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Abstract 

This thesis investigates the potential of using geopolymer concrete as an alternative 

to ordinary Portland cement (OPC) for thermal energy storage (TES) systems, particularly 

for high-temperature applications. OPC concrete, the conventional material proposed in 

TES systems, exhibits thermal degradation at elevated temperatures, limiting its suitability 

for high-temperature applications. Geopolymer concrete, on the other hand, offers several 

advantages over OPC concrete for TES, including superior thermal stability, higher heat 

capacity, and lower environmental impact. 

To evaluate the potential of geopolymer concrete for TES, a broad research 

approach was employed, combining numerical modeling, experimental validation, and 

machine learning optimization. A 2-D numerical model was developed to simulate the 

thermal performance of TES prototypes made with OPC and geopolymer-based materials. 

The model successfully demonstrated the superior thermal performance of geopolymer 

concrete compared to OPC concrete, particularly at high temperatures. 

Experimental validation of the numerical model was conducted using real TES 

prototypes made of OPC and geopolymer concrete. The experiments confirmed the 

superior thermal stability and storage capacity of geopolymer concrete, with temperature 

differences up to 30-40°C and storage capacity up to 2-3.5x higher than OPC concrete. 

To further optimize the design and performance of TES systems based on 

geopolymer concrete, a 3-D computational model was developed. This model enabled 

systematic evaluation of design choices and operating parameters to maximize the 

performance of TES systems for up-scale approaches.  

Finally, machine learning techniques were employed to optimize the design and 

performance of TES systems based on solid materials. A decision tree machine learning 

(ML) model was trained to predict TES performance metrics based on a dataset generated 

from the validated numerical model. The ML model was then used in conjunction with 

multi-objective optimization to identify Pareto optimal solutions that balanced objectives 

such as efficiency and pressure drop for up-scale design. 
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Resumen 

Esta tesis investiga el potencial del hormigón geopolimérico como alternativa al cemento 

Portland (OPC) para sistemas de almacenamiento de energía térmica (TES), particularmente para 

aplicaciones de alta temperatura. El hormigón de OPC, material convencional propuesto en los 

sistemas TES, presenta degradación térmica a temperaturas elevadas, lo que limita su idoneidad 

para las aplicaciones de alta temperatura. El hormigón geopolimérico, sin embargo, ofrece varias 

ventajas sobre el hormigón de OPC para TES, como una estabilidad térmica superior, una mayor 

capacidad calorífica y un menor impacto ambiental. 

Para evaluar el potencial del hormigón geopolimérico para TES, se empleó un enfoque de 

investigación amplio que combina modelado numérico, validación experimental y optimización de 

aprendizaje automático. Se desarrolló un modelo numérico bidimensional para simular el 

rendimiento térmico de prototipos TES fabricados con OPC y materiales a base de geopolímeros. 

El modelo demostró con éxito el rendimiento térmico superior del hormigón geopolimérico en 

comparación con el hormigón de OPC, especialmente a temperaturas altas. 

La validación experimental del modelo numérico se realizó utilizando prototipos TES 

reales fabricados con OPC y hormigón geopolimérico. Los experimentos confirmaron la superior 

estabilidad térmica y capacidad de almacenamiento del hormigón geopolimérico, con diferencias 

de temperatura de hasta 30-40 °C y capacidad de almacenamiento hasta 2-3,5 veces mayor que el 

hormigón de OPC. 

Para optimizar aún más el diseño y el rendimiento de los sistemas TES basados en 

hormigón geopolimérico, se desarrolló un modelo computacional en 3D. Este modelo permitió una 

evaluación sistemática de las opciones de diseño y los parámetros de operación para maximizar el 

rendimiento de los sistemas TES para enfoques de mayor escala. 

Finalmente, se emplearon técnicas de aprendizaje automático para optimizar el diseño y el 

rendimiento de los sistemas TES basados en materiales sólidos. Se entrenó un modelo de 

aprendizaje automático (ML) de árbol de decisiones para predecir métricas de rendimiento de TES 

basado en un conjunto de datos generado a partir del modelo numérico validado. El modelo ML se 

utilizó luego en conjunto con la optimización multiobjetivo para identificar soluciones Pareto 

óptimas que equilibraran objetivos como la eficiencia y la caída de presión para un diseño a mayor 

escala. 
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Chapter I. 

Research Objectives 

The transition towards a sustainable energy mix is a pressing global challenge, 

demanding the integration of renewable energy sources into existing energy systems. 

However, the intermittent nature of these sources poses a significant hurdle in their 

widespread adoption. Thermal energy storage (TES) emerges as a critical technology to 

overcome this challenge, enabling the storage of excess renewable energy during periods 

of surplus and its utilization when demand peaks. Sensible heat storage (SHS) stands as a 

widely employed TES method, where heat is stored within a material by raising its 

temperature. Conventionally, in concrete-based TES systems, cementitious materials, such 

as ordinary Portland cement (OPC) concrete, have been the primary choice for SHS 

applications due to their high heat capacity and cost-effectiveness. However, OPC concrete 

exhibits thermal degradation above 350ºC-400ºC, restricting its suitability for high-

temperature TES applications. 

 

The E-CRETE project is a research project funded by the Spanish Ministry of 

Science and Innovation that aims to develop new energy storage solutions based on 

concrete. The primary goal of this research is to investigate the viability of geopolymer 

concrete (GEO) as a substitute for OPC in thermal energy storage systems, particularly for 

high-temperature applications. The research is prompted by the limitations of OPC in TES 

systems, which exhibit thermal degradation above 400ºC. Conversely, geopolymer 

concrete shows potential advantages for TES, including improved thermal stability, higher 

heat capacity, and reduced environmental impact. 

 

The thesis couples varied research methodologies, such as numerical modeling, 

experimental validation, and machine learning optimization, to assess the suitability of 

geopolymer concrete for TES. The initial phase involves the development and employment 
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of a 2-D numerical model for simulating the thermal performance of TES prototypes made 

with OPC and geopolymer materials. The numerical model serves as a proof of concept for 

the proposed material. 

 

The research then proceeds with an experimental validation of the numerical model 

using real TES prototypes fabricated from OPC and geopolymer concretes. The 

experiments aim to confirm the superior thermal stability and storage capacity of 

geopolymer concrete. 

 

The research further aims to optimize the design and performance of TES systems 

based on geopolymer concrete through the development of a 3-D computational fluid 

dynamics model. This model is intended to allow a systematic evaluation of design choices 

and operating parameters, maximizing the performance of TES systems for up-scale 

applications. 

 

Lastly, the research aims to employ machine learning techniques for optimizing the 

design and performance of TES systems based on solid materials. A decision tree machine 

learning model is trained to predict TES performance metrics based on a dataset generated 

from the validated numerical model. The machine learning model is then used alongside 

multi-objective optimization to identify Pareto optimal solutions that balance efficiency 

and pressure drop objectives for up-scale design. 

 

Chapter II studies GEO concrete as a promising alternative to OPC for TES 

applications. The manufacturing process of GEO concrete samples and defining their 

properties through experimental measurements are explained. A 2D finite element model 

to simulate and compare the thermal performance of GEO and OPC concrete is presented, 

providing preliminary evidence of the superior efficiency of GEO concrete. 

 

Chapter III focuses on the experimental validation of TES prototypes constructed 

from GEO concrete and OPC concrete. It describes the process of fabricating the 

prototypes, setting up a test facility, and conducting thermal cycles under varying 
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temperature ranges. The chapter concludes with a comparative analysis of GEO and OPC 

performance metrics, supporting the superior thermal storage capabilities of GEO concrete 

highlighted in Chapter II. 

 

Chapter IV extends the work of the previous chapters by developing a detailed 3D 

computational model to simulate the performance of GEO-based TES systems. This model 

allows for a systematic evaluation of various design parameters and their effects on TES 

system performance. It also helps identifying the most influential factors and the optimal 

configurations to maximize TES system efficiency and storage capacity, setting the stage 

for the next chapter. 

 

Chapter V introduces machine learning and multi-objective optimization 

techniques to further enhance the design and performance of TES systems. It describes the 

process of gathering and preprocessing data to train a decision tree machine learning 

model, and then using this model with the Tree-Structured Parzen Estimator (TPE) 

algorithm. The chapter concludes with the validation of these solutions, proposing a 

modular and parallel arrangement of concrete TES modules for enhanced TES system 

performance. 

 

In conclusion, the research offers a contribution to the field of thermal energy 

storage by introducing and validating GEO concrete as a more sustainable and efficient 

material for TES applications. It provides a thorough and systematic approach to designing 

and optimizing TES systems, leveraging numerical simulation, experimental validation, 

and machine learning optimization techniques. The research lays the groundwork for future 

exploration of TES systems, particularly for high-temperature applications. 
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Chapter II. 

Background 

2.1 Thermal Energy Storage (TES) Systems 

 

Amidst the burgeoning discourse towards a renewable energy-driven future, 

thermal energy storage will undoubtedly play a focal role in shaping a more efficient, 

resilient, and sustainable energy system as it offers a compelling solution to the 

intermittency of renewable energy sources, warranting a consistent supply of thermal 

energy for a wide range of applications. Its versatility extends from individual buildings to 

district and even regional scales, encompassing power generation, industrial processes, and 

more.  

In the renewable energy sector, TES can balance power fluctuations, enhance 

system adaptability, and facilitate the storage and distribution of energy from variable 

renewable sources. Functioning as temporal gatekeepers, they capture and preserve 

transient heat energy for future utilization. TES is a key component in various industries 

(Cabeza, 2020a), including solar power generation (Alva et al., 2017; Pelay et al., 2017; 

Zunft et al., 2011), industrial proceses (Brückner et al., 2015a; Miró et al., 2016a), and 

building applications (Navarro et al., 2016c, 2016a; Shaw et al., 1994). 

 

IRENA (IRENA, 2020) posits that TES technologies hold a vast, as-of-yet 

untapped, potential in the energy transition across five key sectors: power, industry, district 

heating and cooling, cold-chain applications, and buildings. By 2030, it is predicted that 

TES-related costs in power generation could drop by over 50%, to an estimated USD 15 

per kWh. In the industrial sector, sensible technology costs could decrease nearly 30%, 

from USD 35/kWh to USD 25/kWh.  

 

In the building sector, improvements in material composition and system 

enhancements in TES technologies could boost efficiency levels up to 90% (IRENA, 



 

 

5 

 

2020). TES is projected to reduce the energy load in the EU-25 by 5,854,139 MWth over 

the next decade. This equates to thermal energy savings of 9,527,227 GWhth and a 

reduction in CO2 emissions by 2,579,088,559 metric tons (Cabeza, 2020a). Such 

projections emphasize the principal role of TES in advancing sustainable energy practices, 

energy management and mitigating the impacts of global climate change. 

 

TES systems can be broadly categorized into three types based on the method of 

storing energy: sensible heat storage, latent heat storage, and thermochemical storage. TES 

materials can be solids, liquids, and get used of phase change processes, such as melting 

or crystallization.  

 

Sensible TES systems primarily rely on the temperature change of the storage 

medium, latent on the energy gained/released while the material changes phase at nearly 

constant temperature, while chemical TES systems exploit reversible thermochemical 

reactions to store heat. Thermochemical energy storage systems are inherently more 

intricate than sensible and latent heat systems, as they encompass not only heat transfer 

phenomena but also mass transfer considerations and the kinetics of chemical reactions. 

Figure 2-1 illustrates the three primary TES systems and their corresponding physical 

phase or chemical reaction type. 

 

Within this broader renewable energy context, TES technology empowers us to 

store thermal energy for diverse applications down the line. It acts as an instrumental tool 

enhancing not only the stability and proficiency of energy systems but also mitigating 

environmental impacts (Cabeza, 2012a; Sarbu and Sebarchievici, 2018). The global market 

for TES could triple in size by 2030 to over 800 GWh (“Innovation outlook,” 2020). 

Forecasting the global market trends, TES is set to unleash its potential by claiming a 

whopping market size of $10.1 billion by 2027. The market dominion is held by sensible 

heat TES technologies, owing to their cost-affordability and comprehensive applicability 

(Pompei et al., 2023).  
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Sensible TES represents a mature and straightforward method for heat storage. It 

operates by altering the temperature of Sensible TES Materials, such as water, oil, rock 

beds, bricks, sand, concrete or soil, without any accompanying phase change (Alva et al., 

2017; Becattini et al., 2017; Koçak et al., 2020). Performance of a sensible TES system is 

evaluated based on capacity, power, efficiency, charge and discharge time, and cost 

(González-Roubaud et al., 2017; Koçak et al., 2020). However, manifesting TES systems 

is not devoid of challenges. The hurdles span from the need for bespoke TES designs 

suiting individual applications, the stability and attributes of the materials employed, to the 

intricate process of melding TES into existing systems (Gunasekara et al., 2021a). 

Furthermore, Ge et al. (Ge et al., 2014) discuss the challenges and opportunities of TES 

technology in four aspects: materials, components, devices, and integration with energy 

networks. Each of these facets demands strategic planning and design for effective TES 

assimilation.  

 

 

Figure 2-1. Thermal energy storage classification based on technology. 
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The diversity of TES systems in terms of temperature, power level, and heat transfer 

fluids necessitates tailored designs, media, and methods for specific applications (Bauer et 

al., 2012). TES systems span a remarkable temperature range, encompassing close to 

cryogenic conditions (-150°C) to scorching temperatures exceeding 1000°C. This 

expansive operating spectrum demands accurate selection of the storage medium and heat 

transfer fluid (HTF), the fluid responsible for transporting heat between the storage 

medium and the application. HTFs are classified into two primary categories: single-phase 

and two-phase. 

Single-phase HTFs remain in a single fluid state throughout their operation, 

typically liquids or gases. Water, molten salts, and organic fluids are common examples. 

Two-phase HTFs undergo phase transitions between liquid and vapor states during 

operation, providing enhanced heat capacity and transfer coefficients. This property stems 

from the unique characteristics of phase change processes, which involve latent heat 

storage and rapid heat exchange. Water-steam and refrigerant-vapor mixtures are 

prominent examples of two-phase HTFs. The selection of HTFs for TES systems is 

governed by several factors, including the operating temperature range, desired heat 

transfer rates, cost, safety considerations, compatibility with the storage medium and an 

appropriate integration with the application and energy source. 

 

On the other hand, TES systems can be distinguished as active, or passive based on 

the mechanism of energy transfer between the storage medium and the heat sink or source 

(Cabeza, 2020b, 2012b). Active TES systems employ external power sources, typically 

pumps or compressors, to circulate the HTF through the storage medium. Passive TES 

systems rely solely on natural convection or diffusion for heat transfer. Section 2.3 will 

present a detailed overview of diffusion type of heat transfer in solids. 

Direct TES systems straight store heat within the HTF, eliminating the need for a 

separate storage medium. This simplifies system design but may be constrained by HTF 

material limitations, primarily pressure and temperature tolerances (Bauer et al., 2012). 

Indirect TES systems utilize two distinct media – the HTF and the storage medium – for 

heat storage. This separation allows for the use of HTFs with higher operating parameters, 
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broadening TES application horizons. Indirect storage systems can involve direct or 

indirect contact between the HTF and the storage medium. Direct contact facilitates faster 

heat transfer but requires HTF-storage medium-structural material compatibility studies. 

Indirect contact systems employ heat exchangers or tube registers to transfer heat from the 

HTF to the storage medium without direct contact. 

 

Effective heat storage materials should exhibit a combination of attributes: 

substantial gravimetric and volumetric storage capacity, long-lasting performance, non-

toxic, non-flammable, and inert characteristics, resistance to material compatibility issues, 

compatibility with inexpensive structural materials, durability under repeated charging and 

discharging cycles, economic viability with ample availability, high thermal diffusivity and 

effusivity for efficient heat transfer, and minimal density variation with temperature to 

mitigate thermo-mechanical stresses(Bauer et al., 2012; Cabeza et al., 2022a; Gil et al., 

2010; Gunasekara et al., 2021b). 

