate description
of how the atomistic details of a nanoparticle can determine the presence of hot
spots, further enhanced by the underlying plasmonic fields [22]. This methodology
has been used for studying phenomena such as charge transfer in metallic junctions
[23], strong coupling between metallic nanoparticles and molecules [24, 25], hot-
carrier generation in metallic nanoparticles [26], or the extreme field enhancement
in picocavities [27], among others.

The aforementioned advantages make atomistic TDDFT particularly well suited
for investigating interactions between plasmonic nanostructures and quantum
emitters, such as organic molecules or semiconductor quantum dots. In recent
years, hybrid emitter—plasmonic cavity systems have attracted significant attention,
because the properties of the quantum emitter can be modified via coupling with
the intense electromagnetic fields present at plasmonic hot-spots. In the strong-
coupling regime, this interaction gives rise to hybrid light—matter states known
as polaritons [28], which exhibit tunable energy levels and can alter the chemical
properties of matter [29, 30]. Consequently, such systems have found applications
in photochemistry [31-33], single-photon emission [34], electroluminescence [35],
and exciton transport [36], among others. In extreme cases of strong-coupling, such
as those involving single molecules in plasmonic nanogaps, the small scale of the
system requires a detailed quantum-mechanical treatment including the atomistic
features of the cavity, all of which are naturally addressed within the atomistic
TDDFT formalism.

Another key application of plasmonic nanoparticles lies in their ability to amplify
the vibrational signal of molecules as in Surface-Enhanced Raman Spectroscopy
(SERS), achieving signal enhancement factors of up to 10® or more, thereby
enabling single-molecule detection [37, 38]. SERS has driven a myriad of promising
applications [3, 39, 40], becoming a thriving field on its own. Although atomistic
TDDFT methods are commonly employed to model SERS configurations due to
their accuracy and versatility [41], the computational cost associated with these
calculations often forces researches to employ simplified models of the actual
systems. This is particularly true for systems that, in reality, are large enough to
be considered periodic, such as self-assembled monolayers [42] or nanoparticle-on-
mirror configurations [43], which are frequently modeled as finite systems consisting
of one or a handful of molecules [44, 45]. In this thesis, we assess the suitability of
such approximations by computing the spectra of both periodic and finite models
of molecular monolayers adsorbed on metallic surfaces.

One of the most widely used techniques for characterizing plasmonic
nanostructures is Electron Energy-Loss Spectroscopy, which involves measuring
the energy lost by fast probing electrons as they interact with the sample. The
advantages of this technique lie not only on its exceptional spatial and spectral
resolution [46-49], but also on its ability to access the full spectral response,
including the so-called plasmonic “dark modes” and modes confined to the
interior of the nanostructure, which are not excited by conventional light [50—
52]. In recent years, localized surface plasmons in small metallic nanoparticles
excited by fast electron beams have received significant attention [53-55], with
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studies highlighting the capability of atomistic ab initio methods to model their
excitation [22]. However, penetrating electron beams are also capable of exciting
longitudinal collective oscillations of the electron density confined within the volume
of the nanoparticle, known as confined bulk plasmons [52, 56]. These modes have
received limited attention due to their inefficient coupling with light [57], and a
complete understanding of their excitation by penetrating electron beams in small
nanoparticles has yet to be fully developed. Here, we demonstrate how atomistic ab
initio methods can accurately capture the full plasmonic response of small metallic
nanoparticles as probed by both aloof and penetrating electrons. We complement
our analysis with auxiliary calculations based on a classical hydrodynamic model
[58, 59] and a jellium TDDFT model [60, 61].

This thesis presents an atomistic ab initio study of a selection of canonical
plasmonic systems of great interest in nanophotonics, aiming to achieve a deeper
fundamental understanding of the quantum effects emerging at the interface between
the nano- and pico-scales, with particular emphasis on the atomistic structure. The
thesis is structured as follows.

In Chapter 1, we review the fundamental concepts and phenomena arising from
light—matter interactions at the nanoscale, focusing on the classical electromagnetic
description of plasmonic resonances in spherical metallic nanoparticles and dimers,
as well as on excitations in molecules and hybrid metal-molecule systems. We
also introduce the three spectroscopy techniques considered throughout this thesis:
optical spectroscopy, Electron Energy-Loss Spectroscopy, and Surface-Enhanced
Raman Spectroscopy.

Chapter 2 outlines the theoretical framework of atomistic TDDFT, which is
used to model the interaction of the studied systems with light and electron beams.
Additionally, we introduce the method for computing the Raman spectra of periodic
systems, based on perturbation theory. We also present a Bayesian Optimization
procedure designed for obtaining the minimum energy configurations of nanoscale
systems, such as molecular adsorbates on metallic surfaces.

In Chapter 3, we analyze the optical absorption spectrum of a hybrid system
consisting of a porphine molecule placed in the cavity formed by a silver nanoparticle
dimer. We show that the light—-matter coupling strength, which exceeds the strong-
coupling threshold across the entire range of studied gap sizes, is significantly
affected by the geometrical configuration of the cavity. This configuration also
determines the emergence of charge-transfer modes and electronic quenching
phenomena at narrow gaps.

Chapter 4 focuses on the electron energy-loss probability spectrum of small
sodium nanoparticles, particularly under penetrating electron trajectories. In
addition to localized surface plasmons excited by aloof electrons, we identify and
characterize confined bulk plasmons and higher-order surface resonances, so-called
Bennett plasmons. By comparing the results obtained with atomistic TDDFT
to auxiliary calculations using hydrodynamic and jellium TDDFT models, we
construct a detailed picture of the complex resonance structure of these modes.

Finally, Chapter 5 presents a TDDFT study of a self-assembled monolayer
of 4’-cyanobiphenyl-4-thiol molecules on an Au(111) surface. We first apply a

3
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methodology based on Bayesian optimization to identify the most stable monolayer
structures. Then we analyze how the molecular orientation, the surface coverage
density, and the emergence of adatom-mediated configurations influence the Raman
spectrum.

We believe that the findings presented herein can contribute to a deeper
understanding of quantum and atomistic effects in extreme cases of light-matter
interaction, further validating the effectiveness of atomistic ab initio methods for
studying nanophotonic systems.



CHAPTER

THEORETICAL CONCEPTS AND
SPECTROSCOPIC TECHNIQUES

In this thesis, we analyze the electromagnetic interaction of several canonical
systems in nanophotonics with different types of illumination. The aim of this
chapter is to provide an introduction to key concepts and phenomena arising in
light—matter interaction at the nanoscale, in order to set a conceptual basis for the
studies described in the next chapters.

We start with a brief summary of the classical electrodynamics formalism in
Section 1.1, where we present Maxwell’s equations and the main approximations
considered in this thesis. We emphasize that the classical linear optical response
of a bulk material can usually be described by its local permittivity, with the
electromagnetic field fulfilling a set of boundary conditions at the interfaces between
materials. In Section 1.2, we explain the emergence of collective oscillations of
electrons, or plasmons, in different metallic nanostructures within the classical
formalism. Next, we describe briefly the main excitations occurring in molecules
in Section 1.3, and in Section 1.4 we introduce the coupling between plasmons
and molecular excitations, defining the weak- and strong-coupling regimes. This
will be followed by a short overview of two related spectroscopy techniques:
Surface-Enhanced Raman Spectroscopy (SERS, in Section 1.5), which uses the
field enhancement of plasmonic nanoparticles for boosting the vibrational signal
from molecules, and Electron Energy-Loss Spectroscopy (EELS, in Section 1.6),
widely used for probing plasmonic nanoparticles with the fast electrons in Scanning
Transmission Electron Microscopy (STEM).



Chapter 1. Theoretical concepts and spectroscopic techniques

1.1 Optical response in classical
electromagnetism
Within the framework of classical electromagnetism, the interaction of an

electromagnetic field with a material can be described by Maxwell’s equations (in
ST units) [8, 62]:

V x E(r,t) =— %B(r,t), (1.1a)
V x H(r, t) :%D(r, t) + Joxt (1, 1), (1.1b)
V -D(r,t) =pexs(r, ), (1.1c)
V - B(r,t) =0, (1.1d)

where E(r,t), B(r,t), D(r, ), and H(r,t) are the macroscopic electric, magnetic,
displacement, and magnetizing fields, respectively, and pext(r,t) and Jext(r,t) are
the external charge and current density that act as sources of electromagnetic fields.
For nonmagnetic materials such as the ones considered in this thesis, the magnetic
and magnetizing fields are directly related as B(r,t) = uoH(r, t), where pq is the
permeability of vacuum. In the linear-response regime, and assuming an isotropic
and homogeneous medium, the displacement and electric fields are linked by the
constitutive relationship:

D(r,t) = 60/ / dr'dt’e(r — 't —t') E(r', 1), (1.2)

where g¢ is the vacuum permittivity, and e(r — r’, ¢ — ¢') is the dielectric function
describing the optical excitations in the material. Though in principle the dielectric
function is a matrix and the response depends on the direction of excitation, here
we will only consider isotropic media and assume that the response is a scalar. This
expression is nonlocal both in space and time, as it relates the displacement vector
D at position r and time ¢ to the value of the electric field E at all positions r’ and
times ¢’ < t. This relationship can also be expressed in the domain of the angular
frequency w by doing the Fourier transform:

D(r,w) =g /00 dr'e(r — v’ w) E(r',w). (1.3)

— 00

The spatial nonlocality of the dielectric function significantly modifies the
optical response of metallic nanostructures with characteristic dimensions smaller
than ~ 10 nm [14]. In the results presented in this thesis, which are computed
within the time-dependent density-functional theory (TDDFT) framework (see
Chapter 2), nonlocal effects are naturally accounted for. However, incorporating
them into the classical formalism is not straightforward, and in the classical
description of the optical response we will limit ourselves to a local model of the
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Figure 1.1: Schematics of a neutral bounded nanostructure in the piecewise-constant approximation.
The dielectric function is 1 (w) inside the nanostructure and e3(w) in the surrounding medium,
and changes abruptly at the interface. The inset displays a close-up on the interface. The normal
() and tangential () unit vectors are depicted, as well as the continuity conditions for the
different electromagnetic fields.

permittivity, which is usually accurate to qualitatively describe the interaction
between metallic nanoparticles and light. The local-response approximation assumes
that the displacement vector at a position r only depends on the electric field at
the same position, so that the dielectric function becomes

e(r —r',w) = goe(r,w) d(r — r’), (1.4)
where §(r —r’) is the Dirac delta function. The constitutive relation then becomes
D(r,w) = 506(1‘,60) E(r,w) =¢o E(I‘, w) + P(I‘, w)a (15)

where P(r,w) is the electric polarization, defined as the dipole moment per unit
volume at point r. In the case of bulk materials, this relationship can be further
simplified by assuming a dielectric permittivity that is homogeneous in space,

g(r,w) =e(w).

1.1.1 Boundary conditions

In this thesis, we focus our analysis on bounded nanostructures, as the one depicted
in Fig. 1.1. These systems are composed by different materials, each with its
own optical properties, and therefore the spatial dependence of the permittivity is
unavoidable. The simplest approach for solving Egs. (1.1a)—(1.1d) in such systems is
the so-called piecewise-constant approximation [63], in which (r,w) is considered
to be constant inside each material, and varies abruptly at the interfaces. For
example, if our system consists of two materials indexed by numbers 1 and 2, the
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permittivity can be expressed with the piecewise function

cr,w) = e1(w) in material 1, (1.6)
" \ea(w) in material 2. )

In order to satisfy Maxwell’s equations at the interface, the following set of boundary
conditions must be fulfilled [§]

fi - (D2 — D1) =p;, (1.7a)
fi- (By — By) =0, (1.7b)
f x (B — Eq) =0, (1.7¢)
f x (Hy — Hy) =J, (1.7d)

where 1 is the unit vector perpendicular to the interface, pointing from material 1
to material 2, and ps and Jg are the external surface charge and surface current
densities, respectively. Since the systems considered in this thesis are neutral, no free
charges or currents at the interfaces will be considered, and therefore the conditions
above can be simplified by taking ps = Js = 0. In such a case, Eqs. (1.7a)—(1.7d)
impose the continuity of the normal components of the D and B fields, as well
as the continuity of the tangential components of the E and H fields. Notably,
this means that the normal component of the electric field E will be strongly
discontinuous at the interfaces due to the abrupt change in the permittivity.

1.1.2 The nonretarded approximation

When the size of the considered structures is much smaller than the wavelength of
the incident light, retardation effects in the electromagnetic interaction caused by
the finite speed of light can be neglected. In such cases, one can use the so-called
nonretarded or quasi-static approximation, in which the speed of light is considered
to be infinite (¢ — o). This allows us to express the total electromagnetic field as
the gradient of a scalar function

E(r,w) = —=V¢(r,w). (1.8)

The scalar function ¢(r,w) is known as the electrostatic potential. The total
electromagnetic field can be decomposed as a sum of the external electric
field, E®**(r,w), and the field induced by the nanostructure, Ei“d(r,w). The
external field may be due to an electromagnetic wave or an electron beam,
for example. The induced field is caused by the induced charges and currents
produced at the nanostructures as a result of the external drive. Similarly, the
electrostatic potential can also be separated into the external and induced potentials,
B(r,w) = ¢ (r,w)+ ¢ (r,w). From Eq. (1.1c), one can conclude that the external
potential must satisfy Poisson’s equation:

V2¢>6Xt(r,w) = Pext, (1.9)
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while the induced potential satisfies Laplace’s equation:
V2 (r,w) = 0. (1.10)

The boundary conditions at the interface between two materials are also
simplified in the nonretarded approximation, and can be expressed as

¢1(r,w) - (;52(1‘,(,«}), (1113)
e1(w) A-Vol(r,w) = e(w) fi- Vo2 (r,w), (1.11b)

where ¢/ is the electrostatic potential in material j. The nonretarded approximation
will be a useful framework to describe the optical response of small nanostructures
and clusters, which is the object of this thesis.

1.2 Nanoplasmonics

Conduction electrons in metallic nanoparticles behave as an homogeneous gas of
free particles, which can sustain collective surface charge density oscillations at
certain resonance frequencies depending on the material. The quanta of these charge
oscillations are called plasmons, and are a key feature in the interaction of metallic
nanostructures with light. Their capacity to produce extremely enhanced and
confined electromagnetic near-fields is crucial in nanophotonics, and has led to the
development of a plethora of applications. Before discussing the main applications
and the methods employed for the characterization of plasmonic systems, we will
briefly go over the basic types of plasmons emerging from the classical description
of metallic nanostructures. Although we will be focusing on the plasmons emerging
in bounded nanoparticles and dimers, we also describe plasmons supported by
infinite and semi-infinite metallic systems in order to properly understand the
underlying physical concepts in the optical response of metals.

1.2.1 The Drude model

The simplest description of the response of the conduction electrons in a metal to
an external electric field is given by the Drude model [62, 64, 65], which considers
that the electronic structure of the material is given by a classical homogeneous
electron gas. In response to an external oscillating electric field E(t) = Ege ™!,
the displacement r(t) of an electron with effective mass m and charge e from its
equilibrium position is given by the equation of motion

mii(t) + miypt(t) = eEge ™, (1.12)

where 7, is a phenomenological damping coefficient accounting for the losses caused
by collisions with the lattice nuclei and other processes. By inserting the ansatz
r(t) = roe”** into Eq. (1.12), one can obtain the displacement of the electrons in
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the frequency domain

e

o T ) (1.13)

ro(w) =

As a consequence of the displacement of the homogeneous electron gas, the external
electric field induces a polarization P(w) = nerg(w), where n is the average electron
density. By using the relation in Eq. (1.5), one can obtain the expression for the
local frequency-dependent permittivity in the Drude model

w2

gw)=1- Wpi'yp)’ (1.14)

where wy, is the plasma frequency of the metal, defined as

ne2
= . 1.15
“p \/ comy (1.15)

Despite its simplicity, the Drude model provides an accurate description of the
response at low excitation energies, and allows for the understanding of the main
phenomena in optical spectroscopy of metals, such as the emergence of surface
plasmons. The model can be improved by adding a background screening €, in order
to account phenomenologically for the polarizability of bounded electrons, such
as the d shells in silver and gold, metals which are ubiquitous in nanophotonics,
though this is not necessary for simple metals like sodium, where such bound
electrons do not affect the response.

1.2.2 Bulk Plasmon Polaritons

Let us consider a bulk metal infinitely extended in every direction. This system
sustains longitudinal waves of electronic density propagating in the infinite metal,
known as bulk or volume plasmons. In these modes, the electrons move collectively
in the direction of the propagation, producing an oscillation of the charge density
and an oscillating polarization P, as depicted in Fig. 1.2a. Assuming a local
permittivity and in the absence of external charges, the electric field must follow
the equation V - (e(r,w)E(r,w)) = 0 (from Eq. (1.1¢)). Since longitudinal waves
must satisfy V - E(r,w) # 0, they can only exist in an homogeneous material when
g(w) = 0 [66, 67], which, assuming a Drude-like dielectric function [Eq. (1.14)] with
negligible losses (7, =~ 0), leads to the bulk plasmon frequency

Whulk = Wp- (1.16)

Additionally, an infinite bulk metal can also support propagating transverse
modes called bulk plasmon polaritons. By introducing solutions of the form
E(r,t) = Ege’*Te~! and B(r,t) = Boe*Te ™! into Eqgs. (1.1a)-(1.1d), and
assuming there are no free charges, we observe that nontrivial solutions are only

10



1.2. Nanoplasmonics

possible when
ck

ew)’

where the wavenumber k is the magnitude of the wavevector k. If we model the
response of the bulk material with a Drude-like dielectric function [Eq. (1.14)], the

condition reduces to
w = /wi + c2k?, (1.18)

which means that propagating modes in an infinite bulk metal can only exist at
frequencies w > wy,. Furthermore, the dispersion relation in Eq. (1.18) illustrates
that bulk plasmon polaritons are a result of the hybridization between light and
electronic oscillations, as they present features of both photons and plasmons.
When the wavevector is small (k — 0), the propagating modes have a primarily
electronic character, whereas at the long wavevector (k — 00) limit their dispersion
is equivalent to that of light in vacuum (w = ck).

(1.17)

w =

1.2.3 Surface Plasmon Polaritons

In order to observe the effect of the material boundary, we consider the simple
case of a semi-infinite (z > 0) metal in contact with vacuum (¢ = 1) along a planar
interface. In this configuration, a new type of plasmon arises, consisting of charge
density oscillations propagating along the metal-vacuum interface and bound to
the metal surface, so-called surface plasmons. By solving Laplace equation for the
induced potential and imposing the continuity of the displacement field D at the
interface, it can be proved that the resonance condition of the surface plasmon
in the nonretarded approximation is determined by e(w) = —1 [68]. Assuming a
lossless (7, ~ 0) Drude-like dielectric function for the metal [Eq. (1.14)], this yields

the surface-plasmon frequency
Wp

NG

In addition to these purely electronic modes, metal-vacuum interfaces also
support hybrid modes called surface plasmon polaritons (SPPs), which propagate
along the metal-vacuum interface and are characterized by electromagnetic fields
evanescent in the z direction (perpendicular to the interface), this is, decaying
exponentially instead of quadratically, as depicted in Fig. 1.2b. Such fields are
characterized by the expression [62]

(1.19)

Wsp =

E]‘(I') _ (EJ7|> ezkHrH—zwte—kj,z\z|’ (120)
3,2

where j = 1,2 denotes both semi-infinite metal (2 < 0) and vacuum (z > 0)
spaces, and k| and k, are the wavevector components in the directions parallel
and perpendicular to the interface, respectively. By imposing the continuity of the
parallel component of E and the perpendicular component of the displacement

11
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Figure 1.2: a) Sketch of a longitudinal bulk plasmon in an infinite bulk metal. The bulk plasmon
is a longitudinal collective oscillation of the free electron gas in the metal producing an oscillating
polarization P. b) Sketch of a SPP with wavenumber k|| propagating along the metal-vacuum
interface. The propagating positive (negative) surface charge density is represented in red (blue),
and the perpendicular component of the evanescent electromagnetic field is depicted in green.
The plot on the right shows the exponential decay of the evanescent field. ¢) Dispersion relation of
the SPPs (blue line) given by Eq. (1.22), and of light in vacuum (red line). The surface plasmon
frequency wsp is represented by the black dashed line.

vector D; = ¢;E;, one obtains the following dispersion relation for the parallel
wavevector component (depicted in Fig. 1.2¢) [62]

2 E1€2 w2

2 (1.21)

By introducing the dielectric functions for vacuum (e2 = 1) and for a lossless Drude
metal [Eq. (1.14)], the dispersion relation becomes [62, 68]

w2 [wi
Spp(k‘”) =24 k‘ Ip + C4k‘ﬁ. (1.22)

This dispersion relation is represented in Fig. 1.2¢, and evidences the hybrid nature
of the SPPs. In the small wavevector limit (k) — 0), the SPP frequency wqpp (blue
line) approaches the dispersion line of light in free space w. = ckj (red line), and
thus SPPs behave as photons. On the other hand, in the large wavevector limit wgpp,
asymptotically tends to the surface-plasmon frequency wsp, = wp/ V2 (black-dashed
line), indicating that SPPs acquire an electronic character.

Close to the surface-plasmon frequency, SPPs show electromagnetic fields
exponentially decaying as one moves away from the surface, as sketched in Fig.
1.2b (right-hand side), which allows for sub-wavelength confinement of light to a
thin region around the interface. However, the dispersion relation of SPPs never
crosses the light line, as we can observe in Fig. 1.2c, and therefore the energy and
momentum conservation rules prevent their excitation by a plane wave traveling
in vacuum. In order to overcome this momentum mismatch and excite SPPs with

12
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light, several strategies for providing the required additional momentum have been
proposed, such as placing sharp metallic tips above the metal-vacuum interface
[69], using evanescent fields generated with optical prisms [70, 71], or modifying
the metallic surface by adding gratings or roughness [72].

1.2.4 Localized Surface Plasmon Polaritons

The momentum mismatch between light and surface plasmon polaritons in a
semi-infinite metallic surface can be overcome when one considers finite metallic
nanoparticles (MNPs) instead, as the finite geometry of a MNP provides the
extra momentum needed for the energy—momentum exchange between light and
collective electronic excitations. In this situation, the oscillations of free electrons
are confined in the three dimensions instead of propagating, and therefore plasmon
resonances in finite MNPs are called localized surface plasmon polaritons (LSPPs).
While in infinite interfaces the SPP resonances have a continuous dispersion
relationship, finite nanoparticles only support LSPPs at discrete resonance energies.
For simplicity, in later chapters we will refer to LSPPs as “localized surface plasmons”
(LSPs), as it is often done in the literature.

The emergence of LSPPs can be easily understood by analyzing the response
of the canonical metallic nanoparticle, a spherical particle of arbitrary radius a
surrounded by vacuum. In 1908, Gustav Mie demonstrated that the electromagnetic
field scattered by such a particle can be expressed as a sum of different electric
and magnetic multipoles, where each multipole corresponds to a different field
distribution [73]. Luckily, this complex optical response is simplified when the
size of the nanoparticle (with radius @) is much smaller than the wavelength of
the optical oscillations, this is, A = 2% = % > a, as one can then use the
nonretarded approximation (see Section 1.1). Following this approximation, the
induced electrostatic potential ¢™9 can be obtained by solving Laplace’s equation
(1.10) in spherical coordinates (r, 8, ), given by an expansion in terms of a spherical
harmonics basis set Y;"(0, ¢) — Y;*(£2), where Q is the solid angle [8]:

[eS) 14
omrw) = S (A + B D) (0, 9), (1.23)

{=0 m=—/¢

where Ay and By are the coefficients of the ¢-multipolar expansion. Imposing the
finiteness of ¢™9 at the origin and at infinity and applying the boundary conditions
at the spherical interface, expressed by Egs. (1.11a)—(1.11b), completely determines
the induced potential in the entire space, inside and outside the spherical closure
[21]:

oo 4 Y
ind _ m r /a’ r S a
¢ (r,w) = EEZO ng ” bem (W)Y, (0, ) x {QHI/THI r>a’ (1.24)
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with
—ale(w) — 1]

) = T )

0
[aawro.orLotee| )
where the integral extends over the solid angle Q = (6, ¢). Without an external
excitation (¢*** = 0), the coefficients by, (w) are null except at the poles in
Eq. (1.25), so that the resonance conditions of the LSPPs sustained by a spherical
MNP of radius a surrounded by vacuum are given by

{4+ 1+ Lle(w) =0. (1.26)

Assuming a lossless Drude-like dielectric function characterizing the spherical
nanoparticle [as in Eq. (1.14)], the multipolar resonance frequencies of LSPPs in
the nonretarded approximation are given by

[ 4
Wy = Wp m, (127)

where £ is the multipole order of the LSPP resonance.

Though these resonance frequencies are in principle independent of the particle
size, this assumption is no longer valid for large MNPs [74, 75], for which
retardation effects become significant, neither for very small nanoparticles [17, 76],
due to the emergence of quantum-size effects. On the other hand, the LSPP
resonance approaches the frequency of the surface plasmon in the large-£ limit
(W00 A wp/V/2). This occurs because the wavelength of the excited LSPPs
decreases with ¢ as A ~ 27a/¢, and therefore in the large-¢ limit the nanoparticle
surface can be interpreted as a flat interface.

Let us now consider the response of such a spherical nanoparticle to an
incident monochromatic plane wave polarized along the z direction, expressed
as E™(r,w) = E§ X7 2 in the frequency domain. Within the nonretarded
approximation, one can neglect the spatial variation of the external electric field
along the nanoparticle E®*(r,w) = E{ 2. Such an external field polarizes the
metallic spherical particle along the z direction, concentrating charges of opposite
signs at the top and bottom sides of the nanoparticle as depicted in Fig. 1.3a. Since
the electric field associated with a plane wave oscillates in time, the free-electron
gas will also oscillate in time, with a phase difference of 7/2 with respect to the
incident field. This charge distribution presents a clear dipolar character and thus
the resonant excitation of this collective oscillation corresponds to the LSPP mode
with ¢ = 1 or dipolar plasmon (DP), which, according to Eq. (1.27), is activated
when the frequency of the incident field is wpp = wp/ V3.

The previous prediction can be demonstrated by considering a plane-wave
illumination in Eq. (1.25). For the external potential associated with such wave,
¢°**(r,w) = —Eg 7 cos() in spherical coordinates, the integral in Eq. (1.25) has
an analytic solution, and vanishes except for £ = 1, which means that only the DP
resonance is excited in such a situation. The induced electric field can be calculated
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Figure 1.3: a) Sketch of the charge density induced on a spherical MNP by a plane-wave polarized
along the z direction, with the oscillating dipole moment p induced at the nanoparticle represented
in green. b) Map of the induced electric field enhancement from Eq. (1.28), for a Na MNP with
radius @ = 5 nm, characterized by a Drude-like dielectric function [Eq. (1.14)] with wp = 5.89 €V,
and vp = 0.21 €V, at the resonance frequency of the dipolar mode wpp = 3.40 €V. c) Spectra
of the absorption (blue) and scattering (red) cross sections of the same Na MNP as in b). The
scattering cross section is multiplied by 10 for visibility.

inside and outside the sphere from the gradient of the induced potential [62]:

~EoS5; 2 ifr<a

Eind(rvw) = _v¢ind(rvw) = )
Eg zgz;;; ‘T’—: ( 2cos(f) T+ sin(0) é) ifr>a
(1.28)
with  and @ the unit vectors along the radial and tangential directions, respectively.
Indeed, inserting a lossless Drude-like dielectric function [Eq. (1.14)] one can observe
that the induced field diverges at the DP frequency, wpp = wyp,/ V/3. Note also that,

since 2 = cosf £ — sinf 6, the tangential component of the electric field is continuous
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at the interface, unlike the perpendicular component.

As a reference, we plot in Fig. 1.3b a map of the electric field enhancement
[E™|/|E®"| for a sodium MNP of radius a = 5 nm, characterized by a Drude-like
dielectric function [Eq. (1.14)] with parameters w, = 5.89 eV and ~, = 0.21 eV
[77], at its DP frequency wpp = 3.40 eV. Notice that the induced field is constant
inside the MNP, but it varies sharply outside, presenting values much larger than
the incident field close to the surface. This figure illustrates the ability of LSPPs
to concentrate the electromagnetic field into space regions much smaller than the
wavelength of the incident field (~ 400 nm in this case), thus allowing for beating
the diffraction limit.

Interestingly, the induced electric field outside the sphere in the quasi-static
approximation is identical to the field created by a point-dipole located at the
center of the MNP [62]. Therefore, in cases when one is only concerned by the field
outside the MNP, the particle can be considered as a point dipole p(w) = a(w)E*
with polarizability

as(w) = 4meg asi:;_’_; (1.29)
Oscillating dipoles emit light into the far field, which makes MNPs excellent
candidates for optical nanoantennas [78]. Furthermore, this means that plasmonic
nanoparticles supporting LSPPs present a characteristic fingerprint in far-field
spectroscopy, enabling their identification and characterization.

The scattering cross section of the radiating dipole, which is equal to the total
power radiated to the far field divided by the intensity of the exciting plane wave,
is given by [74]

1 w\4
Tral) = 5 (%) last). (1.30)
The extinction cross section, corresponding to the total power dissipated by the
MNP, is given by [74, 79]

Text (W) = —Tm {as(w)} . (1.31)
CEp
The extinction cross section can also be expressed as Toxt (W) = Tgsca(w) + Tabs (W),
where g,ps(w) is the absorption cross section, corresponding to the power absorbed
by the MNP. Since for very small nanoparticles ogca(w) < ext(w), we will from
now on consider gaps(w) &2 gext(w). The absorption and scattering cross sections
for the sodium nanoparticle considered in Fig. 1.3b are displayed in Fig. 1.3c.
Even though we have been focused on spherical nanoparticles so far,
nanoparticles of arbitrary shape can also sustain LSPPs, presenting qualitatively
similar strongly enhanced and localized near-fields. However, all the plasmonic
properties (resonance frequency, field enhancement, emission pattern, etc.) greatly
depend on the characteristics of the nanoparticle, such as the shape, size and the
material they are made of [80-83]. This great tunability of the plasmon properties
allows for designing MNPs tailored for specific applications, and is a key reason
behind the prominence of plasmonic nanoparticles in the field of nanophotonics.
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Unfortunately, analytically solving Maxwell’s equations is not viable in general
for complex nanoparticle shapes, and numerical methods are required in such
cases. Some of the most popular numerical methods for computing the classical
electrodynamical response of metallic nanostructures are the Finite-Difference
Time-Domain method [84] and the Finite-Element Method [85], which involve
a discretization of Maxwell’s equations in both time and space, or the Discrete-
Dipole Approximation method [86], in which the system is described as being
composed by an array of discrete elements responding as polarizable dipoles to
the local electric field. Since these methods require the spatial discretization of the
entire geometry, their computational cost scales with the volume of the system. In
contrast, the Boundary Element Method (BEM) [87, 88] reformulates the solutions
of Maxwell’s equations in the presence of abrupt dielectric interfaces in terms of
surface integrals involving surface charges and currents acting as sources of the
induced electromagnetic field. This means that, instead of the whole volume, only
the material interfaces need to be discretized, which allows for a better scaling
with the size of the system.

1.2.5 Plasmons in metallic dimers

Designing individual nanoparticles is not the only way to engineer specific plasmonic
properties. If two MNPs are placed in close proximity, their plasmonic modes
hybridize due to the Coulomb interaction between them [89, 90], forming new
modes in which the free electrons in both nanoparticles oscillate collectively, as
illustrated in Fig. 1.4a. Crucially, the accumulation of charges at the facing surfaces
across the gap leads to field enhancements much larger than those in an isolated
nanoparticle [91-93], creating so-called electromagnetic “hot-spots”.

On top of the versatility inherent to plasmonic nanoparticles, plasmonic dimers
offer an additional degree of tunability, because both their LSPP resonance
frequencies and field enhancements also depend on the surface-to-surface gap
separation D. In Fig. 1.4b, we illustrate this dependency by plotting the absorption
cross section oups(w) for a dimer of MNPs as the gap size D is varied in the [1, 4]
nanometer range. We consider the same sodium MNPs as in the previous section,
and an incident electric field polarized along the dimer axis. The results presented
in the figure are obtained with the MNPBEM |[88] toolbox for the simulation of
the optical response of metallic nanoparticles using the BEM approach. The main
feature in the absorption spectra corresponds to the bonding dipolar plasmon
(BDP), whose resonance frequency wppp shifts from ~ 3.2 eV to ~ 2.7 eV as the
gap narrows from 4 nm to 1 nm. The BDP is formed by the hybridization of the DPs
of each nanoparticle, and its induced charge distribution, which is schematically
depicted in Fig. 1.4a, is characterized by dipoles at each nanoparticle, with strong
charge concentrations at the facing surfaces. In narrow gap geometries, it is also
possible to excite the bonding quadrupolar plasmon (BQP) at ~ 3.5 €V, which can
be understood as the hybridization of the DP of one MNP with the quadrupolar
(¢ = 2) plasmon of the other one [90].

Figure 1.4c shows a map of the electric field enhancement |[E™|/|E™| in the
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Figure 1.4: a) Schematic representation of the charge density induced on a dimer of MNPs by
an incident plane wave polarized along the dimer axis at the frequency of the BDP mode. b)
Absorption cross section o,ps(w) of a dimer of two Na MNPs with radius @ = 5 nm, characterized
by a Drude-like dielectric function [Eq. (1.14)] with wp = 5.89 €V and 7, = 0.21 €V, as a function
of the gap size D and the excitation energy. ¢) Map of the induced field enhancement |[E™d|/|E®*t|
in the y = 0 plane for the same dimer as in b), with D = 2.5 nm and at the BDP frequency
wppp = 3.1 eV, marked with a black cross in b).

cross section of the dimer plane (y = 0) for D = 2.5 nm at the BDP frequency
wppp = 3.1 eV. The induced fields are confined to the gap region, with field
enhancement larger than that obtained for the single nanoparticle of Fig. 1.3b. It
is possible to achieve even more dramatic field enhancements for narrower gaps.
However, when gaps become too narrow, at around D < 1 nm, the quantum nature
of electrons starts to reverse this trend, as electron tunneling between the particles
becomes possible. This decreases the accumulation of charges at the facing surfaces,
which causes a quenching of the BDP resonance [10].

Furthermore, when electrons flow through the gap, another set of modes so-
called charge-transfer plasmons (CTPs) can be activated. Direct physical contact is
not strictly required for the emergence of CTPs, as long as electrons can move from
one nanoparticle to the other, via electron tunneling [11, 12] as mentioned above,
or through conductive molecular junctions [94, 95], as we will study in Chapter 3.
Classical frameworks usually assume well-defined interfaces and electrons confined
inside the MNPs, which prevents the excitation of these modes. One possible
solution to capture this behavior is to effectively account for electron tunneling by
placing an effective conductive material at the gap [96], introducing this quantum-
mechanical effect within the classical electrodynamics framework. On the other
hand, the real MNPs’ interfaces are not sharp, unlike in the classical electrodynamics
description, as there is a spill-out of the electronic charge density [18, 97]. Electronic
spill-out is properly accounted for within a quantum mechanical description of the
electron gas at the boundaries. This approach allows for naturally describing the
electron tunneling, as the electronic clouds of both nanoparticles overlap when gap
sizes are subnanometric, thus permitting the flow of charge before physical contact
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Figure 1.5: a) Absorption cross section o,ps(w) as a function of the excitation energy w and the
gap size D, defined as the minimum distance between atoms of different MNPs, for a dimer of
Nasgp nanoparticles as depicted in the inset. The dashed line represents the point of contact
between the MNPs, this is, when the gap size is equal to the atom—atom distance in the MNPs.
b) Isosurface of the imaginary part of the induced charge density distribution for the CTP mode,
for w =1.82 ¢V and D = 4 nm, marked with a red cross in a). The corresponding modulus of
the electron current flowing through a fixed-z plane is plotted to the right. ¢) Isosurface of the
imaginary part of the induced charge density distribution for the CTP’ mode, for w = 3.02 eV and
D = 4 nm, marked with a blue cross in a), accompanied by the corresponding electron current
plot.

occurs. On top of this, when such small characteristic sizes are considered, the real
atomistic shape of the studied nanoparticles becomes very relevant [22, 27].

One way to account for all these effects and additional quantum phenomena
is by using purely quantum-mechanical descriptions of the electron gas response,
such as ab initio methods [98] as described in Sections 2.1 and 2.2. In order to
illustrate the characteristics of CTPs in MNP dimers, we have computed the optical
response of a dimer of Naggg nanoparticles with this methodology. In Fig. 1.5a, we
show the absorption cross section oaps(w) for narrow gaps (0.2 nm < D < 1 nm),
defined as the minimum distance between atoms of different MNPs. For D = 0.8
nm, the system follows the same trends as the classical response depicted in Fig.
1.4b, with a predominant BDP mode at around w = 3.0 eV red-shifting as the gap
closes. At D ~ 0.8 nm, however, the BDP resonance begins to quench due to the
aforementioned electron tunneling, and already fades away for D ~ 0.7 nm. As
the gap further closes, two distinct charge transfer modes emerge, one starting
at w ~ 1.7 eV and blue-shifting to almost 2 eV, labeled CTP, and another one
remaining at w = 3 eV, labeled CTP".

The induced charge densities corresponding to these modes are depicted in Figs.
1.5b and 1.5¢c, together with the maximal induced electron currents. The CTP
mode is characterized by a dipolar charge distribution across the whole dimer, with
nonzero net charges of opposite sign at each nanoparticle. Since isolated MNPs
are charge neutral, this indicates the flow of electrons through the gap, which is
corroborated by the maximum of induced current being placed at the junction. In
fact, it may be useful to understand the CTP as the dipolar mode of a single rod
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LSP D) CBP

Figure 1.6: Induced charge density maps corresponding to (a) a localized surface plasmon (LSP)
and (b) a confined bulk plasmon (CBP) excited by an electron beam penetrating an atomistic
Nagos7 nanoparticle, obtained within the ab initio framework described in Section 2.2. The dark
green lines represent the electron trajectories.

[23]. The induced density of the CTP’ mode resembles the BDP one, with dipolar
charge distributions on each MNP, but the induced current plot shows significant
values at the junction, which evidences the charge-transfer nature of the mode.
Thus, it is possible to interpret the observed induced charge density as the second
optically active mode of a single rod [99].

