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(larga), Fer, Iker, Lombŕız, Maŕıa, Mart́ın, Miguel, Migueĺın, Raúl y Sarita. Y

un especial agradecimiento a mis hermanitos de otro páıs, Carmencita y Jorgito
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Laburpena

Mikroskopio optikoari eta argian oinarritutako beste hainbat tresnei esker, ob-

jektu ñimiñoak xehetasun handiz aztertzeko gaitasuna lortu du gizakiak his-

torian zehar, begi soilaren ikusmen-ahalmena erabat gaindituz. Hala ere, argi

ikusgaia edota infragorria erabiltzen duten mikroskopio optikoek muga gar-

rantzitsu bat daukate, argiaren difrakzio-muga delakoa. Difrakzio-muga Ernst

Abbe eta Lord Rayleigh-ek azaldu zuten lehenengoz XIX. mendean eta, horren

arabera, bereizi daitekeen bi objekturen arteko distantziarik txikiena ezin da

izan mikroskopio optiko arruntetan erabiltzen den argiaren uhin-luzeraren er-

dia baino txikiagoa [1, 2]. Hortaz, difrakzio-mugak berebiziko garrantzia dauka

argia espektro ikusgaian manipulatzeko, bai eta ehunka nanometro baino di-

mentsio txikiagotan konfinatzeko ere. Gauzak horrela, nanofotonikan geroz eta

nanoegitura txikiagoak fabrikatzeko gaitasuna lortzen ari denez, aipatutako

difrakzio-muga gainditzeko gai diren teknikak garatzea ezinbestekoa da.

Difrakzioak ezartzen dituen mugak gainditzeko modu bat polaritoiek es-

kaintzen dute; izan ere, polaritoiak gai dira eremu elektromagnetikoa argiaren

uhin-luzeraren erdia baino dimentsio txikiagoetan, nanoeskalan, konfinatzeko;

hortaz, oso elementu interesgarriak bilakatu dira argiaren manipulazio eta kon-

trolerako. Polaritoiak argia osatzen duten fotoien eta materian ematen diren

kitzikapen dipolarren (hala nola fonoiak material polarretan, plasmoiak metale-

tan, edota exzitoiak erdieroaleetan) arteko akoplamenduaren ondorioz sortzen

diren uhin elektromagnetiko hibridoak dira [3, 4]. Polaritoiek eragindako ere-

muaren konfinamendu bortitzaren ondorioz, induzitutako eremu elektromag-

netikoaren intentsitatea argi erasotzailearena baino askoz ere handiagoa iza-

tea lor daiteke. Eremuaren intentsitate-areagotze hori hainbat aplikaziotan

erabiltzen da, besteak beste molekula bakarraren detekzioan [5], efektu optiko

ez-linealen areagotzean [6], edota laginen berotze lokalean [7]. Polaritoien arazo

nagusia, ordea, hauen momentu lineala fotoi askeena baino handiagoa dela

da, eta beraz, polaritoiak ezin dira eremu urruneko teknika optiko arruntekin

kitzikatu. Arazo hori saihesteko tekniken artean, elektroien energia-galeraren

espektroskopian (EELS, electron energy-loss spectroscopy ingelesez) oinarritu-

tako ekorketa eta transmisioko mikroskopio elektronikoak (STEM, scanning

transmission electron microscopy) edota sakabanatze-motako ekorketako eremu-

hurbileko mikroskopio optikoak (s-SNOM, scattering-type scanning near-field

optical microscope) oso erabilgarriak dira, polaritoien eremu hurbileko propi-

etateak hautemateko gaitasuna dela-eta.

STEMk estuki enfokatutako elektroi-sorta erabiltzen du material baten propi-

etate optikoak EELS bidez hautemateko, hamarnaka meV-eko energia-bereizme-
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1. Irudia: Argiaren eta materiaren arteko elkarrekintza nanoeskalan, elektroi-sorta azkar-
rek eta eremu-hurbileko zundek kitzikatuta. Ingurune polaritoniko baten (egitura hexagonal
grisa) eta elektroi-sorta azkarraren (izpi berdea) edota nanopuntaren (egitura koniko grisa)
arteko elkarrekintza eremu hurbilean. Erermu hurbileko elkarrekintzaren ondorioz, ingu-
runean zehar polaritoiak kitzikatzen dira (uhin urdinak), hau da, argiaren eta materiaren
arteko uhin elektromagnetiko hibridoak. Gezi gorriak nanopunta argiztatzeko erabiltzen den
argi erasotzailea adierazten du.

na eta eskala atomikoko bereizmen espaziala erdietsiz. STEMren bidez lor-

tutako informazioa zuzenean erlaziona daiteke laginaren tamaina, forma, eta

egitura zehatzarekin [8, 9]. Adibidez, EELS erabilgarria izan da hainbat nanoe-

gituretako plasmoi lokalizatuak karakterizatzeko [10–13], konfigurazio elektron-

ikoak zundatzeko (hala nola exzitoiak trantsizio-metalezko dikalkogenuroetan

(TMDC) [14]), zilarrezko heptameroen modu toroidal optikoak iragartzeko [15],

edota siliziozko nanobarrunbe dielektrikoen modu fotonikoak hautemateko [16].

Duela gutxi, EELS argiaren eta materiaren arteko elkarrekintza bortitza az-

tertzeko ere erabili izan da, sekulako bereizmen espazial eta espektralarekin

[17–22].

Bestalde, s-SNOMean argia indar atomikoko mikroskopio (AFM, atomic

force microscope) baten puntan enfokatzen da, honekin argi erasotzailea punta-

ren muturrean kontzentratuz eta, beraz, eremu-hurbil oso kontzentratuak lor-

tuz. Punta laginaren gainean jartzean, puntaren muturraren inguruko eremu

elektromagnetikoak aldatu egiten dira laginaren erantzun optikoaren ondorioz.

Elkarrekintza honek puntatik sakabanatutako argia aldatzen du, eta horrela,

sakabanatutako argia aztertuz, laginaren propietate optiko lokalei buruzko in-

formazioa lor daiteke, laginaren gainazalean induzitutako eremu elektromag-

netiko lokalak mapatuz [23–25]. Gauzak horrela, s-SNOMek erakutsi du gai

dela egitura plasmonikoen [26] eta nanoantena fononikoen [27] eremu hurbileko

banaketa modu espazialean mapatzeko. Grafenoan kitzikatutako plasmoiak

[28, 29] eta polaritoi anisotropoak [30–32] irudikatzeko ere eraginkorra dela

frogatu da.
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2. Irudia: Elektroi-sorta azkarra h-BN solidoan barrena eta h-BN gainazal erdi-infinitu
baten gainean. h-BN solidoan barrena (ezkerreko panela) eta h-BN gainazal erdi-infinituaren
gainetik (eskuineko panela) pasarazten den elektroi-sortaren eskema. Elektroi-sorta v = vẑ
abiaduraz doa h-BNaren ardatz optikoarekiko (z-ardatza) paralelo, eta h-BN gainazal erdi-
infinitutik b distantziara. Bi paneletan, plano gorriak z ardatzean pilatuta dauden h-BN
geruzak dira.

Hori guztia kontuan izanik, tesi honen helburua elektroi-sorta (electron beam)

edota nanopunta (nanotip) bidezko polaritoien eremu hurbileko kitzikapena ik-

ertzea da (ikusi 1. Irudia). Bereziki, ingurune fononiko anisotropoetan sortzen

diren polaritoien kitzikapena zein modu elektromagnetiko eta exzitonikoen (edo

bibrazio molekularren) arteko akoplamenduaren ondorioz sortzen diren polar-

itoien kitzikapena izango dugu aztergai. Horretarako, polaritoien eta haien

eremu hurbileko ezaugarriei buruzko oinarriak aurkeztuko ditugu, sistema po-

laritonikoak egoera desberdinetan aztertzeko.

Lehenengo kapituluan, tesi honetan zehar erabiliko ditugun oinarri teorikoa

eta metodologia aurkeztuko ditugu. Lehenik eta behin, Maxwell-en ekuazioak

berrikusiko ditugu ingurune jarraituetan, erlazio konstitutibo eta oszilatzaile

dipolarraren ereduarekin batera. Oszilatzaile dipolarraren eredua tresna balia-

garria da eremu polarizagarrietan kitzikapen dipolarrak deskribatzeko. Jarra-

ian, aipatutako eredua erabiliko dugu metaletan kitzikatutako plasmoien eta

kristal polarretan kitzikatutako fonoien propietateak ikertzeko. Gure analisia

beste zenbait sistematara zabalduko dugu, hala nola, solido, gainazal, geruza

mehe eta nanopartikula esferikoetara. Horretaz gain, materiaren eta argiaren

arteko akoplamendu bortitza (strong coupling) deskribatuko dugu, oszilatzaile

harmonikoetan oinarrituta dauden bi eredu teoriko aurkeztuz. Eredu horiek er-

abiliz, akoplamendu bortitzeko sistemetan (strongly coupled systems) agertzen

diren autoegoera hibridoak (hau da, polaritoiak) deskriba daitezke. Azkenik,

behin polaritoien oinarriak azalduta, galera baxuko EELS eta s-SNOMren

printzipioak berrikusiko ditugu. Bi teknika horiek berebiziko garrantzia dute

tesian zehar aztergai izango diren polaritoien kitzikapenaren ikerketan.

Bigarren, hirugarren eta laugarren kapituluetan, doktoretza-tesi honen emai-

tza nagusiak aurkeztuko ditugu. 2. kapituluan, EELS erabiliko dugu elektroi

azkarren eta polaritoien akoplamendua aztertzeko boro nitruro hexagonalean

(h-BN). Ikusiko dugu h-BN materialean bolumeneko eta gainazaleko erreso-

ix



3. Irudia: Elektroi-sorta azkarraren eta wolfram disulfurozko (WS2) nanodiskoaren arteko
elkarrekintza. z norabidean v abiadurarekin eta nanodiskoaren zentrutik b distantziara
pasarazten den elektroi-sorta batek kitzikatzen duen WS2 nanodiskoaren eskema.

nantziak kitzikatu daitezkeela elektroi-sorta azkarrak bi konfigurazio ezberdine-

tan erabiliz: alde batetik, elektroi-sorta azkarrak h-BN bolumenean barrena

pasaraztean eta, bestetik, hutsunearen eta h-BN-aren arteko interfaze infini-

tuan barrena pasaraztean (ikusi 2. Irudia). Material isotropoetan ez bezala,

erakutsiko dugu bolumeneko erresonantziak kitzikatu daitezkeela ingurune uni-

axialetik kanpo mugitzen diren elektroi-sorta azkarren bidez. Horretaz gain,

erakutsiko dugu h-BN azaltzen den bolumen eta gainazaleko fonoi polaritoi

kitzikapenek lotura zuzena dutela elektroien abiadurarekin, eta menpekotasun

handia dutela elektroi-sortaren eta h-BNaren ardatz optikoaren arteko angelu-

arekiko.

Hirugarren kapituluan, STEMan EELS erabiliz, teorikoki zein esperimentalki

aztertuko dugu anapolo optikoen kitzikapena wolfram disulfuro (WS2) nan-

odiskoetan (ikusi 3. Irudia). Errefrakzio-indize altuko disko dielektrikoen

EELS profiletan hondoratze (dip) nabarmenak ematen direla erakutsiko dugu,

eta hondoratze hauek diskoaren anapolo optikoren kitzikapenarekin erlazion-

atuta daudela azaldu. Anapoloen kitzikapena eta EELS bidezko detekzioa es-

perimentalki berresteko, Chalmers University of Technology-ko (Gothenburg,

Suedia) gure kolaboratzaileek WS2 diskoak fabrikatu eta hauetan EELS neur-

ketak egin dituzte. EELS datu esperimentaletan ere anapolo optikoen agerpena

ikusiko dugu, eta simulazio numerikoen bidez berretsi. Kapitulu honetan er-

akutsiko dugu anapolo optikoen maiztasuna diskoaren tamainaren arabera sak-

abanatzen dela eta, beraz, WS2 diskoen tamaina aldatuz, anapolo eta WS2-aren

exzitoi trantsizioak gainjarri daitezkeela, anapolo-exzitoi hibridazioa lortuz.

Kapituluaren amaieran, WS2 nanodiskoetan kitzikatutako anapoloen mapa

espazialak erakutsiko ditugu (bereizmen azpi-nanometrikoarekin), eta hauen

kitzikapena elektroi-sorta posizio desberdinetan kokatuz kontrola daitekeela on-

dorioztatu.

x



4. Irudia: Molekulaz estalitako h-BN nano-erresonatzailearen eremu-hurbileko zundaketa
metalezko punta baten bidez. Laugarren kapituluan aztertutako konfigurazio esperimenta-
laren eskema. Konfigurazio honetan, h-BN antena geruza molekular batez (egitura berdea)
partzialki estalita dago, eta s-SNOM punta (egitura koniko horia) molekularik gabeko h-BN
antena zatiaren gainean dago (barra urdina).

Laugarren kapituluan, nano-erresonatzaile fononiko soilen modu lokalizatuen

eta geruza organiko erdieroaleen bibrazio-moduen arteko elkarrekintza azter-

tzeko, CIC Nanoguneko (Donostia-San Sebastian) Nanodevices taldeko kolab-

oratzaileek eraiki duten eremu-hurbileko espektroskopia infragorria (infrared

near-field spectroscopy) erabiliko dugu (ikusi 4. Irudia). Nano-erresonatzailea-

ren eta molekula-geruzaren arteko akoplamendua zuzenean aztertzeko, punta

eta erresonatzailearen arteko elkarrekintza minimizatuko dugu erresonantziarik

gabeko punta erabiliz. Gainera, puntaren eta molekulen arteko eremu hurbileko

elkarrekintza saihestuko dugu honako metodoa jarraituz: nano-erresonatzailea-

ren zati bat molekulaz estaliko dugu, baina beste zatian ez dugu molekularik

ipiniko. Ondoren, sistema osoa puntaren bidez kitzikatuko dugu, punta moleku-

larik gabeko zatiaren gainean jarriz. Aipatutako metodo horri urrutiko eremu-

hurbileko zundaketa (remote near-field probing) deitu diogu, eta polaritoien

mapa espazial eta espektrala sortzeko balioko digu, nano-erresonatzailearen eta

molekulen arteko akoplamendua zenbatestea ahalbidetuz. Bestalde, zenbakizko

simulazioen bitartez, punta metalikoak (seinalearen demodulazioarekin batera)

nano-erresonatzaileaz eta molekulaz osatutako sistema akoplatuaren maiztasun

propioen, indargetze-parametroen eta akoplamendu-indarraren gainean duen

eragina aztertuko dugu. Tesi honen azken kapituluan, bertan lortutako au-

rkikuntza nagusiak aurkeztu eta etorkizuneko ikerketarako ildo posibleak pro-

posatuko ditugu.

xi





Introduction

“When light emitted from a tiny sample passes through a series of lenses, the

image of the sample is magnified and that, in a nutshell, is the working princi-

ple of conventional optical microscopes”. This is at least what my high-school

teacher of biology told me when we tried to visualize blood cells in the micro-

scope. During that time, I had no doubt that light-based instruments such as

optical microscopes have enabled us to study the small in great detail and that

throughout history, light has proven useful for expanding our vision beyond

what the naked eye can perceive. However, I was not aware of the full story:

optical microscopes using visible and infrared light suffer from an important

limitation, the diffraction limit of light. Discovered in the 19th century by

Ernst Abbe and Lord Rayleigh, the diffraction limit states that the smallest

resolvable distance between two objects cannot be smaller than about half the

wavelength of the incident illumination used in a conventional optical micro-

scope [1, 2]. This limitation has important consequences on the manipulation

of light in the optical range of the spectrum as well as on our ability to guide it

in spatial dimensions of less than hundreds of nanometers. However, in the field

of nanophotonics, the progress in fabricating progressively smaller nanostruc-

tures demands to develop techniques capable of beating the diffraction limit

and squeezing light at the nanoscale.

Polaritons provide a way to overcome the limitations imposed by diffraction

as they are able to confine the electromagnetic field below this limit, making

them promising building blocks for nanoscale light manipulation and control.

Polaritons are hybrid light-matter electromagnetic waves that result from the

coupling between photons and dipolar excitations in matter, such as phonons

in polar materials, plasmons in metals, or excitons in semiconductors [3, 4].

The strong field confinement induced by polaritons can produce electromag-

netic fields that are orders of magnitude more intense than the incident field,

leading to a variety of applications, including single molecule sensitivity [5], en-

hancement of non-linear optical effects [6], or local heating of a sample [7]. A

major challenge of polariton physics, however, stems from their large momen-

tum mismatch with free-space photons, thus preventing their excitation using

conventional far-field optical techniques. Among the variety of techniques to

circumvent this limitation, electron energy-loss spectroscopy (EELS) in scan-

ning transmission electron microscopy (STEM) and scattering-type scanning

near-field optical microscopy (s-SNOM) are unique techniques for probing po-

laritons due to their ability to access their near field and provide information

not accessible in the far field.
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EELS in STEM employs a tightly focused electron beam that allows for

mapping the optical properties of a material with tens of meV energy resolu-

tion and down to atomic scale spatial resolution while simultaneously relating

this information to the samples precise size, shape and structure [8, 9]. For

example, EELS has been used to characterize and map localized plasmons in

different nanostructures [10–13], to probe electronic excitations such as excitons

in transition metal dichalcogenide (TMDC) materials [14], to predict optical

toroidal modes in silver heptamer cavities [15], or to map photonic modes of

dielectric silicon nanocavities [16]. Recently, EELS has also proven to be a

useful technique to resolve strong light-matter interactions with unprecedented

spatial and spectral resolution [17–22].

Furthermore, in s-SNOM light is focused on an atomic force microscope

(AFM) tip, which acts as an optical antenna that efficiently concentrates the

incident illumination at its apex, resulting in strongly concentrated near-fields

around it. Upon placing the tip on the sample, the near fields around the apex

are modified due to their interaction with the sample’s optical response. This

near-field interaction also modifies the back-scattered light from the tip, and

thus, by recording the tip-scattered light, one can obtain information on the

local optical properties of the sample and visualize the local electromagnetic

fields induced at the sample surface [23–25]. Notably, s-SNOM has demon-

strated its ability to spatially map the near-field distributions of plasmonic

structures [26] and phononic nanoantennas [27]. It has also proven effective in

imaging graphene plasmons [28, 29] and anisotropic polaritons [30–32].

Considering all these prospects, this thesis aims at investigating the exci-

tation of polaritons in the near field using a fast electron beam or a metallic

tip. Specifically, we focus on the excitation of polaritons arising in anisotropic

phononic media as well as polaritons that result from the coupling between

electromagnetic modes and excitonic, or molecular vibrational modes. To this

end, we introduce the fundamentals of polaritons and their near-field probing

and analyze polaritonic systems in different scenarios.

In Chapter 1, we introduce basic concepts, methods, and the theoretical

framework that will be used throughout this thesis. We first review Maxwell’s

equations in continuous media, together with the constitutive relations and the

dipole oscillator model. This model serves as a valuable tool for describing

dipolar excitation within a polarizable medium. We then apply this model to

elucidate the characteristics of plasmons in metals and phonons in polar crystals

within the context of the optical properties of solids. Our discussion extends

to the manifestation of plasmons and phonon polaritons in various systems,

including bulk, surfaces, thin films, and spherical nanoparticles. Furthermore,

we review the phenomenon of strong coupling between light and matter, intro-

ducing two theoretical frameworks based on harmonic oscillator models. These
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frameworks are able to reproduce the appearance of hybrid eigenmodes (polari-

tons) in strongly coupled systems. Once the basics of polaritons are introduced,

we conclude this chapter by reviewing the working principles of low-loss elec-

tron energy loss spectroscopy and scattering-type scanning near-field optical

microscopy. These two techniques play a crucial role in the investigation of the

polaritonic excitations analyzed in this thesis.

In Chapters 2-4, we present the main results obtained in this thesis. In

Chapter 2, we theoretically describe how fast electrons couple to polaritonic

modes in hexagonal boron nitride (h-BN) by analyzing the electron energy-loss

spectra. We show that for h-BN, bulk and surface modes can be excited by

a fast electron traveling through the volume or along an infinite interface be-

tween h-BN and vacuum. Interestingly, and in strong contrast to excitations

in isotropic materials, we show that bulk modes can be excited by fast elec-

trons traveling outside the uniaxial medium. We show that the excitation of

bulk and surface phonon polariton modes in h-BN is strongly related to the

electron velocity and highly dependent on the angle between the electron beam

trajectory and the optical axis of h-BN.

In Chapter 3, we theoretically and experimentally analyze the excitation of

optical anapoles in tungsten disulfide (WS2) nanodisks using EELS in STEM.

We identify prominent dips in the EEL spectra of a high-index dielectric disk,

and we show that these dips are associated with the excitation of a variety

of optical anapoles in the disks. To experimentally verify anapole excitation

and detection in EELS, our collaborators at Chalmers University of Technol-

ogy (Gothenburg, Sweden) fabricate nanodisks made of WS2 and perform EEL

measurements on them. We find the appearance of optical anapoles in the

experimental EEL spectra and corroborate them via numerical simulations.

Interestingly, we show in this chapter that the optical anapoles frequency (en-

ergy loss features) disperse with the disk size, and thus, by varying the WS2
nanodisk dimensions, an anapole can be tuned to overlap an exciton transition

of WS2, leading to anapole-exciton hybridization. At the end of this chapter,

we show spatial maps of the anapoles excited in the WS2 nanodisks with sub-

nanometer resolution and conclude that their excitation can be controlled by

placing the electron beam at different positions over the nanodisk.

In Chapter 4, we employ infrared near-field spectroscopy to examine the in-

teraction between the localized modes of individual phononic nanoresonators

and the modes of molecular vibrations of organic semiconductor layers, fab-

ricated by our collaborators at the nanodevices group at CIC nanoGUNE

(Donostia-San Sebastian). To directly investigate the coupling between the

nanoresonator and the moleculer layer, we minimize the tip-resonator coupling

by using a non-resonant tip. Additionally, we avoid the direct near-field in-

teractions between the tip and molecules by probing the molecule-free part of
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partially molecule-covered nanoresonators, a method we term as remote near-

field probing. This methodology allows us to generate spatially and spectrally

resolved maps of hybrid polariton modes and determine the nanoresonator-

molecules coupling strengths. Additionally, we analyze via numerical simula-

tions the potential influence of the metallic tip, together with signal demodu-

lation, on the determination of the eigenfrequencies, damping parameters, and

coupling strengths of the nanoresonator-molecules coupled system. In the final

chapter of the thesis, we outline the main findings of the thesis and propose

possible directions for future research.
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1
Basics of polaritons and their near-

field probing

We consider first the fictitious bodies called ‘quasiparti-

cles’. These arise from the fact that when a real particle

moves through the system, it pushes or pulls on its neigh-

bors and thus becomes surrounded by a ’cloud’ of agitated

particles similar to the dust cloud kicked up by a gallop-

ing horse in western.

–Richard D. Mattuck, A Guide to Feynman diagrams

in the many-body problem

Abstract

In this chapter, we briefly summarize the basic concepts and methods that

used throughout this thesis. First, we introduce in Section 1.1 Maxwell’s equa-

tions in continuous media, the constitutive relations of a polarizable medium,

and the dipole oscillator (Lorentz) model. In Section 1.2, we discuss plas-

mon and phonon polaritons in the context of the optical properties of solids

and analyze their emergence in bulk, surface, and structured geometries. At

the end of this section, we provide a brief discussion of polaritons in optical

anisotropic thin films due to their relevance in this thesis. In Section 1.3, we dis-

cuss the phenomenon of strong coupling between light and matter and provide

two theoretical frameworks that are able to address the appearance of hybrid

eigenmodes (polaritons) in strongly coupled systems. Finally, in Section 1.4,

we present some important theoretical concepts underlying low-loss electron

energy loss spectroscopy (EELS) and scattering-type scanning near-field opti-

cal microscopy (s-SNOM). As it will be shown in the following chapters, the

principle of measurement in these two techniques is key to understand many

of the results presented in this thesis.
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1. Basics of polaritons and their near field probing

1.1 Electrodynamics in media

1.1.1 Macroscopic Maxwell’s equations

From a semi-classical point of view, polaritons can be described as hybrid light-

matter electromagnetic waves that originate from the coupling of photons with

dipolar excitations in matter such as, plasmons in metals, optical phonons

in polar crystals or excitons in semiconductors [3, 4]. Within the classical

description, polaritons can be well described by the macroscopic Maxwell’s

equations [33–36]:

∇ ·D (r; t) = ρfree (r; t) , (1.1a)

∇×E (r; t) = − ∂

∂t
B (r; t) , (1.1b)

∇ ·B (r; t) = 0, (1.1c)

∇×H (r; t) = Jfree (r; t) +
∂

∂t
D (r; t) , (1.1d)

which are a set of four coupled partial differential equations that relate, at each

point r in space and time t, the dynamics of the macroscopic electric E(r; t) and

magnetic B(r; t) fields to the macroscopic (free) charge ρfree(r; t) and current

Jfree(r; t) density distributions. The electric displacement vector D(r; t) and

the auxiliary vector H(r; t) are related to the macroscopic polarization P(r; t)

and magnetization M(r; t) of the medium via the following expressions:

D(r; t) = ε0E(r; t) +P(r; t), (1.2)

H(r; t) =
1

µ0
B(r; t)−M(r; t), (1.3)

where ε0 and µ0 are the permittivity and permeability of free space. In this

thesis, we will focus on nonmagnetic materials, and thus, throughout the text,

it is assumed that H(r; t) = B(r; t)/µ0. To describe dipolar excitations in a

material one needs to include in Maxwell’s equations relevant information con-

cerning the behavior of the medium under the influence of the electromagnetic

field. This information is typically contained in the constitutive relations. As
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1.1. Electrodynamics in media

discussed next, these relations allow us to connect, for example, the polarization

of a material with the electric field E(r; t).

1.1.2 Constitutive relations

If we consider that the response of a medium is linear, one can connect the

polarization of the material P(r; t) induced by the electric field E(r; t) in the

following manner

P(r; t) = ε0

∫ ∞

−∞
dt′
∫

d3r′χ(r− r′; t− t′)E(r′; t′), (1.4)

where χ(r−r′; t− t′) is the electric susceptibility of the medium and we assume

that the material is homogeneous and stationary, meaning that the properties

of the medium do not change in space and time [37]. The spatial integration

in Eq. (1.4) extends to the entire real space. We will say that χ(r− r′; t− t′)

preserves causality when the polarization of the material is zero in the absence

of external illumination. This last condition can be mathematically formulated

as follows: for times t < t′, the electric susceptibility is χ(r− r′, t− t′) = 0.

Additionally, throughout this thesis, we assume that the response of the

material is local, meaning that the value of χ(r − r′; t − t′) at position r is

independent of its value at any other position r′ ̸= r. The electric susceptibility

thus takes on the following form: χ(r−r′; t−t′) = χ(t−t′)δ(r−r′), with δ(r−r′)

the Dirac delta function. Consequently, the constitutive relation changes from

Eq. (1.4) to the simpler relation:

P(r; t) = ε0

∫ ∞

−∞
dt′χ(t− t′)E(r; t′). (1.5)

In order to analyze the spectral response of the material, it is convenient

to perform a time-to-frequency Fourier transform to Eq. (1.5) and write the

connection between P(r; t) and E(r; t) in the frequency domain:

P(r;ω) = ε0χ(ω)E(r;ω), (1.6)

with ω the angular frequency. We refer the reader to Appendix A for addi-

tional details on the Fourier transform. Furthermore, by applying the time-to-

frequency Fourier transform to Eq. (1.2), and substituting the result into Eq.

(1.6), one finds that the electric displacement vector D(r;ω) is connected to

7



1. Basics of polaritons and their near field probing

the relative permittivity of the material1 ε(ω) = 1+χ(ω) in the following way:

D(r;ω) = ε0ε(ω)E(r;ω). (1.7)

This last expression establishes a connection between the propagation of elec-

tromagnetic waves within a medium and the optical response of the medium,

which is defined by its dielectric function ε(ω). To better understand this con-

nection, we discuss in the following section a simple model that allows us to

deduce a mathematical expression of ε(ω). This model is known as the dipole

(Lorentz) oscillator model.

1.1.3 The dipole (Lorentz) oscillator model

This classical model assumes that a medium is constituted by a group of os-

cillators, each of which represents for example a negatively charged electron

bound to a positively charged nucleus, as illustrated in Fig. 1.1a. Under con-

stant external illumination, of an electric field with amplitude E0 and angular

frequency ω, Eext = E0e
−iωt, the displacement of the heavy nucleus remains

constant, whereas the displacement r(t) of the bounded electrons oscillates with

natural resonance frequency ω0, and thus, the electron experiences a restoring

force equal to me ω
2
0r(t), with me the rest mass of the electron. The dynamics

of r(t) is then determined by the following equation of motion:

me
d2r(t)

dt2
= −me ω

2
0r(t)−meγ

dr(t)

dt
− eE0e

−iωt, (1.8)

where e is the elementary charge and the parameter γ is the damping constant

associated with the energy losses of the electron due to collisions within the

medium. The negatively charged electron follows the oscillation of the external

illumination and thus, its displacement oscillates harmonically in time as r(t) =

r0e
−iωt. Substituting this last relation into Eq. (1.8), one finds that

r0(ω) = − e

me

E0

ω2
0 − ω2 − iγω

. (1.9)

As we schematically show in Fig. 1.1a, the harmonic motion of the electron

bounded to the positive nucleus induces a net dipole moment p(t) = −er(t) =

p0e
−iωt with

p0(ω) = −er0(ω) =
e2

me

E0

ω2
0 − ω2 − iγω

. (1.10)

1Relative permittivity, permittivity or dielectric function all refer to the same quantity: ε(ω).
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1.1. Electrodynamics in media

Figure 1.1: Lorentz model. (a) Sketch of the Lorentz model. The external illumination Eext

(red wavy arrow) polarizes the medium (gray irregular geometry) inducing dipoles (open
circles) within the material. The zoom shows that each oscillating dipole p(t) consists of
a negatively charged electron (yellow circle) bounded to a positively charged nucleus (blue
circle). (b) Real and (c) imaginary components of ε(ω) given by Eq. (1.13). The values were
obtained using the following parameters ℏω0 = 2.0 eV, ℏγ = 0.09 eV and ε(0) = 4.0 and
ε∞ = 3.0. The vertical dashed line indicates the resonant frequency ℏω0 = 1.96 eV and in
panel (c) the parameter ℏγ marks the full width at half maximum (FWHM) of Im(ε).

The medium is then composed of several tinny dipoles (oscillators) that col-

lectively produce the macroscopic polarization (dipole moment per unit vol-

ume)

P(ω) = n0p0(ω) =
n0e

2

me

E0

ω2
0 − ω2 − iγω

, (1.11)

where n0 is the number of dipoles per unit volume. By comparing Eqs. (1.6)

and (1.11), one can deduce the following dielectric function of the medium

ε(ω) = ε∞ +
n0e

2

meε0

1

ω2
0 − ω2 − iγω

, (1.12)

where we introduce the high-frequency limit ε(∞) = ε∞. This term represents

the polarization of the medium caused by non-resonant processes [38]. Notice

that ε(0) = n2
0e

2/(meε0ω
2
0), and thus, one can rewrite Eq. 1.12 as follows:

ε(ω) = ε∞ + [ε(0)− ε∞]
ω2
0

ω2
0 − ω2 − iγω

. (1.13)

In Figs. 1.1b and 1.1c, we show the real and imaginary components of
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1. Basics of polaritons and their near field probing

ε(ω), respectively, for the illustrative values ℏω0 = 2.0 eV, ℏγ = 0.09 eV,

ε(0) = 4.0 and ε∞ = 3.0. We can observe that close to the resonance frequency

ℏω0 = 2.0 eV (vertical dashed line) the imaginary component of the dielectric

function, Im(ε(ω)), exhibits a distinctive peak at ℏω0 and a full width at half

maximum (FWHM) equal to ℏγ (see Fig. 1.1c). In contrast, the real compo-

nent of the dielectric function, Re(ε(ω)), reaches its maximum at ℏω0−ℏγ/2 as

we approach ℏω0 (see Fig. 1.1b). The spectrum then decreases sharply, passing

through zero until it reaches its minimum at ℏω0 + ℏγ/2 and then increases

again until it reaches the high-frequency limit of ε(∞) = ε∞ = 3.0. This

characteristic behavior of ε(ω) in the Lorentz oscillator model (in particular

Eq. (1.12)) accurately describes the optical response of some materials, such

as metals, semiconductor and polar crystals at visible and infrared frequencies.

Furthermore, this model, based on the description of a material in terms of

dipolar excitations, is extremely useful for understanding the propagation of

hybrid light-matter electromagnetic waves (polaritons) in such materials. In

the next section, we employ the Lorentz oscillator model to describe the op-

tical response of metals and polar crystals and show the importance of Eq.

(1.12) in the description of plasmon and phonon polaritons excited in different

geometrical arrangements.

1.2 Polaritons in metals and polar crystals

1.2.1 Plasmons and phonons

Metals are excellent heat and electricity conductors due to the high density of

free electrons in their conduction band. In a classical description, these free

electrons can be considered as a gas moving around in the presence of the

potential created by the positive (static) ions of the atomic nuclei of the metal.

When the metal is illuminated, this free-electron gas collectively oscillates from

its equilibrium position in a similar manner to the motion of bound electrons

described in the Lorentz model (see Fig. 1.1a). Thus, the collective oscillation

of the free-electron gas can be described by Eqs. (1.8)-(1.11) but setting the

natural restoring frequency ω0 = 0 because the negatively charged particles

freely move inside the metal. Using Eq. (1.12), one can deduce that the
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1.2. Polaritons in metals and polar crystals

dielectric function of metals, εm(ω), is determined by the following expression

(Eq. (1.12)):

εm(ω) = 1−
ω2
p

ω2 + iγω
, (1.14)

here we introduce the plasma frequency ω2
p = n0e

2/(meε0). This free-electron

gas model, initially proposed by Drude and Sommerfeld [34, 39, 40], accurately

captures the optical response of metals at infrared frequencies. At higher fre-

quencies, however, the Drude–Sommerfeld–Lorentz model needs to be modified

to account for interband transitions that can occur in metallic materials. In the

case of silver or gold, for example, one needs to take into consideration inter-

band transitions occurring in the visible range in order to accurately describe

the optical response of these metals.

We note that in a classical description, the self-sustained collective oscilla-

tions of the free-electron gas inside the metal is referred to as plasmon [38, 40].

From a quantum mechanical description, on the other hand, one can write

the Hamiltonian of the free-electron gas interacting with the incident electro-

magnetic field. In appropriate canonical coordinates, one then finds that the

electrons collectively oscillate with a frequency of approximately ωp [41–44].

In this quantum context, the quasiparticle plasmon refers to a quantum of the

collective oscillation of the free-electron gas.

Either in the classical or quantum descriptions, plasmons are responsible for

the reflection of light at visible frequencies in metals, and for the negative values

of the permittivity given by Eq. (1.14). This is clearly shown in Fig. 1.2a,

where we plot the real and imaginary components of εm(ω) given by Eq. (1.14).

We use the parameters ℏωp = 15.2 eV and ℏγ = 0.808 eV that approximately

mimic the optical response of aluminum [45]. From the plots, we see that the

real part of the dielectric function (blue line) is negative, and then crosses zero

at frequency ω̃p = ωp

√
1− (γ/ωp)2 (vertical dashed line in Fig. 1.2a). For Al,

ω̃p is close to ωp since ωp >> γ and thus the term
√

1− (γ/ωp)2 ≈ 1. As we

discuss in the next subsection, at frequencies lower than ω̃p ≈ ωp the electrons

oscillate, generating an electric field of opposite sign to the incident field, and

thus, electromagnetic waves cannot propagate through the bulk of the metal.

In addition to plasmons, a material can also contain other types of collective

excitations. For instance, in polar crystals, optical phonons result from the

collective vibrations of ions arranged in the well-defined lattice of the crystal2.

Under external illumination, the motion of the ions is similar to that described

by Eq. (1.8). Using this expression, together with Eq. (1.7), one finds that

the dielectric function of a polar crystal can be written in the following form

2From a quantum mechanical description, the quasiparticle phonon refers to a quantum of
the collective vibration of the ions in the crystal lattice [40, 46].
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1. Basics of polaritons and their near field probing

Figure 1.2: Dielectric function of metals and polar crystals. (a) Real (blue line) and imaginary
(red line) components of εm(ω) given by Eq. (1.14). Values are obtained using the following
parameters ℏωp = 15.2 eV and ℏγ = 0.808 eV typical of aluminium. The vertical dashed
line indicates the frequency ℏω̃p = 15.18 eV. (b) Real and (c) imaginary components of
εpc(ω) given by Eq. (1.15). Values are obtained using the following parameters ε∞ = 6.7,
ℏωTO = 98.32meV, ℏωLO = 120.14meV, and ℏγpc = .59meV typical of SiC. The shaded
gray area marks the Reststrahlen band, with ℏω̃TO = 98.324meV and ℏω̃LO = 120.136meV.
Insets above (a) and (b) illustrate the free electrons in the metal and the ions in the polar
crystal, respectively.

[40, 47]:

εpc(ω) = ε∞ +
ε∞ − ε(0)

ω2/ω2
TO − 1

, (1.15)

where ωTO is the transverse optical (TO) phonon frequency and ε∞ is the high-

frequency permittivity. At the longitudinal optical (LO) phonon frequency,

ωLO, the dielectric function given by Eq. (1.15) is zero and thus

εpc(ωLO) = 0 = ε∞ +
ε∞ − ε(0)

ω2
TO/ω

2
TO − 1

or equivalently,
ε(0)

ε∞
=

ω2
LO

ω2
TO

. (1.16)

The latter expression is known as the Lydanne-Sachs-Teller relationship, and

it allows us to rewrite Eq. (1.15) in the following form:

εpc(ω) = ε∞

(
1 +

ω2
LO − ω2

TO

ω2
TO − ω2 − iωγpc

)
, (1.17)

where we have introduced the damping constant γpc, which is associated with

the lifetime of the TO phonon. We note that by introducing γpc into the

dielectric function given by Eq. (1.17), Re(εpc(ω)) is zero at frequencies ω̃TO

12



1.2. Polaritons in metals and polar crystals

and ω̃LO, determined by the following expressions

ω̃2
TO =

∆+

√
∆2 − (2ωTO ωLO)

2

2
, (1.18)

ω̃2
LO =

∆−
√
∆2 − (2ωTO ωLO)

2

2
, (1.19)

with

∆ = ω2
TO + ω2

LO − γ2
pc. (1.20)

When ωTO, ωLO >> γpc, one can deduce from Eqs. (1.18)-(1.20) that ω̃TO ≈
ωTO and ω̃LO ≈ ωLO.

It is worth mentioning that the reduced mass of ions in the polar crystal is

greater than that of free electrons in metals, and thus, the natural frequency of

optical phonons is generally lower than that of plasmons. For this reason, the

excitation of optical phonons in polar materials typically appears at infrared

frequencies as observed in Figs. 1.2b-c, where we plot the complex dielectric

function described by Eq. (1.17) using the values ε∞ = 6.7, ℏωTO = 98.32meV,

ℏωLO = 120.14meV and ℏγpc = 0.59meV. These values approximately mimic

the optical response of silicon carbide in the infrared range [48, 49]. For SiC

ωTO, ωLO >> γpc, and thus, ω̃TO ≈ ωTO and ω̃LO ≈ ωLO. In Fig. 1.2c, we

can observe a sharp peak in Im(εpc(ω)) at around 100 eV, which is associated

with the excitation of the transverse optical phonon in SiC. In addition, the

real component of εpc(ω) (blue line in Fig. 1.2b) is negative between the

TO and LO phonon frequencies (shaded gray area). This frequency range is

known as the Reststrahlen3 band, and within it, electromagnetic waves cannot

propagate through the bulk of the polar crystal, similarly to what occurs with

the propagation of EM waves inside metals at energies lower than ωp.

In the previous discussion, we have illustrated the fact that the Lorentz

model describes with accuracy the optical response of plasmonic and phononic

materials. This discussion, however, was focused on the material properties

and not on the propagation of EM waves in these materials. In the following

subsections, we thus analyze in more detail the concepts of plasmon and phonon

polaritons by identifying (eigen)solutions of Maxwell’s equations in geometrical

arrangements such as in bulk, at interfaces, and at finite nanostructures.

3The German word “Reststrahlen” means “residual rays”.
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1. Basics of polaritons and their near field probing

1.2.2 Bulk polaritons

It is instructive to begin our analysis by considering the propagation of EM

waves in the bulk of a metal or a polar crystal. To do so, we consider the

following monochromatic transverse wave: E(r; t) = E0e
i(k·r−ωt) with E0 a

complex amplitude vector and k(ω) = (kx, ky, kz) the wavevector of the wave.

The dynamics of the transverse wave is determined by the Helmholtz equation[
∇2 + k20ε(ω)

]
E(r) = 0, (1.21)

with k0 = ω/c the magnitude of the wavevector in vacuum and c the speed of

light. Inserting the spatial component of the wave, E(r) = E0e
ik·r, into Eq.

(1.21), we can find the following dispersion relation of the transverse wave

k(ω) = k0
√
ε(ω). (1.22)

From this relationship, we immediately see that for frequencies such that the

dielectric function acquires negative values, the magnitude of the wavevector

is imaginary, that is, k = iκ. Consequently, the wave, instead of propagating

inside the material, will decay as E(r) = E0e
−κ·r. In the case of metals and

polar crystals, the real component of their dielectric function has negative val-

ues below the plasma frequency and within the Reststrahlen band, respectively

(see Fig. 1.2). Thus, for these frequencies, transverse electromagnetic waves

cannot propagate inside the materials and rather undergo exponential decay

(evanescently decay). This is clearly represented in Fig. 1.3, where we plot the

solutions of the dispersion relation (Eq. (1.22)) using the dielectric functions

of Al and SiC (Eqs. (1.14) and (1.17)). For illustrative purposes, all the calcu-

lations shown in this subsection and in the following are performed considering

small losses in the materials (γ ≈ 0 in Eq. (1.14) and γpc ≈ 0 in Eq. (1.17)).

Figure 1.3a shows the solution (blue curve) of Eq. (1.22) considering

ε(ω) = εAl(ω). We can observe the typical dispersion relation for EM waves

propagating inside a metal. This solution is usually referred to as the bulk

plasmon polariton (PP) [50]. For small wavenumbers (k → 0), the energy of

the bulk PP does not become zero but tends to ℏωp (gray dashed line). For

energies below ℏωp, the real component of the wavenumber is zero, corrobo-

rating that EM waves with ω < ωp cannot propagate inside the metal. The

differences between the dispersion of the bulk plasmon polariton and that of the

bulk phonon polariton (PhP) can be observed in Fig. 1.3b, where the solution

(blue curves) of Eq. (1.22) for ε(ω) = εSiC(ω) is plotted. Contrary to the dis-
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Figure 1.3: Bulk plasmon and phonon polaritons. (a) Dispersion relation of the bulk plas-
mon polariton (blue curve) determined by Eq. 1.22. The values are obtained considering
ε(ω) = εAl(ω) and using the same parameters as the ones employed in Fig. 1.2a. The black
dashed line represents the dispersion relation k = ω/c of a photon in free space, whereas the
horizontal gray dashed line indicates the plasma frequency ωp. (b) Same as (a) but consid-
ering ε(ω) = εSiC(ω) and using the parameters employed in Fig. 1.2b. The green dashed
line represents the dispersion relation k = ω

√
ε∞/c of a photon in a medium with constant

permittivity ε∞ = 6.7. The shaded gray area marks the Reststrahlen band. The arrows
in panels (a) and (b) indicate the asymptotic behavior of the dispersions (color code corre-
sponds to the asymptotic line they approximate to), whereas the schematics above the panels
provide a visual representation of the bulk of a metal and a polar crystal, respectively. For
illustrative purposes, all the calculations in this figure are implemented without considering
losses in the materials (γ = 0 in Eq. (1.14) and γpc = 0 in Eq. (1.17)).

persion of the bulk PP, the dispersion of the bulk PhP exhibits two branches

(solutions) for energies that lie outside the Reststrahlen band (shaded gray

area). For energies inside this band, the real component of the wavenumber is

equal to zero, Re(k) = 0, meaning that transverse waves with these particular

energy cannot propagate through the crystal. We provide in the box below an

extended mathematical analysis of the asymptotic behavior of the bulk PP and

the bulk PhP (indicated by the arrows in Figs. 1.3a and 1.3b).

The bulk polariton is the simplest example of an EM wave propagating in

a metal or polar crystal. In the following subsection, we will discuss a special

type of EM wave that can propagate at the interface of such materials.
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1. Basics of polaritons and their near field probing

Asymptotic behavior of the dispersion of bulk polaritons considering no

losses in the materials

Plasmon polaritons

The asymptotic behavior of the dispersion of the bulk PP can be un-

derstood from the following equation (substitute ε(ω) = εm(ω) in Eq.

(1.22)):

ω2 = c2k2 + ω2
p, (1.23)

where we assume that γ = 0. In the limit of large wavenumbers ck >>

ω, one can deduce from Eq. (1.23) that the dispersion approaches to

ω ≈ ck.

Phonon polaritons

Analogously, one can understand the asymptotic behavior of the disper-

sion of the bulk PhP by substituting ε(ω) = εpc(ω) in Eq. (1.22). From

this substitution, assuming γpc = 0, and solving for ω2 one obtains the

following expression:

ω2
± =

ω2
LO

2
+

c2k2

2ε∞
± c2k2

2ε∞

√(
1 +

ε∞ω2
LO

c2k2

)2

− 4
ε∞ω2

TO

c2k2
. (1.24)

For large wavenumbers ck >> ω, one can Taylor expand the expression

inside the square root of Eq. (1.24) and obtain the following solution:

ω2
± ≈ ω2

LO

2
+

c2k2

2ε∞
± c2k2

2ε∞

[
1 +

ε∞ω2
LO

c2k2
− 2ε∞ω2

TO

c2k2
+O(1/ck)4

]
.

(1.25)

From the latter equation, one can deduce that the upper branch of the

bulk PhP dispersion approaches to ω+ ≈ ck/
√
ε∞, whereas the lower

branch approaches to ω− ≈ ωTO.

1.2.3 Surface polaritons

Surface polaritons are hybrid EM waves propagating at the interface between

a dielectric and a polaritonic material (in our case, a metal or a polar crystal).