 

The capacity of a heat storage system is determined by the volumetric and 

gravimetric energy densities of the materials used. In sensible heat storage systems, the 

volumetric heat capacity 𝜌. 𝑐𝑝 is the indicator of how much heat can be stored per unit 

volume of material. A high volumetric heat capacity reduces the required storage volume 

for a given heat capacity. The capacity of a sensible heat storage system is defined by 

Equation 2-1, where Qs represents the stored heat (in Joules), m is the mass of the heat 

storage medium (in kg), cp is the specific heat (in J/(kg·K)), Ti is the initial temperature (in 

°C), and Tf is the final temperature (in °C). Thermal diffusivity (α) and thermal effusivity 

(b) are two other key parameters, defined by Equations 2-2 and 2-3 respectively.  

The thermal diffusivity, where k is the thermal conductivity (in W/m·K) and ρ is 

the density, is a measure of how quickly a material responds to changes in temperature. A 

material with high thermal diffusivity allows for rapid charging and discharging of the heat 

storage system. 
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𝑄s = ∫  
𝑇f

𝑇l

𝑚𝑐pd𝑡 = 𝑚𝑐p(𝑇f − 𝑇i) 
(2-1) 

𝛼 =
𝑘

𝜌. 𝑐𝑝
 

(2-2) 

𝑏 = √𝑘. 𝜌. 𝑐𝑝 
(2-3) 

 

On the other hand, thermal effusivity defines how the temperature at the surface of 

the material reacts to a heat flux exchange. The next section will focus on cementitious 

thermal energy storage (TES) materials, which have gained prominence due to their 

widespread availability, ease of fabrication, and potentially high energy storage density.  
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2.2 Role of Cementitious Materials in TES 

 

Having established the principles of sensible heat storage and the importance of 

thermal diffusivity and effusivity, cementitious thermal energy storage materials will be 

discussed. These materials, derived from cement, water, and aggregates, offer a promising 

avenue for cost-effective and sustainable TES solutions (Boquera et al., 2021a; Cabeza et 

al., 2022a; Lavagna et al., 2020a; Ndiaye et al., 2018; Wang et al., 2023a).  

In particular, the integration of SHS with cementitious composites, such as 

concrete, brings numerous advantages, given the inherent properties of these materials 

including high thermal mass, broad availability, cost-effectiveness, and durability 

(Fernandez et al., 2010; Navarro et al., 2016d; Tatsidjodoung et al., 2013).  

Concrete-based TES is a more efficient and economical option than other 

mechanical or chemical storage technologies due to its relatively low cost and high 

operating efficiency (Lavagna et al., 2020b) (Kuravi et al., 2013). Recent research 

highlights the use of concrete as a TES material, with notable progress and emerging 

trends.(Navarro et al., 2016d, 2016d; Novotny et al., 2022; Sarkar et al., 2024; 

Tatsidjodoung et al., 2013; Wang et al., 2023b).  

In low-temperature applications, the utilization of concrete as a TES material has 

been extensively associated with its use in building envelopes, facilitated by the integration 

of phase change materials (PCMs) to augment latent heat storage. This methodology has 

gained considerable traction, particularly in regions such as China and Europe, which 

exhibit a prominent research output volume on this subject matter.(Boquera et al., 2021b). 

Concrete SHS systems in building sector can be implemented in various forms, 

including hydronic Thermo-Active Building Systems (TABS), ventilated concrete slabs 

(VCS) (Chen et al., 2010) (Fraisse et al., 2007), and integrated with double-skin facades 

(DSF). These systems offer several advantages, including improved thermal comfort, 

reduced energy consumption, and enhanced building sustainability. TABS allows the 

building’s structure to serve as a thermal storage, enabling the utilization of renewable 

energy sources (Lehmann et al., 2007) (Chen et al., 2010). Double Skin Facades (DSF) 

have emerged as a defining feature of contemporary architecture, primarily owing to their 
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aesthetic appeal and their significant contribution to natural daylighting (Shameri et al., 

2011) (Navarro et al., 2016b) (Fallahi et al., 2010). 

In addition to building and renewable energy applications, SHS systems using 

cementitious composites also find substantial use in the management of industrial waste 

heat. Modern research is investigating the potential of storing waste heat recovered during 

industrial processes, a move that could contribute to energy efficiency and sustainability 

(Brückner et al., 2015b; Laing et al., 2008; Miró et al., 2016b).  

Further, a noticeable shift towards high temperature thermal energy storage in 

concrete, particularly for concentrating solar power (CSP) plants, has been recognized. 

Thermal energy storage in CSP plants improves dispatchability, can provide buffering, 

delivery period displacement or extension, and improve the annual capacity factor of a CSP 

plant (Kuravi et al., 2013). This trend, highlighting the need to store and utilize high-

temperature energy, marks an exciting research direction in the context of energy-efficient 

design and renewable energy systems based on concrete (Wang et al., 2023b). 

Concrete based TES using ordinary Portland cement has found its role in CSP 

sector, as evidenced by a growing body of research and development efforts (Beine et al., 

1989; Buscemi et al., 2018; Hoivik et al., 2019; Laing et al., 2012, 2006; Martins et al., 

2015; Salomoni et al., 2014). Salomoni et al. (Salomoni et al., 2014) and Laing et al. (Laing 

et al., 2006) assessed the thermal sizing of the concrete based storage modules and their 

integration within a CSP system. Another study states that a 50 MW parabolic trough 

power plant with 1100-MWh concrete storage can deliver about 3500 full load hours 

annually in southern Europe, with about 30% of electricity generated by the storage system 

(Laing et al., 2012). The TES system has shown no changes in thermal performance after 

two years of operation. No cracking or separation has been observed between the storage 

material and steel pipes. The Concrete TES system has been tested at temperatures up to 

380 °C for over 20 months (Hoivik et al., 2019). Buscemi et al. proposed the integration of 

solar energy in conjunction with TES for a pasta factory (Buscemi et al., 2018), 

demonstrating a substantial storage capacity of approximately 85 MWhth. It exhibited a 

yearly storage efficiency of roughly 87%.  

The initial investment costs for constructing and installing the proposed solar 

industrial process heating plant amounted to approximately 2 million euros, with a simple 
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payback time of 8 years. At an estimated material cost of less than 50 euros per ton in 2018, 

it is an economically viable choice for such applications even without government 

incentives. Concrete among other solid based materials like metals, rocks, minerals, and 

castable materials exhibits energy storage capabilities, displaying a volume-specific 

capacity of 69.8 kWh/m³ and a mass-specific capacity of 25.4 kWh/ton at a 100 K 

temperature difference. When evaluating the economic aspect of concrete as a TES 

material, the estimated capacity-specific material costs are remarkably low. In the year 

2022, these costs are approximately 2.0 euros per kWh.(Steinmann, 2022). This efficiency, 

coupled with its economical characteristics, enhances concrete's suitability for thermal 

energy storage across various applications. Similarly, the material under consideration 

demonstrates remarkable storage capacity, holding an average of 106 kJ/kg. It further 

excels in volume-specific energy storage, managing up to 233 MJ/m³ or 65 kWh/m³. 

Materials with lower costs and adequate thermal storage capacities, such as concrete, could 

be increasingly favored in the development of TES systems. 

A number of pilot-scale installations have been implemented by various innovators 

in recent years, signaling the technology's budding potential and the industry's growing 

interest in its deployment (Hoivik et al., 2017; “Kraftblock,” n.d.; “STORWORKS 

POWER,” n.d.; Novotny et al., 2022; Saeed et al., 2022). TES systems that utilize concrete 

as the medium for SHS are typically constructed by embedding a tube matrix register heat 

exchanger in the concrete, enabling the transfer of thermal energy to or from heat transfer 

fluids such as water, steam, molten salt, air, and synthetic oil.  

The potential of cementitious materials is not confined merely to solar energy, 

though. They are also being tested for other medium and high-temperature applications, 

including industrial process heat and bulk electrical energy storage, a concept called Carnot 

battery (Dumont et al., 2020; Novotny et al., 2022). A Carnot battery is an energy storage 

system that converts electricity into thermal energy and later reconverts it into electricity. 

It offers potential cost advantages for large-scale (gigawatt-hour scale) storage compared 

to lithium-ion batteries. This technology is regarded as a promising option for economically 

and environmentally friendly storage of electricity from renewable energy sources, 

surpassing conventional battery solutions.  
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At commercial level, EnergyNest (Bergan and Greiner, 2014) utilizes high 

temperature concrete modules with a temperature limit of up to 380 °C. Storworks power 

(“STORWORKS POWER,” n.d.) offers BolderBloc high temperature concrete modules 

that can handle temperatures up to 600 °C. Their system has a thermal capacity starting 

from 30 MWh and they have a demo unit of 200 kWh with construction underway for a 10 

MWh capacity. Kraftblock (“Kraftblock,” n.d.) employs high temperature concrete 

granules capable of withstanding temperatures up to 1300 °C. Their system is scalable from 

4 MWh with a current capacity of 70 MWh. Concrete-based TES systems can also be used 

in steam generation (Singh and Sørensen, 2017) and the integration of high temperature 

TES into combined-heat-and-power (CHP) plants is viable as well (Gong and Ottermo, 

2022). 

However, Concrete thermal conductivity and specific heat vary based on concrete 

mix design and temperature (Lavagna et al., 2020b; Wang et al., 2023b). Optimizing these 

properties for TES is challenging due to variability in concrete mix designs and interactions 

between different constituents. Concrete used in TES needs to withstand cyclic temperature 

demands without thermal fatigue or degradation. Heterogeneous concrete composition can 

affect overall performance. Concrete has low storage density and long-term seasonal 

storage is challenging due to heat losses over time (Ndiaye et al., 2018). 

 

Permanent microstructure changes can also occur at high temperatures. Ordinary 

Portland cement (OPC) concrete has long been the cornerstone of concrete-based TES 

systems (Wang et al., 2023b). The hydration process of OPC is a chemical reaction that 

occurs when water is added to the cement. This process transforms the cement from a 

plastic state to a solid state and is influenced by various parameters such as the water-

cement ratio, use of admixtures, curing, and cement type. The main hydration products of 

OPC in Cement chemist notation (CCN) are calcium silicate hydrate (C-S-H) 1, calcium 

hydroxide (CH), and calcium aluminate hydrate (C-A-H) which contribute to the strength 

and durability of concrete (“The hydration of Portland cement,” 1978; Scrivener et al., 

2015). However, there are concerns about the effects of high temperatures on concrete, 

 
1 C=CaO (Calcium oxide, or lime); S=SiO2 (Silicon dioxide, or silica); H= H2O (Water); A= Al2O3 

(Aluminum oxide, or alumina); $= SO3 (Sulfur trioxide); N= Na2O (Sodium oxide) 
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including decomposition of CH and degeneration of C-S-H (Andic et al., 2008; John et al., 

2010) at temperatures beyond 300 °C (Rivera et al., 2016). 

Apart from OPCs, there are other binder families. Calcium sulfoaluminate (C$A) 

cements with ability to store heat at relatively low temperatures (<100°C) (Ndiaye et al., 

2020, 2018). C$A cements can produce much higher amounts of ettringite (40-80%) 

compared to Portland cements (a few percent). Ettringite is the key mineral that enables 

thermal energy storage through dehydration/rehydration reactions. Also, prototypes using 

C$A concrete for ettringite-based thermal storage have shown favorable performance - up 

to 71% storage efficiency and 117 kWh/m3 density in lab tests (Ndiaye et al., 2020). 

Belite cement, also known as low-energy cement, is a type of cement that can be 

used as an ecological alternative to OPC. It is produced with less energy and has a lower 

environmental impact due to its lower limestone requirement and lower kiln temperatures, 

which result in lower CO2 emissions and energy consumption (Cuesta et al., 2021; 

Guerrero et al., 2005). Belite cement has some advantages such as high durability and good 

late strength development (Cuesta et al., 2021; Irico et al., 2022). However, its utilization 

for TES applications in literature remains unexplored.  

Calcium aluminate (CA) materials are other candidates for high-temperature TES 

applications, particularly in CSP plants and solar process heat systems (Alonso et al., 2016; 

Cabeza et al., 2022a). Their high enthalpy and storage capacity, heat resistance, versatility, 

and relatively low cost make them attractive alternatives to conventional OPC materials. 

However, CA materials also face challenges in long-term stability and capacity retention 

under repeated thermal cycling. Corrosion and deterioration of concrete-based CA systems 

and a decrease in heat storage capacity upon cycling (Cabeza et al., 2022a; Ings and Brown, 

1982) are major concerns that need to be addressed through further research and material 

optimization. 

Geopolymer-based concrete is considered sustainable alternative binder to OPC 

due to its lower environmental impact and ability to utilize industrial byproducts (Barzegar 

et al., 2024; Duxson et al., 2007; Palomo et al., 1999; Provis et al., 2005).. It is produced 

by the alkaline activation of aluminosilicate materials like fly ash or slag (Singh et al., 

2015). Geopolymer concrete, a mixture of fly ash and silica fume, exhibits a significantly 

lower global warming potential compared to traditional concrete, with reductions of up to 
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75-78%. Additionally, geopolymer concrete is generally 10-18% less expensive than 

traditional concrete with silica fume (Bajpai et al., 2020). GEO shows off notable early 

compressive strength, reaching a staggering 80 MPa, comparable or even superior splitting 

tensile and flexural strengths, and a denser interfacial transition zone fostering enhanced 

strength. It has lower elastic modulus, around 15-29% less than OPC. Moreover, it displays 

reduced drying shrinkage, around 0.025% after 12 weeks, and exhibits superior sulphate 

and acid resistance compared to OPC systems. This material proves its mettle in high-

temperature environments, exhibiting residual strength after heating to 800°C, and 

demonstrating resistance to spalling up to 850°C (Singh et al., 2015).  

 

In summary, geopolymer concrete possesses very good mechanical properties and 

durability compared to OPC, with additional advantages in terms of sustainability and high 

temperature resistance (Rivera et al., 2016; He et al., 2020). Geopolymers have an open, 

highly porous structure that allows pressure release and escape of steam generated during 

heating. In contrast, OPC has a dense microstructure that traps steam, leading to explosive 

spalling.  

 

Geopolymers are composed of amorphous aluminosilicate gel and thermally stable 

aggregates. Upon heating, minimal dehydration or phase changes occur. On the other hand, 

OPC degrades above 300°C as key hydrates like C-S-H, CH, and ettringite decompose 

(Rivera et al., 2016). Geopolymers have good thermal stability compared to OPC (He et 

al., 2020). The presence of a significant amount of nanoconfined water within geopolymer 

composites is a notable characteristic that contributes to their high yet stable heat capacity. 

This higher proportion of water molecules in geopolymers compared to OPC is evident 

from the molar contents of their primary constituents: C1.7SH1.8 (Allen et al., 2007) and 

N2.5S3.5A2H6 (Lolli et al., 2018) with 1.8 moles of water for OPC, and 6 moles of water for 

geopolymers. They exhibit low mass loss, thermal expansion, and thermal conductivity 

when exposed to high temperatures (He et al., 2020). However, there are still few reports 

that GEO has been studied and proposed as TES material (Ferone et al., 2014; Frattini et 

al., 2021).  
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This thesis focuses on investigating GEO as a potential substitute for OPC, with its 

capacity to operate over a broader temperature range and higher storage capabilities as per 

Equation 2-1. The ensuing sections delve into the preparation of GEO samples, the 

assessment of their thermal properties, the fabrication and implementation of various 

scenarios involving GEO and OPC-based materials, and the development of two-

dimensional and three-dimensional numerical models that simulate and compare GEO to 

OPC TES (thermal energy storage) units. However, before embarking on these tasks, a 

thorough examination of the heat equation and its significance to this study is warranted. 

As TES systems that employ cementitious materials necessitate a firm grasp of the heat 

equation in solids for effective modeling and simulation. 
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2.3 Heat Transfer Fundamentals in Solids 

 

The previous sections explored the concept of thermal energy storage (TES) and 

introduced the potential of geopolymeric (GEO) materials as alternative TES materials to 

ordinary Portland cement (OPC). To fully comprehend the behavior of TES systems, a 

fundamental understanding of the governing heat transfer principles is essential. This 

section delves into the heat equation in solids, the primary mathematical framework that 

describes the transient and steady-state heat conduction processes within a solid material. 