1.2.6 Confined Bulk Plasmons

Bounded metallic nanostructures can also sustain confined bulk plasmons (CBPs),
resonant oscillations of the electron density inside the volume of the nanostructure
above the plasma frequency [52]. These resonances are characterized by induced
charge densities distributed through the entire nanoparticle volume, as observed in
Fig. 1.6. In the canonical spherical MNP, they can be considered as stationary radial
charge waves due to the interference between bulk plasmons that are bounced back
at the spherical interface. These plasmons can be effectively excited by electron
beams penetrating the MNPs in STEM-EELS, as we show in Chapter 4. CBPs
were first observed experimentally in semi-infinite structures such as thin films
made of Ag [56], K [100], and Mg [101], or in nanowires made of Bi [102] and Ge
[103]. More recently, they have also been observed in several finite MNPs, including
Bi nanoparticles [104, 105], and Al nanodisks [106]. CBPs emerge due to nonlocal
effects caused by the spatial correlation of the induced charge density, which prevent
the accumulation of the induced charge density and create propagating longitudinal
pressure waves [107-109], and are therefore not captured by local dielectric response
approaches.

However, these effects can be parametrically accounted for within hydrodynamic
models of the charge density response, which describe the collective motion of the
electron gas in terms of both the electron density n(r,t) and the hydrodynamical
velocity vy, (r,t), enabling us to take into account the pressure of the electron gas.
In general, within a linearized hydrodynamic model the collective motion of the
electrons in an homogeneous medium with static density ng (in the absence of
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excitations) is governed by two expressions. The first is the continuity equation [58]

%n(r,t) +noV - vi(r,t) =0, (1.32)

which ensures charge conservation, and the second is the relation [58]

0
no(a + fyh)vh(rﬂt) = _nomiE(r’t) - B}len(rvt)7 (133)

where m, is the electron mass, 7y, is a damping parameter, and 8y, = 1/3/5vF is the
compressibility parameter, with vp = 7/3ng the Fermi velocity of the electrons.
These models have been used to study CBPs in MNPs under both light and electron
beam excitation [57, 58, 110], and in Chapter 4 we show an application of this
approach to understand the symmetries of CBPs by computing the response of
a spherical Na NP of hard boundaries. The linearized hydrodynamic model is
applied in such case, as described in more detail in Appendix B. On the other hand,
quantum ab initio approaches naturally include nonlocal effects, which makes them
particularly suitable for describing this type of plasmonic excitations. In Chapter
4, we analyze the excitation of CBPs in small Na MNPs within both of these
frameworks.

1.3 Excitations in molecules

Although we have only discussed the interaction of light with collective electronic
excitations in metallic nanoparticles so far, electromagnetic fields can also couple
to other types of matter excitations. In fact, the interaction of light with
interband transitions in molecules and small nanoparticles plays a key role in
many applications of nanophotonics. The small number of electrons of these
systems means that their energy is quantized, and therefore their light emission
and absorption properties are quantum in nature. As a consequence, molecules,
together with other systems possessing discrete energy levels such as quantum dots
and small metallic nanoparticles, are called quantum emitters (QEs). In Figs. 1.7a
and 1.7b, we plot the electronic density of states (DOS) of an organic benzene
molecule and a small Al cluster, respectively, which evidence the discrete nature
of their electronic energy levels. In this section, we briefly describe the two main
mechanisms governing the emission of light by such molecules and other QEs.

1.3.1 Electronic transitions

Quantum emitters are characterized by the existence of a finite number of electronic
energy levels, which can be either occupied or unoccupied. By the action of an
incident electromagnetic field, it is possible to promote an electron in an occupied
state to an unoccupied one, followed by fast relaxation to the lowest excited states,
and emission of a photon when the system relaxes back to its ground state in a
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Figure 1.7: (a) Electronic density of states (DOS) of a benzene molecule as calculated with the
ab initio SIESTA code [111]. The black dotted line marks the Fermi level. (b) DOS of an Aly3
cluster. (¢) Diagram of energy levels in a canonical molecule. The electronic energy levels are
represented by solid lines, and the energies of the vibrational excitations as dashed lines. Arrows
pointing upwards indicate absorption of an incident photon, and arrows pointing downwards
indicate fluorescence. Non-radiative or thermal decay is indicated by wavy lines.

phenomenon known as fluorescence. Alternatively, the excited state can also relax
by non-radiative thermal decay, in which case the excess energy is dissipated to the
environment as heat. Since the promotion of an electron to an electronic excited
state is extremely favored when the energy of the incident light matches the one of
the excitation, this interaction has a markedly resonant character. In many cases,
this allows us to model the excitation of a molecule by its lowest energy electronic
transition, the one connecting the highest occupied molecular orbital (HOMO)
and the lowest unoccupied molecular orbital (LUMO), which for organic molecules
usually lays in the visible energy range.

Therefore, a typical approximation in nanophotonics is to treat the optical
response of a QE as a two-level system. Within quantum mechanics, one can
compute analytically the evolution in time of the population of each energy level
for a two-level system excited by a harmonic electric field. Assuming that the
interaction between the emitter and the incident light is weak, and that the decay
rate of the emitter’s excited state (represented by the damping term ~yey) is small,
the polarizability of a molecular QE is given by a Lorentzian function [62]

|2 Wex

_ 2|pe

1.34
hoow2 —w? — e (1.34)

aqE(w)

where h is the reduced Planck constant, hweyx is the resonance energy of the
molecular excitonic transition, and u; is the electronic transition dipole moment of
the emitter.
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1.3.2 Vibrational transitions

On top of the electronic energy levels, molecules also sustain vibrational energy
levels associated with the oscillations of their constituent atoms, with wavelengths
typically in the infrared range. Within the Born—Oppenheimer approximation (see
Section 2.1), the electronic and atomic wavefunctions can be separated, so that
the corresponding electronic and vibrational energy levels can be superimposed as
depicted in Fig. 1.7c, with the discrete set of electronic energy levels of molecules
becoming a quasi-continuum of vibronic levels in practice. The presence of the
vibrational energy levels has important consequences in the emission and absorption
properties of molecules. Since it is possible to excite vibrational transitions, the
absorption spectra of molecules will show several peaks in the infrared range,
corresponding to the different vibrationally excited states. This allows for identifying
and characterizing molecules with infrared spectroscopy [112]. Another widely used
vibrational spectroscopy technique is Raman spectroscopy [113], which will be
discussed is Section 1.5.

Additionally, vibrational energy levels also impact the optical emission and
absorption properties of molecules. Besides from decaying to the vibrational ground
state of the electronic many-particle ground state SO (zero-phonon line), the
electronic first-excited state S1 can also decay to any of the SO vibronic states
(Stokes lines), and later relax non-radiatively to the ground state. Therefore, the
emission spectrum will consist on a sum of Lorentzians corresponding to the different
decay pathways, though the line broadening due to dephasing makes observing these
transitions separately difficult at room temperature. The probability associated
to each decay process is given by the Frank—Condon factors [114], which are the
overlap integrals of the respective SO vibrational state wavefunctions with the S1
vibrational ground-state wavefunction. As a consequence, the emission spectrum of
molecules is usually red-shifted with respect to their absorption spectrum, which is
known as the Stokes shift [115].

1.4 Coupling between plasmons and molecular
excitations

The properties of a quantum emitter can be modified in the presence of the strong
electromagnetic fields generated in the proximity of a plasmonic nanocavity, as
depicted in Figs. 1.8a and 1.8b. Due to electromagnetic interaction, the plasmonic
modes of the nanocavity couple to the electronic excitations of the emitter, usually
known as excitons [116]. In the strong-coupling regime, this is, when the strength
of the coupling exceeds the losses of both the cavity mode and the exciton, this
interaction gives rise to hybrid light—matter states so-called plasmon—exciton
polaritons, with inseparable light and matter properties [28], as schematically
depicted in Fig. 1.8b. These hybrid states show new and tunable energy levels and
can thus be used to modify the chemical properties of matter [29, 30], which has
led to interesting applications in photochemistry [31-33], single-photon emission
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Figure 1.8: a) Sketch of a quantum emitter inside an optical nanocavity. b) Sketch of the energy
level splitting in strong coupling. The modes of an emitter and a cavity with damping rates yex
and vp1, couple forming two hybrid states, so-called polaritons. The energy splitting between the
hybrid states is proportional to the coupling strength g, related to the Rabi splitting as Q = 2g,
and comparable to the losses of the original states. b) Absorption spectrum of a molecule coupled
to a plasmonic mode, characterized as two coupled harmonic oscillators according to Eq. (1.37)
for increasing coupling strength values.

[34], electroluminiscence [35], and exciton transport [36], among others. Due to the
extreme field enhancement and localization associated to plasmonic nanocavities,
these are a key configuration in the race for achieving the plasmon—exciton strong-
coupling regime [117-119]. This phenomenon will be the main focus of Chapter 3,
where we study how the geometry of a metallic nanocavity affects the strength of
the coupling with a molecule placed in it.

One simple way of phenomenologically modeling the coupled system is to
describe the excited states of both the emitter and the plasmonic nanocavity as two
harmonic oscillators [120, 121] with resonance frequencies wex, wp1, intrinsic decay
rates Yex, Yp1 and oscillator strengths al, agl, respectively. These oscillators then
couple together through the electric near-field, with a coupling strength dependent
on the position of the emitter inside the cavity [122]

B E@) [Ty
9(r) = h max([E™|(r)) 260‘}; (1.35)

where Ed(r) is the electric field induced inside the cavity, V, is the effective
volume of the optical mode, defined as

E"|2(r)dV
y, = JEMPdv (1.36)
max (|E"d|(r))?
where the integral runs over the volume of the cavity, and p; is the transition dipole
moment of the emitter. Considering that the excitation of the emitter is dominated
by the near-field generated by the cavity, and that o < chl, the polarizability
of the coupled system in the frequency domain, amyn(w), can be approximated as
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[120, 121]:

2 2
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In Fig. 1.8¢c, we plot the absorption spectrum oaps(w) of such as system,
characterized as two coupled harmonic oscillators for increasing values of the
coupling strength ¢g. As it can be observed, for small g values the spectrum
is indistinguishable from the spectrum of the bare cavity, whereas for larger g
values two distinct modes emerge, corresponding to an upper and lower polariton
whose energy splitting increases with g. By fitting the theoretical or experimental
polarizability of a system to the approximated result in Eq. (1.37), one can estimate
the value of the coupling strength g for the system. This allows for identifying
whether the system is in the strong-coupling regime by applying one of the several
criteria defining this regime [28]. In this thesis, we will use the criterion:

g > |7ex + 7pl|/4 (138)

as the threshold for strong coupling. Though the coupled harmonic oscillator model
is quite limited, as it does not take into account the effect of higher-order cavity
modes or the spatial extension of the emitter, it is very useful for the interpretation
of results, providing valuable physical insights, and is therefore widely used for
characterizing plasmon—exciton coupling in different nanosystems [121, 123-125].
We will adopt this model to interpret our ab initio results in Chapter 3, for instance.

1.5 Surface-Enhanced Raman Spectroscopy

We describe here one of the most widespread molecular spectroscopy techniques,
Raman spectroscopy, which allows for identifying molecules and materials via the
inelastic excitation of vibrational modes, setting a unique vibrational fingerprint
map. In the 1920s, C. V. Raman demonstrated the inelastic scattering process by
which molecules can be excited to virtual states by absorbing an incident photon,
and then relax back emitting photons of different energy, as sketched in Fig. 1.9a.
Since then, Raman spectroscopy has been successfully applied to fields as diverse
as nanotechnology [126], pharmaceutics and medicine [127, 128], archaeology [129],
chemistry [130], and many others [131].

Figures 1.9a and 1.9b display a sketch of the Raman scattering process. An
incident photon of energy hv; excites a molecule from its vibrational ground state
with energy Ej to a virtual state. Usually, this leads to an elastic scattering process
in which the virtual state decays back into the ground state, emitting a photon of
the same energy hv;, which is known as Rayleigh scattering. In some cases, however,
the virtual state may decay into an excited vibrational state with energy Ey + hv,,
instead, where the index n denotes the vibrational state of energy v,,, which results
in the emitted photon having a smaller energy h(v; — v,,). This process is known
as Stokes (S) scattering. The inverse process, in which a molecule initially in a
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Figure 1.9: a) Schematics of light scattering by a molecule possessing a vibrational state with
energy hvy. After absorbing a photon with energy hv;, the molecule can emit another photon with
the same energy (Rayleigh scattering), a red-shifted photon with energy h(v; — vy ) (Stokes Raman
scattering), or a blue-shifted photon with energy h(v; + vn) (anti-Stokes Raman scattering). b)
Diagram of the energy levels involved in the Rayleigh (left), Raman Stokes (center), and Raman
anti-Stokes (right) scattering processes. ¢) Raman spectrum of a bare biphenyl-4,4’-dithiol (BPDT)
molecule, obtained with the Gaussian16 [132] code by R. Alvarez-Boto [133]. The geometry of the
molecule is displayed in the inset. d) Raman spectrum of a BPDT molecule sandwiched between
two Aujg clusters [133], as displayed in the inset. Notice that the signal is enhanced by a factor
of almost 10 with respect to c), and that the relative intensity of the modes changes.

vibrational excited state with energy Fy + hv, is excited to a virtual state, later
to decay to the ground state emitting a photon of energy h(v; 4+ v,), is known as
anti-Stokes (aS) scattering. Since anti-Stokes scattering requires the molecule to
already be in an excited state, it cannot happen at zero temperature, where there is
no population of vibrational states, and even at room temperature Stokes scattering
is usually dominant. The anti-Stokes scattering, however, provides very valuable
information, as it allows for deducing molecular temperatures by measuring the
Raman signal for several peaks and taking the anti-Stokes to Stokes ratio [134]:

dodS/dQ Vit un\t
aS/S __ n _ % n
s~ TAS = () o (1.39)

b
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where daﬁf)s/dQ is the (anti-)Stokes differential scattering cross-section of

vibrational mode n, kg is the Boltzmann constant, and T is the temperature.

When a molecule is illuminated by a monochromatic light source, the scattered
light can also show emission at extra wavelengths in addition to the incident one,
with each of the new wavelengths corresponding to a Raman scattering process of
a different vibrational mode. Thus, the resulting spectrum contains information
regarding the vibrational modes of the molecule, and can be considered as a
vibrational fingerprint which allows for precisely identifying molecules. Furthermore,
if one knows the energy of common chemical bonds and functional groups as they
appear in the Raman spectrum, it is also possible to reconstruct the chemical
structure of an unknown molecule [135].

Even though Raman spectroscopy has the advantages of being quantitatively
precise, non-disruptive and label-free [136], its applications are limited by the low
efficiency of Raman processes, as typical Raman cross-section values (this is, the
area over which the incident photons are effectively converted into emitted Raman
photons) are in the 10711-107!% nm? range [3]. One way to overcome this drawback
is by using the field enhancement provided by plasmonic nanostructures, acting on
the molecules. Since the intensity of the Raman process scales with the 4" power of
the local field at the position of the molecule [3], placing the molecule at hot-spots
created by plasmonic nanoparticles dramatically increases the Raman signal by
factors up to 10% or even larger, which allows for detection of even single molecules
[37, 38]. This technique, so-called Surface-Enhanced Raman Spectroscopy (SERS),
has grown steadily since its discovery in 1974 [137], driven by a myriad of promising
applications in biomedicine [40, 138, 139], environmental monitoring [39, 140, 141],
and other fields, and enabling the design of nanoarchitectures tailored for enhancing
the Raman signal in specific situations [142-145]. On top of the electromagnetic
enhancement driven by the electromagnetic field, a chemical enhancement factor
is also present when molecules are bound to metallic surfaces. The chemical
enhancement contribution is often hard to separate from the electromagnetic one,
particularly for small clusters [133]. As an example of how even small MNPs can
dramatically enhance chemically and electromagnetically the Raman signal, we
plot in Figs. 1.9c and 1.9d the differential Raman cross sections for a bare biphenyl—-
4,4’—dithiol molecule and for the same molecule sandwiched between two Aujg
clusters, which shows an enhancement factor of almost 10%. Chapter 5 of this thesis
is focused on vibrational spectroscopy of self-assembled monolayers (SAMs) on
metallic surfaces, one of the most popular SERS configurations, with the aim of
evaluating the effect of inter-molecule interactions in the Raman signal.

1.6 Electron Energy-Loss Spectroscopy

This thesis explores collective excitations and molecular driven by light as well as
by fast electrons. Indeed, one way to overcome the limits of imaging resolution
imposed by light diffraction consists in using fast electrons as probes instead of
light, as the effective de Broglie wavelength of these fast electrons is small. Since E.
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Ruska and M. Knoll designed the first transmission electron microscope in 1931
[146], enabling an improvement of the resolution by a factor of 1000 as compared
to optical microscopes, technological improvements have allowed for developing
electron microscopy devices capable of producing tightly focused electron beams
and generating precise images by raster scanning a sample. This is possible by
using scattered electrons originated from the interaction of the electrons with
the sample, or by using the transmitted electrons themselves, collected using a
series of detectors and correlated with the well-controlled position of the electron
beam. Thanks to aberration correction techniques [147, 148], it is possible for
state-of-the-art scanning transmission electron microscopes to resolve single atoms
and even achieve sub-A resolution [46, 149].

When electrons pass through a sample, they interact with its constituent atoms
via electromagnetic forces, losing some energy and/or momentum in the process
[Fig. 1.10a]. As a result, they can be scattered elastically, due to interaction with the
atomic nuclei, or inelastically, when the beam electrons interact with the electrons
in the sample activating single-electron or collective excitations [150]. Thus, the
spectrum of electron energy-loss (EEL) probability contains information about
matter excitations on a very broad energy range, from vibrational modes at the meV
range [151] to outer electronic transitions and nanoparticle plasmons at the few eVs
range [152, 153], and even to core losses caused by the excitation of electrons in the
inner atomic shells at hundreds or thousands of €Vs [154, 155]. Since in the 50s and
60s Electron Energy-Loss Spectroscopy (EELS) experiments with broad electron
beams led to the identification of bulk plasmons [156] and SPPs [157], technical
advancements have greatly improved the capability of EELS enabling spatial
resolutions in the sub-A range [46, 47] and sub-eV energy sensitivity [48, 49]. This
has opened the door for great advancements in materials science and nanoscience,
allowing for material characterization [149, 158], vibrational spectroscopy with
nanometric resolution of phonons [159-161] or non-destructive identification of
biomaterials [162, 163]. EELS is also widely used for analyzing single nanoparticles
of sizes under 10 nm [53-55, 164, 165].

Fast electrons offer additional advantages that make them an excellent tool for
studying plasmonic nanoparticles. Since electrons traveling through vacuum are
sources of evanescent electromagnetic radiation, they are capable of directly exciting
SPPs on metal-vacuum interfaces [166]. Furthermore, some of the plasmonic modes
supported by MNPs, the so-called “dark” plasmons, not easily accessible with
conventional light spectroscopy, can be excited by the evanescent fields generated
by an electron beam [50, 51]. In fact, electron beams can excite different resonances
according to their trajectory, as observed in Fig. 1.10b, where we plot the EEL
probability spectra of a sodium spherical nanoparticle with radius a = 2 nm, for
both central (in blue) and aloof (in red) electron trajectories at 100 keV. We
model the nanoparticle’s response with the same Drude dielectric function as in
Fig. 1.3. Similarly to the optical absorption spectrum plotted in Fig. 1.3c, the
aloof trajectory spectrum shows a resonance at w ~ 3.4 eV, which corresponds
to the dipolar (¢ = 1) LSPP. The central trajectory spectrum, however, shows a
significantly blue-shifted peak corresponding to the quadrupolar (¢ = 2) LSPP.
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Figure 1.10: a) Sketch of an electron beam interacting with a MNP. The electric field generated
by the electron E€ acts on the nanoparticle, inducing a field Ei* acting back on the electron and
exerting a stopping force Fi»d, b) EEL probability spectra for a sodium spherical nanoparticle
with radius @ = 2 nm, for impact parameters b = 0 nm (center, in blue) and b = 3 nm (aloof, in
red). The spectra were computed with the MNPBEM [88] software, using a beam of electrons
with 100 keV kinetic energy and modeling the nanoparticle’s response as a Drude metal using the
same parameters as in Fig. 1.3c. For comparison, we also show the optical absorption cross section
Oabs(w) in yellow. ¢) Sketches of the induced charge density distributions at the nanoparticle
surface for the dipolar (£ = 1) and quadrupolar (¢ = 2) LSPPs. The electron beam trajectories
exciting each mode are depicted with the corresponding colors as used for the spectra in b).

Thus, electrons traveling outside and far away from the nanoparticle behave as
plane-waves, exciting modes with dipolar character, whereas electrons transversing
the nanoparticle may excite resonances with a different symmetry. Though there
are ways to access these modes in optical spectroscopy too, such as changing the
polarization of the light probe [167] or exploiting retardation effects emerging in
large nanoparticles [168], fast electrons remain one of the most efficient ways to
characterize the near-field of metallic nanoparticles. Additionally, fast electrons
with penetrating trajectories can also excite CBPs in metallic nanoparticles, whose
coupling with light is usually negligible [52, 57, 169]. This can be appreciated in
Fig. 1.10b, where these modes appear in the high-energy part of the EEL spectrum
for the central electron beam trajectory, but not for the aloof one.

The electrons in the beam may be approximated as point-like charges moving in
vacuum with a constant velocity v, which act on the nanoparticle inducing charge
oscillations and currents generating an induced electromagnetic field acting back
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on the probing electron. Within the framework of classical electrodynamics, the
induced fields exert a Lorentz force on the electron, Fi“d, as sketched in Fig. 1.10a,
causing the electron to lose some of its initial energy. The total energy loss can then
be evaluated by integrating this force along the electron trajectory. Since probing
electrons are usually highly energetic, we can neglect the component of the force
perpendicular to the trajectory, which results in the following expression for the
energy loss experienced by the electron [157]:

W=e v-EM[rg(t);1] dt, (1.40)
where re(t) is the position of the probing electron, and E™4[re(t);¢] is the induced

field. After taking the Fourier transform of the induced field, we obtain the
expression for the total energy loss in the frequency domain:

W = / huw FEELS(UJ) dw, (141)
0

where I'rrrs(w) is the energy loss probability per energy unit, interpreted as the
probability for the probing electron to lose an amount of energy hw [170]:

IepLs(w) = w;w /jo Re{v - EM[r (t);tle ™} dt. (1.42)

The energy loss probability for an electron traveling through an infinite bulk
metal can be computed classically by inserting the electric field induced by the
electron in Eq. (1.42). In the nonretarded limit, and in the local approximation, the
energy loss probability is proportional to Im{—a(l—w)} [170]. Considering a Drude-like
dielectric function to describe the response of the sample material [Eq. (1.14)], the
energy-loss probability becomes:

2fypwwg
wZ —w?)? + 4w2fyg’

IrpLs(w) o ( (1.43)

which corresponds to a Lorentzian peak at the plasma frequency wy,. Thus
pronounced energy losses at the plasma frequency are expected for electrons
traveling through a metal, as depicted in Fig. 1.10b for a sodium nanoparticle. In
the presence of boundaries, such as in the case of finite nanoparticles, the bulk
energy loss probability must be corrected due to the emergence of the begrenzung
or boundary-effect [157, 171], and surface losses appear as the excitation of surface
modes becomes possible [172]. The potential of EELS as a spectroscopy technique
is showcased in Chapter 4, where we analyze the complex plasmonic response of
sodium nanoparticles excited by penetrating and aloof electron beams within the
atomistic ab initio framework.
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CHAPTER

THEORETICAL METHODS

In the previous chapter, we described the interaction between light and
nanostructures within the classical electrodynamics framework, which is usually
accurate enough when the characteristic dimensions of the studied systems are
relatively large. However, the advances in fabrication technologies have enabled
the continuous miniaturization of nanophotonic devices, reaching even the single-
molecule limit [9]. When the characteristic dimensions of the system are in the
order of a few nanometers, the wave nature of the electrons leads to the emergence
of quantum phenomena such as nonlocal effects and tunneling, which require a
proper quantum-mechanical description of the optical response. In principle, this
requires solving the many-electron Schrédinger equation, but this rapidly becomes
computationally unfeasible for systems with more than a few electrons. Therefore,
alternative formalisms are required to tackle such a complex problem. In this
chapter, we outline the quantum methodologies we employed throughout this thesis
for studying the response of the considered nanostructures.

We focus on one of the most extended quantum mechanical frameworks, the
density-functional theory (DFT), which simplifies the many-body electronic problem
by deriving all the relevant ground-state quantities from the ground-state electronic
density instead of from the many-electron wavefunction. Furthermore, its time-
dependent extension also allows for computing the response of the system to an
external perturbation potential, such as that due to an incident electromagnetic
plane wave or an electron beam. Since, in principle, this theoretical framework
allows for modeling a system of arbitrary chemical composition with no empirical
input, it is usually deemed as ab initio. The use of ab initio methods to describe the
optical response of metals and molecules at the nanoscale is the main focus of this
chapter. We start by explaining the fundamentals of DFT and the self-consistent
method used to compute the ground-state electron density in Section 2.1. In Section
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2.2, we then present the linear-response time-dependent density-functional theory
(TDDFT) formalism, and in particular the method implemented in the Python
Numerical Atomic Orbitals (PyNAO) code [98], which we use in Chapters 3 and
4 to compute the optical and EEL spectra of plasmonic systems. In Section 2.3,
we extend the quantum formalism to a periodic infinite system, in which valence
electrons can interact with the lattice vibrations or phonons. We then introduce
the methodology employed for computing the Raman spectra of self-assembled
monolayers in Chapter 5, which treats the electron—phonon and electron-light
interactions within perturbation theory.

Though ab initio methods allow for precisely computing the energies of metallic
nanoparticles and molecules in individual configurations, finding the ground-state
configuration of complex nanostructures requires minimizing their potential energy
surface (PES). In some cases, this can be a very complicated problem, especially
when there are many degrees of freedom involved, such as for molecular adsorbates
on a metallic surface. Since the computational cost of obtaining the DFT energies
is still considerable, extensively sampling the PES sometimes becomes unfeasible.
This has led to the proposal of efficient structure optimization schemes like the
building-block based Bayesian optimization procedure implemented in the Bayesian
Optimization Structure Search (BOSS) [173] code, which we use in Chapter 5 for
finding the ground-state configuration of self-assembled monolayers (SAMs). In
Section 2.4 we give an overview of the Bayesian optimization formalism on which
BOSS is based, together with a short example to illustrate the use of BOSS in a
simple physical problem.

2.1 Fundamentals of Density Functional Theory

In this section, we introduce the quantum-mechanical DFT framework for efficiently
computing the ground-state properties of a many-electron system. All the equations
presented in this section and in Section 2.2 are written in atomic units (A = m, =
e = 4meg = 1, see Appendix A).

2.1.1 The Born—Oppenheimer approximation

Within quantum mechanics, a system composed of M nuclei at positions
R; (I = 1,...,M) and N electrons at positions r; (i = 1,...,N) can
be described by its wavefunction 1 (ry,rs,...,rN, Ri, Re,...,Ry;t), which
represents the “probability amplitude” of finding the system in the configuration
(r1,ra,...,rN, R1,Ro, ..., Ry) at time ¢. If there are no external time-dependent
perturbations, the wavefunction can be factorized into a time-dependent phase
and a time-independent probability amplitude ¢ (ry,rs,...,rN, R1,Re,...,RM)
obeying the eigenvalue equation [174]

Hi = Ev, (2.1)
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where E denotes the system eigenenergy, and H is the Schrédinger Hamiltonian
operator, which reads

Z7_22M1 ;§|rr|

7,7,
_ZZ|1" - Ry| T3 ZZ Rr —Ry|’

I J#I

(2.2)

with the capital indices running over the M nuclei and the small ones over the N
electrons, and Z; and M7 are the atomic number and mass of nucleus I, respectively.
The first and second terms in the Hamiltonian in Eq. (2.2) stand for the kinetic
energies of electrons and nuclei, respectively, and the following terms correspond to
the Coulomb interactions between all pairs of bodies. Unfortunately, the complexity
of diagonalizing the multi-dimensional wavefunction in Eq. (2.1) grows exponentially
with the number of particles, turning the problem numerically unfeasible, and
requiring the use of approximations.

A typical starting approximation, which was first devised by M. Born and
B. Oppenheimer [175], is to separate the electronic and nuclear variables, taking
advantage of the atomic nuclei being at least three orders of magnitude heavier
than the electrons. Due to the larger masses of the nuclei, M; > m,, the time scale
of their dynamics is much longer, which allows us to treat the nuclei as point-like
particles according to classical mechanics, and consider their effect as an external
potential Veyi(r;) for the electrons. The electronic wavefunction ¢ (rq,ra,...,rn)
then obeys the Schrédinger Eq. (2.1) with the Hamiltonian

N

I:I = Z Z |I'l — I'j‘ ext(rz) . (23)

i

However, the computation of the electronic wavefunction still remains a daunting
challenge due to the presence of the electron—electron interaction term, and further
approximations are required in order to make the numerical solution of Eq. (2.3)
affordable.

2.1.2 Hohenberg—Kohn theorem and Kohn—Sham equations

The DFT framework offers a way of avoiding the exponential scaling of the N-
electron problem by describing the system in terms of the 3-dimensional electron
density n(r), which is defined from the wavefunction as:

—N/ d[‘z/ drs / drx|(r,ro, ... rN) |3, (2.4)

normalized to the number of electrons in the system N. This is made possible by
the Hohenberg—Kohn theorem [176] drawing a one-to-one correspondence between
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the external potential Vot (r) perturbing an electronic system and its ground-state
electron density (up to an arbitrary additive constant). The external potential
in turn completely determines the Hamiltonian and thus all the ground-state
properties of the many-electron system, such as its ground-state energy. Therefore,
all ground-state properties are functionals of the electron density, even the ground-
state energy itself, which can be expressed as:

E[n] = Fln] + /dr Vext () n(r), (2.5)

where the second term accounts for the interaction between the electrons and the
external potential, and F'[n] is an universal functional of the density, which accounts
for all the interactions between electrons and their kinetic energy. If the universal
functional were known, it would be possible to compute the ground-state energy
Ey by minimizing F[n] with respect to the electron density n(r), according to the
variational principle. Thus, by allowing us to deal with the electron density as a
fundamental quantity instead of with the many-body wavefunction, the Hohenberg—
Kohn theorem radically alters the nature of the problem. Unfortunately, while the
above formalism is in principle exact, there is no general known expression for the
universal functional F[n], and DFT becomes an approximation in practice.

Kohn and Sham [177] further pushed the efficiency of this framework by
introducing an auxiliary system of noninteracting electrons with identical density
n(r) and postulating that the universal functional F[n] can be decomposed into
separate functionals:

Fin] =T[¢] + Euln] + Exc[n]. (2.6)

The first term represents the kinetic energy of an auxiliary system of noninteracting
electrons with density n(r), and the second term is the Hartree energy functional
accounting for the classical electrostatic repulsion

Eqln] = %// dr dr’ TW (2.7)

—I'/| ’

The third term is the exchange—correlation energy functional encompassing all the
remaining many-body interactions (such as the Pauli repulsion). The introduction
of this auxiliary system allows us to reformulate the variational property of F[n]
as a minimization with respect the single-particle Kohn—-Sham (KS) wavefunctions
¢;(r), which form a set of orthonormal orbitals. Conveniently, the kinetic energy of
the noninteracting system is directly defined as a functional of the occupied KS
wavefunctions:

Ligl= . [ dr o) T 6o) (28)

i€occ
2 1

where T' = —§V2 is the kinetic energy operator, and the density can also be
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expressed in terms of the occupied wavefunctions ¢;(r) as

nr) = 3 o). (2.9)

i€occ

Introducing these expressions into Eq. (2.5) we obtain a redefinition of the total
energy as a functional of the KS orbitals:

N
Elg] = Z/dr o7 (r) (—;VQ +Vext(r)> ¢i(r) + Exen] + Euln].  (2.10)

By minimizing this total energy functional using the variational principle [178] we
arrive at the Kohn—-Sham equations

1, . 0Eg[n]  dFEi[n] (1) = e b (r a
(=572 # Voulr) + 254 2200 6100) = it (2.11a)
Hys(r)gi(r) = € (r). (2.11b)

where ¢;(r) and ¢; are the single-particle Kohn-Sham wavefunctions and
eigenenergies respectively. This means that the ground-state density n(r) of a system
of interacting electrons can be computed by solving the Schrédinger equation for an
auxiliary system of noninteracting electrons described by the effective Hamiltonian

Hys(r) = T + Veg(r), (2.12)
where the effective potential experienced by the independent electrons Vog(r) is
Verr(r) = Vexe () + VE(r) 4+ Vie(r) = Vext (r) + Vizxe(r). (2.13)

The terms in the expression account for the external potential, the Hartree potential
due to the electron—electron Coulomb interaction in the single-electron picture,

Vi (r) = / o M) (2.14)

v —r'|

and the exchange—correlation potential defined as the functional derivative of the
exchange—correlation energy

(2.15)

which accounts for the interactions present in the many-body system but not in
the noninteracting auxiliary system.
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Figure 2.1: Schematic representation of the self-consistent DF'T loop to obtain the ground-state
density n(r) of a system. Starting from an initial guess for the ground-state density ng(r), we
compute the effective potential Vog(r) in Eq. (2.13). We then insert this potential into the KS
equations Eq. (2.11b), which return a ground-state density n(r). Then we compare this density to
the one used for computing Veg(r). If they are similar enough to satisfy our convergence criteria,
the process finishes and we can use n(r) to derive the ground-state properties. Otherwise, we mix
them and restart the loop, until convergence is reached.

2.1.3 Solving the Kohn—Sham equations

Since the potential Vog(r) depends on the occupied orbitals ¢;(r) through the
density, the KS equations must be solved self-consistently by following the cycle
depicted in Fig. 2.1. We start with an initial guess for the density ng(r), which we
use to construct the effective potential Vog(r) and solve Eq. (2.11b) to get the KS
eigenenergies ¢; and eigenfunctions ¢;, and from them the new value for the density
n(r). Then, if the new density is not similar enough to the old one to satisfy our
convergence criteria, we restart the loop with a mixed density n{(r). This process
should be repeated until convergence is reached.

Notice that, according to the presented Kohn—Sham formalism, the ground-state
density n(r) of the KS system of N noninteracting electrons defined by the effective
Hamiltonian Hgg is identical to the exact ground-state density of the physical
system of N interacting electrons. However, this is not true in practice because
the exchange—correlation energy Fy. cannot be determined exactly. Therefore, one
of the main dilemmas when using DFT is the choice of the exchange—correlation
functional, as there is a myriad of different options in the literature, some with more
general applicability and others designed for specific systems [179]. Throughout
this thesis, we have followed three different approximations. The first one is the
local-density approximation (LDA) [180], which assumes that the local exchange—
correlation energy density Ex. of a system with charge density n(r) is that of an
homogeneous electron gas with n = n(r). For systems with an inhomogeneous
electron density, it is better to use the generalized gradient approximation (GGA)
[181, 182], which also takes into account the local gradient of the electronic density.
Finally, for systems with significant long-range dispersive interactions between
atoms that are not chemically bonded one must add a dispersion correction term
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2.2. Linear-response time-dependent Density Functional Theory

to the GGA correlation energy, as is done by van der Waals functionals [183].
In Appendix C we provide a more detailed discussion of these three different
approaches.

In addition to the exchange—correlation potential, there are some other choices
required in DFT calculations. One of the most important is the selection of a basis
set for the numerical representation of the KS orbitals, as several radically different
approaches are possible, each with its own advantages and disadvantages. In this
thesis, we use two different types of basis sets: localized atomic orbitals, used for
computing the response of finite systems in Chapters 3 and 4, and plane-waves, used
for the calculations with extended surfaces in Chapter 5. Both of these basis set
types are briefly discussed in Appendix D. Another major concern is the treatment
of the tightly-bound core electrons, which are chemically inert. Since their only
effect in practice is screening the nuclear potential, it is possible to ignore their
dynamics and reproduce their effect with an effective potential, greatly increasing
the computational efficiency. In Appendix E, we discuss the two implementations
used in this thesis: the pseudopotential method [184] and the projector-augmented
wave (PAW) method [185].

The computation of the ground-state properties for the systems presented in
this thesis was performed with two open-source DFT codes: STESTA [111, 186]
(Spanish Initiative for Electronic Simulations with Thousands of Atoms) and
GPAW [187, 188] (Grid-based Projector-Augmented Wave). We used SIESTA for
the calculations in Chapters 3 and 4, and GPAW for the results in Chapter 5.

2.2 Linear-response time-dependent Density
Functional Theory

The DFT framework, which in principle only allows for the computation of physical
properties related to the ground state of a system of N interacting electrons, can be
extended to deal with the response of the system to an external perturbation. In
analogy to the Hohenberg—Kohn theorem, the Runge—Gross theorem [189] states
that there is a correspondence between the external time-dependent potential
Vext(r;t) acting on a system of interacting electrons and the time-dependent
density n(r;t). We may thus define an auxiliary system of noninteracting electrons
with the same time-dependent density as our real system, computed from the
time-dependent Kohn—Sham wavefunctions ¢;(r;¢) as

N
n(rit) = (i), (216)

with the single-particle wavefunctions satisfying the time-dependent Kohn—Sham
equations

d¢;(r;t) v?
=%

2D [+ Vaatoes0)] e (2.17)
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The time-dependent effective potential Vog[n](r;t) is unique and is defined as

Vert[n](r; 8) =Vexs[n](r;8) + Var[n](r;8) + Vie[n] (x5 1)

(2.18)
=Vext[n](r;1) + Viaxe[n](r; ¢),
where the time-dependent Hartree potential is given by:
n(r’;t)
Via(r;t) = [ dr’ . 2.19
H(r7 ) / r r—r/ ( )

Though in principle the time-dependent exchange—correlation potential Vi (r;t)
depends on the evolution of the time-dependent density n(r;t), most applications of
this theory use the adiabatic approximation, which assumes that the xc energy only
depends on the instantaneous density [190]. This scheme may be further simplified
by treating the time-dependent part of the external potential dVey(r;t) as a weak
perturbation, i.e.: }
‘/ext (I', t) = ‘/ext (I') + 5‘/ext (I‘, t) (220)

Since our aim is to compute the spectroscopical properties of the system, the
external potentials will be caused by probes, such as an electromagnetic plane-
wave or an electron beam, whereas the time-independent potential will be the one
generated by the ions, the same as for the ground-state calculation.

In the linear-response approximation, the response of the system to a weak
time-dependent perturbation potential 0Vey(r;¢) is characterized by the induced
density

n(r;t) = /dt’/dr' X(r, o5t — ') §Vee (5 1), (2.21)

where x(r,r’;t) is the nonlocal response function, which tells us how the density at
point r and time ¢ is affected by an external potential at point r’ and time ¢'. By
performing the Fourier transform of the above expression, one obtains the induced
density in frequency domain

dn(r;w) = /dr’ X(r, 1’5 w) §Veut (r';w). (2.22)

The induced density for the KS system of noninteracting electrons is given by the
equivalent expression

on(r;w) = /dr’ Xo(r,v'5w) Veg(r';w), (2.23)

where 0Veg(r';w) = Voxt (v';w) + Vixe(r';w) is the addition of the external
perturbation and the variation of the KS Hartree and exchange—correlation
potentials. Though there is no known expression for the response function of
an interacting system Yy, the noninteracting response function yg can be explicitly
expressed via products of KS eigenstates ¢,(r) in the well-known Lehmann
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representation [191]:

Gr ()P (r) @1 (x)n (x')
w— (€m — €,) +1in

Xo(r,v;w) = (fn — fm) : (2.24)

n,m

where €, and f,, are their corresponding eigenenergies and occupation terms, and
71 is an artificial Lorentzian spectral broadening phenomenologically accounting for
the lifetime of the electronic excited states. Thus, x( is completely determined by
the ground-state KS wavefunctions and eigenenergies.