These hybrid EM waves evanescently decay in the direction that is perpen-

dicular to the interface separating both media. To elucidate the properties of

these waves, we analyze the simplest geometrical arrangement in which they

manifest themselves: a planar interface separating two semi-infinite materials.
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1.2. Polaritons in metals and polar crystals

As illustrated in the insets above Figs. 1.4a and 1.4b, we consider a configura-

tion where at z > 0 the material labeled I is air, characterized by a dielectric

function εI = 1, while at z < 0, the material labeled II is a metal or a polar

crystal characterized by a dielectric function εII(ω), given by Eqs. (1.14) or

(1.17), respectively. The surface electromagnetic wave propagating along the

x-direction, and polarized with the electric field along the xz-plane (transverse

magnetic (TM) polarization), is characterized by the following monochromatic

electromagnetic field [50–53]:

BI(r) = Bo
I e

−κIz+iqx ŷ, (1.26a)

EI(r) =
c2

ωεI
[iκIx̂− qẑ]BI,y(r), (1.26b)

BII(r) = Bo
IIe

κIIz+iqx ŷ, (1.26c)

EII(r) = − c2

ωεII
[iκIIx̂+ qẑ]BII,y(r), (1.26d)

where Bo
I , B

o
II are amplitude constants that can be determined by using bound-

ary conditions imposed by Maxwell’s equations. The EM waves at each me-

dium have wavevectors kI = (q, 0, iκI) and kII = (q, 0,−iκII) with κI,κII > 0,

satisfying the subsequent relationships

k2I = −κ2
I + q2 = εI

ω2

c2
, (1.27a)

k2II = −κ2
II + q2 = εII

ω2

c2
. (1.27b)

To find the dispersion relation of the surface wave, we apply to Eqs. (1.26)a-

d the boundary conditions imposed by Maxwell’s equations at the interface

between the two media. After doing so, one can obtain the following system of

linear equations: (
1 −1

εIIκI εIκII

)(
Bo

I

Bo
II

)
=

(
0

0

)
. (1.28)

By solving this system for the non-trivial solution, one finds the condition

κIIεI + κIεII = 0, (1.29)

which, together with Eqs. (1.27)a-b, allow us to write the dispersion of the

surface wave as

q(ω) =
ω

c

√
εI(ω) εII(ω)

εI(ω) + εII(ω)
. (1.30)
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1. Basics of polaritons and their near field probing
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Figure 1.4: Surface plasmon and phonon polaritons. (a) Dispersion relation of surface plas-
mon polariton (blue curve) and bulk plasmon polariton (gray curve) determined both by Eq.
(1.30). The plot was obtained considering ε(ω) = εAl(ω) and using the same parameters as
the ones employed in Fig. 1.2a. Black and green dashed lines represent the dispersion rela-
tions: q = ω/c and q = ω/(c

√
2), respectively. Gray dotted curve represents the dispersion

of the bulk plasmon polariton shown in Fig. 1.3a. Horizontal gray and magenta dashed lines
indicate the plasma frequency ωp and the surface plasmon frequency ωSP (Eq. (1.32)), respec-
tively. (b) Same as (a) but considering ε(ω) = εSiC(ω) and using the parameters employed

in Fig. 1.2b. Green dashed line represents the dispersion relation q = (ω/c)
√

ε∞/(ε∞ + 1).
Gray dotted curves represent the dispersion of the bulk phonon polariton shown in Fig. 1.3b.
Horizontal magenta dashed line indicates the surface phonon frequency ωSPh (Eq. (1.33)).
The shaded gray area marks the Reststrahlen band. The arrows in panels (a) and (b) indi-
cate the asymptotic behavior of the dispersions, whereas the insets above the panels provide
a visual representation of the systems. Field plots in (c) and (d) show the normalized real
part of the z-component of the electric field in the xz-plane for the energies marked by the
open circles in panels (a) and (b): (c) 9 eV and (d) 114meV. The maximum values of the
normalized field plots are: (c) 1.62 and (d) 1.70. Double arrow lines mark the wavelength
of the SPP (panel (c)) and the SPhP (panel (d)). Insets in the panels show the wavelength
of light in free space, λ0. For illustrative purposes, all the calculations in this figure are
implemented without considering losses in the materials (γ = 0 in Eq. (1.14) and γpc = 0 in
Eq. (1.17)).

By comparing Eqs. (1.29) and (1.30), one can deduce that q(ω) is a real

number when εII(ω) < 0 and |εII(ω)| > εI(ω). These last conditions can be

fulfilled in metals or polar crystals. Indeed, in Fig. 1.4 we plot the evaluation
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1.2. Polaritons in metals and polar crystals

of Eq. (1.30) using εI(ω) = 1 and εII(ω) = εAl(ω) (Fig. 1.4a) or εII(ω) =

εSiC(ω) (Fig. 1.4b). The most relevant feature of the dispersion relations

is the appearance of solutions of electromagnetic modes (blue curves in Figs.

1.4a and 1.4b) below the plasma frequency and within the Restrahlend band.

These solutions correspond to surface plasmons (SPP) and surface phonon

(SPhP) polaritons, respectively. The gray solid lines in Figs. 1.4a and 1.4b)

are electromagnetic modes propagating through the media, similar to the bulk

polaritons (gray dotted lines in Figs. 1.4a and 1.4b) discussed in the previous

subsection. Note that for small wavenumbers (q → 0) the energy of the SPP

becomes zero, whereas the energy of the SPhP is equal to the TO energy. For

large wavenumbers (q >> 1), on the other hand, the dispersions of the SPP and

the SPhP tend to the surface plasmon frequency ωSP and the surface phonon

frequency ωSPh, respectively (indicated by the magenta dashed lines in Figs.

1.4a and 1.4b). These large q frequencies can be derived from the poles of Eq.

(1.30), that is, from the condition:

εI + εII = 0. (1.31)

Substituting Eqs. (1.14) and (1.17) into Eq. (1.31), and neglecting losses in

the materials, it can be determined that the frequencies ωSP and ωSPh are

ωSP =
ωp√
2
, (1.32)

ωSPh =

√
ε∞ω2

LO + ω2
TO

1 + ε∞
. (1.33)

From the dispersion relations, one can notice that for some energies, the

surface waves show larger wavenumber than that of a photon with the same

energy in free space (compare blue curves with black dashed lines in Figs. 1.4a

and 1.4b). This implies that SPP and SPhP have smaller wavelengths than

that of light propagating in free space. We emphasize this aspect in Figs. 1.4c

and 1.4d, where we show the real part of the z -component of the electric field

(Eqs. (1.26)a-b). We clearly observe waves propagating along the interface

between the two media, and, more importantly, the polaritons’ wavelength,

λSPP and λSPhP, are smaller than that of light in free space, λ0 (compare the

length of λSPP and λSPhP with the length of λ0 at each panel). This mismatch

in wavenumbers between the surface polaritons and light in free space implies

that surface polaritons cannot be excited simply using plane-wave illumination.
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1. Basics of polaritons and their near field probing

1.2.4 Surface polaritons in thin films

Many interesting optical materials adopt a layered configuration forming thin

films. Examples of these are graphene, hexagonal boron nitride (h-BN) or

transition metal dichalcogenides (TMDCs), among others. Surface polaritons

also exist in thin films. Their properties depend on the film thickness and the

dielectric medium at both sides of the film. In this subsection of the thesis,

we explore the properties of surface polaritons confined in films of thickness d

made of metal or polar crystal. The film is embedded in air, as schematically il-

lustrated in the insets above Figs. 1.5a and 1.5b. Following the same procedure

as in the previous subsection, we can write the (TM-polarized) electromagnetic

field of the surface wave in the three media as [52, 53]:

BI(r) = Bo
I e

−κIz+iqxŷ, (1.34a)

EI(r) =
c2

ω
[iκIx̂− qẑ]BI,y(r), (1.34b)

BII(r) =
[
Bo

IIe
κIIz+iqx +Bo′

II e
−κIIz+iqx

]
ŷ, (1.34c)

EII(r) = − c2

ωεII

[
iκII

(
Bo

IIe
κIIz+iqx −Bo′

II e
−κIIz+iqx

)
x̂+ qBII,y(r)ẑ

]
, (1.34d)

BIII(r) = Bo
III e

κIz+iqxŷ, (1.34e)

EIII(r) = −c2

ω
[iκIx̂+ qẑ]BIII,y(r), (1.34f)

with Bo
I , B

o
II, B

o′

II , B
o
III amplitude constants that can be determined by applying

boundary conditions. The wavenumbers κI and κII satisfy Eqs. (1.27a) and

(1.27b), respectively. Applying boundary conditions to Eqs. (1.34a)-(1.34f) at

the interfaces of the film (z = 0 and z = −d), one obtains the following system

of equations:
1 −1 −1 0

κIεII κII −κII 0

0 e−κIId eκIId −e−κId

0 κIIe
−κIId −κIIe

κIId −κIεIIe
−κId




Bo
I

Bo
II

Bo′

II

Bo
III

 =


0

0

0

0

 . (1.35)

Solving the system for the non-trivial solution, one further finds that the waves

confined at the surface of the film are characterized by the following dispersion

relation:

(εIIκI + κII)± (εIIκI − κII)e
−κIId = 0. (1.36)
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The latter relation can be rewritten as the following implicit equations:

ω+ : tanh

(
κII

d

2

)
= −εII

κI

κII
, (1.37)

and

ω− : coth

(
κII

d

2

)
= −εII

κI

κII
. (1.38)

Figures 1.5a and 1.5b show the evaluation of the dispersion relations ω+

(Eq. (1.37)) and ω− (Eq. (1.38)) for films composed of aluminum and silicon

carbide. We can observe that ω+ describes a high-frequency mode, whereas

ω− describes a low-frequency mode, both approaching either the SP frequency

in the case of Al or the SPh frequency in the case of SiC. Indeed, for large

wavenumbers (q >> 1), κI = κII = q, and thus, the dispersion relation of

surface polaritons propagating in a thin film simplifies from Eq. (1.36) to:

εII + 1

εII − 1
= ±e−qd. (1.39)

When q → ∞, the right-hand side of Eq. (1.39) approaches zero, and the left-

hand side needs to fulfill the condition εII + 1 = 0, which is the condition for

the excitation of the surface polaritons propagating along a single semi-infinite

interface (Eq. (1.31)). In the limit of large wavenumber, ω+ and ω− thus both

tend assymtotically to the surface frequency.

The appearance of the two polaritonic branches ω+ and ω− in the disper-

sion relation of the thin film can also be understood as a result of the cou-

pling between surface waves generated at each of the interfaces of the film.

The electromagnetic fields of the surface polaritons at each surface of the film

interact and couple, producing the following two new eigenmodes: (i) a high-

frequency mode ω+ with electric charges distributed at the surfaces of the film

antisymmetrically along the z-axis, and (ii) a low-frequency mode ω− with

electric charges distributed at the surfaces of the film symmetrically along the

z-axis. We confirm this by plotting in Figs. 1.5c and 1.5d the real part of

the z-component of the electric field distributions around the thin films at the

energies marked by the open circles in Figs. 1.5a and 1.5b. We can observe

surface waves propagating along the interfaces of the film and, more impor-

tantly, one can recognize the symmetric and antisymmetric field distributions

with respect to the z-axis, which are a direct consequence of the hybrid nature

of the two new eigenmodes ω+ and ω−. The thin film is one of the simplest

geometrical arrangements where coupling between two EM modes gives rise to

new hybridized eigenmodes in a system. In Section 1.3 we will study in more

detail the physic underlying coupled systems.
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Figure 1.5: Surface plasmon and phonon polaritons in thin films. (a) Dispersion relations ω+

(Eq. (1.37)) and ω− (Eq. (1.38)) of surface plasmon polaritons in an Al film of thickness
equal to d = 10nm. Blue dotted line shows the dispersion relation of the SPP (same as
in Fig. 1.4a). Horizontal gray and magenta dashed lines indicate the plasma frequency ωp

and the surface plasmon frequency ωSP, respectively. (b) Same as (a) but for a SiC film of
thickness equal to d = 1µm. The shaded gray area marks the Reststrahlen band, and the
blue dotted line shows the dispersion relation of the SPhP (same as in Fig. 1.4b). Black
dashed lines in panels (a) and (b) show the dispersion relation of light in free space: q = ω/c.
The magenta arrows indicate the asymptotic behavior of the dispersions, whereas the insets
above each panel provide a visual representation of the systems. Contour plots in panels (c)
and (d) show the normalized real part of the z-component of the electric field in the xz-plane
for the energies marked by the open circles in panels (a) and (b): (c) 9 eV (bottom), 11.55 eV
(top), and (d) 115.1meV (bottom), 118.2meV (top). The maximum values of the normalized
field plots are: (c) 2.96 (bottom), 3.15 eV (top), and (d) 2.96meV (bottom), 2.96 (top). For
illustrative purposes, all the calculations in this figure are implemented without considering
losses in the materials (γ = 0 in Eq. (1.14) and γpc = 0 in Eq. (1.17)).

1.2.5 Localized surface polaritons

Particles made of metal or polar crystal, such as spherical, square, cubic,

or other geometric shapes, can support localized surface plasmon or phonon
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1.2. Polaritons in metals and polar crystals

modes, which are typically referred to as localized surface plasmon polaritons

(LSPP) or localized surface phonon polaritons (LSPhP), respectively. The fre-

quency of these modes depends on the geometrical shape of the particle, and

they can be observed in the optical response of the particle [34, 37, 53, 54].

Contrary to the polaritons discussed in the previous subsections, which prop-

agate through the bulk or along the interface of a material, localized surface

polaritons are electromagnetic modes spatially confined within the particle and

can be excited by plane-wave illumination.

To explore the properties of these localized modes, we show the optical re-

sponse of a spherical nanoparticle with a radius of 100 nm, characterized by

the dielectric function of SiC (εSiC(ω), given by Eq. (1.17)). Figure (1.6)a

displays the electron energy loss, Γ(ω), spectrum of the spherical nanoparticle

when a fast electron travels in the vicinity of the nanoparticle, as illustrated

in the inset of Fig. 1.6a. In Section 1.4, we will provide an extensive dis-

cussion about the numerical calculation of Γ(ω). Intuitively, the fast electron,

after interacting with the LSPhP excited at the nanoparticle, loses energy at

exactly the LSPhP frequencies ωℓ, producing the appearance of peaks in the

EEL spectrum at energies ℏωℓ (see peaks in 1.6a). By plotting the field dis-

tribution around the sphere at the energy loss peaks positions, we notice that

the electric field is predominantly confined at the surface of the particle (see

field plots in Fig. 1.6b). The lowest LSPhP frequency labeled as ℓ = 1 shows

a field distribution with two maxima along the x-direction similar to the field

distribution of an electric dipole. For higher frequencies (ℓ = 2, 3, . . . ), the

field distribution exhibits additonal maxima around the surface of the sphere,

similar to the field distribution of quadrupolar (ℓ = 2) and octupolar (ℓ = 3)

excitations. For small spherical nanoparticles, within the quasistatic approxi-

mation, the localized polariton resonances can be obtained from the following

condition [55]:

ε(ωℓ) = −ℓ+ 1

ℓ
. (1.40)

By substituting the dielectric function of SiC (εSiC(ω), given by Eq. (1.17))

into Eq. (1.40), and under the asumption that γpc = 0, one can deduce the

following expression for the LSPhP resonances:

ωℓ =

√
ℓ(ε∞ω2

LO + ω2
TO) + ω2

TO

ℓ(ε∞ + 1) + 1
. (1.41)

One can further deduce from Eq. (1.41) that for high-multipole orders ℓ, the

LSPhP resonances approach the SPh frequency (Eq. (1.33)), that is, ωℓ→∞ ≈
ωSPh. This particular behavior of the resonances can be traced by plotting

the EEL probability spectra as a function of the particle radius a, as shown in
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1. Basics of polaritons and their near field probing

Figure 1.6: Localized surface phonon polaritons. (a) Electron energy-loss probability Γ(ω) of
a SiC spherical nanoparticle calculated as a function of the energy loss experienced by a fast
electron beam traveling close to the nanoparticle. Inset in the panel shows a sketch of the
system under study: spherical nanoparticle (gray sphere) with dielectric function εSiC(ω)
(Eq. (1.17)) and radius a = 100 nm excited by a focused electron beam (green ray, e is
the elementary charge) traveling along the z-direction with velocity v = 0.7c at a distance
b = 1.01a (impact parameter) with respect to the sphere center. Open circles and arrows
mark the position of the first three peaks in the EEL spectrum: (ℓ = 1) 115.47meV, (ℓ = 2)
116.45meV and (ℓ = 3) 116.80meV. Vertical magenta dashed line marks the SPh frequency.
(b) Amplitude of the total electric field |Etot(ω)| in the xy-plane for energies marked by the
open circles in panel (a). The scale bar in the field plots is 100 nm and the green dots indicate
the electron beam position. The field plots are normalized to the maximum value in each
case (from left to right): 3.17 × 1011 V/m, 2.61 × 1011 V/m and 2.67 × 1011 V/m. (c) EEL
probability spectra as function of both the particle radius a and the energy loss experienced
by the fast electron traveling with v = 0.7c and b = 1.01a. Open circles in the spectra
mark the peaks for the particle with radius a = 100 nm. (d) Localized resonance frequencies
ωℓ as a function of the multipole order ℓ obtained from Eq. (1.41). Horizontal white and
magenta dashed lines in panels (c) and (d) mark the SPh frequency. All calculations were
performed using the following parameters for εSiC(ω): ε∞ = 6.7, ℏωLO = 120.14meV,
ℏωTO = 98.32meV and ℏγpc = 0.05meV typical of SiC. These values are the same as the
ones used in Figs. 1.2b-c, but considering a reduced damping constant.

Fig. 1.6c. One can observe that the peaks in the EELS spectra shift to lower

energies as the particle radius a increases from 0.05µm to 3µm, and, for higher-

multipole orders ℓ, the resonances pile up close to the SPh resonance ωSPh

(see accumulation of the resonances close to the dashed lines in Figs. 1.6c-d).

Indeed, for higher-multipole orders ℓ, the wavelengths of the localized surface
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1.2. Polaritons in metals and polar crystals

phonon polaritons, λLSPhP = 2πa/ℓ, are smaller than the local curvature of the

spherical particle [56], mimicking the same situation of surface polariton waves

propagating along a semi-infinite flat surface (see Fig. 1.4).

The excitation of localized surface polaritons can be also observed in the

EEL spectra of a metallic spherical nanoparticle. In Appendix B, Fig. B.1d,

we show the EEL spectra of an Al spherical nanoparticle with a radius of

a = 75nm. The peaks in the spectra are associated with the excitation of

localized surface plasmon polaritons at the metallic nanoparticle and, analogue

to the tendency of LSPhP resonances, the LSPP resonances with high-multipole

order ℓ approach to the SP frequency (Eq. (1.32)).

In addition to spherical nanoparticles, the excitation of localized surface

polaritons in plasmonic or phononic materials have been extensively analyzed in

different particles including rods [27, 57], ellipsoids [58], cubes [59, 60], triangles

[61], among others.

1.2.6 Polaritons in uniaxial thin films

In the previous subsections, we have considered the optical response of a me-

dium to be equal in all directions in the medium. This property is manifested

by the isotropic nature of the dielectric function of the materials considered.

In addition to isotropic materials, there exists another class of materials whose

optical response is strongly dependent on their orientation. These materials

are known as anisotropic materials. Their optical response arises from the

presence of distinct chemical bonds in different directions within the material.

This effect can be modeled by considering the electric susceptibility of the ma-

terials as a second-rank tensor χ̂(ω). Consequently, the dielectric function of

the material is described by a second-rank tensor ε̂(ω). This tensor can be

diagonalized along the optical axis of the material and can be written in a di-

agonal representation [62]. In this thesis, we will focus on uniaxial anisotropic

materials, meaning that the permittivity tensor ε̂(ω) is diagonal, and two of its

components are equal. Thus, throughout the thesis, it is always assumed the

following form of the permittivity tensor:

ε̂(ω) =

 ε⊥(ω) 0 0

0 ε⊥(ω) 0

0 0 ε∥(ω)

 . (1.42)

We consider that the optical axis of the material is oriented perpendicular to

the material surface and the optical response of the material along this di-

rection is usually referred to as the out-of-plane component ε∥(ω). The other
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1. Basics of polaritons and their near field probing

Figure 1.7: Anisotropic polaritons in a h-BN thin film. (a) Dispersion relation (Eq. (1.47))
of the modes in an h-BN film with thickness d = 10nm. The h-BN film is surrounded by air,
as depicted in the inset above the panel. Gray dashed lines indicate the TO and LO phonon
energies in the upper Reststrahlen band. (b) Normalized magnitude of the z-component
of the electric field along the z-axis at energy 175meV and wavenumbers (marked by the
color circles in panel (a)): (M0) 9.47µm−1, (M1) 122.91µm−1, (M2) 236.34µm−1 and (M3)
349.78µm−1. The color code of the field plots corresponds to the colors of the circles in
panel (a). Gray shaded region in panel (b) marks the h-BN film thickness d = 10nm.

relevant direction of the optical response is found in the direction containing

the material surface plane, and it is referred to as the in-plane optical compo-

nent ε⊥(ω). Examples of uniaxial materials are metallic delafossite oxides such

as palladium-based delafossite (PdCoO2) [63], multilayer semiconductor tran-

sition metal dichlcogenide (TMDC) materials such as tungsten disulfide (WS2)

or molybdenum disulfide (MoS2) [64, 65] and layered polar crystals such as

hexagonal boron nitride (h-BN) [66].

Optical anisotropy can significantly modify the properties of polaritons, as

determined by their dispersion relation. To better understand these changes,

we analyze in this subsection a thin film made of a representative uniaxial

polar material: hexagonal boron nitride. Its optical properties, together with

the excitation of bulk and surface polaritons in h-BN, will be discussed in

detail in Chapter 2. In brief, hexagonal boron nitride exhibits two Reststrahlen

bands within the energy range of 90meV− 200meV where phonon polaritons

are excitable. We focus in this introduction on the upper Reststrahlen band

within the energy range of 168.6meV−200meV. In this band, the out-of-plane

component ε∥(ω) is a positive constant number, while the in-plane component

ε⊥(ω) can be described through Eq. (1.17) (see also Chapter 2, Section 2.2).

As illustrated in the inset above Fig. 1.7a, the h-BN film is surrounded by

air, and thus, the TM-polarized electromagnetic fields in media (I) and (III)

are determined by Eqs. (1.34a)-(1.34b) and (1.34e)-(1.34f), respectively. In

medium (II), the electromagnetic field with wavevector kII = (q, 0, iκe) can be
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1.2. Polaritons in metals and polar crystals

written as [30, 67]:

BII(r) =
[
Bo

IIe
κez+iqx +Bo′

II e
−κez+iqx

]
ŷ, (1.43a)

EII(r) = −c2

ω

[
i
κe

ε⊥

(
Bo

IIe
κez+iqx −Bo′

II e
−κez+iqx

)
x̂+

q

ε∥
BII,y(r)ẑ

]
, (1.43b)

where the wavenumber κe of the extraordinary wave in h-BN satisfies the fol-

lowing relationship:

k2II =
q2

ε∥
− κ2

e

ε⊥
=

ω2

c2
. (1.44)

Applying the boundary conditions at the interfaces of the anisotropic film (z =

0 and z = −d), we find the following systems of linear equations:
1 −1 −1 0

κIε⊥ κe −κe 0

0 e−κed eκed −e−κd

0 κee
−κed −κee

κed −κIε⊥e
−κId




Bo
I

Bo
II

Bo′

II

Bo
III

 =


0

0

0

0

 . (1.45)

Solving this system for the non-trivial solution, one obtains the following dis-

persion of the modes in the h-BN film:

(ε⊥κI + κe)± (ε⊥κI − κe)e
−κed = 0, (1.46)

which is the analogue to Eq. (1.36) obtained for isotropic films. For large

wavenumbers (q >> 1), Eq. (1.46) can be simplified as [68]:

q(ω) =
i

d

√
ε∥(ω)

ε⊥(ω)

[
2 arctan

(
i√

ε∥(ω)ε⊥(ω)

)
+ πl

]
, l = 0, 1, 2, 3, . . . (1.47)

with l denoting the mode order. In Fig. 1.7a we plot Eq. (1.47) for an

h-BN film of 10 nm thickness. In contrast to the two dispersion branches,

ω+ and ω−, obtained in isotropic films (Figs. 1.5a-b), we observe in Fig.

1.7a multiple dispersion branches associated with the excitation of hyperbolic

phonon polaritons in the h-BN film. Each branch corresponds to a mode whose

electric field oscillates inside the film (see gray shaded region in Fig. 1.7b),

similarly to guided modes in a dielectric waveguide. Thus, they are labeled

using the nomenclature [30, 69]: Ml. The numbers of oscillations of the electric

field are equal to the mode order l, and they are a consequence of electric

charges being distributed also inside the film and not only at its surface [70].

In Chapter 2, we will investigate the excitation of phonon polaritons in h-

BN by fast electron beams, and show that, due to optical anisotropy, their
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1. Basics of polaritons and their near field probing

propagation can be controlled by the velocity and direction of the fast electron.

1.3 Strong light-matter interaction

1.3.1 Overview

Polaritons can be formed through the strong interaction between an electro-

magnetic mode confined in an optical cavity or resonator (light) and a dipolar

excitation (matter). This strong interaction is characterized by a coherent

energy exchange rate between light and matter that exceeds the decay rates

of both the EM mode and the dipolar excitation. In this context, hybrid

light-matter states (polaritons) with inseparable light and matter properties

have demonstrated for instance the ability to, modify the chemical reactivity

of molecules [71, 72], selectively control phase transitions [73] or manipulate

excited states [74].

In Chapters 3 and 4 of the thesis, we analyze the electromagnetic coupling

between nanoresonator modes and excitonic or molecular vibrational modes. In

particular, in Chapter 3, we investigate the electromagnetic coupling between

anapole states and excitons. In Chapter 4, on the other hand, we discuss

the electromagnetic coupling between phonon polariton antenna modes and

molecular vibrational modes. In both chapters, we use analytical models based

on two coupled harmonic oscillators and on coupled mode theory to explain

and quantify the electromagnetic coupling between the resonances. Thus, in

the following section, we introduce these models as well as key concepts of

weakly and strongly coupled systems.

1.3.2 Two-coupled harmonic oscillator model

One of the simplest models that describes the interaction between light and

matter is the two-coupled harmonic oscillator model. Figure 1.8a shows an

sketch of this model: an electromagnetic mode is represented by an oscillator

(EM oscillator) characterized by a displacement xEM(t), a resonance frequency

ωEM, and a damping constant γEM. The dipolar excitation (an exciton or a
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1.3. Strong light-matter interaction

Figure 1.8: Weak and strong light-matter interactions as described by two coupled harmonic
oscillators. (a) Illustrative sketch of two oscillators representing the the EM mode and
the dipolar excitation resonance. The displacements xEM and xmat of the oscillator are
constrained by the springs. (b) Real component of the eigenfrequencies ω± (Eq. (1.50)) of
the hybrid modes as a function of the coupling strength g. The calculations are performed for
two oscillators with the same resonant frequency ωEM = ωmat = ω0, and damping constants
γEM = 0.1ω0, γmat = 0.01ω0. Notice that ω± and g are normalized to ω0. The blue point
marks the exceptional point and the vertical dashed line marks the value g = (γEM+γmat)/4.
Green and red shaded regions indicate the weak and strong coupling regimes, respectively.
(c) Electromagnetic energy |xEM(t)|2 as a function of the parameter tγEM, with t the time.
Black, green and red lines represent the EM energy for coupling strengths equal to g = 0
(uncoupled), g = 0.02ω0 (weak coupling) and g = 0.1ω0 (strong coupling), respectively.
Figure reproduced from ref. [75].

molecular vibration) resonance, on the other hand, is represented by a second

oscillator (matter oscillator) characterized by a displacement xmat(t), a reso-

nance frequency ωmat, and a damping constant γmat. The two oscillators are

coupled via a coupling strength g. The dynamics of the coupled system is

determined by the following system of equations [76, 77]:

ẍEM(t) + γEMẋEM(t) + ω2
EMxEM(t)− 2gẋmat(t) = 0, (1.48a)

ẍmat(t) + γmatẋmat(t) + ω2
matxmat(t) + 2gẋEM(t) = 0, (1.48b)

where the dots denote time derivatives. This system of two ordinary differential

equations can be solved assuming that the displacement of each oscillator is

harmonical in time, i.e., xEM(t) = xo
EM e−iωt and xmat(t) = xo

mat e
−iωt. Under

this assumption, and substituting these expressions into Eqs. (1.48a)-(1.48b),
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one obtains the following system of linear equations:(
ω2
EM − ω2 − iωγEM 2giω

−2giω ω2
mat − ω2 − iωγmat

)(
xo
EM

xo
mat

)
=

(
0

0

)
. (1.49)

Furthermore, considering that the value of the resonance frequency ω is similar

to the resonance frequencies ωEM and ωmat, the terms ω2
EM−ω2 and ω2

EM−ω2

can be approximated as ω2
EM−ω2 ≈ 2ω(ωEM−ω) and ω2

mat−ω2 ≈ 2ω(ωmat−ω).

Using this approximation, one can find the new eigenfrequencies of the coupled

system from the non-trivial solution of Eq. (1.49):

ω± =
ωEM + ωmat

2
− i

4
(γEM + γmat)±

1

2

√
4g2 +

[
∆ω − i

2
∆γ

]2
, (1.50)

with ∆ω = ωEM − ωmat being the detuning and ∆γ = γEM − γmat.

The two-coupled harmonic oscillator model can be useful to determine the

coupling strength g as well as the polaritonic frequencies of a coupled electro-

magnetic system, such as a quantum emitter inside a Fabry-Perot (FP) cavity

or a metallic nanoparticle dimer. Typically, the determination of these quan-

tities is achieved by fitting the optical response of the electromagnetic system

with a physical quantity (observable) derived from the two-coupled harmonic

oscillator model. For example, the extinction of the electromagnetic system can

be associated with the time-averaged power of the EM oscillator being driven

by an external force F (t) = F0e
−iωt [76], i.e.,:

PEM(ω) =
1

2
Re(−iωxo

EMF0) (1.51)

=
ω

2
Im

[ (
ω2
mat − ω2 − iγmatω

)
F 2
0

(ω2
EM − ω2 − iγEMω) (ω2

mat − ω2 − iγmatω)− 4g2ω2

]
.

Thus, by fitting the extinction spectra with with Eq. (1.51), one can obtain

the resonance frequencies ωEM and ωmat, as well as the coupling strength g. By

substituting these fitting values into Eq. (1.50), one can find the polaritonic

frequencies ω±. In Chapter 4, we follow a similar fitting procedure to determine

the coupling strength and polaritonic frequencies of a vibrational mode coupled

to a phononic antenna mode excited by a metallic tip.

To illustrate the solutions that can be obtained from Eq. (1.50), we plot in

Fig. 1.8b the real part of ω± (blue curve) as a function of the coupling strength

g. We consider that the two oscillators have the same resonance frequency

ωEM = ωmat = ω0 (zero detuning), but different damping constants γEM =

0.1ω0 and γmat = 0.01ω0, respectively. When g < ∆γ/4, it can be observed in

Fig. 1.8b that the frequencies ω± are mathematically degenerate, and thus, the
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1.3. Strong light-matter interaction

eigenfrequencies of the coupled and the uncoupled systems are the same. This

condition thus establishes the weak coupling regime. By increasing the coupling

strength g, the blue curve reaches the critical point g = ∆γ/4 (blue point), also

referred to as the exceptional point [37]. Beyond this value, the curve splits into

two distinct parabolic branches, implying the appearance of two new hybrid

modes with different frequencies, ω+ and ω−. Therefore, the exceptional point

marks the onset of the strong coupling regime. From this analysis, we can

conclude that a coupled (two oscillators) system is weakly or strongly coupled if

g > ∆γ/4. In literature, however, alternative criteria to determine the coupling

regime can be found. For example, more restrictive criteria establish that two

oscillators are strongly coupled when g > (γEM + γmat)/4 [78, 79], or when the

mode splitting ΩR =
√
4g2 − (∆γ/2)2 is larger than half the sum of the losses

(γEM + γmat)/2 [80–82]. In this thesis, we use the first criterium and consider

that two oscillators are strongly coupled when g > (γEM + γmat)/4, which is

indicated by the vertical dotted line in Fig. 1.8b.

Weak and strong light-matter interactions have important consequences for

the physical properties of a system, as observed in Fig. 1.8c, where we plot

the energy of the EM oscillator, proportional to |xEM(t)|2, as a function of

time. When the EM oscillator is uncoupled (g = 0, black curve), its energy

exponentially decays in time as |xEM(t)|2 = |xo
EM|2 e−tγEM with an exponential

time constant (lifetime) equal to τEM = 1/γEM. This lifetime is modified once

the EM oscillator is weakly coupled to the matter oscillator. In this case, the

energy of the EM oscillator decays as |xEM(t)|2 = |xo
EM|2 e−t(γEM+γmat)/2 with

an exponential lifetime equal to τEM = 1/(γEM + γmat)/2), that is, with a

smaller lifetime as compared to the case when the EM oscillator is uncoupled

(compare black and green lines in Fig. 1.8c). This modification of the oscillator

lifetime is known as the Purcell effect [83]. Finally, when the oscillators are

strongly coupled, they exchange energy faster than their lifetimes. This leads

to a coherent exchange of energy between the two oscillators, as shown by the

red dashed line in Fig. 1.8c. It can be observed that the energy of the EM

oscillator (represented by the red line) oscillates in time (represented by the

gray dashed line). These oscillations are known as Rabi oscillations [77].

It is worth noting that Eqs. (1.48a)-(1.48b) represent a particular way of

describing the interaction between light and matter using the model of two-

coupled harmonic oscillators. One can show that, in this representation, the

displacement xEM(t) is related to the vector potential AEM(t) of the electro-

magnetic mode, whereas the the displacement xmat(t) of the matter oscillator

is related to the induced dipole moment pmat(t) describing the optical response

of the dipolar excitation [75].
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1.3.3 Temporal coupled-mode theory

Temporal coupled-mode theory (TCMT) offers an alternative approach for

modeling the interaction between light and matter. According to this theo-

retical framework, the optical response of a cavity (resonator) is determined

by the transient dynamics of the quasinormal modes (QNMs) excited in the

cavity. For example, within TCMT, the equations of motion of two interacting

QNMs are [37, 84–88]:

da1(t)

dt
= −iω1a1(t)−

γ1
2
a1(t)− iga2(t), (1.52a)

da2(t)

dt
= −iω2a2(t)−

γ2
2
a2(t)− iga1(t), (1.52b)

where a1(t), a2(t) are the amplitudes, ω1, ω2 are the resonance frequencies

and γ1, γ2 are total decay rates of both QNMs. The decay rates are due to

the radiative and absorptive losses of the QNM, i. e., γ1 = γabs
1 + γrad

1 and

γ2 = γabs
2 +γrad

2 . Using matrix notation, Eqs. (1.52a)-(1.52b) can be expressed

in the more compact way as:

dA2(t)

dt
= −i

(
ω1 − iγ1/2 g

g ω2 − iγ2/2

)(
a1(t)

a2(t)

)
= −iĤ2 A2(t), (1.53)

where A2(t) = (a1(t), a2(t))
⊤ is a vector determined by the amplitude of the

two QNMs (symbol ⊤ denotes transpose of a matrix) and Ĥ2 is a 2× 2 matrix

describing their evolution in time4. With this compact notation, using the

ansatz A2(t) = Ao
2e

−iωt and substituting this expression into Eq. (1.53), one

can deduce the following relationship:(
Ĥ2 − ωÎ

)
Ao

2 = 0, (1.54)

where Î is the identity tensor. The latter relation has non-trivial solution

when the determinant of the matrix inside the parenthesis is zero, det(Ĥ2 −
ωÎ) = 0, or equivalently, when ω is an eigenfrequency of matrix Ĥ2. The

calculation of such eigenfrequencies, provides solutions of ω± given by the same

mathematical expression as in Eq. (1.50). This shows that the TCMT and the

two-coupled harmonic oscillator model provide a similar description of a two-

coupled oscillators system.

4Note that Eq. (1.53) has a similar form to Schrödinger’s equation, hence, Ĥ2 is occasionally
termed as the effective Hamiltonian [89].
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Despite the similarities between TCMT and the two-coupled harmonic os-

cillator model, TMCT provides an easy way to interpret the extinction power

of an object. Indeed, TCMT has been widely used to model the scattered and

absorbed power of an object when it is illuminated by a monochromatic plane

wave, based on the idea that the incident illumination can be expanded over

a set of appropriate scattering (radiation) channels [87]. We employ this theo-

retical formalism in Chapter 3 to analyze the QNMs, and their coupling to an

excitonic resonance, excited in a WS2 disk by a fast electron beam.

To conclude, we note that the models presented in this section have been

widely used to describe many physical systems, including coupled plasmon-

exciton systems [76, 77], phonon polaritons coupled to molecular vibrations

[90] or a quantum emitter interacting with a single electromagnetic mode of

an optical cavity [82]. Although these models are based in purely classical

descriptions, under certain circumstances a quantum mechanical approach to

the interaction between the dipolar excitation and the EM mode yields similar

results. We refer the reader to ref. [75], where a comprehensive analysis of the

analogies between classical and quantum models of light-matter interaction is

provided.

1.4 Near-field probing of polaritons

As discussed in Section 1.2 and in the Introduction, polaritonic nanostructures

show the capability to confine light within subwavelength dimensions, making

them unique for controlling and manipulating light beyond the diffraction limit.

In addition, the strong field confinement induced by localized surface polaritons

can produce electromagnetic fields that are orders of magnitude stronger than

the incident field, leading to a variety of applications including single molecule

sensitivity [5], enhancement of non-linear effects [6], local heating of a sample

[7] or applications where strong light–matter interactions are desired. A ma-

jor difficulty in polariton physics, however, is the large momentum mismatch

between polaritons and free-space photons, which challenges their excitation

and probing using conventional far-field optical techniques. In this section, we

address how these hybrid light-matter states can be excited and probed with

near-field optical techniques. We introduce electron energy loss spectroscopy

(EELS) in scanning transmission electron microscopy (STEM) and scattering-

type scanning near-field optical microscopy (s-SNOM), as two techniques that
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allow for probing polaritons in the near field. While EELS employs fast electron

beams, s-SNOM uses elongated metallic or dielectric tips to enable momentum

matching with the incident light. In the following subsections, we focus on

the theoretical description of the interactions produced in both techniques and

briefly discuss their working principle.

1.4.1 EELS

Electron energy loss spectroscopy is a technique based on electron microscopy

that allows us to access the near fields induced by an excitation in a sample

with subnanometer spatial resolution and tens of meV in energy resolution.

Figure 1.9 depicts the fundamental principle of measurement in a scanning-

transmission electron microscope. Fast electrons are extracted from an electron

gun and accelerated by a voltage typically in the range of 30 keV − 300 keV,

corresponding to electron velocities of approximately 0.3c to 0.8c. The elec-

tron beam is focused and monochromated by a series of lenses that narrow

the energy distribution of the fast electron and minimize its size [91]. After

being monochromated, the electron beam passes through aberration correctors

composed of optical lenses that further reduce the lateral size of the electron

beam to the subangstrom scale [92, 93].

By scanning the tightly focused electron beam over a sample, chemical, elec-

tronic, and optical information about the sample can be collected [8, 13]. The

transmitted electron beam can be analyzed following its passage through post-

sample electron optics, such as a high-angle annular dark-field (HAADF) detec-

tor, and subsequently examined using an EEL spectrometer. The spectrometer

is typically composed of a magnetic prism that disperses incoming electrons

based on their energy, a series of spectrometer lenses utilized for magnification

and to minimize aberrations, and a CCD camera for recording the resulting

spectrum [94].

The spectrum in Fig. 1.9 (see plot at the right of the CCD camera) illustrates

a typical low-loss EEL spectrum composed of the following two relevant fea-

tures: (i) a prominent peak (zero-loss peak) produced from the electrons that

experience zero or negligible loss, and (ii) several peaks in the energy range of

0 eV−50 eV (low-loss region) that are associated with different types of optical

excitation in the sample, including bulk and surface polaritons, for instance.

The energy range above 50 eV is known as the core-loss region and the electron

energy losses in this spectral range are associated with the interaction of the

fast electron and the atomic core electrons of the sample. In this thesis, we

focus on the low-loss energy range.
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+ +
+
+

------

Figure 1.9: Scanning-transmission electron microscope. Schematic representation of
the JEOL Mono384 NEO ARM 200F (adapted from https://www.jeol.com/products/

scientific/tem/Monochromated_ARM200F.php), which shows a transmission electron micro-
scope equipped with a Schottky field emission gun, double Wien filter monochromator, probe
aberration corrector, image aberration corrector and Gatan Imaging Filter continuum high-
resolution spectrometer. EELS experiments shown in this thesis were performed with this
microscope. The different parts and working principle of the microscope are both explained
in the main text. The sketch framed by the dashed lines depicts a representation of the charge
and current densities, ρind(r; t) and Jind(r; t), respectively, induced by the fast electron in
the sample. These densities produce electromagnetic fields Eind(r; t) and Bind(r; t) that act
back on the fast electron.

Within a classical electrodynamics description, the experimental electron

energy loss signal coming form the electron-sample interaction can be under-

stood as follows (see the sketch within the dashed line box in Fig. 1.9). The

fast electron, represented by a point-like particle with negative electric charge

e, travels with constant velocity v and induces charge and current densities

ρind(r; t) and Jind(r; t) in the sample. At the same time, these induced densi-
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1. Basics of polaritons and their near field probing

ties produce electromagnetic fields Eind(r; t) and Bind(r; t) that act back on the

probing electron, causing an energy loss that reveals the energy and strength

of the excitation induced in the sample. The energy loss ∆EEELS experienced

by the electron can be calculated as the work performed by the induced elec-

tromagnetic field over the fast electron

∆EEELS = e

∫ ∞

−∞
dtv ·Eind(re; t), (1.55)

where re is the electron beam trajectory. Through a time-to-frequency Fourier

transform of Eind(re; t), Eq. (1.55) can be rewritten as:

∆EEELS =

∫ ∞

0

dω ℏω Γ(ω), (1.56)

where

Γ(ω) =
e

πℏω

∫ ∞

−∞
dtRe

[
v ·Eind(re;ω) e

−iωt
]
, (1.57)

is the electron energy-loss probability, which accounts for the probability that

an electron loses an energy equal to ℏω. The fast electron travels a distance

L = vt in a period of time t and thus, from Eq. (1.57), one can identify the

electron energy-loss probability per unit length,

Γ′(ω) =
dΓ(ω)

dL
=

e

πℏω
Re
[
v̂ ·Eind(re;ω) e

−iωL/v
]
, (1.58)

where v̂ is the unit vector in the same direction as the electron velocity v.

Equations (1.57) and (1.58) provide a way to numerically calculate the EEL

spectrum and simulate the EEL signal obtained in EELS experiments.

We note that for many situations addressed in this thesis, the fast electron

travels with a trajectory pointing along the z-direction, i.e., re(t) = (xe, ye, z =

vt). Hence, Eqs. (1.57) and (1.58) are expressed as

Γ(ω) =
e

πℏω

∫ ∞

−∞
dzRe

[
ẑ ·Eind(re;ω) e

−iωz/v
]
, (1.59)

and

Γ′(ω) =
dΓ(ω)

dz
=

e

πℏω
Re
[
ẑ ·Eind(re;ω) e

−iωz/v
]
. (1.60)

Electromagnetic fields produced by a fast electron

The evanescent nature of the electromagnetic fields produced by a fast electron

offers the capability to investigate different optical excitations in a sample using

EELS. To better understand these evanescent fields, we analyze below the EM
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fields produced by a fast electron traveling, in free space, along the trajectory

re(t) = (0, 0, z = vt).

From Maxwell’s equations, one can derive the following mathematical ex-

pressions for the EM fields produced by the fast electron [8, 95]:

Ee(r;ω) = − e

2πε0

ω

v2γL
eiωz/v

{
sign(ω)K1

(
|ω|
γLv

R

)
R̂− i

γL
K0

(
|ω|
γLv

R

)
ẑ

}
,

(1.61)

Be(r;ω) = − e

2πε0

|ω|
cvγL

eiωz/vK1

(
|ω|
γLv

R

)
ϕ̂, (1.62)

where γL = 1/
√
1− v2ε(ω)/c2 is the Lorentz factor, r = (R, z) = (x, y, z),

R =
√

x2 + y2, ϕ̂ is the unit vector in the azimuthal direction in cylindrical

coordinates, K0(x), K1(x) are the zero and first order modified Bessel functions

of the second kind, respectively, and sgn stands for the sign function. Figures

1.10a-b show the evaluation of the electric (Eq. (1.61)) and magnetic (Eq.

(1.62)) fields of an electron traveling with velocity v = 0.7c (approximately

200 keV). We can observe that the fields exponentially decay as a function of

the distance R, and, the amplitude of the radial component of the electric field,

|Ee,R|, is larger than that of |Ee,z| (compare blue and red solid lines in Fig.

1.10a). This is a consequence of the Lorentz contraction experienced by the

fields produced by the fast electron traveling at a constant velocity, compared

to the fields produced by the same electron when it is at rest (v = 0). Indeed,

by decreasing the velocity of the electron to 5% the speed of light, the Lorentz

contraction reduces, and thus, one can observe that |Ee,R| approaches |Ee,z|
(compare blue and red dashed lines in Fig. 1.10a).

Bulk polaritons and Cherenkov radiation

The EEL probability (Eqs. (1.57)-(1.60)) provides valuable information which

reveals, for example, the optical excitation produced at a sample. To show an

example of this, we consider the following situation: a fast electron traveling

with constant velocity v through the bulk of SiC, as illustrated in the inset of

Fig. 1.11a. The EEL probability per unit path is given by [8]:

Γ′
bulk(ω) =

e2

(2π)2ω2ℏε0
Im

{[
k20 −

ω2

εSiC v2

]
ln

[
εSiC k20 − ω2/v2 − (kc⊥)

2

εSiC k20 − ω2/v2

]}
,

(1.63)

with ℏkc⊥ the maximum value of the perpendicular component of the momen-

tum transfer of the electrons selected by the collection aperture of the EELS

spectrometer.