The study of heat transfer began in the early 1700s with the work of Gabriel 

Fahrenheit, who invented the mercury thermometer and standardized the temperature scale. 

In 1752, Abbé Nollet observed osmosis across animal membranes, which suggested that 

heat could transfer through materials even if they were not in contact. In the same year, 

Daniel Bernoulli showed that trigonometric series could be used to solve differential 

equations. This was an important base development for later existence of heat equation, 

which is a partial differential equation. In 1760, Joseph Black recognized the existence of 

latent heat and specific heat, two important concepts in heat transfer.  

In 1779, Adair Crawford correlated the respiration of animals with their body heat, 

suggesting that heat was generated by metabolic processes. In 1783, Antoine Lavoisier, 

Marie Anne Pierrette and Pierre-Simon Laplace invented the first calorimeter, which 

allowed them to measure heat capacity and latent heat. In 1789, Laplace formulated the 

Laplace operator, which is used in the heat equation. In 1804, Jean-Baptiste Biot studied 

heat conduction among discontinuous bodies. In 1807, Joseph Fourier formulated the 

partial differential equation for heat conduction in solids. This equation is now known as 

the heat equation.  

Fourier's heat conduction equation describes how heat diffuses through a solid over 

time. It was first formulated by Joseph Fourier in 1807 and published in 1822 (Narasimhan, 

1999). Over 200 years later, Fourier's heat equation and Fourier's law continue to underpin 

the analysis of heat conduction and diffusive processes in solids and other media. The 

equation is based on Fourier's law, which states that the rate of heat conduction is 

proportional to the negative temperature gradient. Physically, it describes the conservation 

of heat energy over an infinitesimal volume element. 
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The heat equation in solids is derived from the energy balance equation, Fourier's 

law of heat conduction, and appropriate constitutive relations (Hahn and Özisik, 2012; 

Ozisik, 2013). The transient heat conduction equation of Fourier, a parabolic partial 

differential equation, captures the temporal evolution of temperature distribution within a 

solid material. It can be represented mathematically as Equation 2-4, where k, T, cp, and t 

represent thermal conductivity, temperature, specific heat capacity, and time, respectively. 

T acts as a scalar potential, while k and cp are empirical parameters.: 

 

∇ ⋅ 𝑘∇𝑇 = 𝑐𝑝

∂𝑇

∂𝑡
 

(2-4) 

 

Heat exchange with the external environment is governed by boundary conditions, 

either prescribing the temperature or thermal fluxes at the boundaries. The initial 

temperature distribution at time t = 0 is also specified.  

In the special case where the temperature remains constant with time and k is 

independent of temperature, Equation 2-4 simplifies to Laplace's equation, a fundamental 

equation in physics governing potential fields.  

Heat transfer occurs through the mechanisms of conduction, convection, and 

radiation. While heat itself cannot be directly measured, its concept holds physical 

significance due to its direct correlation with temperature. Conduction is a specific mode 

of heat transfer characterized by the transfer of energy within solids or quiescent fluids 

(lacking macroscopic movement).  

Once the temperature distribution, T(�̂�, t), within the medium is known as a function 

of both spatial position (defined by the position vector ˆr) and time (represented by scalar 

t), the flow of heat can be determined from the governing heat transfer principles.  

In Cartesian coordinate system, Fourier's law is applicable to a homogeneous and 

isotropic solid, characterized by a material with thermal conductivity that remains 

consistent regardless of direction. This relationship is expressed through equation 2-5, 

where ̂ i, ̂ j, and ̂ k represent the unit direction vectors corresponding to the x, y, and z axes, 

respectively. 
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𝑞′′⃗⃗⃗⃗ (𝑥, 𝑦, 𝑧, 𝑡) = −𝑘
∂𝑇

∂𝑥
𝑖̂ − 𝑘

∂𝑇

∂𝑦
𝑗̂ − 𝑘

∂𝑇

∂𝑧
�̂� 

(2-5) 

 

Beyond the heat flux, 𝑞′′⃗⃗⃗⃗ , which represents the rate of heat power transfer across a 

unit area perpendicular to the direction of flow, the total heat flow, also known as the heat 

rate, q, is another crucial metric, determined by multiplying the heat flux by the total cross-

sectional area over which heat transfer occurs. For three-dimensional (3D) problems, this 

can be achieved by integrating over the flow area. The heat rate in the x-direction for three-

dimensional Cartesian problems is provided by Equation 2-6. 

 

𝑞𝑐𝑜𝑛𝑑,𝑥 = −𝑘 ∫  
𝐿

𝑦=0

∫  
𝐻

𝑧=0

∂𝑇(𝑥, 𝑦, 𝑧)

∂𝑥
𝑑𝑧𝑑𝑦 

(2-6) 

 

For the three-dimensional problem, Equation (2-6), the total cross-sectional area is 

defined by the surface extending from y = 0 to L in the second spatial dimension and from 

z = 0 to H in the third spatial dimension. This implies that the temperature distribution, T, 

is a function of all three spatial coordinates: x, y, and z. 

The governing differential equation for heat conduction, as stated by Equation (2-

4), necessitates two boundary conditions for each spatial dimension, along with one initial 

condition for non-steady-state problems.  

The initial condition establishes the temperature distribution within the medium at 

the onset of the time-dependent process, represented by T(ˆr, t = 0). Boundary conditions, 

on the other hand, delineate the temperature or heat flux at the perimeter of the region under 

consideration. For instance, at a specific boundary surface, the temperature distribution 

may be specified, or the heat flux distribution may be prescribed.  

Additionally, heat exchange by convection and/or radiation with a surrounding 

environment at a given temperature may occur. Boundary conditions are derived by 

establishing an energy balance equation at the surface of the solid. Before delving into 

formal boundary conditions, it is advantageous to define two supplementary laws 

governing heat transfer: radiation and convection heat transfer. 
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The Stefan-Boltzmann law relates the radiant energy emitted by a surface to its 

temperature and emissivity. The total emissivity, ε, is calculated by integrating the spectral 

emissivity over all wavelengths and directions. For non-gray surfaces, ε varies with 

temperature due to the Planck distribution. The net radiant heat flux between a surface and 

an ambient medium can be approximated using Equation (2-7), which assumes an ideal 

enclosure and a gray body surface. σ denotes the Stefan–Boltzmann constant, having a 

value of σ = 5.670 × 10−8 W/(m²·K⁴) and T∞ is the temperature of the ambient. 

 

𝑞rad
′′ = 𝜀𝜎(𝑇4 − 𝑇∞

4) (2-7) 

 

Newton's law of cooling, Equation 2-8, relates the heat flux exchanged between a 

surface and its surroundings by convection to the temperature difference between the 

surface and the ambient environment, T∞. The convection heat transfer coefficient, h 

[W/(m2 · K).], quantifies the efficiency of heat transfer between the surface and the 

ambient.  

 

𝑞conv 
′′ = ℎ(𝑇 − 𝑇∞)               (2-8) 

 

 

 

There are three primary types of boundary conditions in heat transfer: 

1. Prescribed Temperature Boundary Condition (Dirichlet): Specifies a constant 

temperature at the boundary surface, Equation 2-9. 

2. Prescribed Heat Flux Boundary Condition (Neumann): Defines a constant heat flux 

across the boundary surface, Equation 2-10. 

3. Convection Boundary Condition: Describes heat transfer due to both conduction 

and convection. It is derived from the general heat transfer equation of Equation 2-

9, by setting the radiation term to zero, see Equation 2-11. 
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Other boundary conditions include interface boundary conditions, which arise at 

the interface between different materials with distinct thermal properties, and symmetry 

boundary conditions, Equation 2-12, which are used when only one-half of the problem 

needs to be analyzed. Symmetry boundary conditions treat the line of symmetry as an 

adiabatic (perfectly insulated) surface. A symmetry boundary condition defines a mirror 

face/surface where the physical geometry and expected flow/heat transfer pattern are 

mirrored along that surface. It reduces the model size and computational requirements by 

modeling only half or a portion of the full geometry. 

 

𝑇|surface = 𝑇0 

 

(2-9) 

−𝑘
∂𝑇

∂𝑛
|
surface 

= 𝑞0
′′ 

 

(2-10) 

−𝑘
∂𝑇

∂𝑛
|
surface 

= ℎ[𝑇|surface − 𝑇∞] 

 

(2-11) 

∂𝑇

∂𝑛
|
boundary 

= 0 (symmetry condition) 
(2-12) 

 

Lumped system formulation or lumped capacitance method is a simplification of 

transient heat conduction analysis. It neglects spatial variation of temperature and considers 

temperature as a function of time only. In partial lumped analysis, the temperature variation 

is preserved in one of the space variables but lumped in the others. It is restricted to 

applications where the spatial variation of temperature is small or negligible. 

 

Solving heat transfer problems requires a variety of techniques, each suited to 

specific scenarios. Between the main techniques it can be found: 

The Separation of Variables Method (SVM) excels at handling linear homogeneous 

heat equations and their corresponding boundary and initial conditions. It involves 

decoupling the variables in the partial differential equation (PDE) and solving the resulting 

ordinary differential equations (ODEs) , which can often be solved analytically . It involves 
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assuming that the solution can be expressed as a product of functions, each of which 

depends only on a single variable. The method is particularly useful for problems with 

homogeneous boundary conditions, which means that the boundary values are independent 

of time or space. In such cases, the ODEs can be solved to obtain eigenfunctions and 

eigenvalues. These can then be used to construct the general solution of the PDE. The 

analytical solutions to different basic geometries are discussed in great detail, for example 

in (Hahn and Özisik, 2012).  

Duhamel's Theorem proves useful when the boundary or initial conditions exhibit 

nonhomogeneous functions of time. It transforms the nonhomogeneous problem into a set 

of simpler problems, allowing the solution to be constructed using a convolution integral 

over past history.  

The Green's Function Method effectively tackles problems with nonhomogeneous 

terms. It represents the effect of a delta function source and boundary conditions, enabling 

straightforward superposition for multiple sources.  

The Laplace Transform Method effectively simplifies PDEs and their associated 

conditions by transforming them into the frequency domain, where they become algebraic 

equations. The solution can then be inverted back to the time domain.  

The Integral Transform Technique, on the other hand, transforms the PDE into an 

integro-differential equation, with the eigenfunctions of the transform serving as basis 

functions (Hahn and Özisik, 2012; Ozisik, 2013).  

 

For complex geometries and big systems, numerical techniques such as finite 

differences, finite elements, and boundary elements are commonly employed (Liu and 

Quek, 2014a; Özişik et al., 2017). In TES systems, the heat equation is employed to 

describe how heat is stored or retrieved within the TES material. For instance, when heat 

is injected into a TES system, the heat equation predicts the temperature distribution within 

the material as it absorbs and stores the energy. Conversely, when heat is extracted, the 

equation models how the temperature distribution evolves as the stored energy is released. 
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The heat equation provides a fundamental mathematical framework for 

understanding and modeling heat transfer processes in TES systems. In numerical 

modelling of GEO as TES material, the Finite Element Method (FEM) is employed to 

develop a numerical model. FEM is a numerical technique that discretizes complex 

geometries into smaller elements, enabling the solution of partial differential equations 

governing heat transfer. By incorporating the thermophysical properties of geopolymer 

concrete and the boundary conditions of the TES unit, the FEM model can predict 

temperature distribution, heat storage and retrieval rates, and thermal performance under 

various operating conditions. 

 

In the next section, 2.4, in introduction of how to use of the Finite Element Method 

(FEM) to develop a Numerical Model of Geopolymer concrete will be presented. In 

Chapter IV, before doing 3D Multiphysics simulations, discussion on numerical methods 

for solving heat conduction problems will be presented, including finite differences, finite 

elements, and boundary elements. 
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2.4 The Potential of Geopolymer as a TES Material 

The previous sections established the significance of geopolymer (GEO) materials 

as potential alternatives to ordinary Portland cement (OPC) in thermal energy storage 

(TES) systems. To validate this proposition, this section delves into the development of a 

numerical model based on the finite element method (FEM) to simulate and compare the 

thermal performance of GEO and OPC-based TES units. 

Prior to constructing the numerical model, it is essential to characterize the 

thermophysical properties of the GEO and OPC materials. These properties, including 

thermal diffusivity and specific heat capacity play a central role in determining the heat 

transfer behavior of the TES system as discussed with Equations 2-2 and 2-3.  

Building upon the material characterization data, a two-dimensional (2D) FEM 

model is developed to simulate heat transfer phenomena within GEO and OPC TES units. 

The model incorporates the thermophysical properties of the respective materials and 

boundary conditions representing the specific TES configuration. By simulating the heat 

storage and retrieval processes in the GEO and OPC TES units, the model enables a direct 

comparison of their thermal performance. 

 

2.4.1 Material preparation  

Geopolymer hybrid cement (H-Cement) is composed of fly ash, granulated blast 

furnace slag, highly alkaline wastewater from red mud ponds, and up to 20% Portland 

cement clinker. Compared to OPC, H-Cement production emits up to 80% less CO2. It 

does not require heat treatment or autoclaving during production. It can be used similarly 

to regular cement for ready-mixed concrete applications. Industrially produced geopolymer 

hybrid cement containing 20% Portland cement clinker and 80% inorganic geopolymer 

from Považská Cementáreň was used as binder (Martauz et al., 2016).  

To prepare GEO concrete, w/c = 0.6 and 75%wt of steel slag aggregate were 

employed. Geopolymer helps to maintain a stable and high heat capacity over different 

temperature ranges and slag maintains a proper thermal conductivity. Aggregates were 

crushed into fine powder (grain size < 0.25 mm). Therefore, powders were mixed using a 

mechanical blender at low speed (350 rpm) for 1 minute to obtain a uniform dispersion of 
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siliceous aggregates in the hybrid cement powder. Pure water was added, and the solution 

was stirred at 750 rpm for 1 min and 30 seconds. Later, the solution was allowed to rest for 

1 minute and mixed again at 750 rpm for 1 min and 30 seconds. Mixes were cast in 

cylindrical silicone molds with d = 4 cm and sealed. After 24 hours, the specimens were 

removed from the molds and placed in an environmental chamber with 100% relative 

humidity at room temperature for 28 days. 

 

2.4.2 Material characterization  

Specific heat capacity of the sample was measured by differential scanning 

calorimetry (DSC) (Q2000TA Instrument). The experiment was conducted with a 

modulated method (MDSC); this technique provides information on both reversible and 

non-reversible thermal events. Consequently, MDSC allows signals coming from water 

evaporation (irreversible process) to be neglected and provides the real specific heat of the 

sample. Aluminum pans were used in the experiment and the sample weight was about 30 

mg. Experiment was performed on heating between 100 and 400 °C with a heating rate of 

3 °C/min and modulated with ± 0.48 °C every 60 s. 

The main part of this work is the comparison of the GEO sample with other cement-

based materials. So, for the right evaluation of material efficiency, it is necessary to have 

a proper characterization of thermal diffusivity. However, depending on the material and 

the sample preparation, relevant deviations can be observed on the thermal diffusivity 

measured by different techniques (Ricklefs et al., 2017; Streb et al., 2018). Therefore, first, 

a reference pellet of hydrated OPC was measured by laser flash analysis (LFA), and the 

results were normalized to the literature values. Later, thermal diffusivity values of the 

GEO sample were multiplied by the normalization factor. Sample powders (size grain < 

64 μm) were compressed by a manual hydraulic press (SPE-CAC) applying 7 tons for 5 

min. The pellet with a thickness of ~2 mm was investigated by LFA 457 Micro flash.  

Measurements were made at room temperature, 50, 100, 200, 300, 400, 500, 600, 

700, 800 and 900 °C. The heating rate was ten °C/min. Five laser shots were performed for 

each temperature. Intervals between shots were 1.5 min to allow the homogenization of the 

temperature of the samples. 
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The MDSC-measured values of specific heat capacity for GEO represent a 

consistent behavior versus temperature rise. For the selected OPC concrete counterparts, 

DLR (Laing et al., 2012) and HEATCRETE (Hoivik et al., 2019), in the current state of 

knowledge, there is a lack of data regarding the thermal properties of OPC beyond 400°C.  