From Egs. (2.22) and (2.23) it also follows that the interacting (noninteracting)
response function is the functional derivative of the induced density with respect
to the external (effective) potential [191]

on(r;w)

on(r;w) 3 Yol(r, s w) = —MIwW) (2.25)

rooY —
X(rrw) = Vext (v/; w WVeg(r;w)

Moreover, the variational derivative of 6Vog(r’, w) with respect to én(r;w) can be

computed as:
Weg(r';w) Ve (rsw) 0 Vige(r';w)
on(r;w)  dn(rjw) on(r;w)

Combining both results and introducing the Hartree-exchange—correlation kernel

(2.26)

O Vixe (5 w)

Kinelr) = 50600

(2.27)

which is frequency-independent in the adiabatic approximation [191], we can obtain
the Dyson-like Petersilka-Gossman-Gross equation [192]

X(r, r'sw) = xo(r,1’;w)

/ (2.28)
+/dr1/dr2 Xo(r,r1;w) Kie(ri, r2) x(r2, r';w).
Multiplying both sides by a factor §Vexs(r'; w) and integrating in r’ one obtains
/dr' X(1, 15 w) Vet (r';w) = /dr’ Xo(r,v';w) Veyt (r';w)
(2.29)
+/dr1/dr2 Xo(r,r1;W) Kch(rhrz)/dr' X(r2, 1 w) Vet (r';w),

which using Eqgs. (2.22) and (2.23) gives the following equation for the induced
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density

on(r;w) :/dr’ Xo(r, 1'5w) Vexe (r';w)

(2.30)
—|—/dr1/dr2 Xo(r,r1;w) Kuxe(ry, ra) dn(re;w),
which can be recast as:
/dr' Xo(r, 1'5w) Vext(r'sw) =
(2.31)

/dFQ [5(1" —r3) — /dl‘l Xo(r,r1;W) Kch(I‘l,I‘2)} on(ra;w),
or alternatively
/dr/ Xo(r, 1’5 w) Ve (r';w) =
/dr2 [5(1‘ —ry) — /drl Xo(r,r1;w) KHXC(rl,rQ)] (2.32)
x /dr’ Xo(r2, r'5w) OVer(r'; w).

Finally, this equation is further simplified by dividing both sides of the equation
by the noninteracting response xq

/dr’ Ve (r';w0) =

(2.33)
/// dry dry dr’ [1 — Kpxe(r1,12) Xo(r2, r';w) | 6Ver(r'; w),

The above equation is the one solved by the open-source code PyNAO [98]
(Python Numerical Atomic Orbitals) developed by P. Koval, M. Barbry, and D.
Sanchez-Portal, which we have used for the computation of the linear response of
the nanostructures studied in this thesis. The code implements an efficient iterative
algorithm to solve this alternative form of Eq. (2.28), which is described in detail
in M. Barbry’s thesis [20]. It uses the LCAO method (see Appendix D), in which
the KS orbitals are expanded in a basis set of numerical atomic orbitals, defined
by the product of a radial function with spherical harmonics and localized at the
atomic sites, and products of the atomic orbitals are used to expand the response
functions. This approach has been proven to be a very efficient tool to compute
the response of metallic clusters containing up to several hundreds of atoms, both
under light illumination [22, 23, 27, 193] and electron beam [194] excitation. In
the following subsections, we briefly describe the implementation of linear-response
TDDFT within the LCAO formalism and summarize how the optical and EEL
probability spectra are computed.
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2.2.1 LCAO implementation of the linear-response
formalism

In the LCAO formalism (see Appendix D), the Kohn—Sham wavefunctions are
expanded in a basis set of atomic orbitals f* as [20]:

dn(r) = X7 f*(r — Ra), (2.34)

where we have used Einstein’s summation convention over repeated indices. The f¢
are a set of atomic orbitals centered at the atomic nuclei positions R, which can
be decomposed as the product of a radial function and real spherical harmonics

for) = f4(r)Yim(€2), (2.35)

and X' are the expansion coefficients obtained by solving the Kohn-Sham equations
self-consistently.

One of the main challenges of working within this formalism is dealing with
the products of atomic orbitals f¢(r)f°(r) that appear when inserting the LCAO
ansatz Eq. (2.34) into Eq. (2.24). These quantities are linearly dependent and
therefore they do not form a suitable basis set. In order to efficiently expand the
response functions, the PyNAQO code uses a basis set of dominant product functions
FH(r), defined as [98, 195, 196]:

Fo) fx) = VP F*(x), (2.36)

where the index p runs over all pairs of atoms. The product vertex coefficients
Vlfb relate the original products f%(r)fb(r) to the new basis of dominant products
F*#(r). The F*(r) are constructed by diagonalizing a Coulomb metric in the
basis of original products, individually for each pair of atoms, and are themselves
linear combinations of the original products. The basis of dominant products can
also be expressed in terms of atom-centered products only, this is, products of
atomic orbitals centered at the same atom, which is more convenient for some
computational steps. The response function of the free-electron system can then be
expressed in the new basis as

Xo(r,x'sw) = F¥(r) xp, (w) F/(r), (2.37)
where the matrix form of the response function xY,,(w) is obtained from Eq. (2.24):

(XG VX (XEVeXy)

0 = (fn — fim 2.38
Xul) = (o ) o (2.38)

The equation solved by the code is the matrix form of Eq. (2.33):
[0 — Kiftlee X ()] V() = 6V (w), (2.39)
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using the matrix forms of the interaction kernel and the potentials defined as

Ki . = /dr dr’ F*(r) Kpxe(r,r') F¥(x'), (2.40)
SV (w) = / dr FP(r) 6V (1; ), (2.41)
Vig(w) = /dr F*(r) 0Veg(r;w). (2.42)

2.2.2 Computation of optical spectra

The optical spectrum describes the response of a system illuminated by light as a
function of its wavelength or frequency. The external electric field corresponding
to an incident monochromatic electromagnetic plane wave is, in the frequency
domain, §Eey(r;w) = E¥e’ . If the dimension of the excited system is much
smaller than the incident light wavelength, A = 27 /k = 27¢/w, one can safely use
the nonretarded approximation (see Section 1.1) and neglect the spatial variation
of the external field, in which case the external perturbation potential is accurately
described as §Voxt = Eq - r. According to Eq. (2.22), such a potential will induce a
variation in the electron density

on(r;w) = /dr’ x(r,r’;w) Eg - 1. (2.43)

From the induced density distribution dn(r;w) we can compute the induced dipole
moment along the j direction as:

p;nd(w) = —/dr r; on(r;w). (2.44)

The optical polarizability tensor of the system &(w) describing its optical response
relates the external field to the induced dipole moment,

pi“d(w) = &(w) Eog. (2.45)

By combining the last three equations, one can relate the components of the
polarizability tensor to the induced density as:

agj(w) = /dr dr’ r; x(r,v’;w) 7] (2.46)

f/dr ri on;(r;w), (2.47)

where dn;(r;w) is the density response to a unitary external perturbation 6Veyy = ;.
Thus to obtain all the components of the polarizability tensor one must first compute
the response to external fields with Ey = 1 a.u. and polarized along each of the
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three Cartesian axes. This is done by solving Eq. (2.39) for an external potential
of the form

SV (w) = / dr F*(x) 1, (2.48)

in order to obtain the corresponding effective potential, from which the induced
density can be computed as

dn;(ryw) = F(r) onj, = F*(r) X, (W) 0Vg(w). (2.49)

If the excited nanoparticles are small enough to safely neglect the contribution
of the scattering, as for the ones studied in this thesis, one can also extract
the absorption cross section o,ps(w) from the trace of the imaginary part of the
polarizability using Eq. (1.31), which in atomic units reads:

4w

Oabs(w) = S0 Tr[Im{é&(w)}]. (2.50)

Finally, the induced electric field in the frequency domain E*4(r;w) can be directly
computed from the induced density as the Coulomb integral

1nd r—r /

2.2.3 Computation of electron energy-loss spectra

The same scheme used for the optical spectra can also be applied to computing the
density induced by other external perturbations, such as the fast electron beams
used in STEM-EELS. The kinetic energies of typical TEM electron beams, which
are in the range of tens or hundreds of keV, are much larger than the energies
involved in the excitation of valence electrons, and the interaction time of such
external electrons with the nanoparticles is too short to significantly change their
velocity. Therefore, the probe electrons are usually modeled as point charges with
uniform speed. The linear-response approximation is also valid, provided that the
current density of the incoming electrons is small [166].

The electron energy-loss probability I'ggrs was introduced as a function of
the field acting back on the probe electron E™9(rq(#);¢) in Eq. (1.42). Due to the
small size of the studied nanoparticles, retardation effects can be safely ignored,
and it is assumed that the induced field is given by the electrostatic Coulomb
law as in Eq. (2.51). By inserting the field generated by a moving point charge
into Eq. (1.42) one can reach, after some algebra, the following expression for the
electron energy-loss probability as a function of the external potential and the
induced charge density [20]:

IeeLs(w) = %Im {/ dr 0V, (r;w) on(r;w)| . (2.52)
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The induced density én(r;w) is computed in terms of the product functions
FH(r) as in Eq. (2.49). Therefore, one first needs to solve Eq. (2.39) for the
perturbing potential generated by a moving electron (external probe)

" _ i/ iwt/ F”(I‘)

5‘/ext(w) o dt e dr |I‘ _ Rglec<t)| ) (253)
where R} (t) = Ro + vet — R*, with R* the positions of the atomic nuclei at
which the product basis functions F*(r) are centered, and Ry and v, the probe
electron position and velocity, respectively. The external potential components
0Vh. (w) are computed in the time domain using the Laplace expansion of the
Coulomb interaction [8], and then one performs the Fourier transform in order
to obtain the components in frequency domain. Finally, the electron energy-loss
probability is computed as follows in the basis of product functions:

I'eeLs(w) = %Im [0VE: (w) on*(w)] . (2.54)

ext

2.3 Computation of Raman spectra in periodic
systems

In this section, we summarize the methodology employed for computing the
Raman spectra of periodic systems. We start by summarily introducing the main
peculiarities of periodic systems, as well as the concepts of phonons and electron—
phonon interactions. We finish with a description of the methodology implemented
in the GPAW code [188], following its original description by Taghizadeh et al.
[197].

2.3.1 Periodic systems

A periodic system, such as an extended solid, is composed of infinite repetitions of
its primitive unit cell defined by the primitive lattice vectors (ai, ag, ag), forming
a Bravais lattice. As a consequence, the effective potential experienced by the
noninteracting KS electrons is inherently periodic:

Vert(r) = Veg(r + T), (2.55)

where T = nja; + neas + nsag is any vector belonging to the Bravais lattice.
As stated by Bloch’s theorem [65], this means that the eigenstates of the KS
Hamiltonian in a periodic system can be decomposed into the following products
of functions:

o(r) = ¢ u(r), (2.56)
where e’¥T is a plane wave part and u(r) = u(r 4+ T) shares the periodicity of the
lattice. Another consequence of Bloch’s theorem is that the eigenvalues €, and
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eigenstates ¢,k (r), identified with the band index n and the wavevector k, are
periodic with respect to the reciprocal lattice vectors G = m1by + msba + m3bs:

€nk+G = €nks Pnk+G(r) = Onk(r), (2.57)

where the primitive vectors of the reciprocal lattice are defined from the primitive
vectors as

2 2 2
b1 = Vﬂa2 X ag, b2 = Vﬂ.a,g X ag, b3 = Vﬂ-al X ag, (258)

with V' the volume of the primitive unit cell. Therefore, computing the eigenvalues
and wavefunctions for wavevectors within the first Brillouin zone, this is, the
primitive cell in reciprocal space, is enough to determine the entire electronic
structure of the material. Moreover, the symmetries of the system allow for further
reducing the subset of required wavevectors to those within the irreducible Brillouin
zone. As a reference, in Figs. 2.2a and 2.2b we represent the Bravais lattice of a
2-dimensional graphene monolayer and its first Brillouin zone, respectively.

A Dbasis set of plane waves (see Appendix D) is particularly convenient
when dealing with periodic systems, as the matrix elements of the effective KS
Hamiltonian take the form:

. 1
(k + G|Hgsk + G') = §|k + G|25G,G’ + Vg (G — G'). (2.59)

The first term on the right hand side of the equation represents the kinetic energy,
and the second term the Fourier transform of the KS effective potential. The
kinetic energy term is conveniently diagonal, whereas the potential energy term is
block-diagonal, with each block characterized by a specific momentum k, as it only
couples plane waves whose wavevectors differ by a reciprocal lattice vector G. This
allows us to diagonalize each block independently by solving the KS Hamiltonian at
every allowed k-point within the first Brillouin zone. Though in principle one should
use all allowed k-points, this is computationally unfeasible, and in practice only a
finite grid of k-points is used, usually defined by the Monkhorst-Pack algorithm
[198].

We can also make the transition to the second quantization formalism by
regarding the KS Hamiltonian as an effective one-body operator and using the
standard prescription, which leads to the following “electronic” Hamiltonian [199]:

He = ety (2.60)
nk

where €, denotes the eigenenergy of the single-particle electronic state |nk) with
momentum k and band index n, and ¢'(é) are the associated fermionic creation
(annihilation) operators.
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Figure 2.2: a) Bravais lattice of a 2-dimensional graphene monolayer, where the arrows represent
unit cell vectors {ay,az}, and the shadowed area represents the unit cell. b) Sketch of the first
Brillouin zone of the graphene monolayer, where we depict the unit vectors of the reciprocal
lattice {b1, b2} and the high symmetry points {I", M, K}. The shadowed area is the irreducible
Brillouin zone. ¢) Phonon dispersion relation of the graphene monolayer along the path outlined
in b), taken from Ref. [200].

2.3.2 Phonons and the electron—phonon interaction

An extended system supports collective oscillations of the ions in the lattice,
known as phonons. Two types of phonons exist, characterized by markedly different
dispersion relations. On the one hand, acoustic phonons correspond to coherent
movements of the lattice ions, in which the neighboring atoms oscillate almost
on-phase, and exhibit a linear relation between frequency and wavevector, with
their frequencies tending to zero at the long wavelength limit (q = 0, also known as
the T" point in the Brillouin zone). On the other hand, optical phonons correspond
to an out-of-phase motion of neighboring ions, and are characterized by nonzero
frequencies at the I'" point, and a mostly flat dispersion relation. Some of the
latter can indirectly couple to an incident electromagnetic field, and are therefore
accessible through Raman spectroscopy (see Section 1.5). As a reference, in Fig.
2.2c we plot the phonon dispersion relation of a graphene monolayer along the path
outlined in Fig. 2.2b, taken from Ref. [200], in which acoustic and optical phonons
are clearly distinguishable.

Up to this point, we have been working within the Born—Oppenheimer
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2.3. Computation of Raman spectra in periodic systems

approximation, neglecting the dynamical coupling between the electrons and the
lattice ions. However, this coupling plays a fundamental role in many physical
phenomena, and one must often go beyond the Born—Oppenheimer approximation
in order to adequately address them. The first step to account for electron—phonon
interactions is introducing the ionic Hamiltonian, associated with the energies
of the lattice vibrations, which, in the harmonic approximation, is written as a
summation of independent harmonic oscillators [201]

R 1
H, =) hwq (alqayq + 2) , (2.61)
vq

where w,q is the energy of normal phonon mode v with wavevector q, and at(a)
are the associated bosonic creation (annihilation) operators. In the case of |q| = 0,
there are three normal modes for which Aw,q = 0, corresponding to the acoustic
phonon modes, which will be skipped from now on.

Now that we have introduced both the ionic and electronic Hamiltonians, the
next step is to add the electron—phonon coupling term H,,. The standard form of
the Hamiltonian describing a coupled electron—phonon system, to the first order in
the atomic displacements, is [201]:

H.+ H, + Hey, (2.62)

where H,, is the electron—phonon coupling Hamiltonian, defined as:

nmuv
k

A h st oA (s st
H,, = Z w—ng?nkcnkcmk (al,q + ay(fq)) , (2.63)
q
with g%, = (nk + q|9yqVerr|mk) the electron—phonon coupling matrix elements,
which are computed from the partial derivatives of the Kohn—Sham effective
potential in Eq. (2.13) with respect to the atomic displacements.

2.3.3 Computation of Raman spectra

As described in Section 1.5, incident electromagnetic radiation can excite an electron
to a virtual state, creating a hole in its original band. This electron can then interact
with the lattice phonons, exciting some of them and losing energy in the process, so
that when it recombines with the hole the emitted photon has a smaller energy than
the incident one, which is known as a Raman Stokes process. The order of the Raman
process is given by the number of phonons involved. The major contribution to
the Raman signal usually comes from first-order Raman Stokes processes, depicted
in Fig. 2.3a, in which the photon scattering results in the excitation of a single
phonon. Since the momentum is conserved in electron—phonon interactions and
the electron and the hole must be close in momentum for the recombination to be
possible, only phonons near the I' point (zone-centered phonons) can participate
in this process [202]. This restriction is relaxed for higher-order Raman processes,
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Figure 2.3: Schematic representation of a first-order Raman Stokes scattering process. An incident
photon with energy E; excites an electron to a virtual state, leaving a hole behind. The electron
interacts with a phonon mode loosing some energy Iy, and later recombines with the hole emitting
a photon with energy F; — E4. In order for the recombination to be possible, the electron and
the hole must be close in momentum, and therefore due to momentum conservation the phonon
momentum must be almost zero.

such as the second-order process, in which two phonons with opposite momentum
are excited. However, in this thesis we will restrict ourselves to first-order Raman
intensities, and therefore only zone-centered phonons will be considered.

In order to compute the Raman spectra, we have employed the third-order
perturbation theory approach [197] as implemented in the open-source GPAW
code. A system of electrons interacting both with phonons and with an incident
electromagnetic field are described, in the independent-particle approximation, by
a perturbative Hamiltonian of the form:

Hg = Hy + Hey + H,, (2.64)
where Hy is the unperturbed Hamiltonian of the electrons and ions
Hy=H.+H,, (2.65)

with H, and H, the electronic and ionic Hamiltonians, described respectively in
Egs. (2.60) and (2.61), and H., is the electron—phonon coupling term in Eq. (2.63).
The electron-light interaction is described by f{ev in the velocity or minimal
coupling gauge [203], in which the electric field is completely determined by the
magnetic vector potential A as E = —9.4/9t. The Hamiltonian describing this
interaction is given by [204]:

N e o
He’Y(t) = EA(t) : Z pnkachmk +

nmk

02
2Mme

A(t)? (2.66)
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where ppmik = (nk|p|mk) are the momentum matrix elements. The term in .A?
does not contribute to the linear Raman response, and therefore it is not taken
into account from now on. This Hamiltonian neglects the Coulomb interactions
between electrons and holes (excitonic effects), which only become important when
the excitation energy is in resonance with the exciton energy [205].

The expression for the Raman intensity is derived by treating the electron—
light and electron—phonon Hamiltonians as perturbations to Hy. A general time-
dependent perturbation is expressed as ﬁ’(t) = Zwlﬁ' (wy) exp(—iwt), with w;
running over positive, zero, and negative frequencies. Assuming a monochromatic
illumination, the perturbative electric field can be written as:

E(t) = Einuiy exp (—iwint) + FoutUout €xp (—iwoutt) + ¢. ¢, (2.67)

with win(out) being the frequencies of the input (output) electromagnetic fields, and
Uin(out) aNd Ejp(out) denoting respectively their polarization vectors and amplitudes.
This means that there are three distinct frequencies in our perturbation Hamiltonian:
input and output light frequencies (win and weyt) from the electron—light interaction
part and zero frequency from the time-independent electron—phonon coupling.

The transition probability from an initial state |¥;) to a final state |¥ ;) within
‘Ehlr(]i order perturbation theory, Pl( J 5o 18 computed using Fermi’s golden rule as
206

p® _ 27 (03| H' (w3)|W0) (W3 H' (w2) | W) (W H' (1)) 2
7,—>f Z Z E By + hw?,)(El — E, + hws + FLOJ3) (2.68)

ab (wiwaws)

x 8(Ef — E; — hw),

where {|¥,),|¥;)} denote all eigenstates of the unperturbed system, {E,, Ep} their
respective energies, and w,, (with n = 1,2,3) are the three frequencies involved in
the perturbative Hamiltonian, with the constraint that the sum wi + ws + w3 = w
must be held fixed. The Dirac delta ensures the energy conservation.

The eigenstates of the unperturbed Hamiltonian can be written as a convolution
of the electronic and phononic states:

) = [¥) @ |m.,), (2.69)

with the index v running over phonon modes, so that |m,) denotes a state
with m phonons of frequency w,,, and |1) denotes a many-body electronic state.
The intensity of the Stokes Raman process in the first-order approximation is
proportional to the transition rate corresponding to a photon absorption followed
by an emission of a single phonon and a photon. This corresponds to initial and
final states

W) = [0) @ |m,), [¥7) = [0) @ m, +1), (2.70)

where |0) is the ground state of the electronic system, so that Ey — E; = fw,. We
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can also write the intermediate states [¥,)) as a convolution [1,)) ® |m,). The
electron—phonon perturbation H,, is linear in the phononic operator, which means
that

<\Ila|]fjeu‘\lli> = <wa|ﬁeu|0>6v’ua7nu/(m,,:l:l)~ (271)

with d;; the Kronecker delta. The electron-light perturbation, on the other hand,
does not depend on the phononic operator, and therefore

(W Hor | W) = (00| Her[0)00r10m i, - (2.72)

This means that the intermediate states only contribute to the Stokes response if
their phonon state |m,) is either |m,) or |m, £ 1).

For the process described above, in which a photon is absorbed in order to emit
a phonon and a photon, (w1, wa, ws) are any permutation of (win, —Wout, 0), as
the frequency of the emitted light enters with a negative sign. This means that
we will have six different terms contributing to the Stokes response, one for each
permutation of (win, —wout, 0). For example, for wy = wiy, wa = 0, wg = —weut We
have the term

(Wi H (w3) | W) (Wp| ' (w2) [ Va) (Wal H' ()| ¥5)
(E; — Ep + fws)(E; — Eq + Tuwg + hws)

_ <0|uout : ]-SW}I)> <7/}b|éu‘77[}a> <wa‘uin : p|0>
(_Mout - 6b)(_hﬁ)in - ea) ’

(2.73)

where [1,(b)) denote the intermediate electronic states, €,(;) denotes the energy
(with respect to the electronic ground state) of the electronic state |tq)), and
the many-body electronic operators are defined as P= ankpnmkéilkémk and
G, = ankgfb?nkéilkémk Taking into account all frequency permutations and
summing for all the possible final states (this is, all phonon modes v) leads to the
expression for the total Raman intensity:

1w) =13 2 b 26w — wy), (2.74)

Wy

where n, = [exp(hw, /kgT) — 1]7! is the Bose-Einstein distribution. The factor Iy
is a constant proportional to the intensity of the incident light which also depends
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on the input frequency, and [207]

PUEZ
ab

|:<0|pin|¢b><wb|él/|wa><wa|pout|0> + <O|Pin|¢b><¢b|pout|wa><¢a|GV|0>

) (hwin — Eb)(jiwout - ea)A ) (hwin — Gb)A(th —€aq) ) (2.75)
. (0] Pout|tn) (90| Gulba) (ta| Pin |0) n (0] Pout [¥0n) (16| Pin|1a) (¥4 |G, |0)
(—hwous — €p)(—hwin — €4) (—hwout — €) (hw, — €4)
n (01G., [¥6) (40| Pon [1ha) (00| ot |0) n (01G., [¥6) (45| Pout [t0a) (0] Pin] 0)
(—hwy, — €) (hwout — €q) (—hwy, — €p)(—hwin — €q) ’

where Pin = Uiy, - 13, Pout = Ugut * f’, and the summations over a and b include only
electronic states. Due to momentum conservation only phonons with q = 0, at
the center of the Brillouin zone, contribute to the first-order Raman signal (see
Fig. 2.3a), and w, stands for the zone-centered phonon frequencies w,o. Both
operators P and G, are also bi-linear in the electronic operator, so, for the
matrix elements not to vanish, the intermediate electronic states |¢a(b)> must
include singly-exited states (terms in the form 6Zkévk |0), with indices ¢ and v
denoting conduction and valence bands respectively). As we are neglecting excitonic
effects, each singly-excited state [1q)) = éikévk |0) contributes individually to
the response with an energy €,(;) = €k — €,k At finite temperature, one should
consider [tqp)) = fi(1 — f;)éj) Cix |0), where f; = (1 + exp[(ex — pe)/kpT)) " s
a Fermi-Dirac distribution with chemical potential p..

We can now recast the expression for the Raman intensity in terms of single-
particle variables and polarization vectors as:

2

ny + 1 a pv
w) =1 Z - Z usy RY, 5uout S(w —wy), (2.76)
v v af

where R}, ; denotes the Raman tensor component for phonon mode v:

U Grsdim)Pn PG (Pfmdin = Pridim)Gin
af = (hwin - 6ji)(hwout - 6WLn) (hwin - 6ji)<hwu - 6mn)

ijmnk
PG Gin — 9430 ) Do P (0% Oim — DS ) G
(_hwout - Eji)(_hu}in - 6mn) (_mout - eji)(mu - 6mfn) (277)
g;/] (p?m(sln - pZi(;j?n)pgv,n g;/] (pfmél” - pr,87,26]m)p7ann

(_hwu - 6ji)(hwout - emn) (_hwu - 6ji)(_hwin - €mn)
X fi(l - fj)fn(l - fm)7

with €;; = € — €k, pfy = (ik|p®|jk) = kdi; — (ik|V*[jk), gi; = (ik[OvoVer|ik),
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Figure 2.4: Flowchart of the GPAW method for the computation of Raman intensities of a relaxed
system structure, for an incident light frequency, and input/output polarization vectors.

and (i, j, m, n) (v) are the electron (phonon) band indices. The first term in
Eq. (2.77) is known as the resonant term, as it diverges when the incident or
outgoing photon frequencies are resonant with an interband transition. In practice,
a small imaginary part in is added to the photon frequencies wi, and woyt to
phenomenologically account for the line-shape broadening, which we have set to
100 meV in this work.

The procedure for computing these intensities within the implementation in
GPAW follows the scheme depicted in Fig. 2.4. Starting from the relaxed structures,
a DFT calculation is performed to obtain the ground state electronic band energies
and wavefunctions. From these quantities, the momentum matrix elements pf;
are computed with a finite-difference scheme and stored. In parallel, the forces
and potentials are computed for displaced atomic positions along the Cartesian
axes. From these forces, the zone-centered phonons are computed using the finite-
difference approach as described in Ref. [208] and implemented within the Atomic
Simulation Environment (ASE) package [209], to which GPAW is interfaced. The
electron—phonon matrix elements are then evaluated from the electronic states
and phonon modes as implemented in GPAW [188]. With that aim, the displaced
potentials are used to compute the gradient of the KS potential with a finite-
difference scheme [210]. Next, the gradient is projected onto a set of atomic orbitals
from an LCAO basis set and transformed to the real-space representation. The
final electron—phonon coupling matrix is obtained by projecting the transformed
matrix into the ground state wavefunctions and the phonon modes. Finally, the
Raman spectrum is obtained from the momentum and electron—phonon matrix
elements given an incident light frequency and input/output polarizations.

2.4 Introduction to Bayesian optimization

In this section, we introduce the procedure used in this thesis to tackle the problem
of finding the minimum energy configuration of a self-assembled monolayer (SAM)
on a metallic surface. In order to obtain the ground-state atomistic structure of a
system one needs to minimize its potential energy surface (PES), which correlates
the configurational phase-space of the system with its potential energy. Minima
of the PES correspond to stable configurations, and its global minimum gives the
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ground-state geometry. Even though ab initio methods described in Section 2.1
allow for the computation of the energy of a nanostructure with a great degree
of accuracy, the computational cost of extensively sampling the PES is usually
unaffordable. This problem is aggravated for metal-organic environments such as
SAMs [42] due to the sheer variety of possible morphologies, i.e., the many possible
distributions and orientations of the molecules, which makes regular or random
sampling strategies unfeasible. In this context, artificial intelligence methods such
as the recently developed Bayesian Optimization Structure Search (BOSS) method
[173] are very useful tools to improve sampling efficiency and accelerate structure
optimization. BOSS consists on a Bayesian optimization scheme modeling the
PES as a Gaussian process (see Subsection 2.4.1) fitted to DFT data points,
which is refined by the iterative acquisition of more data points according to a
smart sampling strategy, which uses a building-block approach to simplify the
configurational phase space. In this section, we give an overview on Bayesian
optimization, following the recent book by R. Garnett [211], and then discuss its
implementation within the BOSS method employed in Chapter 5 to obtain the
minimum energy configuration of SAMs.

Let us first briefly discuss the concept of optimization. Having a real-valued
objective function f defined in some real domain X, f : X — R, the goal of
an optimization procedure is to systematically search for the point z with the
globally maximum (or minimum) function value f(z). The iterative procedure
can be summarized as follows. We start with an initial dataset D = (x,y),
consisting on a series of observed values y at points x, which grows through
sequential observations. At each iteration, an optimization policy inspects the
available information and selects the location of the next observation. We then add
the result of the new observation to the dataset and must decide if we perform
another iteration or conclude the optimization process, usually by checking if some
predefined termination condition is met. Thus every optimization process requires
at least the following ingredients: an observation model, an optimization policy, and
a termination condition.

Bayesian optimization is based on the Bayesian method for the statistical
inference of uncertain features of a system from observations, in which all unknown
quantities are treated as random variables. This allows us to encode our initial
beliefs or assumptions about these quantities in their initial probability distributions,
and then refine them iteratively as we acquire new information. Suppose we
want to infer the value of a certain function f on point z, ® = f(z). We first
define a prior probability distribution (or prior) p(® | x) encoding the values we
assume plausible. We then perform an observation of the function at z, with
a result y, which depends not only on the objective value ®, but also on the
observation model. The distribution explaining the observed values in terms of the
objective values is the likelihood probability distribution (likelihood) p(y | z, ®). For
example, if our observation model assumes a Gaussian noise, the likelihood will
be a Gaussian distribution centered at y. With the new data, we may derive the
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Figure 2.5: Scheme of the Bayesian optimization procedure. The unknown objective function f is
modeled as a Gaussian process which encodes all our assumptions about f, such as smoothness,
range or periodicity. To gather information, we sample the function at the point given by the
acquisition function, and update the Gaussian process model in light of the new data. The
sampling continues, governed by the acquisition function, until the convergence criteria are met.

posterior probability distribution (posterior) using Bayes’ theorem [211]:

p(® | z) ply | z,®)
ply | z)

p(® | z,y) = ; (2.78)
where the denominator is just a normalization constant. Thus, the posterior is
proportional to the prior weighted by the likelihood of the observed value. In the
case of an exact observation, for example, the likelihood distribution is a Dirac
delta distribution p(y | z, ®) = 6(y — ®), and then one measurement is enough to
determine ®. If that is not the case and we want to perform additional observations,
we take the posterior as the new prior and continue the inductive process.

If the object of the inference is a function instead, this probabilistic belief
takes the form of a stochastic process, this is, an infinite collection of random
variables, each of which represents the value of the function at a given point of
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Term Definition

Objective function Unknown function to minimize.

flz): X >R
Stochastic process such that the marginal
Gaussian process probability distribution for every finite subset
p(f) =GP(f;u, K) of the random variables is a multivariate
normal distribution.
Mean function Expected function value at any point in the
wx): X =R domain.

Function that determines the correlation
between function values in different points of
the domain.

Covariance function
K(z,2"): X x X = R

Parameters defining the space of possible
surrogate models. In the special case of a

Hyperparameters GP, the hyperparameters are the parameters
defining the prior mean and covariance
functions.

Acquisition function Function that determines the next observation

alz;D): X =R point.

Table 2.1: Glossary with the most relevant terms defined in this section, listed by their order of
appearance in the text.

the (multi-dimensional) domain. An intuitive way of understanding stochastic
processes is as probability distributions over functions, which return functions
when sampled. We start with a prior process p(f), which will always be a Gaussian
process in our case (see Subsection 2.4.1), encoding all initial assumptions, such as
smoothness, range or periodicity. After gathering some data D, we can build the
posterior process p(f | D), which incorporates both our initial assumptions and
the information provided by the observations. In the practical case of minimizing
a PES, this sampling is done by computing the DFT energy of the system for a
given configuration. Then, if the convergence criteria are not met, we sample the
objective function again at the position determined by the acquisition function
(see Subsection 2.4.5), designed to select the optimal sampling position, and obtain
the new posterior process. This loop, represented in Fig. 2.5, is repeated until
convergence is reached. In the following sections, we describe in more detail the
steps of this procedure.
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2.4.1 Gaussian processes

Following the Bayesian approach of treating all unknown quantities as random
variables, we can model the unknown objective function f : X — R as a Gaussian
process (GP), which is the generalization of the Gaussian probability distribution.
The definition of a Gaussian probability distribution, together with other concepts
from probability and statistics used throughout this section, is given in Appendix
F. The most relevant terms defined in this section are summarized in Table 2.1. A
GP is defined as a stochastic process such that the marginal probability distribution
for every finite subset of the random variables is a multivariate normal distribution.
Gaussian processes are defined by a mean function and a covariance function. The
mean function p(x) : X — R determines the expected function value & = f(z) at

any point in the domain:
u(z) = E[® | ], (2.79)

and the covariance function K(z,2’) : X x X — R, which must be positive
semidefinite, determines how deviations from the mean are structured:

K(z,z") = cov[®,®' | z,2']. (2.80)

Knowing the mean and covariance functions of the process, we can compute the
marginal distribution of function values ® for any finite set of points x on demand,
which, by definition, will be a multivariate normal distribution:

p(® | x) =N(P;p, %), (2.81)

whose mean vector g and Gram matrix 3 are determined by the mean and
covariance functions:

p=p(x), ¥=K(xx)= Z K(x;,2;). (2.82)

By extension, the marginal distribution of the function value at a single point is a
univariate normal, and the pointwise variance 02 = K (z, ) provides a measure of
the model uncertainty at the location.

Let us now have a look at an example GP. Suppose we want to model the
objective function f(x) = sin(x) + 1.5exp(—(z — 4.3)?) in the domain X = [0, 7].
A sensible choice for the prior distribution could be a GP with mean function
w(xz) = 0 and the squared exponential covariance function, defined as

1
K(z,z') = exp(—§|x —2'%). (2.83)
We represent this GP, together with some functions sampled from it, in Fig. 2.6a.
The shadowed region is the 95% (or 20) confidence interval, which stands for the

uncertainty of the model at each point. Since we have not acquired any information
yet, the uncertainty is the same in all X.
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Figure 2.6: a) Representation of a GP in X = [0, 7] with zero mean function (in blue) and squared
exponential covariance. The shaded area represents the 95% confidence interval (this is, 20). The
red lines depict three possible realizations of this GP, which were drawn by defining a grid of 140
equidistant points in the domain and taking random samples from their corresponding marginal
distribution following Eq. (2.81). The black dashed-dotted line stands for the objective function
we are trying to model with this GP, f(z) = sin(z) + 1.5exp(—(z — 4.3)2). The probability
distribution for any function value ® = f(z) is a Gaussian distribution with mean p = u(z)
and variance 02 = K(x,z). b) Posterior process obtained by conditioning the GP in (a) on
three exact observations of the objective function at positions z = [1.5,3.5, 5], marked with
black dots. In blue, we plot the posterior mean function and the shaded region representing the
95% confidence interval, together with three exemplary realizations of the process in red. The
probability distribution for any function value ® = f(z) is still a Gaussian distribution, but now
the mean p = up(z) and variance o2 = Kp(z,x) vary through the domain. The right side plot
illustrates the probability distribution for ® = f(x = 5.5).

Inference

In Bayesian inference, our previous assumptions about the function are updated
in light of the new information. We start by initializing the surrogate GP
with covariance and mean functions encoding our prior assumptions about the
objective function. This prior process can then be conditioned to acquired data
D = {(xi,yi) | i = 1,...,n}, which yields a posterior process reflecting both our
prior assumptions and the information contained in the data. If the observations are
exact or there is only an additive Gaussian noise, the posterior is also a GP, which
allows us to continue updating the model as we perform successive observations.
It is possible to condition a Gaussian process p(f) = GP(f; 1, K) on any vector
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of observations y, as long as they share a joint Gaussian distribution. Such joint

distribution is denoted as
/ ] ; [ . ) , (2.84)
y m

where m and C are the mean vector and Gram matrix defining the marginal
probability distribution on y

K k7T

p(f,y) =GP ( . O

p(y) = N(y;m,C), (2.85)
and k(z) is the cross-covariance function between y and f
k() = covly, ® | z]. (2.86)

Conditioning the joint distribution on the observed data D = (x,y) yields the
posterior process

p(f | D) = GP(f; up, Kp), (2.87)

where
pp(z) = p(x) + w(x)C™H(y — m), (2.88)
Kp(z,2') = K(z,2') — k(x)"C  k(2). (2.89)

In the case of exact observations, any observation vector shares a joint Gaussian
distribution with any other set of function values, which allows us to perform
the conditioning procedure described above. If we observe the objective function
f at some points x, obtaining the corresponding function values ® = f(x), we
can compute the posterior by conditioning the prior GP on the gathered data
D = (x, ®). The marginal distribution of ® is Gaussian:

p(® | x) =N(®;p, ), (2.90)

and the cross-covariance between the observed data and any function value will be
given by the covariance function:

k(z) = cov[®, P | x,2] = K(x,z). (2.91)

Thus the posterior process will be:

p(f | D) =GP(f; up, Kp), (2.92)

with
() = () + Kz, x)7S (@ — ), (293)
Kp(z,2') = K(z,2') — K(2,x)' 7 K (x,2). (2.94)
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Let us now illustrate how this conditioning procedure works using the objective
function and the prior Gaussian distribution in Fig. 2.6a. Suppose that we observe
the objective function at three different locations x = [1.5, 3.5, 5]. Then, we could
update our prior GP to include this new information as described in equations
(2.93) and (2.94). This leads to the posterior process represented in Fig. 2.6b, which
shows how the acquired information has changed our beliefs about the objective
function. As it can be seen, the posterior mean smoothly interpolates through the
observed values, while the uncertainty (represented by the 95% confidence interval)
quickly diminishes in their vicinity, until it vanishes at their location. At the
unexplored regions, however, the posterior process remains very similar to the prior.
This illustrates how GPs are an excellent way of combining our prior assumptions
about the objective function with observational data. Furthermore, the conditioning
procedure can also be performed in a similar way for noisy observations, as long as
the probability distribution of the noise is Gaussian. We will now briefly discuss
the importance of the mean and covariance functions, and how they should be
dealt with in the optimization framework.