Figure 1.11a shows the evaluation of Eq. (1.63) (blue curve) for the energy

37



1. Basics of polaritons and their near field probing

Figure 1.10: Electromagnetic fields produced by a fast electron. (a) Amplitude of the radial
component (solid blue line) and the z-component (solid red line) of the electric fields produced
by a fast electron traveling in free space with velocity v = 0.7c. Dashed lines correspond to the
evaluation of the field amplitudes considering that the electron is traveling with v = 0.05c.
(b) Same as in panel (a) but for the components of the magnetic field. The inset in (b)
illustrates the electron beam trajectory. For the calculation we use Eqs. (1.61)-(1.62) and
choose ℏω = 100meV as a representative energy in the infrared range.

range of 80 eV− 160 eV, which includes the Reststrahlen of SiC. The electron

travels with velocity v = 0.7c. We recognize in the EEL spectrum the ap-

pearance of a peak at the LO phonon energy, demonstrating that the electron

energy losses in the Reststrahlen band (shaded gray area) are due to bulk

phonon polariton excitations. Interestingly, outside the Reststrahlen band, we

can also observe the appearance of small electron energy losses, as shown in

the zoomed view in Fig. 1.11b. These losses are a consequence of the fast elec-

tron traveling faster than the speed of light in SiC, i.e., v > c/
√
εSiC. In this

case, the field distribution (Eq. (1.61)) produced by the fast electron traveling

through SiC exhibits wake patterns (see field plot in Fig. 1.11c). This physical

phenomenon is known as Vavilov-Cherenkov radiation [96–103] . When the

fast electron travels slower than the speed of light in SiC, it does not radiate,

and thus no wake patterns are formed. This is evident in Fig. 1.11d, where we

plot the field distribution produced by the electron traveling with a reduced

velocity of 20% the speed of light. This analysis reveals that a fast electron,

interacting with a sample, can lose energy through different mechanisms. In

Chapters 2 and 3, we will thoroughly analyze the electron energy losses ob-

tained from the interaction of fast electron beams with anisotropic polaritonic

media and high-index dielectric disks.

It is worth mentioning that for a structure with an arbitrary geometri-

cal shape, it is not always possible to find analytical solutions for Γ(ω). In

Appendix B.1, we thus describe a methodology based on the Finite Element

Method (FEM) to solve Maxwell’s equations and to calculate the EEL proba-
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1.4. Near-field probing of polaritons

Figure 1.11: Excitation of bulk PhPs and Cherenkov radiation by a fast electron. (a) Electron
energy-loss probability Γ′

bulk(ω) in SiC obtained with Eq. (1.63). The shaded gray area
marks the Reststrahlen band and ℏωTO, ℏωLO mark the position of the TO and LO phonon
energies, respectively. As depicted by the inset in panel (a), the electron is traveling through
SiC characterized by a dielectric function εSiC(ω) (Eq. (1.63)). The calculation is performed

assuming v = 0.7c and kc⊥ = 0.1 Å
−1

. Panel (b) shows a zoom into panel (a). The contour
plot in panel (c) depicts the real part of the z-component of the total electric field induced
by the fast electron along the cylindrical coordinates (R, z) for an energy loss of 150meV
(marked by the red dashed line in panels (a) and (b)) and v = 0.7c. Panel (d) shows the same
as panel (c) but considering an electron velocity v = 0.2c. The field plots are normalized to
the maximum value in each case: (c) 8.0× 10−8 a.u. and (d) 5.0× 10−7 a.u. All calculations
were performed using the same values for the dielectric function of SiC, εSiC(ω), as the ones
used in Figs. 1.2b-c.

bility Γ(ω).

1.4.2 s-SNOM in the infrared range

Scattering-type scanning near-field optical microscopy (s-SNOM) is an alter-

native technique for probing and exciting polaritons [27, 28, 30, 69]. In this
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Figure 1.12: llustration of a typical nano-FTIR spectroscopy setup based on s-
SNOM (reproduced from https://www.attocube.com/en/products/microscopes/

nanoscale-imaging-spectroscopy/technology/s-SNOM). A broadband mid-infrared
laser beam is split into two distinct beams by a beam splitter. One of these beams is focused
onto the AFM tip oscillating at a frequency Ω, whereas the other beam is directed to a
reference mirror. The back-scattered light from the AFM tip is directed to a mid-infrared
detector, where it interferes with the light reflected at the reference mirror. The detector
measures the intensity of the light that results from this interference. This detector signal
is demodulated at the frequency nΩ and recorded as a function of the position L of
the reference mirror, yielding interferograms. A subsequent Fourier Transform of these
interferograms yields near-field amplitude and phase spectra, sn(ω) and φn(ω), respectively.

technique, a metallic atomic force microscope tip is illuminated by a focused

laser beam (see Fig. 1.12). Owing to the the lighting rod effect, the incident

illumination is strongly confined at the tip apex, producing strong near fields
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around it. By placing the tip above a sample, the near-field interaction be-

tween tip and sample modifies the tip-scattered light. Thus, by recording the

back-scattered light from the tip as a function of the tip position, one can ob-

tain images of the dielectric properties or the electromagnetic fields of a sample

[23–25]. In such a way, s-SNOM enables sub-wavelength optical imaging with

a spatial resolution that is usually determined by the tip apex radius (around

10 nm− 50 nm).

S-SNOM has shown great potential for probing and mapping polaritons in

different structures. For example, s-SNOM has been used to map the near-

field distributions of phononic and plasmonic nanoantennas [27], as well as to

imaging graphene plasmons [28, 29] and in-plane and out-of-plane anisotropic

polaritons [31, 32].

The concept of this technique is illustrated in Figure 1.13. The infrared

illumination Einc (yellow wavy arrow) polarizes the tip, resulting in an induced

net dipole moment p0 at the tip (vertical blue arrow in Fig. 1.13a). By placing

the tip in close proximity to the sample, the near-field interaction between tip

and sample induces an additional dipole moment pNF at the tip (vertical red

arrow in Fig. 1.13a). The induced dipole pNF produces a radiated field ENF

(depicted by the red wavy arrow), containing the dielectric properties of the

sample. Simultaneously, the induced dipole p0 produces the radiated field EBG

(depicted by the blue wavy arrow), which is the predominant contribution to

the tip-scattered field and provides negligible information about the sample.

Tip modulation and signal demodulation

To obtain the background-free near-field contribution ENF and to suppress the

background field EBG, the AFM works in tapping mode and thus the tip os-

cillates normal to the sample at a frequency Ω (see Fig. 1.13b). This allows

to perform amplitude and phase-resolved detection of the tip-scattered field at

a frequency nΩ (n ≥ 2). We illustrate this procedure in Figs. 1.13c-d. The

near fields at the tip exponentially decay in space, and thus, the tip-scattered

near field ENF increases non-linearly when decreasing the tip-sample distance

htip. The background-scattered field EBG, on the other hand, increases ap-

proximately linearly when decreasing htip. Due these spatial dependency, when

the tip oscillates harmonically in time, ENF(t) generates a strongly anharmonic

time-dependent scattered field (blue curve in Fig. 1.13c), whereas EBG(t) yields

a nearly time-harmonic background scattered field (red curve in Fig. 1.13c)).

These behaviors can be clearly recognized by expressing the tip-scattered field,
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Figure 1.13: Suppression of the background-scattered field by tip modulation and signal
demodulation. (a) Schematic representation of the AFM tip positioned at a height of htip

with respect to the sample surface. The tip oscillates along the z-direction at frequency Ω, and
it is illuminated by far-field illumination Einc (yellow wavy arrow). This illumination induces
a dipole moment p0(t) (blue arrow) at the tip strongly concentrated at the tip appex. By
placing the tip close to the sample, an additional polarization pNF (red arrow) is induced at
the tip due to the near-field interaction (red spot) between tip and sample. The corresponding
dipoles p0 and pNF give rise to the tip-scattered fields EBG (blue wavy arrow) and ENF (red
wavy arrow), respectively. (b) Height of the tip as a function of the tip-oscillation period
T = 2π/Ω. (c) Amplitudes of the tip-scattered background field EBG (blue curve) and tip-
scattered near-field ENF (red curve) as a function of T . The curves are obtained assuming
that: EBG(t) = [cos(2πhtip(t)/λ) + 1]/2 and ENF(t) = [htip(T/2)]

3/[htip(t)]
3, λ = 200 nm.

(d) Amplitude of the demodulated background field (blue bars) and demodulated near-field
(red bars) for the first five demodulation orders n. The Fourier transform of EBG(t) and
ENF(t) are performed using the Fourier package of Wolfram Mathematica software. Plots in
panels (b)-(d) are normalized to the maximum value in each case.

Escat(t), as the following Fourier series:

Escat(t) = EBG(t) + ENF(t) =
∞∑

n=−∞
(EBG,n + ENF,n) e

−inΩt, (1.64)

where EBG,n and ENF,n are the nth complex Fourier coefficients of EBG(t) and

ENF(t), respectively. Importantly, for high frequencies nΩ with n ≥ 2, the

Fourier coeffcients EBG,n of EBG(t) are strongly suppressed, while the Fourier

coeffcients ENF,n of ENF(t) still contribute to Escat(t) for n ≥ 3 (see Fig.

1.13d). This analysis thus shows that demodulation of the tip-scattered field

Escat(t) at n ≥ 2 yields the desired near-field contribution ENF(t).

Therefore, measuring the field, for instance, through interferometric detec-

tion as illustrated in Fig. 1.12, which is proportional to the tip-scattered field,

Escat(t) = EBG(t)+ENF(t), in combination with demodulation of the detector

signal at a frequency nΩ where n ≥ 2, produces the background-free near-field

amplitude and phase signals:

sn ∝ |ENF,n| and, (1.65a)
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φn ∝ arg(ENF,n). (1.65b)

To implement this in the experiment, amplitude and phase resolved measure-

ments are performed in combination with higher harmonic demodulation [104].

This procedure gives amplitude and phase signals which are proportional to sn
and φn. S-SNOM utilizes a monochromatic laser beam for sample illumination

to acquire its dielectric properties. In contrast, nanoscale Fourier transform

infrared (nano-FTIR) spectroscopy employs broadband illumination to yield

spectral information about the sample [105, 106].

Tip-sample near-field interaction: Lippmann-Schwinger equation

To theoretically simulate the detected signal obtained in s-SNOM experiments,

we perform numerical simulations using the commercial package COMSOL

Multiphysics (see Appendix B), where we model the tip as a conical platinum

structure of 1µm length and a semispherical apex of 25 nm radius. We assume

that the tip-scattered light Escat arriving to the detector in the s-SNOM exper-

iments is proportional to the net dipole moment ptip induced at the tip. This

induced dipole moment is given as a sum of the dipole moment p0 induced by

the incident illumination plus the dipole moment pNF induced by the near-field

interaction with the sample, as we demonstrate below.

The tip-scattered field Escat(r) can be described as a series of multiple scat-

tering events occurring between the tip and the sample. From a mathematical

point of view, this series can be formulated in terms of the following Lippmann-

Schwinger equation [37, 107–109]:

E(r) = Einc(r) + k20

∫
V ′
T

d3r′T Ĝ0(r, r
′
T) · χ̂T(r

′
T) ·E(r′T)+

+ k20

∫
V ′
S

d3r′S Ĝ0(r, r
′
S) · χ̂S(r

′
S) ·E(r′S), (1.66)

which establishes that the electric field E(r) at each point r in space is a sum

of the incident electric field Einc(r) plus the electric fields scattered by the

tip (labeled as T) and by the sample (labeled as S). The integrations in Eq.

(1.66) extend over the volume of the tip, V ′
T, and the volume of the sample, V ′

S,

with volume elements d3r′T and d3r′S, respectively. The volume elements are

located at r′T and r′S. The tip and sample are characterized by their electric

susceptibility tensors, χ̂T(r) and χ̂S(r), respectively, and Ĝ0(r, r
′) is the Green’s

tensor in free space satisfying the wave equation [110]

∇×∇× Ĝ0(r, r
′)− k20 Ĝ0(r, r

′) = Î δ(r− r′). (1.67)
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By introducing the operators:

T̂(r) = k20

∫
V ′
T

d3r′T Ĝ0(r, r
′
T) · χ̂T(r

′
T)·, (1.68)

and

Ŝ(r) = k20

∫
V ′
S

d3r′S Ĝ0(r, r
′
S) · χ̂S(r

′
S)·, (1.69)

the Lippmann-Schwinger equation can be written in simpler notation:

E(r) = Einc(r) + T̂(r)E(r′T) + Ŝ(r)E(r′S). (1.70)

In this compact expression, it is evident that the unknown variable in the

Lippmann-Schwinger equation is the electric field E(r), appearing at the left

and right sides of the equality in Eq. (1.70). In general, it is not possible to find

an analytical solution for E(r) and thus different methods need to be employed

in order to find a solution. One possible method is an iterative approach, i.e.,

substituting the expression ofE(r) into the terms on the right side of Eq. (1.70).

This approach provides valuable information of the scattered field produced by

the tip and the sample. For example, by examining the first two iterations and

appropriately reorganizing terms, it can be deduced that the electric field E(r)

can be calculated from the following expansion5:

E(r) = Einc(r) + T̂(r)Einc(r
′
T) + Ŝ(r)Einc(r

′
S)+

+ T̂(r)Ŝ(r′T)Einc(r
′
S) + Ŝ(r)T̂(r′S)Einc(r

′
T) + · · · (1.71)

This expansion can be interpreted as a series of multiple scattering events

between the tip and sample. This can be recognized by assuming that the tip

and the sample are two point-like electric dipoles with electric susceptibility

tensors χ̂T(r) = α̂Tδ(r − rT) and χ̂S(r) = α̂Sδ(r − rS), respectively. The two

point-like dipoles are located at positions rT, rS and they are characterized

by their electric polarizability tensors α̂T and α̂S. By illuminating the point-

like dipoles with a local electric field Eloc(r), the dipoles polarize and scatter

electric fields which can be obtained using the following expressions

ET(r) = k20 Ĝ0(r, rT) · pT, (1.72)

ES(r) = k20 Ĝ0(r, rS) · pS, (1.73)

where pT = α̂T · Eloc(rT) and pS = α̂S · Eloc(rS) are the dipole moments

induced by Eloc(r) at the tip and sample, respectively.

5Due to its similarity with the expansion obtained in quantum scattering theory, Eq. (1.71)
is sometimes referred to as the Born series.
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Under the assumption that the tip and sample are point-like electric dipoles,

the operators T̂(r) (Eq. (1.68)) and Ŝ(r) (Eq. (1.69)) can be rewritten as

T̂(r) = k20 Ĝ0(r, rT) · α̂T·, (1.74)

Ŝ(r) = k20 Ĝ0(r, rS) · α̂S · . (1.75)

Substituting the latter expressions into Eq. (1.71), one finds that the Born

series (Eq. (1.71), describing the multiple scattering events occurring between

the two point-like dipoles, is

E(r)−Einc(r) = k20 Ĝ0(r, rT) · α̂T ·Einc(rT) + k20 Ĝ0(r, rS) · α̂S ·Einc(rS)+

+ k20 Ĝ0(r, rT) · α̂T · k20 Ĝ0(rT, rS) · α̂S ·Einc(rS)+ (1.76)

+ k20 Ĝ0(r, rS) · α̂S · k20 Ĝ0(rS, rT) · α̂T ·Einc(rT) + · · ·

According to Eqs. (1.72) and (1.73), the first two terms on the right side of Eq.

(1.76) represent the electric fields scattered by the tip and the sample, both of

which are polarized by the incident field:

ET
BG(r) ≡ k20 Ĝ0(r, rT) · α̂T ·Einc(rT), (1.77)

ES
BG(r) ≡ k20 Ĝ0(r, rS) · α̂S ·Einc(rS). (1.78)

We label these fields as BG because they contribute to the background field,

EBG(r), as discussed in Fig. 1.13. In addition, using Eq. (1.78), the third term

in Eq. (1.76) can be rewritten as

ETS
NF(r) ≡ k20 Ĝ0(r, rT) · α̂T · k20 Ĝ0(rT, rS) · α̂S ·Einc(rS)

= k20 Ĝ0(r, rT) · α̂T ·ES
BG(rT). (1.79)

Upon examination of the latter expression, one realizes that the third term in

Eq. (1.76) represents the field scattered by the tip when it is polarized by the

near fields produced by the sample. Similarly, using Eq. (1.72), one can rewrite

the fourth term in Eq. (1.76) as

EST
NF(r) ≡ k20 Ĝ0(r, rS) · α̂S · k20 Ĝ0(rS, rT) · α̂T ·Einc(rT)

= k20 Ĝ0(r, rS) · α̂S ·ET
BG(rS), (1.80)

which represents the field scattered by the sample when it is polarized by the

near fields produced by the tip. These first four terms of the Born series of

the scattering process (Eq. (1.76)) are schematically illustrated in Fig. 1.14.
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Figure 1.14: Born series of the tip-sample interaction. Schematic representation of the first
four terms in the Born series given by Eq. (1.76). The incident illumination Einc polarizes
the tip and sample, inducing a dipole at (a) the tip (blue arrow) and (b) the sample (blue
arrow). Each dipole scatters fields given by ET

BG(r) (Eq. (1.77)) and ES
BG(r) (Eq. (1.78)).

(c) The near fields produced by the dipole induced at the sample (blue arrow) induce an
additional polarization at the tip that modifies its dipole moment (red arrow). Thus, the
tip scatters fields given by ETS

NF(r) (Eq. (1.79)). (d) The near fields produced by the dipole
induced at the tip (blue arrow) induce an additional polarization at the sample that modifies
its dipole moment (red arrow), and thus, the sample scatters fields give by EST

NF(r) (Eq.
(1.80)). The blue color of the box in panels (a) and (b) emphasizes that the scattered field
contributes to the background field, whereas the red color of the box in panels (c) and (d)
emphasizes that the scattered field is a result of the near-field tip-sample interaction.

From this analysis, one can expect that subsequent terms of the Born series

(indicated by the three dots in Eq. (1.76)) represent further scattering events

of the tip and sample, both being polarized by their near-fields. For example,

one of the subsequent terms in the Born series is

ETST
NF (r) ≡ k20 Ĝ0(r, rT) · α̂T · k20 Ĝ0(rT, rS) · α̂S · k20 Ĝ0(rS, rT) · α̂T ·Einc(rT)

= k20 Ĝ0(r, r1T) · α̂T ·EST
NF(rT), (1.81)

which represents the following scattering event: the incident field polarizes the

tip, causing a net dipole moment at the tip. This net dipole moment produced

near field that polarizes the sample, inducing a dipole moment at the sample,

whose near field polarize the tip again, changing the induced dipole moment

at the tip and thus changing the tip-scattered field.

Induced dipole moment and s-SNOM signal

When the scattering of the sample is much smaller than the scattering of the

tip, the term E(r) − Einc(r) in Eq. (1.76) is approximately equal to the tip-

scattered field Escat(r). Under this approximation, using Eqs. (1.77)-(1.81)

and substituting them into the Born series (Eq. (1.76)), one finds that the
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tip-scattered field can be expressed as follows

Escat(r) = k20 Ĝ0(r, rT) · [α̂T ·Einc(rT)︸ ︷︷ ︸
p0

+ α̂T ·ES
BG(rT) + α̂T ·EST

NF(rT) + · · ·︸ ︷︷ ︸
pNF

]

(1.82)

In this form, one can identify that the tip-scattered field arriving at the de-

tector in the far field, Escat, is proportional to the dipole moment p0 induced

by the incident illumination plus the dipole moment pNF induced by the near-

field interactions with the sample, i.e., Escat ∝ ptip = p0 + pNF. The latter

relationship provides a way to calculate the tip-scattered field and simulate the

detected signal in s-SNOM experiments. Indeed, by assuming tip modulation,

the dipole moment induced at the tip changes in time accordingly and, demod-

ulation of ptip(t) yields n
th-order demodulated scattered field ptip,n, which can

be associated with the experimental demodulated signal (Eqs. (1.65a)-(1.65b))

as:

sn ∝ |pNF,n| and, (1.83a)

φn ∝ arg(pNF,n). (1.83b)

In Appendix B.2, we provide a methodology based on the FEM to calculate

the dipole moment ptip = p0 + pNF induced at the conical tip and we provide

a procedure to demodulate ptip(t). These methodologies, together with the

concepts discussed in this section, will be used in Chapter 4 to investigate the

near-field spectroscopy of phononic nanoantennas.

1.5 Summary

In this chapter, we have presented a classical description of polaritons in metals

and polar crystals using Maxwell’s equations, and we have introduced two dif-

ferent techniques for probing polaritons. First, we revised Maxwell’s equation

in continuous media, as well as the constitutive relations and the Lorentz model

to describe dipolar excitations in matter. Second, we introduced the concept of

plasmons in metals and optical phonons in polar crystals in the context of the

optical properties of solids. We also analyzed the propagation and dispersion of

plasmons and phonon polaritons in bulk, semi-infinite surfaces, thin films, and
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spherical nanoparticles. We exemplified the role of optical anisotropy by ana-

lyzing the optical response of a uniaxial anisotropic film made of h-BN. Third,

we introduced the concepts of weak and strong light-matter interactions and

presented two models that allow us to quantify the coupling strength between

two coupled resonators. Finally, we discussed EELS and s-SNOM as two tech-

niques capable of probing polaritons in the near field. We briefly discussed

their working principles and provided some of the basic mathematical frame-

work necessary to understand and interpret the experimental results obtained

with both techniques. The concepts and mathematical derivations discussed

in this chapter are key to understanding the results presented in the following

chapters of this thesis.
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2
Probing hyperbolic phonon po-

laritons in h-BN with fast electron

beams

Great, this is what I wanted to see! The angle of the wake

is exactly the same as for the bulk polariton.

– Javier’s email (May 20, 2020)

Abstract

In this chapter, we theoretically describe how fast electrons couple to po-

laritonic modes in uniaxial materials by analyzing the EEL spectra. We show

that for a uniaxial medium with hyperbolic dispersion, bulk and surface modes

can be excited by a fast electron traveling through the volume or along an infi-

nite interface between the material and vacuum. Interestingly, and in contrast

to excitations in isotropic materials, we show that bulk modes can be excited

by fast electrons traveling outside the uniaxial medium. We demonstrate our

findings with the representative uniaxial material hexagonal boron nitride (h-

BN). We show that the excitation of bulk and surface phonon polariton modes

is strongly related to the electron velocity and highly dependent on the angle

between the electron beam trajectory and the optical axis of the material. The

results discussed in this chapter have been published in the following publica-

tion: C. Maciel-Escudero et al. “Probing and steering bulk and surface phonon

polaritons in uniaxial materials using fast electrons: Hexagonal boron nitride”,

Phys. Rev. B 102, 115431 (2020).

49

https://journals.aps.org/prb/abstract/10.1103/PhysRevB.102.115431


2. Probing hyperbolic phonon polaritons in h-BN

2.1 Introduction

Polar materials have become of high interest in the field of nanophotonics due to

their ability to support phonon polaritons. As discussed in the Chapter 1, these

are quasi–particles which result from the coupling between electromagnetic

waves and crystal lattice vibrations [3, 111] with a characteristic wavelength

lying in the mid–infrared region. They can enhance the electromagnetic field

deep below the diffraction limit with large quality factors compared to infrared

plasmons [4, 112, 113], making them promising building blocks for infrared

nanophotonics applications [66, 114–116].

An interesting two-dimensional (2D) polar material is hexagonal boron ni-

tride (h-BN) because of its high quality phonon polaritons and the easy prepa-

ration of the single atomic layers made by exfoliation [27, 30, 117–120]. Aside

from being widely used in heterostructures [121], h-BN is emerging by itself

as a versatile material offering novel optical and electro-optical functionalities.

The crystal layer structure that constitues h-BN, mediated via interlayer van

der Waals forces, produces a uniaxial optical response of the material which

provides a possibility to excite hyperbolic phonon polaritons.

Hyperbolic phonon polaritons excitable on h-BN within the range of

90meV − 200meV might be a key to many novel photonic technologies re-

lying on the nanoscale confinement of light and its manipulation. As a result,

efficient design and utilization of h-BN structures require spectroscopic stud-

ies with adequate spatial resolution. This can be provided, for instance, by

EELS using electrons as localized electromagnetic probes. Recently, instru-

mental improvements in EELS performed in a scanning transmission electron

microscope allowed for spatially mapping phonon polaritons [122] and also hy-

perbolic phonon polaritons in h-BN [123, 124]. The focused electron beam of

an electron microscope has thus become a suitable probe to access the spec-

tral information of low-energy excitations in technologically relevant materials,

with nanoscale spatial resolution. Thus, EEL spectra in phononic materials

can be of paramount importance to reveal the properties of phonon polariton

excitations.

In this chapter, we first discuss in Section 2.2 the dielectric properties of h-

BN. In Subsections 2.3.1-2.3.4, we show that a fast electron traveling through

volume h-BN in a trajectory parallel to the stacking direction (optical axis) of

the h-BN layers can excite volume (bulk) phonon polaritons inside and outside
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2.2. Dielectric properties of h-BN

the h-BN Reststrahlen bands. Our analysis reveals that the excitation of the

volume polariton modes is strongly dependent on the electron velocity and also

on the orientation between the electron beam trajectory and the h-BN optical

axis. We study in Subsection 2.3.5 the formation of wake patterns in the field

distribution induced by the electron beam at h-BN. The methodology imple-

mented here allows us to connect the excitation of these wake fields with the

different electron energy loss mechanisms experienced by the fast electron in

the medium: (i) excitation of phonon polaritons or (ii) Cherenkov radiation.

We also discuss in Subsection 2.3.6 the emergence of asymmetric wake patterns

exhibited by the induced electromagnetic field when the electron beam trajec-

tory sustains an angle relative to the h-BN optical axis. In Section 2.4 we show

that a fast electron beam interacting with a semi-infinite h-BN interface ex-

cite Dyakonov surface phonon polaritons within the h-BN upper Reststrahlen

band. Finally, we demonstrate in Section 2.5 that the probing electron travel-

ing above the h-BN in aloof trajectories excites volume phonon polaritons thus

allowing for remote activation of these type of polaritons.

2.2 Dielectric properties of h-BN

We first review the optical properties of h-BN that will be used in this chapter to

theoretically analyze the energy losses suffered by fast electrons traveling inside

the bulk of h-BN, or traveling in aloof trajectories above h-BN. As mentioned

in the introduction to this chapter, the atomic arrangement that constitutes h-

BN produces an anisotropic optical response of the material. This implies that

the dielectric function of h-BN need to be described by the following diagonal

tensor [117, 118]:

ε̂h-BN =

 ε⊥ 0 0

0 ε⊥ 0

0 0 ε∥

 , (2.1)

where we assumed that the stacking direction of the h-BN layers, defined as the

optical axis, is along the z-axis. Thus, εx = εy = ε⊥ is the in-plane component

of the tensor and εz = ε∥ is the out-of-plane component, parallel to the optical

axis of h-BN (see caption in Fig. 2.1a). Since h-BN is a polar crystal, one can

further assume that both diagonal components of the h-BN permittivity tensor
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2. Probing hyperbolic phonon polaritons in h-BN

Figure 2.1: Dielectric properties of h-BN. (a) Real parts of the components of the h-BN
dielectric function. The shaded red area marks the lower Reststrahlen band and the gray
area the upper Reststrahlen band. Inset illustrates the crystal lattice structure of h-BN.
Isofrequency surface for an energy in the (b) lower Reststrahlen band (hyperbolic Type I),
(c) upper Reststrahlen band (hyperbolic Type II) and (c) outside the Reststrahlen bands
(elliptic region). The isofrequency surfaces are obtained using Eq. (2.5) together with the
parameters presented in Table 2.1.

can be well described with Eq. (1.17) as (see ref. [117])

ε(ω) = ε∞

(
1 +

ω2
LO − ω2

TO

ω2
TO − ω2 − iωγpc

)
. (2.2)

The values used for each constant are presented in Table 2.1.

When Re(ε∥) · Re(ε⊥) < 0, phonon polaritons can propagate inside the ma-

terial. As we will show in the next section, bulk phonon polaritons in h-BN

exhibit a hyperbolic dispersion [114, 125], that is, the relationship between the

different components of the polariton wavevector k(ω) = (kx, ky, kz) traces a

surface in momentum space which corresponds to a hyperboloid. For h-BN,

one can find two energy bands (Reststrahlen bands) where one of the principal

components of the permittivity tensor is negative. Each Reststrahlen band

is defined by the energy region between the transverse and longitudinal op-

tical phonon energy, TO and LO, respectively (TO⊥ and LO⊥ for the upper

Reststrahlen band and TO∥ and LO∥ for the lower Reststrahlen band, see Fig.

2.1a).

Figure 2.1a depicts the in- and out-of-plane permittivities of h-BN, ε⊥ and

ε∥, respectively. The energy range in Fig. 2.1a shaded in red corresponds to

the lower Reststrahlen band (94.2meV − 102.3meV) where the real part of
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2.3. Excitation of IR bulk modes in h-BN

the out-of-plane permittivity is (Re(ε∥)) negative, leading to a isofrequency

surface in the form of a two-sheet hyperboloid (Type I), as shown in Fig.

2.1b. The energy region shaded in gray corresponds to the upper Reststrahlen

band (168.6meV − 200.1meV), where the real part of the in-plane permittiv-

ity (Re(ε⊥)) is negative and the isofrequency surface corresponds to a one-

sheet hyperboloid (Type II), as shown in Fig. 2.1c. On the other hand, when

Re(ε∥) ·Re(ε⊥) > 0, the isofrequency surfaces traced by the polariton wavevec-

tor in momentum space adopt the shape of an ellipsoid (see Fig. 2.1d). The

hyperbolic or elliptic geometrical shape of the isofrequency surface determines

the properties of propagation of the polaritonic waves in bulk h-BN, and also,

as we explore in the following sections, leads to different physical phenomena

as compared to a conventional isotropic material.

In-plane (ε⊥) Out-of-plane (ε∥)
ε∞ 4.90 2.95

ℏωTO 168.6 meV 94.2 meV
ℏωLO 200.1 meV 102.3 meV
ℏγpc 0.87 meV 0.25 meV

Table 2.1: Parameters of the components of permittivity tensor of h-BN. Parameters used
for the in-plane and out-of-plane permittivities of h-BN taken from ref. 27.

2.3 Excitation of IR bulk modes in h-BN

2.3.1 Bulk modes in h-BN

According to Maxwell’s equations in momentum-frequency (k, ω) space, the

dispersion relation for a wave propagating in the volume of an anisotropic

material can be found from the following equation [126, 127]:

det
[
Ĝ−1(k;ω)

]
= det

[
k⊗ k− k2 Î+ k20 ε̂

]
= 0, (2.3)

where Ĝ−1 is the inverse of the Green’s tensor, k(ω) = (kx, ky, kz) is the

wavevector of the wave, k0 = ω/c is the magnitude of the wavevector in

vacuum, c is the speed of light, det[x] stands for the determinant of a ma-
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2. Probing hyperbolic phonon polaritons in h-BN

trix, ⊗ is the tensor product, and Î is the identity tensor. Particularly, for a

uniaxial medium, the dielectric response can be described in tensor form as

ε̂(ω) = diag[ε⊥, ε⊥, ε∥]. In this case, two solutions (modes) arise from Eq.

(2.3), yielding the dispersion relation for ordinary waves:

k2 = k20ε⊥, (2.4)

and the dispersion relation for extraordinary waves:

k2x + k2y
ε∥

+
k2z
ε⊥

= k20. (2.5)

Equation (2.4) represents concentric spheres in k space for a given energy ℏω
(with ε⊥ > 0), while Eq. (2.5) represents hyperboloids or ellipsoids in the

reciprocal space depending on the sign of the permittivity components ε∥ and

ε⊥. Altogether the isofrequency surfaces of the polariton wavevector k(ω) in

momentum space (for a uniaxial medium) constitute the dispersion relation

of the phonon-polariton modes and, as observed in Eqs. (2.4) and (2.5), are

represented geometrically by spheres, ellipsoids or hyperboloids. Note that

these modes are independent of the exciting probe used. In Figs. 2.1b-d we

depict the isofrequency surfaces for h-BN for each energy region, inside and

outside the Reststrahlen bands. As we will show in the following subsections,

fast electron beams are effective probes capable of exciting the different phonon-

polariton modes sustained in h-BN.

2.3.2 Electron energy-loss probability in bulk h-BN

Fast electron beams can couple to bulk polaritonic modes sustained in

anisotropic media. We can observe this by analyzing the energy losses ex-

perienced by the probing electron when traveling in such media. As discussed

in Chapter 1, electron energy losses, ∆EEELS, can be calculated within classical

electrodynamics as

∆EEELS =
e

2π

∫
dtv ·

∫ ∞

−∞
dωEind(re;ω) e

−iωt (2.6)

=

∫ ∞

0

dω

∫ Le

0

dL ℏω Γ′(ω),
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2.3. Excitation of IR bulk modes in h-BN

where Le is the distance traveled by the fast electron, and, one identifies the

electron energy-loss (EEL) probability per unit length, Γ′(ω), as

Γ′(ω) =
e

πℏω
Re
[
v̂ ·Eind(re;ω) e

−iωL/v
]
, (2.7)

with v̂ the unit vector in the same direction as the electron velocity v, and

L = vt is the distance traveled by the fast electron in a period of time t. Hence,

to calculate Γ′(ω) one needs to know the induced electric field Eind(re;ω). We

derive below the expressions of the total electric field Etot(r;ω) and Γ′(ω) for

an electron beam trajectory inside h-BN parallel to its optical axis, as depicted

in Fig. 2.2.

Figure 2.2: Electron traveling through the bulk of h-BN. Schematics of the electron traveling
through h-BN with velocity v = vẑ parallel to the h-BN optical axis (z-direction). In the
side view, the red lines represent the single h-BN layers that are stacked along the z-axis. In
the isometric perspective, the red planes depict the h-BN layers.

It follows from Maxwell’s equations that the field produced by the fast elec-

tron plus the induced electric field, namely the total electric field (Etot(r;ω))

is given by

Etot(r;ω) = −i
ω

(2π)3c2ε0

∫
K3

d3k ρe(k;ω) Ĝ(k;ω) · v eik·r, (2.8)

with ε0 the vacuum permittivity and ρe(k;ω) = −2πeδ(ω − k · v) the charge

density of the probing electron with e the electron charge. The integration in

Eq. (2.8) extends over the whole reciprocal space K3 and the delta function in-

troduced by the charge density ensures conservation of energy and momentum.

Indeed, one finds that in the non-relativistic limit the energy that the electron

with initial velocity v transfers to the medium upon loosing momentum ℏk is

ℏω =
|pe + ℏk|2

2me
− |pe|2

2me
= ℏv · k+

ℏ2

2me
k2, (2.9)

with pe = mev the initial momentum of the fast electron and me the mass

of the electron. By neglecting recoil of the incident electron, from Eq. (2.9)
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2. Probing hyperbolic phonon polaritons in h-BN

one can obtain the so-called nonrecoil approximation where ω = k · v. Note

that the z-component of the wavevector is fixed by kz = ω/v when the electron

travels in the z-direction.

To calculate the energy loss probability in the bulk, Γ′
bulk(ω), experienced by

the fast electron in anisotropic medium, we substitute Eq. (2.8) into Eq. (2.7).

Notice that a fast electron traveling in vacuum loses no energy, thus we can use

Etot(r;ω) instead of Eind(r;ω) in Eq. (2.7). Using the cylindrical symmetry of

the field produced by the fast electron one finds that

Γ′
bulk(ω) =

∫ kc
⊥

0

dk⊥ Pbulk(k⊥;ω), (2.10)

where

Pbulk(k⊥;ω) = − 2e2k⊥v

(2π)3ℏc2ε0vz

∫ 2π

0

dϕ Im
[
v̂ · Ĝkz · v̂

]
, (2.11)

is the probability for the electron to transfer a transverse momentum ℏk⊥ (to

the electron trajectory) upon losing energy ℏω. We will refer to this quantity as

momentum-resolved energy loss probability. In Eq. (2.11) Ĝkz
= Ĝ(k⊥, ϕ, kz =

ω/vz−k⊥ ·v/vz), and ϕ is the angle between k⊥ and the kx-axis, with ℏkc⊥ the

maximum value of the modulus of perpendicular momentum of the electrons

selected by the collection aperture of the EELS spectrometer. Particularly,

when the electron beam trajectory points out in the same direction as the

h-BN optical axis (v = vẑ), expressions for Etot(r;ω) and thus for Γ′
bulk(ω)

can be found in a closed form (see the box in the next page for the analytical

formula of the Green’s tensor in uniaxial anisotropic media):

Etot(r;ω) =
e

2πε0

ω

v2γLε⊥
g(r;ω), (2.12)

where γL = 1/
√
1− v2ε⊥/c2 is the Lorentz factor and

g(r;ω) = eiωz/v

[
i

γL
K0

(√
ε∥

ε⊥

|ω|
γLv

R

)
ẑ

− sgn(ω)

√
ε∥

ε⊥
K1

(√
ε∥

ε⊥

|ω|
γLv

R

)
R̂

]
, (2.13)

is written in cylindrical coordinates r = (R, z) = (x, y, z), R =
√

x2 + y2,

K0(x), K1(x) are the zero and first order modified Bessel functions of the

second kind and sgn stands for the sign function.
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2.3. Excitation of IR bulk modes in h-BN

Green’s tensor decomposition in a uniaxial medium

The Green’s tensor satisfying the wave equation [34, 128–130]

∇2Ĝ(r;ω) + k20 ε̂ Ĝ(r;ω)−∇[∇ · Ĝ(r;ω)] = Î δ(r), (2.14)

can be expressed in (k, ω) space as follows

Ĝ(k;ω) =
[
k⊗ k− k2 Î+ k20 ε̂

]−1

. (2.15)

From Eq. (2.15) one can deduce that the inverse of the Green’s tensor

for a uniaxial medium can be decomposed in the form Ĝ−1 = (k20ε⊥ −
k2) Î + k ⊗ k + k20(ε∥ − ε⊥) ẑ ⊗ ẑ where ε⊥ = εx = εy and ε∥ = εz.

This tensor decomposition allows us to find the following expression for

Ĝ(k;ω) [126, 127]:

Ĝ(k;ω) =
1

k20ε∥ε⊥ − k · ε̂ · k

[
ε∥Î− (ε∥ − ε⊥)ẑ⊗ ẑ (2.16)

−k⊗ k

k20
+

ε∥ − ε⊥

k20ε⊥ − k2
(k× ẑ)⊗ (k× ẑ)

]
,

where we used that the inverse of the Green’s tensor can be obtained

as Ĝ−1 = adj[Ĝ]/det[Ĝ], with adj[Ĝ] the adjoint of Ĝ.

The momentum-resolved energy loss probability becomes

Pbulk(k⊥;ω) = − 2e2

(2π)2ω2ℏε0
Im

{[
k20ε⊥ − ω2

v2

]
× k⊥
ε∥[ε⊥k

2
0 − ω2/v2]− ε⊥k2⊥

}
, (2.17)

and, substituting Eq. (2.17) into Eq. (2.10), one finds that

Γ′
bulk(ω) =

e2

(2π)2ω2ℏε0
Im

{[
k20 −

ω2

ε⊥v2

]
× ln

[
ε∥ε⊥k

2
0 − ε∥ω

2/v2 − ε⊥(k
c
⊥)

2

ε∥ε⊥k
2
0 − ε∥ω2/v2

]}
. (2.18)

The non-retarded versions of Pbulk(k⊥;ω) and Γ′
bulk(ω) can be obtained by

setting k0 equal to zero in Eqs. (2.17) and (2.18).

The spectrum of the momentum-resolved energy loss probability and the
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2. Probing hyperbolic phonon polaritons in h-BN

EEL probability provide valuable information which reveals the properties of

the modes of the anisotropic material. We thus explore in the following the

connection between the dispersion relation of the h-BN excitations in the upper

Reststrahlen band with these two quantities.

2.3.3 Excitation in the upper Reststrahlen band

In the following we address the electron energy losses in h-BN and the con-

nection of these losses with the isofrequency surfaces of the material. We first

show in Fig. 2.3a the isofrequency curve of a h-BN phonon polariton for an

energy in the upper Reststrahlen band (red curve). We chose 195meV as a

representative value of this band. When a fast electron beam is used to probe

these excitations in the medium, the velocity of the electron determines the

momentum transfer, as k · v = ω (Eq. (2.9) in the nonrecoil approximation).

If the electron is traveling along the z-direction, then kz = ω/v (blue horizon-

tal line in Fig. 2.3a). Following Eq. (2.5), this also sets the value of the ℏk⊥
momentum component (k2⊥ = ε∥k

2
0−ε∥k

2
z/ε⊥) of the excited phonon polariton.

The intersections between kz = ω/v and the isofrequency curves in the upper

Reststrahlen band establish a relationship between the energy ℏω of the hy-

perbolic phonon polariton and its perpendicular momentum component ℏk⊥.
In the left panel of Fig. 2.3b we plot this relationship (blue dashed line) and

the momentum-resolved energy loss probability Pbulk(k⊥;ω) (light blue-yellow

contour plot) for v = 0.1c. We note that the highest values of Pbulk(k⊥;ω)

coincide with the blue dashed line and its asymptotic behavior approaches the

LO⊥ phonon energy for large k⊥. This demonstrates that electron energy losses

in the upper band are due to phonon polariton excitations. We confirm this by

integrating Pbulk(k⊥;ω) over k⊥ up to a cutoff momentum ℏkc⊥, which yields

the EEL probability Γ′
bulk(ω) (right panel of Fig. 2.3b). A clear peak can be

observed at the longitudinal optical phonon. This energy loss peak is slightly

asymmetric with a broader tail inside the Reststrahlen band compared to that

outside the band. Importantly, at energies above the LO⊥ phonon energy no

losses are found. This can be understood with the help of the isofrecuency

curves in Fig. 2.3a. For instance, at energy 205meV (black dashed line, above

the upper Reststrahlen band) the ellipse does not intersect the blue horizontal

line and therefore there is no excitation above the upper band. For energies

below the TO⊥ phonon energy, the ellipses may intersect or not the blue hori-

zontal line of kz depending on the particular energy. For instance, at an energy

of 160meV (green dashed line, below the upper Reststrahlen band in Fig. 2.3a)

the ellipse does not cut kz = ω/(0.1c) and therefore there is no excitation in-
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2.3. Excitation of IR bulk modes in h-BN

Figure 2.3: Excitation of hyperbolic PhPs in the Upper Restrahlen band. (a) Isofrequency
curves for energies inside (195meV, red solid line) and outside (160meV and 205meV, green
and black dashed lines) the upper Reststrahlen band plotted for the wavevector kz ver-

sus k⊥ =
√

k2x + k2y . The horizontal blue line represents the momentum ℏkz = ℏω/(0.1c)
transferred by the fast electron to the polaritons when it travels along the z-direction with
v = 0.1c. The blue line is evaluated at energy 195meV (caption at the top right of the figure).
The contour plot (left panel) in (b) shows the momentum-resolved energy loss probability
Pbulk(k⊥;ω) normalized to the maximum value (3 a.u.) for v = 0.1c. The right panel in (b)
shows the energy loss probability Γ′

bulk(ω) obtained by integrating Pbulk(k⊥;ω) over k⊥ up

to kc⊥ = 0.05 Å
−1

. LO⊥ and TO⊥ label the position of the energy of the LO⊥ and TO⊥
phonon energies, respectively.

duced in that case. However, for other energies the isofrequency surfaces can

cut the kz line, and therefore an anisotropic dielectric mode can be excited (tail

below 170meV in Fig. 2.3b). We learn from this analysis that the excitation

of the phonon polariton modes close to the upper Reststrahlen band is highly

dependent on the topology (hyperbolic or elliptic) of the isofrequency surfaces.

The dependency of phonon polariton excitation on the isofrequency surface

allows to control the polaritonic modes as we discuss now in Fig. 2.4b, where we

show the real part of the z-component of the total electric field at ℏω = 195meV

(representing the energy within the hyperbolic dispersion regime in the upper

Reststrahlen band), induced by a fast electron with velocity v = 0.1c. A

schematic representation of such electron beam trajectory is displayed in the

inset of Fig. 2.4b. We observe two important features: the formation of a wake

pattern and an oscillatory behavior of the field in the z-direction. This spatial

periodicity is connected with the parallel momentum component (ℏkz = ℏω/v)
transferred by the electron since the observed wavelength along the z-axis is

59



2. Probing hyperbolic phonon polaritons in h-BN

Figure 2.4: Propagation of hyperbolic PhPs in the Upper Restrahlen band. (a) Isofrequency
curve for the energy 195meV (red solid line, same isofrequency curve as in Fig. 2.3a). The
black arrows represent the polariton wavevector k(ω), θk is the angle between k(ω) and
the kz-axis, the magenta arrows represent the group velocity vg and the orange arrows the
Poynting vector S. The contour plot in panel (b) depicts the real part of the z-component of
the total electric field induced by the fast electron along the cylindrical coordinates (R, z) for
an energy of 195meV. The field plot is normalized to the maximum value 1× 10−5 a.u. The
black arrow in panel (b) represents the phase velocity vp (parallel to k(ω)), and θw is the
angle between the wake patterns and electron beam trajectory. The inset in (b) illustrates
the electron beam trajectory and orientation of the h-BN crystal planes.

λz = 2π/kz. This implies that the wavelength λz decreases with increasing

energy of the phonon polariton. Furthermore, the direction of the wake pattern

is governed by the polariton phase velocity (vp parallel to k(ω), black arrow).

The outward direction (relative to the electron beam trajectory) of the wave-

fronts is determined by the sign of the radial component of vp relative to the

radial component of the energy flow (given by the Poynting vector S = E×H

parallel to the group velocity vg = ∇kω [69, 131–134], magenta arrow). We

recognize in Fig. 2.4a that the group and the phase velocities are nearly per-

pendicular, and their projection onto the radial axis are parallel, leading to a

wave propagating away from the electron beam trajectory (positive phase and

positive group velocity with respect to the energy propagation direction). It

is worth noting that the projection of the group and the phase velocities onto

the beam trajectory direction (z-direction) leads to negative phase and positive

group velocities relative to Sz (Fig. 2.4b).
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Changing the velocity of the electron

As pointed out, for each energy ℏω, the velocity of the fast electron determines

(primarily) the polariton wavevector parallel to the beam trajectory, kz, and

consequently the perpendicular wavevector k⊥ (according to Eq. (2.5)). To

emphasize the velocity dependency, we perform the same analysis (Fig. 2.5a-

b) as in Fig. 2.3a-b but increasing the electron velocity to v = 0.5c. In Fig. 2.5a

a zoom into the isofrequency curve of Fig. 2.3a is presented, together with the

value kz (horizontal blue line) determined by the electron velocity v = 0.5c. The

increase of the electron velocity leads to the excitation of 195meV polaritons

with reduced momentum (determined by the intersection of the blue horizontal

line and the red isofrequency curve). By calculating the momentum-resolved

energy loss probability Pbulk(k⊥;ω) (left panel of Fig. 2.5b) and the EEL

probability Γ′
bulk(ω) (right panel of Fig 2.5b) we find the same behavior as in

Fig. 2.3b for v = 0.1c, except for a one order of magnitude reduction in both

k⊥ and the magnitude of the energy loss probability.