In fact, OPC-based concretes degrade at temperatures above 400–450°C. To 

facilitate a comparative analysis of GEO with other materials at temperatures ranging from 

400°C to 700°C, two fictitious OPC types, OPC-1, and OPC-2, were introduced. The 

thermal properties of OPC-1 and OPC-2 were approximated by extrapolating the available 

data from HEATCRETE and DLR, respectively (see table 2-1). Data for other samples, 

DLR (Laing et al., 2012) and Heatcrete (Hoivik et al., 2019) show an increasing trend with 

temperature rise (Figure 2-2).  

Measured α values for GEO show a more stable trend versus temperature compared 

to OPC-1 and OPC-2 (Figure 2-2). The thermal diffusivity (α) describes the rate of 

temperature spread through a material and is for characterizing unsteady heat conduction 

behavior. In fact, for temperatures more than 400 °C, the GEO concrete is expected to have 

higher thermal diffusivity than OPC-1 and OPC-2. Values for thermal conductivity, 

specific heat capacity and density of samples are tabulated in Table 2-1. For temperatures 

T > 400 °C, extrapolated values of DLR and Heatcrete concretes are used.  

 

  

(A) (B) 

Figure 2-2. Specific heat capacity and thermal diffusivity measurement.  

(A) Measured specific heat of the GEO concrete, compared to other leading samples DLR and Heatcrete, and 

(B) Measured thermal diffusivity of the GEO concrete, compared to defined samples OPC-1 and OPC-2. The 

dashed lines are guides to the eye to notice the trends. 
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The thermal conductivity, specific heat capacity, and density of the GEO sample 

are presented in Table 2-1. Properties obtained for OPC-2 are based on DLR data (Laing 

et al., 2012), while reference formulas have been utilized for temperatures exceeding 400 

°C. For OPC-1, curve-fitting was employed for temperatures up to 400 °C using 

HEATCRETE data (Hoivik et al., 2019), followed by extrapolation for higher 

temperatures. R-squared (R2) values exceeding 0.9 were prioritized, necessitating linear 

extrapolation for cp and exponential estimation for k and ρ.  

 

Table 2-1. Thermophysical properties of different samples. 

material Properties Equation Fitted 

 

GEO 

Cp
1 1000 

K2 1.2 

𝜌3 2400 

 

 

OPC-1 

Cp {
0.004521 × 𝑇^2 + (−0.6148 × 𝑇)  +  802.5 → 𝑖𝑓 𝑇 ≤ 400

1.05 × 𝑇 +  860 → 𝑖𝑓 𝑇 > 400
 

K (5.081𝑒 + 54) × 𝑒𝑥𝑝(−((𝑇 − (−1.963𝑒 + 05))/(1.757𝑒
+ 04))^2 

𝜌 71.4 × 𝑒𝑥𝑝((−0.004057) × 𝑇)

+  2240 × 𝑒𝑥𝑝((5.283𝑒 − 07) × 𝑇) 

 

OPC-2 

Cp (0.7 + 8.75 × 10^(−4) × 𝑇) × 1000 

K 1.467 − 6.667 × 10^(−4) × 𝑇 

𝜌 2250 
1 Specific heat capacity (W.s/kg. °C). 2 Thermal conductivity (W/m. °C). 3 Density (kg/m3). T is temperature 

(°C). 

2.4.3 Numerical Model (2D) 

A finite element analysis (FEA) model of the TES module was developed using 

MATLAB (MATLAB, 2020), employing the experimentally determined thermal 

properties. The geometry used for the numerical analysis was a square cubic block of 

concrete with an embedded tube. Block sizes were 100 × 100 × 100 mm3 and the tube 

diameter was 25.4 mm. This layout with larger scale and more tubes is by far the best-

known and most widely used scheme, Figure 2-3 (A).  
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The front face of the block was considered for numerical modeling (2D) and 

thermal analysis. However, to calculate the energy storage amount, which is a quantity 

dependent on mass and volume, outputs of the two-dimensional model were used and 

generalized to the module’s volume and mass. 

 

  

(A) (B) 

Figure 2-3. Concrete block with model meshed geometry. 

(A) Perspective view of geometry; module is 100 × 100 × 100 mm3 volume with an embedded 25.4 mm (1”) 

tube. (B) Quadratic triangular mesh used for finite element modeling (FEM) (scale 1:100, dimensions in 

mm). 

Transient heat transfer analysis can be performed using the finite element method , 

solving the heat diffusion equation, Equation 2-5, with time-dependent terms. The transient 

heat equation in 2D Cartesian coordinates is presented in Equation 2-13: 

 

∂𝑇

∂𝑡
= 𝛼 (

∂2𝑇

∂𝑥2
+

∂2𝑇

∂𝑦2
) 

(2-13) 

 

where 𝛼 is thermal diffusivity, T is temperature, t is time. The FEM involves 

discretizing the domain of interest into a mesh of finite elements. Each element is assigned 

a temperature value, representing the average temperature within the element. Galerkin 

interpolation is a method for approximating the temperature distribution within each 

element.  
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By applying Galerkin FEM to derive discretized matrix equation as [𝐶]{�̇�} +

[𝐾]{𝑇} = {𝐹} where [C] is capacity matrix, [K] is conductivity matrix, {T} is nodal 

temperature vector, and {F} is load vector. It involves defining a set of basis functions that 

span the space of possible temperature variations within the element.  

The heat equation is first converted into its weak formulation, which expresses the 

problem in terms of integrals over the domain of interest. This involves integrating the 

governing equation and its boundary conditions over each finite element. The weak 

formulation is then discretized using the weighted residual method (WRM), which 

approximates the integrals using the Galerkin interpolated temperature values. This leads 

to a set of algebraic equations that represent the discretized heat equation.  

To simulate the transient heat transfer process, the system of algebraic equations 

obtained from the WRM is solved repeatedly over time steps. The initial temperature 

distribution is prescribed, and boundary conditions are applied at each time step. 

The temperature value at a node is represented by the symbol Ti, where i is the 

index of the node. The average temperature within an element is represented by the symbol 

Te, where e is the index of the element. The element assembly process involves solving the 

equation 2-14: 

 

𝑇𝑖 = ∑  

𝑁𝑒

𝑒=1

𝑤𝑖𝑒𝑇𝑒 

(2-14) 

 

where Ne is the total number of elements and wie is the weight associated with node 

i in element e. Later in Galerkin Interpolation, the temperature distribution within an 

element is approximated using the Equation 2-15: 

 

𝑇𝑒 = ∑  

𝑁𝑝

𝑗=1

𝑐𝑒𝑗𝜙𝑗 

(2-15) 
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where Np is the total number of basis functions, cej are the coefficients of the basis 

functions, and Φj are the basis functions. The weak formulation of the heat equation can be 

expressed as Equation 2-16: 

 

∫  
Ω

(𝑘∇𝑇 ⋅ ∇𝑣 − 𝑞𝑣)𝑑Ω = 0 
(2-16) 

 

where Ω is the domain of interest v is a test function, and q is the heat source. The 

weighted residual method involves integrating the weak formulation over each finite 

element and approximating the integrals using the Galerkin interpolated temperature 

values. This leads to the following set of algebraic equations, Equation 2-17: 

 

∫ 
𝑒

(𝑘∇𝑇𝑒 ⋅ ∇𝜙𝑗 − 𝑞𝑒𝜙𝑗)𝑑𝑒 = 0 
(2-17) 

 

The time integration scheme involves solving the system of algebraic equations 

obtained from the WRM repeatedly over time steps. The implicit Euler method can be 

applied to the system of algebraic equations obtained from the WRM as shown in equation 

2-18. Then, an implicit Euler method used, can be expressed as follows, Equation 2-19: 

 

∫ 
𝑒

(𝑘∇𝑇𝑒,𝑛+1 ⋅ ∇𝜙𝑗 − 𝑞𝑒,𝑛+1𝜙𝑗)𝑑𝑒 = 0 
(2-18) 

𝑇𝑖,𝑛+1 = 𝑇𝑖,𝑛 + Δ𝑡(𝑘∇𝑇𝑖,𝑛+1 ⋅ ∇𝜙𝑗 − 𝑞𝑖,𝑛+1𝜙𝑗) (2-19) 

 

The implicit Euler method is a time integration scheme that assumes that the 

temperature distribution at the next time step (Ti,n+1) is known. This allows the system of 

algebraic equations to be solved for the temperature distribution at the current time step 

(Ti,n). The time step size (Δt) is typically chosen to be small enough to ensure that the 

assumption of a known temperature distribution at the next time step is valid. Once Te,n+1 
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is known, the temperature distribution at the current time step (Ti,n) can be updated using 

the equation 2-20: 

 

𝑇𝑖,𝑛+1 = 𝑇𝑖,𝑛 + Δ𝑡 ∫ 
𝑒

(𝑘∇𝑇𝑖,𝑛+1 ⋅ ∇𝜙𝑗 − 𝑞𝑖,𝑛+1𝜙𝑗)𝑑𝑒 
(2-20) 

 

This process is repeated for each time step until the desired solution is reached. The 

implicit Euler method is a simple and efficient time integration scheme that is commonly 

used for solving transient heat transfer problems. However, it can be unstable for problems 

with large time step sizes or sharp temperature gradients (Liu and Quek, 2014b).  

The derivation of the transient, conduction-dominant heat transfer dynamics is 

based on a simplified model of a concrete block, with several assumptions made to 

facilitate the process. Firstly, it is assumed that there is no heat generation within the 

concrete block. This assumption is based on the premise that the block is not a source of 

heat but merely a medium to store thermal energy. Secondly, the heat distribution is 

assumed to be uniform along the length of the structure. This assumption is made under 

the condition that there is no dominant direction for heat transfer, thus necessitating a multi-

dimensional approach to solve the conduction problem. Thirdly, radiation heat transfer is  

negligible. Lastly, the tube's wall thickness is assumed to be negligible, too, implying that 

its thermal resistance has a minimal impact on the heat transfer process. This assumption 

is practical when the tube wall is thin and has high thermal conductivity as metallic piping 

has.  

 

Substituting the simplifying assumptions into the general transient heat equation, 

the resulting heat equation for the concrete block embedded in a heated tube (charging the 

storage medium) is presented as follows, Equation  2-21: 

 

𝜕

𝜕𝑥
(𝑘

𝜕𝑇

𝜕𝑥
) +

𝜕

𝜕𝑦
(𝑘

𝜕𝑇

𝜕𝑦
) = 𝜌𝑐

𝜕𝑇

𝜕𝑡
 

(2-21) 
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The equation is a partial differential equation that describes the distribution of heat 

(or variation in temperature) in the block over time.  

Additionally, the boundary and initial conditions need to be defined. Initially, the 

TES is assumed to be at a uniform temperature, denoted by T0. This condition reflects the 

fact that the TES is commonly charged or preheated to a specific temperature before being 

used. 

 

 

 On the tube side, the temperature is specified as Tinlet, indicating that the fluid 

flowing through the tube maintains a constant temperature. This boundary condition 

assumes that the fluid temperature does not significantly influence the heat transfer within 

the TES.  

 

T (r=rout, t) = Tinlet. (2-22) 

The insulated boundary condition represents the absence of heat transfer across the 

outer surface of the TES. This assumption is reasonable for well-insulated TES systems 

where heat loss is minimal or for a symmetric configuration. Specified heat flux - insulated 

boundary:  

 

𝑘
𝜕𝑇(𝑥 = 0, 𝐿, 𝑡)

𝜕𝑥
= 0 𝑎𝑛𝑑 𝑘

𝜕𝑇(𝑦 = 0, 𝐿, 𝑡)

𝜕𝑦
= 0 

(2-23) 

To simulate the temperature distribution in the TES module, a numerical scheme 

using quadratic triangular mesh was employed (Figure 2-3 (B)). The average temperature 

of all elements in the mesh region (denoted as “Taverage”) is a key parameter that depends 

on the initial and boundary conditions of the material, as well as its transient behavior.  

It has been used in determining the charging/discharging time, estimating the 

amount of stored energy, and evaluating the transient heat distribution within the TES 

module. To ensure the validity of the results obtained from the numerical scheme, grid test 

analysis was performed on the mesh, see Appendix A. 
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 Figure 2-4 depicts at which locations temperature values will be studied deeply, 

since they illustrate the rapid heat transfer from the heat source to the TES material, 

demonstrating the TES module's ability to store and release thermal energy efficiently. 

 

 

Figure 2-4. Temperature assessment points.  

Points marked on the XY plane to monitor the temperature changes at specified distances from the tube wall, 

T1, T2, T3 and T4. (scale 1:100 mm). 

 

 

2.4.4 Numerical Results 

Initially, a low-temperature regime was considered, where Tinlet was set to 400°C 

and the initial temperature (T0) of the storage modules was 250, 300, and 350°C, 

respectively. The Taverage of the modules was then calculated after 6 hours of heating. 

Among the tested modules, OPC-1 exhibits the highest Taverage after 6 hours. However, as 

the T0 increases, the difference between the Taverage values of the TES modules diminishes 

(Table 2-2). 
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Table 2-2. Average temperature reached after 6 hours for Tinlet = 400 °C. 

 T0 = 250 °C T0 = 300 °C T0 = 350 °C 

OPC-1 277.3 316.9 357.8 

OPC-2 270.3 313.1 356.4 

GEO 268.4 312.3 356.1 

 

Subsequently, a high-temperature regime was imposed by of Tinlet = 700°C and a 

range of T0 values from 250 to 650°C, with 50°C increments. The GEO module 

demonstrated superior performance for T0 values greater than 350°C, attributed to its 

higher thermal diffusivity at elevated temperatures. This highlights the substantial impact 

of inlet and initial temperatures on the calculated average temperature of the GEO module. 

The results are summarized in Table 2-3. 

Table 2-3. Average temperature reached after 6 hours for Tinlet = 700 °C. 

 
Initial temperatures °C 

250 300 350 400 450 500 550 600 650 

OPC-1 317.9 356.1 395.7 437 479.7 522.9 566.6 610.7 655.2 

OPC-2 305.9 348.1 390.8 434 477.5 521.4 565.6 610.2 655.0 

GEO 305.1 349.0 392.9 436 480.6 524.5 568.4 612.3 656.1 

 

Stored thermal energy Qs (kJ) after 6 hours of heating up the TES modules was 

calculated from Equation 2-1 for both low and high Tinlet conditions. As could be predicted 

from Tables 2-1 and 2-2, for Tinlet = 400 °C, the GEO module shows Qs values close to 

those of the OPC-2 module, even though the values of Qs are ~24% smaller than those of 

OPC-1 (Figure 2-5 (A)). Regarding the high temperature range (Tinlet=700 °C), an 

improvement in GEO results is observed; however, the amount of energy stored for GEO 

is still less than that for the OPC-1 sample (Figure 5B). As mentioned previously, the 

properties for OPC-1 and OPC-2 are extrapolated from concretes, and there is no evidence 

that these specimens can operate in this temperature range. 
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(A) (B) 

Figure 2-5. Stored thermal energy Qs (kJ) after 6 hours of heating. 

(A) Energy stored (kJ) for Tinlet=400 °C, charging for 6 hours and different initial temperatures. (B) Energy 

stored (kJ) for Tinlet = 700 °C, charging for 6 hours and different initial temperatures. 

To simulate the charge and discharge scenarios, Tinlet was considered as a stepwise 

approach of distinct stages. In this way, Tinlet = Tmax for the charging process and Tinlet = 

Tmin for the discharge process. Tmax and Tmin are operating temperature scenarios.  

Each complete charge/discharge cycle is assumed to last 12 hours. Modeling was 

conducted with temperature data of two solar power plants currently operating. The first is 

the 1.0 MWh EnergyNest storage pilot at the Masdar Institute Solar Platform (MISP) in 

Abu Dhabi, United Arab Emirates (Hoivik et al., 2019), operating between 290 and 390 °C 

with thermo-oil as heat transfer fluid.  