2.4.2 The mean function

As we have already defined in Eq. (2.79), the mean function of a GP gives the
expected value of the objective function at any location. However, the choice of
the prior mean function is usually not a great concern in optimization processes,
because the behavior of the sample paths is mostly determined by the covariance
function. In fact, the sample paths of a GP, GP(f; u, K), are equivalent to the ones
of the centered process GP(f — u;0, K) except for a pointwise shift of u. This is,
the sample paths of any GP with the same covariance function are effectively the
same up to translation.

As we can see from the expressions for the posterior process in Eq. (2.93), the
prior mean function only influences the posterior process through the posterior
mean function. In regions where K (z,x) is large, which means that function values
are strongly correlated with observation values, the posterior mean will diverge
from the prior mean, whereas in regions where the correlation with observations is
smaller the posterior mean will be close to the prior. Therefore, the main effect
of the prior mean will be to set the posterior mean for extrapolatory regions far
away from the measured data. Figure 2.6b provides us with an example of this
behavior: the posterior mean at the central region is determined mainly by the
observations, while at the extremes it tends to the prior zero mean. For all of this,
the most common choice for prior mean function is a constant, especially when
we don’t have any prior knowledge pointing to other options. The special case in
which p = 0 is called a centered Gaussian process.

2.4.3 The covariance function

Most fundamental properties of sample path behavior are determined by the
covariance function. It can be understood as a measure of similarity between points
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in the domain, because, after normalization, it gives us the correlation between
function values for different points:
K(x,a')

= corr[®,®' | z,2'] = . 2.95
P | | ] K(z,z)K (2, ") (2.95)

For a covariance function to be valid it must be symmetric and positive semidefinite
(this is, all eigenvalues of the Gram matrix K (x,x) must be nonnegative).

A covariance function K(z,z’) will be stationary if it only depends on the
difference z — 2/, which allows us to write it in terms of a single input. If it is
combined with a constant mean, then the process itself is considered to be stationary.
This means that translation does not affect the distribution of a given set of function
variables, and thus finding the local behavior of a function around a given point
defines its global behavior, which is a very convenient property for modeling. A
covariance function depending only on the Euclidean distance dg = |z — 2| is
called isotropic, and will be invariant under both translation and rotation. Typical
covariance functions are isotropic, such as the ones we describe next.

The Matérn family

The Matérn family is a widely used class of covariance functions which allows for
modeling isotropic behaviors of any desired degree of smoothness. They are defined
as

Knr) = zv%r(y) (\/ﬂdE) K, (V2vdg), (2.96)
where I'(v) are Gamma functions and K, are modified Bessel functions of the
second kind. The parameter v is directly related to the smoothness, as sample
paths from a centered GP using this covariance are k times differentiable only if
v > k, and it is almost always taken to be a half-integer. The extreme cases of
Matérn covariances are the exponential covariance with v = 1/2:

KM(I/Q) = exp(—dE), (297)

which gives sample paths that are continuous but nowhere differentiable, and the
squared exponential covariance with v = oo

1
Ki(oo) = Ksg = eXp(—ad%), (2.98)

which produces infinitely differentiable sample paths. The squared exponential
kernel is the most popular covariance function in statistics and machine learning,
but infinite differentiability may be an unreasonable assumption for most physical
systems. Therefore, the intermediate cases v = 3/2 and v = 5/2 (once and twice
differentiable) are sometimes more appropriate. In Fig. 2.7 we show sample paths
produced by these two covariances and the squared exponential covariance for
centered GPs.
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Figure 2.7: Sample paths for three different centered GPs with Matérn covariances as in Eq. (2.96)
of increasing v values, from v = 3/2 (red) to v = oo (yellow), illustrating the increasing smoothness
with increasing v. The blue line denotes the mean function shared by all, and the shaded region
is the 95% confidence interval.

Modification of covariance functions

Even though the presented covariance functions are too rigid to be universally
valid, we can achieve a great deal of flexibility by introducing modifications to
these simple functions. For all the previously described functions, the pointwise
variance is always equal to 1, which is just an arbitrary choice of scale. Fortunately,
it is possible to easily re-scale the amplitude of the sample paths. If we have a
function f : X — R with covariance K, and a scaling function a : X — R, then
the covariance function of the scaled function a(z)f(z) will be

covjaf | a] = a(z)K (z,x")a(z"). (2.99)

If the scaling function is a constant a(x) = Ao, then the new covariance is just
A2, K (z,2"). We may then extend a base covariance function into a parametric
family of covariance functions with an arbitrary scale K'(z,2"; \) = A\ K (z,2'),
where A\ is known as the output scale. The influence of the output scale in the
amplitude of sample paths can be observed in Fig. 2.8a.

Another important trait of covariance functions is the characteristic length
scale, which is related to how fast sample paths change. For the previous examples,
it was approximately 1, which means that if two points in the domain are separated
a distance dg = |z — 2’| &~ 1, the correlation between their function values drops
to 1/2. We can change this scale by applying the dilation x — x/Is, producing a
new parametric family of covariance functions

K'(z,2";15) = K(dg/ls). (2.100)

For a base covariance K of unit length scale, the length scale of the dilated
covariance K’ is just I, so we directly call this parameter the length scale. As we

61



Chapter 2. Theoretical Methods

a) |
~\ f‘ " ,\ \_...__. ya
-2
4] — A=112 — =1 A=2
0 5 10 15 20 25 30

p(f)

3 — I1=1r — =1 I=2

0 5 10 15 20 25 30
X

Figure 2.8: a) Sample paths for the Matérn covariance with v = 5/2 for values of the output
scale Aos = 1/2 (red), Aos = 1 (orange), and Aos = 2 (yellow). b) Sample paths for the Matérn
covariance with v = 5/2 for values of the length scale Is = 1/2 (red), ls = 1 (orange), and ls = 2
(yellow).

can see in Fig. 2.8b, large values of the length scale produce smooth sample paths,
whereas shorter lengths create wiggly samples.

If these transformations are not enough, one can take advantage of the fact
that the addition or the pointwise multiplication of two different covariance
functions results in another valid covariance function, which allows us to use
any polynomial combination of simple covariances to model complex function
behaviors. Furthermore, it is also possible to apply nonlinear transformations to
the domain in order to impose some structure. The simplest example is to map
the domain into a periodic function, for example & — r cos(z), and redefine one of
the previous covariance functions in that space, which yields a perfect correlation
between points separated by any multiple of the period 27r.

2.4.4 Model assessment

While the flexibility of GPs allows for modeling functions with a wide range of
different behaviors, it also gives rise to a nontrivial question: how do we select a
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model that is appropriate for our objective function? As we showed in the previous
subsection, we could use any mean function for our GP model, and the covariance
function can be made arbitrarily complex. Usually, the situation is even further
complicated due to the lack of prior information about the shape of the objective
function or the nature of the observation model.

Fortunately, we can postpone this decision until we have acquired some data, as
it is then possible to assess which models are more compatible with these data. To
do so, we first have to define a space of models to be considered, which in the case of
GPs will consist in parametric mean and covariance functions, and an observation
model. The parameters of these model components (as could be, for example, the
length scales of the covariance function) will be known as hyperparameters. We can
then treat these hyperparameters as random variables to be inferred, and assess the
adequacy of the models in the space of models by performing Bayesian inference
over the hyperparameters from the observed data.

Let’s consider the following simple space of candidate models:

o Observation model: additive homoskedastic (this is, the variance is the same
in all the domain) Gaussian noise with variance o2

o
e Mean function: Constant zero mean function.

o Covariance function: Matérn covariance function (v = 5/2) with unknown
output and length scales A, ls:

K(z,2"; Xos, Is) = Ao Knr(s2) (de /1) (2.101)

This defines a model space with three hyperparameters ® = [0, Aos, ls]. We denote
such a model space as

p(f | ©) = GP (f;ulx,©), K(z,2'©)) = GP (f:0,K(z,2/;©)).  (2.102)

Our initial beliefs about the plausibility of the models in this model space are
encoded in the model prior distribution p(®). This distribution is often taken
to be an uninformative constant for convenience. However, in some cases we can
make informed assumptions about the nature of our objective function that can be
encoded here. This is especially true for physical systems, for which the order of
magnitude of lenghtscales and amplitudes can usually be estimated.

After we have performed some observations D = (x,y), the posterior distribution
over the proposed models can be obtained via Bayes’ theorem:

p(©® | D) xp(®) ply | x,0). (2.103)

The term p(y | x, ©) determines how consistent a given model is with the data, and
is known as the model evidence. The most straightforward way of model selection
is to choose the hyperparameters maximizing the posterior model distribution
p(® | D), which, in the case of uninformative priors, reduces to a maximization
of the model evidence p(y | x,®). This can be understood as selecting the model
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which better explains the acquired data. Conveniently, when dealing with GP
models with additive Gaussian noise the model evidence can be computed as a
closed expression:

p(y | x,0) =N(y;p, X+ N), (2.104)

where N is the covariance matrix of the observation noise (which is the zero matrix
for exact observations), and p and X are the prior mean and covariance of the
latent objective function values ® (see Eq. (2.82)).

2.4.5 The acquisition function

At the core of an optimization procedure lays the optimization policy, whose role
is to analyze the already gathered data and take the crucial decision of where to
make the next observation. This is usually done by defining an acquisition function
a : X — R, which assigns a score to every point in the domain, reflecting our
preferences over locations for the next observation. These functions are usually
designed with the goal of selecting locations that would return the most useful
information, this is, that would maximize some wtility u(D). However, there are
many valid ways to define this utility, and therefore a wide array of possible
acquisition functions. Thus, before even beginning the optimization process, we
must set our preferences regarding the acquisition of new data.

Usually, most optimization policies are of the one-step lookahead type, this is,
they only consider the increase in utility that the next measure will provide. Though
it is possible to design policies taking into account all remaining observations until
the end of the optimization process, the cost of these computations increases
exponentially. Since one-step lookahead policies are good enough for most cases,
we will stick to this type of policies.

Regardless of how they are designed, all acquisition functions must address
the dilemma between exploitation, which means sampling where the objective
function is expected to be high, and exploration, which means sampling where
the uncertainty is high. An acquisition function that is too exploitative could get
bogged down around the local minima that are already known, while an excess of
exploration may slow down the optimization by sampling at less relevant locations.

Expected improvement

A typical example of acquisition function is the expected improvement, a one-step
lookahead acquisition function which selects the observation location maximizing
the simple reward utility

u(D) = min pp(x), (2.105)

this is, the minimum value of the posterior mean at the observation locations. In
the case of exact observations, the utility of a dataset is just the minimal observed
value

u(D) = ®* = min (D), (2.106)
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Figure 2.9: a) Gaussian process in Fig. 2.6b. b) Expected improvement acquisition function
following Eq. (2.108), computed for the Gaussian process in a). The dashed line at £ ~ 7 marks
the maximum of the acquisition function, which is the recommended next observation location.

and the change in utility by adding a new measure (x, ®) to the dataset is just
uw(D') = min(®*, ®). (2.107)

From this utility we can derive the expected improvement acquisition function for
any point in X, given a current dataset D

agi(z; D) = /d@ max(®* — ®,0) p(® | z, D), (2.108)

where p(® | z, D) is the probability of a measure at x returning value ®, given the
available data D. By definition, this probability distribution will be a Gaussian
centered at the prior mean value p(z), and with variance K(z,z). Notice that,
although we have defined this acquisition function for a minimization problem, an
equivalent function for a maximization problem can be straightforwardly obtained
just by changing the utility to u/(D) = max up(x).

As an example, we show in Fig. 2.9b the expected improvement computed for
the GP in Fig. 2.6, which we also reproduce in Fig. 2.9a as a reference. It vanishes at
the locations of the previous observations, as it is impossible to improve the simple
reward by measuring there, and increases at the high uncertainty regions. However,
uncertainty is not the only aspect shaping the acquisition function, as it can be seen
by examining the two highest uncertainty regions: the left and right extremes of the
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domain. In both cases the high uncertainty means that there is some probability of
a measure returning a value smaller than any of the available observations, and thus
the expected improvement is not zero, but the mean function takes smaller values in
the right extreme. Therefore, it will be more likely to improve the current minimum
by measuring there, which translates into higher values for the acquisition function.
The dashed line marks the location maximizing the expected improvement, and it
will thus be the next sampling location recommended by this acquisition function.

Lower confidence bound

Throughout this thesis, we have used the exploration-modified lower confidence
bound (eLCB) acquisition function, defined as [212]

aeLcB(2) = —p(z) + Ko (), (2.109)

where t denotes the optimization step, and r; = 21log[t¥?7272/(3€ac)], With €ac
being a small constant. This acquisition function yields a good compromise between
exploitation, as the first term favors sampling in regions where the expected value is
small, and exploration, as the second term encourages sampling in high uncertainty
regions. The trade-off between both is governed by k;, which increases with the
optimization step to encourage exploration and avoid getting bogged down on local
minima.

Cost Functions

Sometimes, it can be useful to modify the acquisition functions to include criteria
that cannot be easily expressed with the information provided by the prior process.
For example, it could happen that measurements at different points or regions
of the domain X have different associated costs. In this case, it may be helpful
to penalize observations with a high cost in order to improve the speed of the
optimization process. However, this difference in cost cannot be taken into account
by acquisition functions defined directly from the prior process, and we must resort
to other techniques. A convenient way of doing it is by modifying the acquisition
function by adding a cost function modeling this behavior. We discuss a particular
case of cost function in Chapter 5, in which a specific cost function is used in order
to avoid sampling unphysical system configurations.

2.4.6 Bayesian Optimization Structure Search (BOSS)

To search for the minima of the PES in Chapter 5 we have used the Bayesian
Optimization Structure Search (BOSS) code [173], which is designed for inferring
the structure of metal-organic interfaces. It models the PES as a surrogate
Gaussian process (see subsection 2.4.1) fitted to data sampled iteratively with
DFT energy calculations. The sampling is governed by an acquisition function (see
Subsection 2.4.5) efficiently searching for the global energy minimum. To reduce
the dimensionality of the configurational phase space, the system is divided into
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rigid 'building blocks’ chosen according to chemical rules. For our calculations, we
selected a zero prior mean, the squared exponential kernel (or the standard periodic
kernel [213] for periodic variables), and the eLCB acquisition function. The details
about the configurational space and the steps carried for the PES optimization are
explained in Chapter 5.

Using BOSS

Let us briefly illustrate how a BOSS search works with a simple physical example.
Assume we have a COs molecule, whose linear geometry is displayed in Fig. 2.10a,
and that we do not know the optimal C-O bond length ¢co, which is the one
minimizing the energy of the system E. Although the function f relating fco an
F is also unknown, we can “observe” it by computing the DFT energy for a given
bond length, and therefore we can use BOSS to search for the global minimum of
f. For this purpose, we first need to define the search space, this is, the range of
fco values to be considered, which we set as the interval between 0.5 A and 1.5 A.
Then we must choose the initial specifications of the surrogate model, which will
be a GP with zero mean and the squared exponential kernel. In order to initialize
the model hyperparameters, a rough estimation of the range of function values
is also required. Finally, we need to select an acquisition function, which will be
eLCB in this case.

After introducing all these initial data, we are ready to start the optimization
procedure. Since we know little about the objective function f initially, the algorithm
first realizes some observations at predetermined equidistant points, without taking
the output into account. The number of initial observations can be fixed by the
user, and we set it to two for this example. In Fig. 2.10b, we depict the posterior
surrogate GP model after these two observations. The acquired data points are
represented as red circles, the posterior mean function p as a blue line, and the
posterior uncertainty as a shaded gray region. The position of the predicted global
minimum Ziy,, this is, the point with the minimum mean function value, is marked
by a vertical red line. When the initial data points have been acquired, the next
observation location Zext, marked by a green dashed line, is determined by the
acquisition function. In Fig. 2.10c, we depict the posterior surrogate GP model after
one additional observation is made. We then let the process continue for some more
acquisitions until we reach the situation depicted in Fig. 2.10d, in which the global
minimum position is already clearly determined, after a total of seven acquisitions.
Here we can see the competing principles of exploration and exploitation at play.
The first is represented by the acquisitions at the domain edges, as well as by
the recommended next acquisition location, which is in a region with the largest
current uncertainty, but where a low-energy value is highly unlikely. The second
is represented by the small cluster of observations close to the global minimum,
which allowed to fine-tune its position.
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Figure 2.10: a) Nlustration of the CO2 molecule with bond length £co. Oxygen atoms are depicted
in red, and the carbon atom in gray. b) Posterior GP after the two initial acquisitions, which
are marked as red circles. The posterior mean function g and the variance v are represented in
blue and gray, respectively. The vertical red line indicates the estimated position of the global
minimum Zmin, whereas the vertical dashed green line indicates the next observation location
Znext- €) Posterior GP after a total of three acquisitions. d) Posterior GP after a total of seven
acquisitions.

2.5 Summary

In this chapter, we have reviewed the methodologies employed in this thesis
for the computational simulation of the optical response of nanostructures. We
have provided a brief overview of the DFT method used for computing the
ground-state density and the derived properties in Section 2.1, followed by the
description of the linear-response TDDFT formalism for obtaining the excitation
properties of the studied systems in Section 2.2. Then we have focused on the
LCAO method implemented by the PyNAO code for computing the response of
nanostructures as probed by both light and electron beams used in Chapters 3
and 4. Thereafter, in Section 2.3, we have described the method for obtaining
the first-order Raman intensity from electron—phonon interactions used in the
SERS study of self-assembled monolayers in Chapter 5. Finally, in Section 2.4 we
have provided an overview on Bayesian optimization and described the Bayesian
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Optimization Structure Search method, which we employ in Chapter 5 to search
for stable configurations of organic molecules adsorbed on a gold substrate in order
to obtain their Raman spectrum.
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CHAPTER

INFLUENCE OF ATOMISTIC
FEATURES IN PLASMON-EXCITON
COUPLING

As described in Chapter 1, plasmonic nanocavities allow for an extreme localization
of the induced electric field at optical frequencies [82]. When a quantum emitter,
such as an organic molecule, is placed inside such a cavity, its electronic transitions
(i. e., excitons) can couple to the electromagnetic modes of the plasmonic cavity,
which in the strong-coupling regime leads to the formation of hybrid light—matter
states so-called polaritons [28, 30] as related in Section 1.4. Under certain conditions,
the emergence of these new modes allows for tuning the optical properties of the
emitter. In the last years, this has led to the proposal of many applications in fields
such as photochemistry [31-33], single-photon emission [34], electroluminiscence
[35], and exciton transport [36, 214], among others.

The optical response of molecules coupled to metallic nanoparticles (MNPs)
is often described within the classical electrodynamics framework introduced
in Chapter 1 [215], in which the electronic transitions of the molecules are
approximated as point dipoles, and the optical response of plasmonic cavities is
described within the dielectric formalism. Nevertheless, the extreme electromagnetic
field localization induced by nanoscale plasmonic cavities may result in the
generation of a local inhomogeneous field experienced by the molecule. In such
a situation, the widely used model of a point-dipole subjected to a specific
homogeneous field would fail to correctly capture the plasmon—exciton interaction
[216, 217]. Moreover, the classical description of the cavity is not able to address
quantum phenomena arising at narrow gaps, such as the spill in/out of the induced
charge density at the interfaces [60, 218-220], or charge transfer between the
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MNPs and the molecule [10, 221] (see Section 1.2.5). Although comprehensively
accounting for all these phenomena within a single framework remains challenging,
the shortcomings of classical methods have lead to the development of a wide variety
of semiclassical and quantum approaches to describe plasmon—exciton coupling in
the last years [222-224].

The aforementioned effects can be addressed with the use of quantum many-
body frameworks [27, 225], which offer suitable tools to describe molecule-MNPs
coupled systems in subnanometric cavities, when the system is small enough
as to be computationally affordable. Different approaches have been successfully
implemented within time-dependent density functional theory (TDDFT) to describe
quantum phenomena occurring in hybrid molecule-MNP systems, such as charge
transfer [226-228], or chemical enhancement in surface-enhanced Raman scattering
[41, 229]. Recent theoretical works have also reliably reproduced the strong-
coupling regime between metallic clusters and molecules by first-principles modeling
[24, 25, 230], and calculations with simplified jellium models have also suggested
that the molecule-MNPs coupling can be significantly perturbed by quantum
effects arising at sub-nanometric distances, such as the hybridization between the
atomic orbitals of the molecule and the electronic wavefunctions of the metal
[231]. Furthermore, atomistic TDDFT methods naturally account for geometrical
features of the hybrid system, which have significant influence in the detailed
optical response in extreme nano- and pico-cavities [27, 225, 232].

In this chapter, we analyze the optical response of a coupled molecule-MNP
dimer system from an atomistic ab initio perspective within the linear-response
TDDFT framework, implemented in the PyNAO code [98] (see Section 2.2), which
uses a basis set of numerical atomic orbitals and norm-conserving pseudopotentials.
This computational tool offers a fully quantum description of the optical response
of a nanosystem incorporating all the aforementioned quantum phenomena, while
accounting for its atomistic features. We start by describing the optical response
of bare silver clusters and dimers in Section 3.1 for reference. Then, in Section
3.2 we focus our analysis on the optical response of a molecule-MNP dimer
system, which for dimer gaps smaller than 2 nanometers strongly depends on the
specific atomistic features of the nanocavity. Indeed, as we show in Section 3.3,
the atomistic morphology of the cavity at these extreme dimensions significantly
affects the coupling strength, and the molecule-MNPs coupling can be quenched
for certain atomistic configurations of the cavity due to the electronic coupling
between molecular and metallic orbitals. Finally, in Section 3.4 we explore the
emergence of charge-transfer modes, and show that this process is also determined
by the atomistic configuration of the cavity.

3.1 Optical response of silver clusters and dimers
We have focused our study on atomistic silver MNPs, one of the most widely

used metals in nanophotonics, thanks to its sharp plasmonic resonance at visible
frequencies and to its reduced chemical activity. We model them as an icosahedral
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Figure 3.1: a) Atomistic structure of an Agspg icosahedral cluster. The main geometrical features
are highlighted: in blue, the atom defining one of the cluster tips, and in red, the atoms defining
one of its facets. b) Normalized absorption spectra of silver icosahedral clusters with increasing
number of atoms N.

body, which is a very stable configuration for small metallic clusters [233, 234].
To obtain their exact geometries, we first optimized the lattice constant of ideal
icosahedral clusters by computing the ground-state energy with ab initio DFT as a
function of the lattice constant, and searching for the minimum in the curve. After
identifying the optimal lattice constant, we used it to build perfect icosahedral
clusters of varying sizes, which we then relaxed until the residual atomic forces
were smaller than 0.02 eV/ A. In Fig. 3.1a, we show the Agsgg cluster as an example
of such a geometry. The nanoparticle displays clearly defined geometrical features,
such as tips and facets, highlighted in the figure in blue and red, respectively. All
the DFT ground-state calculations were performed using the SIESTA code [111]
and the GGA exchange—correlation functional developed by Wu and Cohen [182]
(see Appendix C), which has been shown to correctly reproduce the experimental
lattice constant and bulk modulus of silver [235]. We used a double-¢ polarized
basis set of numerical atomic orbitals (see Appendix D) and norm-conserving
pseudopotentials to effectively describe the core electrons (see Appendix E). On
top of incorporating all the previously mentioned quantum effects, an additional
advantage of this methodology is that it allows us to straightforwardly describe the
semicore 4d electrons of silver, which have a critical effect on the size dispersion of
the LSP resonance frequency [53, 236, 237]. These electrons are removed from the
pseudopotential and treated as valence electrons.

We then use the KS orbitals and energies obtained from the ground-state
calculations to compute the absorption spectra of the MNPs within linear-response
TDDFT as implemented in the PyNAO code [98] (see Section 2.2). In Fig. 3.1b,
we plot the resulting absorption spectra for a series of silver icosahedral clusters
of varying sizes, normalized with respect to the number of atoms. The spectra
are dominated by the dipolar LSP (see Section 1.2.4), whose resonance energy
lies in the range from ~3.7 eV for the smallest cluster Agss, to ~3.2 eV for the
largest one, Agy415. This inverse relation between cluster size and LSP resonance
energy agrees with experimental results for silver and other noble metals [53], and
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is caused by the quantum size effect together with thw background polarizability
of the 4d electrons [20].

By placing two of these icosahedral clusters together in close proximity, we can
create a more efficient optical cavity resonator. Due to the atomistic nature of
the nanoparticles, the morphology of the cavity can be modified by changing the
orientation of the MNPs, which has an important effect on the induced field [22].
In this thesis, we have studied two different cavity configurations: the tip-to-tip
configuration, depicted in Fig. 3.2a, in which the dimer axis passes through the
nanoparticle tips, and the facet-to-facet configuration, depicted in Fig. 3.2b, in
which the cavity is formed by the facets of the opposing nanoparticles. In Figs. 3.2¢
and 3.2d, we plot the calculated absorption spectra in the 3-4 eV spectral range of
these dimers under illumination with a plane-wave polarized along the dimer axis
as a function of the gap size D. This gap size is defined as the minimal distance
between atoms from the two different clusters. The spectra are dominated by the
Bonding Dipolar Plasmon resonance (BDP, see Section 1.2.5). For large D values,
this resonance appears at around 3.4 eV, matching the LSP resonance energy of
the single Agsgg nanoparticle, and starts to red-shift as the gap closes, with the
red-shift being more pronounced in the facet-to-facet case. The identification of
the BDP mode is confirmed by the induced charge density plots in Figs. 3.2e and
3.2f, which reveal a dipolar pattern of the induced charge density at the surface of
each MNP, characteristic of BDP excitations, as depicted in Fig. 1.4 for a dimer of
sodium spheres. As we will describe in detail in the next section, these induced
charge densities can be understood as snapshots of the real-time induced charge
density, which means that these dipoles will be oscillating in time, with a phase
delay of 7/2 with respect to the oscillations of the incident field. In these plots one
can also appreciate the clear dipolar distributions of the induced charge density
around the individual atomic sites, which are a signature of the atomistic response
associated with the localized 4d orbitals of silver.

When an emitter is placed in the plasmonic cavity of a dimer, a hybrid molecule—
MNP system is formed. In this work, we consider a porphine molecule as the emitter.
This molecule has a family of derivative compounds, known as porphyrins, which
have multiple applications in photochemistry [238, 239]. Its atomistic structure
is depicted in Fig. 3.3a. In Fig. 3.3b, we plot the absorption spectrum of the
isolated molecule, together with the dimer spectra for both gap configurations and
a gap size D = 1.5 nm. Notice that the molecular transition at 3.4 eV matches the
plasmonic resonance of the dimer, which allows for a very efficient electromagnetic
molecule-MNPs coupling. In the insets of Fig. 3.3b, we also display the isosurfaces
of the imaginary part of the induced charge density of both dimer BDPs and of the
molecular resonance. The latter displays a noticeable dipolar character, similar to
that of the individual nanoparticles, which shows that this resonance corresponds
to the electronic dipolar transition of the molecule.
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Figure 3.2: a) Atomistic structure of a dimer of Agsgg icosahedral clusters in the tip-to-tip
configuration, with a gap size D and incident electric field Eg polarized along the dimer axis
direction (z axis). b) Atomistic structure of a dimer of Agsgg icosahedral clusters in the facet-
to-facet configuration. ¢) Absorption spectra for the tip-to-tip dimer configuration for varying
D values. d) Absorption spectra for the facet-to-facet dimer configuration for varying D values.
(e) Snapshot of the induced charge density for the bare tip-to-tip silver dimer with separation
distance D=1.5 nm, at resonance (w=3.41 V). (f) Snapshot of the induced charge density for the
bare facet-to-facet silver dimer with separation distance D=1.5 nm, at resonance (w=3.40 eV).

3.2 Optical response of hybrid molecule-dimer
systems
After analyzing the optical response of the isolated constituents, we study the

effect of the optoelectronic coupling on the optical response of the molecule-MNPs
hybrid system, which is depicted in Fig. 3.4a (3.4b) for the tip-to-tip (facet-to-facet)
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Figure 3.3: (a) Atomistic structure of the porphine molecule. Hydrogen atoms are depicted in white,
Carbon atoms in gray, and Nitrogen atoms in blue. (b) Comparison of the absorption spectrum of
a porphine molecule (black dotted line) with the absorption spectra of Agzgg dimers (D=1.5 nm)
in the tip-to-tip (blue) and facet-to-facet (red) configurations. The molecular transition at 3.4 eV
overlaps with the bonding dipole plasmon (BDP) modes of the dimers. The insets represent the
isosurfaces of the imaginary part of the induced charge density at the resonance frequencies of
the molecular transition and the BDP modes, respectively.

configuration. We first focus on the tip-to-tip configuration, in order to describe
the general behavior of the system, and later study the influence of the cavity
morphology on the coupling, by comparing these results with those obtained in
a facet-to-facet configuration. Figure 3.4c shows its absorption spectra for values
of the gap size ranging from D=1.4 nm (bottom) to D=1.8 nm (top). Two well
separated peaks, so-called polaritons, are distinguishable in all the spectra, which is
a characteristic of strongly coupled systems. We notice that the lower polariton (LP)
resonance, marked with yellow dots, is red-shifted with respect to the resonances
of the bare dimer and the molecule, displayed in Fig. 3.3b, whereas the upper
polariton (UP) resonance, marked with green dots, is blue-shifted. However, the
splitting of the LP and UP peaks depends greatly on the electromagnetic field
acting on the dipole moment of the molecule, and this field is directly related to the
gap size. Therefore, the polaritonic splitting also depends on the gap size: for small
values of D (large field enhancement), both polaritons are clearly distinguished, but
they merge gradually when the value of D is increased (smaller field enhancement).
This behavior indicates that the strength of the coupling between the molecular
and plasmonic resonances decreases when increasing the gap size, following the
decay of the induced field inside the cavity. In Fig. 3.4d, we plot isosurfaces of the
imaginary part of the induced charge density for the D=1.4 nm polaritons, which
are labeled as A and B in the corresponding spectrum. These isosurfaces show
clear dipolar patterns for the induced charge density on each of the constituents
of the system, for both the lower (A) and upper (B) polaritons. Notice that, as
for the modes of the isolated constituents, these dipoles oscillate in time. However,
as can be observed in Fig. 3.4d, there is a key difference between the lower and
upper polaritons: in the first case, the induced charge density oscillations in the
molecule and in the nanoparticles are in-phase, whereas in the second case these
oscillations are out-of-phase. Such a behavior is consistent with previous results for
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Figure 3.4: (a-b) Representation of the canonical system under study in the tip-to-tip (a) and
facet-to-facet (b) configurations. A porphine molecule is placed in the middle of the cavity formed
by two silver icosahedral nanoparticles of 309 atoms each, and the system is excited by light
polarized along the dimer axis direction (z axis). A gap size D=1.5 nm is considered in both
figures. (c) Optical absorption spectra of the hybrid molecule-MNPs system in the tip-to-tip
configuration for different gap sizes D. Spectra on the top correspond to large D values, and
spectra on the bottom to smaller D values. Yellow and green dots mark the LP and UP resonances,
respectively. (d) Isosurfaces of the imaginary part of the induced charge density for the LP (A,
yellow) and UP (B, green) resonances in the D=1.4 nm geometry. (e) Optical absorption spectra
of the hybrid molecule-MNPs system in the facet-to-facet configuration for different gap sizes D.
Spectra on the top correspond to large D values, and spectra on the bottom to small D values.
Yellow and green dots mark the lower and upper polariton resonances, respectively, and the
resonance emerging between them for D = 1.4 nm is marked in blue. (f) Isosurfaces of induced
imaginary charge density for the LP (A’ yellow) and UP (B’ green) resonances in the D=1.4 nm
geometry, and for the new resonance emerging between them (C, blue).

7



Chapter 3. Influence of atomistic features in plasmon—exciton coupling

similar hybrid molecule-MNPs systems [24], and can be used as a criterion for the
existence of coupling.

The distribution of the induced electric field inside a nanocavity is strongly
influenced by its morphology, specially by atomistic features such as tips, edges, or
facets [22]. To illustrate the dependence of the coupling between the dimer and
the molecule on the atomistic details, we have repeated the previous tip-to-tip
calculations for the facet-to-facet configuration of the MNPs displayed in Fig. 3.4b.
We have found in this case that, for the smallest value of the gap size considered in
this work, D=1.4 nm, the expected two-peak profile breaks up, with a third peak
emerging between the LP and the UP resonances. This pattern can be observed in
Fig. 3.4e, which shows the absorption spectra for the facet-to-facet configuration
as a function of the gap size D. Figure 3.4f displays the isosurfaces of the induced
charge density calculated for the three peaks in the absorption spectra. The peak
at 3.0 eV (A’) shows a pattern of in-phase oscillations similar to the LP resonance
in Fig. 3.4d, whereas in the one at 3.45 eV (B’), molecule and MNPs are nearly
out-of-phase, as for the UP resonance in Fig. 3.4d. For the resonance at 3.25 eV
(C), visual inspection is not enough to identify the phase difference, and this needs
to be computed numerically from the induced charge densities (see Section 3.2.1).

The emergence of this third peak between the LP and UP resonances in the
facet-to-facet configuration is attributed to the hybridization between the electronic
states of the molecule and of the MNPs [231, 240, 241], which provides an additional
decay channel for the molecular excitation, decreasing its lifetime and causing a
quenching of the signature of the molecular excitation in the absorption spectrum.
Nevertheless, our calculations show that the double-peak structure in the absorption
spectrum is recovered in the facet-to-facet configuration for larger D values (see
Fig. 3.4e), with decreasing mode splitting for increasing gap size due to the smaller
field enhancement, as in the tip-to-tip case.

3.2.1 Computation of the phase difference

To support the previous visual analysis of the induced charge densities and get
further insight into the nature of the hybrid polaritonic modes, we have computed
the phase difference between the induced charge density oscillations in the molecule
and in the nanoparticles for the different modes, from the real and imaginary
parts of the induced charge densities. In the linear-response formalism, the time-
dependent evolution of the charge induced by an external monochromatic field of
angular frequency wy E = Eg cos(wot) is given by the expression [20]

on(r;t,wo) = dngre(r; wo) cos(wot) + dnmm (r; wo) sin(wot), (3.1)

where dnge(r;wo) and dny,(r;wy) are respectively the real and imaginary parts

of the induced charge density in the frequency domain. This means that the real-

time induced density oscillates between the real (at wot = 0,7) and imaginary
s

(at wot = £7) induced densities in the frequency domain. We illustrate this by

plotting in in Figs. 3.5a and 3.5b the real-time induced charge densities for the
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Figure 3.5: Real-time evolution of the induced charge density as described in Eq. (3.1). The
real-time induced density oscillates between the frequency-space real and imaginary induced
densities. a) Induced densities for the D = 1.5 nm facet-to-facet hybrid system at the excitation
energy of the LP mode (wg = 3.15 V). b) Induced densities for the same system at the excitation
energy of the UP mode (wp = 3.44 eV).

D = 1.5 nm facet-to-facet hybrid system at the LP and UP excitation energies,
respectively.

Therefore, the z-component of the induced dipole moment also presents an
oscillatory behavior, given by

p2(t,wp) = /dr on(r;t,wo) z

= cos(wot)/dr 0nRre(r;wo) 2z + sin(wot)/dr Onim (r;w0) 2
= cos(wot) pL°(wo) + sin(wot) pI™(wo),

where p€(wg) and pi™(wp) are the parts of the z-component of the induced dipole
moment in the frequency domain derived from the real and imaginary induced
charge densities, respectively. From the previous equation, it follows that the
real-time dipole moment is maximum when

Im

P (u)())
pRe(wo)

For systems with a single sharp resonance, as in the case of our isolated
constituents, the real part of the polarizability usually vanishes at the resonance

tan(wot) = (3.2)
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Chapter 3. Influence of atomistic features in plasmon—exciton coupling

frequency, and thus the dipole moment of the system oscillates with a phase
difference of 7/2 with respect to the incident field. However, this is not true
anymore for more complex systems with several resonances, such as the molecule—
MNPs hybrid system studied here, for which the real part of the response is not
negligible.

When there are several constituents in the system, it is also possible to
define their individual dipole moments, which may oscillate with different phases.
Therefore, we have computed the phase difference in the oscillations between the
molecule and the MNPs from the induced charge densities. We first define the
induced dipoles for the constituents of our system:

Pz,j(t,wo) = /dr on(r;t,wo) 2, (3.3)

J

where j stands for the molecule or the MNPs, and the integral over j means an
integration only in the spatial region of the corresponding constituent. Then we
define the phase of each constituent as

0; = arctan (3.4)

which corresponds to the value wgt at which the induced dipole moment of the
constituent is maximum. Then, the phase difference is computed as

36 = |0mo1 — Onp . (3.5)

The value of §6 is situated in the interval between 0, which corresponds to the
molecule and the MNPs oscillating in-phase, and 7, which corresponds to the
molecule and the MNPs oscillating with opposite phases.

In Fig. 3.6a (3.6b), we show the phase difference in the oscillations between the
dipoles induced at the MNPs and at the molecule in the tip-to-tip (facet-to-facet)
configuration, computed using the methodology described above. The values of
this phase difference for each mode are displayed as a function of the gap distance
D. We focus our attention first on the tip-to-tip case, and we can observe that, in
the LP, the MNPs and the molecule oscillate almost in phase, and this behavior is
maintained for the whole range of analyzed gap sizes. In the UP, in contrast, the
phase difference shows that, for the smallest gap size geometry, the induced dipoles
in the molecule and in the MNPs oscillate in anti-phase, which is consistent with
the induced charge density depicted in Fig. 3.4b. However, the phase difference
decreases to less than 7/2 as the gap size increases, which is interpreted as an
additional evidence of the diminishing coupling strength. In the facet-to-facet
configuration, the LP and UP resonances show a similar behavior, with almost
on-phase oscillations at the LP frequency and close to anti-phase oscillations at
the UP one. The main difference is the emergence of a new resonance for the D
= 1.4 nm case (labeled as C in Fig. 3.4e), for which the phase difference in the
oscillations (marked as MR in Fig. 3.6b) is close to m/2, which means that the
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Figure 3.6: (a) Phase difference between the dipoles induced at the MNPs and at the molecule
for both the LP (yellow) and UP (green) resonances in the tip-to-tip configuration, as a function
of the gap size D. (b) Phase difference between the dipoles induced at the MNPs and at the
molecule for both the LP (yellow) and UP (green) resonances in the facet-to-facet configuration,
as a function of the gap size D. The single blue dot marks the phase difference for the resonance
emerging between LP and UP for the closest gap (MR).

induced dipole moment in the molecule has its maximum value when it is zero in
the MNP, and vice versa.