The differences in the properties of the phonon polaritons launched by the

fast electron at both electron velocities are distinguishable in Figs. 2.5d, where

we show the real part of the z-component of the total electric field induced by

the fast electron with v = 0.5c at energy 195meV. The spatial period λz of

the polariton is longer compared to that in Fig. 2.4b as a result of the increase

in the electron velocity (smaller ℏkz transferred). The direction of the wake

field is quite similar to that of panel 2.4b. This behavior is a specific feature of

hyperbolic polaritons since the intersection of the blue line both for v = 0.1c

and v = 0.5c occur at the asymptote of the hyperbola (compare Figs. 2.4a and

2.5c) which results in polariton wavevectors that have very similar propagation

direction but different absolute values.
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2. Probing hyperbolic phonon polaritons in h-BN

Figure 2.5: Excitation and propagation of hyperbolic PhPs in the Upper Restrahlen band
for an electron traveling with velocity v = 0.5c. Panel (a) shows a zoom into Fig. 2.3a.
The horizontal blue line represents the momentum ℏkz = ℏω/(0.5c) transferred by the fast
electron to the polaritons when it travels along the z-direction with v = 0.5c. The blue line
is evaluated at energy 195meV (caption at the top right of the figure). The contour plot (left
panel) in (b) shows the momentum-resolved energy loss probability Pbulk(k⊥;ω) normalized
to the maximum value (3 a.u.) for v = 0.5c. The right panel in (b) shows the energy loss

probability Γ′
bulk(ω) obtained by integrating Pbulk(k⊥;ω) over k⊥ up to kc⊥ = 0.05 Å

−1
.

LO⊥ and TO⊥ label the position of the energy of the LO⊥ and TO⊥ phonon energies,
respectively. Panel (c) shows a zoom into Fig. 2.4a. The contour plot in panel (d) depicts
the real part of the z-component of the total electric field induced by the fast electron along
the cylindrical coordinates (R, z) for an energy of 195meV. The field plot is normalized to
the maximum value 7.5×10−7 a.u. The black arrow represents the phase velocity vp (parallel
to k(ω)), and θw is the angle between the wake patterns and electron beam trajectory.
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2.3. Excitation of IR bulk modes in h-BN

2.3.4 Excitation in the lower Reststrahlen band

In Fig. 2.6a we show the isofrequency curve of h-BN phonon polaritons for

an energy in the lower Reststrahlen band (red line). Note that the hyperbolas

are rotated by 90◦ as compared to the upper Reststrahlen band (see Fig. 2.3a

and 2.6a). However, the momentum ℏkz transferred by the fast electron to

the phonon polaritons is still given by the crossing of the hyperbolas with the

horizontal blue line (representing kz = ω/v for v = 0.1c in Fig. 2.6a). From Eq.

(2.5) we obtain the polariton perpendicular momentum ℏk⊥, which is shown

in the left panel of Fig. 2.6b as a function of energy ℏω (dashed blue curve).

We also plot the momentum-resolved energy loss probability Pbulk(k⊥;ω) for

energies within the lower Reststrahlen band. Notice that the highest values of

Pbulk(k⊥;ω) (red and yellow colors in the contour plot) coincide perfectly with

the blue dashed curve, demonstrating that the electron energy losses in the

lower band are also governed by polariton excitations. However, in contrast

to the upper band, we find that the dashed blue curve has a negative slope,

dω/dk⊥ < 0, indicating that the group and the phase velocities are antiparallel

(have opposite sign) along the radial direction. We will show below with the

information of the total field distribution in Fig. 2.8b that the phase velocity

in the radial direction is indeed antiparallel (negative) relative to the Poynting

vector (energy flow) while the group velocity in the radial direction is parallel

(positive), which is a consequence of the phase and group velocity vectors being

perpendicular to each other and rotated by 90◦ degrees as compared to their

configuration in the upper Reststrahlen band.

To obtain spectroscopic information on the excitations in the lower Rest-

strahlen band, we calculate the EEL probability Γ′
bulk(ω) by integration of

Pbulk(k⊥;ω) in momentum space (right panel in Fig. 2.6b). Contrary to the

case in the upper Reststrahlen band, we observe a uniform and relatively small

loss probability between the TO∥ and LO∥ phonon energies without the appear-

ance of a sharp peak around the LO∥ phonon energy. We explain this finding

by (i) the large cutoff momenta (ℏkc⊥) imposed by the aperture of the micro-

scope detector and (ii) the relationship between the energy and the transverse

momentum of the polaritons in the lower band (see Fig. 2.6b left panel). In-

deed, we observe in Fig. 2.6b that the asymptotic behavior of the blue dashed

line tends to the TO∥ phonon energy for large k⊥. This shows that low energy

hyperbolic phonon polaritons, close to TO∥, largely contribute to the energy

losses for large kc⊥ values. Contrary to the case in the upper band, where the

high momenta contribution to the electron energy losses comes from polaritons

with high energy, close to the LO⊥ phonon energy (Fig. 2.3b, left panel).
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2. Probing hyperbolic phonon polaritons in h-BN

Figure 2.6: Excitation of hyperbolic PhPs in the Lower Restrahlen band. (a) Isofrequency
curves for energies inside (100meV, red solid line) and outside (92.5meV and 105meV,
green and black dashed lines) the lower Reststrahlen band plotted for the wavevector kz

against k⊥ =
√

k2x + k2y . The horizontal blue line represents the momentum ℏkz = ℏω/(0.1c)
transferred by the fast electron to the polaritons when it travels along the z-direction with
velocity 0.1c. The blue line is evaluated at energy 100meV. The contour plot (left panel)
in (b) shows the momentum-resolved energy loss probability Pbulk(k⊥;ω) normalized to the
maximum value (3 a.u) for v = 0.1c. The right panel in (b) shows the energy loss probability

Γ′
bulk(ω) obtained by integrating Pbulk(k⊥;ω) over k⊥ up to kc⊥ = 0.05 Å

−1
. LO∥ and TO∥

label the position of the energy of the LO∥ and TO∥ phonon energies, respectively.

To better understand the loss probability in the lower Reststrahlen band as

a function of the cutoff momenta ℏkc⊥, we show in Figs. 2.7a-d the EEL prob-

ability (Γ′
bulk(ω), given by Eq. (2.18)) in the vicinity of the lower Reststrahlen

band for different cutoff values kc⊥: (a) 1 × 10−2 Å
−1

, (b) 1 × 10−3 Å
−1

, (c)

1×10−4 Å
−1

and (d) 1×10−5 Å
−1

. For the calculation of Γ′
bulk(ω) we consider

v = 0.1c. One can observe that for small cutoff momentum the EEL probability

at the LO∥ phonon energy is better defined, whereas for large cutoff momenta

the sharp peak in Fig. 2.7 broadens. However, cutoff values of 1× 10−4 Å
−4

or

×10−4 Å
−5

are not experimentally feasible, and thus the identification of the

LO∥ phonon in EELS would be difficult in this configuration.

The excitation of phonon polaritons (within the lower Reststrahlen band) by

the probing electron can be observed in Fig. 2.8b, where we show the real part

of the z-component of the total electric field induced at energy ℏω = 100meV.

Analogously to the upper band, the oscillatory behavior of the field distribution

along the z-direction is governed by the transferred momentum ℏkz. Interest-
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2.3. Excitation of IR bulk modes in h-BN

Figure 2.7: Electron energy-loss probability for different cutoff momenta ℏkc⊥. Electron
energy loss probability, Γ′

bulk(ω), for energies around the lower Reststrahlen band for four

different kc⊥: (a) 1× 10−2 Å
−1

, (b) 1× 10−3 Å
−1

, (c) 1× 10−4 Å
−1

and (d) 1× 10−5 Å
−1

.
The electron travels through h-BN parallel to the optical axis with velocity v = 0.1c.

ingly, the wake pattern is reversed compared to that in the upper Reststrahlen

band (compare Figs. 2.4b and 2.8b), i.e., the wavefronts are propagating to-

ward the electron beam [132, 135, 136]. By plotting the group and phase

velocity vectors onto the field plots (magenta and black arrows, respectively;

also plotted in Fig. 2.8a), we can clearly recognize that the projections of both

vectors onto the radial axis (perpendicular to the electron beam trajectory) are

antiparallel. This leads to a negative phase and positive group velocity relative

to the Poynting vector direction (which points always away from the electron

beam to preserve causality) along the radial axis. The negative phase velocity

in the radial direction is a direct result of the phase velocity vector being nearly

perpendicular to the Poynting vector, both being rotated by 90◦ as compared

to the upper Reststrahlen band (where both phase and group velocities are

positive relative to energy propagation in the radial direction, see Figs. 2.4b

and 2.5d).
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Figure 2.8: Propagation of hyperbolic PhPs in the Lower Restrahlen band. (a) Isofrequency
curve for energy 100meV (red solid line, same isofrequency curve as in Fig. 2.6a). The
black arrows represent the polariton wavevector k(ω), θk is the angle between k(ω) and
the kz-axis, the magenta arrows represent the group velocity vg and the orange arrows the
Poynting vector S. The contour plot in panel (b) depicts the real part of the z-component of
the total electric field induced by the fast electron along the cylindrical coordinates (R, z) for
an energy of 100meV. The field plot is normalized to the maximum value 1× 10−6 a.u. The
black arrow represents the phase velocity vp (parallel to k(ω)), and θw is the angle between
the wake patterns and electron beam trajectory. The inset in (b) illustrates the electron
beam trajectory and orientation of the h-BN crystal planes.

Changing the velocity of the electron

When the velocity of the electron is increased up to 50% the speed of light, the

kz component of the wavevector parallel to the beam trajectory is reduced. In

this case, the matching between the red hyperbola and the horizontal blue line

is prevented as observed in Fig. 2.9a. This mismatch of energy and momentum

forbids the excitation of hyperbolic phonon polaritons. However, the blue line

intersects the elliptical isofrequency surface of anisotropic bulk phonon polari-

tons (dielectric) above and below the lower Reststrahlen band (black and green

dashed curves calculated for 105meV and 92.5meV, respectively). The match-

ing of energy and momentum at the intersections of the elliptical isofrequency

surfaces leads to the excitation of the dielectric modes, as demonstrated by

calculating the momentum-resolved energy loss probability Pbulk(k⊥;ω) (left

panel of Fig. 2.9b).
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2.3. Excitation of IR bulk modes in h-BN

Figure 2.9: Excitation and propagation of hyperbolic PhPs in the Lower Restrahlen band
for an electron traveling with velocity v = 0.5c. Panel (a) shows a zoom into Fig. 2.6a.
The horizontal blue line represents the momentum ℏkz = ℏω/(0.5c) transferred by the fast
electron to the polaritons when it travels along the z-direction with v = 0.5c. The blue line is
evaluated at energy 92.5meV (caption at the bottom left of the figure). The contour plot (left
panel) in (b) shows the momentum-resolved energy loss probability Pbulk(k⊥;ω) normalized
to the maximum value (2.5 a.u.) for v = 0.5c. The right panel in (b) shows the energy loss

probability Γ′
bulk(ω) obtained by integrating Pbulk(k⊥;ω) over k⊥ up to kc⊥ = 0.05 Å

−1
. LO∥

and TO∥ label the position of the energy of the LO∥ and TO∥ phonon energies, respectively.
Panel (c) shows a zoom into Fig. 2.8a with the blue line evaluated at an energy of 92.5meV.
The contour plot in panel (d) depicts the real part of the z-component of the total electric
field induced by the fast electron along the cylindrical coordinates (R, z) for the energies:
92.5meV (labeled as 1), 100meV (labeled as 2) and 105meV (labeled as 3). The field plots
are normalized to the maximum value 7.5× 10−8 a.u. The black arrow represents the phase
velocity vp (parallel to k(ω)), and θw is the angle between the wake patterns and electron
beam trajectory. The inset in (d) illustrates the electron beam trajectory.
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This energy loss probability is determined by the relationship between the

energy of the elliptical polaritons and the perpendicular momentum component

(dashed blue lines, showing ω(k⊥) of the elliptical polaritons). The integration

of Pbulk(k⊥;ω) in the reciprocal space subsequently yields small energy loss

probabilities outside the Reststrahlen band, whereas inside the Reststrahlen

band the loss probability is negligible due to absence of polariton excitations.

In Fig. 2.9d we show the z-component of the total electric field induced by

the electron beam for energies inside (marked 2) and outside (marked 1 and 3)

the lower Reststrahlen band. We can observe the formation of wake patterns

only for those energies where the dielectric modes are excited (marked as 1 and

3). Importantly, the wake wavefronts propagate outward the beam trajectory

as a consequence of the group (vg) and phase velocities (vp parallel to k(ω))

being parallel (positive) relative to the Poyting vector in the radial direction

(Figs. 2.9c and 2.9d). We can also notice that the projection of these velocity

vectors onto the z-direction is positive. This demonstrates that the radial and

z projections of vp and vg for elliptical polaritons are positive, contrary to the

hyperbolic regime (Reststrahlen bands) where one of the components of either

vp or vg, is negative (Figs. 2.4b, 2.5d and 2.8b).

2.3.5 Induced wake patterns and Cherenkov radiation

We have shown in Subsections 2.3.3 (Figs. 2.4b and 2.5d) and 2.3.4 (Figs.

2.8b and 2.9d) that the field distributions produced by a fast electron traveling

through h-BN can exhibit wake patterns. The excitation of these patterns (for

energies inside and outside the Reststrahlen bands) is connected to the different

mechanisms of energy losses experienced by the fast electron in the h-BN. In

the following we discuss this connection.

First, it is worth noting that the excitation of the wake fields inside the Rest-

strahlen bands occurs in cases where electron energy losses appear (compare

Fig. 2.8b with the image in Fig. 2.9d labeled as 2). As we pointed out, the

electron energy losses within the Reststrahlen bands correspond to the exci-

tation of hyperbolic phonon polaritons. This implies that the wake fields are

associated with the excitation of coherent-charge density fluctuations [136–141]

in the h-BN, namely, phonon polaritons.

In contrast to the wake fields inside the Reststrahlen bands, the emergence of

the wake patterns outside the bands (see Fig. 2.9d, images labeled as 1 and 3)

occur due to a different physical process as compared to that of the excitation

of hyperbolic phonon polaritons. Outside the Reststrahlen bands the h-BN

permittivity is purely dielectric and thus the electron energy losses correspond
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to the radiation emitted by the electron when it passes through the medium

with velocity larger than the speed of light (in the h-BN). This mechanism is

known as Vavilov-Cherenkov radiation (see Chapter 1). We have confirmed

that the losses in this energy range are present even in the absence of damping

in the material (not shown), confirming that the losses are due to Cherenkov

radiation in this case. This only happens for electron velocities which fulfill

v >
c

√
ε⊥

, (2.19)

being consistent with the condition for excitation of Cherenkov radiation [142,

143].

Finally, one can also note that the excitation of the wake fields in the lower

Reststrahlen band depends on the electron velocity (compare Figs. 2.8b and

2.9d label 2). Indeed, for energies in the lower band one can deduce from Eqs.

(2.12)-(2.13) that the wake patterns appear under the following condition:

ε∥

ε⊥
<

v2

c2
ε∥ or equivalently v <

c
√
ε⊥

, (2.20)

where only the real part of the dielectric function is considered. Interestingly,

one can observe that the velocity of the fast electron fulfills different condi-

tions for the appearance of wake patterns in different energy ranges (compare

Eqs. (2.19) and (2.20)). This difference is a direct consequence of the distinct

physical processes in the excitation of the wake fields.

The different nature of the excitation of the wake fields outside and inside

the Reststrahlen bands is also reflected in the angle θw = 90◦−θk that the wake

patterns sustain with respect to the electron beam trajectory. An analysis of

this angle and its relationship with the electron beam trajectory is discussed

in the following subsection.

2.3.6 Tilted electron beam trajectory

When the electron travels at an angle α relative to the h-BN optical axis (illus-

trated in Fig. 2.10), the condition for the conservation of energy and momen-

tum given by Eq. (2.9) in the nonrecoil approximation (k·v = kyvy+kzvz = ω)

is represented by an inclined plane in momentum space. The magnitude of the

momentum transferred by the electron to the phonon polaritons (along the

beam trajectory given by v̂) is still given by ℏkv̂ = ℏω/v and the polariton

wavevector can be obtained from the intersection between the plane k · v = ω

and the isofrequency surfaces.
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Figure 2.10: Electron traveling at an angle α relative to the h-BN optical axis. Schematics
of the electron traveling through h-BN with velocity v = v(0, sinα, cosα) at an angle α with
respect to the optical (z)-axis of h-BN.

In Fig. 2.11 we show the intersection between the h-BN isofrequency hyper-

boloids (red surfaces, Figs. 2.11a and 2.11c) and the plane k·v = ω determined

by the electron beam trajectory (blue surfaces, Figs. 2.11a and 2.11c). Notice

that the direction of the electron beam trajectory is orthogonal to the blue

plane k · v = ω. We analyze an electron beam with velocity v = 0.1c and a

trajectory angle of α = 20◦. Finally we chose two representative energies, one

in the upper Reststrahlen band at 180meV (Fig. 2.11a) and the other one in

the lower Reststrahlen band at 100meV (Fig. 2.11c). The gray 2D plots in

Figs. 2.11b and 2.11d show the intersection between the red hyperboloid and

the blue plane along four different directions determined by the the azimuthal

angle of the symmetry axis ϕ: 0◦, 60◦, 90◦ and 150◦. In the 2D projections

the blue dashed lines depict the electron beam trajectory, as viewed from the

direction determined by ϕ. The polariton wavevector along each particular

direction can be obtained from the intersection between the blue lines and the

red hyperbolas. Interestingly, we observe that the intersections are not cylin-

drically symmetric with respect to the z-axis (Figs. 2.11b and 2.11d). This

implies that the polaritonic wave will propagate asymmetrically with respect

to the electron beam trajectory. Indeed, depending on the direction of prop-

agation, the intersection between the blue planes and the red hyperboloids in

Figs. 2.11a and 2.11c will occur at wavevectors whose z-component can be the

same (symmetrical case) or different (asymmetrical case). In the following, we

analyze in detail these cases.

The propagation of the polaritonic wave is governed by its phase velocity and

thus, by the polariton wavevector k(ω) = (kx, ky, kz) which fulfills Eq. (2.5).

When the hyperbolic phonon polaritons are excited by an electron beam, the

components of k(ω) also need to fulfill Eq. (2.9), that is, the components of
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k(ω) can be obtained from the following two expressions

k2x + k2y
ε∥

+
k2z
ε⊥

= k20, (2.21a)

ky sinα+ kz cosα = ω/v, (2.21b)

where we assume that the electron velocity is v = v(0, sinα, cosα). Moreover,

if we decompose k(ω) in cylindrical coordinates as k(ω) = (q cosϕ, q sinϕ, kz),

and substitute it into Eqs. (2.21a) and (2.21b), we obtain the following system

of equations

q2

ε∥
+

k2z
ε⊥

= k20, (2.22a)

q sinϕ sinα+ kz cosα = ω/v, (2.22b)

for q, ϕ and kz. Notice that the variable q corresponds to k⊥ for trajectories

parallel to the h-BN optical axis. However, for the oblique trajectory ℏq =

(ℏkx, ℏky) is no longer orthogonal to the beam trajectory and thus we avoid

referring to it as the transverse momentum. One can deduce that the solutions

from Eqs. (2.22a) and (2.22b) will show cylindrical symmetry (symmetric with

respect to the kz-axis) when α = 0◦.

For cases where α ̸= 0◦, this symmetry is broken and the solutions depend on

the azimuthal angle ϕ. This dependency is shown in the 2D projections of the

relevant curves in Figs. 2.11b and 2.11d, where one recognizes the following:

1. The intersection between the blue line and the red hyperbola is asymmet-

ric with respect to the kz-axis for ϕ ∈ (0◦, 180◦), as we observe in Figs.

2.11b and 2.11d for ϕ = 60◦, 90◦, 150◦.

2. The direction of largest asymmetry occurs at ϕ = 90◦ (kykz-plane) and

the direction of symmetric propagation occurs at ϕ = 0◦ (kxkz-plane).

3. The intersections between the blue lines and the red hyperbolas are also

asymmetric (or symmetric) with respect to the electron beam trajectory

(blue dashed line).
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Figure 2.11: Intersection between the isofrequency surfaces of the PhPs dispersion and the
plane k · v = ω. (a) Isofrequency surface (red hyperboloid) for a representative energy in
the upper Reststrahlen band of 180meV. The blue inclined plane depicts Eq. (2.9) for an
electron beam with v = 0.1c and trajectory angle of α = 20◦. The gray plane represents the
different directions set by the azimuthal angle ϕ. The 2D plots in (b) show the intersection
between the red hyperboloid and the blue plane in four different directions determined by ϕ:
0◦, 60◦, 90◦ and 150◦. The blue dashed lines in the 2D projections depict the trajectory of
the electron beam, as viewed along each direction determined by the angle ϕ. (c) and (d)
are the same as (a) and (b) but for a representative energy in the lower Reststrahlen band
of 100meV.

To better understand the asymmetries in the propagation of the polaritonic

waves, we focus on the direction of largest asymmetry: ϕ = 90◦ (equivalently
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the kykz-plane). From Eqs. (2.21a) and (2.21b) one can obtain the following

two solutions for the polariton wavevector in the kykz-plane:

k(1) =
ω

v

[
ε∥ sinα+

√
ε∥ε⊥∆cosα

ε⊥ cos2 α+ ε∥ sin
2 α

]
ŷ (2.23a)

+
ω

v

[
ε⊥ cosα−

√
ε∥ε⊥∆sinα

ε⊥ cos2 α+ ε∥ sin
2 α

]
ẑ,

k(2) =
ω

v

[
ε∥ sinα−

√
ε∥ε⊥∆cosα

ε⊥ cos2 α+ ε∥ sin
2 α

]
ŷ (2.23b)

+
ω

v

[
ε⊥ cosα+

√
ε∥ε⊥∆sinα

ε⊥ cos2 α+ ε∥ sin
2 α

]
ẑ.

with

∆ =
(v
c
cosα

)2
ε⊥ +

(v
c
sinα

)2
ε∥ − 1. (2.24)

From Eqs. (2.23a) and (2.23b) one can recognize that k
(1)
z ̸= k

(2)
z , showing the

asymmetry in the propagation of the polaritonic wave. Moreover, the angles

θ
(1)
k and θ

(2)
k defined by k(1), k(2) vectors with respect to the electron beam

trajectory (see Figs. 2.12a and 2.12c) satisfy the following relations

tan(θ
(1)
k + α) =

ε∥ sinα+
√
ε∥ε⊥∆cosα

ε⊥ cosα−
√

ε∥ε⊥∆sinα
, (2.25a)

tan(θ
(2)
k − α) =

ε∥ sinα−
√
ε∥ε⊥∆cosα

ε⊥ cosα+
√

ε∥ε⊥∆sinα
. (2.25b)

When α = 0◦, one can deduce from Eqs. (2.25a) and (2.25b) that

tan θ
(1)
k =

√(v
c

)2
ε∥ −

ε∥

ε⊥
, (2.26a)

tan θ
(2)
k = −

√(v
c

)2
ε∥ −

ε∥

ε⊥
. (2.26b)

Therefore θ
(1)
k = θ

(2)
k = θk for this particular case of symmetric propagation.

Notice that θk is also preserved in any other azimuthal direction. We can

observe from Eqs. (2.23a) and (2.23b) that k(1), k(2) depend on the electron

velocity v. This dependency provides information on the condition that the

electron velocity needs to satisfy for the electron beam to excite the polaritonic

waves. Indeed, by imposing real value solutions to Eqs. (2.25a) and (2.25b),
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2. Probing hyperbolic phonon polaritons in h-BN

one obtains the following condition on v:

v2

c2

[
ε2⊥ε∥ cos

2 α+ ε2∥ε⊥ sin2 α
]
> ε⊥ε∥. (2.27)

This last relationship results in the following inequality v2ε∥/c
2 > ε∥/ε⊥, when

α = 0◦, which coincides exactly with the inequality in Eq. (2.20) obtained

in Subsection 2.3.5. For the particular case of an isotropic dielectric medium

(ε⊥ = ε∥ = ε > 0), this last condition results in the canonical relation for

Cherenkov radiation: v > c/
√
ε. As we discuss in the box below, one can show

that the propagation of the wake patterns through the dielectric medium is

always cylindrically symmetric with respect to the electron beam trajectory.

Wake patterns in an isotropic dielectric medium

Assuming that the medium has dielectric function characterized by ε⊥ =

ε∥ = ε > 0, the two wavevector solutions k(1), k(2) given by Eqs. (2.23a)

and (2.23b) result in

k(1) =
ω

v

[
sinα − cosα

cosα sinα

]
(ŷ −

√
∆ ẑ) =

ω

v
M (ŷ −

√
∆ ẑ), (2.28a)

k(2) =
ω

v

[
sinα − cosα

cosα sinα

]
(ŷ +

√
∆ ẑ) =

ω

v
M (ŷ +

√
∆ ẑ), (2.28b)

Note that M is an orthogonal matrix. This implies that the angles

θ
(1)
k and θ

(2)
k are always equal under a rotation of the electron beam

trajectory, and thus, the propagation of the wake patterns is always

cylindrically symmetric with respect to the electron beam trajectory.

2.3.7 Asymmetric wake patterns

As we pointed out in Sections 2.3.3 and 2.3.4, the excitation of hyperbolic

phonon polaritons can be controlled by the velocity of the fast electrons,

whereas in the previous section we have shown that the polaritonic wave can

propagate asymmetrically with respect to the electron beam trajectory. In this

section, we thus study how steering of phonon polaritons can be controlled

via the angle α between the electron beam trajectory and the h-BN optical

axis. Notice that the symmetric case is similar to the one we discussed in

Sections 2.3.3 and 2.3.4. Therefore we will focus here on the analysis of the

polariton propagation direction which shows the largest asymmetry, that is,
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2.3. Excitation of IR bulk modes in h-BN

Figure 2.12: Asymmetric wake patterns of PhPs in bulk. Isofrequency curves in the kykz-
plane for (a) the upper and (c) the lower Reststrahlen bands for representative energies in
each band: (a) 180meV and (c) 100meV. The blue inclined line represents the condition
for the conservation of energy and momentum in the nonrecoil approximation: k · v = ω
for an electron with v = 0.1c and α = 20◦. The black arrows represent the two wavevector

solutions k(1), k(2) with angles θ
(1)
k , θ

(2)
k with respect to the beam trajectory (blue dashed

line), the magenta arrows represent the group velocities v
(1)
g , v

(2)
g and the orange arrows the

Poynting vectors S(1), S(2). The contour plots in (b) and (d) show the normalized real part
of the z-component of the total electric field in the yz-plane for the energies: (b) 180meV
and (d) 100meV. We plot the field distributions for two different angles of the electron beam
trajectory: 20◦ (left panels) and 45◦ (right panels). The maximum values of the field plots
are: (b) 4× 10−6 a.u. and (d) > 1.5× 10−6 a.u.

the kykz-plane.

We show in Fig. 2.12a the line k · v = ω for v = 0.1c (blue line) and

the isofrequency hyperbola (red curve) in the kykz-plane for a representative

energy in the upper Reststrahlen band (ℏω = 180meV). The blue dashed
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2. Probing hyperbolic phonon polaritons in h-BN

line represents the electron beam trajectory and the black dashed line the kz-

axis. One can notice that the matching between the blue solid line and the red

hyperbola (Fig. 2.12a) occurs at wavevectors k(1) and k(2) whose z-component

is different. Thus, the projections onto the z-axis of the phase velocities v
(1)
p

and v
(2)
p (parallel to k(1) and k(2), black arrows) are also different. Due to

the hyperbolic shape of the isofrequency curve the z-component of the group

velocities v
(1)
g (right orange arrow in Fig. 2.12a) and v

(2)
g (left orange arrow

in Fig. 2.12a) parallel to the Poynting vectors S(1) and S(2), respectively, are

also asymmetric. This difference (asymmetry) in the components of the two

phase and group velocities leads to a highly asymmetric propagation of the

polaritonic wave with respect to the electron beam trajectory.

The dependency of the polaritonic waves on the angle α can be observed in

Fig. 2.12b, where we plot the real part of the z-component of the total electric

field produced by the fast electron at energy ℏω = 180meV and v = 0.1c when

α = 20◦ and α = 45◦. Similar to the parallel trajectory (Sections 2.3.3 and

2.3.4), one can notice the formation of wake patterns and the spatial periodicity

of the field along the electron beam trajectory. This periodicity is determined

by the momentum transferred along the beam trajectory (ℏkv̂ = ℏω/v) since

the corresponding wavelength is λv̂ = 2π/kv̂. Thus, the higher the energy of

the polariton is, the smaller λv̂ will be. The wake patterns formed by the field

distribution are clearly asymmetric with respect to the beam trajectory. We

observe (Fig. 2.12b) that the wake fields exhibit largest asymmetry as α is

increased from 20◦ (Fig. 2.12b, left panel) to 45◦ (Fig. 2.12b, right panel).

This is a direct consequence on how the electron transfers different momentum

components, ℏky and ℏkz, to the polaritonic excitation (see Fig. 2.12a). One

can notice from Fig. 2.12a that as α is increased, k
(1)
z ≈ 0 and k(2) tends to the

asymptote of the red hyperbola. Therefore, for large angles α the polaritonic

wave will propagate relative to the beam trajectory with a phase velocity close

to zero on one side of the beam trajectory and with a non-zero phase velocity

on the other side of the beam trajectory. These findings explain the tilting

of the wavefronts in Fig. 2.12b for α = 45◦ at the left side of the electron

beam. It is worth noting that Fig. 2.12b corresponds to the propagation of the

polaritonic wave in the yz-plane. However, for other propagation directions,

the field distributions will be different.

In Figs. 2.12c and 2.12d we show the same analysis (electron beam trajectory

tilted an angle α with respect to the h-BN optical axis) for a representative

energy within the lower Reststrahlen band (100meV). Importantly, for this

case the projections onto the y-axis of the phase velocities v
(1)
p and v

(2)
p are

antiparallel (negative) to the y-component of the Poynting vectors S(1) and

S(2). This yields an asymmetric wave propagating with negative phase velocity

(Fig. 2.12d).
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2.4. Excitation of Dyakonov surface PhPs in h-BN

Additionally, the electron velocity v allows to control the momentum transfer

by the fast electron to the phonon polaritons (Eq. (2.9)). Indeed, as we have

shown in Section 2.3.6 (Eq. (2.27)), one can obtain the relationship between

v and the excitation of the asymmetric wake patterns by analyzing the wake

angles θ
(1)
w = 90◦ − θ

(1)
k and θ

(2)
w = 90◦ − θ

(2)
k (Figs. 2.12b and 2.12d).

We have found that the excitation of the polaritonic wave is highly dependent

on the orientation of the electron beam trajectory with respect to the h-BN

crystallographic arrangement. Thus, while the speed of the electron serves as

a means to excite the polaritonic wave or not, the orientation of the electron

beam trajectory can serve to control the direction of the polaritonic waves.

2.4
Excitation of Dyakonov surface PhPs

in h-BN

In this section, we study the EELS signal when the electron beam is traveling

above an h-BN semi-infinite surface. The interface between vacuum and h-BN

lies on the yz-plane, as depicted in Fig. 2.13, with the y-axis in the direction of

ε⊥ and the z-axis in the direction of the h-BN optical axis. The electron travels

in vacuum at a distance b from the surface (we will refer to this distance as

the impact parameter) with velocity v parallel to the optical axis of the h-BN.

A schematic representation of the probing electron-surface system is shown in

Fig. 2.13.

Figure 2.13: Electron traveling above a semi-infinite h-BN surface. Schematics of the probing
electron traveling with velocity v at a distance b parallel to a h-BN surface. The optical axis
of the h-BN crystal lattice is parallel to the h-BN surface. Label I refers to vacuum, while
label II refers to h-BN.

Surfaces of uniaxial materials with optical axis parallel to the surface support
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2. Probing hyperbolic phonon polaritons in h-BN

a specific kind of surface waves, the so-called Dyakonov waves [144, 145]. When

either ε⊥ or ε∥ is negative (as in the case of the Reststrahlen bands in h-BN),

Dyankonov surface polaritons [146] can propagate along the surface. Recently,

Dyakonov surface phonon polaritons have been observed by scattering-type

scanning near-field optical microscopy at the edges of h-BN flakes [27, 147] as

well as by EELS in STEM [123, 148]. In the latter experiments, the probing

electrons were passing outside the flake edge in a perpendicular trajectory.

However, the excitation and detection of Dyakonov surface phonon polaritons

with an electron beam parallel to an extended surface has not been described

yet.

In the following subsections, we first describe the Dyakonov surface phonon

polariton modes that exist at the interface between h-BN and vacuum. We

then show in Subsections 2.4.2 and 2.4.3 that a localized beam of fast electrons

can couple to these polaritons. Particularly, we analyze the corresponding

EEL spectra and the polariton wake patterns produced in this configuration.

Importantly, we find that surface Dyakonov phonon polaritons are excited only

in the upper Reststrahlen band. Therefore, our analysis and calculations are

restricted to this energy range.

2.4.1 Surface modes in h-BN

According to Dyakonov’s theory [144], the interface described in Fig. 2.13

supports electromagnetic waves that propagate along it and their associated

electromagnetic fields decay exponentially perpendicular to the interface [68,

144, 145, 149]. These surface waves can be expressed as a linear superposition

of the four following modes propagating along the interface: (i) a transverse

electric (TE) mode, (ii) a transverse magnetic (TM) mode (the corresponding

fields decay into the vacuum, upper half space in Fig. 2.13 labeled as I), (iii)

an ordinary mode, and (iv) an extraordinary mode (the corresponding fields

decay exponentially into h-BN, lower half space in Fig. 2.13 labeled as II).

Following this scheme the electric field in each media can be written as,

EI(x > 0, y, z) = (ATE +ATM)e−κIxei(kyy+kzz), (2.29a)

EII(x < 0, y, z) = (Aoe
κo
IIx +Aee

κe
IIx)ei(kyy+kzz), (2.29b)

where harmonic dependency in time has been assumed, and ATE,ATM,Ao,Ae

are the amplitudes of each mode. The wavevector of each aforementioned mode

is given by

kd = (iκI, ky, kz) TE, TM, (2.30a)
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2.4. Excitation of Dyakonov surface PhPs in h-BN

Figure 2.14: Bulk and surface PhPs isofrequency curves. The red solid hyperbola represents
the isofrequency curve obtained with Eqs. (2.31a)-(2.31c) and (2.32) for the surface phonon
polariton, whereas the black dashed hyperbola represents the isofrequency curve obtained
using Eq. (2.5) (setting kx = 0) for the bulk phonon polariton. Both curves are calculated
for a representative energy in the upper Reststrahlen band, 193meV.

ko = (−iκo
II, ky, kz) ordinary, (2.30b)

ke = (−iκe
II, ky, kz) extraordinary, (2.30c)

where κI, κ
o
II, κ

e
II > 0 and ky, kz ∈ C need to fulfill the following conditions:

κ2
I = k2y + k2z − (ω/c)2 vacuum, (2.31a)

(κo
II)

2 = k2y + k2z − ε⊥(ω/c)
2 ordinary, (2.31b)

(κe
II)

2 = k2y +
ε∥

ε⊥
k2z − ε∥(ω/c)

2 extraordinary. (2.31c)

Applying boundary conditions imposed by Maxwell’s equations at the interface

between vacuum and h-BN, one obtains the following relationship [68, 144, 150]

(κI + κe
II)(κI + κo

II)(κI + ε⊥κ
e
II) = (ω/c)2(ε∥ − 1)(1− ε⊥)κI, (2.32)

which together with the set of Eqs. (2.31a)-(2.31c) determines the in-plane

wavevector (ky, kz) of the Dyakonov waves.

It is worth noting that Dyakonov’s original work [144] was derived for positive

ε⊥ and ε∥. However Eq. (2.32) is still valid when ε⊥ < 0 and ε∥ > 0 [149, 150].

Since negative values in the real part of the permittivity components support

the excitation of polaritonic states, Dyakonov surface waves sustained in h-BN
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2. Probing hyperbolic phonon polaritons in h-BN

in the mid-infrared region are thus called Dyakonov surface phonon polaritons.

In Fig. 2.14 we plot the isofrequency contour (red curve) of the h-BN sur-

face polariton for an energy within the upper Reststrahlen band (193meV),

obtained from Eqs. (2.31a)-(2.31c) and (2.32). For comparison, we show a

cut (kykz-plane) of the isofrequency surface of the hyperbolic volume polariton

(black dashed line obtained from Eq. (2.5)). We find that the isofrequency

curve of the surface polariton is a hyperbola, similar to that of the volume

polariton particularly for small momenta. At large momenta, on the other

hand, the opening angle of the isofrequency contour of the surface polariton,

θs, is smaller than that of the volume polariton θv, demonstrating that the

dispersion of Dyakonov phonon polaritons is different to the one obtained for

the bulk hyperbolic phonon polaritons.

2.4.2 Electron energy-loss probability in surface h-BN

The excitation of Dyakonov surface phonon polaritons by fast electron beams

can be revealed in the electron energy loss spectra. In the following, we de-

scribe the strategy to obtain the momentum-resolved energy loss probability,

Psurf(ky;ω), and the EEL probability, Γ′
surf(ω), when the probing electron trav-

els above the h-BN surface (see Fig. 2.13).

To calculate Γ′
surf(ω), following Eq. (2.7), one needs to obtain the induced

electric field, Eind(re;ω) along the electron beam trajectory. To that end we

obtain Eind(r;ω) by solving Maxwell’s equations in the presence of vacuum-

h-BN interface, assuming that the electron travels in vacuum with constant

velocity v and impact parameter b (Fig. 2.13). Considering the boundary

conditions at the interfaces (x = 0), one finds the induced electric field in

vacuum (region I in Fig. 2.13):

EI
ind(x, ky, kz;ω) = (bI, dI, gI) ρ̃ e

−κIx, (2.33)

with bI, dI, gI being the coefficients involving the dielectric functions at both

sides of the interface and ρ̃ = −2πeδ(ω − kzv)e
−κIb/ε0. We refer to Appendix

C for a detailed description of the coefficients of the total and induced electric

fields at each half space (vacuum and h-BN).

By Fourier transforming (see Appendix A) EI
ind(x, ky, kz;ω) 7→ EI

ind(r;ω) in

Eq. (2.33) and inserting its value into Eq. (2.7), we find that Γ′
surf(ω) can be

written as

Γ′
surf(ω) =

∫ kc
y

0

dky Psurf(ky;ω), (2.34)
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2.4. Excitation of Dyakonov surface PhPs in h-BN

where

Psurf(ky;ω) = − e2

π2ε0ℏωv
Re
[
gI e

−2κIb
] ∣∣∣

kz=ω/v
, (2.35)

is the probability that the electron transfers a transverse momentum ℏky (y-

component of the momentum) upon losing energy ℏω. Notice that the z-

component of the wavevector in Psurf(ky;ω) is fixed by kz = ω/v, implying

that the electron still transfers a momentum parallel to its trajectory equal to

ℏω/v. The integration of Eq. (2.34) is performed up to the cutoff value kcy,

which is determined by the aperture of the EELS detector.

As we discussed in Section 2.3, the spectrum of the momentum-resolved

energy loss probability and the EEL probability provides information on the

properties of the excited modes in the anisotropic medium. We thus show

in the following section the relationship between these two quantities and the

excitation of Dyakonov surface phonon polaritons.

2.4.3 Excitation of Dyakonov surface PhPs

As pointed out above, the momentum parallel to the trajectory, ℏkz, transferred
by the fast electron to the phonon polaritons is determined by the relation kz =

ω/v. Similarly to the bulk analysis presented in Section 2.3, this relationship

represents a horizontal line in the kykz representation of Fig. 2.14. Thus,

the transferred momentum can be determined by the crossing between this

horizontal line (kz = ω/v) and the isofrequency hyperbolas obtained from Eqs.

(2.31a)-(2.31c) and (2.32). From the latter equations one can further obtain

the relationship between the y-component of the polariton wavevector (ky) and

ℏω, which is shown in the left panel of Fig. 2.15a (dashed blue curve). We also

plot the momentum-resolved energy loss probability Psurf(ky;ω) for energies

around the upper Reststrahlen band. The probing electron is traveling above

the h-BN surface with an impact parameter of 10 nm and velocity v = 0.1c.

Some similarities between Psurf(ky;ω) and Pbulk(k⊥;ω) (Fig. 2.3b, left panel)

become apparent. For instance, the highest values of Psurf(ky;ω) (red and

yellow colors in Fig. 2.15a) coincide perfectly with the blue dashed curve,

demonstrating that the electron energy losses in the upper band are caused

mainly due to the excitation of hyperbolic phonon polaritons. However, by

comparing Figs. 2.3b and 2.15a we recognize that the asymptotic behavior

(at large momenta) of Psurf(ky;ω) occurs at a lower energy compared to the

asymptotic behavior of Pbulk(k⊥;ω). While Pbulk(k⊥;ω) tends to the LO⊥
phonon energy, Psurf(ky;ω) tends to the surface optical (SO⊥) phonon energy

given by the condition ε⊥(ωSO⊥) = −1 (derived from Eqs. (2.31a)-(2.31c)
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Figure 2.15: Excitation of Dyakonov surface PhPs. The left panel in (a) displays the
momentum-resolved energy loss probability Psurf(ky ;ω) normalized to the maximum value
(3 a.u.) in the vicinity of the upper Reststrahlen band for b = 10nm and v = 0.1c. The right
panel in (a) shows the EEL probability Γ′

surf(ω) obtained by integrating Psurf(ky ;ω) over ky

up to kcy = 0.09 Å
−1

. (c) same as in (a) but considering v = 0.5c. For this case the maximum
value of the momentum-resolved energy loss probability is 1 a.u. The color maps in (b) and
(d) show the real part of the z-component of the induced electric field for energies: 193meV
(marked as 1, 3) and 198meV (marked as 2, 4). The top panels in (b) and (d) correspond to
the in-plane views (yz-plane) of the induced field at the interface, while the bottom panels
correspond to the out-of-plane views (xz-plane) containing the electron trajectory. The field
plots are normalized with respect to the maximum value in each case. For the top panels
the maximum values are: (b.1) 1× 10−4 a.u., (b.2) 7.5× 10−5 a.u., (d.3) 7.5× 10−6 a.u. and
(d.4) 5× 10−6 a.u. For the bottom panels the maximum values are: (b.1) 4× 10−5 a.u., (b.2)
2 × 10−5 a.u. and (d) 1.5 × 10−6 a.u. In panels (b) and (d) the magenta and black arrows
represent the group velocity vg and phase vp velocities, respectively.

and (2.32) for large momenta). Importantly, the latter is a fingerprint of the

excitation of surface polariton modes. In our case (electron traveling in vacuum
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2.4. Excitation of Dyakonov surface PhPs in h-BN

above the h-BN surface) these surface modes correspond to Dyakonov surface

phonon polaritons. We confirm this by integrating Psurf(ky;ω) over ky up to a

cutoff momentum ℏkcy, which yields the EEL probability Γ′
surf(ω) (right panel

of Fig. 2.15a). A clear peak can be observed at the SO⊥ phonon energy. This

loss peak is slightly asymmetric with a broader tail for lower energies in the

Reststrahlen band compared to that for larger energies in the band. Notice

that for energies above SO⊥ the loss spectrum displays a shoulder arising from

background losses present in the entire upper band at small momentum (red

blurred area for small momentum in the left panel of Fig. 2.15a).

The excitation of Dyakonov surface phonon polaritons (within the upper

Reststrahlen band) by the probing electron can be observed in real space in Fig.

2.15b, where we show the real part of the z-component of the induced electric

field amplitude at energies 193meV (marked as 1) and 198meV (marked as 2).

The top panels correspond to the evaluation of Re(Eind
z (r;ω)) in the yz-plane

(in-plane at the interface), and the bottom panels to the evaluation in the xz-

plane (lateral view, containing the electron trajectory). One can recognize from

the in-plane views (Figs. 2.15b marked as 1) the formation of wake patterns

and the oscillatory behavior of the induced field in the z-direction. Similarly

to the field distribution shown in Fig. 2.4b, the spatial periodicity along the z-

direction is connected with the parallel wavevector component kz = ω/v, since

λz = 2π/kz. Moreover, the wake wavefronts show interesting propagation

patterns both in the transverse direction from the beam trajectory as well as

into the h-BN.

In the top panel of Fig. 2.15b (image labeled as 1), the wavefronts along the

y-direction propagate with positive phase and group velocities relative to the

Poynting vector. Indeed, we find that the dashed blue curve in Fig. 2.15a has

a positive slope (dω/dky > 0), indicating that the projections onto the y-axis

of the group and phase velocities are parallel (positive). We also notice that

Dyakonov surface phonon polaritons are confined to the interface with penetra-

tion of the field into the h-BN interface (Fig. 2.15b, bottom image labeled as

1). For energies larger than that of the SO⊥ phonon, Dyakonov surface phonon

polaritons are not excited (Fig. 2.15b, image labeled as 2). Thus, the induced

field distributions for those energies correspond to the reflection of the electron

electromagnetic field at the h-BN surface (Fig. 2.15b, top image labeled as 2).

We can also notice that the field penetrates into the h-BN (bottom panels of

Fig. 2.15b), which is connected with the presence of the red blurred region

corresponding to the losses appearing for lower momenta in Fig. 2.15a (left

panel).

When the velocity of the probing electron is increased up to 50% the speed

of light, the momentum parallel to the beam trajectory, ℏkz, is reduced and

so does the ky component of the Dyakonov surface phonon polariton. By
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calculating the momentum-resolved energy loss probability Psurf(ky;ω) (left

panel of Fig. 2.15c) and the EEL probability Γ′
surf(ω) one obtains a similar

behavior as in Fig. 2.15a for v = 0.1c, except for a one order of magnitude

reduction of both ky and the value of the loss probability.

The differences in the properties of the Dyakonov surface phonon polaritons

launched by the fast electron beam can be observed in Fig. 2.15d, where we

show the real part of the z-component of the induced electric field amplitude for

v = 0.5c at energies 193meV and 200meV. Notice that the spatial periodicity

λz of the polariton is longer in this situation compared to that in Fig. 2.15b

as a result of the increased electron velocity. Also, the penetration of the field

into the h-BN medium is larger compared to that in Fig. 2.15b. This increase

in the penetration depth can be attributed to the increase of the background

losses present in the entire upper band (blurred red are in the left panel of

Fig. 2.15c). As we will discuss in the next section, these background losses are

associated with the excitation of bulk hyperbolic phonon polaritons by the fast

electron.

2.5 Remote excitation of bulk PhPs

We have shown in Figs. 2.15b and 2.15d that the electric field penetrates into

the bulk of the h-BN semi-infinite surface, which is surprising, as one does

not expect the excitation of volume modes in isotropic materials for electron

beam trajectories outside the material. By comparing the angles of the wake

patterns, we demonstrate that indeed volume modes are excited in h-BN with

external beam trajectories.

We first calculated the angle θw of the wake wavefronts produced by the fast

electron traveling through bulk h-BN with v = 0.5c at ℏω = 193meV (Figs.