The second is the Solar Two power tower pilot in California, USA (Tyner et al., 

1995), along with GEMASOLAR in Seville, Spain (Burgaleta et al., 2011), with molten 

salt as heat transfer fluid. T0 = 290 °C and Tinlet = 565 °C were studied. Afterward, a high 

temperature regime (T0 = 290ºC; Tinlet =700 °C) was considered to evaluate the GEO 

module’s behavior at high temperature ranges.  
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Case 1: T0 = 290ºC; Tinlet =565/290 °C Assuming that OPC-based samples are able 

to operate in this temperature range, in Figure 2-6 (A), the calculated Taverage of the TES 

modules is shown. An attempt has been made to estimate the time required for initial setup 

and reaching the inlet temperature, Tinlet = 565 °C. After about 280 hours, Taverage was 

compared for different modules (Figure 6B). OPC-1 module obtained the highest average 

temperature, followed by GEO and then OPC-2. 

 

 
 

(A) (B) 

Figure 2-6. Average temperature estimation for TES units (T0 = 290ºC; Tinlet =565/290 °C). 

(A) Commissioning for Tinlet = 565 °C, charging for 280 hours. (B) Temperature at final time. 

Figure 2-7 (A) shows the charging and discharging cycles for three TES modules. 

After ~50 cycles, modules work at a defined temperature range. Observation shows that 

the GEO module works in a higher temperature margin, but as shown in Figure 2-7 (B), 

the OPC-1 module works with improved temperature differences (ΔT) for both charging 

and discharging over a specified time period. The higher ΔT values coupled with high 

thermal diffusivity characteristics allow the TES unit to change its operating temperature 

more rapidly.  
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(A) (B) 

Figure 2-7. Charging/Discharging cycles and ΔT for TES units (T0 = 290ºC; Tinlet 

=565/290°C). 

(A) Charging/discharging cycles T0, discharging = 427.5 °C. (B) Temperature difference of each 

charging/discharging after stabilizing period, cycle > 50. 

Temperatures inside the TES body at specified intervals along the X-axis between 

the tube’s surface and right edge, as mentioned in Figure 3, were estimated. After the T0 = 

290 °C and Tinlet=565 °C were determined and the charging process was performed for 6 

hours, OPC-1 achieved the highest temperature in all assessment temperature point, T1, 2, 3 

and 4. At 1 cm from the surface of the tube and after 3.5 hours, the GEO sample has a higher 

temperature than OPC-2 (Figure 2-8). This is because the temperature at that point is 

reaching the value where the thermal diffusivity of the GEO sample is higher. 
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Figure 2-8. Transient temperature at different locations (T0 = 290ºC; Tinlet =565/290°C). 

Transient temperature at different intervals after 6 hours. 

The temperature distribution map, heat flux vector field and calculated average 

temperature for 6 hours of charging and discharging are shown in Figure 2-9. In the 

charging scenario (first row), the OPC-1 sample has the highest average temperature, and 

OPC-2 and GEO samples have relatively close average temperatures, with less than 1 °C 

difference. For the discharge scenario (Figure 2-9, second row), the calculated Taverage of 

GEO is lower than that of OPC-2 even though the values for OPC-1 are even lower.  

It is worth mentioning that these calculations have been completed knowing there 

is no information for properties of counterparts above 400 °C and assuming the 

functionality of OPC-1 and OPC-2 at high temperatures. This makes GEO concrete a 
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potentially good choice that is able to operate in a wider temperature range, greater Δ𝑇, 

and consequently greater energy storage capacity. 

 

OPC-1 OPC-2 GEO  

    
T_average = 330.8 °C T_average = 323.2 °C T_average = 322.3 °C  

    

T_average = 528.9 °C T_average = 534.2 °C T_average = 532.6 °C  

Figure 2-9. Transient temperature, heat flux distribution and average temperature after 6 

hours (T0 = 290ºC; Tinlet =565/290°C). 

First row: Charge. Second row: Discharge. 

 

Case 2:  T0 = 290ºC; Tinlet =700/290 °C 

Assuming that OPC-based samples are able to operate in this temperature range, 

the GEO concrete has the better  behavior. The GEO module reached the highest average 

temperature for Tinlet = 700 °C and after about 300 hours (Figure 2-10 A,B). Although 

Figure 2-10 C,D shows the same trend analyzed in case 1, the temperature difference of 
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charging/discharging after the stabilizing period, cycle > 50, for GEO is about 3% lower 

than that for OPC-1 and 6% higher than that for OPC-2. 

 

 
 

(A) 
(B) 

 

 
 

(C) (D) 

Figure 2-10. Average temperature and Charging/Discharging cycles (T0 = 290ºC; Tinlet 

=565/290°C). 

(A) Commissioning for Tinlet = 700 °C, charging for 300 hours. (B) Average temperature of TES modules at 

final time. (C) Charging/discharging cycles T0, discharging = 495 °C. (D) Temperature difference of 

charging/discharging after stabilizing period, cycle > 50. 

 

 

Figure 2-11 shows the temperature values at different intervals inside the TES block 

for Tinlet = 700 °C and T0 = 290 °C and after 6 hours.  Unlike Case 1, this setup shows that 
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GEO achieves a higher temperature than OPC-2 at 1 cm from the surface of the tube and a 

temperature close to that of OPC-2 at 2 cm.  

However, the values of OPC-1 are greater than those of OPC-2 and GEO. When 

TES modules were heated for 96 hours (Figure 2-12), GEO achieved the highest 

temperature in the 1 cm location and a higher temperature than OPC-2 in the rest of the 

intervals. The final average temperatures were 587.1, 568.7 and 587.3 °C for OPC-1, OPC-

2 and GEO, respectively.  

The results confirm what has been raised about the heat capacity and thermal 

stability of geopolymer-based concrete at higher temperature ranges. However, operating 

in the higher temperature regime leads to an overestimation of the specific heat values 

reported for OPC-1 and OPC-2 (Table 2-1, specific heat (J/kg °C) as a function of 

temperature). This was expected because extrapolating to temperatures beyond what was 

actually tested can lead to unrealistic and very high specific heat values. .  
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Figure 2-11. Transient temperature at different intervals (T0 = 290ºC; Tinlet =565/290°C) 

Transient temperature of different intervals along X-axis versus time after 6 hours  
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Figure 2-12. Transient temperature at different locations (96 hrs., T0 = 290ºC; Tinlet 

=565/290°C) 

Temperature distribution contours and heat flux vectors for charging and 

discharging processes (Figure 2-13) show the same trend as Case 1. The OPC-1 sample 

has the highest average temperature, followed by the GEO sample and then the OPC-2 

sample. However, in this scenario, the values of average temperature for GEO concrete are 

closer to those of OPC-1, showing about 1 °C difference with OPC-1 and 5 °C difference 

with OPC-2 . 
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OPC-1 OPC-2 GEO  

    
T_average = 346.2 °C T_average = 337.7 °C T_average = 338.2 °C  

    

T_average = 650.8 °C T_average = 657.1 °C T_average = 651.8 °C  

Figure 2-13. Transient average temperature and heat flux distribution after 6 hours (T0 = 

290ºC; Tinlet =565/290°C) 

First row: Charging. Second row: Discharging 

Apart from that real OPC1 and OPC2 are not able to stand temperatures above 

350ºC, even extrapolating their behavior to higher temperatures, GEO thermal diffusivity 

is 5 × 10−7 m2/s and is greater than that of OPC counterparts at temperatures T > 400 °C. 

The highest average temperature is obtained by GEO concrete, and the thermal energy 

storage capacity and temperature difference (ΔT) in cyclic charging and discharging 

operations are in a very acceptable range for TES material. Altogether, this work 

demonstrates that GEO concretes are a promising alternative so that CSP and SPH 

industries can work at higher temperatures with geopolymer-based materials. 
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In the next chapter, further investigations of the behavior of GEO-based concrete 

prototypes in realistic lab-scale test facility, subjected to various thermal scenarios will be 

presented. This experimental validation will provide another insight into the practical 

implementation of GEO concrete as a TES material in high-temperature applications.  
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Chapter III. 

Prototype Development and Experimental Validation 

3.1 Prototypes Manufacturing and Experimental Set Up 

The previous section (2.4) demonstrated the potential of geopolymer-based 

concrete as a thermal energy storage material for high-temperature applications. Its low 

thermal resistance, high specific heat, and thermal stability compared to conventional OPC-

based concretes suggest its ability to store and release heat efficiently under demanding 

temperature conditions. However, to fully assess the feasibility of GEO concrete in 

practical TES systems, experimental verification is necessary. This chapter delves into the 

prototyping and experimental validation of GEO concrete TES unit, subjected to various 

thermal scenarios mimicking real-world operating conditions. 

A GEO prototype were fabricated using industrially produced geopolymer hybrid 

cement from Považská Cementáreň (Martauz et al., 2016), as mentioned in the previous 

chapter. This composition was chosen due to its ability to maintain a stable and high heat 

capacity over a wide temperature range, while the steel slag contributes to the desired 

thermal conductivity characteristics. In parallel, a control sample of ordinary Portland 

cement (OPC) concrete was prepared using the properties and formulation outlined in 

Table 3-1. Cubes of 10 cm3 were cast and cured for 90 days to ensure adequate strength 

development. Compressive strength testing was conducted on the GEO and OPC samples, 

yielding values of 47.25 MPa and 50.87 MPa, respectively.  

Table 3-1. Formulation of the GEO and OPC concretes. 

Material GEO OPC 

Cement 9.90 [kg] 9.00 [kg] 

Limestone aggregates 0/2 - 35.25 

Limestone aggregates 4/12 - 24.75 

SLK aggregates 0/8 66.00 - 

Water 5.78 [kg] 5.25 [kg] 

Viscocrete 70.80 [g] 28.00 [g] 

Sikament 104.50 [g] 95.00 [g] 
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To fabricate representative samples of TES devices, an embedded tube scheme was 

adopted, as depicted in Figure 3-1. Schedule 40 stainless steel pipe, specifically 304/304L, 

utilizing a 6-inch diameter welded tube, was employed. To facilitate attachment of the TES 

sample to the test facility, two flanges were positioned at opposite ends of the tubes. The 

experimental setup was housed at CIC EnergiGUNE, located in Vitoria, Spain. Three 

temperature probes were embedded at predetermined depths within the concrete matrix, 

enabling accurate monitoring of the module's temperature profile, Figure 3-1. 

 

 

 

 

(A) (B) 

Figure 3-1. Prepared TES samples with dimensions.  

(A)Geometry and dimension of TES unit in mm, (B) prototyped TES modules. 

 

Air was chosen as the circulating HTF for the TES experiment setup,  in Figure 3-

2. The HTF is pumped via a dedicated pump and then heated by an electric heater before 

being delivered to the TES modules. To ensure secure attachment and optimal heat 

exchange, the TES modules are flanged onto predetermined air heater tubes. Following 

flanging, an insulation and jacketing process is implemented to minimize thermal losses 
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during the experiment. This insulation helps maintain the desired temperature profile 

within the TES modules, ensuring consistent performance throughout the experimental 

cycles.  

To evaluate the performance of the TES prototypes, two distinct operating 

scenarios were investigated. First, a low-temperature scenario involved four cycles of 

charging and discharging, with inlet air temperatures (Tinlet) fluctuating between 200 and 

450 °C. These temperature ranges align with the typical operating conditions reported for 

OPC-based concrete (Heatcrete) (Hoivik et al., 2019), providing a benchmark for 

comparison. In contrast, the high-temperature scenario extended the operating envelope to 

a broader range, with Tinlet values varying between 200 to 600 °C. This extreme temperature 

range was explored to assess the GEO's ability to maintain operational efficiency and 

workability under such challenging conditions. To continuously monitor the performance 

of the various TES modules, real-time measurements were conducted utilizing 

thermocouples. These sensors recorded the temperature and velocity of the incoming air, 

providing view into the HTF's behavior.  

 

 

(A) 

 

(B) 

Figure 3-2. Thermal energy storage testing loop facility. 

 (A) before insulation and (B) after insulation and jacketing the module. 
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3.2 Procedures and Results of Experimental Runs 

 

A comprehensive evaluation of the TES samples was conducted by conducting four 

thermal cycles, each lasting approximately 24 hours. These cycles enabled the investigation 

of the samples' behavior under varying thermal conditions and their ability to store and 

release heat effectively.  

Two distinct thermal scenarios were explored: one with an inlet air temperature of 

450 °C and another with 650 °C. To prevent thermal shock and ensure a smooth transition 

into the experimental cycles, a gradual start-up scenario was employed. Over a period of 

ten hours, the inlet air flow temperature was increased to approximately 120 °C, as depicted 

in Figure 3-3.  

To monitor the temperature profile along the flow axis, three temperature probes 

(T1-3) were placed within the concrete matrix, as shown in Figure 3-1(B). The preheating 

rate before initiating the experiment was determined for each scenario. For the 450 °C 

scenario, a preheating rate of 3°C/h was considered appropriate, while for the 650 °C 

scenario, a higher rate of 14°C/h was adopted due to the sample's prior exposure to thermal 

conditions. 

 

 

Figure 3-3. Startup scenario and first heating ramp for first 10 hours, GEO prototype. 
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Later, the maximum average temperatures attained by each prototype during the 

experiment are presented in Table 3-2, providing a quantitative comparison of their thermal 

storage capabilities. To gain a deeper understanding of the prototypes' behavior, complete 

experimental data for both temperature conditions are presented in Figures 3-4.  

 

Analyzing the third and fourth cycles, which represent more stable thermal 

conditions, reveals significant temperature differences between GEO and OPC prototype. 

In the 450 °C scenario, the maximum temperature difference between the two prototypes 

is ΔT=30 °C, indicating a clear plus for GEO concrete. This temperature gap further widens 

to ΔT=40 °C for the 650 °C scenario, further demonstrating the thermal performance of 

GEO concrete.  

Table 3-2. Maximum achieved temperature measured for GEO and OPC. 

TES prototype GEO (°C) OPC (°C) 

 

Inlet = 450 °C  

398 366 

358 352 

380 350 

380 349 

 

Inlet = 650 °C  

561 500 

518 457 

503 463 

503 463 
Temperature measurements presented are from thermocouple 2 located in the center of TES units. 

While the exceptional performance of GEO concrete in high-temperature 

applications was anticipated, these results also demonstrate its competitive edge in the 

lower temperature range of 450 °C. This confirming GEO concrete's outstanding thermal 

capabilities, particularly at elevated temperatures (> 400 °C) where its thermal diffusivity 

remains remarkably consistent as discussed in previous chapter. 
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(A) (B) 

  

(C) (D) 

Figure 3-4. GEO and OPC concrete thermal cycles. GEO concrete.  

(A) Low temperatures cycles (the temperature of the inlet varying from 200 ± 25 °C to 400 ± 25 °C); (B) 

High temperatures cycles (the temperature of the inlet varying from 200 ± 25 °C to 600 ± 25 °C). OPC 

concrete (a) Low temperatures cycles (the temperature of the inlet varying from 200 ± 25 °C to 400 ± 25 °C); 

(b) High temperatures cycles (the temperature of the inlet varying from 200 ± 25 °C to 600 ± 25 °C). 

An average speed of 6 m/s was considered for incoming heat transfer fluid (HTF). 

The comprehensive pattern of HTF speed variation during the experiment is shown in 
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Figure 3-5. Also, the average flow rate for HTF was ± 412 m3/h and the maximum and 

minimum values were 825 m3/h and 275 m3/h, respectively. 

 

 

Figure 3-5. Measured HTF velocity over 6 days. 

 

According to the results and graphs obtained Figure 3-4, other characteristics of a 

TES device such as thermal energy storage capacity (Qs) can be estimated, using equation 

2-1. To achieve this, the thermal properties of the materials prototypes must be available. 

Since the thermal properties of the tested OPC prototype are unknown, values from a state-

of-the-art OPC prototype (Hoivik et al., 2019) were employed for evaluation and 

comparison with GEO data, as shown in Table 3-3. 

Table 3-3. Thermal properties of materials prototypes. 

Properties GEO  Heatcrete 

Density kg/m3 2890.0 2253 

Thermal 

conductivity 
W/m °K 1.2 1.78 

Heat capacity J/kg °K 1000 1280 

Thermal diffusivity 
*10-7 

m2/s 
5.58 6.01 

Data obtained at 400 °C for Heatcrete concrete (Hoivik et al., 2019). 