3.3 Influence of the cavity configuration on the
coupling strength

A coupled molecule-MNPs system is considered to be in the strong-coupling regime
when the splitting of the emerging hybrid modes is larger than the losses of the
system. To identify the strong-coupling regime, we will use the criterion presented
in Eq. (1.38) of Section 1.4, which defines the threshold for the coupling strength
g as g > |Yex + Yp1|/4, where vex and v, are the intrinsic damping rates of the
excitonic emitter and the plasmonic cavity, respectively. In our case, we obtain the
values of 7ex = 0.107 eV and vy, = 0.191 eV by fitting the absorption spectra of
the isolated constituents to Lorentzian functions, as described in Eq. (1.34). We
notice that the plasmonic losses vary slightly for the different dimer configurations
considered, so we take the largest of them. Following this criterion, the value of g
for the molecule-MNPs system is then estimated by fitting the absorption spectra
of the hybrid system to a coupled-oscillator model [Eq. (1.37)]. Figure 3.7 shows
the values of the coupling strength g obtained for different gap sizes and for the
two configurations of the MNPs considered in this work, ranging between 0.07
(large D) eV and 0.14 €V (small D). The strong-coupling condition, marked by
the dotted black line in Fig. 3.7, is fulfilled for the whole range of considered gap
sizes. The D=1.4 nm case for the facet-to-facet configuration is omitted, because
its absorption spectrum does not show the characteristic two-peak behavior.

As we can see, the facet-to-facet configuration consistently outperforms the
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Figure 3.7: Values of the coupling strength g for both the tip-to-tip and facet-to-facet configurations
as a function of the gap size D, computed by fitting the TDDFT absorption spectra to a coupled-
oscillator model [(1.37)] . The dotted line represents the threshold for strong coupling according
to Eq. (1.38). vex and ~p,) are the excitonic and plasmonic losses respectively.

tip-to-tip configuration, with a mean difference in coupling strength larger than
20%, confirming the influence of atomic features in setting up the plasmon—exciton
interaction in the dimer cavity. This difference in the coupling strength is caused
by the dissimilarity of the spatial distributions of the induced electric field at
the cavity of each configuration, as illustrated in Figs. 3.8a and 3.8b, which show
the normalized induced electric field [E™4|/|Eq| for the bare dimer BDPs in the
tip-to-tip and facet-to-facet configurations, respectively, directly obtained from
the induced densities plotted in Fig. 3.2 using Eq. (2.51). In the tip-to-tip case,
the induced field is strongly localized around the vertices of the MNPs due to the
atomistic lightning rod effect [22], whereas in the facet-to-facet case the field is more
homogeneously distributed inside the cavity, enabling a more efficient coupling
with the molecule. The final coupling strength is thus a consequence of the field
enhancement associated to the particular atomistic structure of the gap, which
determines its inhomogeneity and extension.

To further confirm this statement, we use estimations of the coupling strength
from the induced fields and the molecular dipole, in which the strength of the light—
matter coupling for an emitter located at position r in the presence of an optical
cavity mode is determined by Eq. (1.35). To do so, we first need the transition
dipole moment of the isolated porphine molecule p, which is obtained by describing
the polarizability spectrum of the isolated molecule shown in Fig. 3.3b through
Eq. (1.34). In this way, we obtain a value of u; = 8.35 Debye for the transition
dipole moment of the porphine molecule. We then use Eq. (1.35) to estimate the
coupling strength of the hybrid molecule-MNPs system, approximating the porphine
molecule as a point dipole placed at the center of the gap and using the induced
fields computed for the bare dimers. The values of the coupling strength obtained
in this way are shown in Fig. 3.9, marked with crosses, together with the effective
values of g extracted from the coupled harmonic oscillators model applied to the
absorption spectra, marked with solid dots. Although this simple approximation
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Figure 3.8: (a-b) Electric field enhancement at the BDP resonance on the XZ plane for a
bare nanoparticle dimer with gap size D=1.5 nm for the tip-to-tip (a) and facet-to-facet (b)
configurations. (c-d) Electric field enhancement on the XZ plane for the LP resonance of the
tip-to-tip (c) and facet-to-facet (d) hybrid geometries (with molecule) with gap size D=1.5 nm.
(e-f) Electric field enhancement on the XZ plane for the UP resonance of the tip-to-tip (e) and
facet-to-facet (f) hybrid geometries (with molecule) with gap size D=1.5 nm.

results in coupling strengths that are significantly larger than the values obtained
from the coupled harmonic oscillator model, it correctly predicts stronger coupling
in the facet-to-facet configuration than in the tip-to-tip configuration, and confirms
our hypothesis of a more homogeneous and extended field distribution in the
facet-to-facet configuration enabling a stronger coupling.

There are several possible reasons for the quantitative discrepancy in the
coupling strength values obtained within the two aforementioned approximations.
Since the size of the molecule is relatively large compared to the gap size, the
point-dipole approximation is not well justified, and the spatial extension of the
molecule should be considered. Typically, this is done by substituting in Eq. (1.35)
the values of field and dipole in a point by the integral of the induced field weighted
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Figure 3.9: Comparison of the coupling strengths, g, estimated from the induced fields at the
cavity using Eq. (1.35) (crosses) and the coupling strengths from a coupled harmonic oscillator
model (CHOM) applied to the absorption spectra (dots), for both the tip-to-tip (blue) and
facet-to-facet (red) configurations.

by the normalized molecular electronic transition density [216]. Regrettably, within
the TDDFT approach implemented in this thesis we do not have access to the
electronic transition density. Therefore, we have limited ourselves to estimate this
effect by applying an averaged value of the induced field on the electronic transition

dipole:
9= K e / [E™|(r) (3.6)
h max \E‘“d\ 2e9Ve

where the average is done by con51der1ng the fields over the spatial extent of the
molecule. However, we have found that this does not significantly change the
estimated coupling strength values. Another aspect which might contribute to the
discrepancy between the results of the two models could be the different treatment
of the screening in both methods. The ab initio calculations naturally account for
molecular screening, whereas the approximate average field approach does not.
In the classical formalism, screening can be considered by introducing a factor
1/€ser in Eq. (1.35), with eser = (2€0 + €0)/(3¢€0), where ¢, is the permittivity of
the emitter [122]. Although this permittivity is not well defined in the atomistic
formalism, we can estimate it by adjusting the screening factor so that the coupling
strengths from the induced fields formalism match the ones from the atomistic
spectra, which returns an estimated value of €, ~ 3.

In addition to the bare dimer BDPs, the induced fields for the hybrid system’s
LP and UP modes also differ in some key aspects. In Fig. 3.8 we compare the
enhancement of the electric field for the bare nanoparticle dimer at the BDP
resonance and for the molecule-MNPs system at both the LP and the UP resonances,
for both the tip-to-tip and facet-to-facet configurations. As observed in Figs. 3.8¢c
and 3.8d, the induced field in the LP is distributed along the entire cavity, and
specially in the volume between the molecule and the MNPs, whereas the induced
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field in the UP, shown in Figs. 3.8e and 3.8f, appears to be concentrated around
the center of the molecule. A similar behavior has already been predicted in
calculations with tetracene molecules and Mg nanoparticle dimers [25]. In both
cases, the distribution of the field is drastically modified with respect to the BDP
of the bare nanoparticle dimer displayed in Figs. 3.8a and 3.8b. In spite of the
quantitative differences in the values of the coupling strength described previously,
the general qualitative properties of the induced field distributions of each polariton
do not seem to be greatly influenced by the configuration of the cavity.

3.4 Charge-transfer plasmons

Following the analysis of the optical response of the molecule-MNPs system and
the nature of the characteristic resonances, we put now our focus on the low-energy
range of the spectra. In Fig. 3.10a, we show the absorption spectra of the hybrid
system zoomed at the spectral range between 0 eV and 1 eV, in both the tip-to-tip
(blue) and the facet-to-facet (red) configurations for D=1.4 nm, together with the
bare dimer (green) and the isolated molecule (dotted black) spectra. As observed,
the cavity morphology plays a key role in the optical response at low energies. The
isolated constituents do not exhibit any resonances in this frequency range, and
the same occurs for the hybrid system in the tip-to-tip configuration. However,
in the facet-to-facet configuration, several new peaks emerge at low energies. To
get deeper insight into these low-energy resonances, we plot the corresponding
induced charge densities in Fig. 3.10b. The two main resonances, labeled D and
E, display clear monopolar patterns on the surface of the MNPs, meaning that
the individual MNPs posses nonzero net induced charges of opposite signs. As
described in Section 1.2.5, this is a signature of the flow of charge from one cluster
to the other through the molecular junction, which suggests their identification
as charge-transfer plasmon (CTP) modes [94]. Since both modes are CTPs, the
corresponding isosurfaces of induced charge density look very similar.

Shift of the molecular energy levels

In order to confirm the identification of these modes as CTPs, we make use of
the well known fact that for a molecule placed between two MNPs, the existence
of molecular states close to the Fermi level of the MNPs triggers the electron
conductivity of the system, which makes the intensity of CTP resonances very
sensitive to the relative position of these molecular energy levels [227]. In practice,
the relative position of these levels can be shifted by applying an external potential,
as in single-molecule resonant tunneling experiments [13]. In the present atomistic
ab initio framework, it is possible to shift these energy levels in a controlled way
by introducing a background potential localized around the atomic sites of the
molecule. This shifting is performed using a feature initially implemented in STESTA
for the ab initio computation of the U parameter within the LDA+U framework,
following the formalism in refs. [242] and [243]. Such feature allows us to apply an
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Figure 3.10: (a) Low-energy range of the absorption spectrum for the bare dimer (green), the
isolated porphine molecule (dotted black), and the hybrid system of both the tip-to-tip (blue) and
facet-to-facet (red) configurations, with D=1.4 nm. The emerging modes for the facet-to-facet
configuration at 0.34 eV and 0.45 eV are marked as D and E, respectively. (b) Snapshots of the
induced charge densities at the resonances D and E appearing for the facet-to-facet geometry.

energy shift to the electronic levels of the system according to their projections onto
a specific subset of atomic orbitals. Thus, the total energy of the system becomes

Eaite[n(r)] = Eppr[n(r)] + Y AlLnl,, . (3.7)
I,m
where n!  is the occupation of the orbital m of the atom I and A! is the local

potential shift applied to that orbital. The occupations are computed according to
the expression

ninm’ = Z fl’<¢V|Pr{’Lm/ P0), (3.8)

with ¢, and f, standing, respectively, for the Kohn—Sham orbitals and their
occupation for quantum number v. The P,{lm, are localized projectors used to
compute the local populations

Py = 10m) (@] (3.9)

In STESTA the projector functions ¢!, are defined using two possible methods:
either as numerical atomic orbitals similar to those used as a basis set, or as exact
solutions to the pseudoatomic problem with a radial cutoff r. applied using a
Fermi function. The cutoff radius r. is chosen to prevent a large overlap between
projectors in neighboring atoms. This second method is the default in STESTA,
and is the one used in our calculations.
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Figure 3.11: (a) Sketch illustrating the shifting of molecular energy levels. (b) Projected density
of electronic states (PDOS) of the molecule around the Fermi level for different values of the
energy shift A. The dotted black line stands for the Fermi level of the MNPs, and the HOMO
and the LUMO are indicated for the A = 0 case. (c) Absorption spectra of the system at CTP
energies for different values of the energy shift A ranging from -1 eV (bottom) to 1 eV (top). (d)
Absorption spectra of the system at higher energies for values of the energy shift ranging from
-0.2 eV (bottom) to 0.2 eV (top).

The expression of the energy in Eq. (3.7) corresponds to a modified Hamiltonian

Hain = His + Y Al loh) (oh- (3.10)

I,m

To simulate an homogeneous shifting of the molecular energy levels, we set the
shifting parameter for all the orbitals of the molecule to the same value A, i.e.,
AL = A if atom I belongs to the molecule and Af = 0 otherwise. This shift is
maintained during the self-consistent calculation and gives rise to a corresponding
shift on the Kohn—Sham eigenstates of the hybrid system that are localized at the
molecule.

Taking advantage of this methodology, we analyze the effect of a controlled
shift of the molecular energy levels on the optical absorption of the system, as
depicted in Fig. 3.11a. Since we are interested in the charge-transfer regime, all
the calculations in this subsection are performed for the D=1.4 nm case in the
facet-to-facet configuration. In Fig. 3.11b, we show the projected electronic density
of states (PDOS) at the molecule for different values of the energy shift A, choosing
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the Fermi level of the MNPs as the zero-energy reference. For A = 0 eV (i.e., when
no shift is introduced), the highest occupied molecular orbital (HOMO) and the
lowest unoccupied molecular orbital (LUMO) are localized around -1.6 €V and 0.4
eV, respectively. We analyze the energetics of the LUMO in the molecule, as it holds
the main role in charge transport. As can be observed in the figure, negative A
values shift the LUMO closer to the Fermi level of the MNPs, whereas for positive
A values, the opposite occurs: the LUMO shifts to higher energies, increasing its
energy separation with respect to the Fermi level.

Note that the shiftings do not exactly correspond to the introduced value of
A, for which there are several possible explanations. Although the states labeled
as the molecular HOMO and LUMO are concentrated around the molecule, as
shown by the PDOS, they are in fact Kohn-Sham eigenstates of the whole system,
and as such they will also be partially spread through the rest of the system.
Moreover, the projector functions ¢!, determining if a given state is localized at
the molecule are obtained from the isolated neutral atom solutions, which is a
radically different chemical environment from the one analyzed here, with covalent
bonds between molecular atoms and a significant hybridization between the cluster
and molecular states. Additionally, since the potential energy shifts are included
in the self-consistent calculations, their presence itself should modify the spatial
distribution of the KS eigenstates. Nevertheless, this does not change the general
behavior: negative A values shift the LUMO closer to the Fermi level of the MNPs,
whereas for positive A values, the opposite occurs.

In Fig. 3.11c, we compare the low-energy part of the absorption spectra for
the range of A values presented in Fig. 3.11b, with the negative values at the
bottom and the positive ones at the top. As a result of lowering the LUMO energy
and bringing it closer to the Fermi energy, the intensity of the CTP resonances is
significantly strengthened for negative A values. In contrast, shifting the LUMO
away from the Fermi level, thus impairing the charge transfer, leads to a weakening
of the CTP modes in the absorption spectrum. Together with this variation of
the intensity of the CTP modes, the shift of the molecular levels also results in
a displacement of the CTP resonances. This behavior confirms the identification
of these modes as CTPs, and evidences the versatility of the ab initio TDDFT
approach employed for this work to assess the nature of complex microscopic
transport processes at optical frequencies. Additionally, Fig. 3.11c clearly shows
that the CTP modes are red-shifted for negative A values, and blue-shifted for
positive values. As described above, this is explained by the change in the energy
gap between the LUMO and the Fermi level of the MNPs, which increases for
positive A values and decreases for negative ones. It is also interesting to look at
the influence of the molecular energy level shift A on the higher-energy part of the
absorption spectrum, which we show in Fig. 3.11d. Positive values of A as small
as 0.2 eV remove the middle resonance (labeled as C in Fig. 3.4a), while negative
A values increase the height of this peak, which suggests a connection with the
charge transfer through the molecule. The other spectral features related to the
LP and the UP are not affected by the shifting of the molecular energy levels,
which identifies the role of the molecule as a continuous conductive block in such
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resonances.

3.5 Summary

In this chapter, we have analyzed the optical response of a porphine molecule
coupled to an Agsgg dimer within an ab initio atomistic linear-response TDDFT
framework. We have started by describing the optical response of bare icosahedral
silver clusters and dimers in Section 3.1, as well as that of the isolated porphine
molecule. In Section 3.2, we then focused on the response of the hybrid molecule—
MNPs system. Our results showed the splitting of the plasmonic resonance of the
dimer into two clearly distinct polaritons, which is supported by an analysis of the
induced charge densities. This confirms that the system is at the strong-coupling
regime for gap sizes smaller than 2 nm. A comparison of the coupling strength g
values in Section 3.3 for the different gap geometries has shown that the atomistic
configuration has a significant effect on the coupling strength We showed that the
more homogeneous induced fields of the facet-to-facet configuration result in larger
g values. In Section 3.4, we focused in the low-energy range of the optical response
for different dimer configurations, proving that atomistic features also have a crucial
influence on the emergence of charge-transfer plasmons, which, for our system,
only appear in the facet-to-facet configuration. We also performed an analysis of
the CTP modes emerging at low frequencies, and showed that their intensity and
spectral position can be tuned by shifting the position of the molecular energy levels
with respect to the Fermi level of the MNPs, which provides valuable insights into
the mechanism behind charge-transfer phenomena. In general, this work stresses the
importance of the effects caused by atomistic details in the response of molecule-
MNPs coupled systems. Additionally, these results demonstrate the suitability
of the employed TDDFT method for addressing the coupling between molecules
and MNPs, while simultaneously accounting for the influence of the atomistic
configuration and quantum effects arising at narrow gaps. The results presented in
this chapter thus further consolidate atomistic ab initio methods as a feasible tool
to describe the most extreme cases of quantum emitter-nanocavity interactions.
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CHAPTER

PLASMONIC RESPONSE OF SMALL
METALLIC NANOPARTICLES AS
PROBED BY FAST PENETRATING
ELECTRONS

The technical advances in electron microscopy produced in the last decades have
led to an improvement of spatial resolution [46, 47] and energy sensitivity [49],
thus enabling the characterization of single nanoparticles (NPs) of sizes under 10
nm by the analysis their electron energy-loss (EEL) spectra. For such tiny metallic
NPs, a series of effects caused by the quantum nature of the electron gas emerge,
and their influence in the excitation of collective oscillations localized at the NP
surface has received much attention in the literature [53, 54, 244]. In this context,
quantum ab initio methods have demonstrated to be an efficient theoretical tool to
investigate the sensitivity of valence Electron Energy-Loss Spectroscopy (EELS, see
Section 1.6) to the atomistic structure of small metallic NPs [194]. In this chapter,
we demonstrate the ability of such ab initio methods to comprehensively describe
the complex plasmonic response of metallic NPs.

Localized surface plasmons (LSPs) have been recently studied within the
framework of atomistic ab initio calculations [194]. Therefore, we will focus our
analysis on confined bulk plasmons (CBPs), which are longitudinal collective
oscillations of the electron density confined within the volume of a nanostructure
(Section 1.2,). Unlike LSPs, CBPs are not typically detected using standard optical
spectroscopy techniques, due to their inefficient coupling with light [52, 57, 169]
and, as a result, they have received limited attention in the literature over the years.
Nevertheless, recent research has proposed exploiting bulk plasmon excitations in
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various applications, including the precise measurement of local temperature at
the nanoscale [245-247]. In addition to LSPs, which have received most attention,
CBPs are effectively excited by swift electron beams that penetrate the sample and
longitudinally perturb the electron cloud in it, as demonstrated across a variety
of structures and materials, including thin Mg films [101], Ge nanorods [103], Bi
nanowires [102], Bi nanoparticles [104, 105], and Al nanodisks [106].

Although the dispersion relation of CBPs in small NPs and other nanostructures
has been theoretically explored [52, 57, 58, 165], a complete picture of the physical
mechanisms that drive their excitation by penetrating electron beams in small
nanoparticles has remained elusive. Moreover, the limitations of the more widespread
local approaches [248] emerge when the nanoparticles size approaches the few-
nanometer scale, as these frameworks do not describe effects linked to the atomistic
structure [232, 249], quantum confinement [250], nonlocal dynamical screening
[14-16], and variations of the electron density at the surface [97, 220, 251], all
of them significantly influencing the plasmonic response. In this context, further
theoretical insights are required to understand the impact of these effects on CBPs.

In this chapter, we explore the full plasmonic response of icosahedral Na NPs of
approximate radius in the range a = 1-2.5 nm, as excited by 100 keV penetrating
electron beams, using the atomistic TDDFT framework described in Sections 2.1 and
2.2. In Fig. 4.1a we show a sketch of an electron beam interacting with an atomistic
icosahedral sodium nanoparticle, defining the impact parameter b as the minimum
distance between its trajectory and the nanoparticle center. Sodium is particularly
suited for this study because its electrodynamical response is primarily governed
by conduction electrons, and is therefore an excellent free-electron metal prototype,
which clearly reveals the aforementioned quantum phenomena. Moreover, the
free-electron character of sodium enables the comparison of the atomistic TDDFT
results with those of alternative jellium TDDFT and hydrodynamic approaches also
employed here and briefly introduced in the next section, allowing us to perform a
comprehensive analysis of quantum and nonlocal effects. We will be using atomic
units (A= e =m, = 1) throughout this chapter.

In order to illustrate the general properties of the EEL spectra which are the
focus of this chapter, Fig. 4.1b shows the calculated atomistic TDDFT spectra of
sodium nanoparticles of icosahedral shape [252] and different sizes, ranging from
a =~ 1 nm (147 atoms) to a ~ 2.5 nm (2057 atoms) for a central penetrating electron
trajectory. Notice that for the smallest nanoparticle considered, the spectrum is
dominated by several peaks due to single electron—hole excitations ([253, 254], see
Section 1.3). However, as the particle size increases, three different types of modes
emerge at distinct excitation energies: localized surface plasmons (LSPs), confined
bulk plasmons (CBPs), and Bennett or multipole plasmons (MPs). The lowest-
energy peak (~ 3.1 eV) corresponds to a LSP, as evidenced by the induced charge
density shown in the inset, in which the induced charge density is concentrated
at the nanoparticle surface. The excitation of LSPs and its dependence on the
nanoparticle geometry is briefly discussed in Section 4.3. At higher energies (~ 5.2
eV) another set of peaks emerges (see the corresponding induced charge density in
the inset). These are identified as Bennett plasmons [255], which are also known
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Figure 4.1: (a) Sketch of an electron beam traveling with impact parameter b and velocity v,
interacting with an icosahedral Na nanoparticle. (b) EEL probability spectra calculated with
atomistic ab-initio TDDFT for 100 keV electrons probing icosahedral sodium nanoparticles. The
different colors correspond to spectra of central electron trajectories (b=0 nm) through NPs of
different size (number of atoms), ranging from a ~ 1 nm (147 atoms) to a & 2.5 nm (2057 atoms).
The three main peaks labeled in the spectra correspond to localized surface plasmons (LSPs),
Bennett or multipole plasmons (MPs), and confined bulk plasmons (CPBs). The insets display a
schematics of the electron beam incidence and 2D plots of the cross-sectional views of the induced
charge density distribution of the LSP, MP, and CBP resonances for the Naggs7 NP. The red and
blue colors in the induced charge densities refer to positive and negative values, respectively.

as multipole plasmons [256, 257] (MPs). The emergence of these modes deserves
further attention, and we analyze them in greater detail is Section 4.3. The most
prominent peaks (~ 6.3 V) in the EEL spectra shown in Fig. 4.1b are those close
to the plasma frequency wy, of Na, and correspond to charge density oscillations
confined within the volume of the NP, so-called CBPs [194] (see Section 1.2),
as demonstrated by the induced charge density displayed in the inset. They are
composed of a series of satellite peaks and shoulders, evidencing the complex nature
of the CBP excitations. The characterization of these bulk modes is the main focus
of this chapter. To this end, we will support the ab initio calculations with a
linearized hydrodynamic model (HDM) in Section 4.3. We focus on the analysis of
a Naser (@ =~ 1.6 nm) nanoparticle, for which the isolated electron-hole excitation
peaks have already transitioned into well-defined collective excitations.

4.1 Modeling the EEL probability spectra of
small MINPs

Even though the focus of this chapter is theoretically analyzing the plasmonic
response of small MNPs through the EEL probability spectra obtained within
atomistic TDDFT, we have also used auxiliary calculations for a reference spherical
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MNP to facilitate the interpretation of the results. In this section we provide a
brief reminder of the atomistic TDDFT method, as well as of both the HDM and
the jellium TDDFT method employed in the reference calculations.

4.1.1 Atomistic TDDFT model

The clusters that we have used for this study are sodium clusters with icosahedral
shape, like the silver clusters in Chapter 3. As we did in that case, in order to obtain
their exact geometries we optimized the inter-atomic separation of ideal icosahedral
clusters by computing with atomistic DFT the ground-state energy of the clusters
as a function of the lattice constant, and then searching for the minimum energy.
Since the effect of an additional unconstrained geometry relaxation in the resulting
EEL spectra is found to be negligible, we limit our analysis to non-relaxed, perfectly
icosahedral geometries. All the DFT ground-state calculations were performed using
the SIESTA code [111] with the GGA exchange—correlation functional developed by
Perdew, Burke, and Ernzerhof [181] (see Appendix C). We used norm-conserving
pseudopotentials to effectively describe the core electrons (see Appendix E) and a
DZP basis set of numerical atomic orbitals (see Appendix D) generated using an
energy shift of 10 meV ([258], see Appendix D). We then use the KS orbitals and
energies obtained from the ground-state calculations to compute their corresponding
absorption spectra within linear-response TDDFT as implemented in the PyNAO
code [98] and explained in Section 2.2.

While ab initio atomistic TDDFT offers a state-of-the-art parameter-free
platform for calculating the EEL spectra in small NPs [194], the interpretation of
the results is challenging due to the overlapping of different resonances, particularly
at CBP energies. In order to shed light and guide the characterization of the
modal composition of CBP resonances, we also compute the electron energy-loss
probability T'ggrs(w) for a reference spherical Na nanoparticle of the same size,
using two additional models accounting for nonlocal effects, a hydrodynamic model
and a jellium TDDFT model.

4.1.2 Hydrodynamic Model

As a first reference, we obtain the optical response of the NP within an analytical
HDM [59, 259], which describes the NP as a compressible electron gas with
Wigner—Seitz radius rs = 3.93 ag (ag is the Bohr radius, see Appendix A) and
plasma frequency wy, = 6.05 eV, confined within a sphere of hard boundaries with
vanishing current at the boundary, preventing the electron spill-out. The electron
gas dynamics are obtained by solving the Helmholtz equation inside the NP under
the aforementioned boundary conditions. In order to do so, the induced charge
density is expanded in terms of spherical harmonics Y;™(£2), which allows us to
obtain analytical expressions for the radial components of the induced charge density
in terms of spherical Bessel functions. This leads to a set of resonances labeled as
(¢,n), where £ is related to the angular distribution of the electron density of the
corresponding mode, and n is the number of nodes of the radial oscillations [58].
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Notice that the azimuthal number m is degenerate and, for noncentral trajectories,
multiple modes with different m’s can be excited simultaneously. A more detailed
account of the HDM is provided in Appendix B. The HDM calculations presented
in this chapter were developed by M. Urbieta and E. Ogando in the Theory of
Nanophotonics group.

4.1.3 Jellium TDDFT model

We support our atomistic and HDM results with the EEL probability computed for
an analogous spherical nanoparticle within the TDDFT formalism and the jellium
model of free-electron metals [19, 60], in which the external potential of the lattice
ions is modeled as a uniform positive background charge with density

na(r) = (4.1)

n inside the metal

0 outside the metal ’
where n = 3/(4nrs) is the average homogeneous electron density of sodium, with
rs = 3.93 ag its Wigner—Seitz radius. Conduction electrons are treated as interacting
particles confined within a finite spherical potential well in the TDDF'T formalism,
and their response to a penetrating electron beam is then computed with a wave-
packet propagation method developed by A. G. Borisov [260]. This formalism
allows for describing variations of the induced charge density near the NP’s surface
associated with a finite potential barrier at the metal-vacuum interface, an effect
that the hard-boundary HDM cannot capture [219]. Thus, the simplified quantum
description of the jellium electron gas excludes features captured by the atomistic
TDDFT model related to the precise atomistic structure and to the non-spherical
shape of the NP, while still accurately accounting for nonlocal effects in the
dynamics of conduction electrons that the HDM seeks to address. The jellium
TDDEFT calculations presented in this chapter were computed by A. Babaze with
the methodology implemented by A. G. Borisov in previous work [61, 261], which
is restricted to axial electron trajectories.

In order to address the adequacy of the HDM in describing the excitation of
CBPs, in Figs. 4.2a and 4.2b we compare the I'ggrs(w) as computed within the two
models for a reference spherical Na NP of radius @ = 2.13 nm, in the CBP spectral
range, highlighting the contribution of each angular momentum ! component. As
can be appreciated, the hard-boundary nature of the HDM leads to a systematic
blue-shift of LSPs, with the presence of artificial resonance features close to the
bulk plasma frequency wp. In addition, there are several differences in the induced
charge density at the surface. By comparing the insets in Figs. 4.2a and 4.2b, it can
be observed that, while the HDM induced density is cut sharp at the boundary, the
jellium one presents a significant spill-out along the electron path, and a spill-in in
regions far from it. However, despite these limitations, the HDM properly accounts
for the general description of the nonlocal plasmonic response in the volume of the
NP. Both the HDM and the jellium TDDFT model consistently predict that CBP
resonances are formed by several volume modes with different angular momenta [,

95



Chapter 4. Plasmonic response of small metallic nanoparticles as probed by fast
penetrating electrons

‘—Total (=0 (=2 0=4 others\
HDM TDDFT (Jellium)

Meers (a@.u.)
Meers (a.u.)

50 55 60 65 70 75 8.0 50 55 6.0 65 7.0 7.5 8.0
w (eV) w (eV)

Figure 4.2: EEL spectra for 100 keV electrons passing through the center of a spherical Na
nanoparticle calculated with two different approaches. (a) HDM results for a reference spherical
Na NP of radius a = 2.13 nm. The contributions of the main ¢ components are distinguished
with different colors. The 2D cross-sectional view of the induced charge density at the main
CBP resonance energy is displayed in the inset (red for positive charge and blue for negative
charge). (b) TDDFT results within the jellium model for a reference spherical Na NP containing
1074 conduction electrons. The inset shows the 2D induced charge density cross-sectional view
computed within the jellium model at the main CBP resonance energy. The dashed line represents
the boundary of the background positive charge density of the jellium sphere. The magnified
insets outline the spill-out of the electron cloud at the surface around the electron path and far
from it.

which proves the utility of the HDM in identifying the CBPs excited in small NPs
by using analytical expressions and minimal computational resources.

4.2 Effect of the surface description

Before starting the analysis of the results presented in this chapter, we will briefly
stress how the description of the NP surface within the atomistic TDDFT model
impacts the resulting EEL probability spectra. The spill-out of the induced charge
density plays a key role in the excitation of surface plasmon modes, especially in
the case of Bennett plasmons, as we will describe in Section 4.5. In the atomistic
TDDFT model, the spatial support of the Kohn—Sham eigenstates, and therefore
of the induced charge density, is limited by the basis set used for solving the KS
equations. This basis set consists on numerical atomic orbitals localized at the
positions of the system atoms, whose spatial extension is determined by an energy
cutoff known as the “energy shift” (see Appendix D). The smaller the energy shift,
the larger the spatial extension of the atomic orbitals. In Fig. 4.3a, we plot the
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Figure 4.3: (a) EEL probability spectrum of a 100 keV electron passing through an icosahedral
Nasg1 NP in the “tip” central trajectory, for different values of the energy shift parameter
controlling the spatial extension of the atomic orbitals in the basis set. In the inset, we represent
the atomistic structure of the NP and the electron beam. (b) EEL probability spectrum of a 100
keV electron passing through an icosahedral-like Naggg NP in the “tip” central trajectory, for
basis sets including zero, one and two layers of ghost atoms, respectively. The energy shift is
100 meV in the three cases. In the inset, we represent the atomistic structure of the NP and the
electron beam, together with a single layer of ghost atoms, depicted in gray.

EEL probability spectrum of a 100 keV electron passing through the center of an
icosahedral Nasg; NP and two of its vertices, a trajectory we will identify as “tip’
from now on, for different values of the energy shift parameter. As observed, both
LSP and MP modes are significantly dependent on this parameter. LSP modes
red-shift as the spatial range of the atomic orbitals increases, i. e. the energy
shift decreases, while at the same time they are less intensely excited. The MPs,
which for an energy shift of 100 meV are close to the bulk frequency, also red-shift
considerably. This trend mostly converges for an energy shift value of 10 meV, as
further reducing it to 5 meV does not qualitatively alter the spectrum.
Alternatively, one can also increase the spatial support of the induced charge
density by augmenting the basis set. It is possible to introduce additional atomic

)
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orbitals centered at positions outside the nanoparticle, which are then included
in the KS description but do not have associated pseudopotentials nor electrons.
These new orbitals are usually identical to the ones in the original atomic positions,
and are therefore referred to as “ghost atoms”. In Fig. 4.3b, we plot the EEL
probability spectrum of a 100 keV electron passing through an icosahedral-like
Naggp NP in the “tip” central trajectory, obtained with three different basis sets of
atomic orbitals with an energy shift of 100 meV. The first basis set only contains
orbitals centered at the positions of the 380 atoms of the cluster, whereas the
second one also includes ghost atoms at the positions that would be occupied by the
next layer of Na atoms, and an additional second layer of ghost atoms was inserted
in the third basis set. As observed, the inclusion of these new atomic orbitals has a
similar effect to increasing the spatial range of the orbitals themselves: a red-shift
of both LSP and Bennett modes and a reduction in their excitation strength. This
confirms the importance of appropriately describing the nanoparticle surface when
analyzing the excitation of surface plasmon modes. Note that the excitation energy
of the Bennett modes is especially dependent on the parameters governing the
description of the nanoparticle surface, which is consistent with the differences
between the atomistic and jellium model spectra observed in Section 4.5.

4.3 Excitation of LSPs

As observed in Fig. 4.1b, the EEL probability spectrum is dominated by the LSPs
in the visible spectral range. Localized surface plasmons were recently addressed for
similar icosahedral-like nanoparticles within the atomistic ab initio framework by
M. Urbieta et al. [194]. To illustrate that these modes are extremely sensitive to the
crystallographic effects of the NP’s geometry, we have selected three representative
electron trajectories crossing the center of the nanoparticle. The first trajectory is
the aforementioned “tip” trajectory, in which the electron beam crosses through
two nanoparticle vertices, and is depicted in blue in Fig. 4.4a. The second one,
“edge”, consists in the electron passing through two geometric edges of the NP, and
is depicted in green in Fig. 4.4a. The third and last trajectory, labeled as “facet”
and depicted in red in Fig. 4.4a, corresponds to electrons travelling perpendicularly
to two opposite crystallographic facets of the NP.

In Fig. 4.4b, we show the atomistic TDDFT EEL spectra corresponding to
each of the three electron trajectories through a Nasg; icosahedral NP in the
2-5 eV excitation energy range, which evidence the sensitivity of the spectra to
atomic-scale features. For the tip trajectory (blue), a single peak at energy =~ 3.1
eV emerges, whereas both the edge and facet trajectories show a main peak at
~ 3.8 eV and a shoulder at =~ 3.1 eV. The EEL spectra are complemented in the
figure by the optical absorption spectrum describing the response of the NP to
incident light polarized parallel to the edge trajectory. The absorption spectrum
has a prominent peak at ~ 3.05 eV, slightly red-shifted with respect to the EELS
low-energy peak, and a shoulder at ~ 3.7 eV.

In order to understand the nature of these excitations, we explore the induced
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Figure 4.4: (a) Sketches of the three canonical incident electron trajectories through the center
of the Nasg1 nanoparticle: a trajectory crossing through two opposite vertices (tip, in blue), a
trajectory passing through two opposite edges (edge, in green), and a trajectory crossing two
opposite facets (facet, in red). (b) EEL probability spectra I'ggrrg for the three electron trajectories
depicted in (a). The absorption spectrum o,ps of the same nanoparticle is depicted in yellow for

incident light polarized parallel to the edge trajectory. (c—g) Induced charge density isosurfaces
corresponding to the resonances marked in (b).

charge density distributions associated with each of the modes identified in Fig.
4.4b. In Figs. 4.4c—4.4g, we plot isosurfaces of their corresponding induced charge
densities. As clearly observed, both the main peak in the tip EEL spectrum in
Fig. 4.4c and the low-energy shoulder on the edge spectrum (Fig. 4.4d) correspond
to a quadrupolar (¢ = 2) induced charge density distribution. In contrast, the
symmetry of the induced charge density for the main LSP peak in the edge spectrum
(4.4e) is more difficult to identify, with strong concentrations of induced charge at
the nanoparticle vertices, and corresponds to a collection of higher-order modes.
We do not display the induced densities for the facet trajectories, as they look
very similar to those of the edge trajectory. As we discussed in Section 1.2, the
main peak in the optical absorption spectrum (Fig. 4.4f) shows a clearly dipolar
induced charge distribution, and corresponds therefore to the dipolar (¢ = 1) LSP.
The higher-energy shoulder in Fig. 4.4g, however, displays strong induced charge
concentrations at the nanoparticle vertices on top of a dipolar background. These
results evidence that, even for central electron trajectories, the EEL spectrum is
greatly dependent on the nanoparticle orientation, and therefore any quantitative
study of the NP response should take into account the effect of crystallographic
features.
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Figure 4.5: (a—) EEL probability spectra for incident electron beams scanning a Nasg1 NP with
varying impact parameter, as depicted in the insets, from b = 0 nm trajectories to b = 2 nm
ones. The electron trajectory sets are labeled according to the closest surface element to the
external trajectories as “Near facet”, “Near edge”, and “Near tip”. (d—e) Colormaps of the EEL
probability spectra of each configuration for the range of impact parameter values b = 0 — 2.5 nm,
corresponding to penetrating and external trajectories. The vertical solid lines mark the spectra
shown in (a—c), and the vertical dotted lines mark the surface of the NP. The horizontal dashed
lines separate the spectral regions of the LSP, MP, and CBP modes.

4.3.1 Impact parameter dependence

Although we have only considered central trajectories so far, typical EELS
experiments in STEM are usually performed while scanning the nanoparticles, and
therefore involve trajectories with varying impact parameters. As we mentioned in
Section 1.6, external trajectories far from the nanoparticle surface act similarly to
an homogeneous electromagnetic field probe, exciting the dipolar LSP mode. For
the icosahedral, sphere-like particles considered in this study, the excitation energy
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of the dipolar LSP is not very dependent on the relative orientation of the NP
[27, 262]. However, as the electron beam gets closer to the surface of the NP, the
intensity of higher order modes increases, and thus the plasmonic response shows
a dependence on the impact parameter. In order to discuss this dependence, in
Figs. 4.5a—4.5¢c we plot the EEL probability spectra for representative trajectories
as displayed in the insets. We include the central trajectory spectra in Fig. 4.4b
and show I'ggrgs for increasing impact parameters. We also depict 2D colormaps of
the EEL spectra within the whole b = 0 — 2.5 nm impact parameter range in Figs.
4.5d—4.5f, with the representative spectra from Figs. 4.5a—4.5¢ highlighted in their
corresponding colors.