2.16a and 2.16c), obtaining a value of θw = 32.35◦. We compare θw with the

angles of the wake wavefronts produced by the fast electron traveling in an aloof

trajectory 10 nm above the h-BN surface (Fig. 2.16b and 2.16d). From this

comparison we find that: (i) the angle θws
= 24.67◦ of the wake pattern at the

h-BN surface (Fig. 2.16b) is different from θw, and (ii) the angle of the wake

pattern excited inside the h-BN is the same as θw (Fig. 2.16d). This implies

that volume modes are excited by the fast electron traveling along trajectories

outside the anisotropic medium.

Importantly, these findings open the possibility of remotely exciting volume
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Figure 2.16: Remote excitation of bulk PhPs. (a) Real part of the z-component of the total
electric field, Re(Etot

z ) in the yz-plane produced by a fast electron traveling through h-BN
parallel to its optical axis. (c) shows Re(Etot

z ) evaluated in the xz-plane. θw is the angle
between the z-axis and the wake patterns formed by the bulk polariton. (b) shows the
Re(Etot

z ) in the yz-plane produced by a fast electron traveling in vacuum 10 nm above a
semi-infinite h-BN surface. (d) shows Re(Eind

z ) evaluated in the xz-plane. θws is the angle
between the z-axis and the wake patterns formed by the Dyakonov surface phonon polariton.
We used for the calculation of the fields an electron velocity equal to v = 0.5c at energy
ℏω = 193meV. The field plots are normalized with respect to the maximum value in each
case: (a) 5 × 10−7 a.u., (b) 7.5 × 10−6 a.u., (c) 5 × 10−7 a.u. and (d) 1.5 × 10−6 a.u. The
insets above (a) and (b) illustrate the geometry under consideration for each case.

phonon polaritons. In contrast to isotropic materials, where an aloof elec-

tron beam only couples to surface modes, for anisotropic materials the energy

and momentum matching between the electron and the polaritons allows for

launching of bulk excitations.
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2.6 Summary and conclusions

In this chapter, we have thoroughly analyzed the excitation of optical phonon

polaritons in hexagonal boron nitride by focused electron beams for two rel-

evant situations: when the electron travels through the h-BN bulk and when

it travels in vacuum above a semi-infinite h-BN surface. For the bulk situa-

tion, we observe that the electron couples to volume phonon polaritons when

it travels parallel or at an angle α with respect to the h-BN optical axis. We

demonstrated that the excitation of these polaritonic modes is strongly depen-

dent on the electron velocity and on the angle α of the trajectory with respect

to the optical axis. Furthermore, we have shown that Dyakonov surface phonon

polaritons can be excited by a fast electron traveling above the h-BN surface.

Interestingly, aloof electron beams are capable of exciting volume polaritons in

the h-BN.

By a detailed mode analysis, we show that the electron beam transfers a

specific momentum to the material. This momentum transfer determines the

properties of the excited phonon polaritons, and thus controls their phase and

group velocities, as well as their propagation direction. Importantly, we found

that the propagation of polaritonic waves is highly asymmetric with respect to

the electron beam trajectory when the trajectory sustains an angle relative to

the h-BN optical axis.

Our findings may offer a way to steer and control the propagation of polari-

tonic waves excited in hyperbolic materials. Although we studied the specific

material h-BN, our findings can be generalized and can serve as a guide for the

correct interpretation of the different excited modes and loss channels encoun-

tered in EELS experiments of uniaxial materials.
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Probing optical anapoles with fast

electron beams

We had some success this week with EELS measurements

of the disks. We are seeing multiple very distinct signals

between 1 eV and 2.5 eV from disks that are ∼ 550nm in

diameter.

–Andrew’s email (October 09, 2020)

Abstract

In this chapter, we theoretically and experimentally analyze the excitation of

optical anapoles in tungsten disulfide (WS2) nanodisks using EELS in STEM.

We first identify prominent dips in the EEL spectra of a model high-index

dielectric disk. By calculating the electric and toroidal multipole moments of

the induced current density produced by the electron beam in the disk, we

show that the prominent dips are associated with the excitation of a variety

of optical anapoles. To experimentally verify anapole excitation and detection

in EELS, we fabricate nanodisks made of WS2 and compare the experimental

EEL signal with numerical calculations. Interestingly, we find that the anapole

disperses with the disk size and thus, by varying the WS2 nanodisk dimensions,

the anapole can be tuned to overlap an exciton transition of WS2 leading to

anapole-exciton hybridization. Finally, we show spatial maps of the anapoles

excited in the WS2 nanodisks with subnanometer resolution and conclude that

their excitation can be controlled by placing the electron beam at different po-

sitions over the nanodisk. The results discussed in this chapter are reported in

the following manuscript: C. Maciel-Escudero et al. “Probing optical anapoles

with fast electron beams”, Nat. Commun. 14, 8478 (2023).
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3. Probing optical anapoles with fast electron beams

3.1 Introduction

High-refractive-index dielectric nanostructures have recently emerged as im-

portant building blocks for novel photonic devices in the field of nanophotonics

and metamaterials [151–156]. They have shown potential for light manipula-

tion at the nanoscale and their fabrication typically involves silicon [152], tran-

sition metal dichalcogenide (TMDC) materials [157], and other semiconductors

[158, 159] showing small absorption losses compared to plasmonic nanostruc-

tures made of gold or silver. An important advantage of dielectric structures is

their ability to support electric and magnetic resonances based on the excitation

of circular displacement currents within the dielectric structure. The excitation

and control of these resonances reveal new physical phenomena that cannot be

easily achieved with their plasmonic counterparts. For example, interference

between the electric and magnetic resonances can result in simultaneous en-

hancement of forward scattering and suppression of backward scattering by the

structure [160, 161]. Furthermore, the excitation of electric and magnetic res-

onances can lead to strong field localization inside the structure, and thus, to

enhancing nonlinear processes such as the generation of high harmonics [162].

To highlight one intriguing physical phenomenon appearing in the optical

response of dielectric nanostructures, we calculate the scattering cross section

σscat and the electric energy Ee of a dielectric disk with different radius R0

(see Appendix B for details of the simulations). The disk, with εd = 18, is

illuminated with a plane wave (λinc = 1000 nm) traveling along the z-direction

and polarized along the x-axis (illustrated in Fig. 3.1a). In Fig. 3.1b we plot

the results of the calculations. We observe that σscat (black line) is close to

zero for a disk with R0 ≈ 250 nm (gray dashed line) while Ee (blue line) is

larger than zero, and thus, the electromagnetic field is confined inside the disk.

As we will discuss in this chapter, this optical phenomenon, characterized by

vanishing scattering and strong field localization inside the disk, can appear in

high-refractive-index dielectric structures and is known as an optical anapole

state.

Anapoles are charge-current distributions giving rise to an optical phe-

nomenon characterized by strong suppression of electromagnetic radiation

[163, 164]. This phenomenon is typically understood as the interference be-

tween the electromagnetic (EM) field produced by a Cartesian electric mul-

tipole with the EM field of a toroidal multipole. When this interference is
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Figure 3.1: Optical anapoles. (a) Sketch of the system under study. The blue cylinder
represents the high-index dielectric nanodisk with dielectric function εd = 18, thickness
d = 55nm and radius R0. The red arrow represents the incident plane wave polarized along
the x-axis with λinc = 1000 nm. (b) Scattering cross section σscat (black line) and electric
energy Ee (blue line) of a disk calculated as a function of the radius R0. The electric energy
Ee is normalized to its maximum value. The gray dashed line indicates the nanodisk radius
with vanishing σscat. For simulation details, we refer the reader to Appendix B.

destructive, the system yields a non-radiating current configuration known as

the optical anapole state [165, 166]. Excitation of the anapole in a polar-

izable nanostructure greatly suppresses its scattering cross section thus pro-

viding invisibility to nanoobjects [167], which offers promising applications in

nanophotonics [168–172]. Additionally, optical anapoles concentrate EM fields

inside the nanoresonators serving to enhance nonlinear harmonic generation

[173, 174], four-wave mixing [175], Raman scattering [176, 177], and photother-

mal nonlinearities [178].

Intense experimental and theoretical efforts have been devoted to identify-

ing optical anapole states in different dielectric nanostructures. However, the

detection of ideal optical anapoles is complicated and usually requires the sup-

pression of other multipole resonances. Typically, this suppression is achieved

by engineering the nanoresonator geometry and by structuring the incident il-

lumination [168, 169, 172]. Complementary to far-field characterization, under-

standing how anapoles are excited by localized probes can be of paramount im-

portance in order to control and realize the full potential of these non-radiating

states. In this context, scanning near-field optical microscopy (SNOM) was ap-

plied to study the near-field distribution of Si disks at relevant wavelengths

[167, 171]. In this first experiment, the field around the disk was mapped at

the anapole wavelength, revealing a maximum in the amplitude of the near

field in the middle of the disk [167]. In the second experiment, it was found

that the normal component of the electric field induced at the disks is reduced

at the anapole wavelength [171]. SNOM offers the advantage of spatially map-
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ping both the amplitude and phase of near-field patterns, however, the spatial

resolution is limited by the dimensions of the near-field probes (an optical fiber

or a metallic tip in the aforementioned cases), which are typically of the or-

der of tens of nanometers. More importantly, the near-field probe itself can

couple to the sample [179], leading to spectral shifts of the resonance modes

and potential distortions when probing the anapoles. In contrast to SNOM

techniques, EELS in STEM is a non-disturbing technique which accesses the

clean electromagnetic fields and modes of a sample. At the same time, EELS

allows for accessing not only to electric dipole modes but also quadrupoles and

higher-order modes that do not, or weakly, couple to far-field radiation.

In this chapter, we present a numerical and experimental analysis of opti-

cal anapoles and anapole-exciton hybrids excited in WS2 nanodisks using fast

electron beams. As a proof of concept, we first calculate in Section 3.2 the elec-

tron energy losses experienced by a focused electron beam traveling in an aloof

trajectory in the vicinity of a model high-index dielectric nanodisk. We show

that prominent dips appear in the simulated EEL spectra, and we demonstrate

that these dips are associated with the destructive interference between electric

and toroidal Cartesian multipoles induced in the disk. In Subsection 3.2.2, we

show the far-field optical scattering spectra of the dielectric disks and compare

them with the EEL spectra. At the end of Section 3.2, we introduce an ana-

lytical model based on temporal coupled-mode theory (TCMT) to describe the

anapole dip as the result of the interference produced by two modes excited in

the disk. To experimentally access the spectral and spatial information on the

anapoles, we performed EELS on fabricated WS2 nanodisks made from exfo-

liated multilayer TMDC WS2 with a high refractive index in the visible and

infrared spectral ranges [180–182]. In Subsections 3.3.1 and 3.3.2, we show the

fabricated WS2 nanodisks and discuss the optical properties of multilayer WS2.

We next show in Subsections 3.3.4 the experimental EEL spectra, and compare

them with numerical simulations. Finally, in Subsection 3.3.4, we discuss the

possibility to spatially map optical anapoles and to control their excitation by

placing the electron beam at different positions over the nanodisk, demonstrat-

ing the potential of EELS to access these special non-radiating charge-current

distributions.

90



3.2. Theoretical prediction of optical anapoles in EEL spectra

3.2
Theoretical prediction of optical ana-

poles in EEL spectra

We begin this study by describing the general features appearing in the EEL

spectra of a model high-index dielectric nanodisk that can exhibit optical

anapole states [183]. Figure 3.2a illustrates a sketch of the system under study:

a dielectric disk excited by an electron beam traveling in aloof trajectory close

to the disk. We choose a disk of variable radius R0, thickness d = 55nm

and permittivity εd = 18. The electron beam travels with velocity v = 0.7c

(200 keV) along the z-axis at a distance b = 1.1R0 with respect to the nanodisk

center (impact parameter). We calculate numerically the EEL probability Γ(ω)

using the classical dielectric theory discussed in Chapter 1 and Appendix B.

Figure 3.2b shows the calculated Γ(ω) spectra for different nanodisk radius

R0 in the energy range of 0.5 eV to 2.5 eV. The spectra feature a series of peaks

(white dotted lines) and dips (gray dashed lines) that monotonously shift to

higher energies as the nanodisk radius R0 reduces from 300 nm to 100 nm.

The positions of these peaks and dips do not vary with the electron beam

velocity. As we will discuss in Fig. 3.3, these peaks can be associated with the

different resonant modes of the nanodisk excited by the electron beam. In the

following, we will focus on the underlying physics of the spectral dips and their

relationship with the anapole phenomenon. We label these dips as AE
ij based

on symmetry reasons that will be explained below.

The anapole phenomenon originates from the destructive interference be-

tween the electric and toroidal Cartesian multipole moments inside the nan-

odisk with identical amplitude and far-field patterns. Due to this destructive

interference, the radiation emitted by the disk is suppressed, and thus the

anapole phenomenon manifests as a dip in the scattering cross section of the

disk. To corroborate that the dips in the EEL spectra are associated with

anapole excitation by fast electron beams, we analyze the EEL probability of

the 250 nm radius nanodisk (blue line in Fig. 3.2c, where the red dots indicate

the spectral dips). To that end, we perform a multipole decomposition of the

current density Jind(r) induced by the electron beam in the nanodisk. The in-

duced current density Jind(r) can be described by a series of exact (spherical)

multipole moments induced in the disk. In the long-wavelength approximation

each multipole moment can be expressed as a superposition of the so-called

Cartesian multipole moments [184–186]. For example, the spherical electric
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Figure 3.2: Theoretical description of optical anapoles excited by fast electron beams. (a)
Sketch of the system under study: a high-index dielectric nanodisk (blue cylinder) with
dielectric function εd = 18, thickness d = 55nm and radius R0 excited by a focused electron
beam (green ray, e is the elementary charge) traveling along the z-direction with velocity v
at a distance b (impact parameter) with respect to the nanodisk center. (b) EEL probability
Γ(ω) calculated as a function of both the nanodisk radius R0 and the energy loss experienced
by the electron beam. White dotted lines are guides to the eye and mark the position of the
first two peaks in the EEL spectra. Gray dashed lines mark the position of four dips in the
EEL spectra and are labeled as AE

ij , according to their symmetry as described in the text.

(c) Simulated EEL probability spectrum (blue line) on a nanodisk with R0 = 250 nm. The
red dots mark the spectral dip positions. (d) Scattered power of the dipole moments Psph,
Pcar and Tcar induced in the disk with R0 = 250 nm. (e) Scattered power of the quadrupole

moments Q̂sph, Q̂(e)
car and Q̂(T)

car induced in the disk with R0 = 250 nm. (f) Sketch of the
anapole states formed by the electric and toroidal dipoles and by the electric and toroidal
quadrupoles.

dipole moment Psph(ω) is approximated by the following superposition of the

electric, Pcar(ω), and toroidal, Tcar(ω) Cartesian dipole moments:

Psph(ω) ≈ Pcar(ω) + ik0Tcar(ω), (3.1)

where k0 = ω/c is the wavenumber in vacuum. When the electric and toroidal

Cartesian dipole moments are equal in magnitude and show opposite phases,
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Pcar(ω) = −ik0Tcar(ω), the spherical electric dipole moment Psph(ω) vanishes,

suppressing the radiated field. This situation describes the condition for the

excitation of an optical anapole [167]. In Appendix D, we provide further

details on the calculation of the spherical and Cartesian multipoles as well as

on the multipole expansion in the long-wavelength approximation.

To compare the multipole decomposition with the EEL spectrum of the

250 nm disk, we calculate the scattered power from the dipole and quadrupole

moments of the induced current density Jind(r) (see Appendix D). The scat-

tered power from these multipole orders adequately captures the spectral fea-

tures of the EEL spectrum across the energy range from 0.5 eV to 1.5 eV. Above

1.5 eV the EEL spectrum reveals additional spectral features that can be repro-

duced by also considering the scattered power from higher-order multipoles.

Figure 3.2d shows the calculated scattered powers from the spherical electric

dipole moment P
Psph

scat ∝ |Psph(ω)|2 (black dashed line), as well as the Cartesian

electric PPcar
scat ∝ |Pcar(ω)|2 (green line) and toroidal PTcar

scat ∝ |ik0Tcar(ω)|2
(magenta) dipole moments. The spectrum of |Psph(ω)|2 features a dip at

around 1.25 eV marked as AE
11. A direct comparison of the EEL spectrum (Fig.

3.2c) and the spectrum of the scattered power by the spherical dipole moment

(black dashed line in Fig. 3.2d) shows that the dip in |Psph(ω)|2 matches the

lowest-energy dip in Γ(ω), indicated by the gray dashed lines. In addition, this

dip occurs at the energy where the electric and toroidal Cartesian dipole mo-

ments induced in the nanodisk show equal magnitude and opposite phase (the

intersection of green and magenta lines at AE
11 in Fig. 3.2d). This confirms

that the lowest-energy dip in the EEL spectra of the nanodisk is associated

with the optical anapole excited by the fast electron beam. We refer to this

anapole as the first electric dipole, AE
11, anapole state. We note that the ideal

anapole (zero in the EEL probability) is not fully achieved due to higher-order

multipolar contributions to the energy loss, and thus, an “attenuated dip” can

be observed in the EEL spectra.

Analogously, we can understand the dip at 1.52 eV in the EEL spectrum

(marked as AE
21 in Fig. 3.2c) as due to the destructive interference between

electric and toroidal quadrupole current distributions with identical far-field

patterns [187]. To demonstrate this, we calculate the electric spherical Q̂sph(ω),

Cartesian electric Q̂(e)
car(ω) and toroidal Q̂(T)

car (ω) quadrupole moments of the

induced current density Jind(r). In the long-wavelength approximation, one

finds that the spherical electric quadrupole moment has the following form (see

Appendix D):

Q̂sph(ω) ≈ Q̂(e)
car(ω) + 3ik0Q̂((T)

car (ω), (3.2)

and thus, the condition for the excitation of electric quadrupole anapole states

is Q̂(e)
car = −3ik0Q̂(T)

car .
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In Fig. 3.2e we show the scattered power from the spherical electric

quadrupole moment P
Q̂sph

scat ∝ |Q̂sph(ω)|2 (black dashed line), Cartesian electric

P
Q̂(e)

car
scat ∝ |Q̂(e)

car(ω)|2 (green line) and toroidal P
Q̂(T)

car
scat ∝ |3ik0Q̂(T)

car (ω)|2 (magenta

line) quadrupole moments. From the green and magenta spectra we clearly

see that the Cartesian and toroidal quadrupole moments have the same ampli-

tude but opposite phase at 1.52 eV, which confirms that the dip at 1.52 eV in

the EEL spectra corresponds to the excitation of the first electric quadrupole

anapole state labeled as AE
21. A schematic representation of the first electric

dipole and the first electric quadrupole anapole states is presented in Fig. 3.2f.

The subsequent dips in the EEL spectrum (marked AE
12 and AE

22 in Fig. 3.2c)

are associated with the excitation of higher-order anapole states such as the

second electric dipole anapole (marked AE
12) and the second electric quadrupole

anapole (marked AE
22) states. These dips originate from the destructive interfer-

ence of the radiation produced by Cartesian electric and higher-order toroidal

multipoles excited in the nanodisk [187]. The contribution of these higher-

order multipoles is larger at higher energies (shorter wavelengths), and thus

the conventional Cartesian multipole decomposition in the long-wavelength ap-

proximation fails to describe the spectral positions of AE
12 and AE

22 (compare

the position of the red dots and the grey dashed lines above 1.75 eV in Figs.

3.2d and 3.2e). The spherical multipole decomposition, on the other hand,

accurately reproduces the dips (anapole states) appearing in the EEL spectra.

This allows us to label the j-th dip of the scattered power from the electric

spherical 2i-pole as AE
ij .

The difference in the properties of the different anapole states excited by

the fast electron beam can be observed in Fig. 3.3, where we show the spatial

field distributions induced in the 250 nm radius disk at the dips marked by

the red dots in Fig. 3.3a. Figure 3.3b, for example, shows the amplitude

of the total electric field |Etot(ω)| in the xy-plane at the energy of the AE
11

anapole dip (1.255 eV), revealing regions of intense fields inside the nanodisk

and two opposite vortices typically found in the optical phenomena involving

anapoles. The field distribution of the AE
21 anapole dip (1.52 eV), on the other

hand, exhibits two additional vortices compared to the field pattern of the

first electric anapole. We attribute this to the quadrupolar distribution of

the induced current density inside the disk at 1.52 eV. In addition to the field

distributions at the anapole dips, we also show in Fig. 3.3 the field distributions

around the disk at the spectral peaks: 1.44 eV and 1.70 eV (marked by the open

circles in Fig. 3.3a). We can observe in Fig. 3.3b, modes with 4 and 6 nodes

along the azimuthal direction. The electric field of these resonant modes is

predominantly confined within the disk, and notably, the number of nodes

along the z-direction is zero (see Fig. 3.3c). In contrast, the amplitude of
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Figure 3.3: Electromagnetic field of the disk modes and optical anapoles.(a) Simulated EEL
probability Γ(ω) for a nanodisk with R0 = 250 nm and d = 55nm (same as in Fig. 3.2c).
Gray dashed lines mark the first two dips (indicated by the red dots) and the first two
peaks (indicated by the open circles) at (AE

11) 1.255 eV, (AE
21) 1.52 eV and (TE210) 1.44 eV,

(TE310) 1.70 eV. The field plots in panel (b) show the amplitude of the total electric field
|Etot(ω)| in the xy-plane for the energies marked by the gray dashed lines. Green dots
indicate the electron beam position. (c) Same as (b) but for the yz-plane. (d) Same as (c)
but showing the amplitude of the z-component of the total magnetic field |Btot,z(ω)| in the
yz-plane. Insets at the left of panels (b), (c) and (d) illustrate top and side views of the
nanodisk being probed by the electron beam. The scale bar in panels (b)-(d) is 100 nm.
The maximum value at each field plot is (from left to right, top to bottom): 4.2× 108 V/m,
1.2× 109 V/m, 4.0× 108 V/m, 3.0× 109 V/m, 7.8× 108 V/m, 2.0× 109 V/m, 3.7× 108 V/m,
2.0× 109 V/m, 4.2T, 1.6T, 1.3T and 20T.

the z-component of the total magnetic field, |Btot
z (ω)|, is different from zero

within the disk, as shown in Fig. 3.3d. Consequently, we classified these modes

as transverse electric (TE) ones. To label these modes, we use the standard
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nomenclature of cylindrical resonator modes [188, 189]: TEn,k,p where n, k and

p indices denote azimuthal, radial and axial wavenumbers, respectively. This

analysis confirms that the peaks observed in the EEL spectra are associated

with the excitation of different multiple resonant modes in the disk.

3.2.1 Modeling the anapole using TCMT

The anapole is the result of the interference between multiple resonant modes

excited by the fast electron beam in the nanodisk [88, 190]. In this subsec-

tion, we present an analytical model based on temporal coupled-mode theory

(TCMT) that allows to describe the first electric dipole anapole, AE
11, as the

result of the far-field interference between two resonant modes of the disk ex-

cited by the fast electron beam. The importance of this simple model capable

of reproducing the anapole dip in the EEL spectra will be explained in Section

3.3.

As we discussed in Chapter 1, temporal coupled-mode theory (TCMT) is a

theoretical formalism that has been widely used to model the scattered and

absorbed power of an object when it is illuminated with a monochromatic

plane wave [84–88]. One of the key ingredients in TCMT is the expansion of

the incident field over a set of appropriate scattering channels. Thus, to apply

this formalism to our particular situation of a fast electron interacting with the

nanodisk, we express the electric field Ee(r;ω) produced by the fast electron

as the following sum of incoming and outgoing spherical waves propagating

toward and outward the electron beam (for details see Appendix E):

Ee(r;ω) =

∞∑
ℓ=0

ℓ∑
m=−ℓ

[
aTE
ℓm(ω)ETE,+

ℓm (r;ω) + aTM
ℓm (ω)ETM,+

ℓm (r;ω)
]
+ (3.3)[

aTE
ℓm(ω)ETE,−

ℓm (r;ω) + aTM
ℓm (ω)ETM,−

ℓm (r;ω)
]
,

where aqℓm(ω) are expansion coefficients determined by Eqs. (E.2)a-(E.2)b

and Eq,±
ℓm (r;ω) are vector spherical harmonics defined by Eqs. (E.5)-(E.7) and

(E.9)-(E.10). Each spherical wave Eq,±
ℓm defines a scattering channel that can

be labeled as {q, ℓ,m}, with q representing the polarization of the field (TM or

TE)1, ℓ = 0, 1, 2, 3, . . . and m = −ℓ, · · · , ℓ. The scattering of the disk, coming

1Note that in Fig. 3.3, we classified the disk modes as transverse electric (TE) or transverse
magnetic (TM) depending on whether the z-component of the electric or magnetic field is
zero inside the disk. In Eq. (3.3), however, the labels TE or TM denote the components
of the electric Ee(r;ω) and magnetic Be(r;ω) fields orthogonal to the position vector r.
Further details can be found in Appendix E.
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Figure 3.4: Sketch of the two resonant modes being excited by the electron beam. Schematics
of the fast electron beam illuminating the nanodisk. Solid arrows represent incoming waves,
s+, toward the disk, whereas dashed arrows represent outgoing waves, s−, outward the disk.
In the schematics the two resonant modes with amplitudes a1, a2 are excited by the electron
beam. These two resonant modes scatter along the channel {TM, 1, 1} to produce the first
electric anapole state AE

11.

from the response to the electromagnetic field of the incident electron beam,

couples to the infinite set of scattering channels {q, ℓ,m} determined by the

incident field, as illustrated in Fig. 3.4. The optical anapole characterized by

complete suppression of the scattered field by the disk can be modeled as a

single-channel scattering problem as we discuss next.

The first electric dipole anapole state, AE
11, originates from the destructive

interference of the radiation produced by the Cartesian electric and toroidal

dipoles, both of which radiate in the TM, ℓ = 1 channel [167, 185, 191]. This

constrains the AE
11 anapole to occur in three linearly-independent scattering

channels: {TM, 1,−1}, {TM, 1, 0} and {TM, 1, 1}. The Cartesian electric and

toroidal dipoles showing the fields of a linearly polarized dipole further con-

strain the first electric dipole anapole to the m = ±1 channels which have

identical scattering coefficients. To model the AE
11 anapole state excited by

the fast electron beam, we thus assume that the scattered field of the nan-

odisk couples dominantly to the single scattering channel {TM, 1, 1}. We then

approximate the scattered field of the disk as follows:

Escat(r;ω) ≈ bTM
11 (ω)ETM,−

11 (r;ω), (3.4)

with bTM
11 (ω) being the amplitude of the scattered field in the {TM, 1, 1} chan-

nel. We further assume that the AE
11 anapole is the result of the far-field inter-

ference of two resonant modes of the disk radiating in the channel {TM, 1, 1}.
These resonant modes have amplitudes a1(t), a2(t), resonant frequencies ω1,

ω2 and total decay rates γ1, γ2, respectively. Thus, to model

Within TCMT, the two resonant modes excited by the fast electron can be

modeled by with an effective 2× 2 Hamiltonian,
ˆ̂H2. Indeed, the dynamics of
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the system is determined by the following equation [192]:

dA2(t)

dt
= −iĤ2 A2(t) +K2 s

+(t), (3.5)

where subindex 2 stands for the dimension of the scattering problem deter-

mined by the number of resonant modes in the channel {TM, 1, 1}, A2(t) =

(a1(t), a2(t))
⊤ is the vector with the amplitudes of the two resonant modes

of the disk (symbol ⊤ denotes transpose of a matrix). Here the resonance

amplitudes are normalized such that |a1(t)|2, |a2(t)|2 correspond to the elec-

tromagnetic energies of each resonant mode. Notice that Eq. (3.5) has a similar

form to Eq. (1.53), but the two resonant modes in this case are coupled to the

incoming field (in our case the one produced by the electron beam) s+(t) in the

scattering channel {TM, 1, 1}. This coupling to the incoming field is quantified

via the vector of radiative coupling coefficients K2 = (κ1, κ2)
⊤. The effective

2× 2 Hamiltonian Ĥ2 is given by

Ĥ2 =

(
ω1 0

0 ω2

)
︸ ︷︷ ︸

Ω̂2

−i

(
γabs
1 /2 0

0 γabs
2 /2

)
︸ ︷︷ ︸

Γ̂abs
2

−i

(
γrad
1 /2 γ12
γ12 γrad

2 /2

)
︸ ︷︷ ︸

Γ̂rad
2

(3.6)

= Ω̂2 − iΓ̂2,

where Γ̂2 = Γ̂abs
2 + Γ̂rad

2 . From Eq. (3.6) one can observe that the matrix Ĥ2

has the information of the resonant frequencies ω1, ω2, the absorptive decay

rates γabs
1 , γabs

2 and the radiative decay rates, γrad
1 , γrad

2 of each resonant mode.

The total decay rate is the sum of the absorptive and radiative contributions,

γ = γabs + γrad, and determines the linewidth (full width at half-maximum) of

the resonance. Matrix elements γ12 represent the far-field interference between

the two resonant modes [192].

The scattered field of the disk, together with the incident field, produce the

following outgoing wave

s−(t) = D2A2(t) + s+(t), (3.7)

where D2 = (d1, d2) is a coupling vector and |s+(t)|2, |s−(t)|2 are the powers

of the incoming and outgoing waves, respectively and the subindex 2 stands

for the dimension of the scattering problem. Through the time-to-frequency

Fourier transform of Eqs. (3.5) and (3.7), one can find the following steady-

state solution for the amplitudes of the two resonant modes

A2(ω) =
[
i(Ĥ2 − ωÎ)

]−1

K2 s
+(ω), (3.8)
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3.2. Theoretical prediction of optical anapoles in EEL spectra

and the following expression for the outgoing wave:

s−(ω) = D2A2(ω) + s+(ω) =

[
D2

[
i(Ĥ2 − ωÎ)

]−1

K2 + 1

]
︸ ︷︷ ︸

Ŝ(ω)

s+(ω), (3.9)

with Â2(ω) = F [Â2(t)], s±(ω) = F [s±(t)] and F is the time-to-frequency

Fourier transform (see Appendix A).

Equation (3.9) relates the incoming wave s+(ω) and the outgoing wave s−(ω)

via the scattering matrix Ŝ(ω), which, under our assumption of a single scatter-

ing channel, reduces to a single matrix element. Furthermore, the vectors K2

andD2 are not independent but instead are related via energy conservation and

time-reversal symmetry of the underlying system. We explore such relations in

the box presented in the next page, which allows us to write γ12 =
√
γrad
1 γrad

2 /4

and K2 = D⊤
2 = (

√
γrad
1 ,

√
γrad
1 )⊤. Substituting the latter expressions into

Eqs. (3.8) and (3.9), the vector A2(ω) and the outgoing wave s−(ω) can then

be rewritten as follows:

A2(ω) =
[
i(Ĥ2 − ωÎ)

]−1

D⊤
2 s+(ω), (3.10)

s−(ω) = Ŝ(ω)s+(ω), (3.11)

where the scattering matrix is

Ŝ(ω) =
[
D2

[
i(Ĥ2 − ωÎ)

]−1

D⊤
2 + 1

]
. (3.12)

In addition, the amplitude of the outgoing wave s−(ω) can be expressed as a

sum of the contributions of the scattered and the incident fields (Eqs. (3.4)

and (3.5)) as: s−(ω) = aTM
11 (ω) + bTM

11 (ω). Substituting this last relation into

Eq. (3.9), one can deduce that the amplitude of the scattered field bTM
11 (ω) is

bTM
11 (ω) = aTM

11 (ω)
[
Ŝ(ω)− 1

]
, (3.13)

where s+(ω) = aTM
11 (ω) is the incoming radiation. Thus, the radiated power

by the nanodisk can be calculated as

Pscat(ω) = |bTM
11 (ω)|2 = |Ŝ(ω)− 1|2| s+(ω)|2, (3.14)
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3. Probing optical anapoles with fast electron beams

Relationship of Γ̂2 with K2 and D2

Energy conservation:

In the absence of incident radiation (s+(t) = 0) and with low absorp-

tion losses, energy conservation states that the power dissipated by the

resonator should be transformed into outgoing waves. This statement

can be written mathematically as follows:

d

dt
(A2(t)A

†
2(t)) = −|s−(t)|2. (3.15)

Substituting Eqs. (3.5) and (3.7) into Eq. (3.15), one finds that energy

conservation implies the following condition on vector D2:

D†
2D2 = 2Γ̂2, (3.16)

where the symbol † denotes conjugate transpose of a matrix.

Time-reversal symmetry:

When s+(t) = 0, one finds from Eq. (3.5) that the amplitude of the

resonant modes decay exponentially in time as

aj(t) = aj(0)e
−iωjte−γjt with j = 1, 2, (3.17)

where aj(0) are the resonance amplitudes at time t = 0. As a re-

sult of this decay in time, the outgoing wave produced by the two

resonant modes also decays exponentially in time according to the fol-

lowing relation (Eq. (3.7)): s−(t) = D2A2(t) = d1a1(0)e
−iω1te−γ1t +

d2a2(0)e
−iω2te−γ2t. If we apply the time-reversal transformation t 7→ −t

to the decay process described before, then the resonator is pumped by

the incoming wave s̃+(t) = (s−(−t))∗ = D∗
2A

∗
2(−t) whose amplitude

exponentially grows in time. Such an excitation produces resonance

amplitudes that also grow exponentially in time, without the outgoing

wave. Thus, in the time-reversed case, the amplitudes of the two res-

onant modes (Eq. (3.17)) transform as ãj(t) = a∗j (−t) or equivalently

as Ã2(t) = A∗
2(−t), and their dynamics is determined by the following

equation (complex conjugate of Eq. (3.5) and change t 7→ −t):

dÃ2(t)

dt
= −iĤ∗

2 Ã2(t)−K2 s̃
+(t). (3.18)

Through a time-to-frequency Fourier transform of Eq. (3.18), setting

ωÎ = Ω̂2 − iΓ̂2 and using Eqs. (3.7) and (3.16), one finds that time-

reversal symmetry implies the following condition:

K2 = D⊤
2 . (3.19)
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3.2. Theoretical prediction of optical anapoles in EEL spectra

Figure 3.5: COMSOL and TCMT simulations of EEL of the dielectric disks. Electron energy
loss spectra obtained from (a) numerical (COMSOL) simulations of high-index dielectric
disks and (b) TCMT using Eq. (3.21). The EEL spectra are normalized to the maximum
value of Γ(ω) obtained for each radius R0 and the results are displaced in the vertical axis
for clarity. Panels (c) and (d) show the parameters extracted from the TCMT for each case
as a function of the inverse radius, 1/R0.

whereas the total absorbed power by the nanodisk can be calculated as the

sum of the absorbed power by the two resonant modes, that is,

Pabs(ω) = γabs
1 |a1(ω)|2 + γabs

2 |a2(ω)|2 = 2A†
2(ω) Γ

abs
2 A2(ω). (3.20)

Finally, to calculate the electron energy losses within the TCMT formalism,

we assume that the energy lost by the electron beam when interacting with

the nanodisk is equal to the energy dissipated by the disk either via heating

(ohmic losses) or radiation into the far field [193]. Then, the electron energy-

loss probability Γ(ω) is proportional to the sum of the scattered and absorbed

power (extinction) by the nanodisk excited by the probing electron:

Γ(ω) ∝ Pscat(ω)+Pabs(ω) = |Ŝ(ω)−1|2| s+(ω)|2+2A†
2(ω) Γ

abs
2 A2(ω), (3.21)

where the vector A2(ω) and the scattering matrix (a scalar in our case) Ŝ(ω)
are determined by Eqs. (3.10)-(3.12).

Once we have developed the coupled-mode theory, we then apply it to re-

produce the simulated EEL spectra of the model disks with ε = 18, d = 70nm

and radii R0 = 268 nm, 240 nm, 215 nm, 190 nm, 165 nm, 138 nm and 110 nm

as shown in Fig. 3.5a. In particular, we use Eq. (3.21) to reproduce the sim-

ulated EEL spectra and find the eigenfrequencies ω1, ω2 and radiative decay

rates γrad
1 , γrad

2 of the two resonant modes that produce the first dip in the
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3. Probing optical anapoles with fast electron beams

simulated EEL spectra. We assume that γabs
1 = γabs

1 = 0. The result of this

procedure is plotted in Figs. 3.5b-c, where we observe that the spectra obtained

within the coupled-mode theory accurately reproduces the first dip appearing

in the simulated EEL spectra (highlighted by the red lines in Figs. 3.5a and

3.5b). Note in Figs. 3.5c and 3.5d that the eigenfrequencies and radiative

decay rates of the two resonant modes disperse linearly as a function of 1/R0.

This tendency of the dispersion is in good agreement with the typical linear

dispersion of Mie-resonances sustained by high-index dielectric nanodisks [194],

corroborating the adequacy of the coupled-mode model to capture the spectral

features of our system. In Appendix F, we show in Table F.1 all the parameters

obtained from the TCMT plotted in Figs. 3.5c and 3.5d.

3.2.2 Far-field spectroscopy vs EELS

To show the complementary and extra features revealed in EELS as compared

to far-field optical spectroscopy in probing anapoles, we compare the EEL

spectra of high-index dielectric disks with the far-field optical scattering spectra

of the same disks. To that end, we calculate the scattering cross section σscat(ω)

of the disks shown in Fig. 3.2b illuminated by a linearly-polarized plane wave

propagating along the z-axis (illustrated in Fig. 3.6a). The result is shown in

Fig. 3.6b and 3.6c (see Appendic B for the details of the numerical simulations).

Similar to the EEL spectra Γ(ω), we observe dips in σscat(ω) that shift to higher

energies as the nanodisk radius R0 decreases (see gray dashed lines in Fig.

3.6b). By performing a multipole decomposition of the current density Jind(ω)

induced in the disk of R0 = 250 nm (see Figs. 3.6d and 3.6e), we can associate

these dips (analogue to the discussion of Fig. 3.2) with the excitation of the

first (AE
11), second (AE

12) and third (AE
13) electric dipole anapole states, whose

field distributions inside the disk are shown in Fig. 3.6f. On the other hand,

quadrupolar contributions are negligible in the spectra, as compared to dipolar

contributions (Figs. 3.6d and 3.6e), highlighting the advantage of EELS for

probing higher-order anapole states.

The possibility to probe optical anapole states with fast electron beams turns

EELS into a promising tool for fundamental studies of optical phenomena in-

volving anapoles. In the following section, we present an experimental verifi-

cation (supported by numerical calculations) of optical anapoles probed using

EELS. The TCMT developed in this section will be extremely useful to de-

scribe the electromagnetic coupling between anapoles and excitons supported

by the WS2 nanodisks.
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3.2. Theoretical prediction of optical anapoles in EEL spectra

Figure 3.6: Optical anapoles excited by plane wave illumination. (a) A high-index dielectric
nanodisk (blue cylinder) is excited by a plane wave (Einc, red arrow) that propagates perpen-
dicular to the top surface of the disk (normal incidence) and is polarized along the x-axis. (b)
Simulated scattering cross section σscat(ω) of the nanodisk calculated as a function of both
the disk radius R0 and the photon energy ℏω. Gray dashed lines are guides to the eye and
indicate the position of the first three dips in the scattering cross section spectra. (c) σscat(ω)
obtained for the nanodisk with R0 = 250 nm. The red dots mark the spectral dip positions.
(d) Contribution of the scattering cross section of the Psph, Pcar and Tcar dipole moments
induced in the nanodisk with R0 = 250 nm. (e) Contribution of the scattering cross section

of the Q̂sph, Q̂
(e)
car and Q̂(T)

car quadrupole moments induced in the nanodisk with R0 = 250 nm.
(f) Amplitude of the total electric field |Etot(ω)| inside the disk at the yx-plane, for energies:
(AE

11) 1.255 eV, (AE
12) 1.87 eV and (AE

31) 2.46 eV. The scale bar is 100 nm. The field plots are
normalized to the amplitude of the incident plane wave |Einc|. In each case, the maximum
value of |Etot(ω)|/|Einc| is (from left to right): 3.0, 5.4 and 4.7.
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3. Probing optical anapoles with fast electron beams

3.3 Optical anapoles in WS2 nanodisks

To experimental verify the excitation of anapoles using EELS, our collaborators

fabricate high-index TMDC WS2 nanodisks with various radii and performed

electron energy loss spectroscopy to spatially resolve their optical behavior. We

note that Battulga Munkhbat, under the supervision of Prof. Timur Shegai at

Chalmers University of Technology, fabricated the individual WS2 nanodisks.

Andrew Yankovich, on the other hand, has conducted the EELS experiments at

Chalmers University of Technology under the supervision of Prof. Eva Olsson.

We refer the reader to ref. [195] for specific details on the fabrication procedure

and EELS experiments.

3.3.1 Fabrication of WS2 nanodisks

The WS2 disks were synthesized by transferring a mechanically exfoliated WS2
flake onto a 50 nm thick SiN membrane and by performing a combination of e-

beam lithography and dry etching. This process enables the creation of donut-

shaped etched patterns with isolated nanodisks at their center with selected

radii.

Figure 3.7a shows high-angle annular dark-field (HAADF) STEM images of

nine WS2 nanodisks of different size, demonstrating the ability to precisely syn-

thesize isolated nanodisks with controllable radii ranging from around 88 nm

to 295 nm. Simultaneously acquired 53◦ tilted HAADF and secondary elec-

tron (SE) STEM images of nanodisks with various radii (Figs. 3.7b-g) reveal

the morphology of the nanoresonators and the residual resist material that re-

mains on top of the WS2 nanodisks after fabrication, as indicated in Fig. 3.7e.

High-angle annular dark-field STEM images are dominated by mass-thickness

Z-contrast [196], and thus, the brightest regions reveal the position and shape

of the WS2 nanodisks below the primarily low-Z residual resist material. To

identify the size and morphology of both the WS2 nanodisks and the residual

material, we use SE image contrast which is sensitive to surface topography

[197]. From Figs. 3.7b-g we observe two main features of the WS2 nanodisks:

(i) the edges with small vertically aligned surface variations and (ii) a tapered

side surface with larger radii at the base. These variations of the WS2 nanodisk
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3.3. Optical anapoles in WS2 nanodisks

Figure 3.7: Fabrication of WS2 nanodisks. (a) Plan view HAADF STEM images of nine
WS2 nanodisks with radii ranging from 88 nm to 295 nm. Disk radii are shown at the top of
each image and a scale bar of 200 nm stands for all the images. (b)-(d) 53◦ tilted HAADF
STEM images of the nanodisks with radii 110 nm, 240 nm and 295 nm, respectively. (e)-
(g) 53◦ tilted SE STEM images simultaneously acquired of the three nanodisks shown in
panels (b)-(d). (h) Atomic resolution HAADF STEM image taken from the center of the
largest (295 nm) disk. Images are obtained by Andrew Yankovich at Chalmers University of
Technology (Gothenburg, Sweden).

radius are small compared to the average nanodisk radius, and thus modeling

our nanodisks as perfect disks is an adequate description of the system. The

residual resist could lead to minor shifts in energy of the disk modes, but does

not alter the excitation of the nanodisk modes and anapole states. Therefore,

the resist has not been included in our model calculations. In Fig. 3.7h we

show an atomic-resolution HAADF STEM image from the center of a nan-

odisk, revealing that the single crystalline atomic structure of the WS2 flake is

preserved after the nanodisk fabrication process.

The thickness of the nanodisk determines its optical response to a prob-

ing fast electron, therefore we experimentally measure the disk thickness using

three independent methods: EELS, tilted view STEM imaging, and the com-

bination of optical reflectivity and transfer-matrix fitting. As we show in ref.

[195], from the three methods, we can estimate a disk thickness of around

d ≈ 70 nm.
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3.3.2 Optical properties of WS2

As sketched in Fig. 3.8a, multilayer tungsten disulfide is a transition metal

dichalcogenide material composed of monolayers of W atoms (transition-metal

atoms) surrounded in a sandwich structure by S atoms (chalcogen atoms).

The stacking of the multiple layers that constitute WS2 is mediated via van

der Waals forces, which produce a uniaxial optical response of the material that

can be described by the following dielectric tensor [64]:

ε̂WS2
=

 ε⊥ 0 0

0 ε⊥ 0

0 0 ε∥

 , (3.22)

where we assumed that the stacking direction of the WS2 layers is along the

z-axis. Thus, εx = εy = ε⊥ is the in-plane component of the permittivity

tensor and εz = ε∥ is the out-of-plane component parallel to the optical axis of

WS2 (see Fig. 3.8a).

An interesting property of WS2 is its ability to support excitons in the visible

frequency range. This can be clearly observed in the optical response of this

material shown in Fig. 3.8b, where we plot the in- and out-of-plane components

of the permittivity tensor of WS2 obtained from ellipsometry experiments [64].

From the plots, we observe three promiment peaks (labeled as A, B and C) in

the visible frequency range associated with the A-, B- and C-excitons in WS2.

For reasons that will become clear in the next subsection, we model the in-

and out-of-plane permittivities of WS2 by a single excitonic excitation in the

in-plane direction, and ad a dielectric in the out-of-plane direction, as follows

[183]:

ε⊥ = ε∞ + fex
ω2
ex

ω2
ex − ω2 − iγexω

, (3.23)

ε∥ = 7, (3.24)

where ε∞ = 18 is the high-frequency permittivity, fex = 0.4 is the oscillator

strength, ℏωex = 1.96 eV is the exciton frequency and ℏγex = 90meV is the

exciton damping constant. Note that the model considers only the A-exciton

resonance of the WS2 (see Fig. 3.8c). As we will discuss in the following

subsections, the coexistence of excitonic resonances and dispersive anapoles

within the same energy range allows these resonant features to couple and

hybridize with each other.
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3.3. Optical anapoles in WS2 nanodisks

Figure 3.8: Atomic structure and dielectric function of WS2. (a) Schematic representation
of the WS2 nanodisk and its atomic structure. Below the nanodisk is a sketch of a side and
top views of the monolayers that constitute WS2. (b) Experimental in- and out-of-plane
components of the permittivity tensor of WS2, εx = εy = ε⊥ (solid lines) and εz = ε∥
(dashed lines), respectively. Blue lines represent real parts and gray lines imaginary parts.
The dielectric functions were obtained from ref. [64]. The labels A, B and C indicate the
A-, B-, and C-exciton absorption bands of WS2. (c) Same as (b) but the components of the
dielectric function are the ones given by Eqs. 3.23 and 3.24 with a single excitonic excitation
in the material.