The amount of stored thermal energy for the charge cycles of the GEO prototype is 

compiled for the low (Tinlet=450 °C) and high (Tinlet=650 °C) temperature scenarios in 
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Table 3-4. This table provides a concise overview of the operational temperature range, 

temperature difference, and volumetric thermal energy storage capacity (Qvol) – the 

primary criterion for assessing the thermal performance of TES prototypes. 

Table 3-4. Summary of data obtained during experiments (GEO). 

Scenario Cycle Time, hrs. Tmin, °C Tmax, °C ΔT, °C 
Qvol, 

MJ/m3 

Tinlet 

450 °C 

1 81.6 20 397.7 377.7 1091.6 

2 14.9 163 358 195 563.6 

3 12.0 219 380 161 465.3 

4 12.2 211 380 169 488.4 

Tinlet 

650 °C 

1 35.3 44 561 517 1494.1 

2 14.9 192 518 326 942.1 

3 14.9 219 503 284 820.8 

4 13.2 240 503 263 760.1 
Tmin and Tmax are average of three temperature probes for GEO prototype. 

The average temperature of OPC based concrete throughout its operating cycles, 

considering only charging cycles, is extracted and used to calculate the volumetric thermal 

energy storage capacity (Qvol, MJ/m3) as outlined in Table 2-1. While the thermal 

properties of the OPC prototype are more favorable than GEO, the operational temperature 

limitations of OPC restrict the achievable ΔT to a certain range, thereby confining Qvol (as 

determined by Equation 2-1) to a specified range of approximately 260-265 MJ/m3.  

 

In contrast, the GEO prototype's wider operational temperature range enables 

higher ΔT values and, correspondingly, higher Qvol values. For the GEO prototype, Qvol 

ranges between 465 and 942 MJ/m3, which is at least two times greater and up to 3.5 times 

larger than that of the OPC prototype. When considering only cycles 2,3, and 4 as standard 

operating cycles for the thermal storage temperature range in both low and high 

temperature scenarios of the GEO prototype, the average Qvol is calculated and compared 

with the Heatcrete prototype, as shown in Table 3-5. 
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Table 3-5. Comparison of Qvol for GEO and Heatcrete . 

Scenario Cycles Average Qvol, MJ/m3 

GEO (Tinlet 450 °C) 2-4 505.27 

GEO (Tinlet 650 °C) 2-4 841 

Heatcrete (Tinlet 400 °C)  1-4 261.25 

 

As evident from Table 3-5, the GEO prototype possesses superior thermal storage 

capacity owing to its ability to function over a broader temperature range. This feature, 

along with its capacity to operate at higher temperatures, renders GEO material more 

adaptable for applications, particularly in solar energy-related industries, where it can 

bridge the gap between generation and storage capacity. Furthermore, the need for durable, 

cost-effective, and high-temperature TES systems is apparent in applications such as 

converting electricity to thermal energy and recycling excess heat in industries. 

 

In the upcoming phases of this research, it is crucial to develop a robust simulation 

model that can accurately predict GEO-TES device performance. Moreover, employing a 

robust numerical model will play a key role in the design of the heat exchanger, as it 

directly impacts charge/discharge efficiency. 
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Chapter IV. 

Computational Modeling and System Optimization 

The previous chapters have delved into the fundamental aspects of thermal energy 

storage systems, particularly those utilizing geopolymer as a novel TES material. This 

chapter focuses on developing a robust numerical model capable of accurately predicting 

the performance of sensible solid thermal storage devices, in general, focusing our attention 

on those that use GEO concrete. The model will be employed to study various 

configurations, operating conditions, and the impact of implementing or not implementing 

a metallic tube for enclosing the HTF within the TES system. 

Developing a reliable computational model is crucial for several reasons. First, it 

allows for rapid and cost-effective evaluation of different design configurations and 

operating strategies without the need for extensive experimental work. This is particularly 

valuable in the early stages of device development, where rapid prototyping and testing 

can be resource intensive. Second, the model can simulate the behavior of sensible solid 

TES systems under various environmental conditions, including different ambient 

temperatures, heat transfer fluid properties, and operating cycles. This enables a 

comprehensive understanding of the system's performance under diverse scenarios, 

enhancing its applicability in real-world applications. 

Third, the model can facilitate optimization studies to identify the optimal design 

parameters and operating conditions that maximize the TES system's thermal performance, 

and overall efficiency. In this chapter, a numerical model will be developed based on the 

heat equation in solids, incorporating the thermophysical properties of geopolymer TES 

materials. The model will consider various geometrical configurations, as well as different 

initial and boundary conditions. The impact of implementing a metallic HTF piping will 

be evaluated to assess its influence on heat transfer and overall, TES performance. 

The developed numerical model will be validated against experimental data 

obtained from the test facility described in Chapter III. This validation will ensure the 

model's accuracy and reliability for predicting the performance of GEO-TES systems under 

various operating conditions. 
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4.1 Development and Validation of the Numerical Model 

 

Computational methods have permeated various disciplines, including scientific 

research, engineering, and computer science. These methods, encompassing algorithms, 

mathematical models, and computer simulations, provide powerful tools for solving 

problems, analyzing data, and also making predictions. Its utilization helps to tackle 

challenges that would otherwise be impractical or time-consuming to address manually.  

Moreover, computational methods play a fundamental role in solving optimization 

problems in engineering and industry. Optimization algorithms can identify optimal 

solutions given specific constraints and objectives. These methods are employed to 

optimize processes, designs, logistics, and resource allocation, enhanced efficiency, and 

improved decision-making (DEB, 2012; Khamis, 2024; Kochenderfer and Wheeler, 2019). 

Various numerical methods, such as the Finite Difference Method (FDM), Finite 

Element Method (FEM), and Finite Volume Method (FVM) (Liu and Quek, 2014a; Özişik 

et al., 2017), among others, are regularly employed for developing computational models 

of thermal energy storage  systems.  

In circumstances with simple geometries and boundary conditions, it is feasible to 

seek exact solutions using analytical methods. These methods may involve techniques such 

as the separation of variables, method of characteristics, Fourier series, and Green's 

function methods (Hahn and Özisik, 2012; Ozisik, 2013).  

However, despite their capacity for generating accurate solutions, the practical 

application of these methods can often be limited, especially when confronted with 

complex real-world problems that include intricate geometry and boundary conditions. 

Numerical methods discretize the continuous problem into a finite set of points, allowing 

for the approximation of derivatives. For practical implementations in TES systems, an 

appropriate method must be selected to accurately model the heat transfer process (Liu and 

Quek, 2014a).  

The choice of method is governed by the specifics of the system under 

consideration, and often a combination of methods may be required to address different 

aspects of the problem. The specifics include geometry of the storage system, boundary 

conditions, computational resources, system design and operational constraints.  
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Among studies on design and optimizing TES units, FEM found its position. This 

computational approach has gained widespread recognition among researchers in the field, 

with numerous studies employing FEM (Cabeza et al., 2022a; Ferone et al., 2014; Laing et 

al., 2008; Rafidi and Blasiak, 2005; Singh and Sørensen, 2017; Vigneshwaran et al., 2019) 

While the parameters outlined constitute the main considerations in the selection of 

modeling methods for TES systems, ease of implementation, maturity of the method can 

significantly influence the decision-making process. The use of commercial software in 

thermal energy storage modeling often requires consideration of the above factors. Tools 

like ANSYS Fluent (“ANSYS Fluent,” n.d.), COMSOL Multiphysics (“COMSOL 

Multiphysics,” n.d.),  MATLAB's Simulink  (“MATLAB,” n.d.) and Modelica have 

established themselves as leading solutions in the field due to their robustness, flexibility, 

and wide range of capabilities. Open-source alternatives like OpenFOAM (“OpenFOAM,” 

2023) offer similar capabilities, albeit with a steeper learning curve and less comprehensive 

user support. 

On the other hand, using computing and simulation tools and software allows us to 

model complex energy storage systems more easily. For instance, In a study conducted by 

Tamme et al. (Tamme et al., 2004a), a high temperature concrete sensible heat storage 

(SHS) system was developed and tested for parabolic trough solar power plants. The 

simulation tool employed, StorageTechThermo, utilizes the Modelica language. In another 

study, Tesfay (M Tesfay, 2014) dove into the design and analysis of a SHS system for solar 

thermal power plants using commercial software, Gambit and Fluent (“ANSYS Fluent,” 

n.d.).  

The design and fabrication of heat exchangers (HXs), or thermal storage devices, 

with sensible solid materials can be approached in two main ways: modular and integral. 

Integral HXs are monolithic entities that are cast or fabricated as a single unit, typically 

with the storage medium (e.g., concrete) included in their structure. Modular HXs, on the 

other hand, are composed of smaller, interconnected modules that can be easily added or 

removed. This modular design offers several advantages, including scalability, flexibility 

and repairability.  

The modular approach has been extensively studied and applied to concrete TES 

systems (Cabeza et al., 2022a; Hoivik et al., 2019; Laing et al., 2006, 2008, 2012, 2012; 
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Prieto et al., 2023; Suárez et al., 2020) while integral design has been relatively neglected. 

The specific design of the modules can also be tailored to the type of concrete used, the 

desired operating temperature range, and the desired heat transfer rate.  

The purpose of creating a validated 3D numerical model of the tested GEO module 

was to have a good tool to study and design an upscaling thermal storage regenerator with 

this GEO concrete. To lay the groundwork for this investigation, a three-dimensional 

Multiphysics FEM based numerical model developed using CFD, to validate with 

experimental data presented in previous chapter. Primary objectives encompass two key 

stages. First, to characterize the thermal energy storage capacity and thermal performance 

of a TES device based on geopolymer concrete, considering critical factors such as air 

velocity, piping diameter, and module size.  

Second, a parametric study encompassing various piping sizes, arrangements, and 

configurations to optimize the design of a TES system employing GEO concrete. This step 

is pivotal for evaluating the scalability and adaptability of geopolymer concrete-based TES 

systems for practical applications. 

  

As mentioned in previous chapter, for the Heat Transfer Fluid (HTF), a 6-inch 

diameter welded tube made of stainless steel 304/304L was used as a pipe. The thermal 

conductivity of stainless steel tubes is 44.5 W/m·K, and heat capacity is 475 J/kg·K. The 

stainless steel tube also has a density of 7850 kg/m3. The tube was equipped with two 

flanges at its ends to ensure seamless integration with the testing facility. Additionally, 

three temperature probes (T1, T2, and T3) were embedded into the concrete at 

predetermined intervals. In this study, the HTF was air, which was heated using an electric 

heater before passing through the GEO module being evaluated.  

 

The thermo-physical properties of the GEO concrete were measured and presented 

in Table 2-1. The experiment incorporated four such cycles, with the inlet temperature 

(Tinlet) varying from 200 ± 25 °C to 600 ± 25 °C. The volumetric air flow rate registered an 

average of 412 m3/h, often oscillating between maximum and minimum values of 825 m3/h 

and 275 m3/h, respectively. Given this data, it is reasonable to assume an average air 

velocity of 6 m/s.  
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4.1.1 Numerical Model  Setup (3D) 

To facilitate computational efficiency, the numerical model was developed utilizing 

COMSOL Multiphysics software (“COMSOL Multiphysics,” n.d.). Given the expected 

axial symmetry of the GEO module, only a quarter section of the GEO TES module was 

modeled. Benefits of symmetry utilization was discussed in section 2.3. The mesh was 

constructed using a combination of tetrahedral and quadratic elements, ensuring finer 

resolution near boundaries and coarser resolution in other regions. A refined boundary 

layer mesh was incorporated within the HTF domain, specifically in the vicinity of the 

piping. This approach aimed to precisely capture the transition region where the air velocity 

transitions from zero to its fully developed state, commonly referred to as the dynamic 

boundary layer. Figure 4-1 aptly illustrates this crucial region. Three distinct domains were 

defined: one for the air as HTF, another for the piping, and the final domain for the 

concrete.  

 

 

(A) (B) (C) 

 

  

 

 

 

 

 

Figure 4-1. Meshed computational domain for TES.  

(A) Perspective view of meshed TES module, quadratic elements used for concrete domain and 

tetrahedral for tube wall and fluid domains, (B) Fine mesh development near fluid to solid interphase, 

(C) showing mesh growth and benefiting coarse mesh in regions with low complexity. 
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To ensure the accuracy and validity of the mesh, six different grid sizes were 

evaluated, each with a varying number of elements, while adhering to a maximum element 

growth rate restriction of 1.15.  

Employing the charging time, the duration for a TES module to attain its steady-

state condition, as a comparative parameter, it was observed that reducing the grid size 

from 95096 elements to 55445 elements significantly influenced the charging time value. 

However, a further reduction from 55445 elements to 25349 elements resulted in negligible 

discrepancies.  

 

This observation is depicted in Figure 4-2. Therefore, the grid with 25349 elements 

was deemed adequate for subsequent simulations.  

Table 4-1. Maximum errors and average error percentages in charging time for each 

grid size compared to 95096 grid size elements. 

Grid size 

(n. of elements) 

Maximum Deviation 

(%) 
Mean Deviation (%) 

72652 0.67% 0.85% 

55445 1.03% 0.56% 

41218 0.51% 1.72% 

25349 1.00% 0.54% 

21802 0.04% 2.13% 

 

It is important to note that while finer mesh sizes generally enhance accuracy, they 

also commensurately increase computational demands. Table 4-1 presents a comparison of 

the maximum errors and average error percentages associated with each grid size, relative 

to the highest grid size (95096 elements), with respect to the charging time parameter. 

 



 

 

61 

 

 

Figure 4-2. Mesh accuracy study for numerical model. 

In order to effectively address the conjugate heat transfer problem, it is imperative 

to consider the conservation of energy, mass, and momentum in both solid and fluid media, 

as well as to apply appropriate boundary conditions.  

 

Conjugate heat transfer refers to the coupled heat transfer analysis between a solid 

and a fluid. It combines heat conduction in the solid with heat convection in the 

surrounding fluid. Heat transfer in solid considered only conduction and follows Fourier’s 

law, Equation 2-4, which in 3-D Cartesian coordinates becomes Equation 4-1. 

 

𝜕
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𝜕𝑦
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𝜕
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(𝑘

𝜕𝑇

𝜕𝑧
) = 𝜌𝑐

𝜕𝑇

𝜕𝑡
 

(4-1) 

Equation 4-2 encapsulates the principles governing heat transfer in a moving fluid, 

incorporating three primary contributors: convection, viscous dissipation, and pressure 

work. Convection arises from the movement of the fluid itself, transporting heat along with 

the moving mass. This convective heat transfer can be significantly more potent than 

conduction, particularly in fluid flows with high velocities or complex geometries, where 

this turbulence enhances heat transfer. 
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Viscous dissipation, a secondary contribution to heat transfer, stems from the 

frictional forces generated by the fluid's motion. These frictional interactions dissipate 

kinetic energy into thermal energy, effectively heating the fluid. Pressure work, the third 

factor influencing heat transfer, emerges when the fluid density is temperature dependent. 

As the temperature changes, the fluid's density also alters, leading to pressure variations. 

These pressure changes can induce work, which in turn generates heat. 

Equation 4-2 mathematically represents these heat transfer mechanisms: 

 

𝜌𝐶𝑝

∂𝑇

∂𝑡
+ 𝜌𝐶𝑝𝐮 ⋅ ∇𝑇 = 𝛼𝑝𝑇 (

∂𝑝A

∂𝑡
+ 𝐮 ⋅ ∇𝑝A) + 𝜏: 𝑆 + ∇ ⋅ (𝑘∇𝑇) + 𝑄𝑠𝑟𝑐 

(4-2) 

Where, ρ⋅ 𝑐P: fluid density and specific heat capacity, u: fluid velocity, T: fluid 

temperature, pA: thermodynamic pressure, αp: thermal expansion coefficient, τ: viscous 

stress tensor, S: strain rate tensor, k: thermal conductivity, Qsrc: heat source. 

The heat transfer physics at the interface between the solid and fluid domains are 

solved simultaneously. The L-VEL (spf) interface in COMSOL Multiphysics is designed 

for turbulent flow simulations. It solves the flow equations together with models for 

turbulence using a low Reynolds number turbulence model.  