The spectra for external trajectories (b 2 2 nm) are dominated by LSPs, and
bulk modes are not efficiently excited. In particular, when the trajectories are far
from the NP surface, the main excitation is the dipolar (¢ = 1) LSP at around ~ 3.1
eV, as for light illumination. As the impact parameter decreases, the intensity of
higher-energy surface modes increases. For grazing trajectories, a peak at w ~ 3.8
eV emerges, corresponding to higher-order LSPs, labeled as HOPs, such as the ones
excited for the edge and facet central trajectories. Notice that the NP orientation
plays a key role in determining whether these higher-order modes are excited, as it
is observed when comparing Figs. 4.5d and 4.5e. In the first case, labeled as “Near
facet”, grazing trajectories (b ~ 2 nm) efficiently excite HOP modes, but then their
intensity decreases when the beam is moved towards the NP center, disappearing
for central trajectories. The opposite happens in the second case, labeled as “Near
edge”, as higher-order modes are not visible for grazing trajectories, but then their
intensity gradually increases and becomes maximum when b = 0 nm. On top of this,
the footprint of the dipolar LSP, labeled as DP, gradually vanishes for penetrating
trajectories, as the lack of azimuthal symmetry of this mode prevents its excitation
by electron beams traveling close to the nanoparticle center. The dipolar mode is
instead substituted by the quadrupolar mode, labeled as QP, which dominates the
low-energy region of the spectrum for “Near facet” central trajectories.

In addition to LSPs, the spectra in Figs. 4.5a—4.5¢ also clearly illustrate the
emergence of modes that will be discussed next in this chapter. When the electrons
approach the NP surface, another set of surface resonances are excited at higher
energies, as observed for the b = 1.5 nm spectra. The new peaks correspond
to Bennett or multipole plasmons (MPs), which will be discussed in detail in
Section 4.5. Furthermore, a band of CBPs emerges above the plasma frequency for
penetrating trajectories. Their intensity is very sensitive to the impact parameter,
and increases gradually as the impact parameter decreases. In contrast to the LSPs
and the MPs, whose excitation depends greatly on the orientation of the electron
beam, the excitation of CBPs is only affected by the impact parameter, and is
not sensitive to the particular orientation of the electron trajectory with respect
to the NP. Therefore, we focus our study in the next sections on the tip electron
beam trajectories, for which the identification of the separate CBP modes in the
spectrum is slightly easier.
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4.4 Excitation of CBPs

In order to characterize the complex CBP modal structure observed in the atomistic
TDDFT EEL probability spectra, we complement the atomistic I'ggrg results with
calculations for an analogous spherical Na NP described within the hydrodynamic
model as in Section 4.1.2. Based on our previous conclusion that the excitation of
CBPs is not very sensitive to the orientation of the electron beam, in this section
we focus on the tip electron beam trajectories. Figure 4.6 compares the atomistic
TDDFT (panel a) and HDM (panel b) I'ggrs calculations for increasing impact
parameters b of the electron beam trajectory. For the central trajectory (b = 0),
multiple CBP peaks are identified and labeled as CBP;, with j = {1,2,3} in Fig.
4.6a (bottom spectrum). By comparing these spectra with the corresponding HDM
results in Fig. 4.6b (bottom spectrum), it is possible to draw a correspondence
between the CBP peaks of the atomistic TDDFT and the well-defined spectral
modes of the HDM. As discussed in Section 4.1.2, these modes are labeled as (¢, n),
where ¢ is related to the angular distribution of the electron density, and n is
the number of nodes in the radial direction. Notice that for the axial trajectory,
b =0, only even ¢-numbers contribute [259] to the EEL probability, as only modes
with the adequate azimuthal symmetry can be significantly excited in this case.
According to this analogy between atomistic TDDFT and HDM results, the main
peak CBP; at 6.30 eV corresponds to the (¢,n) = (0,1) mode, while the subsequent
peak CBP5 at 6.48 eV corresponds to the (2,1) mode, and CBP3 at 7.10 €V to
the (4,1) mode. The excellent matching between the atomistic TDDFT and HDM
results is further demonstrated through the visualization of the isosurfaces of the
induced charge densities and their cross-sectional views along different planes in
Figs. 4.7a—4.7b, supporting the consistent relationship between CBP peaks and
specific (¢,n) modes.

The similarity between the atomistic TDDFT induced densities and their HDM
counterparts is easily detected by visual inspection. For example, both the CBP;
and the (0, 1) mode display a concentration of positive charge inside the nanoparticle
volume, surrounded by a layer of negative charge at the surface. However, in the
atomistic case there is an additional thin layer of positive charge, which is not
present in the HDM case. This discrepancy is caused by the different descriptions
of the nanoparticle surface used by each model: the atomistic TDDFT model allows
for the spill-out of the NP charge, whereas the HDM assumes a hard boundary
and does not allow the spill-out. Even though this may cause small differences in
the induced charges at the surface, these can be safely neglected when analyzing
the bulk modes. A similar correspondence is observed for the induced charge
density patterns of the atomistic CBPy, CBP3 and the HDM (2, 1), (4,1) modes,
respectively. Therefore, the direct comparison of the atomistic induced charge
densities with the HDM ones nicely supports the previous identification of the CBP
excitations in the atomistic spectrum.
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Figure 4.6: High-energy range of the EEL spectra for 100 keV electron trajectories, as calculated
with (a) the atomistic TDDFT formalism and (b) the HDM through (a) an icosahedral Nasg1 NP
and (b) a reference spherical Na NP (a = 1.5 nm), for different electron trajectories characterized
by their impact parameters b, as sketched in the insets. Impact parameter increases from panels on
the bottom to panels on the top. The different modes are labeled as CBP; and CBP’; (confined
bulk plasmons), and MP; and MP’; (Bennett or multipole plasmons). The contribution of the
(¢,n) modes in the HDM spectra are displayed separately, using different colors to distinguish
even (red) and odd (blue) angular momentum ¢ contributions.

4.4.1 Impact parameter dependence

As described in Section 1.6, in STEM-EELS experiments the electron probe scans
the target, varying its impact parameter. Therefore, in order to generalize our
study, we extend our analysis to noncentral beam trajectories (b # 0), which cause
significant changes in the spectral shape of I'ggrg, as observed in Fig. 4.6. First,
the overall contribution of the CBP modes to the I'ggrs spectrum decreases with
increasing b, as the incident electrons’ path inside the NP is shorter. Second, the
resonance profile of the EEL probability spectrum changes, in concordance with
the loss of rotational symmetry of the induced charge density (Cs rotation around
a vertex—vertex axis for the atomistic icosahedral nanoparticles and azimuthal
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Figure 4.7: Induced charge densities for the CBP resonances excited by a central electron beam
(b = 0 nm) through (a) a Nasg1 NP, calculated with atomistic TDDFT, and (b) a reference
spherical sodium NP (a = 1.5 nm), calculated with the HDM. The 3D images depict isosurfaces of
the induced charge density for each of the modes identified in Figs. 4.6a and 4.6b (with a quarter
of the NP removed), whereas the 2D plots show cross-sectional views of the induced density along
the X-Y and X-Z planes. Each of the HDM modes in (b) is labeled with its corresponding ¢ and
n numbers. Note that, while the main contributions at these energies correspond to the labeled
modes, there are also contributions from other overlapping modes, and thus the induced densities
do not strictly follow the symmetry associated to the (¢, n) mode. (c) Same as in panel (a) but
for impact parameter b = 0.5 nm. (d) Same as in panel (b) but for impact parameter b = 0.5 nm.
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symmetry for the spherical ones), as observed in Figs. 4.7c and 4.7d. The main
spectral changes observed are the blue-shift of the main overall CBP peak and the
smoothening of the higher-energy peaks, which become less prominent. We label
the new peaks emerging for noncentral electron trajectories, corresponding to a
sum of contributions of several multipolar resonances, as CBP’; and CBP’;.

The observed trends are understood by examining the corresponding HDM
spectra, which reveal that the shifts are driven by the excitation of odd-¢ modes,
which are forbidden for central trajectories due to symmetry constraints [259]. As
a result of the rotational symmetry breaking when the electron trajectory departs
from the center of the NP, the main peak blue-shifts as the (0,1) mode is gradually
surpassed in intensity by the (1,1) mode emerging at a slightly higher energy.
Simultaneously, the excitation of odd-¢ CBP modes intercalated between the even-¢
ones smoothens the high-energy tail of the EEL probability spectra, which explains
the difficulty to identify the separate modes in the atomistic TDDFT results. The
spatial characterization of odd-¢ CBP modes, activated by the symmetry breaking
of noncentral trajectories, is more clearly illustrated in Figs. 4.7c and 4.7d, where
the isosurfaces of the induced charge densities for the main spectral peaks are
displayed for nonaxial electron trajectories. The excellent matching of the atomistic
TDDFT and HDM patterns is evident by comparing panels c¢) (modes CBP’; and
CBP’;) and d) (HDM modes (1,1) and (3,1)) for nonaxial b = 0.5 nm trajectory.

4.5 Excitation of Bennett Plasmons

We now examine the spectral features emerging between the LSP and CBP modes
in the atomistic TDDFT I'ggrs spectra, labeled as MP;, MP5, and MP’; in Fig.
4.6a, which can be identified as Bennett plasmons [255]. These resonances are
characterized by an induced dipole moment formed by induced charge densities
of opposite sign across the nanoparticle boundary, and are therefore localized at
the metal surface [218, 263]. This particular pattern of induced charge distribution
can be observed in Fig. 4.8, where we plot induced charge density isosurfaces and
their cuts along the XY and XZ planes for the three aforementioned MPs. The
induced dipole moment at the nanoparticle surface is especially visible in the XZ
plane cuts along the electron path for central trajectories, and in the XY plane
cuts for the MPy, and MP’; peaks. Furthermore, it is possible to associate an
angular momentum number ¢ to each of these induced charge density distributions,
according to their corresponding symmetries. By direct inspection we can conclude
that MP;, MP’;, and MP5 correspond respectively to the { =0, /=1, and £ = 2
modes, thus matching the order of their excitation energies. Additionally, in Fig.
4.8b we also depict the induced density for the MP emerging in the b = 1.5 nm
“Near edge” spectra in Figs. 4.5b and 4.5e, which looks very similar to MP’;.
With the aim of further exploring the nature of these modes and their differences
with the LSP and CBP modes described previously, we introduce the accumulated
charge ratio, R, (r). This function measures the ratio of the total (atomistic TDDFT)
induced charge, in absolute value, contained within a spherical shell of radius r, as
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Figure 4.8: (a) Induced charge densities of the modes identified as MPs (or Bennett plasmons)
in Fig. 4.6a, computed with the atomistic TDDFT model. The 3D images depict isosurfaces of
the induced charge density for each of the modes (with a quarter of the NP removed), whereas
the 2D plots show cross-sectional views of the induced density along the XY and XZ planes. (b)
Same as in (a) but for the MP emerging for grazing trajectories in the “Near edge” electron beam
trajectory, visible in Figs. 4.5b and 4.5e.

depicted in the inset in Fig. 4.9a:

Jo 2|60 (1, ¢,6,w)|sin @ dr’ d¢ db

Ryq(r, = T ,
() fo =2\ on(r!, ¢, 0, w)| sin @ dr’ d¢ df

(4.2)

where dn(r’, ¢, 6,w) is the induced charge density in spherical coordinates (', ¢, 9)
at excitation energy w.

Figure 4.9(a) shows the calculated R,(r, w) as a function of r, for all the volume
and surface modes studied throughout this work, for the Nasg; nanoparticle and the
“tip” central electron trajectory as in Fig. 4.6a. The dashed black line corresponds
to a homogeneous spherical charge distribution, i.e, R,(r,w) = r3/r3 ., plotted
for reference. From the comparison, it is clear that the induced charge of the CBP
modes (blue lines) is accumulated inside the volume of the NP, while the LSP
mode (yellow line) exhibits an induced density distribution shifted towards the
surface. Importantly, the Bennett plasmons MP; and MP5 (green lines) exhibit a
behavior similar to the LSP, with a slightly larger penetration into the NP, thus
confirming their surface nature. These trends are better appreciated in Fig. 4.9b,
where we plot the difference between the R,(r,w) associated with each mode and
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Figure 4.9: (a) Accumulated charge ratio Rq(r,w) for various modes excited by an electron beam
with b = 0 for the Nasg1 nanoparticle, as identified in Fig. 4.6a. The results corresponding to
the quadrupolar LSP mode are represented by a yellow line, Bennett or MP modes by green
lines, and CBP modes by blue lines, with the homogeneous charge density reference depicted as
a dashed-black line. The inset depicts the spherical shells used for the computation of Ry(r,w).
The vertical dotted lines indicate the limits of the interval of r values associated to the atomic
positions of the atoms in the outermost layer, 1.51 nm < r < 1.81 nm. The lower limit corresponds
to atoms in the NP’s facet, and the upper limit to atoms in the vertices of the NP. (b) Difference
between Ry (r,w) and the homogeneous charge density reference, ARg(r,w). In addition to the
modes in (a), CBP modes excited by a b = 0.5 nm electron beam trajectory are also included in
dashed purple.

the homogeneous charge density reference, AR, (r,w). We have also included the
modes emerging in the case of noncentral trajectories in the spectra of Fig. 4.6a, in
order to show that their induced charge distributions are consistent with those of
the central trajectory.

In order to complement our understanding from the atomistic TDDFT results,
we have computed the EEL probability spectrum of an analogous spherical Na NP
within the ab initio jellium framework described in Subsection 4.1.3. Although the
peaks associated with Bennett plasmons do not appear as prominently as in the
atomistic case, one can distinguish several peaks between the LSP and CBP regions
when I'ggrg is plotted in a logarithmic scale, as we do in Fig. 4.10a. In addition
to the well-defined LSP and CBPs, three broadened excitations are visible in this
plot, appearing as maxima in the contributions of the different angular momentum
components £ to the spectrum, labeled as MP;, with ¢ = 1,2,3. In Fig. 4.10b
we plot the corresponding induced charge densities at their excitation energies,
together with the one associated to the quadrupolar LSP for reference. As it can
be observed, the induced charge densities for the jellium MP; and MPs match
quite closely their atomistic counterparts, shown in Fig. 4.8a. The jellium MPq,
which shows an induced charge distribution similar to that of the atomistic MP1,
corresponds to a peak in the jellium ¢ = 0 angular momentum contribution, whereas
the jellium MP5, which shows an induced charge distribution similar to that of
the atomistic MP5, corresponds to a peak in the jellium ¢ = 2 angular momentum
contribution. This supports our previous identification of the MP; and MPs as
¢ =0 and ¢ = 2 Bennett modes. Additionally, we can also identify a maximum in
the £ = 4 contribution, labeled as MP3, which does not have an atomistic equivalent.
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Figure 4.10: (a) EEL probability spectra in logarithmic scale for 100 keV electron trajectories, as
calculated with the jellium TDDFT formalism (see Subsection 4.1.3) through a spherical Na NP
with 1074 conduction electrons (a = 2.13 nm). The different peaks are labeled as LSP (localized
surface plasmon), MP; (Bennett or multipole plasmons), and CBP (confined bulk plasmon). The
contribution of the different angular momentum ¢ components to I'ggrs are displayed separately.
(b) Induced charge densities obtained with jellium TDDFT for the peaks identified in panel a and
associated with surface modes, displaying both 3D isosurfaces (with one quarter removed) and
cross-sectional views along the XY and XZ planes. The dashed lines represent the boundaries of
the background positive charge density in the jellium calculations. (¢) Accumulated charge ratio
Ry (r) for various modes identified in panel a. The results corresponding to the LSP mode are
shown by a yellow line, Bennett or MP modes by green lines, and the CBP mode by a blue line,
with the homogeneous charge density reference depicted in dashed black. The vertical dotted line
indicates the boundaries of the jellium positive charge background. (d) Difference between Rg(r)
and the homogeneous charge density, ARy (r), for the same modes as in panel c.
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Unfortunately, our implementation of the jellium methodology does not allow for
increasing the impact parameter, and a comparison with the odd-¢ MPs excited
for noncentral trajectories within the atomistic model is therefore not possible.

The analogy between the atomistic and jellium TDDFT results is further
reinforced by the results in Figs. 4.10c and 4.10d, which show the accumulated charge
ratios for all the excitations identified in Fig. 4.10a. As one can appreciate, the radial
distributions of the jellium induced charge densities nicely match their atomistic
counterparts displayed in Fig. 4.9. Thus, the excitation of Bennett plasmons in small
nanoparticles by penetrating electron beams is robustly demonstrated, regardless
of the specific quantum framework adopted to describe the electronic structure of
the metal. Furthermore, our results also suggest the excitation of several Bennett
plasmons with different angular distribution, depending on the electron path and
the energy of the excitation. However, quantitative details such as the MP excitation
energies depend on the specific description of the metal surface, as evidenced by
the significant differences between the excitation energies in our atomistic and
jellium results. Such quantitative differences, however, are to be expected, as we
already discussed in Section 4.2 that the excitation energies of MP modes are very
sensitive to the details of the description of the surface.

4.6 Summary

In this chapter, we have characterized the full plasmonic response of sodium
nanoparticles by analyzing the EEL probability for penetrating electron beam
trajectories within the atomistic TDDFT framework described in Sections 2.1 and
2.2. We have complemented the atomistic TDDFT results with I'ggp,g calculations
with two auxiliary models described in Section 4.1, a hydrodynamic model (HDM)
and a jellium TDDFT model. This is followed by a brief discussion on the sensitivity
of the surface plasmon modes to the details of the description of the surface within
the atomistic TDDFT model in Section 4.2. In Section 4.3, we have provided an
overview of the excitation of localized surface plasmon (LSP) modes at optical
frequencies and its dependence on the nanoparticle geometry. Next, in Section 4.4,
we have placed our focus on the analysis of confined bulk plasmons (CBPs), which
appear in the atomistic spectra as a series of satellite peaks and shoulders above
the plasma frequency. With the help of analytic expressions of the EEL probability
derived from the HDM, we have identified well-defined CBP modes that contribute
to the peaks in the EEL spectra, and analyzed the effect of the impact parameter
of the electron trajectory on their excitation. Finally, in Section 4.5 we have shown
that electron beams penetrating the sample can efficiently excite Bennett plasmons
localized at the surface, and appearing in the spectra between the LSP and CBP
resonance energies. Notably, these modes are not described by the HDM model
due to the impossibility of of classical non-local descriptions to capture the diffuse
nature of the electron density at the NPs surface. The overall good qualitative, and
even quantitative, agreement between theoretical models which include nonlocality
in the response of the nanoparticles at different levels underscores the robustness
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of the studied phenomena in small sodium nanoparticles. Furthermore, our study
serves to interpret the experimentally observed blue-shift of the bulk peak in Bi
nanoparticles [105] and Al disks [106] with increasing impact parameters, and to
provide a deeper understanding of the behavior of CBPs in metallic nanostructures.
The conceptual characterization of CBPs and Bennett plasmons as performed here
will allow for a more exhaustive analysis and technological exploitation of plasmonic
features in valence EELS of metal nanoparticles.
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CHAPTER

AB INITIO CALCULATION OF RAMAN
SPECTRA OF ORGANIC
SELF-ASSEMBLED MONOLAYERS ON
METALLIC SURFACES

Self-assembled monolayers (SAMs) play a central role in modern surface chemistry
and nanotechnology, owing to their wide range of applications in areas such as
nanoelectronics [264-266], sensing [267-269], and catalysis [270-272]. Despite this
versatility, several scientific and technological challenges remain unsolved. One
of the most significant difficulties lies on determining the geometrical structure
of monolayers of adsorbed aromatic molecules, due to the vast number of
possible configurations. Although experimental techniques like scanning tunneling
microscopy (STM) or X-ray spectroscopy [273, 274] can provide valuable insights
into the coverage density and the monolayer thickness, accurately resolving
molecular tilt angles and the twist of the aromatic backbone often requires
more sophisticated procedures, such as near-edge X-ray absorption fine-structure
(NEXAFS) analysis [275, 276] or Kelvin probe force microscopy [277]. In this
context, theoretical calculations based on DFT have proven their usefulness, as they
complement experimental data and allow for evaluating the suitability of proposed
stable structures [278-280]. However, a comprehensive theoretical exploration of
the vast configuration space is generally impractical, particularly for tightly packed
assemblies where long-range dispersive interactions between molecules become
relevant, which has stimulated the demand of efficient search methodologies.

One of the most established techniques for studying such interfaces is Surface-
Enhanced Raman Spectroscopy (SERS, see Section 1.5), with recent studies
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emphasizing its potential for high-resolution molecular imaging or even revealing
single-atom dynamics within SAMs [281, 282]. Although SAMs typically exhibit
tightly packed molecular arrangements such as the (2 x 2) hexagonal patterns
observed in experimental preparations of 1,1’-biphenyl-4-thiol monolayers on
Au(111) [274], most theoretical atomistic descriptions of SERS for SAM systems
rely on simplified finite models of the periodic structure [44, 45, 133]. As a result,
these models often fail to fully capture the intermolecular interactions essential in
the formation of this kind of systems. Furthermore, accounting for the complete
periodic structure is crucial when dealing with collective Raman effects arising
from the coupling of molecular infrared dipoles across the monolayer [283-285].
In this chapter, we study the structure of SAMs formed by 4’-cyanobiphenyl-4-
thiol molecules (C13HgNS, thereafter referred to as CN-BPT) on an Au(111) surface,
along with their Raman spectra, using a fully periodic ab initio approach. This
methodology naturally accounts for all inter-molecule interactions and collective
effects to address the final SERS fingerprint of the whole assembly. We start with
a brief overview of SAMs in Section 5.1, including an explanation of the notation
used to describe overlayer periodicities. In Section 5.2, we introduce a methodology
for obtaining stable SAM configurations based on Bayesian optimization techniques
outlined in Section 2.4, which are employed here to minimize the adsorption energy
landscape of the CN-BPT monolayer system onto the metallic surface. Section 5.3
presents a detailed analysis of the Raman spectra of this SAM corresponding to the
five lowest-energy configurations within its (2 x 2) periodic arrangement, as obtained
using the perturbation theory approach described in Section 2.3. In Section 5.4, we
then compare the Raman spectra of CN-BPT SAMS for varying surface coverage
densities in order to analyze the emergence of collective vibrational effects. Next, in
Section 5.5 we consider the possibility of surface reconstruction by introducing an
alternative adatom-mediated geometry and examine its influence on the resulting
Raman spectrum. Finally, Section 5.6 evaluates the relative importance of the
aforementioned factors in accurately modeling the Raman response of SAMs and
outlines potential directions for future research based on the findings in this chapter.

5.1 Self-assembled monolayers

Self-assembled monolayers (SAMs) are among the most ubiquitous nanostructures
in surface science. They consist of periodic assemblies of organic molecules
spontaneously adsorbed onto solid surfaces and organized into crystalline
arrangements [286]. For the adsorption process to be energetically favorable, the
molecules must contain a chemical functional group with strong affinity for the
metallic surface, commonly referred to as ligand or headgroup. The portion of the
adsorbed molecule that constitutes the outer surface of the film is known as the
tailgroup, and it plays a key role in defining the surface properties of the SAM,
such as the wettability. Connecting the headgroup and the tailgroup is the spacer
—also known as backbone— as illustrated in Fig. 5.1.

One of the key advantages of SAMs is their ease of fabrication. In many cases,
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Tailgroup
Spacer
Headgroup

Metallic Substrate

Figure 5.1: Sketch of a typical SAM. The molecules are “chemisorbed” onto the metallic substrate
via a headgroup with strong affinity for the surface, commonly a thiol group in the case of
noble metals. The tailgroup constitutes the outer surface of the film, while the spacer links the
headgroup and the tailgroup.

the molecules can be deposited directly from solution under ambient conditions or,
alternatively, from physical vapor under ultra-high vacuum. Another major strength
lies on their remarkable versatility: the properties of SAMs can be finely tuned
by modifying the tailgroup or altering the molecular arrangement. Furthermore,
it is also possible to build SAMs on top of nanostructures of any shape and size,
and not only on top of flat surfaces. These characteristics make SAMs an essential
component in nanotechnology, where they are employed for material protection [287],
stabilization and functionalization of nanostructures [288, 289], and as building
blocks in complex nanodevices, such as sensors [268] and molecular motors [290].
Additionally, SAMs play a crucial role in the field of SERS, enabling the attachment
of SERS-active probe molecules to metallic surfaces and nanoparticles [143, 291],
or their integration into nanocavities [292].

The most commonly employed headgroup in SAM formation is the thiol (—SH)
functional group, which exhibits high affinity for noble metal surfaces [293] and
enables the formation of well-defined structures with a wide range of chemical
properties. In particular, the ordered adsorption of alkanethiolates —organic alkane
chains (C,, Hap42) bounded to a thiol group— and thioaromatic compounds —
molecules featuring a backbone of phenyl rings— has been extensively studied on
gold [294, 295], silver [294, 296], and copper [294] substrates. In this chapter, we
focus on the specific case of CN-BPT molecules adsorbed on an Au(111) surface. It
is well known that the formation of strong covalent bonds between the S atom in the
thiol group and the Au atoms of the surface can lead to a significant reconstruction
of the substrate. In some cases, this may result in the displacement of Au atoms
into the overlayer and the formation of adatom-mediated structures [297, 298].
Although an example of such a structure will be considered in Section 5.5, the rest
of the discussion in this chapter will be limited to conventional SAM structures for
the sake of clarity and focus.

The formation of ordered molecular layers on metallic surfaces is governed by
two competing effects which determine the crystalline structure of the monolayer.
The first effect is the interaction between the substrate and the adsorbate. Due
to the variation in adsorption energies at different coordinated surface sites, this
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interaction induces a lateral (“horizontal”) corrugation of the potential energy
surface (PES) that reflects the periodicity of the substrate. Consequently, this
interaction plays a dominant role in determining the preferred adsorption sites for
individual molecules. The second effect arises from the inter-molecule interactions,
which are primarily governed by van der Waals forces between the aromatic
backbones. These interactions play a crucial role in determining the packing density
and the orientation of the adsorbed molecules. The confluence of surface-adsorbate
and intermolecular forces gives rise to a very complex PES, making the precise
prediction and characterization of the exact configuration of SAM structures
particularly challenging. A variety of experimental techniques are available to probe
SAM structures, including scanning probe microscopy techniques such as atomic
force microscopy or scanning tunneling microscopy, diffraction techniques like X-ray
or electron diffraction, and spectroscopic approaches such as Raman spectroscopy or
X-ray absorption spectroscopy. On the theoretical side, DFT remains the primary
tool for studying SAMs, offering accurate predictions of structural and electronic
properties, provided that the long-range dispersive interactions are adequately
treated. Nevertheless, identifying the most stable SAM configurations exclusively
using theoretical methods is often challenging due to the intricate nature of the
PESs associated with these systems.

Overlayer periodicity

The adsorbed molecules, or adsorbates, arrange themselves on the surface in an
ordered manner, forming well-defined overlayer structures. These structures can
adopt a wide variety of configurations depending on factors such as the nature
of the adsorbate and the surface coverage density. To classify and describe the
resulting structures accurately, it is essential to establish clear and objective criteria.
The most effective way to proceed is by describing the overlayer in relation to the
underlying substrate structure. This first requires identifying the surface unit cell,
which is defined by the primitive lattice vectors a; and as, as illustrated in Fig. 5.2.
Next, the same procedure must be applied to the overlayer unit cell, defined by
the vectors aj and a),, which should ideally be chosen parallel to the substrate unit
cell vectors. Using Wood’s notation of surface crystallography [299], the overlayer
structure is described as:

(Iatl/las| ROy x [az]/|as| R62), (5.1)

where 0; and 65 are the angles between a; and aj, and between a, and al),
respectively. The label R before the angular values indicates that the overlayer
vectors are rotated with respect to the substrate ones. These angles only need
to be included if they are nonzero. Figure 5.2 illustrates three different overlayer
structures on an Au(111) surface, along with their corresponding label using Wood’s
notation. This notation is particularly well-suited for describing simple overlayer
structures which maintain the symmetry of the underlying substrate, but it is less
effective for complex overlayer structures, where matrix notation is more convenient
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(1 x v/3 R30)

(2 x1)

Figure 5.2: Schematic illustration of the periodicity of an adsorbed overlayer. Yellow circles
represent gold atoms arranged in the characteristic hexagonal lattice of the Au(111) surface,
whereas red circles represent the adsorbate. The primitive lattice vectors of the substrate, a;
and ag, are represented at the bottom left, together with the substrate primitive unit cell. Three
overlayer lattices with varying coverage densities are also depicted, each with its own set of
overlayer lattice vectors {a/, a}}, unit cells, and corresponding Wood’s notation labels.

[300]. Since we will be focusing exclusively on simple overlayer structures in this
chapter, we will stick to Wood’s notation.

5.2 Bayesian optimization of CN-BPT SAMs

In this section, we address the problem of determining the optimal configuration of a
SAM of CN-BPT molecules on an Au(111) surface, using the Bayesian optimization
methodology implemented in the BOSS code (see Section 2.4). This will serve
as an exemplary case which will show the possibilities of this methodology to
determine SAM configurations. We assume that the molecules are densely packed
in a hexagonal (2 x 2) arrangement, consistent with experimental observations of
1,1-biphenyl-4-thiol SAMs on Au(111) [274]. The PES of the system is modeled as
a surrogate Gaussian process, which is iteratively fitted to data sampled with DFT
energy calculations. This approach yields a set of candidate structures corresponding
to local minima of the PES, which are then subsequently relaxed using conventional
optimization methods in order to identify the true ground-state configuration and
the lowest-energy minima.
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5.2.1 Computational details

We employed the BOSS code ([173], see Section 2.4) to search for the minima of
the adsorption energy function, F,qs, defined as:

Eads = ESAM - Emol - Eslaba (52)

where Fyo1, Fslab, and Egan correspond to the energies of the isolated molecule, the
clean gold slab, and the hybrid SAM system, respectively. For the periodic systems,
all the energies are computed per unit cell. The adsorption energy function was
modeled using a surrogate Gaussian process with a constant prior mean function
and a squared exponential correlation kernel (a standard periodic kernel was used
for periodic variables). This surrogate Gaussian process model is iteratively refined
by fitting to E,q4s values computed with DFT for points (specific configurations) of
the configuration space, as guided by the eLCB acquisition function.

The DFT energy calculations were carried out with the open-source GPAW
code [187], which uses the PAW method for effectively describing the core electrons
(see Appendix E). The combined substrate + adsorbate system was modeled with
the periodic atomistic structure shown in Fig. 5.3a. The calculations employed the
optPBE-vdW exchange—correlation functional incorporating long-range dispersive
interactions [301] (see Appendix C), along with a plane-wave basis set with an energy
cutoff of 400 eV (see Appendix D). To build those structures, we first optimized
the lattice constant of bulk Au, and then used it to build a 3-layer periodic Au
slab, allowing the atoms in the outermost layer to relax with conventional structure
optimization. The CN-BPT molecule was then added as an adsorbate, after having
been fully relaxed in isolation. The configurational phase space for the Bayesian
optimization searched with BOSS was defined by the parameters governing the
adsorption position and the molecular orientation.

The Rama spectra presented later in this chapter were computed using the
methodology outlined in Section 2.3, as implemented in the open-source GPAW
package [188], for incident unpolarized light with a wavelength of 500 nm and at
room temperature. All calculations were performed with the optPBE-vdW exchange—
correlation functional [301]. First, the system’s eigenfunctions and eigenenergies
were obtained from converged LCAO ground-state calculations using a double-C
polarized basis set (see Appendix D). A real-space grid spacing of 0.2 A was used
to represent the wavefunctions and Kohn-Sham potentials, and the Brillouin zone
sampling was performed with a Monkhorst-Pack k-mesh of 20 A=, Since our
2D system possesses a net surface dipole, we applied a dipole layer correction in
order to compensate the artificial electric field arising from the periodic boundary
conditions of the supercell [302]. The displaced forces and potentials —used to
compute the I'-point phonon modes and the electron—phonon coupling matrix
elements— were obtained using a plane-wave basis set with an energy cutoff of
700 eV and a Monkhorst-Pack k-mesh density of 12 A=1. As described in Section
2.3, phonon modes and electron—phonon coupling matrix elements were computed
within a finite-difference scheme. To account for the phonon mode broadening in

the Raman spectra, a Gaussian smearing with a standard deviation of 5 cm™! was
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applied. All Raman spectra presented in this chapter are normalized, as consistent
with the standard practice in the literature.

5.2.2 Translational search

Even with the most efficient optimization algorithms, the computational cost of
identifying the minima of a multi-dimensional function increases exponentially
with the number of dimensions. To mitigate this, we separate the configurational
search space into two distinct groups of parameters: the translational parameters
determining the adsorption position, and the rotational parameters, which define
the orientation of the molecule. We begin by searching for the optimal adsorption
site, i.e., the energetically most favorable position for the thiol headgroup. This is
done by displacing the rigid CN-BPT molecule horizontally and vertically above
the Au(111) surface, maintaining it in an upright orientation. This procedure is
illustrated in Fig. 5.3b, which shows a scheme of the molecule adsorbed on the
gold surface and highlights the relevant variables: the vertical displacement of the
molecule, z, and the in-plane displacements along the unit cell vectors {a}, a5}. The
search space is horizontally constrained to the shaded area, which coincides with
the substrate unit cell depicted in Fig. 5.2, and vertically to the 1 nm < z < 3 nm
interval. Given the periodic nature of the in-plane displacements, these are modeled
with the standard periodic kernel, while the (non-periodic) vertical displacement is
described using the squared exponential kernel.

Figure 5.3c presents the surrogate Gaussian process model after convergence is
achieved, which occurs after around 50 iterations. The model identifies the optimal
adsorption position as {aj = 1.00 A,a} = 1.03 A, 2 = 2.03 A}, corresponding to
the high-symmetry FCC adsorption site of the Au(111) substrate. This position
is marked with a blue cross in Fig. 5.3b. The 2D plot in Fig. 5.3c shows a cut of
the Gaussian process mean function —which represents the predicted adsorption
energy— at the z = 2.03 A plane. The predicted optimal adsorption location, Zmin,
is marked with a red star. The blue triangle indicates the next sampling point
proposed by the acquisition function, while pink rings represent the projection of all
previously sampled configurations onto the z = 2.03 A plane. The size of each ring
reflects the recency of the corresponding acquisition, with larger rings indicating
later iterations. The positions of the substrate gold atoms are visible as bright
local maxima at the corners of the unit cell. In addition to the predicted global
minimum near the FCC adsorption site, the model also identifies a secondary local
minimum near the HCP adsorption site, marked with a green cross in Fig. 5.3b.
This secondary minimum is energetically very close to the FCC one, reflecting the
nearly equivalent adsorption environments. The only difference between these two
adsorption sites lies on the arrangement of the gold atoms in the subsurface layers.
In the HCP site, a gold atom is located directly beneath the adsorption site in
the second layer, whereas in the FCC site, there is no atom in the second layer
directly below, but one is present in the third layer. Given the minimal energetic
difference and the structural similarity between these two high-symmetry sites, we
will consider both as ideal adsorption positions in this work.
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a)

Figure 5.3: (a) Representation of a self-assembled monolayer (SAM) of CN-BPT molecules on an
Au(111) surface. The structural building blocks considered during the BOSS optimization process
are highlighted in different colors. (b) Schematic illustration of the BOSS search for the optimal
adsorption position, with the translational variables {a),a),z} indicated. The FCC and HCP
high-symmetry adsorption sites are marked with a blue cross and a green cross, respectively. (c)
Two-dimensional slice of the predicted adsorption energy surface at z = 2.03 A, obtained after
50 BOSS iterations (sample acquisitions). The plot shows the mean of the surrogate Gaussian
process. Sampled locations are marked with purple rings (with size indicating iteration order), the
predicted global minimum location is marked with a red star, and the next suggested sampling
point is shown as a blue triangle.

5.2.3 Rotational search

Once the optimal adsorption positions have been identified, the next step in
the structure search process consists in determining the optimal orientation of
the molecule. To this end, we define a set of rotation angles that leverage the
symmetries of the system, as illustrated in Fig. 5.4a, where the sulfur atom is
taken as the origin. The periodic variable «@ denotes a rotation of the molecule
around the z axis. The variable 8 corresponds to the tilt angle of the molecule,
and is inherently non-periodic. For closely-packed structures, experimental studies
involving similar molecules typically report tilt angles in the range of 20° to 50°,
with flat-lying configurations only observed for more sparse surface coverages [273—
277]. Accordingly, we discard flat-lying configurations and restrict our search to the
interval between 0° and 60°, which also helps avoiding geometries with overlapping
building blocks. The periodic variable v; corresponds to a rotation of the whole
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molecule around its principal axis, defined as the line connecting the S and N
atoms. Finally, the variable v describes the relative orientation of the phenyl rings,
and corresponds to the rotation of the lower phenyl ring around the molecular
axis. We set the value of 75 = 0° so that it corresponds to the relaxed geometry of
the isolated molecule, in which the phenyl rings exhibit a relative twist angle of
approximately 32°.

Exploring the configurational space of densely packed SAMs poses a significant
challenge, as non-physical configurations, such as those with overlapping molecules,
introduce substantial irregularities in the PES, resulting in a highly rugged
landscape. This not only complicates the optimization procedure, but also increases
the likelihood of triggering exploitation acquisitions around suboptimal local minima.
Furthermore, the coexistence of regions where the PES is smooth with other
regions where the PES oscillates rapidly hampers the convergence of the model
hyperparameters. To address these issues, we employ a series of heuristic strategies
aimed at improving the robustness and efficiency of the optimization process.

Damping

The first of the strategies to make the optimization process more efficient involves
damping the high-energy regions of the PES in order to reduce the spread of
adsorption energy values. This is achieved by modifying the objective function:
specifically, we replace the adsorption energy by its logarithm in regions where
is positive —that is, where the total energy of the SAM exceeds the sum of the
energies of the isolated molecule and the substrate. Accordingly, we minimize the
modified adsorption energy, E! , (x) defined as:

(%) = Eas(x) if Faqs(x) <0, (5:3)
ads log [Eads(x) + 1] if Eads(x) > 0,

where x stands for the points of the search space. This transformation leads to
a smoother PES with a reduced range of energy variation, which facilitates the
optimization of the model hyperparameters. This approximation is justified by
the fact that regions with positive adsorption energy correspond to energetically
unfavorable configurations for which the adsorption of the molecule is not
thermodynamically preferred. As such, they lie far from the relevant local minima
and are not interesting for our purposes. By deprioritizing these regions, we improve
the efficiency of the optimization process without compromising the accuracy of
the physically relevant results.