3.3.3 EELS of WS2 nanodisks

To experimentally investigate the optical response of WS2 nanodisks to a fast

electron beam, our collaborators performed monochromated STEM EELS ex-

periments using a 200 keV electron beam with less than 1 nm spatial resolution

and 20meV − 40meV energy resolution. In Fig. 3.9a we show the collected

EEL spectra as a function of nanodisk radius as obtained when an aloof elec-

tron beam passes outside (b < R + 5nm) the edge of each nanodisk shown in

Fig. 3.7a. From the EEL spectra we observe a low-energy loss signal com-

posed of multiple sharp peaks and dips (see Fig. 3.9a). The number of peaks

and dips decreases steadily as the disk size is reduced and their position shifts

monotonously to higher energies in agreement with our theoretical prediction
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Figure 3.9: Electron energy loss spectra of the WS2 nanodisks. (a) Experimental EEL spectra
of the nine disks displayed in Fig. 3.7(a). Blue solid line in (b) and red solid line in (c) show
the EEL spectra for disks with R0 = 268 nm and R0 = 110 nm, respectively. Green lines
in panels (b) and (c) show EEL spectra from an unpatterned WS2 flake. (d) Simulated
EEL probability Γ(ω) as a function of both the nanodisk radius R0 and the energy loss
experienced by the electron beam. Blue solid line in (e) and red solid line in (f) show the
EEL spectra for disks with R0 = 268 nm and R0 = 110 nm, respectively. Thin blue and thin
red spectra correspond to Γ(ω) obtained with disks of artificial permittivity εd = 18. Green
lines in panels (e) and (f) show calculated Γ(ω) for a WS2 flake of 70 nm thickness. White
dashed lines in panels (a) and (d) are guides to the eye indicating anti-crossing of the AE

11
anapole and the A-exciton. Green curves in (b) and (c) were scaled to be consistent with
the relatives heights in (e) and (f). Numerical calculations are performed considering that
the nanodisk is on top of a 50 nm thick substrate layer characterized by the permittivity
of SiN εSiN = 4.1853. Experimental data are obtained by Andrew Yankovich at Chalmers
University of Technology (Gothenburg, Sweden).

(Fig. 3.2b).

All collected EEL spectra of the WS2 disks exhibit a spectral peak at around
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1.95 eV (bright region in Fig. 3.9a), above which the EEL signal dampens and

blurs. For a better quantitative comparison, we show in Figs. 3.9b and 3.9c

individual experimental EEL spectra of the R0 = 268 nm (blue spectrum) and

R0 = 110 nm (red spectrum) nanodisks, respectively. The peak at 1.96 eV is

due to the excitation of the A-exciton of WS2 (see Fig. 3.8b), as identified

in the EEL spectrum of an unpatterned WS2 flake shown by the green line in

Figs. 3.9b and 3.9c.

To better understand the measured EEL spectra, we calculate numerically

the EEL probability Γ(ω) for WS2 nanodisks with similar radius ranging from

88 nm to 295 nm and thickness d = 70nm (Fig. 3.9d). In contrast to the

numerical simulations shown in Fig. 3.2b, the calculations shown in Figs. 3.9d-

f were performed with the permittivity tensor given by Eqs. 3.23 and 3.24, i.

e., including the A-exciton resonance of WS2 (see Fig. 3.8c). The results of

these simulations show a good agreement with the experimental spectra in the

number, position, and dispersion of peaks and dips across the complete set

of disk sizes (compare Figs. 3.8a and 3.8d). The excitation of the A-exciton

can be consistently observed both in the experimental and simulated spectra.

Above 2 eV, the peaks and dips in the simulated spectra are better resolved

than in the experimental spectra, which is due to the excitation of B- and C-

exciton resonances in W2 that were not included in the numerical simulations.

Incorporating a single A-exciton resonance into the permittivity tensor of WS2
(Eqs. (3.23) and (3.24)) allows for clearly identifying the high-energy excitation

in the EEL spectra (Fig. 3.9d), and thus, identifying the complex hybridization

scheme.

To check whether the dips in the experimental spectra are due to the ex-

citation of optical anapoles, we analyze the EEL signal of the 268 nm radius

nanodisk (blue lines in Figs. 3.9e). Both the experimental and simulated EEL

spectra show two attenuated dips between 1 eV and 1.5 eV, marked with AE
11

and AE
21 in Figs. 3.9b and 3.9e. As discussed above in Fig. 3.2, these dips

can be associated with the first electric dipole and the first electric quadrupole

anapole states excited in the nanodisk. To verify that the dips in this energy

range are not caused by the material losses of WS2, we simulate the EEL spec-

trum of the model disk with R0 = 268 nm, d = 70nm and artificial permittivity

εd = 18 mimicking that of WS2 without the A-exciton resonance (thin blue line

in Fig. 3.9e). By comparing the solid and thin blue lines, we can observe that

the two lowest-energy dips (marked with AE
11 and AE

21) appear nearly at the

same energies in both spectra, which confirms that the dips are not caused by

material losses of WS2. The differences between the solid and the thin blue

spectra in Fig. 3.9e are a direct consequence of the appearance of the A-exciton

resonance at 1.96 eV (identified in the EEL spectrum of a WS2 flake shown by

the green line in Fig. 3.9e). As discussed in Subsection 3.3.2, multilayered WS2
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is a natural anisotropic material, however, the anisotropy in this case does not

influence the anapoles excitation, and the spectral response of the disk with

isotropic permittivity is nearly identical to that of an anisotropic disk. We also

note that in the experiments and simulations, the WS2 nanodisk is located

on top of a SiN substrate. This, however, does not alter the excitation of the

anapole states. It slightly redshifts the resonant modes of the nanodisk, causing

the anapole dips to appear at lower energies. A detailed analysis of anisotropy

and substrate effects in anapoles excitation is reported in the supplementary

materials of ref. [195].

Anapole-exciton hybridization

The coexistence of an excitonic resonance and the dispersive anapoles in the

same object allows these resonant features to couple and hybridize with each

other with different levels of strength as the nanodisk radius R0 is varied.

To explore this aspect, we trace the first electric dipole anapole state upon

decreasing the nanodisk radius from 268 nm to 110 nm (white dashed line in

Fig. 3.9a and 3.9d) until it reaches the energy of the A-exciton resonance,

where a splitting (anti-crossing) of the dip is produced. This behavior is clearly

shown in Fig. 3.9f, where we plot the simulated spectrum of the 110 nm disk

radius (solid red line, extracted from Fig. 3.9d). For comparison, we also plot

the spectrum of the model disk with artificial permittivity εd = 18 (thin red

line). By comparing the spectra of both type of disks, one can observe that the

attenuated anapole dip at 2 eV (thin red line) splits into two dips at 1.86 eV

and 2.16 eV in the solid red line. Due to the hybrid nature of these dips, we

refer to them as the lower anapole-exciton-hybrid (lower AE-hybrid) and the

upper anapole-exciton-hybrid (upper AE-hybrid). We can also see a peak in

between the two dips which originates from the excitation of excitons that do

not couple to the anapole. The splitting of the dips, together with the anti-

crossing feature, are signatures of the coupling between the AE
11 anapole state

and the A-exciton, consistent with previous observations in far-field optical

spectroscopy of WS2 nanodisks [183].

The anti-crossing observed, and fully identified in Fig. 3.9d resembles the

typical situation of coupling between an EM mode confined in an optical cav-

ity and a dipolar excitation. As pointed out in Subsection 3.2.1, the anapole,

however, is not an EM mode of the disk, but instead is the result of inter-

ference between at least two resonant modes excited by the electron beam

[88, 190]. To explain the coupling between the AE
11 anapole and the A-exciton,

we thus implement an analytical model of the response of the coupled anapole-

exciton system based on temporal coupled mode theory. We extend the TCMT

presented in Subsection 3.2.1, and model the anapole-exciton system with an
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3.3. Optical anapoles in WS2 nanodisks

+

-

Figure 3.10: Sketch of the anapole-exciton system excited by the electron beam. Solid arrows
represent incoming waves s+ toward the disk, whereas dashed arrows represent outgoing
waves s− outward the disk. In the schematics, the two disk modes with amplitudes a1,
a2 interact with the exciton with amplitude aex. The nanodisk scatters along the channel
{TM, 1, 1} to produce two anapole-exciton dips.

effective 3× 3 Hamiltonian, Ĥ3. This contains the eigenfrequencies of two EM

modes, whose far-field interference produces the AE
11 anapole dip, coupled to a

third non-radiating mode representing the A-exciton of WS2.

The dynamics of the anapole-exciton coupled system is then determined by

the following equation:

dA3(t)

dt
= −iĤ3 A3(t) +K3 s

+(t), (3.25)

where subindex 3 stands for the dimension of the scattering problem, A3(t) =

(a1(t), a2(t), aex(t))
⊤ is the vector with the amplitudes of the three modes of

the disk, namely the two resonant modes of the disk a1(t) and a2(t), and that of

the exciton aex(t). K3 = (
√
γrad
1 ,

√
γrad
2 , 0)⊤ is the vector of radiative coupling

coefficients to the incoming field (produced by the electron beam), and the

effective 3× 3 Hamiltonian Ĥ3 is given by

Ĥ3 =

 ω1 0 0

0 ω2 0

0 0 ωex


︸ ︷︷ ︸

Ω̂3

−i

 γabs
1 /2 0 0

0 γabs
2 /2 0

0 0 γex/2


︸ ︷︷ ︸

Γ̂abs
3

(3.26)

− i

 γrad
1 /2 γ12 0

γ12 γrad
2 /2 0

0 0 0


︸ ︷︷ ︸

Γ̂rad
3

+

 0 0 g1ex
0 0 g2ex

g1ex g2ex 0


︸ ︷︷ ︸

Ĝ3

= Ω̂3 − iΓ̂3 + Ĝ3,

111



3. Probing optical anapoles with fast electron beams

where Γ̂3 = Γ̂abs
3 +Γ̂rad

3 . The parameters g1ex and g2ex are the coupling strengths

between each of the resonant modes (Subsection 3.2.2) and the A-exciton. We

recall that γrad
1 = γrad

1 = 0.

Figure 3.10 shows a schematic representation of the two resonant modes

coupled to the A-exciton. We can see that the three resonances are excited by

the fast electron beam, and the scattered field of the disk, together with the

incident illumination, produce the following outgoing wave

s−(t) = K⊤
3 A3(t) + s+(t). (3.27)

Through a time-to-frequency Fourier transform of Eqs. (3.25) and (3.27), one

can find the following steady-state solution for the amplitudes of the three

resonant modes

A3(ω) =
[
i(Ĥ3 − ωÎ)

]−1

K3 s
+(ω), (3.28)

with

s−(ω) = Ŝ(ω)s+(ω). (3.29)

In this case, the scattering matrix Ŝ(ω) is determined by the following equation:

Ŝ(ω) =
[
K⊤

3

[
i(Ĥ3 − ωÎ)

]−1

K⊤
3 + 1

]
, (3.30)

and, following Eq. 3.21, we can calculate the electron energy-loss probabil-

ity Γ(ω) as the sum of the scattered and absorbed power (extinction) by the

nanodisk, as:

Γ(ω) ∝ Pscat(ω)+Pabs(ω) = |Ŝ(ω)−1|2| s+(ω)|2+2A†
3(ω) Γ

abs
3 A3(ω). (3.31)

We use this model to reproduce the experimental and simulated EEL spectra

of the WS2 nanodisk (Figs. 3.9a and 3.9d). Specifically, we model the electron

energy losses using Eq. 3.31 and find the coupling strengths, g1ex and g2ex,

between each EM mode and the A-exciton resonance. The values of ω1, ω2

and γ1, γ2 are the same as those obtained in Subsection 3.2.1 (see Figs. 3.5c-

d and Table F.1). We next diagonalize the effective 3 × 3 Hamiltonian Ĥ3

(Eq. 3.26) and find the eigenfrequencies of the new hybrid modes. The results

obtained with this procedure are shown in Fig. 3.11, where we show in detail

the TMCT simulations, eigenfrequencies of the hybrid modes and coupling

strengths. From TCMT simulations, we are able to recover the anti-crossing

of the hybrid dips, as indicated by the red lines in Figs. 3.11b and 3.11f. More

importantly, the analysis reveals a clear anti-crossing between the hybrid modes

as one varies the nanodisk radius (see Figs. 3.11c and 3.11g), indicating that
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3.3. Optical anapoles in WS2 nanodisks

Figure 3.11: Quantitative analysis of the EEL of tungsten disulfide disks by TCMT. Electron
energy loss spectra obtained from (a) numerical (COMSOL) simulations of the WS2 disks
and (b) TCMT simulations using Eq. 3.31. Panels (c)-(d) show the parameters extracted
from the TCMT results as a function of the inverse radius, 1/R0. (e)-(h) show the same
analysis as in panels (a)-(d) but for the experimental spectra as a reference. All spectra are
normalized to their maximum value obtained for each radius R0 and the results are displaced
in the vertical axis for clarity.

the two electromagnetic modes are strongly coupled to the A-exciton resonance.

The two dips that result from the coupling between the two modes and the A-

exciton correspond to the lower and upper AE-hybrids.
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3. Probing optical anapoles with fast electron beams

3.3.4 Real-space mapping of optical anapole states

EELS in STEM shows the ability to acquire spectral information of a sample

with subnanometer spatial resolution [10, 17, 198]. Typically, this is achieved by

scanning the sample area with the fast electron beam, thus obtaining spectral

information of the sample at different beam positions. We apply this capability

to spatially resolve the resonant modes and anapoles states excited in the WS2
disks. To that end, we collect the experimental EEL signal as a function of

the position of the fast electron with respect to the nanodisk center (impact

parameter b). The cylindrical symmetry of the nanodisk along the z-axis,

together with the trajectory of the probing electron beam, yields an EEL signal

that depends only on the impact parameter. This allows us to present the

spatial distribution of the EEL signals obtained from the WS2 nanodisks at

particular energy loss by a 2D-EEL line profile showing the energy loss as a

function of impact parameters for each energy.

Figure 3.12 shows experimental and simulated 2D-EEL line profiles for R0 =

268 nm (Figs. 3.12a and 3.12b) and R0 = 110 nm nanodisks (Figs. 3.12f

and 3.12g). The line profiles for the R0 = 268 nm nanodisk reveal a low-loss

EEL signal confined to an annular region with a maximum at the edge of the

nanodisk (see region between 0.5 eV to 1.5 eV in Figs. 3.12a and Fig. 3.12b).

We show in Fig. 3.12e the simulated spectrum for a beam that is close to the

nanodisk edge (blue dashed line in Fig. 3.12a). We recognize the AE
11 and

the AE
21 anapole dips at around 1 eV and 1.25 eV, respectively. The electric

field distribution inside the nanodisk associated with these energies (see Figs.

3.12c and 3.12d) corroborate the nature of these dips. Interestingly, when

the electron beam passes through the nanodisk center (b = 0) the EEL signal

becomes nearly zero, as shown in Figs. 3.12a and Fig. 3.12b. In this case,

the electron beam is not able to efficiently excite the disk modes due to the

cylindrical symmetry of the disk, and thus the optical anapoles are also not

excited by the electron beam.

Finally, the line profile obtained from the R0 = 110 nm nanodisk reveals an

EEL signal that is spatially confined to an annular region from half the disk

radius to significantly outside of the nanodisk. The calculated electric field

distributions at the spectral dips (around 1.75 eV and 2.25 eV as indicated in

Fig. 3.12j) display a clear electric dipole anapole-like field pattern (Figs. 3.12h

and 3.12i). These field distributions corroborates that the first electric dipole

anapole is hybridized with the A-exciton (bright region around 1.95 eV) to

produce the anapole-exciton hybrids. These results open up the possibility to
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3.3. Optical anapoles in WS2 nanodisks

Figure 3.12: Spatially-resolved EEL of WS2 nanodisks. (a) Simulated and (b) experimental
EEL spectra recorded along the impact parameter b of a disk with 268 nm radius as depicted
in the schematics above the spectra. Blue dashed lines indicate b = 268 nm. White dashed
lines indicate the anapoles AE

11 (at 1.048 eV) and AE
21 (at 1.276 eV). Panels on the right of

(b) show the amplitude of the total electric field |Etot(ω)| at the xy-plane for the energies
(c) 1.048 eV and (d) 1.276 eV. The scale bar is 100 nm and the field plots are normalized
to the maximum value |Emax| in each case: (c) 3.2 × 108 V/m and (d) 3.4 × 108 V/m. (e)
Simulated Γ(ω) spectra for the WS2 disk (solid blue line), the model disk with εd = 18 (thin
blue line) and a WS2 flake of 70 nm thickness (green line). (f)-(j) same as (a)-(e) but for the
R0 = 110 nm nanodisk. The scale bars in panels (h) and (j) are 50 nm. The maximum value
|Emax| in each case is: (h) 1.2× 109 V/m and (j) 1.4× 109 V/m. For the calculation of Γ(ω),
we use an impact parameter equal to b = 1.05R0. Numerical calculations are performed
considering that the nanodisk is on top of a 50 nm thick substrate layer characterized by the
permittivity of SiN εSiN = 4.1853. Experimental data are obtained by Andrew Yankovich at
Chalmers University of Technology (Gothenburg, Sweden).
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3. Probing optical anapoles with fast electron beams

explore, in future EELS experiments, systems exhibiting more complex spatial

behavior of the isolated anapoles or anapole-exciton hybrids by, for example,

breaking the cylindrical symmetry of the system.

3.4 Summary and conclusions

We demonstrate in this chapter that electron energy loss spectroscopy can be

applied to probe optical anapole states in high-index dielectric nanoresonators.

To that end, we calculate the electron energy-loss probability of high-index

dielectric nanodisks and show that the prominent dips in the EEL spectra are

associated with the excitation of optical anapoles in the disk. We experimen-

tally verify our theoretical prediction by performing EELS of WS2 nanodisks

and reveal optical anapoles and anapole-exciton hybrid excitation within the

same nanoobject. Additionally, we demonstrate that EELS in STEM allows

for spatial mapping of WS2 nanodisk modes, isolated anapoles and anapole-

exciton hybrids with subnanometer resolution. By placing the electron beam

at specific positions along the WS2 nanodisk, we can effectively control the

modes excitation and thus the formation of the optical anapole.

Our results show that EELS in STEM is a powerful tool to study dark

scattering states and their complex interactions with the electronic structure

of dielectric materials beyond the possibilities offered by conventional optical

techniques. We anticipate that our results will enable new possibilities for

studying higher-order and magnetic anapole states in dielectric nanoresonators

with subnanometer spatial resolution.

116



4
Remote near-field spectrocopy of

vibrational strong coupling in

phononic nanoresonators

We need to be really careful with the loop and how we

described it. Really really dangerous criterium.

–Rainer’s email (March 03, 2021)

Abstract

In this chapter, we use infrared near-field spectroscopy to study the coupling

between the localized modes of PhP nanoresonators made of h-BN and molec-

ular vibrational modes of a semiconductor organic layer. For a most direct

probing of the nanoresonator-molecule coupling, we minimize the tip-resonator

coupling by employing a non-resonant tip and avoid the direct near-field in-

teraction between tip and molecules by probing the molecule-free part of par-

tially molecule-covered nanoresonators, to which we refer to as remote near-field

probing. We obtain spatially and spectrally resolved maps of the hybrid po-

lariton modes, as well as the corresponding coupling strengths, demonstrating

vibrational strong coupling (VSC) on a single PhP nanoresonator level. The

results discussed in this chapter have been published in the following publica-

tion: C. Maciel-Escudero et al. “Remote near-field spectroscopy of vibrational

strong coupling between organic molecules and phononic nanoresonators”, Nat.

Commun. 13, 6850 (2022).
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4. Remote near-field spectroscopy of VSC

4.1 Introduction

Strong coupling between molecular vibrations and infrared photons (vibra-

tional strong coupling, VSC) leads to hybrid light-matter states [72, 199–203].

They offer intriguing possibilities for ultra-sensitive vibrational spectroscopy

[90, 204–206] and for modifying chemical reactions [201, 202]. Typically, VSC is

achieved with molecules embedded into microcavities, implying large photonic

mode volumes and large amounts of molecules, which limits access to quantum

phenomena that may be accesible only for nanoscale amounts of molecules or

at the level of a few molecules. In this regard, plasmonic infrared resonators

are a promising route to achieve VSC at the nanoscale [204, 205] owing to their

dramatically reduced mode volumes as compared to microcavities. Alterna-

tively, phonon polaritons (PhP) can be employed for VSC experiments, offering

stronger polariton confinement and larger quality factors [90, 206, 207]. Unfor-

tunately, the far-field extinction cross-section of individual PhP nanoresonators

[27, 115, 117, 208–213] is extremely small (due to their small size compared to

the infrared wavelength), challenging infrared far-field spectroscopy. Further,

subradiant dark modes (offering the advantage of longer lifetimes) are diffi-

cult to probe by far-field spectroscopy. These problems can be circumvented

by accessing modes through nanoscale Fourier transform infrared (nano-FTIR)

spectroscopy. As discussed in Chapter 1, this technique employs the strong

field concentration at the apex of a metallic probe tip (the near-field probe)

[23, 24] to enable near-field spectroscopy and spatial mapping of both bright

and dark modes of individual nanoresonators [27, 211].

Nano-FTIR spectroscopy has been employed to study the coupling between

molecular vibrations and plasmonic resonators, but the near-field probe itself

can couple with the plasmonic resonator and the molecules [204, 214, 215],

eventually reaching strong tip-resonator and tip-molecule coupling. Although

this coupling may be exploited for on-demand control of VSC, it may challenge

the probing of the hybrid polariton modes that are exclusively formed by the

nanoresonator-molecule coupling.

In this chapter, we first demonstrate in Section 4.2 that hybrid polariton

modes formed by vibrational strong coupling between a single PhP nanores-

onator and molecular layer can be studied using nano-FTIR spectroscopy. We

minimize the influence of the tip by probing the molecule-free part of partially

molecule-covered PhP nanoresonators with a non-resonant metallic tip, which

118



4.2. Nano-FTIR spectroscopy of phononic nanoresonators

we refer to as remote near-field probing. In Subsection 4.2.1, we discuss the ex-

citation of higher-order modes in the PhP nanoresonator. In Subsection 4.2.2,

we show spatio-spectral near-field mappings of bare and half-molecule-covered

h-BN nanoresonators, demonstrating the potential of nano-FTIR spectroscopy

for identification of polaritonic modes not accessible by conventional far-field

optical techniques. In Section 4.3, we verify the experimental results via com-

parative numerical simulations, where the near-field probe is modeled by a

point-dipole source (representing a non-disturbing near-field probe). We dis-

cuss the appearance of a small loop in the trajectory of the complex-valued

near-field spectra, and we show that the appearance of this loop is a direct

consequence of the coupling between the resonator mode and the molecular

vibrational mode. Finally, in Section 4.4, we present a quantitative analysis

of experimental and simulated near-field spectra based on the model of two-

coupled harmonic oscillators. At the end of this chapter, in Section 4.5, we show

numerical simulations where the tip is modeled as a conical structure, and we

provide a detailed analysis of its influence on the determination of eigenfrequen-

cies, linewiths, and coupling strengths in the coupled nanoresonator-molecule

system. The frequency ω is given in spectroscopic wavenumbers (see Appendix

A) throughout this chapter.

4.2
Nano-FTIR spectroscopy of phononic

nanoresonators

We motivate our study by the results obtained in the experiment illustrated

in Fig. 4.1a, performed by our collaborators at CIC nanoGUNE. Half of a

hexagonal boron nitride (h-BN) nanorod is covered with CBP molecules (4, 4′-

bis(N-carbazolyl)-1,1′-biphenyl; organic semiconductor) that exhibit a vibra-

tional resonance at ωCBP = 1450 cm−1, as identified from the near-field spec-

trum of a thin CBP layer shown by the green curve in Figs. 4.1d and 4.1e. The

near-field probe, a non-resonant metallic tip [216] of an atomic force microscope,

is placed remotely with respect to the molecules at the opposite extremity of the

h-BN rod. The tip (oscillating normal to the sample at frequency Ω) concen-

trates an illuminating broadband infrared laser beam at its apex to a nanoscale

near-field spot, which excites phonon polaritons [30, 69, 217] exhibiting Fabry-

Perot (FP) resonances [90, 211, 212] on the h-BN nanorod [27]. Figure 4.1b

shows a simulation of the second-order FP mode excited by the near field of a

dipole (note that this mode is often referred to as a dark mode since it cannot
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4. Remote near-field spectroscopy of VSC

Figure 4.1: Tip-enhanced near-field probing of half molecule-covered h-BN nanoresonators.
(a) Illustration of the experiment. (b) Numerical simulation showing the amplitude of the
z-component of the electric field at ω = 1437 cm−1 around an h-BN nanorod of 1000 nm
length, 250 nm width and 87 nm height, whose right half is covered by a 50 nm thick CBP
layer. The vertical arrow indicates a point-dipole source mimicking the tip. (c) Topography
image of h-BN nanorods (length L, 87 nm height and 250 nm width) that are half covered
by a 50 nm thick CBP layer. (d) Experimental nano-FTIR amplitude spectra recorded at
the positions marked in panel (c) by dots of the respective color. For better visualization,
spectra for L = 1.0µm and 1.3µm are scaled by a factor of 0.7. (e) Simulated nano-FTIR
amplitude spectra, obtained as described in Section 4.3. We use the nominal experimental
values for the width and thickness of the h-BN rods. The lengths L are chosen such that the
2nd-order FP mode tunes across the molecular vibrational resonance of the CBP molecules at
ω = 1450 cm−1. We attribute the differences between L in the experiment and the simulation
to fabrication uncertainties which can produce trapezoid-like rod cross sections [90, 206]. In
panels (d) and (e) the green curves show experimental and simulated nano-FTIR amplitude
spectra of a 50 nm thick bare CBP layer on a 250 nm thick SiO2 on Si substrate. Red lines are
guides to the eye and mark peak positions. Grey-dashed lines indicate the CBP vibrational
resonance at ωCBP = 1450 cm−1 whose linewidth is 6.4 cm−1 (ref. [207]). All spectra are
normalized to that obtained on a Au reference surface, and are offset. Experimental data are
obtained by Irene Dolado at CIC nanoGUNE (Donostia-San Sebastian).

be excited by far-field illumination due to its zero net electric dipole moment).

The coupling between the resonator mode and the layer of molecules, resulting

from the strong overlap between the near-field of the resonator mode and the

molecules, is probed by recording the tip-scattered field with an asymmetric

Fourier transform spectrometer, yielding both near-field amplitude and phase

spectra, s3(ω) and φ3(ω), respectively, where the index indicates that the de-

tector signal was demodulated at 3Ω to suppress background signals (Chapter

1).

A topography image of the set of h-BN nanorods of 250 nm width, 87 nm

height and different lengths L is shown in Fig. 4.1c, where one can also ob-

serve the thin, homogeneous CBP layer of 50 nm thickness covering the right
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half of all resonators. The experimental nano-FTIR amplitude spectra (Fig.

4.1d) recorded on the left rod extremity (measurement position marked by

blue symbols in Fig. 4.1c) clearly show the resonance peaks of the first- and

second-order FP resonances (illustrated by the schematic above the diagram in

Fig. 4.1d and verified by the experimental mode pattern shown in Fig. 4.3),

which shift to higher frequencies when the nanoresonator length L is reduced

from 1300 nm to 800 nm. However, the peak of the second-order mode does not

cross the CBP vibrational resonance at ωCBP = 1450 cm−1. Tracing the peak

positions (marked by red lines) indeed reveals anti-crossing behavior, indicat-

ing that the nanoresonator near field couples with the molecular vibrations of

the CBP layer. Most importantly, the nanoresonator-molecule coupling (oc-

curring on the right half of the h-BN nanorods) can be well probed when the

tip is placed on the left nanorod extremity, that is several 100 nm away from

the molecules, where a direct near-field interaction between tip and molecules

can be neglected (note that significant near-field interaction between tip and

sample occurs only for distances smaller than the tip apex radius, here about

25 nm). The experimental near-field spectra can be well reproduced by numer-

ical simulations (Fig. 4.1e), where the tip is modeled as a point-dipole source,

which are described in more detail in Section 4.3 and Appendix B.

We note that in the experimental spectra (Fig. 4.1d), we observe several

smaller peaks, e.g., in the frequency range between 1420 cm−1 and 1440 cm−1.

They can be attributed to higher-order PhP modes [206]. In the simulated

spectra, where the near-field probe is described by a point dipole source (Fig.

4.1e), these peaks are only partially observed. A much better reproduction of

these peaks is obtained in numerical simulations where the near-field probe is

modeled by a conical metallic tip, as we discuss in the following subsection.

4.2.1 Higher-order modes in the h-BN resonator

As pointed out above, there are several peaks in the experimental near-field

spectra (Fig. 4.1d), which are not observed in the numerical simulations of the

amplitude spectra shown in Fig. 4.1e. They can be attributed to higher-order

PhP modes. To demonstrate this, we show in Figs. 4.2b the near-field spectrum

of a half molecule-covered nanoresonator, whose length is chosen such that the

2nd-order FP resonance is at 1450 cm−1. The tip is modeled as a point-dipole

source and the z-component of the electric field, Ez(ω), is interpreted as the

near-field signal (Section 4.3), analogue to the procedure followed to obtain the

results in Fig. 4.1e. In the frequency range from 1430 cm−1 to 1441 cm−1 (grey

shaded region in Fig. 4.2b) the amplitude spectrum |Ez(ω)| does not show
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Figure 4.2: Higher-order modes in the h-BN nanoresonator. (a) Schematics showing a point-
dipole source above an h-BN nanorod of 840 nm length, 87 nm height and 250 nm width,
which is half covered with a 50 nm thick CBP layer. (b) Near-field amplitude below the point
dipole (at the position marked by a cross in panel (a)) as a function of frequency ω. The grey
shaded region marks the frequency region from 1430 cm−1 to 1441 cm−1. (c) Near-field below
the point-dipole source, plotted in the complex plane from 1430 cm−1 to 1441 cm−1. The
arrow indicates increasing frequency. (d) Schematics showing a conical metal tip oscillating
above the same h-BN nanoresonator as in (a) at frequency Ω. (e) Amplitude of the 3rd-order
demodulated scattered field, s3(ω). The grey shaded region marks the frequency region from
1430 cm−1 to 1441 cm−1. (f) 3rd-order demodulated scattered field, σ3(ω), plotted in the
complex plane from 1430 cm−1 to 1441 cm−1. The arrow indicates increasing frequency. The
simulations are performed without considering the SiO2/Si substrate.

clearly any resonance peak. By plotting Ez(ω) in the complex plane in the

same spectral range (gray shaded region in Fig. 4.2c), however, we can observe

a small kink in the complex trajectory, indicating a weakly excited mode.

We repeat the simulation with the tip modeled as a platinum cone (see

schematics in Fig. 4.2d) and calculate the complex-valued 3rd-order demod-

ulated scattered field (σ3(ω) = s3(ω)e
iφ3(ω), Figs. 4.2e-f). For simulation

details, see Appendix B.2. In contrast to the near-field spectrum obtained

with the point-dipole simulation (Fig. 4.2b), we observe a clear peak at around

1437 cm−1 in the amplitude spectrum s3(ω) (Fig. 4.2e), corresponding to a

higher-order PhP mode excited by the tip in the h-BN nanoresonator. As we

will show in Sections 4.3 and 4.5, the excitation of a nanoresonator mode cor-

responds to a loop or a kink when plotting Ez(ω) or σ3(ω) in the complex

plane, as observed in Fig. 4.2c and 4.2f. Thus, the appearance of the loop

when plotting σ3(ω) in the complex plane indicates that the excitation of this

higher-order PhP mode is stronger for the tip being a metal cone rather than a
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point-dipole source. For that reason, the peak is observed in the experimental

near-field amplitude spectrum (Fig. 4.1d) but not in the simulated near-field

amplitude spectrum (Fig. 4.1e).

4.2.2 Near-field mapping of phononic nanoresonators

Remote near-field spectroscopy can be applied for nanoscale spatial mapping of

the resonator-molecule coupling via hyperspectral nanoimaging (even for dark

modes that are not accessible by far-field spectroscopy). In future, such a pos-

sibility could be applied, for example, to study advanced resonator structures

where a variety of different resonator modes may coexist and couple with the

molecular vibrations. In Fig. 4.3, we show this capability for direct exper-

imental identification of the phononic resonator mode that couples with the

molecular layer and to verify that the peak splitting is caused by the presence

of the molecules. To that end, we record nano-FTIR amplitude spectra along

the principal axis of a bare (Figs. 4.3a and 4.3b) and a half-covered (Figs.

4.3c and 4.3d) h-BN nanoresonator. The length L of the nanoresonators are

chosen such that their 2nd-order FP resonance occurs at the molecular vibra-

tional resonance, ωCBP = 1450 cm−1. For each spectral peak, we observe strong

near-field oscillations along the principal nanoresonator axis. The number of

oscillations increases steadily with increasing frequency, revealing a series of

FP modes. The three near-field maxima (in the center and at the two extrem-

ities of the nanoresonator) at 1450 cm−1 clearly reveal the 2nd-order (dark)

FP mode. More importantly, the 2nd-order FP modal near-field pattern of

the half-covered nanoresonator exhibits a small spectral dip at the molecular

vibrational resonance of CBP at 1450 cm−1 (dark region in Fig. 4.3d, marked

by the green double arrow line) all along the principal resonator axis, which is

absent in the hyperspectral linescan of the bare nanoresonator (Fig. 4.3b). For

a better quantitative comparison, we show in Fig. 4.3e the nano-FTIR ampli-

tude spectra recorded at the left extremity of the bare and molecule-covered

h-BN nanoresonators (positions marked by blue and red dots in Figs. 4.3a

and 4.3c respectively). One can clearly observe that the peak of the 1st-order

FP mode (far away from the CBP resonance, ωCBP = 1450 cm−1) is nearly

the same for both nanoresonators, whereas the peak of the 2nd-order FP mode

of the molecule-covered h-BN nanoresonator exhibits a spectral dip at ωCBP,

as typically occurs in the coupling between molecular vibrational modes and

nanoresonator modes [90, 204, 206, 214].

The spatio-spectral observation presented in Fig. 4.3 demonstrates that the

nanoresonator-molecule coupling can in principle be probed at any location
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4. Remote near-field spectroscopy of VSC

Figure 4.3: Nano-FTIR line scans of bare and half molecule-covered h-BN nanoresonators.
(a) Topography image of a bare h-BN nanorod of 1.25µm length, 110 nm height and 250 nm
width. (b) nano-FTIR amplitude spectra recorded along the horizontal dashed black line
in panel (a). (c) Topography image of h-BN nanorod of 1.1µm length, 110 nm height and
250 nm width, which is half covered with a 50 nm thick CBP layer. (d) nano-FTIR amplitude
spectra recorded along the horizontal dashed black line in panel (c). (e) nano-FTIR amplitude
spectra of the bare (blue) and molecule-covered (red) h-BN nanorod at positions marked by
blue and red dots in panels (a) and (c), respectively. Both spectra are normalized to the
peak maximum at 1408 cm−1. (f) nano-FTIR amplitude spectra of the molecule-covered h-
BN nanorod at positions marked by red, orange and black dots in panel (c). The spectra are
normalized to the peak maximum at 1445 cm−1. The vertical green dashed line marks the
frequency of the molecular vibrational resonance of CBP. Experimental data are obtained by
Irene Dolado at CIC nanoGUNE (Donostia-San Sebastian).

where the nanoresonator mode can be activated by the near-field probe. On

the other hand, Fig. 4.3 reveals that the near-field signal on the molecule-

covered part of the nanoresonator is strongly reduced due to the increased tip-

nanoresonator distance and that the spectral line shape is modified due to the

direct near-field interaction between tip and molecules, highlighting the advan-

tages of probing the molecule-free part of the resonator, that is, probing larger

near-field signals and reduction of undesirable near-field interaction between tip

and molecules. The modification of the line shape is more clearly observed in

Fig. 4.3f, which compares spectra recorded on the molecule-free nanoresonator

part (B and C) with spectrum D that is recorded on the molecule-covered part.

Specifically, we can observe that the spectrum D exhibits an asymmetric line

shape and that the dip is shifted to slightly higher frequencies. This asymmet-

ric line shape can be explained as a superposition of the symmetric nano-FTIR

spectrum of the molecule-covered nanoresonator (B) and the asymmetric nano-

FTIR spectrum of a bare CBP layer (such as the green spectrum in Fig. 4.1)

caused by the direct near-field interaction between tip and molecules. The

later exhibits a derivative-like spectral line shape, that is, a peak and a dip to
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4.3. Theoretical description of remote near-field probing of VSC

the left and right of the molecular resonance, respectively, which is a typical

characteristic of nano-FTIR amplitude spectra of molecular layers [218]. This

analysis thus demonstrates the ability of near-field spectroscopy to spatially

map the polaritonic modes that result from the nanoresonator-molecule cou-

pling. Furthermore, it confirms that the coupling between the nanoresonator

and molecule can be analyzed at any location where the nanoresonator mode

is activated by the near-field probe.

4.3
Theoretical description of remote near-

field probing of VSC

To understand how the hybrid nanoresonator-molecule modes manifest in the

near-field spectra, we first discuss in Fig. 4.4 the results of our numerical

simulations where the tip is modeled as a point-dipole source [27, 219] (red

arrow in Figs. 4.4a and 4.4d) located above the h-BN resonator. We obtain the

complex-valued near-field spectrum by evaluating the vertical (z-) component

of the electric field below the dipole (evaluation position marked by a cross

in Figs. 4.4a and 4.4d) as a function of frequency, Ez(ω). Further simulation

details are described in Appendix B.2. Importantly, the dipole moment of

the source is kept constant and consequently is not modified by the fields of

the nanoresonator. This simplified modeling of the tip allows for excluding a

potential coupling of the tip with the nanoresonator and the molecules, and

thus exclusively reveals the spectral near-field signature of the coupling between

the nanoresonator and the molecular vibrations.

Figure 4.4b shows the simulated near-field amplitude spectrum, |Ez(ω)|
(open symbols), of a h-BN nanorod that is half covered with a layer of permit-

tivity ε = 2.8 (corresponding to the permittivity of CBP without the molecular

resonance at 1450 cm−1). Its length is chosen such that the 2nd-order FP res-

onance is at ω = 1450 cm−1, which manifests as a single peak in the near-field

amplitude spectrum. Repeating the simulation when the h-BN nanorod is half

covered by a CBP layer (Fig. 4.4e), the nanoresonator’s near-field amplitude

peak splits into two peaks (open symbols), which is a consequence of the cou-

pling between the nanoresonator mode and molecular vibrational mode. For

quantifying the coupling strength between the h-BN nanoresonator and the

molecular vibrations, we fit the simulated near-field spectra by the model of
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4. Remote near-field spectroscopy of VSC

Figure 4.4: Theoretical description of near-field probing of VSC. (a) Simulation geometry,
showing a point-dipole source above an h-BN nanorod of 785 nm length, 87 nm height and
250 nm width, which is half covered with a 50 nm thick layer of permittivity ε = 2.8. (b)
Electric field amplitude, |Ez(ω)|, below the dipole at the position marked by a cross in panel
(a) (normalized to that obtained on a Au reference surface, |Ez(ω)/Ez,Au(ω)|), as function of
frequency ω. (c) Electric field Ez(ω) below the point-dipole source at the position marked by
a cross in panel (a), plotted in the complex plane. The arrow indicates increasing frequency
ω. (d) Simulation geometry, showing a point-dipole source above the same h-BN nanorod
as in panel (a) but half covered with CBP molecules. (e) Same as panel (b), but the h-BN
nanorod is half covered by a 50 nm thick CBP layer. (f) Same as panel (c), but for a half
CBP-covered h-BN nanorod. Open symbols in panels (b), (c), (e) and (f) show simulation
results. Solid lines show fits obtained with Eqs. (4.2a) and (4.3).

two coupled harmonic oscillators discussed in Chapter 1:

ẍPhP(t) + γPhPẋPhP(t) + ω2
PhPxPhP(t)− 2gẋCBP(t) = FPhP(t), (4.1a)

ẍCBP(t) + γCBPẋCBP(t) + ω2
CBPxCBP(t) + 2gẋPhP(t) = FCBP(t), (4.1b)

where xPhP(t) is associated with the vector potentialA(t) of the PhP mode and

xCBP(t) is associated with the dipole moment pCBP(t) induced at the molecular

layer [75]. The PhP mode has resonance frequency ωPhP and damping constant

γPhP, and the molecular vibrational mode of CBP has resonance frequency

ωCBP and damping constant γCBP. g is the coupling strength between the

two resonators and the dots denote time derivatives. Notice that Eqs. (4.1a)-

(4.1b) have similar form to Eq. (1.48a)-(1.48b), but in this situation each

oscillator is driven by an effective force FPhP(t) and FCBP(t). These effective
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4.3. Theoretical description of remote near-field probing of VSC

forces are proportional to the near fields provided by the tip. In particular,

we set FCBP(t) = 0 as in our experiment the near fields of the tip do not act

directly on the CBP molecules. Through a time-to-frequency Fourier transform

of Eqs. (4.1a) and (4.1b), one can find the following steady-state solutions of

the equations above:

xPhP(ω) =
(ω2

CBP − ω2 − iγCBP ω)FPhP(ω)

(ω2
PhP − ω2 − iγPhP ω)(ω2

CBP − ω2 − iγCBP ω)− (2gω)2
, (4.2a)

xCBP(ω) =
(i2gω)FPhP(ω)

(ω2
PhP − ω2 − iγPhP ω)(ω2

CBP − ω2 − iγCBP ω)− (2gω)2
, (4.2b)

with xPhP(ω) = F [xPhP(t)], xCBP(ω) = F [xCBP(t)], FPhP(ω) = F [FPhP(t)]

and F is the time-to-frequency Fourier transform (see Appendix A).

Since xPhP(ω) is proportional to the vector potential A(ω), and thus to the

near field E(ω) of the PhP mode, we use Eq. (4.2a) to fit the simulated near-

field spectra (Fig. 4.4). Specifically, to perform the fitting, we add a complex-

valued offset term (x0+iy0) to xPhP(ω), which accounts for the non-polaritonic

near-field interaction between the tip and the nanoresonator, i.e.,

Ez(ω) ∝ xPhP(ω) + x0 + iy0, (4.3)

and for a most reliable analysis, we perform a complex-valued fitting of the

simulated near-field spectra Ez(ω) = |Ez(ω)|eiφ(ω), where |Ez(ω)| and φ(ω)

are the amplitude and phase spectra (Fig. 4.4f). Plotting the fits by red solid

lines in Figs. 4.4e and 4.4f, we find an excellent agreement with the simulated

spectra (red open symbols), which confirms the validity of the two coupled

harmonic oscillators model to fit the simulated near-field spectra.

Loop in the near-field spectra

We note that the simulated near-field spectrum of the h-BN nanoresonator in

the absence of molecular vibrations yields a nearly circular trajectory in the

complex plane (Fig. 4.4c). Interestingly, when the nanoresonator is half cov-

ered with CBP molecules, the topology of the trajectory of the complex-valued

near-field spectra changes. We find that a small loop appears within the main

circular trajectory (Fig. 4.4f) , which reveals the coupling between the PhP

resonator mode and the molecular vibrational mode, similar to a recent obser-

vation in far-field ellipsometry of excitonic coupling in classical microresonators

[79]. The appearance of the loop is not only a mere superposition of two modes,

as we show with the following example.

Figures 4.5a-d show a situation where two oscillators are driven by the same

force F1 = F2 (see inset above Fig. 4.5a), which, for example, would correspond
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4. Remote near-field spectroscopy of VSC

Figure 4.5: Comparison of coupled mechanical oscillators. (a)-(d) Two-coupled oscillators
labeled 1 and 2 are driven and thus displaced by distances x1 and x2, respectively. The
complex-valued oscillation amplitude of the combined displacement x1 + x2 is analyzed as
a function of frequency. (a) Spectra of the oscillation amplitude of two slightly frequency-
detuned, uncoupled oscillators. The first oscillator (solid curve) has eigenfrequency ω1 =
1440 cm−1, damping γ1 = 9.6 cm−1 and driving force F1 = 1 × 105 cm−2. The second
oscillator (dashed curve) has eigenfrequency ω2 = 1450 cm−1, damping γ2 = 6.5 cm−1 and
driving force F2 = 1 × 105 cm−2. (b) Amplitude and (c) phase spectra of x1 + x2 for
three coupling strengths: g = 0 cm−1 (black line), 3 cm−1 (red line) and 5 cm−1 (blue line).
(d) Representation of the spectra of panel (b) and (c) in the complex plane. (e)-(h) Same
mechanical oscillators as in (a) with only oscillator 1 driven, and the individual complex-
valued oscillation amplitude x1 is analyzed. (e) Spectrum of the oscillation amplitude of
the driven oscillator (solid curve), which has eigenfrequency ω1 = 1440 cm−1, damping γ1 =
9.6 cm−1 and driving force F1 = 1 × 105 cm−2. The second oscillator has eigenfrequency
ω2 = 1450 cm−1, damping γ2 = 6.5 cm−1 and driving force F2 = 0 cm−2. (f) Amplitude
and (g) phase spectra for the three coupling strengths: g = 0 cm−1 (black line), 3 cm−1 (red
line) and 5 cm−1 (blue line). (h) Representation of the spectra of panel (f) and (g) in the
complex plane.
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4.4. Quantitative analysis of experimental nano-FTIR spectra

to two molecules with slightly frequency-detuned resonances that are studied

by far-field optical spectroscopy. The sum of the dipole moments induced at

each molecule, namely the total dipole moment in the system, is proportional

to the radiation emitted by the two molecules into the far field. Within the

two-coupled harmonic oscillators model, this total dipole moment of the system

can be associated with the variable x1+x2. By plotting x1+x2 in the complex

plane for different coupling strengths g, one can observe the appearance of a

loop even for g = 0 (see Fig. 4.5d). Consequently, the appearance of the loop in

this situation does not necessarily indicate coupling between the two oscillators

(two molecules), but it might just be the consequence of a mere superposition

of two molecular resonances.

Figures 4.5e-h, on the other hand, show the situation in which only one

oscillator is driven by the force F1 (see the inset above Fig. 4.5e), which would

correspond to the situation of our experiment. In such a situation, the PhP

nanoresonator, illuminated by the tip, generates a near field that can be related

to the variable x1 within the two-coupled oscillator model (Eq. (4.3)). When

x1 is plotted in the complex plane (Fig. 4.5h), it becomes evident that the

loop is only present when g > 0 (see blue curve). By decreasing the value

of g, the loop undergoes a topological transition to a kink (red curve), which

already indicates the coupling between the two oscillators. When the oscillators

are uncoupled, i. e., g = 0, the loop and kink disappear from the trajectory

traced in the complex plane by x1 (black curve). This observation confirms

that the appearance of the loop indicates the existence of coupling between the

two oscillators. Thus, in our experiments, the appearance of the loop in the

complex plane is a consequence of the nanoresonator-molecules coupling.

From this analysis, one can conclude a recipe to establish the existence of

coupling in a hybrid system when only one of the elements is driven: when the

loop appears in the complex-valued near-field spectra, as shown in Fig. 4.4f,

the two elements of the hybrid system are coupled.