 

This interface can be coupled with the Heat Transfer in Solids and Fluids interface 

to perform conjugate heat transfer analysis. The following assumptions were made in the 

three-dimensional numerical simulation:  

1) the outer shell boundary of the GEO module is adiabatic,  

2) the GEO material is homogeneous and isotropic, and  

3) radiative heat transfer is negligible. 
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The following initial and boundary conditions were employed in the simulations: 

 

• Module initially at a uniform temperature, with the average temperature equal to 

the initial temperature: 

o  Tavg(x, y, z, t=0) = T0 

 

• The exterior boundaries are adiabatic, meaning no heat is exchanged through the 

boundary, and the temperature gradient is null: 

o  𝑘
∂T(x=0,L,t)

∂x
= 0; 𝑘

∂T(y=0,L,t)

∂y
= 0 ; 𝑘

∂T(z=0,L,t)

∂z
= 0 

 

• The velocity of the fluid (air) at its inlet (z=0), is specified as well as its 

temperature: 

o  𝑣(𝑟, 𝜃, 𝑧 = 0, 𝑡) = 𝑣𝑎𝑖𝑟 and 𝑇air (𝑟, 𝜃, 𝑧 = 0, 𝑡) = 𝑇air, in . 

 

• At the air outlet, (z=L), the normal heat flux is zero and the pressure is the 

atmospheric pressure. At 𝑧 = 𝐿; �⃗� (𝑘air ∇𝑇air ) = 0 and 𝑃(𝑟, 𝜃, 𝐿, 𝑙) = 𝑃𝑎𝑡𝑚𝑜𝑠𝑝ℎ𝑒𝑟𝑖𝑐 

 

• No slip condition, i.e., the fluid velocity is zero at the solid interphase. 𝑣(𝑟 =

𝑑𝑙/2, 𝜃, 𝑧, 𝑡) = 0  

 

4.1.2 Numerical Model Results 

The simulation performed for the initial 10 hours of the GEO concrete charging 

cycle yielded satisfactory concordance with experimental measurements of temperatures 

at different locations. The mean errors for the four monitored temperatures were 17.0%, 

2.6%, 4.9%, and 5%, respectively. This evidence bolsters the model's ability to accurately 

simulate the prevalent heat transfer mechanisms. Figure 4-3 illustrates the comparison 

between the numerical model's simulations and experimental measurements for various 

thermocouples (1 to 3) and the bulk average temperature. 
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(A) (B) (C) 

 

(D) 

 

Figure 4-3. Comparison of simulation and experimental results in charging for 600 minutes. 

(A) T1, (B) T2, (C) T3 and (D) Average temperature (Tavg). 

To reinforce the validity of the numerical model, the last three charging processes 

of experiments were simulated. The differences between simulated and experimental 

results were in the range 8-10%, which can be considered an acceptable deviation 

considering the uncertainties present in the experiment, such as temperature measurement 

errors or non-negligible heat losses. The assumption of a uniform temperature at the start 
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of simulation, which is a common practice in CFD, is a major source of uncertainty, too. 

Figure 4-5 illustrates the temperature distribution during the charging simulation at various 

time intervals through contour plots. 

 

        

Time=0 min Time=60 min Time=450 min Time=2000 min 

Figure 4-4. Average temperature distribution during the charging simulation 

 

Resuming, a robust numerical model was developed to accurately simulate the heat 

transfer processes within the GEO TES module. The model was validated against 

experimental data, demonstrating its ability to capture the dominant heat transfer physics. 

The fine mesh resolution and boundary layer treatment ensured the model's fidelity in 

capturing the intricate flow patterns within the TES module. The well-established 

numerical model forms the cornerstone of the subsequent parametric studies, optimization, 

and final TES design.  

It provides a powerful tool for systematically exploring the effects of various design 

parameters, configurations, air velocity, and boundary conditions on the TES performance. 

This allows for optimizing the TES design to maximize its efficiency and storage capacity.  

  



 

 

66 

 

4.2 Parametric and Optimization Study 

 

This section delves into the optimization of the TES module design based on the 

insights gained from the parametric analysis and comparison of modular design with and 

without metallic tube. This optimization process aims to identify the optimal configurations 

and parameters that maximize the TES module's efficiency and storage capacity. The 

numerical model serves as the foundation for this optimization, allowing for systematic 

exploration of various design options and the evaluation of their impact on TES 

performance. 

Cabeza et al. (Cabeza et al., 2022b) have outlined five essential challenges that 

require careful consideration for the effective implementation of concrete TES systems. 

These challenges encompass aspects such as on-site construction logistics, managing the 

disparate thermal expansion coefficients between HTF tube and concrete, mitigating the 

inherent low thermal conductivity of concrete, working within the constrained temperature 

range of HTF, and addressing the potential issue of HTF migration within the concrete 

structure. Concrete-based TES systems often use a tube embedded in the storage medium 

to transport the HTF (Laing et al., 2006; Salomoni et al., 2014; Skinner et al., 2014).  

However, this approach can lead to mechanical stresses and potential failure of the 

system due to the different thermal expansion coefficients of the tube material and the 

storage medium (Cabeza et al., 2022b). A novel approach to address this challenge is to 

use air as the HTF in direct contact with the concrete.  

This approach eliminates the need for a tube and can potentially alleviate the 

problems associated with thermal expansion mismatch. However, it also introduces new 

complexities, such as the impact of concrete surface roughness on the flow and heat transfer 

characteristics, as well as corrosion and long-term durability. Given the challenges and 

opportunities associated with concrete TES systems, a two-stage optimization investigation 

is done to determine the most effective design for utilizing concrete as a storage medium. 
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4.2.1 Stages and Objectives 

The first stage focuses on conducting a parametric analysis to evaluate the impact 

of various geometric parameters on the thermal performance of concrete TES systems. Key 

variables to be considered include tube diameter, module size, module depth, inlet 

temperature, initial temperature, charging time, velocity, and the inclusion of a metallic 

pipe. The second stage delves into a more detailed comparison of modular concrete TES 

designs with and without a metallic tube and evaluating the impact of piping presence on 

heat transfer efficiency, pressure drop, and system performance. By comparing these 

design options, the optimal approach for specific applications can be determined.  

Pearson’s correlation coefficient was used to investigate the relationships between 

different design parameters and TES performance. This allowed for identifying the most 

influential parameters and understanding their impact on the thermal performance of the 

module. A more in-depth study will investigate the influence of concrete surface roughness 

on airflow and heat transfer in concrete TES systems. This aspect has often been 

overlooked in previous research, despite its potential impact on system performance. The 

study will build on existing knowledge and further explore the relationship between 

concrete surface roughness and TES performance parameters. The objective of Stage 1 was 

to assess the influence of metallic pipe diameter, which is commercial stainless steel 

304/304L, and of the overall size of the TES unit on its thermal performance using 

numerical simulations. Three design schemes with varying tube diameters (0.5–2 inches) 

and sizes (175–300 mm) but a fixed depth of 1 m were considered (Figure 4-5).  

   

Figure 4-5. Different TES units’ configurations.  

Different geometry designs, pipe diameter and sizes. Pipe diameter is based on  sch40-304/304L Welded 

Tube standard. 
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The performance of each design was evaluated with a fixed prescribed temperature 

boundary condition (Dirichlet)  of 650°C at the inner surface of the tube and a temperature 

increase of 10.5°C per minute for the first 60 minutes. The external boundary of the units 

was assumed to be perfectly insulated, so thermal losses were considered negligible. The 

selection of the optimal GEO-TES module design in this study is primarily based on 

thermal energy storage capacity (Qs) and its value normalized by mass (kJ/kg).  

These criteria were evaluated to identify the design that could store the most energy 

per unit mass and volume, respectively, and those that achieved higher temperature 

increases, indicating more efficient heat transfer. The detailed simulation conditions can 

be seen in Table 4-2. 

 

Table 4-2. Simulation conditions. 

Conditions Stage 1 Stage 2 

Description 

Parametric analysis and comparison of 

different geometries (square, circular and 

hexagonal) and size. 

Parametric analysis and comparison of 

modular design with and No metallic 

piping (square geometry)  

Tube diameter 

(in) 

½, ¾, 1, 1 ¼, 1 ½, 2 (air-concrete 

interphase) 

½, ¾, 1 (stainless steel-concrete 

interphase) 

Module Size 

(mm) 
175, 200, 225, 250, 275, 300 100, 150, 200, 250, 300 

Module Depth 

(mm) 
1000 1000 

Inlet 

Temperature 

(°C) 

650 (interphase air-solid temperature) 450 (air temperature at its entrance) 

Initial 

Temperature 

(°C) 

25 (ambient) 265 

Charging Time 

(h) 
7 7,5 

Velocities (m/s) N/A 3, 6, 9 

Including a 

metallic pipe 
YES YES and NO 

TES Module 

Boundary 
No thermal losses No thermal losses 

Thermal properties of materials are based on GEO (Table 2-1) and stainless steel sch40 tube. 

The calculated Q, normalized by mass, is shown in Fig. 4-7. The values of this 

stored energy density (in kJ/kg) are similar for the three designs and remain relatively 

constant with changes in size (‘L’ label in mm) or tube diameter (‘D’ label in inches).  
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The circular design (Fig.4-6(A)) was found to have the highest stored energy 

density, since, in spite of having a relatively lower concrete mass, the temperature step is 

much higher.  

 

 
 

(A) (B) 

Figure 4-6. Thermal energy storage calculations normalized by mass. 

(A) Color-map of Stored Energy Density (kJ/kg) (B) Color-map of concrete mass (kg). Both for various 

module sizes (L) and tube diameter (D) (inches) with different designs, distinguishing between them by 

a preceding “c”, ”s,” “h” depending on having circular, square and hexagon (Fig.6.C) designs, 

respectively. 

However, this is not the case for thermal storage capacity. The following color-

maps (Fig. 4-7) show the thermal energy storage capacity for the three designs here 

considered. The square geometry had the highest thermal energy storage capacity. The 

diameter of the tube was found to significantly impact the energy storage capacity, Qs, of 

the TES. The circular model, despite having the highest average temperature, had a lower 

thermal energy storage capacity.  

The difference in thermal energy storage capacity ranged from 29 to 75 MJ, while 

the difference in material mass ranged from 47 to 139 kg, indicating that mass is not the 

primary factor affecting TES capacity, since, fixing the charging time, the temperature 

achieved in the TES with the different designs are different. 
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 Square geometry 

 

  

 Circular geometry 

 

  
 Hexagon geometry 

 

 
 

Figure 4-7. Energy stored amount and Tavg for different module sizes (lengths) and tube 

diameter (tube size). 

 

The thermal energy storage (Qs) analysis suggests that circular geometry is less 

favorable. Additionally, in modular construction, voids exist between circular modules, 

reducing the stored energy per unit volume. Conversely, square and hexagonal geometries 

(Fig. 4-8) prove more suitable for modular construction and scalability, making it easier to 

achieve the required thermal storage capacity by adding more of these modules as needed. 
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Square geometry Circular geometry Hexagon geometry 

 

  

Figure 4-8. The scaled-up scheme of different designs. 

 

  

 
 

Figure 4-9. Theoretical thermal storage capacity for Square and Hexagon designs 

Comparison for different module sizes (‘Length’) and tube diameter (‘Size’). 
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4.2.2 Effect of Tube Wall 

From the results of Stage 1, the square design was selected to study the impact of 

air velocity on stored energy through all the cases presented in Table 4-3, including the 

effect of inserting or not a metallic pipe in the concrete hole. Square geometry is often 

preferred for TES module design due to its ease of molding and construction, as it involves 

fewer complex curves or angles.  

 

This can simplify the manufacturing process, reduce material waste, and lower 

production costs. Additionally, square modules can be stacked or aligned more efficiently, 

minimizing void spaces and facilitating the assembly of larger TES systems using 

standardized components.  

Table 4-3. Matrix of simulated cases.  

Air velocity (m/s) D (inch) Module size (mm) 

3 ½ 100, 150, 200, 250, 300 

3 ¾ 100, 150, 200, 250, 300 

3 1 100, 150, 200, 250, 300 

6 ½ 100, 150, 200, 250, 300 

6 ¾ 100, 150, 200, 250, 300 

6 1 100, 150, 200, 250, 300 

9 ½ 100, 150, 200, 250, 300 

9 ¾ 100, 150, 200, 250, 300 

9 1 100, 150, 200, 250, 300 

 

 

In Figure 4-10 the obtained theoretical storage capacities and average temperatures 

are shown. 
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TES module without tube TES module with metallic tube 

(A) Temperature comparison 

  

(B) Stored energy comparison 

  
 

Figure 4-10. The amount of energy stored and Tavg per different sizes.  

Average temperature (label as ‘lengths’), tube diameters (label as ‘Tubes’) and air flow velocities. 
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The first input variable considered is velocity (m/s), which is assessed at three 

different values: 3, 6, and 9 m/s. In the case of no metallic pipe, the thermal storage capacity 

increases with velocity, rising from 3 MJ at 3 m/s to 5.79 MJ at 9 m/s. Similarly, in the 

case of with metallic pipe, the thermal storage capacity increases with velocity but to a 

lesser extent, from 3.11 MJ at 3 m/s to 4.6 MJ at 9 m/s.  

 

The difference between the two cases is lowest for the lowest velocity, where it is 

0.88 MJ at 3 m/s, and it increases as the velocity increases. The higher the air velocity, the 

better the heat transfer, so higher temperatures are achieved at the end of charge and, 

therefore, higher storage capacity are found (see Figure 4-11). 

  

(A) (B) 

Figure 4-11. The average temperature (Tavg) rises per air flow velocity=9 m/s. 

 For Length=300mm and hole/tube sizes ½,3/4 and 1 inch. (A) TES module without tube (hole) 

and (B) TES module with tube. 

The second input variable examined is Tube diameter (inch), which is assessed at 

three different values: ½, ¾, and 1. In the no metallic pipe case, the thermal storage capacity 

increases with tube diameter, rising from 3.53 MJ for ½ inch to 5.57 MJ for 1 inch. 

Similarly, in the With metallic pipe case, the thermal storage capacity increases with tube 

diameter, but to a lesser extent, increasing from 2.43 MJ for ½ inch to 4.51 MJ for 1 inch.  

  



 

 

75 

 

The difference between the two cases is highest for the lowest tube diameter (1.1 

MJ for 1/2 inch), and it decreases as the tube diameter increases. Although increasing the 

air flow section implies reducing the amount of mass to store the energy, the higher 

achieved temperatures disguise that effect (see Figures 4-12 and 4-13). 

 

The third input variable investigated is Module size (mm), which is assessed at five 

different values: 100, 150, 200, 250, and 300. In the no metallic pipe case, the thermal 

storage capacity increases with module size, rising from 3.44 MJ for 100 mm to 4.96 MJ 

for 300 mm. Similarly, in the with metallic pipe case, the thermal storage capacity also 

increases with module size, but to a lesser extent, from 2.81 MJ for 100 mm to 3.73 MJ for 

300 mm. The difference between the two cases is highest for the largest module size (1.23 

MJ for 300 mm), and it decreases as the module size decreases. Here the increase in mass 

due to the increase of module size is the predominant effect on the storage capacity. Results 

on Figure 12 show that inserting a metallic pipe in the concrete hole in comparison without 

such insertion decreases the thermal storage capacity.  

 

The insertion of a metallic tube in a TES module introduces an additional thermal 

resistance, which reduces the amount of heat absorbed and stored in the module in a 

specific time and transferred from an air flow with the same velocity (but different mass 

flow). As shown in Figure 4-13, a higher temperature rise is obtained without inserting the 

pipe compared to the corresponding TES module without it. The thermal resistance induced 

by the metallic pipe is not negligible, even at high velocities. 

 

 

 

 



 

 

76 

 

 

 

 

(A) 

 

 

 

 

(B) 

 

 

 

 

 

(C) 

 

Figure 4-12. The average temperature (Tavg) rise.  