Symmetries

It is also crucial to exploit the symmetries inherent to the system as much as
possible, as it allows for reducing the size of the search space while enabling the
use of more efficient periodic kernels, thereby directly enhancing the speed of the
optimization process. Thanks to the three-fold rotational symmetry associated with
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Figure 5.4: (a) Schematic representation of the rotation angles used as variables in the BOSS
rotational search. The rotation around the z-axis, «, is shown in blue, the tilt angle, 3, in red,
the rotation of the molecule around its own axis, 1, in green, and the twist angle, v2, in yellow.
(b) Projection of the a rotational search space onto the Au(111) substrate for both FCC and
HCP adsorption sites. The predicted minima identified by BOSS are concentrated within the
shadowed regions (see also Fig. 5.6a). (¢) Convergence behavior of the BOSS rotational search.
The convergence parameter Aig [Eq. (5.5)] is plotted as a function of the number of acquisitions
for four different search strategies using various acceleration techniques. Dark blue dots correspond
to the search process using only energy damping [Eq. (5.3)] and symmetry exploitation, labeled
as DS. Blue triangles, labeled as DSC, correspond to the use of the cost function [Eq. (5.4)]
with deus = 1.25 A, in addition to the aforementioned damping and symmetries. Purple squares,
labeled as DSR, include a restriction on the 72 search space along with the damping and symmetry
use. Pink stars, labeled as DSCR, correspond to a search that combines the application of all
the mentioned techniques. (d) Adsorption energies for the ten lowest-energy configurations found
in the DSR search after 2400 acquisitions. Blue squares indicate the adsorption energies and
uncertainty estimates predicted by BOSS, while orange crosses represent the corresponding values
computed via exact DFT calculations.

both the FCC and HCP adsorption sites, the search domain for the angle o can be
confined to the interval between 0° and 120°. Additionally, the molecule’s 2-fold
rotational symmetry also allows for restricting the search ranges for the angles v,
and 72 to the interval between —90° and 90° .
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Figure 5.5: (a) Schematic representation of the minimum inter-molecular distance, dmin, for a
given configuration. (b) Plot of the cost function defined in Eq. (5.4) as a function of dmin. The
cost function is incorporated into the acquisition function during the optimization procedure, and
penalizes sampling configurations where dmin falls below a threshold value of 1.25 A.

Cost function

In order to avoid sampling in uninteresting or non-physical regions of the
configuration space, we have employed a cost function approach. As introduced
in Section 2.4.5, cost functions are user-defined ad-hoc functions that modify
acquisition functions. By integrating them into the optimization loop, one can
control the sampling locations and steer the search process towards physically
meaningful regions. Since sampling non-physical configurations, such as the ones
with overlapping molecules or molecule—surface superposition, leads to a highly
oscillatory PES and difficults the search process, we have implemented a cost
function, feost, which penalizes acquisitions associated with such non-physical
geometries:
_ Acost

1+ exp(s (dmin - dcut)) '

Here d,;, denotes the minimum distance between atoms of different molecules
or between the molecule and the surface —whichever is smaller. The parameter
deyt defines the cutoff distance below which a contact is considered to occur. The
scaling factor A s determines the magnitude of the penalty, while s controls the
steepness between the penalized and non-penalized regions. In our BOSS searches,
when incorporating this cost function, we have used the following parameter values:
dewt = 1.25 A, Acose = 10 €V, and s = 25 A=, which yield the smooth cost function
plotted in Fig. 5.5b.

fcost (dmin) (54)

Spatial restrictions

In certain cases, prior knowledge of the system allows us to restrict the search to a
reduced, more relevant, region of the configuration space, rather than exploring the
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full domain. For instance, as previously mentioned, there is enough experimental
evidence indicating that flat-lying molecular configurations are not viable at the
surface coverage density considered in this study [274]. Therefore, we have restricted
the tilt angle 8 to a maximum value of 60° in all search processes. Similarly, one
can also constraint the twist angle vs, as experimental observations suggest that it
closely resembles the value found in the gas-phase configuration [275]. However,
such restrictions should be applied with caution, particularly when they transform
a periodic variable into a non-periodic one, since non-periodic variables require
increased sampling density near the boundaries of the search space. To mitigate
this issue, we introduce an artificial energy penalty at the edges of the search region.
This penalty discourages sampling in those areas, thereby improving the efficiency
and stability of the optimization process.

Convergence

Throughout the optimization process, the surrogate model, defined by the mean
and covariance functions of the Gaussian process, remains fully accessible. The
mean function acts as a model of the PES, assigning an estimated adsorption
energy value to each possible SAM configuration, and the pointwise variance serves
as an estimation of the model’s error. In order to identify the candidate geometries
for stable adsorption geometries, we apply a classical gradient descent minimization
procedure to the known Gaussian process mean function. This returns a set of
local minimum configurations along with their corresponding predicted adsorption
energies. The convergence of the model can then be assessed by comparing these
predicted energies to reference values obtained from DFT calculations for the same
structures. In order to quantify the convergence of the optimization process, we
compute the convergence parameter Ay, which measures the average deviation
between the BOSS predicted adsorption energies and their corresponding DFT
values for the first N minima:

BOSS _ pDFT
Z |Eads n ds n (55)
Here the sum extends to the first N minima, and Efdcssf and EEdI:Tn stand for

the adsorption energies corresponding to minimum n as predicted bif BOSS and
computed with DFT, respectively.

In Fig. 5.4c, the convergence behavior of four different optimization strategies
is illustrated through the evolution of the convergence parameter Ajgy. In Fig. 5.4d
we display the predicted adsorption energies from BOSS, Efdgis, alongside the
corresponding DFT-calculated values, EgiFs,Tn’ used to compute one of the Ajg
evaluations. The dark blue dots correspond to a search process incorporating only
the energy dampening [Eq. (5.3)] and symmetry exploitation strategies, labeled as
DS. The blue triangles, labeled as DSC, correspond to a search that additionally
incorporates the cost function [Eq. (5.4)] with a cutoff distance dey; = 1.25 A built
upon the aforementioned DS strategy. As can be observed, the introduction of
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the cost function significantly enhances the convergence speed of the optimization
process, allowing the global minima to be reliably identified after approximately
2000 iterations. The purple squares (DSR) denote a search process in which the
72 variable is constrained in addition to using dampening and symmetries. Both
the cost function and the restriction of 7, yield a remarkable improvement in
convergence speed, with the twisting-restricted process slightly outperforming
the cost function alone in terms of speed. Note that both the DSC and DSR
searches converge to the same global minimum, characterized by the parameter
values {a = 27°, 8 &~ 46°, v, &~ —5°,v2 = 7°}. This convergence towards the same
configuration provides strong evidence for the robustness and reliability of the
surrogate model’s predictions.

Finally, we also performed a BOSS search combining simultaneously all the
aforementioned techniques, labeled as DSCR, which is represented by pink stars.
Surprisingly, this combined strategy does not lead to a cumulative improvement
in convergence speed. Instead, its performance aligns closely with that of the
cost-function only (DSC) process, suggesting less effective returns when stacking
multiple acceleration techniques.

In principle, one could use the pointwise variance of the surrogate model —
representing the uncertainty at each location in the configuration space— as a direct
indicator of convergence. However, we have found this approach to be unreliable.
This can be observed in Fig. 5.4d, where the actual adsorption energies computed
with DFT, marked with orange crosses, fall outside the predicted confidence
intervals, illustrated by the blue error bars. Therefore, we devise the Ay convergence
parameter as a more reliable indicator of the model convergence, although ideally
it should be complemented by additional criteria, such as the stability of the
predicted global minimum and the consistency of the model hyperparameters over
the final stages of the search. In practice, we have considered an optimization
process to be converged when two conditions are met: the value of Ajg drops below
approximately 0.05 eV, and the predicted global minimum is stable, i.e., its location
remains unchanged over the final iterations. Once these conditions are met, the
optimization is stopped and one can move to the analysis of the BOSS predictions.
It is worth noting that higher-energy local minima typically lie in less thoroughly
explored regions of the configuration space, and therefore their predicted energies
tend to carry larger errors, as evidenced in Fig. 5.4d. This means that a Ay value
of 0.05 eV indicates that the actual errors in the energies of the lowest-energy
configurations are generally much smaller.

5.2.4 Analysis of the resulting stable configurations

Since the local minima are computed through a gradient descent procedure requiring
multiple restarts, it is common for this process to return several instances of the
same configuration. Therefore, the first step in analyzing the results is to filter out
these duplicates, which yields a list of unique, well-defined local minima. Each of
these minima corresponds to a set of rotational variable values defining a stable
SAM configuration, as predicted by the surrogate model. Although, in principle,
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Figure 5.6: Histograms showing the probability density distributions of the rotational variables
used to describe the monolayer configurations. The bars represent the probability density of the
angle falling in the corresponding 5° interval. Panels (a—d) give the probability densities of the
angles «, 3, 71, and 72, respectively.

the geometry of the SAM should be given by the global minimum, analyzing the
trends followed by the local minima provides additional insight. This analysis can
help to identify systematic features of the PES and mitigate the effects of possible
prediction errors from the surrogate model.

Figure 5.6 presents the probability density distributions for the four rotational
variables, taking into account the ten lowest-energy local minima obtained for
both FCC and HCP adsorption sites, and from both DSC and DSR BOSS search
strategies. This yields a dataset of 40 configurations in total. As shown in Fig. 5.6a,
the « values are clustered into two distinct groups, centered around approximately
30° and 90°. This reflects nicely the honeycomb symmetry of the Au(111) substrate.
These preferred orientations suggest that SAM configurations where the molecular
axis projects into the hollow regions between the nearby gold atoms are energetically
favored (see Fig. 5.4b). In contrast, the S values are clearly concentrated between
40° and 50°, as illustrated in Fig. 5.6b. This range can be considered as an estimation
of the molecular tilting angle in the physical system. Note that these values are only
slightly higher than those obtained from NEXAFS experiments for SAMs composed
of similar molecules [275], though this discrepancy may be attributed to differences
in surface coverage. The tendency is less clear for the v; angle, which represents a
rotation of the molecule around its axis, as seen in Fig. 5.6c. However, large values
are discouraged, since they increase the likelihood of steric clashes between the
lower phenyl and the gold substrate. Finally, the histogram for 7., shown in Fig.
5.6d, reveals that the favored molecular twist in the SAM environment increases
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by 5° to 10°, as compared to that of the isolated molecule (=~ 32°), which fits the
experimental estimates derived from NEXAFS studies [275], suggesting a moderate

conformational adjustment driven by intermolecular and substrate interactions
within the SAM.

Relaxation

The final step in the process of obtaining the optimal SAM configuration involves
relaxing the geometries of the local minima identified by BOSS. For the sake of
simplicity, and in order to avoid duplicated entries, from now on we will only
consider the local minima of the DSR search process, which was the fastest to
converge. During the relaxation the positions of gold and sulfur atoms, which
remained fixed during the rotational optimization, are also allowed to move. This
relaxation leads to a significant reduction in the adsorption energies of the local
minima, as illustrated in Figures 5.7a and 5.7b. These figures compare the DF'T
energies of the BOSS-predicted minima before (blue) and after (red) relaxation,
for both FCC (a) and HCP (b) adsorption sites. The magnitude of the adsorption
energy reduction varies significantly among configurations, and it should not be
overlooked, as in some cases it can alter the relative stability ranking of the local
minima. For instance, the second FCC minima predicted by BOSS exhibits a much
smaller energy decrease than the neighboring minima, as shown in Figure 5.7a,
suggesting that it is no longer a good candidate for a stable geometry following
relaxation.

This different behavior can be rationalized by examining Fig. 5.7c, which
depicts the relationship between the energy decrease during relaxation, dE, and the
displacement of the sulfur atom from the initial adsorption site. Visual inspection
reveals a clear correlation, which is quantitatively confirmed by the computed
correlation coefficient p = 0.79 (see Appendix F). In some cases, the molecule
remains close to the original adsorption site, resulting in minimal changes of the
adsorption energy. In contrast, in other cases the molecule undergoes significant
drift, moving closer to “bridge” adsorption positions, which causes a larger drop
in energy. Upon inspection of the energies of the relaxed minima, we find that
several configurations exhibit energies that are quite close. In particular, the
difference between the adsorption energies of the first 5 lowest-energy minima and
the global minimum falls within the range of thermal fluctuations expected at
room temperature, which are given by approximately kg7 ~ 25 meV. Therefore,
our calculations suggest that multiple alternative SAM configurations may coexist
under experimental conditions, and we should consider these low-energy local
minima in the subsequent analysis of the Raman spectra. Figures 5.7d—h present
the unit cell geometries of these 5 minima. The relevant information regarding
these configurations, including the adsorption sites, rotational variables, and BOSS-
predicted and DFT-computed adsorption energies, are summarized in Table 5.1.
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Figure 5.7: Bar plots of the BOSS-predicted adsorption energies for the first ten local minima at
the FCC (a) and HCP (b) adsorption sites (blue), alongside their corresponding energies after
geometric relaxation (red). (¢) Correlation plot between the displacement of the S atom during
relaxation and the total energy decrease resulting from relaxation dE. Panels (d)—(h) illustrate the
unit cell geometries of the five most stable minima after relaxation, labeled in order of increasing
adsorption energy.

Minimum ~ Site  a(®)  B(°) m(°) 4(°)  EBOSS (&) EDIT (ev)

ads,n ads,n
M1 FCC 271 462 -49 7.3 -5.458 -5.895
M2 HCP 917 475 3.2 -72.6 -5.430 -5.875
M3 HCP 239 466 -1.5 9.5 -5.429 -5.871
M4 FCC 381 46.1 -10.6 5.3 -5.403 -5.870
M5 HCP 84.0 473 -6.1 9.8 -5.440 -5.866

Table 5.1: Summary of the five lowest-energy minima identified in Fig. 5.7. From left to right, the
table lists the label assigned to each minimum, its original adsorption site, the rotational variable
values and adsorption energies predicted by the BOSS search, and the DFT adsorption energies
obtained after relaxation.

5.3 Computation of Raman spectra of stable
SAM configurations

After determining the most energetically stable configurations for the (2 x 2) SAM
of CN-BPT molecules on an Au(111) surface, we proceed to analyze their Raman
spectra, computed following the methodology described in Section 5.2.1. Figure
5.8 displays the spectra corresponding the five configurations introduced in Fig.
5.7, arranged in ascending order of adsorption energy. The overall shape of the
computed spectra closely resembles experimental Raman spectra reported for SAMs
of the same molecule [282]. Key features include a distinct peak near 2250 cm~*

)
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Figure 5.8: Raman spectra calculated for the five lowest-energy SAM configurations of the CN-
BPT SAM on Au(111) in Fig. 5.7. Spectra corresponding to FCC adsorption sites are shown in
purple, whereas those from HCP sites are shown in green.

two prominent peaks in the range from 1550 cm™! to 1600 cm™!, and a series
of minor peaks at lower frequencies. The largest-energy peak is assigned to the
C—N stretching vibrational mode, which corresponds to mode 62 of the isolated
CN-BPT molecule, as illustrated in Fig. G.1. The other two major peaks in the
mid-frequency region correspond to antisymmetric and symmetric stretching modes
of the phenyl rings, analogous to vibrational modes 61 and 60 of the isolated
molecule, respectively.

Although all five spectra exhibit very similar main features, the relative
intensities of the Raman peaks vary significantly. For three of the five minima
(M1, M3, M4), the phenyl ring stretching modes dominate the spectrum, whereas
for the other two minima (M2, M5) the C-N stretching mode matches them
in intensity. This observation suggests that the relative weight of the different
Raman modes, and therefore the overall spectral profile, are strongly correlated
with the geometrical configuration of the SAM. In order to verify this hypothesis,
it is necessary to define a quantitative figure of merit of similarity between the
geometries of the different SAM configurations. One straightforward approach is to
consider only the values of the rotational angles 8 = {«, 8,71,72} obtained in the
BOSS search, and to define a metric of distance between two configurations i, j as
the average absolute difference of their corresponding angles:

1 4
=3 > 16 (5.6)
l

where 6} denotes the value of the [-th rotational angle in SAM configuration i.
However, this distance alone does not capture differences arising from varying
adsorption sites or molecular rearrangements induced by relaxation. Therefore it
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must be complemented with an alternative metric. We define this complementary
spatial distance as the mean absolute difference between the atomic positions of
the molecule:

N
1 4 ,
diy = 5 D b, — x|, (5.7)
n=1
where the sum runs over the N atoms of the molecule. By combining these two
measures, we construct a normalized distance that accounts for rotational and

positional differences. For each pair of SAM configurations ij, the normalized
distance is defined as:

4 L i
d?;)rm _ max(as) max(&e) =J s (58)
0 ifi<j

where max(d®) and max(d?) denote maximum values of the spatial and angular
distances across all configuration pairs, respectively, i.e., the largest entry in the
respective matrix. This normalization ensures that elements dj?™ of the resulting
matrix are constrained within the interval (0-2). Since the distance matrix is
symmetric by construction, for simplicity the elements below the diagonal are set
to zero.

In Fig. 5.9a, we show the normalized distance matrix for the five most stable
configurations. The values clearly indicate that these configurations can be separated
into two distinct groups, G1={M1, M3, M4} and G2={M2, M5}, with the intra-
group distances significantly smaller than the inter-group ones. This grouping
aligns nicely with the qualitative differences observed in the Raman spectra shown
in Fig. 5.8, as discussed above. Such classification can be further supported by
quantitatively evaluating the differences between the Raman spectra. This can be
done by computing the Euclidean distances between each pair of spectra I;(w) and
I;(w), defined as

1/2

oty = | [ do 1) - | (59)

where each individual spectrum has been normalized so that its total area equals
unity. Figure 5.9b depicts the matrix of Euclidean distances ¢1;;, constructed
analogously to the normalized distance matrix in Fig. 5.9a. A comparison of these
matrices reveals a clear correlation between geometrical distance and spectral
similarity. This relationship is further explored in Fig. 5.9c, where we plot the
normalized geometrical distances against the Euclidean spectral distances for
each pair of configurations. Visual inspection alone reveals a strong correlation,
quantitatively confirmed by a correlation coefficient of p = 0.75. Moreover, the
configuration pairs are divided into intra-group and inter-group pairs, using the
previously defined classification G; = {M1, M3, M4} and G2 = {M2, M5},
represented with blue and red crosses, respectively. The consistently smaller
distances for intra-group configuration pairs as compared to inter-group ones
confirms the initial visual classification and allows for simplifying the original set
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Figure 5.9: a) Normalized distance matrix computed for all possible SAM configuration pairs, as
defined in Eq. (5.8). The color of element [i,j] indicates the similarity between SAM configurations %
and j. b) Representation of the matrix of Euclidean distances of the Raman spectra computed for all
possible SAM configuration pairs. ¢) Correlation between geometrical and spectral distances. Each
cross corresponds to a certain pair of SAM configurations: blue crosses represent intra-group pairs,
i.e., similar configurations, and red crosses denote inter-group ones (more distinct configurations).
d) Bar plots showing the mode frequency shifts when varying the SAM configuration (blue),
alongside the average normalized Raman intensity of each vibrational mode within the 1000 cm~1!
— 2500 cm ! range.

of 5 configurations into two representative groups, symbolized by the lowest-energy
configuration M1 and the second-lowest one M2, respectively.

Finally, we examine the dependence of the SAM phonon frequencies on the
configuration, for a subsequent analysis of collective effects. The blue bars in Fig.
5.9d show the shift of the resonance frequencies of the vibrational modes within
the 1000 cm™! — 2500 cm ™! range across the configurations represented in Fig. 5.8.
For reference, the average Raman intensities of these vibrational modes are shown
as red bars. Most values of the frequency shift lie between 5 cm ™! and 10 cm™!, as
it is the case for the most prominent modes (58, 59, 60). Although these shifts are
modest, and the main importance of adequately modeling SAM configurations lies
on the relative Raman intensities, such frequency shifts may become relevant when
a larger degree of precision of phonon energies is required, such as when analyzing
collective Raman effects, which will be addressed in the following section.
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5.4 Raman spectrum dependence on the coverage
density and emergence of collective effects

When two molecules with vibrational modes characterized by strong infrared
transition dipoles are placed in close proximity, dipole—dipole coupling between
these modes occurs. This coupling leads to the emergence of two new vibrational
modes: one corresponding to in-phase vibrations, and the other one to antiphase
vibrations. As a result of this interaction, the resonance frequencies of these
collective modes are shifted with respect to the original uncoupled molecular
vibrations. In extended periodic molecular assemblies, such as SAMs, this coupling
leads to the formation of a vibrational band structure, a continuum of phonon
modes representing collective vibrations across the molecular lattice. Among these
modes, the zone-centered phonon mode plays a key role, as it corresponds to the
collective on-phase vibration of the SAM’s molecules and is the primary contributor
to the Raman signal. As pointed out, the frequency of the zone-centered phonon is
shifted with respect to the vibrational frequency of the isolated molecule, resulting
in a systematic displacement of the corresponding Raman peaks. Importantly,
the magnitude of this shift depends strongly on the molecular coverage density
within the SAM. Closer packing leads to stronger dipole—dipole interactions and
therefore larger shifts. As a result, the spectral position of SERS peaks, especially
those corresponding to modes with large infrared dipole moments, is not solely
determined by the local molecular structure, but also by the collective vibrational
coupling mediated by the SAM lattice. This phenomenon is commonly referred to
as “collective effects” in Raman spectroscopy.

One effective approach to capture these collective effects in dense molecular
assemblies is to model the molecules as a 2D lattice of coupled point dipoles.
According to Ref. [285], the frequency shift of the vibrational mode n predicted by
a 2D dipole lattice model scales as

2

Pn
37

Ta

(5.10)

Av,, x

where p,, is the infrared (IR) transition dipole moment associated with the
vibrational mode n, and rq is the dipole-dipole separation distance. The IR
transition dipole moment is related to the TR intensity, I;g,, (in units of D? A=2
amu~1!), and to the mode frequency v, as:

Mir.n
= MR 5.11
p o (5.11)

The separation rq is related to the coverage density of the SAM configurations,
defined as dens = N,,0;/A, with A the area of the unit cell and N, the number of
molecules in the unit cell, respectively, and since the molecules form a 2D lattice:

rq o dens™ /2, (5.12)
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Figure 5.10: a) Atomistic representations of finite configurations modeling the CN-BPT SAM
on Au(111). From top to bottom: isolated CN-BPT molecule, CN-BPT molecule attached to an
Auyi cluster, and two CN-BPT molecules attached to an Ausa cluster. b) Sketch of the optimized
periodic SAM configurations at different surface coverage densities. From top to bottom: SAM
with (4 x 4) coverage, SAM with (3 x 3) coverage, and SAM with (2 x 2) coverage. ¢) Raman
spectra of all the systems shown in a) and b). Blue spectra correspond to finite systems, while
purple spectra represent periodic SAMs.

Moreover, the dipole moment p,, is independent of the coverage density, and by
substituting Eqs. (5.11) and (5.12) into Eq. (5.10), we obtain the scaling of the
frequency shift with the coverage density:

Av, o dens /2. (5.13)

This result indicates that modes with strong IR character experience larger shifts
in the Raman peak positions as the SAM becomes denser.

In this section, we analyze the influence of collective effects on the Raman
spectra of CN-BPT SAMs on an Au(111) substrate by studying configurations with
varying molecular coverage densities. To this end, we first generate energetically
stable SAM configurations for different coverage densities using the methodology
described in Section 5.2. Figure 5.10b displays the optimized configurations for
two reduced coverage densities, corresponding to overlayer periodicities (4 x 4) and
(3 x 3). These configurations serve as lower-density counterparts to the previously
studied (2 x 2) SAM. For a comprehensive analysis of collective effects, it is also
critical to consider the spectrum of the isolated CN-BPT molecule, for comparison.
To simulate the effect of the Au(111) surface, in this case, we attach the molecule
to a cluster of 11 gold atoms arranged to mimic the local geometry of the SAM
unit cell, as illustrated in Fig. 5.10a. In addition to the single-molecule system, we
also consider an analogous finite system with two molecules. The Raman spectra
corresponding to all the aforementioned configurations are plotted in Fig. 5.10c.
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Figure 5.11: a) Energies of the main Raman-active vibrational modes for SAMs with varying
coverage densities as a function of r_3, using the frequency of the modes for the (4x4) configuration
as a reference. b) Bar plot showing the absolute frequency shifts (blue) of all vibrational modes
within the 1000 cm~! — 2500 cm~! range, together with the corresponding infrared dipole
moments (red) computed for the isolated CN-BPT molecule.

As can be appreciated, the overall shape of the Raman spectrum remains quite
consistent. The only exception is the case of the single molecule attached to an Auy;
cluster, for which the relative intensities of the phenyl ring stretching modes 58
and 59 are inverted, and a prominent peak at ~ 1200 cm~! appears. The molecule—
cluster spectrum will be further discussed in Section 5.6. Additionally, although it
cannot be easily appreciated in the figure, the frequencies of the vibrational modes
shift due to the previously described collective effects, which will be analyzed in
detail in the following paragraphs.

The frequency shifts induced by collective effects are illustrated in Fig. 5.11a,
where we plot the excitation frequencies of the main Raman-active vibrational
modes as a function of 7“;3 for varying coverage densities, using the (4 x 4) mode
frequency as a reference. As one can observe, the magnitude of the frequency
shift varies significantly across vibrational modes. For example, the C-N stretching
mode frequency vg exhibits a red-shift of around 7 cm™!, whereas the phenyl ring
stretching mode frequencies vs9 and vsg show blue-shifts of roughly 2 cm ™! and 11
em ™!, respectively.

At first glance, it may seem reasonable to attribute the frequency shifts observed
above solely to collective effects. However, as shown in the previous section (see
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Fig. 5.9d), changes in the molecular orientation can also induce frequency shifts of
similar magnitude, indicating that further analysis is required. If the observed shifts
were due to collective effects, their magnitude should scale with the square of the
infrared dipole moment of the corresponding mode, as predicted by Eq. (5.10). To
assess this, we complemented our analysis by computing the IR dipole moments for
the vibrational modes of the isolated CN-BPT molecule. In Fig. 5.11b we plot these
dipole moments, together with the absolute frequency shifts of the corresponding
vibrational modes observed in the SAM configuration as a function of the coverage
density. Notably, for the key vibrational modes (58 — 60), the data align well
with the expectations: modes with larger p, exhibit larger absolute frequency
shifts, indicating a strong correlation between both factors and supporting their
attribution to collective effects. However, this correlation breaks down for the
less Raman-active modes. Some of these modes display unexpectedly large shifts
despite having weak IR dipole moments. This behavior suggests that factors other
than collective effects can play a significant role in the spectral shift. Indeed, as
shown in the previous section, the excitation frequencies of several modes are very
sensitive to the molecular configuration of the SAM, even at constant coverage
density, providing a reasonable explanation for the shifts observed here.

Although the results presented in this section are constrained by the limited
number of studied configurations, efforts are currently underway to extend the
analysis to (3x2) and (4 x 2) coverages. These additional configurations will improve
the reliability of the observed trends in frequency shifts. Moreover, it should be
possible to disentangle the effects of the coverage density from those of the molecular
orientation by studying mixed SAMs, as commonly done in experimental studies
[285]. For instance, one could combine our CN-BPT molecules with biphenyl-4-
thiol molecules. Since BPT is structurally similar to CN-BPT, differing only in
the absence of the terminal CN group, mixed SAMs of varying CN-BPT/BPT
ratios could be modeled just by adapting the pure SAM configuration that has
already been computed. This approach would allow for a direct investigation of
collective effects, thereby isolating their contribution from that of orientation or
local environment.

5.5 Influence of adatom-mediated surface
reconstruction on the Raman spectrum

As discussed in Section 5.1, the strong affinity between the substrate Au atoms
and the thiol headgroup often results in significant reconstruction of the original
substrate. Although in the previous study we accounted for this by allowing full
relaxation of the outermost Au atoms, we did not consider the formation of adatom-
mediated geometries via the displacement of substrate atoms into the overlayer to
form Au-S-Au bridges. Such behavior has been experimentally observed in several
thiolate SAMs [293] and is known to play a critical role in determining spectroscopic
properties. In the context of SERS, adatom configurations have been termed as
picocavities [44, 303]. These configurations require unit cells containing at least

133



Chapter 5. Ab initio calculation of Raman spectra of organic self-assembled
monolayers on metallic surfaces

— M1
—— Adatom

Raman intensity [norm.

A

1200 1400 1600 1800 2000 2200 2400
Raman shift [cm~1]

=
o
o
o

Figure 5.12: Top (a) and side (b) views of the adatom-mediated geometry, with the rotational
search variables outlined. The Au adatom is highlighted in orange to emphasize its position relative
to the molecule. ¢) Representation of the global minimum adatom-mediated configuration after
relaxation, as shown from a top view. d) Comparison of the normalized Raman spectra computed
for the (2 x 2) global minimum configuration (purple) and for the optimized adatom-mediated
configuration shown in (c) (blue).

two molecules to accurately capture the symmetry-breaking and bonding motifs
introduced by the presence of the adatom, such as the one depicted in Figs. 5.12a
and 5.12b, based on the structures proposed in Refs. [279, 304]. This increases the
number of geometrical degrees of freedom and therefore complicates the search for
the optimal structure.

Nevertheless, in order to further explore the configurational landscape of
adatom-mediated SAMs, we have performed a limited BOSS rotational search
for finding suitable configurations with the same surface coverage density as the
conventional (2 x 2) SAM. Figures 5.12a and 5.12b show the rotational variables
used in the search. First, we fixed the projection of the molecular axis of the
rightmost molecule onto the horizontal plane, and defined the variable o’ as the
relative angle between the projections of the two molecular axes. Then, we defined
the tilt angle 8/, which we kept the same for both molecules. Finally, we defined
the variables 4] and ~%, which correspond to rotations around the respective
molecular axes. The optimization process resulted in a global minimum at the
values {o/ = 70.0°, 8" = 33.3°,7] = —16.2°,~v4 = 49.2°}, which correspond to
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the geometry depicted in Figs. 5.12a and 5.12b. The main difference with the
conventional (2 x 2) SAM is that the tilting is significantly smaller for this adatom-
mediated structure. Although this search does not consider all available degrees of
freedom, as we are ignoring the molecular twist and the rotation of one molecule
around the z axis, it provides a reasonably comprehensive sampling of the relevant
orientations. This serves to demonstrate the versatility of the BOSS optimization
method. We then relax the BOSS global minimum, which results in the structure
depicted in Fig. 5.12c. As it occurred for the conventional SAMs, this procedure
causes a displacement of the S atoms towards the “bridge” adsorption positions,
but the molecular orientations remain mostly unchanged.

Finally, we have computed the Raman spectrum for the optimized adatom-
mediated SAM structure, which is shown in Fig. 5.12d. As can be observed, including
an Au adatom does have some qualitative effects on the overall spectral profile
of the SAM. The relative intensities of the main Raman active modes changes,
with the relative intensities of the C-N stretching mode 60 and of the phenyl
ring stretching mode 59 increasing significantly. One can also observe small but
non-negligible shifts in the frequencies of key vibrational modes. The magnitude of
these shifts is quantified in Table 5.2, where the mode-wise changes with respect
to the conventional (2 x 2) SAM configuration are detailed. Furthermore, the
spectrum for the adatom-mediated geometry also presents a small splitting of some
vibrational modes, including the signature mode 58 and some of the vibrational

modes appearing below 1400 cm™!.

5.6 Conclusions and outlook

After having computed the Raman spectra for a variety of configurations and
models of a CN-BPT SAM on Au(111) surfaces throughout this chapter, we can
summarize how different modeling choices affect the computed Raman spectra.
Table 5.2 presents the frequency variations Ay, for the main vibrational modes
analyzed along with the mode-averaged value (Av), across the different SAM
models explored.

e The “Geometry” row shows the maximum frequency shifts observed among
the five different local minima of the (2 x 2) SAM configurations examined
in Section 5.3.

e The “Coverage” row quantifies frequency shifts arising from changes in SAM
coverage density, reflecting collective effects as analyzed in Section 5.4.

e The “Periodicity” row presents frequencies from a finite cluster model, as
depicted in Fig. 5.10a, where a molecule is attached to an Au cluster,
constructed by replicating the unit cell of the periodic (2 x 2) SAM global
minimum and allowing further relaxation, and compares them to the periodic
(2 x 2) SAM global minimum frequencies.
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Table 5.2: Summary of how the differences in modeling the SAM modify the Raman spectra.
The metrics used are the maximal variations in the vibrational mode frequencies Av,, and the
maximal Euclidean distances between Raman spectra Ay as defined in Eq. (5.9). Below each row
label, we specify the section where the corresponding spectra can be found.

o The “Adatom” row compares vibrational frequency shifts between the (2 x 2)
global minimum SAM and the adatom-mediated geometry discussed in Section
5.5.

In order to complement the previous frequency analysis with information about
the relative Raman intensities, the maximum Euclidean distances between Raman
spectra A; = max;;(d1;;) are also displayed.

From the results obtained, one can conclude that the largest spectral variations
originate from the coverage density and the presence of adatoms. The magnitude
of the frequency shifts depends significantly on the vibrational mode, although
this is to be expected in the case of collective effects as these are supposed to
depend on the mode-specific infrared transition dipole moments. Notably, adatom-
mediated geometries strongly influence the isolated C-N stretching mode, used
as a benchmark in many studies, highlighting the importance of considering such
configurations. Nevertheless, molecular orientation changes between stable local
minima induce frequency shifts on the order of approximately 5 cm ™! for all relevant
modes. Interestingly, transitioning from periodic to finite cluster geometries does
not seem to have a very large impact in the vibrational frequencies, likely because
the finite model was generated by simple replication of the unit cell of the periodic
(2 x 2) SAM without a full geometry optimization. This suggests that the effect of
inter-molecule interactions is more relevant during the geometry optimization steps
rather than in the calculation of the phonon modes directly. However, periodicity
can significantly affect relative Raman intensities, as the Aj values related to
this property are comparable to those of the other studied properties. This result
concurs with the differences between the relative Raman intensities of the periodic
systems and the molecule—cluster one that can be observed in Fig. 5.10c.

Finally, the methodology developed here for molecular monolayers can be
readily extended to more complex nanocavity configurations such a nanoparticle-
on-mirror systems or molecular junctions, which provide even greater Raman
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signal enhancements and are therefore of wide interest. Incorporating an additional
gold slab above the molecules, however, significantly complicates the structure
optimization process by introducing new variables, such as the gap size and the
relative position of the top layer atoms. This represents an exciting direction for
future work, although it remains unexplored in the present study.

5.7 Summary

In this chapter, we have investigated the structure and Raman spectra of 4’-
cyanobiphenyl-4-thiol (CN-BPT) self-assembled monolayers (SAMs) on an Au(111)
surface within a fully periodic ab initio approach that inherently includes all inter-
molecule interactions and collective effects. Section 5.1 introduced the topic of
SAMs and the notation for overlayer periodicities. In Section 5.2, we detailed our
methodology for obtaining stable SAM configurations, based on using the Bayesian
optimization techniques introduced in Section 2.4 for minimizing the adsorption
energy of the system. We then applied this methodology to the aforementioned
SAM of CN-BPT molecules with a (2 x 2) coverage in two steps: first, we determined
the favored adsorption sites by minimizing the adsorption energy with respect to
the translations of the molecule, and then we obtained the most stable molecular
orientations by optimizing a set of rotational variables. The identification of the
lowest-energy configurations was completed by relaxing the candidate structures
and ranking them according to their relaxed adsorption energies.

This optimization step was followed by an analysis of the Raman spectra
corresponding to the five lowest-energy configurations presented in Section 5.3.
These spectra were obtained within the perturbation theory approach outlined
in Section 2.3. Subsequently, in Section 5.4 we compared the Raman spectra
of SAMs composed of the same CN-BPT molecule at varying surface coverage
densities, in order to analyze the frequency shifts in vibrational modes arising
from the coupling of their infrared transition dipoles. In Section 5.5 we considered
the possibility of Au(111) surface reconstruction by introducing an alternative
adatom-mediated geometry, relevant in experimental situations. Finally, Section
5.6 evaluated the importance of accurately modeling the SAM by examining the
variations in the Raman spectra across the different models discussed in the previous
sections. Altogether, these results constitute a significant advancement in the ab
initio modeling of periodic organic assemblies and their vibrational spectroscopic
properties.
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CONCLUSIONS

In this thesis, we have investigated light—matter interactions at the nanoscale with
the use of a fully ab initio atomistic framework. We have focused on the study
of three canonical configurations, namely, molecule-gap antenna configurations,
small metallic clusters, and self-assembled monolayers on metallic surfaces. Each
configuration has been respectively explored through the analysis of the signal
from absorption optical spectroscopy (molecule-gap antennae), electron energy-
loss spectroscopy (metallic clusters), and surface-enhanced Raman spectroscopy
(self-assembled monolayers). The ab initio methodology has allowed us to connect
aspects of the microscopic scale of these configurations with the overall spectral
signals obtained for each case. The application of time-dependent density-functional
theory (TDDFT) methods in the ab initio calculations has been shown to accurately
capture relevant atomic scale effects of light—matter interactions at the nano- and
pico-scale.