4.4
Quantitative analysis of experimental

nano-FTIR spectra

We analyze here the experimental near-field spectra (Figs. 4.6a and 4.6b)

obtained in Fig. 4.1d. To that end, we first assume that the tip is solely illumi-

nating the nanoresonator (i.e., that it acts like a dipole source with a constant
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4. Remote near-field spectroscopy of VSC

Figure 4.6: Quantitative analysis of nano-FTIR spectra by coupled harmonic oscillator fitting.
(a) Black curves show the experimental nano-FTIR amplitude spectra of h-BN nanorods of
length L, which are half covered with CBP molecules (same data as in Fig. 4.1d). Orange
curves show fits obtained using the coupled harmonic oscillator model. For better visual-
ization, the spectrum for L = 1µm is scaled by a factor of 0.7. (b) Black curves show the
complex-valued experimental nano-FTIR spectra, σ3(ω) = s3(ω)eiφ3(ω), plotted in the com-
plex plane. Orange curves show fits obtained using the coupled harmonic oscillator model. (c)
Eigenfrequencies ω± of the hybrid modes, the nanoresonators´ bare eigenfrequencies ωPhP

(grey squares), and bare molecular vibrational eigenfrequency ωCBP (green squares), all of
them obtained by fitting of the complex-valued experimental nano-FTIR spectra. (d) Same
as panel (c), but obtained by fitting complex-valued simulated near-field spectra of h-BN
nanoresonators of length L = 1.2µm to 0.8µm, which are half covered by CBP molecules
(the corresponding amplitude spectra are shown in Fig. 4.1e). The tip is modeled by a
point-dipole source as in Fig. 4.3e. (e) Coupling strength g obtained from the fitting of
the experimental and simulated near-field spectra, respectively. Black and red dashed hor-
izontal lines indicate the transition from weak (WC) to strong (SC) coupling defined by
g = (γPhP +γCBP)/4 (Chapter 1) and g = (γPhP +γCBP)/3.23 (see discussion in Subsection
4.5.2), respectively. Experimental data are obtained by Irene Dolado at CIC nanoGUNE
(Donostia-San Sebastian).

dipole moment and, for that reason, it does not need to be modeled as another

coupled oscillator). We thus apply the same model of two-coupled harmonic os-

cillators as for the simulated near-field spectra to fit the experimental spectra.

We further assume that the PhP mode is not excited by far-field illumination

because it is a dark mode. Figure 4.6b shows the experimental near-field spec-
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tra of the half-covered nanoresonators in the complex plane (black lines), as well

as the fitting results (orange lines) performed following an identical procedure

as the one in Fig. 4.4, to analyse the simulation results. The small loops in the

complex plane clearly reveal the coupling between the nanoresonator mode and

the molecular vibrational mode, as predicted by the simulations discussed in

Section 4.3. We note that the size of the small loop slightly varies in the experi-

mental spectra of the different nanoresonators, which we attribute to variations

in the resonators´ quality factor due to fabrication uncertainties. From the fits,

we determine for each experimental near-field spectrum (i.e., for each nanores-

onator) the coupling strength g, the PhP eigenfrequency ωPhP, and damping

γPhP, the molecular vibrational eigenfrequency ωCBP and damping γCBP (the

fitting values are reported in Appendix G). From these parameters, we can

obtain the eigenfrequencies of the new hybrid modes for each nanoresonator,

ω±, appyling Eq. (1.50) for the nanoresonator-molecules coupled system:

ω± =
ωPhP + ωCBP

2
− i

4
(γPhP + γCBP)±

1

2

√
4g2 +

[
∆ω − i

2
∆γ

]2
, (4.4)

with ∆ω = ωPhP − ωCBP being the detuning and ∆γ = γPhP − γCBP. The

eigenfrequencies of the new modes are shown in Fig. 4.6c (blue symbols) as a

function of the nanoresonators´ eigenfrequencies ωPhP. We observe a clear anti-

crossing of the hybrid modes, which indicates strong coupling. To determine

the coupling regime for each individual resonator, we mark in Fig. 4.6e the

transition from weak to strong coupling, defined by the criterium g = (γPhP +

γCBP)/4 (Chapter 1), by black dashed horizontal lines. Interestingly, we find

that g is above the black dashed line for all individual resonators, indicating

that all of them are strongly coupled with the molecular vibrations.

Importantly, applying the same fitting procedure to the simulated complex-

valued near-field spectra (where the tip is modeled as a point-dipole source; see

Appendix B.2) yields hybrid eigenmodes (Fig. 4.6d) and coupling strengths

(Fig. 4.6f) that match well the experimental results. Since the tip is not

involved in the nanoresonator-molecule coupling in the simulations, this quan-

titative agreement lets us further assume that the coupling between the PhP

mode and the molecular vibrational mode in our experiment can be well de-

scribed with a simple two-coupled harmonic oscillator model, without the need

of considering the tip as a third oscillator. Our analysis thus demonstrates the

capability of remote near-field spectroscopy to probe the hybrid modes arising

from the coupling between a single PhP nanoresonator and nanoscale amounts

of organic molecules.

We note that the damping γPhP obtained from the simulated near-field spec-

tra is a factor of three lower than that obtained from the experimental spec-
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tra (see Tables in Appendix G). We explain this finding by PhP scattering

and absorption at fabrication-induced irregularities and damage of the h-BN

nanorod edges [90, 206], which is not considered in the simulation. Although

the damping has only a minor influence on the coupling strength g and on the

determination of the hybrid eigenmodes (see Eq. (4.4)), it is a crucial param-

eter that determines whether a coupled system is in the weak or in the strong

coupling regime. Marking the transition from weak to strong coupling in Fig.

4.6f by black horizontal dashed lines (analogue to Fig. 4.6e), we find that it

occurs at much lower g for the simulation as compared to experiment, which

shows that in simulations we are deeper inside the strong coupling regime than

in the experiment.

4.5
Influence of the oscillating tip and sig-

nal demodulation

So far, we have not explicitly considered in the simulations that the tip is

a long metallic cone, that the tip is oscillating, and that the detector signal

is demodulated at higher harmonics of the tip oscillation frequency (Chapter

1). To elucidate the influence and impact of these key features on the spectral

mode positions and linewidths, in this section we perform numerical simulations

where the tip is modeled as a conical platinum structure of 1µm length and

semispherical apex of 25 nm radius, and signal demodulation are considered

(for details of the simulations, we refer the reader to Appendix B.2).

4.5.1 Tip on top of the h-BN nanoresonator

We start with an extended discussion of the near-field spectra obtained for

the point-dipole source. Figure 4.7b shows the near-field amplitude spectrum

|Ez(ω)| at 65 nm height above the h-BN resonator (position marked by a cross in

Fig. 4.7a). We can clearly observe a strong resonance peak around 1450 cm−1

and another much weaker peak around 1455 cm−1. We associate the strong

peak with the 2nd-order FP mode [27] discussed in the previous sections and

the weaker one to a higher-order PhP mode [206]. The asymmetry of the strong

resonance peak we attribute to Fano-like interference [219, 220] between the

electric field produced by the (non-resonant) point-dipole source, together with
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Figure 4.7: Influence of the tip and signal demodulation on the nanoresonator mode. (a)
Schematics showing a point-dipole source above an h-BN nanorod half-covered with a layer
of permittivity ε = 2.8. (b) Near-field amplitude |Ez(ω)| below the dipole at the position
marked by a cross in panel (a). In the simulations, the point dipole and the evaluation
point were located at coordinates (x = 0, y = −370 nm, z = 350 nm) and (x = 0, y =
−370 nm, z = 65nm) respectively. (c) Near-field Ez(ω) below the dipole source, plotted in
the complex plane for frequencies between 1440 cm−1 and 1460 cm−1. The arrow indicates
increasing frequency. (d) Schematics of the Pt tip at height htip above the h-BN nanorod,
illuminated with a broadband infrared laser beam. (e) Amplitude of the induced dipole
moment |ptip,z(ω)| at the tip for htip = 1nm (red dots), 20 nm (blue dots) and 50 nm (green
dots) tip heights above the h-BN nanoresonator. (f) ptip,z(ω) plotted in the complex plane,
from 1440 cm−1 to 1452 cm−1. Same color code as in panel (e). (g) Schematics of the Pt tip
oscillating above the h-BN nanoresonator at frequency Ω. (h) Amplitude of the 2nd- and 3rd-
order demodulated scattered fields, s2(ω) (orange dots) and s3(ω) (green dots). (i) σ2(ω) and
σ3(ω) plotted in the complex plane, from 1440 cm−1 to 1452 cm−1. Dots in panels (h) and
(i) are the numerical results obtained by demodulating the complex-valued spectra ptip,z(ω).
Dots in panels (b), (c), (e) and (f) are the numerical results obtained from simulations. Solid
lines represent fits using Eq. (4.5). We fit the spectra between 1440 cm−1 and 1452 cm−1. (j)
Eigenfrequency and (k) damping of the 2nd-order FP resonance, ωPhP and γPhP, for different
tip heights htip. Black dashed lines show the fitting values obtained from panel (c). Orange
and green dashed lines show the fitting values obtained from panel (i). Dots show the fitting
values obtained from fitting the spectra of the induced dipole moment ptip,z(ω) at different
tip height htip = 1nm (red dot), 20 nm (blue dot), 50 nm (green dot) and 5 nm, 10 nm and
35 nm (grey dots). In all numerical calculations, we use a h-BN nanorod of 840 nm length,
87 nm height and 250 nm width, which is half covered with a 50 nm thick layer of permittivity
ε = 2.8. The calculation are performed without considering the SiO2/Si substrate.
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the non-polaritonic near field of the resonator, and the resonant near field of

the 2nd-order FP mode. For a better understanding of the FP resonance, we

plot the spectrum Ez(ω) in the complex plane (Fig. 4.7c) where the 2nd-order

FP resonance and the Fano interference manifests as a circular trajectory with

an offset, which is the typical signature of a harmonic oscillator [221, 222].

We next discuss the near-field spectra when a conical Pt tip is placed at dif-

ferent heights above the left nanoresonator extremity (illustrated in Fig. 4.7d).

To that end, we calculate the dipole moment ptip,z(ω) induced at the tip. This

can be associated to the tip-scattered field and thus to the near-field spectra, as

discussed in Chapter 1 and in Appendix B. For this calculation, we employ the

same nanorod dimensions (840× 250× 87 nm3) as the one used for the point-

dipole calculations (Figs. 4.7b-c). The amplitude spectra |ptip,z(ω)| for three

different tip heights htip = 1nm (red dots), 20 nm (blue dots) and 50 nm (green

dot) are shown in Fig. 4.7e. From the red spectra, we recognize a strong peak

at 1446 cm−1 and weaker one at 1453 cm−1, which are redshifted 4 cm−1 and

2 cm−1 as compared to the near-field spectra obtained with the point-dipole

source (Fig. 4.7b). We attribute these spectral peak shifts to the electromag-

netic loading of the h-BN nanoresonator by the Pt tip, as we show below by

fitting the spectral line shapes. As in the point-dipole calculation, the Fano

spectral line shape is the result of the interference between the dipole moment

p0,z(ω) induced at the Pt tip by the incident illumination and the dipole mo-

ment pNF,z(ω) induced at the tip by the near fields of the h-BN nanoresonator.

We further find that (i) the peak positions blueshift with increasing height htip

and (ii) the magnitude of ptip,z(ω) close to the peak (around 1446 cm−1) is

reduced as the tip height is increased. The decrease of |ptip,z(ω)| can be ob-

served in Fig. 4.7f, where we plot ptip,z(ω) in the complex plane for the three

tip heights (htip = 1nm, 201 nm and 50 nm). We clearly see that the radius of

curvature of the circular trajectories is decreased (compare red, blue and green

curves) as htip is increased meaning a reduction of |ptip,z(ω)|.
To calculate the demodulated scattered field σn(ω), we vary the tip height

(illustrated in Fig. 4.7g) in the simulations and then follow the procedure

explained in Appendix B to demodulate the simulated signal. In Fig. 4.7h,

we show the amplitude of the 2nd- and 3rd-order demodulated scattered fields,

s2(ω) (orange dots) and s3(ω) (green dots), respectively. We observe the 2nd-

order PhP FP peak around 1448 cm−1 and the weak higher-order mode peak at

1454 cm−1. As typical in s-SNOM and nano-FTIR spectroscopy, the amplitude

of σn(ω) decreases with increasing demodulation order n. We also observe that

the resonance peaks remain asymmetric, which we attribute to the interference

between the nanoresonator modes and the near field produced by the non-

resonant near-fields of the h-BN resonator. For completeness, we plot in Fig.

4.7i σ2(ω) (orange dots) and σ3(ω) (green dots) in the complex plane, where
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we see the circular trajectory representing the 2nd-order PhP FP mode.

To obtain the eigenfrequency and damping constant of the 2nd-order PhP FP

mode, we perform a complex-valued fitting (see solid lines in Figs. 4.7b, c, e, f, h

and i) to the spectra shown in Fig. 4.7. We fit the following three spectra:

(i) the near-field Ez(ω) for the point-dipole simulation, (ii) the dipole moment

ptip,z(ω) induced at the Pt tip at different tip heights and (iii) the second, σ2(ω),

and third order, σ3(ω), demodulated scattered fields. As mentioned in Section

4.3, xPhP(ω) is proportional to the near-field Ez(ω). Thus, the complex-valued

fittings shown in Fig. 4.7 are performed using Eqs. (4.2a) and (4.3), i. e., the

following relation

Ez(ω) ∝
FPhP(ω)

ω2
PhP − ω2 − iγPhPω

+ x0 + iy0, (4.5)

where we assume that g = 0 because in these simulations the CBP layer is

substituted by a medium with permittivity ε = 2.8, as illustrated in Figs.

4.7a ,d and g.

Figure 4.7j shows the values of ωPhP extracted from the fittings. As a ref-

erence, we first fit (solid line in Fig. 4.7c) the near-field spectrum Ez(ω) ob-

tained from the point-dipole calculation (dots in Fig. 4.7c). The fitting value

ωPhP = 1450.3 cm−1 is indicated in Fig. 4.7j by a black dashed line. We next

fit (solid lines) the complex spectra ptip,z(ω) for different tip heights (dots in

Fig. 4.7f) obtained from the simulation of the Pt tip on top of the resonator.

The values of ωPhP are represented in Fig. 4.7j by the dots. When the tip

is far from the nanoresonator, we find that ωPhP is close to the fitting value

extracted from the Ez(ω) spectrum (compare the black dashed line and the

green dot). When the height htip of the tip above the nanoresonator is re-

duced, ωPhP shifts to lower frequencies, which can be explained by the loading

of the nanoresonator by the metallic tip. Fitting the 2nd- and 3rd-order demod-

ulated scattered field spectra, σ2(ω) and σ3(ω) (dots in Fig. 4.7i), respectively,

we find the same value of ωPhP for both demodulation orders. The fitting val-

ues are ωPhP,n=2 = ωPhP,n=3 = 1448.5 cm−1, which are indicated by orange

and green dashed lines in Fig. 4.7j. Notice that ωPhP,n=2 and ωPhP,n=3 are

only 2 cm−1 shifted with respect to the fitting value obtained from the Ez(ω)

spectrum.

From the fittings we also extract the damping constant γPhP (Fig. 4.7k). As a

reference, we first show the fitting value extracted from the near-field spectrum

Ez(ω) (shown in Fig. 4.7c). The fitting value γPhP = 2.4 cm−1 is indicated in

Fig. 4.7k by a black dashed line. We next show the fitting values extracted

from the complex spectra ptip,z(ω) for different tip heights (Fig. 4.7f) obtained

from the simulation of the Pt tip on top of the resonator. The fitting values
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of γPhP are represented in Fig. 4.7k by the dots. We find fitting values within

the range between 2.1 cm−1 and 2.8 cm−1, which differ at most 0.4 cm−1 with

respect to the fitting value obtained from the Ez(ω) spectrum. Fitting the 2nd-

and 3rd-order demodulated scattered field spectra, σ2(ω) and σ3(ω) (shown in

Fig. 4.7i), respectively, we find a smaller damping constant compared to that

obtained by fitting the non-demodulated spectrum of ptip,z(ω). The fitting

values are γPhP,n=2 = 1.7 cm−1 (0.6 cm−1 shifted with respect to the fitting

value obtained from the Ez(ω) spectrum) for σ2(ω) spectrum and γPhP,n=3 =

1.5 cm−1 (0.9 cm−1 shifted with respect to the fitting value obtained from the

Ez(ω) spectrum) for σ3(ω) spectrum. In Fig. 4.7k, these values are indicated

by the orange and green dashed lines respectively.

From these findings, we conclude that the Pt tip on top of the h-BN nanores-

onator leads to negligible resonance shift, and the damping constant obtained

by fitting the different non-demodulated spectra (Fig. 4.7c and 4.7f) reveals

small variations for the 2nd-order PhP FP resonance. Alternatively, when ap-

plying a simple harmonic oscillator model to fit the demodulated scattered field

spectra, the resulting damping constants are systematically underestimated.

Consequently, caution is necessary during the derivation of damping constants

from the fitting process applied to nano-FTIR spectra.

4.5.2
Tip on top of the h-BN nanoresonator covered

with CBP

In this subsection, we analyze the influence of the metallic tip on top of the

nanoresonator that is half covered with molecules. To that end, we show the

simulated near-field spectra when the metallic tip is placed on the left extremity

of a h-BN nanoresonator (840×250×87 nm3, same dimensions as the ones used

for the calculations shown in Fig. 4.7), whose right half is covered by a 50 nm

thick CBP layer. The length of the nanorod is chosen such that the 2nd-order

PhP FP resonance is approximately tuned to the CBP molecular resonance at

ωCBP = 1450 cm−1. For comparison, we first show the results obtained for the

tip being mimicked by a point-dipole source (illustrated in Fig. 4.8a).

We begin our analysis by discussing the near-field spectra obtained for the

point-dipole source. Figure 4.8b shows the near-field amplitude spectrum

|Ez(ω)| below the point-dipole source at 65 nm height above the h-BN nanores-

onator (position marked by a cross in Fig. 4.8a). By comparing the near-field

spectra shown in Figs. 4.7b and 4.8b, we observe that the amplitude peak of

the 2nd-order PhP FP resonance splits into two peaks, one around 1443.5 cm−1

and the other one around 1453.5 cm−1. The splitting is a consequence of the
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4.5. Influence of the oscillating tip and signal demodulation

Figure 4.8: Influence of the tip and signal demodulation on the nanoresonator-molecule cou-
pled system. (a) Schematics showing a point-dipole source above an h-BN nanorod half-
covered by a CBP molecular layer. (b) Near-field amplitude |Ez(ω)| below the dipole at
the position marked by a cross in panel (a). In the simulations, the point dipole and
the evaluation point where located at coordinates (x = 0, y = −370 nm, z = 350 nm) and
(x = 0, y = −370 nm, z = 65nm) respectively. (c) Near-field Ez(ω) below the point-
dipole source, plotted in the complex plane for the frequency range between 1440 cm−1

and 1460 cm−1. The arrow indicates increasing frequency. (d) Schematics of a Pt tip at
height htip above a h-BN nanorod, illuminated with a broadband infrared laser beam. (e)
Amplitude of the induced dipole moment ptip,z(ω) calculated for 1 nm (red line) and 20 nm
(blue line) tip height. (f) ptip,z(ω) plotted in the complex plane for the frequency range
between 1440 cm−1 and 1460 cm−1. The color code is the same as the one used in panel (e).
The arrow indicates increasing frequency. (g) Schematics of a Pt tip oscillating on top of a
h-BN nanoresonator at frequency Ω. (h) Amplitude of the 2nd- and 3rd-order demodulated
scattered fields, s2(ω) (orange dots) and s3(ω) (green dots). (i) σ2(ω) and σ3(ω) plotted
in the complex plane for the frequencies between 1440 cm−1 and 1460 cm−1. The arrow
indicates increasing frequency. Dots in panels (h) and (i) are the numerical results obtained
by demodulating the complex-valued spectra ptip,z(ω). Dots in panels (b), (c), (e) and (f)
are the numerical results obtained from simulations. Solid lines represent fits using Eqs.
(4.2a) and (4.3). The fittings were performed in the frequency range between 1440 cm−1 and
1460 cm−1. In all numerical calculations we use a nanorod of 840 nm length, 87 nm height
and 250 nm width. The calculation are performed without considering the SiO2/Si substrate.
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coupling between the nanoresonator mode and molecular vibrational mode.

For a better understanding of the nanoresonator-molecule coupling, we plot in

Fig. 4.8c the spectrum Ez(ω) in the complex plane, where one can identify

the appearance of a small loop (compare Figs. 4.7c and 4.8c). As discussed in

Section 4.3, the appearance of this loop is a consequence of the nanoresonator

mode being coupled to the molecular vibrational mode.

We next discuss the near-field spectra when a conical Pt tip is placed at

different heights above the left nanoresonator extremity (illustrated in Fig.

4.8d). To that end, we calculate the dipole moment ptip,z(ω) induced at the

tip as described in Appendix B.2. The amplitude spectra |ptip,z(ω)| for two

different tip heights htip = 1nm (red dots) and 20 nm (blue dots) are shown

in Fig. 4.8e. From the red spectra, we recognize two peaks, one at 1442 cm−1

and one at 1450 cm−1, which are shifted 1.5 cm−1 and 3.5 cm−1 as compared to

the near-field spectra obtained with the point-dipole source (Fig. 4.8b). These

spectral peak shifts are attributed to the electromagnetic loading of the h-BN

nanoresonator by the Pt tip, which we verify below by fitting the spectra with

the Eq. (4.3). Similarly to the point-dipole calculation shown in Fig. 4.8b, the

appearance of two peaks and one dip around ωCBP in the |ptip,z(ω)| spectrum is

the result of the coupling between the nanoresonator and molecular vibrational

modes. We further find that the position of the peaks blueshift with increasing

height htip. By plotting ptip,z(ω) in the complex plane (see Fig. 4.8f), we again

observe a small loop indicating the nanoresonator-molecule coupling.

To calculate the demodulated scattered field, we vary the tip height (illus-

trated in Fig. 4.8g) in the simulations and then follow the procedure explained

in Appendix B.2. In Fig. 4.8h, we show the amplitude of the 2nd- and 3rd-order

demodulated scattered fields, s2(ω) (orange dots) and s3(ω) (green dots), re-

spectively. We also observe the two peaks, one around 1443 cm−1 and the other

one around 1453 cm−1. For completeness, we plot in Fig. 4.8i the demodulated

scattered fields σ2(ω) and σ3(ω) in the complex plane, where one can see the

formation of the characteristic loop indicating coupling.

To obtain the eigenfrequencies and damping constants of the hybrid modes,

we perform a complex-valued fitting (see solid lines in Figs. 4.8b, c, e, f, h and i)

to the spectra shown in Figs. 4.8b and 4.8e (dots). Using Eqs. (4.2a) and (4.3),

we fit the following three spectra: (i) the near- field Ez(ω) for the point-dipole

simulation, (ii) the dipole moment ptip,z(ω) induced at the Pt tip at different

tip heights and (iii) the second, σ2(ω), and third order, σ3(ω), demodulated

scattered fields.

Figures 4.9a-b show the values of ωPhP and ωCBP extracted from the fittings

in Fig. 4.8. As a reference, we first fit (solid line in Fig. 4.8c) the near-

field spectrum Ez(ω) obtained from the point-dipole calculation (dots in Fig.

4.8c). The fitting values are ωPhP = 1450.2 cm−1 and ωCBP = 1450.3 cm−1
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4.5. Influence of the oscillating tip and signal demodulation

indicated in Figs. 4.9a-b by the black dashed lines. We next fit (solid lines in

4.8f) the complex-valued spectra ptip,z(ω) (dots in Fig. 4.8f) obtained from the

simulation of the Pt tip on top of the resonator that is half covered with the

CBP layer. The values of ωPhP and ωCBP are represented in Figs. 4.9a-b by the

dots. When the tip is far from the nanoresonator, we find that ωPhP and ωCBP

are close to the fitting values extracted from the Ez(ω) spectrum (compare

the black dashed lines and the grey dots at htip = 35nm in Figs. 4.9a, c).

When the height htip of the tip above the nanoresonator is reduced, ωPhP

and ωCBP shift to lower frequencies due to an increase of the electromagnetic

loading of the h-BN nanoresonator by the Pt tip. Fitting the 2nd- and 3rd-order

demodulated scattered field spectra, σ2(ω) and σ3(ω) (shown in Fig. 4.8i),

respectively, one can find the following fitting values: ωPhP,n=2 = 1449.8 cm−1,

ωPhP,n=3 = 1450.3 cm−1, indicated by the orange and green dashed lines in

Fig. 4.9a, and ωCBP,n=2 = 1447.3 cm−1, ωCBP,n=3 = 1447 cm−1, indicated by

the orange and green dashed lines in Fig. 4.9b. Notice that ωPhP,n=2 and

ωPhP,n=3 differ at most 0.4 cm−1 with respect to the fitting value obtained

from the Ez(ω) spectrum. On the other hand, the fitting values ωCBP,n=2 and

ωCBP,n=3 differ at most 3.5 cm−1 with respect to the fitting value obtained

from the Ez(ω) spectrum.

From the fittings, one can also extract the damping constants γPhP and γCBP,

which are plotted in Figs. 4.9c-d. As a reference, we first show the fitting value

extracted from the near-field spectra Ez(ω) (Fig. 4.8c). The fitting values

γPhP = 2.3 cm−1 and γCBP = 7.6 cm−1 are indicated in Figs. 4.9c-d by a black

dashed line. The sum of the damping constants extracted from the near-field

spectra Ez(ω) is γPhP + γCBP = 9.9 cm−1. We next show the fitting values

extracted from the complex spectra ptip,z(ω) (Fig. 4.8f) obtained from the

simulation of the Pt tip on top of the resonator. The fitting values of γPhP and

γCBP are represented in Figs. 4.9c-d by the dots. We find fitting values for γPhP

and γCBP within the ranges of 2.5 cm−1 to 3.0 cm−1 and 5.3 cm−1 to 7.0 cm−1,

respectively, which differ at most 2.3 cm−1 from the fitting values obtained

from the Ez(ω) spectrum. Thus, the sum of the damping constants lies within

the range of 7.8 cm−1 to 10.0 cm−1 which differ from the value γPhP + γCBP =

9.9 cm−1 by 2.1 cm−1 (21%). Fitting the demodulated scattered fields spectra

σ2(ω) and σ3(ω) (Fig. 4.8i), we find a smaller damping constant for γPhP

than that obtained by fitting the non-demodulated spectrum of ptip,z(ω). In

Fig. 4.9c, we indicate the value of γPhP,n=2 by an orange dashed line and the

value of γPhP,n=3 by a green dashed line (γPhP,n=2 = γPhP,n=3 = 0.4 cm−1).

Additionally, the damping constants of the CBP oscillator are plotted in Fig.

4.9d by the orange and green dashed lines, respectively (γCBP,n=2 = 6.7 cm−1

and γCBP,n=3 = 5.9 cm−1). We find that the sum of the damping constants

γPhP,n=2 + γPhP,n=2 = 7.1 cm−1 and γPhP,n=3 + γCBP,n=3 = 6.3 cm−1 differ
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4. Remote near-field spectroscopy of VSC

Figure 4.9: Fitting values obtained from the fits shown in Fig. 4.8. Fitting values of (a)
eigenfrequency of the 2nd-order FP resonance ωPhP, (b) eigenfrequency of CBP molecular
resonance ωCBP, (c) damping constant of the 2nd-order FP resonance, γPhP, (d) CBP damp-
ing constant, γCBP, (e) coupling strength g, and (f) eigenfrequencies of the coupled system,
ω±, as a function of the tip height htip. The fittings were performed using Eq. (4.3). The
eigenfrequencies ω± were obtained with Eq. (4.4). Black dashed lines represent the fitting
values obtained from the spectra plotted in Fig. 4.8c. Orange and green dashed lines rep-
resent the fitting values obtained from the spectra plotted in Fig. 4.8i. Dots represent the
fitting values obtained from the spectra of ptip,z(ω) at different tip heights htip = 1nm (red
dot), 20 nm (blue dot) and 5 nm, 10 nm and 35 nm (grey dots).

from the value γPhP + γCBP = 9.9 cm−1 around 2.8 cm−1 (28%) and 3.6 cm−1

(36%), respectively. These modifications of the sum of the damping constants

obtained from the demodulated spectra can be summarized as γPhP + γCBP =

1.39× (γPhP,n=2+γCBP,n=2) and γPhP+γCBP = 1.56× (γPhP,n=3+γCBP,n=3).

In addition, we extract from the fits the coupling strength g and then use

Eq. (4.4) to calculate the eigenfrequencies ω±. The results are shown in Figs.

4.9e-f. When the tip is far from the nanoresonator, we find that g extracted

from the ptip,z(ω) spectra is close to the fitting value g = 5.4 cm−1 extracted

from the Ez(ω) spectrum (compare the black dashed line and the grey dots

at htip = 35nm in Fig. 4.9e). We find fitting values for g within the range of

4.4 cm−1 to 5.7 cm−1, which differ at most 1 cm−1 (19%) from the fitting values
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obtained from the Ez(ω) spectrum. Fitting the 2nd- and 3rd-order demodulated

scattered field spectra, σ2(ω) and σ3(ω) (shown in Fig. 4.8i), respectively, we

find coupling strength values of gn=2 = 4.7 cm−1 and gn=3 = 4.3 cm−1, which

differ at most 1.1 cm−1 (21%) from the fitting value obtained from the Ez(ω)

spectrum, leading to the following relation: g = 1.26× gn=3. Furthermore, we

find similar values for the eigenfrequencies ω+ and ω− obtained from the Ez(ω)

spectrum (Fig. 4.8c), from the ptip,z(ω) spectra (Fig. 4.8f) and from σ2(ω) and

σ3(ω) spectra (Fig. 4.8i). The values of the eigenfrequencies ω± are plotted

in Fig. 4.9f. The black dashed lines represents the values obtained from the

Ez(ω) spectrum, the color dots represent the values obtained from the ptip,z(ω)

spectra, and, the orange and green dashed lines represent the values obtained

σ2(ω) and σ3(ω). By comparing the values, it be inferred that ω± exhibit small

variations.

The analysis presented in this subsection can be summarized as follows. We

first applied the two-coupled harmonic oscillator model (same as the one used

in Fig. 4.4) to fit the simulated near-field spectra where the tip is modeled as a

metal cone but without considering the tip oscillation and signal demodulation.

Compared to the fitting parameters obtained from the unperturbed molecule-

covered resonator spectra (obtained from the point-dipole simulations), we find

that the presence of the metallic tip yields negligible spectral shifts of the bare

h-BN nanoresonator mode and the hybrid polariton modes (< 3 cm−1), a neg-

ligible change of the sum of damping parameters, γPhP + γCBP, and only a

slight reduction of the coupling strength by a factor ∼ 1.26. In a second sim-

ulation, we additionally implemented tip oscillation and signal demodulation.

Fitting of the simulated spectra yields nearly the same coupling strengths and

mode positions as in the previous case. However, for the sum of the damping

parameters, γPhP + γCBP, we obtain values that are reduced by a factor of

∼ 1.56 as compared to the results obtained from the simulations where the tip

is modeled as a point-dipole source. Since the presence of the tip, its oscilla-

tion and signal demodulation can yield significantly different values for g and

γPhP + γCBP, we re-evaluate the coupling regime obtained in the experiment

(Fig. 4.6e) according to the following modified condition to establish strong

coupling,

1.26× g

1.56× (γPhP + γCBP)
> 0.25 or equivalently

g

γPhP + γCBP
> 0.31, (4.6)

where g and γPhP + γCBP are the parameters (listed in Table G.2 of Appendix

G) obtained by fitting the experimental near-field spectra. Under this modi-

fied condition, we find that two of the nanoresonators (length L = 1.2µm and

L = 0.9µm) satisfy the strong coupling criteria, whereas the other nanores-
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onators are at the onset to strong coupling. The transition from weak to strong

coupling according to this re-evaluation is marked in Fig. 4.6e by red dashed

horizontal lines. Since the modified condition for evaluating the coupling regime

is more conservative than the original one (g/(γPhP + γCBP) > 0.25), the tran-

sition occurs in Fig. 4.6e at larger g values. We note that the factors used

to re-evaluate the coupling regime are specific for our nano-FTIR experiment

and may change for different tip oscillation amplitudes or signal demodulation

orders.

4.6 Summary and conclusions

We have demonstrated in this chapter that infrared near-field spectroscopy can

be applied for nanoscale spatial mapping of strong coupling between molecular

vibrational modes and resonating dark PhP modes. To that end, we introduce

the concept of remote near-field probing with a non-resonant tip, where the

tip and molecules are spatially separated such that the direct near-field inter-

action between tip and molecules is avoided. Such minimal-invasive probing

offers the advantage that the hybrid nanoresonator-molecule modes and cou-

pling strengths can be determined within the model of two coupled harmonic

oscillators without considering the tip as a third oscillator, which significantly

simplifies the coupling analysis and increases its robustness. On the other hand,

numerical simulations of remote near-field spectroscopy including the metal tip,

its oscillation and signal demodulation reveal that damping parameters may

be underestimated when tip oscillation and signal demodulation are not prop-

erly considered to describe the near-field spectra through a coupled harmonic

oscillator model. Since near-field spectroscopy is available in the wide spectral

range between visible and terahertz frequencies, we envision remote near-field

probing studies of strong coupling of different plasmonic and phononic res-

onators (which apart from h-BN, could be made, for example, from V2O5 or

α-MoO3 that cover various infrared frequency ranges) with molecular vibra-

tions or excitons in various resonator geometries. The possibility to probe dark

modes and spatially control the selective excitation and probing of coexisting

modes could pave the way to explore strong coupling configurations that are

not easily accessible by far-field spectroscopy.
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This thesis aims at studying polartions using fast electron beams and near-field

optical probes. In particular, we analyze three different samples: (i) phonon

polaritons in bulk and semi-infinite surfaces of h-BN (Chapter 2), (ii) anapoles

and excitons interplay in WS2 nanodisks with high-refractive index (Chapter

3), and (iii) h-BN phononic nanoresonator-CBP molecules coupling (Chapter

4). In the following, we summarize the main findings in each chapter and

discuss possible avenues for future investigation:

� In Chapter 2, we analyze in detail the excitation of phonon polaritons

in hexagonal boron nitride using fast electron beams. We consider two

different situations: when the electron travels through the bulk of h-BN

and when it travels in vacuum above a semi-infinite h-BN surface. In the

first situation, we show that the fast probing electron couples to volume

phonon polaritons when traveling either parallel or at an angle α relative

to the h-BN optical axis. We demonstrate that the excitation of these po-

laritonic modes strongly depends on the electron velocity v and the angle

α between the trajectory of the fast electron and the h-BN optical axis.

Additionally, we demonstrate that Dyakonov surface phonon polaritons

can be induced by a fast electron traveling above the h-BN surface. A

remarkable feature is the capability of fast electrons traveling in an aloof

trajectory to excite volume polaritons in h-BN. From a detailed mode

analysis, we show that the electron beam transfers a specific momentum

to polaritons excited in h-BN. This momentum transfer determines the

properties of the excited phonon polaritons and thus controls their phase

and group velocities, as well as their propagation direction.

Although we study the specific uniaxial material, h-BN, the results pre-

sented in this chapter can be generalized to other uniaxial polaritonic

materials, such as PdCoO2, for instance. Considering the significant

advancements in the investigation of polaritons excited in biaxial ma-

terials, we believe that the theoretical framework introduced here can

be extended to this kind of materials and may provide a further under-

standing of the properties of polaritons excited in α-MoO3 or V2O5. It is

also worth mentioning that one of the key findings in this chapter is that

polaritonic waves in h-BN can be controlled through variations of two

degrees of freedom: the electron velocity v and the angle of its trajectory

α with respect to the h-BN optical axis. A natural next step involves

systematically varying these parameters to explore whether the disper-
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sion relation of hyperbolic polaritonic waves can be reconstructed using

EELS.

� In Chapter 3, we demonstrate that electron energy loss spectroscopy can

be applied to probe optical anapole states in high-index dielectric nanores-

onators. We show that the prominent dips appearing in the EEL spectra

of high-index dielectric disks are associated with the excitation of optical

anapoles in the disk. We provide an analytical model based on tem-

poral coupled-mode theory (TCMT) that allows us to describe the first

electric dipole anapole as the result of the far-field interference between

two resonant modes of the disk excited by the fast electron beam. We

experimentally verify our theoretical predictions by performing EELS of

WS2 nanodisks by our collaborators at Chalmers University of Technol-

ogy (Sweden), and reveal optical anapoles and anapole-exciton hybrid

excitation within the same nanoobject. By extending the TCMT model

and consider the A-exciton of WS2, we are able to model the optical

response of the coupled anapole-exciton system with an effective 3 × 3

Hamiltonian which allows us to calculate the eigenfrequencies of the new

hybrid modes. We find a clear anti-crossing of these eigenfrequencies as

one varies the nanodisk radius, indicating that the two resonant modes

that model the anapole are strongly coupled to the A-exciton. Addi-

tionally, we demonstrate that EELS in STEM allows for spatial mapping

of WS2 nanodisk modes, isolated anapoles and anapole-exciton hybrids

with subnanometer resolution. By placing the electron beam at specific

positions along the WS2 nanodisk, we can effectively control the modes

excitation and thus the formation of the optical anapoles.

The results shown in this chapter help to understand the properties of

dielectric anapole excitation by fast electron beams as well as to unveil

the details of anapole-exicton coupling in a compact nanoconfiguration.

Furthermore, we demonstrate that EELS in STEM is a powerful tool to

study dark scattering states appearing in dielectric materials beyond the

possibilities offered by conventional optical techniques. Considering the

rapid progress of the field of high-refractive index dielectric materials,

we envision that our results will enable new possibilities for studying

dielectric modes, higher-order and magnetic anapole states in dielectric

nanoresonators with subnanometer spatial resolution. Future work could

be directed towards understanding the excitation of optical anapoles for

different electron trajectories or in more complicated geometries that are

not cylindrically symmetric.

� In Chapter 4, we demonstrate that infrared near-field spectroscopy can be

applied for nanoscale spatial mapping of strong coupling between molec-
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ular layers and single phonon polariton nanoresonators. We introduce

the concept of remote near-field probing with a non-resonant tip, where

the tip and molecules are spatially separated so that the direct near-field

interaction between the tip and molecules is avoided. This methodology

offers the advantage that the hybrid nanoresonator and molecular vibra-

tional modes and coupling strengths can be determined using the model

of two coupled harmonic oscillators without considering the tip as a third

oscillator. We verify this approach via numerical simulation, where we

model the tip as a point-dipole source and find the appearance of a loop in

the complex-valued near-field spectra of the nanoresonator half-covered

with molecules, which is an indicator of the nanoresonator-molecules cou-

pling. Finally, by performing a numerical simulation where we model the

tip as a metallic conical structure made of platinum, including its oscil-

lation and signal demodulation. We find that the damping parameters

of the constituents (molecular vibrations and phononic resonances) may

be underestimated when tip oscillation and signal demodulation are not

considered in the fitting of the near-field spectra with a coupled harmonic

oscillator model.

An intriguing finding in this chapter is the appearance of the loop and the

topology change of complex-valued trajectories of the near field spectrum

when the nanoresonator is coupled to the molecular layer. We believe that

this feature (the loop) may become an interesting means for characterizing

coupling phenomena, and thus, provides a promising complementary tool

for coupling examination. Additional investigation on this aspect could

be focused on the development of a two-coupled oscillator model that

incorporates the impact of demodulating the near-field signal.

We hope that our findings will be of importance and interest to the nanopho-

tonics research community working on anisotropic polaritonic media, high-

index dielectric structures, and strongly coupled systems. Our results clearly

demonstrate the potential applications of electron and near-field spectroscopy

to provide unique information about the rich near-field optical response of

strongly coupled nanophotonic systems.
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A
Units and conventions

We use the International System (SI) of units for the equations presented in

this thesis. The physical quantities are reported in units typically employed in

EEL and near-field spectroscopy. For example, in Chapters 1-3 we report the

amount of energy loss ℏω in eV, whereas in Chapter 4, we report the near-field

spectra as a function of spectrocopic wavenumbers ω(cm−1). The latter can be

easily transformed to units of angular frequency by using the following relation:

ω(cm−1) =
ω(rad/s)

2πc
. (A.1)

In Chapter 3, we report the electron energy-loss probability Γ(ω) in units of

eV−1. Notice that Γ(ω) as defined by Eq. (1.59) has dimensions of time (units

of seconds in SI), and thus, to obtain Γ(ω) in dimensions of 1/Energy one has

to divide Eq. (1.59) by the reduced Planck’s contant, that is,

Γ[1/Energy] =
Γ[time]

ℏ
. (A.2)

Additionally, in this thesis, we follow ref. [33] and define the Fourier trans-

form as

F(k;ω) := F{F(r; t)} =

∫ ∞

−∞
dt eiωt

∫
R3

d3r e−ik·r F(r; t), (A.3)

and its inverse as

F(r; t) := F−1(k;ω)} =
1

(2π)4

∫ ∞

−∞
dω e−iωt

∫
K3

d3k eik·r F(k;ω), (A.4)

where F is a smooth vector field, F is the Fourier transform, R3 stands for the

Euclidean space and K3 stands for the reciprocal space. Following this conven-

tion, the spatial and temporal derivatives of F(r; t) can be Fourier transformed
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using the following relations:

∂

∂xi
F(xi; t) → ikiF(ki; t) with xi ∈ {x, y, z}, ki ∈ {kx, ky, kz}, (A.5a)

and
∂

∂t
F(r; t) → −iωF(r;ω). (A.5b)

When only the time domain is transformed to the frequency domain while

preserving the spatial coordinates, we refer to the Fourier transform as the

time-to-frequency Fourier transform and define it as follows:

F(r;ω) := F{F(r; t)} =

∫ ∞

−∞
dt eiωt F(r; t), (A.6)

and its inverse as:

F(r; t) := F−1{F(r;ω)} =
1

2π

∫ ∞

−∞
dω e−iωt F(r;ω). (A.7)
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B
Numerical implementation of

Maxwell’s equations: Finite Ele-

ment Method (FEM)

As we discussed in Chapter 1, the differential form of Maxwell’s equations

consists of a set of four coupled partial differential equations that relate, at

each spatial position r and time t, the total electric Etot(r; t) and magnetic

Btot(r; t) fields to the charge and current density distributions, ρ(r; t) and

J(r; t), respectively. For arbitrary-geometric objects, with a specific material

(that is, for specific ρ(r; t) and J(r; t)), interacting with EM waves, it is not

always possible to find analytical solutions to Maxwell’s equations and thus

numerical methods need to be employed in order to find their solutions. Among

these numerical techniques, one can use the finite difference method (FDM) or

the finite element method (FEM) which are well known numerical techniques

based on discretization of the spatial and time domains. The FDM solves

Maxwell’s equations by approximating the derivatives with finite differences

[223–225], whereas the FEM uses variational methods and trial functions to

find an approximate solution to the differential equations [226–228] .

In this thesis, we use the FEM in the frequency domain to solve Maxwell’s

equations and perform the numerical simulations. Particularly, we use FEM

as implemented in the Radio Frequency Module of the commercial software

COMSOL Multiphysics [229]. In the following sections, we describe a method-

ology to calculate the EEL probability Γ(ω) and to model the nano-FTIR signal

using COMSOL Multiphysics.
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B.1
EEL probability within COMSOL si-

mulation box

For an arbitrary geometric nanostructure with specific dielectric function ε(ω),

we performed numerical simulations using the 3D simulation domain in the

Cartesian coordinate system (x, y, z). The simulation domain consists of a

nanostructure and a line current along the z-axis, which models the probing

electron traveling in the z-direction. The complete system (probing electron

and nanostructure) is embedded in a homogeneous box (simulation box) filled

with air of depth, width and height equal to LPML. We applied perfectly

matched layers (PML) for the boundaries of the simulation box to ensure nu-

merical convergence and to attenuate the reflection of EM waves at the bound-

aries of the box. Typically, we set the size of the PML box, LPML, to be 12

or 15 times larger than the size of the nanostructure with a thickness equal

to dPML = 0.1 × LPML. We show in Fig. B.1a a representative example of a

3D simulation domain, where the nanostructure is a spherical Al nanoparticle

close to an electron beam traveling in aloof trajectory (see blue vertical line in

Fig. B.1a). The Al sphere has radius a = 75nm and dielectric function εAl(ω)

which is characterized by the Drude–Sommerfeld–Lorentz model given by Eq.

(1.14), with parameters ℏωp = 15.2 eV, ℏγ = 0.15 eV and ε∞ = 1. The vertical

line that models the electron beam carries a current I(ω) = −I0e
iωz/v, where

I0 = 1A, ω is the angular frequency and v = 0.7c is the velocity of the electron.

The length of the line current is equal to LPML and is located at a distance

b = 100 nm (impact parameter) with respect to the center of the sphere (see

Fig. B.1b). In order to solve Maxwell’s equations in the simulation domain, we

discretize (mesh) all the structures using free tetrahedral elements as depicted

in Fig. B.1c. The maximum element size in the mesh is set to be less than

λmin/10, with λmin the minimum wavelength involved in the simulation. The

area of the PML is meshed by 5 − 10 Swept layers. Once all the structures

within the simulation domain are meshed, we then solve Maxwell’s equations

and find the total EM field at each spatial point in the domain. This allow us

to calculate the energy losses using the classical dielectric theory (for details

see Chapter 1) as we discuss next.

To calculate the EEL probability Γ(ω), we assume that the induced electric

field, Eind(r;ω), coming from the response of the nanostructure to the incident

electromagnetic field of the electron beam, acts back on the beam, causing an
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Figure B.1: Comparison of analytical and numerical calculation of EEL probability. (a)
Sketch of the simulation domain under study. The sphere centered at the origin represents
an Al spherical nanoparticle with a dielectric function characterized by Eq. (1.14) and a
radius a = 75nm. The blue vertical line represents the probing electron beam traveling
along the z-direction at a distance b = 100 nm with respect to the center of the spherical
nanoparticle. The particle and line are embedded in air (light green region). The gray
rectangular box represents the PML. (b) Zoom of panel (a) around the region marked by the
dashed lines. (c) Image of the simulation domain containing the mesh used to solve Maxwell’s
equations. The top panel in (d) shows the simulated EEL spectra obtained with COMSOL
Multyphisycs (red dots) and the analytical solution (black line), whereas the bottom panel
shows the relative error between the two calculations.

energy loss which reveals the energy and strength of the excitation induced

in the nanostructure. Following Eq. (1.59), the EEL probability Γ(ω) of the

electron beam to lose an energy ℏω is given by

Γ(ω) =
e2

πℏωI0

∫ LPML/2

−LPML/2

dzRe[Eind,z(xe, ye, z;ω) e
−iωz/v], (B.1)

where Eind,z(r;ω) is the z-component of the electromagnetic field induced by

the nanostructure and Eind,z(r;ω) is evaluated along the trajectory of the elec-
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tron beam re(t) = (xe = b, ye = 0, z = vt). As mentioned above, the elec-

tron beam is modeled in numerical simulations as a vertical line with current

I(ω) = −I0e
iωz/v. Thus, to obtain Eq. (B.1) from Eq. (1.59), we change

Eind,z(re;ω) 7→ eEind,z(re;ω)/I0. In practice, to calculate Eind,z(r;ω) around

the nanostructure, we performed the simulation for each frequency ω twice:

one simulation considering the nanostructure with its characteristic dielectric

function ε(ω) and another simulation considering the nanostructure with per-

mittivity ε(ω) = 1, while maintaining the same mesh in all domains. Their

difference yields Eind,z(r), which can be integrated along the electron beam

trajectory to find Γ(ω) (Eq. (B.1)).

We show in the top panel of Fig. B.1d the simulated EEL spectra (red

dots) obtained for the aloof electron beam traveling close to the Al spherical

nanoparticle. One can clearly recognize in the spectra different peaks associated

with the LSPP resonances excited at the particle. For comparison, we also

calculate the EEL probability following the analytical theory for the interaction

of spherical nanoparticles with fast electron beams reported in refs. [8, 230–

232]. The results obtained with this theory are shown by the black line in

Fig. B.1d, where one can see the good agreement between both the numerical

(COMSOL) and the analytical calculations. The relative error between both

calculations is less than 10% for energies between 1.5 eV − 12 eV (see bottom

panel in Fig. B.1d). For lower energies, the numerical simulation deviates from

the analytical solution by up to 60%. This deviation can be reduced by refining

the mesh of the simulation domain. From this analysis we can conclude that

modeling the fast electron as a line current and solving Maxwell’s equation

with FEM is adequate to reproduce the classical interaction of nanoparticles

with fast electron beams.

B.2
Tip-scattered field within COMSOL

simulation box and demodulation

To perform the numerical simulations shown in Chapter 4, we use the Radio

Frequency Module of COMSOL Multiphysics software and model the h-BN

nanoresonators as rectangular structures of w = 250 nm width (along the x-

direction), d = 87nm thickness (along the z-direction) and variable length L

(along the y-direction). The resonators are on top of a 250 nm thick layer

characterized by the permittivity of εSiO2
(ω), which is on top of a Si substrate

(see Fig. B.2a). The CBP layer is modeled as a 50 nm thick layer covering half
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Figure B.2: Numerical simulations of nanoscale spectroscopy of phononic resonators. (a)
Sketch of the simulation domain under study. The two grey boxes from top to bottom
represent the SiO2/Si substrate, and the blue-green structure on top of the SiO2 substrate
represents the h-BN rod half (blue box) covered with the CBP layer (green layer). The
vertical red arrow represents the point-dipole source, whereas the blue circle indicates the
spatial position where the electric field is evaluated (evaluation point). (b) Zoom of panel
(a) in 3D perspective around the region marked by the dashed lines. (c) Sketch of the
same simulation domain show in panel (a), where a conical structure (yellow cone) made
of platinum models the nano-FTIR tip instead of a point-dipole source. The p-polarized
incident illumination (red arrows), together with the the tip-resonator near-field interaction
induces a net dipole moment ptip at the tip (vertical blue arrow). (d) Zoom in 3D of panel
(c) around the region marked by the dashed lines.

the length of the h-BN nanorod. We model the nano-FTIR tip as a point-dipole

source and also as a conical platinum structure, as explained below.

B.2.1 Tip modeled as a point-dipole source

To obtain the numerical results shown in Figs. 4.1e, 4.2b-c, and 4.4, we model

the tip as a point-dipole source (red arrow in Figs. B.2a,b) oriented perpen-

dicularly to the substrate (along the z-direction). This model assumes that

the elongated tip in the experiment is oriented perpendicularly (z-direction)

to the h-BN nanorod and is illuminated by p-polarized light. The experimen-

tal signal detected in the far-field (Escat(ω)) is approximated by the vertical

component of the electric near-field (Ez(ω)) at an evaluation point (blue circle
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in Figs. B.2a,b) below the point-dipole source. In all the calculations, the

point-dipole source and the evaluation points are located at coordinates (x =

0, y = −L/2 + 50 nm, z = 350 nm) and (x = 0, y = −L/2 + 50 nm, z = 65nm),

respectively. We set the origin (x = 0, y = 0, z = 0) in the middle of the top

surface of the nanorod. The CBP layer covers the nanorod for y > 0.

To ensure numerical convergence of the simulated near-field spectra, the com-

plete structure (point-dipole source, h-BN nanorod and CBP layer) is located

in a homogeneous rectangular box (filled with air) of 8×w width, 25×d depth

and 4 × L length (see Fig. B.2b where we define the parameters w, d and L).

We use perfectly matched layers (PML) for the boundaries of the simulation

box and free triangular elements for the nanorod mesh and free tetrahedral

elements for all other structures.

B.2.2 Tip modeled as a Pt conical structure

To perform the numerical simulations shown in Figs. 4.2e, f, 4.7 and 4.8, we

model the probing tip as a conical platinum structure of 1µm length with a

16◦ half angle and semispherical apex of 25 nm radius. The symmetry axis

of the tip is parallel to the z-direction (perpendicular to the nanoresonator

surface, see Figs. B.2c, d). The h-BN nanoresonator and the CBP molecular

layer are modeled in an analogous way to the configuration described above.

In addition, the simulations with the metallic tip were performed using the

scattering problem approach (implemented in the Radio Frequency Module of

COMSOL Multiphysics), which allows us to distinguish between the incident

illumination (background field, Einc), and the scattered field (relative field,

Escat). The incident illumination Einc is defined as a p-polarized plane wave,

incident at the tip apex, with and angle of 60◦ relative to the symmetry axis

of the tip.

The illuminated tip interacts with the nanorod via the near fields around

the tip apex. This interaction results predominantly in a net vertical dipole

moment induced along the conical structure, ptip(ω) = ptip,z(ω)ẑ (blue arrow

in Figs. B.2c, d). Thus, the tip-scattered field Escat(ω) can be interpreted as

the radiation emitted by this net dipole, which is proportional to ptip,z(ω). The

latter is calculated as the first moment of the surface charge density induced

along the tip, ρs(ω). The tip-scattered field Escat(ω) can thus be related to

ρs(ω) according to the following equation

Escat(ω) ∝ ptip,z(ω) =

∫
S

d2r zρs(ω) (B.2)
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where d2r is the surface element with outward normal unit vector n̂, z is

the vertical position, ρs(ω) = ε0[E
out(S;ω) − Ein(S;ω)] · n̂ and Eout(S;ω)

(Ein(S;ω)) is the total electric field outside (inside) the tip surface at each

point. The integration in Eq. (B.2) is performed along the complete surface

S of the tip. To determine Escat(ω)), we consider only the z-component of

the induced dipole moment because ptip,x(ω) and ptip,y(ω) components are

relatively small as the tip is strongly elongated in the z-direction.

For simplicity and to reduce the numerical calculation time, the simulations

with the Pt tip are performed without considering the SiO2/Si substrate. In

all the simulations the tip-surface apex is located at coordinates (x = 0, y =

−L/2 + 50 nm, z = htip) where htip is the height between the tip apex and

the h-BN nanorod top surface. We set the origin (x = 0, y = 0, z = 0) in the

middle of the top surface of the h-BN nanorod. In addition, we calculate the

surface charge density ρs(ω) using only the electric field outside the tip, that is

ρs(ω) = ε0E
out(S;ω)·n̂. This approximation is justified by the high reflectivity

of platinum at the frequency range between 1400 cm−1 and 1500 cm−1. As a

consequence, the electric field inside the platinum tip is close to zero, as we

have verified. The material permittivities are provided in ref. [233].

To ensure numerical convergence of the calculated induced dipole moment

ptip,z(ω), the mesh of the Pt tip is chosen extremely fine with a maximum

element size of 60 nm, mainly in upper surface elements of the tip, far from

the apex. In addition, the complete structure (Pt tip, h-BN nanorod and

CBP layer) is located in a homogeneous rectangular box (filled with air) of

4.2 × 3.75 × 4.35µm3 size. We use PML for the boundaries of the simulation

box and free triangular elements for the nanorod mesh and free tetrahedral

elements for all other structures.

Signal demodulation

To suppress background scattering signals in the experiment, the tip is os-

cillating normal to the surface, i.e. the distance between tip and sample is

modulated. Consequently, the tip-scattered field is modulated at an oscilla-

tion frequency, Ω, and its harmonics. To consider tip modulation and signal

demodulation in our simulations, we apply the following procedure:

1. We calculate the induced dipole moment ptip,z(ω) (Eq. (B.2)) for different

tip heights htip = 1nm, 2 nm, 3 nm, 4 nm, 5 nm, 6 nm, 7 nm, 8 nm, 9 nm,

10 nm, 15 nm, 20 nm, 25 nm, 30 nm, 35 nm, 40 nm, 45 nm and 50 nm. We

define the tip height as the minimum distance between the tip apex and

the nanorod surface. For each simulation we only vary htip and leave

constant the rest of the parameters.
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2. We interpolate ptip,z(ω) and assume the tip height to be a harmonic

function of time (Eq. (??)):

htip(t) = h0 +A[1− cos(Ωt)], (B.3)

where A = (hmax
tip −hmin

tip )/2 is the tapping amplitude with hmin
tip and hmax

tip

being the minimum and maximum tip heights used in the simulations. To

closely reproduce experimental parameters, we use a tapping frequency

of Ω = 265.55 kHz.

3. The nth-order demodulated scattered field is proportional to σn(ω) =

sn(ω)e
iφn(ω), which is obtained by calculating the nth Fourier coefficient

of the induced dipole moment:

σn(ω) ∝ ptip,n(ω) =

∫ T

0

dt ptip,z (htip(t);ω) e
inΩt, (B.4)

where T = 2π/Ω is the period of oscillation of the tip. In practice,

the Fourier transform of ptip,z(htip(t);ω) is performed using the Fourier

package of Wolfram Mathematica software.

B.3 Cross sections and electric energy

In this thesis, we use the following expressions to calculate the scattering cross

section σscat, absorption cross section σabs and electric energy Ee of a nanopar-

ticle with permittivity ε(ω) illuminated by an incident plane wave with electric

field Einc:

σscat =
1

S0

∮
A

d2r ⟨Sscat(r)⟩t · n̂, (B.5a)

σabs =
1

S0

∫
V

d3rRe [J∗
ind(r) ·Etot(r)] , (B.5b)

Ee =
1

4

∫
V

d3rEtot(r) ·D∗(r), (B.5c)

where S0 = |Einc|2/(2Z0), |Einc| is the amplitude of the incident plane wave

and Z0 is the impedance of vacuum. ⟨Sscat(r)⟩t = Re[Escat(r)×B∗
scat(r)]/(2µ0)

is the expression for the time-averaged Poynting’s vector with Escat(r) and
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Bscat(r) the electric and magnetic fields scattered by the nanoparticle. Jind(r)

is the induced current density inside the nanoparticle, Etot(r) is the total elec-

tric field given by the sum of the incident plus the induced electric field in the

nanoparticle and D(r) is the electric displacement field. The integration in

Eq. (B.5a) is performed along the complete surface A of a sphere (enclosing

the nanoparticle) with surface element d2r and outward normal unit vector

n̂, whereas the integrations in Eqs. (B.5b) and (B.5c) are performed over the

complete volume V of the nanoparticle with volume element d3r. Note that

in Eqs. (B.5a)-(B.5c) we assume that all fields and sources have a harmonic

dependence on time (see Appendix A).
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C
Induced electromagnetic field for

an electron trajectory above the

surface of an uniaxial anisotropic

semi-infinite medium

In this appendix, we calculate the induced electromagnetic field EI
ind(r;ω) when

the electron is traveling above the surface of an anisotropic media. We solve

the following wave equation (derived from Maxwell’s equations) satisfied by the

total electric field [33]

∇2Etot(r; t)− µ0ε0
∂2

∂t2
[ε̂Etot(r; t)] = µ0

∂

∂t
Je(r; t) +∇[∇ ·Etot(r; t)], (C.1)

where ε0 and µ0 stand for the vacuum permittivity and permeability, respec-

tively, and Je(r; t) = ρe(r; t)v = −eδ(x − b, 0, z − vt)(0, 0, v) is the current

density corresponding to the electron traveling with velocity v = vẑ and im-

pact parameter b. We show in Fig. 2.13 of Chapter 2 a schematics of the

considered geometry.

By Fourier transforming Eq. (C.1) with respect to the variables y, z and t

and solving for the electric field separately outside (label I) and inside (label II)

the anisotropic medium, we obtain the following solutions for the components

of the total electric field

EI
tot,x(x, ky, kz;ω) = BI e

−κIx − πe

ε0
sign(x− b)δ(ω − kzv)e

−κI|x−b|, (C.2a)

EI
tot,y(x, ky, kz;ω) = DI e

−κIx + i
πe

ε0

ky
κI

δ(ω − kzv)e
−κI|x−b|, (C.2b)

EI
tot,z(x, ky, kz;ω) = GI e

−κIx + i
πe

ε0

kz − ω
c2 v

κI
δ(ω − kzv)e

−κI|x−b|, (C.2c)

EII
tot,x(x, ky, kz;ω) = AIIe

κo
IIx − iF II kzκ

e
II

(κo
II)

2 − k2y
eκ

e
IIx, (C.2d)
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EII
tot,y(x, ky, kz;ω) = CIIe

κo
IIx + FII

kykz
(κo

II)
2 − k2y

eκ
e
IIx, (C.2e)

EII
tot,z(x, ky, kz;ω) = FIIe

κe
IIx, (C.2f)

where

κ2
I = k2y + k2z −

ω2

c2
, (κe

II)
2 = k2y +

ε∥

ε⊥

(
k2z −

ω2

c2
ε⊥

)
and (κo

II)
2 = k2y + k2z − ε⊥

ω2

c2
. (C.3)

The coefficients AII, BI, CII, DI, FII and GI can be found from the application of

the standard boundary conditions for the field at the interface (x = 0) between

both media, that is,

EII
y |x=0 = EI

y|x=0, EII
z |x=0 = EI

z|x=0, (C.4)

ε⊥E
II
x |x=0 = EI

x|x=0,

together with the Gauss law and the boundary conditions for the magnetic

field. From these conditions one finds the following linear system of equations:

M̂x = b, (C.5)

with

M̂ =



−ε⊥ 1 0 0 iε⊥kzκ
e
II/[(κ

o
II)

2 − k2y] 0

0 0 −1 1 −kykz/[(κ
o
II)

2 − k2y] 0

0 0 0 0 −1 1

−kz kz 0 0 −iκe
II[1− k2z/((κ

o
II)

2 − k2y)] −iκI

ky −ky iκo
II iκI 0 0

ε⊥κ
o
II 0 iε⊥ky 0 0 0


,

and

x =



AII

BI

CII

DI

FII

GI


, b = −2πeδ(ω − kzv)e

−κIb

2ε0



1

iky/κI

ikz/κI − iωv/(c2κI)

ωv/c2

0

0


.

By solving the above linear system of equations, one further finds that each
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coefficient in Eqs. (C.2a)-(C.2f) can be expressed as

AII = ρ̃ aII, BI = ρ̃ bI, CII = ρ̃ cII

DI = ρ̃ dI, FII = ρ̃fII, GI = ρ̃gI,

with ρ̃ = −2πeδ(ω − kzv)e
−κIb/ε0. Thus, we obtain that the induced electric

fields in vacuum (labeled as I) and in h-BN (labeled as II) are given by (Eqs.

(C.2a)-(C.2f))

EI
ind(x, ky, kz;ω) = (bI, dI, gI) ρ̃ e

−κIx, (C.6a)

EII
ind(x, ky, kz;ω) = (aII, cII, 0) ρ̃ e

κo
IIx (C.6b)

+

(
−i

kzκ
e
II

(κo
II)

2 − k2y
,

kzky
(κo

II)
2 − k2y

, 1

)
ρ̃ fII e

κe
IIx.

To obtain Eqs. (2.34) and (2.35) presented in Chapter 2, one can substi-

tute Eq. (C.6a) into Eqs (2.7) and find the following expression for the EEL

probability Γsurf(ω):

Γsurf(ω) =
e

πℏω
Re
[
EI

ind(re;ω) · ẑ e−iωte
]
=

∫ kc
y

0

dky Psurf(ky;ω), (C.7)

with ℏkcy the maximum momentum of the electrons that can pass through the

collection aperture of the detector in the y-direction, and

Psurf(ky;ω) = − e2

π2ε0ℏωv
Re
[
gIe

−2κIb
] ∣∣∣

kz=ω/v
, (C.8)

where ℏkz = ℏω/v is the momentum transferred by the electron to the polari-

tons along the beam trajectory.
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D
Multipole decomposition of the

induced current density

In Chapter 3, we show both the electric spherical and Cartesian multipole

moments induced in the nanodisks by the probing electron beam. These multi-

pole moments were calculated using the standard expressions reported in Refs.

[185, 234]. In this appendix, we present the close expressions for the spherical

electric dipole Psph(ω) and the spherical electric quadrupole Q̂sph(ω) moments.

We also show that in the long-wavelength limit approximation, electric spher-

ical dipole and quadrupole moments are a combination of Cartesian electric

and toroidal multipole moments.

D.1 Electric dipole

We calculate the electric spherical dipole moment Psph(ω) in the nanodisk

using the following expression [185]

Psph(ω) = − 1

iω

∫
V

d3r

{
Jind j0(k0r) +

k20
2

[3(r · Jind)r− (D.1)

−r2Jind

] j2(k0r)
(k0r)2

}
.

Here the integral extends over the whole volume V of the nanodisk with volume

element d3r, jℓ(x) is the spherical Bessel function of the first kind of order ℓ,

r is the magnitude of the position vector r = (x, y, z) and Jind = Jind(r) is the

induced current density distribution in the nanodisk.

In the long-wavelength limit approximation (k0r ≪ 1) the spatial size of
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Jind(r) is much smaller than the wavelength of the electromagnetic field, and

thus one can expand the spherical Bessel functions j0(k0r), j2(k0r) using the

small argument limit [33]

j0(k0r) ≈ 1− (k0r)
2

6
, (D.2)

j2(k0r) ≈
(k0r)

2

15
. (D.3)

By substituting Eqs. D.2 and D.3 into Eq. D.1, we can obtain the following

expression for the electric spherical dipole moment in the long-wavelength limit:

Pk0r≪1
sph (ω) ≈ − 1

iω

∫
V

d3r

{
Jind

[
1− (k0r)

2

6

]
+

k20
2

[3(r · Jind)r− (D.4)

−r2Jind

] (k0r)
2

15(k0r)2

}
≈ − 1

iω

∫
V

d3r Jind︸ ︷︷ ︸
Pcar(ω)

+ik0

{
1

10c

∫
V

d3r
[
(r · Jind)r− 2r2Jind

]}
︸ ︷︷ ︸

Tcar(ω)

,

where one recognizes from the last equality the conventional expressions of

Cartesian electric and toroidal dipole moments [234]. From this analysis,

we conclude that in the long-wavelength approximation the electric spherical

dipole moment Psph(ω) is determined by the sum of Cartesian electric Pcar(ω)

and toroidal Tcar(ω) dipole moments as:

Pk0r≪1
sph (ω) ≈ Pcar(ω) + ik0Tcar(ω). (D.5)

D.2 Electric quadrupole

To calculate the electric spherical quadrupole moment Q̂sph(ω) induced in the

nanodisk, we use the following expression [185]:
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Q̂sph(ω) = − 3

iω

∫
V

d3r

{[
3(r⊗ Jind + Jind ⊗ r)− 2(r · Jind)Î

] j1(k0r)
k0r

+

(D.6)

+ 2k20
[
5r⊗ r(r · Jind)− (r⊗ Jind + Jind ⊗ r)r2−

−r2(r · Jind)Î
] j3(k0r)
(k0r)3

}
,

with Î being the identity tensor and ⊗ the tensor product. In the long-

wavelength approximation, one can expand the spherical Bessel functions

j1(k0r), j3(k0r) as [33]

j1(k0r) ≈
k0r

3
− (k0r)

3

30
, (D.7)

j3(k0r) ≈
(k0r)

3

105
, (D.8)

and substituting Eqs. D.7 and D.8 into Eq. D.6 one finds that

Q̂k0r≪1
sph (ω) ≈ − 3

iω

∫
V

d3r
{[

3(r⊗ Jind + Jind ⊗ r)− 2(r · Jind)Î
]
×

× 1

k0r

[
k0r

3
− (k0r)

3

30

]
+ 2k20

[
5r⊗ r(r · Jind)− (r⊗ Jind + Jind ⊗ r)r2−

−r2(r · Jind)Î
] (k0r)

3

105(k0r)3

}
(D.9)

≈ − 1

iω

∫
V

d3r
[
3(r⊗ Jind + Jind ⊗ r)− 2(r · Jind)Î

]
︸ ︷︷ ︸

Q̂(e)
car(ω)

+ i3k0

{
1

42c

∫
V

d3r
[
4rr(r · Jind)− 5r2(rJind + Jindr) + 2r2(r · Jind)Î

]}
︸ ︷︷ ︸

Q̂(T)
car (ω)

,

where Q̂(e)(ω) and Q̂(T)(ω) are the conventional electric Cartesian and toroidal

quadrupole moments [234], respectively. Thus, in the long-wavelength approx-

imation electric spherical quadrupole moment Q̂sph(ω) is determined by the

sum of Cartesian electric Q̂(e)
car(ω) and toroidal Q̂(T)

car (ω) quadrupole moments

as:

Q̂k0r≪1
sph (ω) ≈ Q̂(e)

car(ω) + i3k0Q̂(T)
car (ω). (D.10)

In our numerical simulations using COMSOL, we calculate the multipole
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moments Psph(ω), Pcar(ω), Tcar(ω), Q̂sph(ω), Q̂(e)
car(ω) and Q̂(T)

car (ω) induced in

the nanodisk by applying the following procedure:

(i) We calculate the total electric field Etot(r) inside the nanodisk.

(ii) We next calculate the induced current density as Jind(r) = −iωε0(ε −
1)Etot(r) and perform the volume integrals (Eqs. D.1, D.4, D.6 and

D.10) with functions predefined in COMSOL Multiphysics software.

D.3
Contributions of the multipoles to the

scattered power and cross section

From the multipole moments induced in the nanodisk, one can obtain the

scattered power by the disk, Pscat(ω), using the following expression [185, 235]:

Pscat(ω) = P
Psph

scat (ω) + P
Q̂sph

scat (ω) + P
msph

scat (ω) + · · · , (D.11)

=
k40c

12πε0

[
|Psph(ω)|2 +

k20
120

∣∣∣Q̂sph(ω)
∣∣∣2 + ∣∣∣∣msph(ω)

c

∣∣∣∣2 + · · ·

]
,

where

P
Psph

scat (ω) =
k40c

12πε0
|Psph(ω)|2 , (D.12)

P
Q̂sph

scat (ω) =
k60c

1440πε0

∣∣∣Q̂sph(ω)
∣∣∣2 and (D.13)

P
msph

scat (ω) =
k40c

12πε0

∣∣∣∣msph(ω)

c

∣∣∣∣2 , (D.14)

are the scattered powers from the spherical electric dipole, spherical electric

quadrupole, and spherical magnetic dipole moments, respectively. The scat-

tered powers of higher-order electric and magnetic multipoles are implicitly

indicated by the three dots in Eq. D.11. In this thesis, however, we focus

on the electric dipole and electric quadrupole multipole contributions, as they

serve to explain most of the phenomenology involved in our systems.

As discussed in the previous sections, in the long-wavelength approximation,

spherical electric dipole and quadrupoles can be expressed in terms of Cartesian

multipoles (Eqs. D.5 and D.10). Thus, to obtain the scattered power from
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Cartesian multipoles, we substitute Eqs. D.1 and D.5 into Eq. D.11 and find

that

Pk0r≪1
scat (ω) ≈ k40c

12πε0

[
|Pcar(ω) + ik0Tcar(ω)|2 + (D.15)

+
k20
120

∣∣∣Q̂(e)
car(ω) + i3k0Q̂(T)

car (ω)
∣∣∣2 + · · ·

]
,

where one identifies the the following expressions:

PPcar
scat (ω) =

k40c

12πε0
|Pcar(ω)|2 , (D.16)

PTcar
scat (ω) =

k40c

12πε0
|ik0Tcar(ω)|2 , (D.17)

P
Q̂(e)

car
scat (ω) =

k60c

1440πε0

∣∣∣Q̂(e)
car(ω)

∣∣∣2 and (D.18)

P
Q̂(T)

car
scat (ω) =

k60c

1440πε0

∣∣∣i3k0Q̂(T)
car (ω)

∣∣∣2 . (D.19)

The partial scattering cross sections of the disk shown in Figs. 3.6d and 3.6e

in Chapter 3 were calculated as

σscat(ω) =
1

S0
Pscat(ω) =

1

S0
P

Psph

scat (ω) +
1

S0
P

Q̂sph

scat (ω) +
1

S0
P

msph

scat (ω) + · · ·

(D.20)

= σ
Psph

scat (ω) + σ
Q̂sph

scat (ω) + σ
msph

scat (ω) + · · · ,

where S0 = |Einc|2/(2Z0) and |Einc| = 1V/m is the amplitude of the incident

plane wave.
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E
Spherical decomposition of the

EM field produced by a fast elec-

tron

In this appendix, we show that the electric field, Ee(r;ω), produced by a fast

electron beam traveling in vacuum can be decomposed into a sum of incoming

and outgoing spherical waves propagating toward and outward the electron

beam, respectively.

We consider an electron traveling in vacuum along the z-axis, with impact

parameter b and velocity v (see Fig. 3.2a). This fast electron produces a

broadband electromagnetic field that can be expressed on the basis of vector

spherical harmonics as follows [8, 230, 232]:

Ee(r;ω) =
∞∑
ℓ=0

ℓ∑
m=−ℓ

aTE
ℓm(ω)ETE

ℓm(r;ω) + aTM
ℓm (ω)ETM

ℓm (r;ω), (E.1a)

Be(r;ω) =
∞∑
ℓ=0

ℓ∑
m=−ℓ

aTE
ℓm(ω)BTE

ℓm(r;ω) + aTM
ℓm (ω)BTM

ℓm (r;ω) (E.1b)

where

aTE
ℓm(ω) = −i

ev

ε0

m√
ℓ(ℓ+ 1)

ω

c2
ϕTE
ℓm(ω), (E.2a)

aTM
ℓm (ω) =

ev

cε0

1√
ℓ(ℓ+ 1)

ϕTM
ℓm (ω), (E.2b)

and the overlap integrals ϕTM
ℓm (ω) and ϕTE

ℓm(ω) are determined as:

ϕTE
ℓm(ω) =

4πk0
v

i

∫ ∞

−∞
dz eiωz/vh

(1)
ℓ (k0re)Y

∗
ℓm(θe, ϕe), (E.3a)
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ϕTM
ℓm (ω) = cℓm e−iϕe

(
∂

∂b
− i

b

∂

∂ϕe

)
ϕTE
ℓm−1(ω) (E.3b)

− dℓm eiϕe

(
∂

∂b
+

i

b

∂

∂ϕe

)
ϕTE
ℓm+1(ω).

Here h
(1)
ℓ (x) is the spherical Hankel function of the first kind of order ℓ,

Yℓm(θ, ϕ) is the scalar spherical harmonics, the variables (re, ϕe, θe) are the

spherical coordinates of the electron beam trajectory re(t) = (xe = b, ye =

0, z = vt) and

cℓm =
√
ℓ(ℓ+ 1)−m(m− 1), (E.4a)

dℓm =
√
ℓ(ℓ+ 1)−m(m+ 1). (E.4b)

In Eq. (E.1), the fields vectors ETE
ℓm(r;ω), ETM

ℓm (r;ω), BTE
ℓm(r;ω) and BTM

ℓm (r;ω)

are defined according to the standard vector spherical harmonics relations [33]:

ETE
ℓm(r;ω) = −cBTM

ℓm (r;ω) = jℓ(k0r)Xℓm(θ, ϕ), (E.5)

ETM
ℓm (r;ω) = cBTE

ℓm(r;ω) = − i

k0
∇× [jℓ(k0r)Xℓm(θ, ϕ)] , (E.6)

Xℓm(θ, ϕ) =
1√

ℓ(ℓ+ 1)
L [Yℓm(θ, φ)], (E.7)

where L = −i(r×∇) is the angular momentum operator. It is worth mentioning

that labels TE (transverse electric) and TM (transverse magnetic) denote the

components of the fields that are transverse to the position vector r. More

specifically, by applying the relationship r · Xℓm = 0 to Eq. (E.5), one can

derive that r · ETE
ℓm(r;ω) = r · BTM

ℓm (r;ω) = 0. For this reason, we label these

field components as TE or TM, respectively.

By expressing the spherical Bessel function jℓ(k0r) as [236]

jℓ(k0r) =
1

2

[
h(1)(k0r) + h(2)(k0r)

]
, (E.8)

with h
(2)
ℓ (x) being the spherical Hankel function of the second kind of order ℓ,

one finds that the fields vectors ETE
ℓm(r;ω) and ETM

ℓm (r;ω) (Eqs. (E.5) and (E.6))

can be written as the following equally weighted superposition of incoming (+)

and outgoing (-) spherical waves:

ETE
ℓm(r;ω) =

h(1)(k0r)

2
Xℓm(θ, ϕ)︸ ︷︷ ︸

ETE,+
ℓm

+
h(2)(k0r)

2
Xℓm(θ, ϕ)︸ ︷︷ ︸

ETE,−
ℓm

, (E.9)
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and

ETM
ℓm (r;ω) = − i

2k0
∇×

[
h
(1)
ℓ (k0r)Xℓm(θ, ϕ)

]
︸ ︷︷ ︸

ETM,+
ℓm

(E.10)

− i

2k0
∇×

[
h
(2)
ℓ (k0r)Xℓm(θ, ϕ)

]
︸ ︷︷ ︸

ETM,−
ℓm

.

Substituting Eqs. (E.9) and (E.10) into Eq. (E.1a), one further finds that

the electric field Ee(r;ω) can be described as incoming and outgoing waves

(propagating toward and outward the electron beam):

Ee(r;ω) =
∞∑
ℓ=0

ℓ∑
m=−ℓ

aTE
ℓm(ω)

[
ETE,+

ℓm (r;ω) +ETE,−
ℓm (r;ω)

]
+ (E.11)

aTM
ℓm (ω)

[
ETM,+

ℓm (r;ω) +ETM,−
ℓm (r;ω)

]
.

Here, one can assume that each TM or TE polarization together with the pair

{ℓ,m} correspond to a distinct scattering channel labeled as {q, ℓ,m} with q

representing the polarization of the field. This assumption provides a conve-

nient tool to calculate the scattered power of an object interacting with a fast

electron beam. For example, one can calculate the power carried by the out-

going spherical waves (Eq. (E.11)) by summing the radiated power along each

scattering channel:

P e
scat(ω) =

1

8ck20

∞∑
ℓ=0

ℓ∑
m=−ℓ

(∣∣aTE
ℓm(ω)

∣∣2 + ∣∣aTM
ℓm (ω)

∣∣2). (E.12)

As we discuss in Chapter 3 (see Sections 3.2.2 and 3.3.3), the decomposition

of the electric field Ee(r;ω) in different scattering channels plays an important

role in the description of the anapole dip using temporal coupled-mode theory.
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F
Parameters obtained from the

TCMT results

In this appendix, we show all parameters obtained from the TCMT results

presented in Chapter 3.

R0 ω1 γrad
1 ω2 γrad

2

(nm) (eV) (eV) (eV) (eV)

110 1.73 0.35 2.28 0.30

138 1.45 0.34 1.95 0.29

165 1.26 0.33 1.67 0.22

190 1.12 0.33 1.52 0.22

215 1.01 0.32 1.35 0.16

240 0.93 0.34 1.24 0.14

268 0.86 0.30 1.15 0.14

Table F.1: Values of eigenfrequencies and radiative decays of the two resonant modes. Pa-
rameters obtained within TCMT (Eq. 3.21) to reproduce the simulated EEL spectra of the
high-index dielectric disks shown in Fig. 3.5a. These parameters are plotted in Figs. 3.5c-d.

R0 ω1 γrad
1 g1ex ω2 γrad

2 g2ex ωLP ωMP ωUP

(nm) (eV) (eV) (meV) (eV) (eV) (meV) (eV) (eV) (eV)

110 1.64 0.36 48 2.20 0.30 126 1.68 1.91 2.21

138 1.43 0.34 70 1.89 0.29 100 1.48 1.79 2.01

165 1.24 0.33 70 1.65 0.22 100 1.27 1.58 1.99

190 1.06 0.33 79 1.53 0.22 129 1.09 1.46 1.99

215 1.01 0.32 72 1.35 0.16 138 1.03 1.29 1.99

240 0.92 0.34 83 1.24 0.14 127 0.94 1.19 1.99

268 0.86 0.30 70 1.15 0.14 130 0.89 1.10 1.98

Table F.2: Values of eigenfrequencies, radiative decays and coupling strengths obtained to
reproduce the COMSOL simulations. Parameters obtained within TCMT to reproduce the
simulated EEL spectra of the WS2 disks shown in Figs. 3.9d and 3.11f. These parameters
are plotted in Figs. 3.11c-d.
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R0 ω1 γrad
1 g1ex ω2 γrad

2 g2ex ωLP ωMP ωUP

(nm) (eV) (eV) (meV) (eV) (eV) (meV) (eV) (eV) (eV)

110 1.75 0.36 80 2.01 0.30 87 1.81 1.90 2.02

138 1.58 0.34 79 1.90 0.29 81 1.65 1.80 2.01

165 1.33 0.33 76 1.76 0.22 97 1.36 1.68 2.01

190 1.21 0.33 80 1.61 0.22 123 1.25 1.53 2.01

215 1.12 0.32 74 1.45 0.16 84 1.15 1.40 1.99

240 1.04 0.34 84 1.33 0.14 91 1.06 1.28 1.99

268 0.97 0.30 71 1.25 0.14 100 1.01 1.20 1.99

Table F.3: Values of eigenfrequencies, radiative decays and coupling strengths obtained to
reproduce the experimental EEL spectra. Parameters obtained to reproduce within TCMT
the experimental EEL spectra of the WS2 disks shown in Figs. 3.9a and 3.11e. These
parameters are plotted in Figs. 3.11g-h.

174



G
Parameters obtained by fitting

experimental and simulated near-

field spectra

In this appendix, we show all fitting parameters, obtained for the simulated

and experimental near-field spectra presented in Chapter 4.

L ωPhP γPhP ωCBP γCBP g
(µm) (cm−1) (cm−1) (cm−2) (cm−1) (cm−1)

0.9 1445.6 3.0 1450.5 7.0 5.5

0.8 1450.0 3.0 1450.7 7.0 5.3

0.7 1455.2 3.0 1450.9 6.4 5.2

0.6 1459.9 3.1 1451.0 6.0 5.5

Table G.1: Parameters obtained by fitting the simulated complex-valued near-field spectra.
Parameters obtained by fitting the simulated near-field spectra shown in Fig. 4.1e with the
two-coupled harmonic oscillator model.

L ωPhP γPhP ωCBP γCBP g
(µm) (cm−1) (cm−1) (cm−2) (cm−1) (cm−1)

1.2 1441.2 9.4 1450.8 6.0 5.4

1.1 1447.8 8.9 1452.3 6.0 4.3

1.0 1451.0 8.8 1451.4 7.0 4.6

0.9 1454.4 10.2 1451.8 6.6 6.0

0.8 1462.4 10.7 1452.0 7.0 4.7

Table G.2: Parameters obtained by fitting the experimental complex-valued near-field spectra.
Parameters obtained by fitting the experimental near-field spectra shown in Figs. 4.1d and
4.6a with the two-coupled harmonic oscillator model.
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7. S. Chen, P. L. Leng, A. Konečná, E. Modin, M. Gutierrez-Amigo, E.
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[12] A. B. Yankovich, R. Verre, E. Olsèn, A. E. O. Persson, V. T., G. Dovner,

M. Käll, and E. Olsson, “Multidimensional hybridization of dark surface

plasmons,” ACS Nano 11, 4265–4274 (2017).

[13] Y. Wu, G. Li, and J. P. Camden, “Probing nanoparticle plasmons with

electron energy loss spectroscopy,” Chem. Rev. 118, 2994–3031 (2018).

[14] L. H. G. Tizei, Y.-C. Lin, M. Mukai, H. Sawada, A.-Y Lu, L.-J. Li,

K. Kimoto, and K. Suenaga, “Exciton mapping at subwavelength scales

in two-dimensional materials,” Phys. Rev. Lett. 114, 107601 (2015).

[15] S. Guo, N. Talebi, A. Campos, M. Kociak, and P. A. van Aken, “Radi-

ation of dynamic toroidal moments,” ACS Photonics 6, 467–474 (2019).

[16] D. T. L. Alexander, V. Flauraud, and F. Demming-Janssen, “Near-

field mapping of photonic eigenmodes in patterned silicon nanocavities

by electron energy-loss spectroscopy,” ACS Nano 15, 16501–16514 (2021).
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Nikitin, S. Vélez, and R. Hillenbrand, “Boron nitride nanoresonators

for phonon-enhanced molecular vibrational spectroscopy at the strong

coupling limit,” Light Sci. Appl. 7, 2047–7538 (2018).

[91] S. J. Pennycook and P. D. Nellist, Scanning transmission electron mi-

croscopy (Springer, New York, 2011).

[92] S. J. Pennycook, M. Varela, A. R. Lupini, M. P. Oxley, and M. F.

Chisholm, “Atomic-resolution spectroscopic imaging: past, present and

future,” J. Electron Microsc. 58, 87–97 (2009).

[93] O. L. Krivanek, T. C. Lovejoy, and N. Dellby, “Aberration-corrected

stem for atomic-resolution imaging and analysis,” J. Microsc. 259, 165–

172 (2015).

[94] R. F. Egerton, Electron energy-loss spectroscopy in the electron micro-

scope, 3rd ed. (Springer New York, 2011).

[95] C. Maciel-Escudero and A. Reyes-Coronado, “Electromagnetic fields pro-

duced by a swift electron: A source of white light,” Wave Motion 86,

137–149 (2019).

[96] P. A. Cherenkov, “Visible light from clear liquids under the action of

gamma radiation,” Compt. Rend. Acad. Sci. URSS 2, 451–454 (1934).

[97] P. A. Cherenkov, “Visible radiation produced by electrons moving in a

,edium with velocities exceeding that of light,” Phys. Rev. 52, 378–379

(1937).

[98] I. M. Frank and I. E. Tamm, “Coherent visible radiation of fast electrons

passing through matter,” Compt. Rend. Acad. Sci. URSS 14, 109–114

(1937).

[99] Ig. Tamm, “Radiation emitted by uniformly moving electrons,” in Se-

lected papers, edited by B. M. Bolotovskii, V. Y. Frenkel, and R. Peierls

(Springer Berlin Heidelberg, Berlin, Heidelberg, 1991) pp. 37–53.

[100] A. A. Lucas and E. Kartheuser, “Energy-loss spectrum of fast electrons

in a dielectric slab. I. Nonretarded losses and cherenkov bulk loss,” Phys.

Rev. B 1, 3588–3598 (1970).

[101] C. H. Chen and J. Silcox, “Calculations of the electron-energy-loss prob-

ability in thin uniaxial crystals at oblique incidence,” Phys. Rev. B 20,

3605–3614 (1979).

197

http://dx.doi.org/10.1038/lsa.2017.172
http://dx.doi.org/ 10.1093/jmicro/dfn030
http://dx.doi.org/10.1111/jmi.12254
http://dx.doi.org/10.1111/jmi.12254
http://dx.doi.org/10.1016/j.wavemoti.2019.01.005
http://dx.doi.org/10.1016/j.wavemoti.2019.01.005
http://dx.doi.org/10.1103/PhysRev.52.378
http://dx.doi.org/10.1103/PhysRev.52.378
http://dx.doi.org/ 10.3367/UFNr.0093.196710o.0388
http://dx.doi.org/ 10.3367/UFNr.0093.196710o.0388
http://dx.doi.org/10.1007/978-3-642-74626-0_3
http://dx.doi.org/10.1007/978-3-642-74626-0_3
http://dx.doi.org/10.1103/PhysRevB.1.3588
http://dx.doi.org/10.1103/PhysRevB.1.3588
http://dx.doi.org/10.1103/PhysRevB.20.3605
http://dx.doi.org/10.1103/PhysRevB.20.3605


Bibliography

[102] V. L. Ginzburg, “Radiation by uniformly moving sources (Vav-

ilov–Cherenkov effect, transition radiation, and other phenomena),”

Phys.-Usp.+ 39, 973 (1996).

[103] N. Talebi, Near-field-mediated photon-electron interactions (Springer,

Switzerland, 2019).

[104] N. Ocelic, A. Huber, and R. Hillenbrand, “Pseudoheterodyne detec-

tion for background-free near-field spectroscopy,” Appl. Phys. Lett. 89,

101124 (2006).

[105] S. Amarie, T. Ganz, and F. Keilmann, “Mid-infrared near-field spec-

troscopy,” Opt. Express 17, 21794–21801 (2009).

[106] F. Huth, A. Govyadinov, S. Amarie, W. Nuansing, F. Keilmann, and

R. Hillenbrand, “Nano-FTIR absorption spectroscopy of molecular fin-

gerprints at 20 nm spatial resolution,” Nano Lett. 12, 3973–3978 (2012).

[107] J. Sun, P. S. Carney, and J. C. Schotland, “Strong tip effects in near-field

scanning optical tomography,” J. Appl. Phys. 102, 103103 (2007).

[108] B. Deutsch, R. Hillenbrand, and L. Novotny, “Visualizing the optical

interaction tensor of a gold nanoparticle pair,” Nano Lett. 10, 652–656

(2010).

[109] R. Carminati and J. C. Schotland, Principles of scattering and transport

of light (Cambridge University Press, 2021).

[110] C. Tai, IEEE Antennas, Propagation Society, IEEE Microwave Theory,

and Techniques Society, Dyadic Green functions in electromagnetic the-

ory, IEEE Press Publication Series (IEEE Press, 1994).

[111] L. Venema, B. Verberck, I. Georgescu, G. Prando, E. Couderc, S. Mi-

lana, M. Maragkou, L. Persechini, G. Pacchioni, and L. Fleet, “The

quasiparticle zoo,” Nat. Phys. 12, 1085–1089 (2016).

[112] R. Hillenbrand, T. Taubner, and F. Keilmann, “Phonon-enhanced

light–matter interaction at the nanometre scale,” Nature 418, 159–162

(2002).

[113] T. G. Folland, L. Nordin, D. Wasserman, and J. D. Caldwell, “Probing

polaritons in the mid- to far-infrared,” J. Appl. Phys. 125, 191102 (2019).

[114] Z. Jacob, “Hyperbolic phonon–polaritons,” Nat. Mater. 13, 1081–1083

(2014).

198

http://dx.doi.org/10.1070/PU1996v039n10ABEH000171
http://dx.doi.org/10.1007/978-3-030-33816-9
http://dx.doi.org/ 10.1063/1.2348781
http://dx.doi.org/ 10.1063/1.2348781
http://dx.doi.org/10.1364/OE.17.021794
http://dx.doi.org/ 10.1021/nl301159v
http://dx.doi.org/ 10.1063/1.2812545
http://dx.doi.org/ 10.1021/nl9037505
http://dx.doi.org/ 10.1021/nl9037505
http://dx.doi.org/10.1017/9781316544693
http://dx.doi.org/10.1017/9781316544693
http://dx.doi.org/10.1038/nphys3977
http://dx.doi.org/10.1038/nature00899
http://dx.doi.org/10.1038/nature00899
http://dx.doi.org/10.1063/1.5090777
http://dx.doi.org/10.1038/nmat4149
http://dx.doi.org/10.1038/nmat4149


Bibliography

[115] J. D. Caldwell, L. Lindsay, V. Giannini, I. Vurgaftman, T. L. Reinecke,

S. A. Maier, and O. J. Glembocki, “Low-loss, infrared and terahertz

nanophotonics using surface phonon polaritons,” Nanophotonics 4, 44–

68 (2015).

[116] T. Low, A. Chaves, J. D. Caldwell, A. Kumar, N. X. Fang, P. Avouris,

T. F. Heinz, F. Guinea, L. Martin-Moreno, and F. Koppens, “Polaritons

in layered two-dimensional materials,” Nat. Mater. 16, 182–194 (2017).

[117] J. D. Caldwell, A. V. Kretinin, Y. Chen, V. Giannini, M. M. Fogler,

Y. Francescato, C. T. Ellis, J. G. Tischler, C. R. Woods, A. J. Giles,

M. Hong, K. Watanabe, T. Taniguchi, S. A. Maier, and K. S. Novoselov,

“Sub-diffractional volume-confined polaritons in the natural hyperbolic

material hexagonal boron nitride,” Nat. Commun. 5, 5221 (2014).

[118] Z. Shi, H. A. Bechtel, S. Berweger, Y. Sun, B. Zeng, C. Jin, H. Chang,

M. C. Martin, M. B. Raschke, and F. Wang, “Amplitude- and phase-

resolved nanospectral imaging of phonon polaritons in hexagonal boron

nitride,” ACS Photonics 2, 790–796 (2015).

[119] L. Gilburd, K. S. Kim, K. Ho, D. Trajanoski, A. Maiti, D. Halverson,

S. de Beer, and G. C. Walker, “Hexagonal boron nitride self-launches

hyperbolic phonon polaritons,” J. Phys. Chem. Lett. 8, 2158–2162 (2017).

[120] A. Ambrosio, M. Tamagnone, K. Chaudhary, L. A. Jauregui, P. Kim,

W. L. Wilson, and F. Capasso, “Selective excitation and imaging of

ultraslow phonon polaritons in thin hexagonal boron nitride crystals,”

Light-Sci. Appl. 7, 27 (2018).

[121] Joshua D. Caldwell and Kostya S. Novoselov, “Mid-infrared nanophoton-

ics,” Nat. Mater. 14, 364––366 (2015).

[122] O. L. Krivanek, T. C. Lovejoy, N. Dellby, T. Aoki, R. W. Carpenter,

P. Rez, E. Soignard, J. Zhu, P. E. Batson, M. J. Lagos, R. F. Egerton,

and P. A. Crozier, “Vibrational spectroscopy in the electron microscope,”

Nature 514, 209––212 (2014).
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