Below, we summarize the main findings and conclusions obtained in this thesis:

e Chapter 1 summarizes the fundamentals of light—matter interactions at
the nanoscale. It is focused on the classical electromagnetic description of
plasmonic resonances in spherical metallic nanoparticles and dimers, as well
as on optical excitations in molecules and hybrid metal-molecule systems. In
addition to optical spectroscopy, we also introduce the two other spectroscopy
techniques used throughout this thesis: electron energy-loss spectroscopy
(EELS), and surface-enhanced Raman spectroscopy (SERS).

e Chapter 2 outlines the theoretical framework of atomistic TDDFT, which is
used to model the interaction of the studied systems with light and electron
beams. Additionally, we introduce the method for computing the Raman
spectra of periodic systems, based on perturbation theory. We also present a
Bayesian Optimization procedure designed for obtaining the minimum energy
configurations of nanoscale systems, such as molecular adsorbates on metallic
surfaces.

e Chapter 3 examines the optical response of a hybrid system composed of a
porphine molecule sandwiched by two silver nanoparticles in the facet-to-
facet and tip-to-tip configurations. We focus on the influence of the atomistic
features on the electromagnetic coupling strength and on the emergence of
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quantum phenomena such as charge transfer and electronic coupling through
the molecular junction. Our results show the splitting of the plasmonic
resonance of the dimer into two clearly distinct polaritons as a result of
the electromagnetic coupling. By fitting the optical absorption spectra to
a coupled harmonic oscillator model, we find that the nanoparticles’ facet-
to-facet configuration leads to a significantly larger coupling strength, g, for
most of the studied gap sizes. However, for the smallest gaps, the polaritonic
two-peak structure is disturbed by the emergence of an additional resonance,
which we attribute to the hybridization between the electronic orbitals in
the molecule and the metal. The atomistic configuration also determines the
emergence of charge-transfer plasmons at lower frequencies, which are only
observed in the facet-to-facet configuration. Overall, this study highlights
the importance of considering the atomistic morphology when dealing with
extreme cases of interaction in plasmonic nanocavities.

o Chapter 4 explores the full plasmonic response of sodium nanoparticles as
probed by penetrating high-energy electron beams. Electron energy-loss
(EEL) probability spectra computed with atomistic TDDFT reveal that,
in addition to localized surface plasmons excited at optical frequencies,
penetrating electrons can also excite high-energy surface modes, and confined
bulk plasmons (CBPs) above the plasma frequency. With the help of analytic
expressions for the EEL probability derived from an auxiliary hydrodynamic
model, we identify the well-defined CBP modes that contribute to the peaks
in the EEL spectra, and analyze the effect of the impact parameter of the
electron trajectory on their excitation. The implementation of auxiliary
calculations within a jellium TDDFT model helps us to identify the higher-
order surface resonances excited as Bennett or multipole plasmons. This
study provides a deeper understanding of the behavior of CBPs and Bennett
plasmons. The overall good qualitative —and even quantitative— agreement
between theoretical models which include nonlocality in the response of
the nanoparticles at different levels underscores the robustness of the
description of the symmetries of the bulk modes excited in small sodium
nanoparticles. Our conceptual characterization also provides insight into
the experimentally observed blue-shifts of the bulk plasmon peak identified
in several nanostructures, and lays the groundwork for a more exhaustive
analysis and exploitation of plasmonic features in valence EELS of metallic
nanoparticles.

e Chapter 5 introduces a fully ab initio methodology for computing the Raman
spectrum of a self-assembled monolayer of aromatic thiolate molecules on
an Au(111) surface, naturally accounting for inter-molecule interactions and
collective effects. After minimization of the potential energy surface of the
system using a Bayesian optimization method and analyzing the obtained
local energy minima, we identify the most suitable monolayer configurations
after relaxation. By comparing the Raman spectra of the self-assembled
monolayers, we analyze the importance of accurately modeling the atomistic
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structure and the interaction between the molecules. We extend this study by
applying the same method of analysis to monolayers with different coverage
densities. By doing so, we observe the emergence of collective Raman effects
and study the frequency shifts of the molecular vibrational modes. Finally,
we explore an alternative optimized adatom-mediated configuration, which
allows us to investigate how the reconstruction of the Au surface may impact
the resulting spectra. Overall, the presented methodology allows for an
accurate modeling of the monolayer structure while naturally incorporating
inter-molecule interactions, paving the way for more precise simulations of
densely-packed molecular assemblies.

We believe that the research presented in this thesis further consolidates the
role of atomistic ab initio methods as a fundamental tool for understanding the
response of plasmonic nanostructures and their interaction with organic molecules.
This methodology allows for addressing atomic-scale effects in optical spectroscopy,
as well as for providing deeper insights into the significance of quantum many-body
effects in optical, electron, and Raman spectroscopies. In addition, our results raise
new challenges that could be addressed using the methodologies presented here.
For instance, the comprehensive description of the plasmonic response of sodium
nanoparticles in Chapter 4 paves the way for similar studies on other materials with
more direct technological applications, such as noble metals, or for investigating
the influence of the nanoparticle’s environment, such as an embedding medium
or a molecular coating. These aspects could, in principle, be explored within the
same framework, which naturally incorporates d-electron shells and molecular
environments. Furthermore, the methodology proposed in Chapter 5 for computing
the Raman spectrum of molecular adsorbates could be readily extended to nano-
and picocavity configurations that are at the forefront of SERS research.
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Appendix A

Atomic units

The Hartree atomic units (au), which are frequently used in this thesis, consider
the following fundamental physical constants as unity by definition:

e clectron mass me.,

e elementary charge e,

e Bohr radius ag,

o Reduced Planck’s constant i = h/2m,
o Coulomb’s constant 1/(4meg).

The equivalence between Hartree atomic units and the International System of
Units (SI) of the main physical quantities is given in Table A.1.

Quantity Hartree atomic units SI units
Mass Me 9.1094 - 1073 kg
Charge e 1.6022-1071° C
Length ag 5.2918 - 10~ m
Energy Ep, = h?/(mead) 4.3597-10718 J
Electric dipole moment eag 8.4784-10'" C-m
Electric field E;/(eao) 5.1422 - 10 V/m

Table A.1: Equivalence between Hartree atomic units and SI units of the main physical quantities.
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Appendix B

Electron energy-loss probability in
the Hydrodynamic Model

In this appendix, we describe in greater detail the hydrodynamic model employed
for the calculations of the EEL probability in Chapter 4. The following discussion is
adapted from Refs. [59, 259]. The general dynamics equation of an inhomogeneous
electron gas under the influence of an external charge probe is given by [59]:

B (r )v25n(r w) + [(w + i )w — B2(r)]on(r, w)

Vo 5nrw
+— @a( v/d' — +VB2 Vén(r,w) (B.1)

= &2 (r)n°(r, w)——V~2 v/d’”

where dn(r,w) is the induced charge density of the electron gas, the function 3(r)
is the local compressibility of the electron gas that stands for the local dispersion
at position r, the function &@2(r) = 4mn(r) stands for the frequency of the local
plasmon at r, 7y, is a constant damping term, and n®(r,w) is the external probe
charge density. For an electron probe traveling parallel to the z-axis, in spherical
coordinates and in frequency domain, n°(r,w) can be expressed as:

“(r )__Eé(rsinﬁ—b)d(go)
L=y rsiné

eiwrcos 0/1)’ (BQ)
where v is the speed of the probe electron, and b is the impact parameter, this is,
the distance between the z-axis and the beam trajectory.

The equation can be considerably simplified if we consider a homogeneous
electron gas inside a metallic sphere of radius a, with constant density (in the
absence of perturbations) n(r) = n = 3/4nr3 for r < a, where r, is the Wigner-Seitz
radius. In this case, the plasma frequency is also constant: W, (r) = wp, = V4rn
for r < a and wy(r) = 0 for r > a, and the dispersion of the medium is described
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by a constant compressibility parameter B (r) =Bn = \/%vp for r < a, where
Vp = (37r2n)1/ 2 is the Fermi velocity of the electron gas. With these assumptions,
the equation of the electron gas dynamics reduces to the Helmholtz equation inside
the nanoparticle [59]:

2
w
V2 + i (w)]on(r,w) = ﬁgne(r,w), (B.3)
h
where puy, is an w-dependent parameter defined as:

pi(w) = L {w(w + i) — wg . (B.4)

B

At the interface (r = a), the solutions to Eq. (B.3) must satisfy the hydrodynamic
boundary condition of zero electron current normal to the surface, expressed as:

1 2 0 ,on(r’,w) B

1P or dr’ |/ —r| ﬂh@ nlr,w) = (B.5)
iwzg dr’ 7(1‘ w) .
47 P or v/ —r|

Taking advantage of the spherical symmetry of the probed particle, we can expand
the charge densities, n°(r,w) and dn(r,w), in terms of spherical harmonics Y;™(€2).
This allows for obtaining analytical expressions for the radial components of the
induced charge density dng,,(r,w) in terms of the spherical Bessel functions of the
first and second kind, jy(z) and ye(x), respectively. The induced electric potential
can then be directly computed by integrating the induced density over the volume
of the NP:

[e%S) 4
¢ind(r7W) :/ dr /67:‘/1‘ :}| Z Z Y'e’m md )
v N (=0 m=—1
[ (B.6)
_ d / /2 T _< 5
Z Z 2£+1 " f+1 nem (1", 9)

=0 m=—4¢

where r« = min(r,7’) and r~ = max(r,7’). The electron energy loss probability
can then be computed from the induced potential as:

1 o : . ’
FEELS(W) = R/ dZ,IHl{ _ (bmd(r/?w)efuuz /71} (B?)

— 00
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The resulting integral can be separated into three terms [259]:

M) = 28 S (ayna g0 )
R = ") (B3)

X Im{FbUIk + FBCgr + Fext

Here the T2k term is related to the bulk losses in an unbound medium:
Fbulk = [3}1

m
wz
bk () (2)
ajp; v

z /
X / dz'r"* P ( ) Jem (LM) ,
0 T v

where P} (x) is the associated Legendre polynomial of degree ¢ and order m and

/m

cos(x if £+ m is even,
Gom () = { (=) v (B.10)

i sin(x) if £+ m is odd.

These losses are reduced by the Begrenzung term I', egr that accounts for the

presence of a boundary [157]. This term can be further separated in two terms:

FBegr _ FBegrl + FBegr o (Bll)

Im

The first (inner) term FBegr ' corresponds to the path of the electron probe inside
the NP both when perturbmg the electron cloud and when suffering the energy
loss:

cory £+1 w2 jo— a 2
pheeni — (1 T 2 h) Zom (b, @) {““’“‘)ng(b, a) — mjz,n(b, a)}

My ﬂ 20+1
20+ 1 {N/
Tim (b, a
T AN [Tem (b, a)]*—
va?—b2
wz
2Mh/0 dz ye(pnr) Py (T) Jem (7> Jem(bﬂ“)],
(B.12)
where
f+1
Ne = wy g verr (1na) = By (pna), (B.13)
2 0+1 .
M, = p% n o /e (mma) = Bi gy (pna), (B.14)
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and
TZ HZm( )
Lo (r1,72) / a€+1 NI (B.15)
Hgm(T‘)
Tem(r1,72) / dr pnje Mhr)m» (B.16)
with
W e / b2
Hfm(r) = gtm (; TQ - b2> Pén ( 1- TQ) . (B]-?)

The second (outer) term T',<#"° is related to the path of the electron probe outside
the NP when perturbing the electron cloud and inside the NP when suffering the

energy loss, and vice versa:

r 20 Je—1(pma) 1
FBeg 0 7, — B.1
/m Oém( ) |: 2+ 1 lm(ba CL) a2,Uf}21 jém(bv CL) ) ( 8)
where
"2 a®  Tg(r)
Opm(r1,12) = /T1 dr sy 7\/W (B.19)

The term I'§*' contains the contribution from the losses by the part of the electron
trajectory lymg externally to the NP (both when inducing the plasmons and when
suffering the energy loss):

Lo (pma)
ext 2
= ———=|Opn(a, , B.20
m (264— 1)ME[ 14 (a OO)] ( )
whose main contribution is associated to LSPs.

One can also obtain the eigenmodes of the system by solving Eq. (B.3) in the
absence of excitation sources (n°(r,w) = 0) and applying the boundary conditions
at the interface [Eq. (B.5)]. This leads to the following mode condition:

s L+1

Wpog 7o per1(ima) — Biuidr(pma) =0, (B.21)

which gives multiple eigenenergies wy,, for each ¢ polar term, wheren =0,1,2,3, ...
is the number of nodes in the radial component of the eigenmode. Since the
azimuthal number m is degenerated, we will characterize these modes by the (¢,n)
tuples.

In Figure B.la, we show the isosurfaces of the charge densities corresponding
to the lowest order eigenmodes ({ =0 —3, n =0 — 3, m = £). As observed, the
n = 0 modes are confined to the nanoparticle surface, and represent the LSPs,
with the exception of the (£ = 0,n = 0) mode, which does not conserve the
charge and is therefore unphysical. The n > 0 solutions present charge densities
distributed through all the nanoparticle volume, and correspond to the confined
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a) Charge densities of eigenmodes b) Radial component of eigenmodes
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Figure B.1: (a) 3D charge density isosurfaces associated to the lowest order eigenmodes of the
oscillations of an homogeneous electron gas in a spherical particle within the HDM (¢ = 0 — 3,
n =0 — 3, m = £). The spherical nanoparticle is outlined in gray. (b) Radial component of the
induced charge density distribution associated to the HDM eigenmodes displayed in (a). All
results depicted in this figure were provided by M. Urbieta.

bulk plasmons (CBPs). The difference between LSP and CBP modes can be clearly
appreciated in Figure B.1b, where we plot the radial component of the charge
densities associated with the different modes. LSPs (n = 0) show an exponential
decay of the associated charge density from the surface into the NP, while the
CBPS (n > 0) show oscillations of the charge density with n nodes inside the NP.
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Appendix C

Exchange—correlation functionals

Even though DFT would be an exact theory according to the Kohn-Sham formalism
presented in Section 2.1, this does not occur in practice because the exchange—
correlation energy Fy. cannot be determined exactly. Different approximations
have been proposed to calculate Ey., which can have a drastic effect on the results
obtained, and thus the choice of the exchange-correlation functional is an essential
consideration when using DFT. Here we present the different approaches that
have been followed throughout this thesis. The simplest one is the local-density
approximation (LDA), which assumes that the functional only depends on the
local electronic density. This is used by PyNAO for computing the optical and
EEL spectra in the linear-response regime. The generalized gradient approximation
(GGA), which is used for computing the ground state of metallic clusters, also takes
into account the gradient of the electronic density. On top of this, van der Waals
functionals also incorporate long-range dispersive interactions between non-bonded
atoms, and they are used for calculations involving a metal-organic molecule
interface in Chapter 5. These approximations are briefly described in the next
sections, following the standard literature.

The local-density approximation (LDA)
The simplest functional for E\. is given by the local-density approximation (LDA),

which considers the local exchange—correlation energy density Ex. of a system with
charge density n(r) as that of a homogeneous electron gas with n = n(r) [177]:

EEPA ()] = [ dr n)esc(n(o). (1)

The exchange—correlation energy density can be decomposed into the exchange
and correlation components:

Exe(n(r)) = Ex(n(r)) + Ee(n(r)). (C2)
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The exchange part can be computed analytically in the well-known Slater
approximation [305]:

1/3
Ec(n(r)) = —Z <3> e?n(r)'/3. (C.3)

™

Although there is no exact analytical expression for the LDA correlation energy
density, it can be computed numerically with Monte Carlo methods. Using these
numerical results, several parametrized functions &.(rs) have been developed, where
rs = (%)1/ 3 is the Wigner—Seitz radius. The default expression in SIESTA and
the one used in this work for computing the linear-response of the systems in
Chapters 3 and 4 with PyNAO is the form developed by Perdew and Zunger [180],
based on quantum Monte Carlo calculations by Ceperley and Alder [306].

In principle, this local approximation is only justified if the electronic density
varies smoothly in space. Nevertheless, it has been used with remarkable success
even for systems that do not fulfill such requirement. This is partially caused by a
cancellation of errors between the typically overestimated correlation energy and
the usually underestimated exchange energy.

The generalized gradient approximation (GGA)

The semi-local generalized gradient approximation (GGA) also takes into account
the local gradient of the electronic density:

ESSNn(w)] = [ dr fln(e). Var), ()

which allows for a better simulation of systems with inhomogeneous electronic
density. As we did in the previous section, one can separate the GGA energy into
the exchange and correlation parts. The correlation contribution is usually much
smaller than the exchange one, and is equal to the LDA correlation in the slowly
varying density limit (|Vn| — 0), while it vanishes in the rapidly varying limit. The
exchange contribution is usually expressed as a multiplication of the local uniform
energy density by an enhancement factor depending on the dimensionless reduced
density gradient sy = |Vn|/kpn, where kp = (372n)'/? is the Fermi wavevector:

EZM(n, 55) = ELPA () Fx(sg). (C.5)

One of the most commonly used GGA functionals is the one created by Perdew,
Burke and Ernzerhof, known as PBE [181], which assumes an exchange enhancement
factor that takes the form

Kg

Fo(s,) =1 _ B
(Sg) + K’g 1_|_ xg/ﬁjg

(C.6)
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with kg = 0.804 and z; = pes?, with gy = 0.21951. We have used this functional
for computing the ground states of Na clusters in Chapter 4 with SIESTA. In
addition to PBE, in this work we have also used the variant functional developed
by Wu and Cohen [182] for computing the ground states of the Ag clusters and
those of the hybrid molecule-MNPs systems in Chapter 4. This functional uses the
alternative ansatz

10 10
Ty = gsz + <ug - 81) séexp(—sé) +1In(1 + cgsé), (C.7)

with ¢z = 0.00793. Note that both of the described exchange enhancement factors
tend to 1 in the slowly varying density limit (s; — 0).

Van der Waals functionals

The aforementioned approaches are local or semi-local in nature, and therefore fail
to take into account the long-range dispersive interactions between non-bonded
atoms, which play a fundamental role in determining the properties of systems with
many interacting molecules, such as liquids, molecular crystals or self-assembled
monolayers. In order to deal with these forces within the DFT framework, one can
use van der Waals functionals which add a dispersion correction term, E™[n], to
the usual correlation energy [183]:

E¢[n] = E%[n] + E™[n). (C.8)
There are two general methods for computing the non-local dispersion terms. The
simplest one is by performing a summation over all atomic pairs {A,B}:

AB

D DD DI L (C9)
AB

A<B n=6,8,10...

where Rap is the inter-atomic distance, and the C’;’?B terms are the dispersion
coefficients for the atomic pair, which depend on the atomic species of the pair,
and are computed empirically. The factor f&™P is a damping function avoiding
divergences at small distances

Sn

fImP(Rap) = ) (C.10)

R
1+ exp_dd(ﬁ_l)

where s, is a global scaling parameter, Ryap is the sum of the van der Waals radii
of atoms A and B, and the value of dg determines the steepness of the damping
function.

The more general form of a non-local dispersion correction takes the form [307]:

nl __ 1 ’ ’ ’
B = 3 /dr dr’ n(r)é(r,r")n(r), (C.11)
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where £(r, ') is a general function depending on the separation |r — r’|, as well as
on the density and its gradient. This is the method followed for the construction of
the optPBE-vdW functional [301], which is used for the self-assembled monolayer
calculations in Chapter 5.
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Appendix D

Basis sets for solving the
Kohn—Sham equations

In order to solve the KS equations introduced in Section 2.1 [Eq. (2.11b)]
numerically, the eigenorbitals ¢; must be expanded on some basis set of functions

{¢a}
¢i(r) = Zciaﬂoa(r) (D.1)

By inserting this expansion into the KS equations, one obtains the following matrix
equation

ZH[gaCm = 51‘255&01&, (D.2)

where Hy, = (9| Hks|@a) are the matrix elements of the effective KS Hamiltonian,
and Sgo = (¢glpa) are the elements of the overlap matrix. Thus, to obtain the KS
eigenorbitals and eigenvalues one must diagonalize an M x M matrix, where M is
the number of functions in the basis set. It is easy to see how the computational
costs of solving the KS equations are directly related to the choice of the basis
set, as the computational cost of solving the eigenvalue problem scales as M3. In
order to expand the ground-state density of a system with N electrons at least
N/2 orbitals are required, and thus solving the KS equations conventionally scales
as N3. On top of that, the overlap matrix should ideally be diagonal or at least
sparse.

Through the years, many different kinds of basis sets have been proposed, each
of which has its own advantages and pitfalls. In this appendix we give a short
overview on the two types of basis sets used for the calculations presented in this
thesis.
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Plane-wave basis

Taking advantage of Bloch’s theorem for solids [65], which prescribes that the wave
functions in periodic systems are composed of a phase factor and a periodic part,
we could expand the KS orbitals as a sum of plane waves [308]

$iae(r) = €T Cix(G)e' G, (D.3)
G

where k is a vector in the Brillouin zone, and G are the reciprocal lattice vectors.
This allows us to define a basis set of plane waves ¢g(r)

ix(r) =Y Cin(G)ea(r), pa(r) =+, (D.4)
G

Although a complete basis set requires the use of infinite plane waves, this is
impossible to implement in practice. Fortunately, the contribution of plane waves
with large kinetic energies is usually very small, which allows for truncating the
basis set with a cutoff energy FE s, such that only plane waves with energies smaller
than this cutoff are included in the expansion:

1
§‘k+G|2 < Eecut- (D'5)

Plane waves have the advantage of being a conceptually simple and intuitive
basis set. The computation of their derivatives and integrals is straightforward, they
allow for systematic convergence with respect to the cutoff energy, and they are
orthonormal by definition. Furthermore, the matrix elements of the Hamiltonian are
quite easy to compute in such a basis set, as the kinetic energy operator is diagonal,
and the matrix elements of the effective potential are just Fourier transforms of
the same potential. All of these qualities have made plane wave functions one of
the most popular choices for basis sets.

However, plane wave calculations can be expensive, as the number of basis
functions required to achieve convergence may be quite large, especially for tight-
bound orbitals such as the d orbitals in silver. Furthermore, this basis is not
well-suited for order-N methods, as these methods require locality [309] and plane-
waves extend over the whole system, which hampers their scalability for larger
systems.

Localized basis sets

Though conventionally solving the eigenvalue equation, Eq. (D.4), scales as N3,
it is possible to improve this scaling thanks to the principle of “nearsightedness”,
which states that electrons are shielded from changes in the external potential far
from their position [310]. Order-N methods exploit this property to achieve linear
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scaling with the electron number [311], which generally requires the use of some
kind of localized functions for expanding the KS wavefunctions, such as spherical
waves [312], “blip” functions [313] or real-space grids [314].

Among the different options to implement localized basis sets, atomic orbitals
offer significant advantages because of their efficiency (as it is possible to
achieve good accuracies with few basis functions) and straightforward physical
interpretation. This has led to the emergence of different types of basis sets of
atomic orbitals, such as Gaussian orbitals [315] or Slater-type orbitals [316]. In this
thesis, we have used a basis set of numerical atomic orbitals (NAO) as implemented
in the popular order-N SIESTA method [111], which are the product of radial
functions and real-valued spherical harmonics:

(PIan(r) - RIZn(|r - RI|)Y-€m(’FI)7 (DG)

where I denotes the atom index, n the principal quantum number, £ the azimuthal
quantum number, and m the magnetic quantum number, and R is the position of
atom I. The radial functions are obtained by numerically solving the KS equation
for the isolated pseudoatoms, using the same approximations that will be used for
the calculations with the complete system. The simplest basis set of this type uses
a single radial function for each occupied angular momentum shell, and is known as
single-¢ or SZ. To model a Si atom with valence shell 3523p? the corresponding SZ
basis would be composed of four functions: one s-type orbital and three p-orbitals
with identical radial part and angular parts with £ =1 and m = [—1,0, 1]. There
are two ways to augment such a basis set. The first one is by adding more radial
functions per occupied angular momentum shell, leading to the so-called multiple-(
basis sets. The second is by adding additional angular momentum shells, which are
called “polarized” orbitals. Thus, going back to the Si example, a standard double-¢
polarized (DZP) basis set, which is the one used for our STESTA calculations, will
be composed of 13 orbitals. To the original s-type orbital we add another s-type
orbital with a different radial part, and three more to the original p-orbitals. On
top of this, we add five more orbitals with n = 3,¢ =2,m = [-2,—1,0, 1, 2].
When solving the radial part of the Schréodinger equation for the isolated
pseudoatom exactly, the eigenfunctions only become zero at the r — oo limit.
Directly using these solutions for constructing the basis set of atomic orbitals
would not be efficient, as orbitals centered at different atomic positions would
always overlap, and thus constraining the spread of the radial functions becomes
mandatory. One of the most extended ways for controlling the extension of the
radial part of the atomic orbitals is via the energy shift parameter. This quantity is
added to the orbital eigenenergies, causing the radial functions to vanish at a finite
r value instead. The node is then taken as the cutoff radius for the orbitals, and
they are not represented beyond it. As a consequence, the larger the value of the
energy shift, the more localized the resulting orbital, as can be appreciated in Fig.
D.1. Although more localized orbitals lead to more efficient calculations, the results
of the more extended orbitals are in principle more precise, which establishes a
trade off between computational cost and accuracy, and requires the performance
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of convergence tests so that reasonable values of the energy shift are used.

a) 040 Al n=3, 1=0, z=1 (changing EShift) b) Al n=3, I=1, z=1 (changing EShift)
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Figure D.1: (a) Radial part of the first-¢ 3s orbital of Al generated by using different values of
the energy shift. (b) Same but for the first-¢ 3p orbital of Al.
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Appendix E

Treatment of the core electrons

The pseudopotential method

The pseudopotential approach exploits the fundamental differences between core
and valence electrons in order to improve the computational efficiency of ab
initio simulations. Here we provide a short description of the fundamentals of
pseudopotential theory following Refs. [308, 317]. Core electrons are tightly bound
to the atomic nuclei, which causes their wavefunctions to be highly localized and
oscillatory. It is also well known that core electrons are chemically inert, this is,
they are not involved in the formation of chemical bonds, and their only effect is
to screen the ion—electron potential. As a consequence of this screening, valence
electrons are more free to move and interact with nearby atoms. However, due
to the orthogonality constraint, the wavefunctions of valence electrons present
similar oscillations close to the nuclei, even if their shape is smoother in the outer
regions. These oscillations complicate the accurate description of the electronic
wavefunctions, especially in the plane-wave basis case, in which a large cutoff energy
would be necessary. Fortunately, if one assumes that the core electrons are not
affected by chemical interactions, it is possible to simplify the problem by removing
them completely from the picture and replacing the steep ion—electron potential
with a smoother pseudopotential. This means that the nuclei, together with the
core electrons, are considered as small perturbations of the electron gas. On top
of obtaining smoother wavefunctions for valence electrons, this approach has the
additional advantage of completely removing a large part of the electrons from the
calculation, thereby increasing the computational efficiency. A physical justification
for this approximation is that, since the core regions are already occupied, there is
a strong Pauli repulsion between valence and core electrons, which almost cancels
out with the partially screened nuclear attraction.

In order to construct a pseudopotential, one must first solve the all-electron
Kohn-Sham equations for the corresponding isolated atom in a chosen reference
electronic configuration, using the same exchange—correlation potential that will be
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used in the target calculation. The standard choice for the electronic configuration
is the ground state of the neutral isolated atom. Since the isolated atom problem
has spherical symmetry, it is possible to decouple the radial and angular parts and
just solve the radial equation [308]:

1d®  l+1
LB D 0| R = arREC), B

where n is the all-electron density, RAE(r) is the radial part of the all-electron
eigenfunctions, €,y are the all-electron eigenenergies, and the effective Kohn-Sham
potential for an atom with atomic number Z is given by

A
‘/;H[nAE]<r) = _? + VHartree [nAE} + Vie [nAE] (EQ)

Once the all-electron wavefunctions are known, one must construct the nodeless
pseudo-wavefunctions, which are parameterized inside the core region using one of
the multiple available prescriptions. In order to ensure an accurate description of
the valence charge density, the pseudo-wavefunction and the all-electron one must
coincide beyond a cutoff radius r., and the matching at the boundary must be
smooth. In general, there is a trade off in the choice of the cutoff radii, as smaller
radii lead to pseudopotentials that are more realistic but also less smooth, and vice
versa. For norm-conserving pseudopotentials, as the ones used in this work, pseudo
and all-electron wavefunctions must also have the same norm and energy eigenvalues.
In Fig. E.1a, we show norm-conserving pseudo and all-electron wavefunctions for
the element Mo, taken from Ref. [318]. Note that both wavefunctions match for
radii larger than the cutoff radius, and that the pseudo-wavefunction is much
smoother for smaller radii.

Since we already know the pseudo-wavefunction, we can now obtain the
pseudopotential V(SC)Z(T) by inverting the radial Schrodinger equation for the
pseudo-wavefunction, which is always possible because the pseudo-wavefunction is
nodeless. The inversion is done for the lowest-lying valence state of each angular
momentum, so we can drop the principal quantum number:

0+1) 1 d?

P _ . i P
‘/v(SC)[(T) =& 92 + 27"R£(7") d’I”Q[ Rf (T)L (E3)

where Rf(r) is the radial part of the pseudo-wavefunction. In Fig. E.1b, we show
the pseudopotentials obtained from the pseudo wavefunctions in Fig. E.la, together
with the potential generated by a point charge with the same charge as the nucleus
screened by the core —Zy /7.

The effective potential used to solve the all-electron Kohn—Sham equations
was computed from the charge density of the isolated atom. Though the core
electron density is impervious to the chemical environment, the valence density
is extremely dependent on it. Therefore, the last step of the pseudopotential
generation procedure is to unscreen (subtract) the valence part of the Hartree and
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Figure E.1: Example of norm-conserving pseudopotentials and pseudo-wavefunctions for Mo,
taken from Ref. [318]. a) Comparison of norm-conserving pseudo-wavefunctions (solid lines) and
all-electron valence radial functions (dashed lines). b) Comparison between the pseudopotentials
V(IZC)Z(T) for the first three angular momentum shells (solid lines) and —Zy /r (dashed line).

exchange—correlation potentials, so that when performing the target calculation
one can use the valence charge density computed for the target system to screen
the nuclear potential:

VKP (T) = V(l:c)é(r) — VHartree [TLV] — Ve [nv]7 (E4)
where the pseudo valence density is computed from the pseudo-wavefunction as:

Lrax

J4
ne(r) =" Y IrRu,(r)P. (E.5)

{=0 m=—¢

The PAW method

An alternative method to deal with the rapid oscillations of the wavefunctions
around the atomic nuclei is the projector-augmented wave (PAW) method [185].
Here we outline the fundamentals of the PAW method as described in Bléchl’s
original work and in Carsten Rostgaard’s notes [319]. The PAW approach is based
on the introduction of an auxiliary smooth wavefunction \gﬁn% related to the
Kohn-Sham single-particle wavefunction |¢,) via a linear transformation 7~ [320]:

|¢n> = 7-|an> ) (E6)
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Appendix E. Treatment of the core electrons

where n is a quantum state label comprising a k index, a band index and a spin
index. We may now rewrite the Kohn-Sham equations as:

7LTE[KS¢|¢~STL> = €n7AdT7Ad‘¢~)n> . (E7)

The operator 7 must be defined in a way which ensures that the auxiliary
wavefunctions are smooth. Since the valence part of the true wavefunctions is already
smooth, the operator only needs to modify the parts close to atomic cores, and
can therefore be separated into a sum of localized atom-centered transformations:

Fo14 Y7 (ES)

where the index a runs over all atoms. The localized operators T only affect
augmentation spheres centered around the atomic nuclei and defined by some cutoff
radii ¢, which should not overlap. Inside these spheres, we can expand the true
function in a set of partial waves ¢¢, each of which has a corresponding auxiliary
smooth partial wave ¢¢, and we can require that:

o) = L+ T g & T8 = lof) — 195) - (E.9)

This completely defines the transformation for a given ¢ and ¢. From this it also
follows that the partial waves and their smooth counterparts must be identical
outside the augmentation sphere.

If the smooth partial waves form a complete set inside the augmentation sphere,
we can expand the auxiliary smooth wavefunction as

|fn) = Z P |p8y for r < rd, (E.10)

%

with Py, the coefficients of the expansion. The expansion coefficients will be the
same for the alternative expansion

|bn) = Y Prilof), forr <re (E.11)

The requirement of the transformation T being linear demands that the
coefficients P2 are linear functionals of |¢y,), this is

PO = (59]dn) = / dr 79 (r — R (1), (E.12)

where we introduced the functions |p¢) which we call smooth projector functions.
Since there is no overlap between the augmentation spheres, the one-center
expansion of the smooth wavefunction is identical to the smooth wavefunction
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inside the sphere:

|Ba) = D160 Bildn) = D 1e8) (] =1 for r <rg. (E13)

7

This completeness relationship is equivalent to the requirement that the p¢ should
produce the correct expansion coefficients, and also implies that the projector
functions should be orthonormal to the smooth partial waves inside the sphere:

<ﬁf|¢?> =0;; , forr <rg. (E.14)

As there are no restrictions for the projectors outside the spheres, we can define
them as local functions that vanish outside of them. The most general form of the
projector functions satisfying the completeness relation Eq. (E.13) was obtained
by Blochl [185]:

B =Y (e (] (E.15)

J

where | f§) is any set of linearly independent functions. The projector functions
will be localized if these functions are localized.

Inserting the completeness relation Eq. (E.13) in the definition of the localized
operators 7%, Eq. (E.9), one observes that

To =D 2T0180 1 =D _(leh) — 180) (5t (E.16)

3

and thus the whole operator can be written as:
T=1+> (i) —169)) 571 (E.17)
a i

Therefore the relationship between the all-electron KS wavefunction and the smooth
auxiliary wavefunction is:

$n(r) = dn(r) + ) Z[w?(r) — @ (0] (B 19n) , (E.18)

and thus, the transformation between the auxiliary smooth wavefunction and the
real one depends on the partial waves ¢%(r), the smooth partial waves ¢¢(r), and
the smooth projector functions p¢(r).

The choice of the partial wave and smooth partial wave sets is restricted by the
requirement that they must be complete sets inside the augmentation spheres, so
that they can be used to expand all-electron wavefunctions. Since they are only
used as basis sets they can be chosen as real functions. The smooth projector
functions must satisfy the completeness relation Eq. (E.13), which in turn means
that they must be constructed according to Blochl’s formula, Eq. (E.15). All the
remaining degrees of freedom should be used to make the expansions converge as
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Appendix E. Treatment of the core electrons

fast and possible, and to make the smooth functions as smooth as possible.

By introducing this transformation, one manages to separate the original
wavefunctions, which are smooth in some regions and oscillatory in others, into
an auxiliary smooth wavefunction and localized oscillatory contributions. This
separation allows for the independent treatment of the different types of waves.
Furthermore, it is frequently assumed that the core states of isolated atoms are
localized within the augmentation spheres, and that they are not affected by the
formation of bonds. This approximation, known as the frozen core approximation,
means that the KS core states are identical to the atomic core states, and therefore
only valence states are included in the expansions of |¢,) and |¢,). Thus, one only
needs to compute the smooth KS wavefunctions in order to obtain a complete
description of the electron density, which greatly enhances the computational
efficiency by requiring much lower energy cutoffs.
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Appendix F

Relevant concepts for Bayesian
optimization

In this appendix, we provide the definition of relevant concepts in statistics and
Bayesian optimization appearing in Section 2.4 of this thesis, in alphabetic order.

e« Conditional probability distribution: given a joint probability
distribution on a set of random variables, the conditional probability
distribution of a subset of those random variables is the probability
distribution of the variables contained in the subset, contingent on the values
of the other variables. Assuming a known joint distribution of two discrete
random variables X and Y, px y(z,y), the conditional distribution of the
variable Y, py|x (y|z), is the joint distribution of both y and z divided by
the marginal distribution of variable X:

prix () = p(Y = yIX = 2) = XXIBY), (F.1)
px(x)

e Covariance and Correlation: The covariance is a measure of the joint
variability of two random variables. Its sign shows the tendency in the linear
relationship between the variables (this is, if the two variables tend to be
higher or lower at the same time, the covariance will be positive). The
mathematical expression of the covariance is

covX,Y] = E[(X — E[X])(Y — E[Y])] = E[XY] — E[X]E[Y], (F.2)

where E means the expected value. If one normalizes the covariance dividing
by the product of the standard deviations of the variables, it is possible to
obtain the expression for the correlation

cov[ X, Y] E[X —E[X])(Y —E[Y])]

p[Xa Y] = = ; (F’?’)
OX0y OX0y
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which is contained in the [-1,1] interval. An absolute correlation value of 1
indicates that there is a linear relation between both variables, and a value
of 0 indicates no linear dependency.

e Gaussian distribution: a normal or Gaussian distribution is a type of
continuous probability distribution for a real-valued random variable, x, with
a probability density of the form:

1 -
N(z;p,0) = em2 (557 (F.4)
oV2m

This distribution is characterized by two scalar parameters: the mean p, which
specifies the expectation value of the distribution (it is at the same time mean,
median and mode), and the variance o2, which serves as a scale parameter.
The special case with zero mean and unit variance is called standard normal
distribution.

e Joint probability distribution: given a set of random variables in the
same probability space, their joint probability distribution is the probability
distribution of all possible combinations of values for these variables:

pxy(zy)=p(X =z and Y =y). (F.5)

e Marginal probability distribution: given a joint probability distribution
on a set of random variables, the marginal probability distribution of a subset
of those random variables is the probability distribution of the variables
contained in the subset, without taking into account the values of the
other variables. Assuming a known joint distribution of two discrete random
variables X and Y, px vy (x,y), the marginal distribution of variable X, px (),
this is, the probability distribution of X without referencing the values of Y,
can be calculated by summing over all possible values of Y’

px(@) = 3 pxy(@y). (F.6)

e Multivariate Gaussian distribution: it is the generalization of the one-
dimensional or univariate Gaussian distribution to an arbitrary random vector
X. If the covariance matrix X is positive semidefinite, then the probability
density exists and is expressed as:

1 A2
Y = ———e 22 F.7
N(X7“'7 ) ‘27_(_2'6 ) ( )

with
A= (x-p)'S (x—p). (F.8)
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The standard multivariate normal distribution is a special case for which
p =0 and 3 =1, this is, all the variables are independent and have standard
univariate normal probability distributions.

Stochastic process: a stochastic or random process is a collection of random
variables indexed by some mathematical set, with each random variable
uniquely associated with an element in the set. The mathematical set could
be, for example, the points comprised inside a spatial region, and the random
variables could correspond to the values of a certain field in the corresponding
points.

Variance: The variance of a random value is the expected value of its squared
deviation from the mean.

var[X] = E[X — E[X]]. (F.9)

The variance can be interpreted as a special case of the covariance: the
covariance of a random variable with itself.
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Appendix G

The bare CN-BPT molecule

Here we describe the vibrational spectrum of the bare 4’-cyanobiphenyl-4-thiol
molecule in the interval between 1000 cm™! and 2400 cm ™!, as computed with the
formalism presented in Section 2.3 of this thesis, which is used as a reference in
Chapter 5. We first represent all the vibrational modes whose excitation energies
are located in the aforementioned interval in Fig. G.1a, where the red (blue) arrows
indicate the displacements of the hydrogen (carbon) atoms. The 21 modes displayed
in the figure of a total of 72 modes are labeled in ascending energy order, and the
Raman active modes are identified with colored numbers. In Fig. G.1b, we plot
the Raman spectrum of the molecule in that spectral range, highlighting the main
peaks in the color of the corresponding active Raman mode. Finally, the bar plot in
Fig. G.1c represents the Raman intensity for each of the modes in G.la. Table G.1
displays the vibrational mode frequencies and the infrared intensities and dipole
moments for the Raman active modes.

Mode v, [em™Y  Irrn [(D/A)?amu~?!]  p, [D]

43 1084.9 2.098 0.0571
46 1170.8 0.135 0.0139
47 1184.4 0.368 0.0229
50 1276.5 0.234 0.0176
60 1580.4 3.288 0.0592
61 1597.6 0.397 0.0205
62 2230.5 1.856 0.0374

Table G.1: Information regarding the Raman active modes of the bare CN-BPT molecule. From
left to right: vibrational mode number, excitation frequency, infrared intensity, and infrared
transition dipole moment.
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Figure G.1: a) Representation of the vibrational modes v, of the bare CN-BPT molecule
with excitation energies in the 1000 — 2400 cm ™! range. The modes are labeled with numbers
corresponding to the ordering of their excitation energies. The arrows indicate the displacements
of the molecule atoms. b) Raman spectrum of the bare CN-BPT molecule, with the main peaks
marked with different colors, according to the colors of the corresponding mode labels in a). c)
Plot of the normalized Raman intensities of the vibrational modes in a).
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