For 1” hole/tube per different air flow velocities and for Length=300mm. (A) velocity=3 m/s, (B) 

velocity=6 m/s and (C) velocity=9 m/s. 
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These results give some support to the decision on not having a pipe when working 

with air as HTF, apart from the problem of thermal expansion mismatch between metallic 

piping and concrete. Figure 4-14 provides a visual representation of the air outlet 

temperature as it passes through the TES module with and without inserting a metallic pipe. 

Figure 4-15 (A) displays a scatter plot of the air outlet temperature for both the "hole" and 

"tube" cases. The results clearly indicate that the outlet temperature drops less in the "hole" 

case as compared to the "tube" case.  

 

This observation is further reinforced by the comparison of the ΔT of the inlet and 

outlet temperature in Figure 4-15 (B), which shows that the tube case exhibits a higher ΔT. 

The higher ΔT in the tube case resulted in an average difference of 8% in all studied cases, 

however, this did not translate to a higher thermal energy storage value (Fig. 4-12 (A)) 

neither a higher overall heat transfer rate, Figure 16c.  

 

The decision of whether a higher or lower ΔT is desirable depends on the specific 

application and desired outcome. For example, a higher ΔT may be preferable in some 

applications as it can lead to faster charging of the system. Conversely, for other 

applications, a lower ΔT may result in more efficient and controlled charging. 
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(A) (B) 

 

(C) 

Figure 4-13. Heat Transfer Fluid (Air) Analysis for no-pipe and with-pipe cases. 

(A) Air outlet temperature, (B) Air inlet and outlet temperature difference and (C) The overall heat 

transfer rate Q̇ = ṁ (kg/s) * Cp (J/kg°C) * ΔT (°C). 

 

4.2.3 Sensitivity Analysis 

Pearson’s correlation coefficient equation (Sharma, 2005) is normally used to 

determine the relationship between variables x and y. It is denoted by the symbol "rxy" and 

ranges between -1 and 1, where -1 represents a lineal correlation with a negative slope, 0 

represents no correlation, and 1 represents a lineal correlation with a positive slope. The 

equation can be written as follow: 
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𝑟𝑥𝑦 =
𝑛∑𝑥𝑖𝑦𝑖 − ∑𝑥𝑖∑𝑦𝑖

√𝑛∑𝑥𝑖
2 − (∑𝑥𝑖)

2√𝑛∑𝑦𝑖
2 − (∑𝑦𝑖)

2
. 

(4-3) 

Using the equation mentioned above, where n is the number of data points, 

correlation matrices such as those shown in Figure 4-14 can be produced to display the 

pairwise correlation coefficients between different variables. From this figure, it is easy to 

see that air velocity has the greatest impact on the achieved Qs , while D and L have lesser 

importance.  

However, for Tavg, both air velocity and tube diameter are significant factors, and 

their correlation coefficients are close in value. This is especially true in the case when 

inserting a metallic tube since these values are even closer. L has a “negative” effect of 

achieved Tavg meaning that increasing module size will lead to less volume average 

temperature and less ΔT. The results of the correlation matrices align with those achieved 

thus far, highlighting the importance of air velocity, diameter, and module size in 

determining the thermal storage capacity and average temperature of the system. 

 

In resume, the geometry scale, tube size, and air speed have a significant impact on 

the temperature and thermal energy storage of the thermal energy storage module. 

Increasing the air velocity results in higher Tavg. This is due to the increased heat transfer 

rate between the air and the thermal storage material. In contrast, increasing the length of 

the module leads to lower temperatures Tavg, with the lowest Tavg being seen at a length of 

300 mm. The tube size also has an impact on the temperature and thermal energy storage. 

The 1-inch tube leads to the highest Tavg and thermal energy storage, followed by the 3/4 

inch and 1/2-inch tubes. This is likely because the larger tubes provide more surface area 

for heat transfer between the air and thermal storage material. Overall, the highest Tavg are 

seen at smaller geometries and highest thermal energy storage are seen at bigger geometries 

which have bigger mass. 
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(A) (B) 

Figure 4-14. Pairwise Correlation Matrices. 

(A) no metallic tube, (B) with metallic tube 

The decision to go tubeless should not be taken only based on the obtained thermal 

performance. The interaction between the HTF and the storage material is crucial for 

maintaining the integrity and longevity of the TES system. In the case of concrete TES 

systems, the surface roughness of the concrete can significantly impact the flow of air and 

heat transfer. This is an aspect that has often been overlooked in previous research and 

warrants further investigation. Therefore, optimizing tubeless TES systems requires a 

comprehensive approach that considers both the benefits of eliminating thermal interfaces 

and the potential challenges associated with surface roughness and material compatibility. 

The following part of study builds on existing research and aims to further investigate the 

relationship between concrete surface roughness and TES performance parameters. 

 

4.2.4 Effect of Surface roughness 

Surface irregularities, also known as surface roughness (or wall roughness), have 

been demonstrated to have significant implications on the fluid dynamics, heat transfer 

rates, and overall performance of convective flow systems as well as boundary layer's 

characteristics, affecting the flow's turbulence, pressure drop, and heat transfer 
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(Achenbach, 1977; Aupoix, 2015; Kandlikar et al., 2003; Schlichting and Gersten, 2000; 

Taylor et al., 2006).  

These irregularities induce alterations in the velocity profile, affecting surface drag, 

turbulent mixing, and subsequently, the heat transfer efficiency. Although surface 

roughness can potentially undermine system performance by increasing the pressure drop 

and the requisite pumping power, it can also enhance heat transfer in certain instances 

(Kadivar et al., 2021).  

The fundamental exploration of surface roughness within turbulent flows was 

pioneered by scholars Hagen and Darcy (Darcy, 1857; Hagen, 1854). Their research 

demonstrated that the presence of surface roughness significantly elevates the pressure 

drop experienced by a fluid flowing over it. This elevation stems from the augmentation of 

drag forces and the increased flow area blockage caused by the rough surface irregularities 

(Darcy, 1857; Hagen, 1854). Moreover, the roughness also amplifies wall-normal 

functions close to the wall (Krogstad et al., 1992; Krogstadt and Antonia, 1999), thereby 

moderating the anisotropy of Reynolds stress (Shafi and Antonia, 1995).  

Wall functions are mathematical models used in CFD to approximate the behavior 

of fluid flow near a wall boundary. They are typically employed in high Reynolds number 

flows where the boundary layer is too thin to be resolved directly by the computational grid 

(Versteeg and Malalasekera, 2007). These intricate dynamics between wall roughness and 

turbulent flow attributes were thoroughly scrutinized by researchers like Raupach et al. 

(Raupach et al., 1991) and Jiménez (Jiménez, 2004).  

The analysis of turbulent flow over rough surfaces has been an area of keen interest, 

given the wide range of practical applications it covers. A commonly utilized approach to 

model wall roughness in industrial CFD simulations is the sand-grain method (Aupoix, 

2015). The foundation of this approach lies in the concept of equivalent sand grain 

roughness. This is a hypothetical construct denoting the height of uniform and evenly 

distributed sand grains that would produce the same hydraulic resistance as the actual rough 

surface in question (Nikuradse, 1937).  

This empirically derived method offers a robust scale of roughness that 

encapsulates its influence on the flow dynamics. Its uniqueness lies in its ability to provide 

a singular length scale that characterizes the roughness. Consequently, it allows for the 
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application of scaling laws in determining velocity fields and friction factors, making it a 

practical tool for such complex calculations. 

The underlying principle of this approach involves conceptualizing the surface as 

being covered with a continuous layer of uniformly packed spheres, where the diameter of 

these spheres represents the equivalent sand-grain roughness height (ks). This fundamental 

premise has been extensively explored and validated through numerous studies (Nikuradse, 

1937, 1933; Schlichting, 1936). The roughness height (ks), derived from the sand-grain 

method, is transformed into non-dimensional wall units (ks+). This value becomes integral 

in adjusting the velocity profile and turbulence production in the cells adjacent to the wall 

(Spalding, 1974).  

The k-ε turbulence model, explained in greater detail by authors such as Launder 

and Spalding (Spalding, 1974), is a way in dealing with these adjustments. In essence, these 

modifications help to build more accurate simulations of turbulent flows over rough 

surfaces. In the present study, the k-ε turbulence model is developed and deployed within 

the framework of COMSOL Multiphysics (“COMSOL Multiphysics® v. 6.1.,” n.d.) to 

explore the implications of distinct concrete surface roughness levels on the air flow and 

heat transfer dynamics in a geopolymer-based concrete TES unit. The objective of this 

research endeavor is to understand these effects and to make contributions to the 

continuous progression of efficient and effective TES systems that utilize direct contact 

between concrete (or other solid mediums) and air (or other HTF). 

 

Firstly, by considering the HTF, which in this case is air. Its behavior is governed 

by the continuity equation and the Navier-Stokes equations. The continuity equation 

ensures mass conservation and is expressed as: 

 

∇ ⋅ (𝜌𝑣 )𝐹 = 0 

 

(4-4) 

 

Where 'ρ' is the HTF density and '𝑣 ' is the HTF velocity vector, character ‘F’ stands 

for fluid. The Navier-Stokes equation describe the momentum balance and neglecting 

gravitational acceleration are given as: 
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𝐷(𝜌𝑣 )F

𝐷𝑡
= −∇𝑃 + 𝜇F∇

2𝑣 F 

 

(4-5) 

where 'P' is the fluid pressure, 'μ' is the fluid viscosity. These equations are solved 

concurrently to obtain velocity profiles of the air inside the TES unit. The energy equation 

for the heat transfer from the fluid to the concrete wall of the pipe is: 

 

𝑐𝑝,F

𝐷(𝜌𝑇)F

𝐷𝑡
= 𝑘F∇

2𝑇F 

 

(4-6) 

Where 'cp' is the specific heat capacity at constant pressure, 'k' is the thermal 

conductivity, and 'T' is the temperature. The velocities obtained from the solution of the 

continuity and Navier-Stokes equation are used in this equation to simulate the heat 

transfer. For the solid, concrete, the energy equation is used to simulate its thermal 

behavior, Equation 4-7. The equation is: 

 

𝜌𝑆𝑐𝑝,𝑆 (
∂𝑇𝑆

∂𝑡
) = 𝑘𝑆∇

2𝑇𝑆 

 

(4-7) 

Building upon the previously discussed concepts, Figure 4-17 demarcates the Fluid, 

Interface, and Solid regions.  

 

The Interface region is where the fluid (air) comes into contact with the solid 

(concrete). At this juncture, the equations entail the conditions of heat transfer between the 

fluid and the solid. These conditions ensure the continuity of temperature and heat flux at 

the interface, linking the fluid and solid regions. The Solid region, on the other hand, 

represents the concrete cylinder body. The thermal behavior of this solid region is guided 

by the energy equation, which captures the heat absorption, storage, and later release by 

the concrete. 
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Figure 4-15. Schematic Representation of the Fluid, Interface, and Solid Region (concrete) 

with Corresponding Governing Equations. 

 

The Reynolds number (see Equation 4-8) serves as an essential tool in this context. 

This dimensionless metric represents flow conditions and facilitates the prediction of 

turbulence onset. Its definition is as follows: 

 

Re =
4𝜌𝑄𝐷H

𝜇𝜋𝐷2
=

𝜌𝑣𝐷H

𝜇
 

 

 

(4-8) 

Where ρ is the fluid density, Q is the volumetric flow rate, DH is the hydraulic 

diameter, μ is the dynamic viscosity, DH is the hydraulic diameter of the pipe, and v is the 

mean velocity of the fluid. 

A higher Reynolds number suggests the dominance of inertial forces, which 

promote turbulence, over viscous forces. The regime within a cylinder is given by Moody 

Diagram (Figure 4-16). The diagram distinguishes between laminar, transition, and 

turbulent flow regimes, with turbulent flow being further subdivided into smooth turbulent 

and rough, turbulent sub-regimes. In the turbulent flow regime, the friction factor is 

influenced by both Reynolds number and relative roughness of the pipe. For smooth-

turbulent flow, the friction factor is primarily determined by the Reynolds number, while 

for rough-turbulent flow, it becomes independent of the Reynolds number and is governed 

by the relative roughness. 
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Figure 4-16. Moody Diagram for flow regime. 

The chart represents the friction factor for fluid flow in a pipe as a function of the Reynolds number (Re) and 

the relative roughness of the pipe's inner surface (ε/D, where ε is the roughness height and D is the pipe 

diameter) 

Turbulent flow regimes within TES systems have distinct advantages and 

drawbacks. On the upside, turbulence promotes fluid mixing, augmenting the heat transfer 

rate—an ideal characteristic for efficient energy exchange. It also ensures a uniform 

temperature distribution, preventing the formation of thermal inconsistencies such as 'hot-

spots' or 'cold-spots'. 

Nonetheless, turbulence brings challenges. Vigorous fluid movements can escalate 

system wear, potentially causing erosion or damage to the storage material walls and thus 

increasing maintenance costs. Additionally, maintaining turbulent flow often demands 

higher energy input, leading to increased pumping costs, partially offsetting the efficiency 

gains from the improved heat transfer rate. Turbulent flows might also induce vibrations 

and generate system noise in some instances. Thus, system design must consider both the 

advantages and disadvantages of turbulence to achieve a balanced solution. 



 

 

86 

 

 

4.2.5 Surface Roughness Simulation 

The primary focus is to explore how the thermal performance of the TES unit is 

influenced by the roughness of the concrete surface. The Equivalent Sand-Grain roughness 

method is employed to quantify the roughness of the concrete surface. Figure 4-17 

illustrates (A) the 2D and 3D schematics of random surface roughness, and (B) the 2D and 

3D schematics of equivalent Sand-Grain roughness. In both (A) and (B), the upper part of 

the figure presents a 2D view, showing the flow U passing over the surface, while the lower 

part provides a 3D or perspective view of the same surface. In (B), Ks represents the height 

of the roughness. A numerical analysis on various Sand roughness values were conducted, 

which ranged from 0.3 to 3 mm. 

 

 

  

 

 

(A) (B) 

Figure 4-17. Wall roughness schematics.(A) random surface, and (B) equivalent Sand-

Grain. 
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Turbulence models encompass sets of differential and algebraic equations, 

incorporating empirical constants and functions that effectively simulate the behavior of 

real turbulent fluids. The turbulent kinetic energy (k) and its dissipation rate (ε) are two 

fundamental quantities in the analysis of turbulent flows. Their evolution is governed by 

the respective transport equations, which describe the mechanisms of production, transport, 

and dissipation of turbulent energy. 

 

 The turbulent kinetic energy is defined as the average kinetic energy of the 

fluctuating velocity components in a fluid element: 

 

𝑘 ≡
1

2
𝑢𝑖𝑢𝑖̅̅ ̅̅ ̅, 

 

(4-9) 

 

where ui is the fluctuating component of velocity in the i-th direction. The turbulent 

kinetic energy equation (k-equation), describing how k is generated, transported, and 

dissipated, is given by: 

 

𝜕𝑘/𝜕𝑡 + 𝑈𝑗𝜕𝑘/𝜕𝑥𝑗 = 𝜕/𝜕𝑥𝑗[(𝑢 + 𝑢𝑇/𝜎𝑘)𝜕𝑘/𝜕𝑥𝑗] + 𝑃𝑘 − 𝜀 

 

 

(4-10) 

The production term (Pk) represents the rate at which turbulent energy is generated 

from the mean velocity gradients. The turbulent eddy viscosity (νt) quantifies the transport 

of turbulent momentum across fluid elements and is given by: 

 

𝑢𝑡 = ρ𝐶𝜇𝑘
2/𝜀 

 

 

(4-11) 

where μ is the molecular viscosity and Cμ is a model constant. The dissipation rate 

(ε) represents the rate at which turbulent energy is dissipated into heat due to viscous 

interactions. Its equation is given by: 

 

𝜕𝜀/𝜕𝑡 + 𝑈𝑗𝜕𝜀/𝜕𝑥𝑗 = 𝜕/𝜕𝑥𝑗[(𝑢 + 𝑢𝑇/𝜎𝜀)𝜕𝜀/𝜕𝑥𝑗] + 𝐶𝜀1𝜀/𝑘𝑃𝑘 − 𝐶𝜀2𝜀
2/𝑘 

 

 

(4-12) 
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The constants Cε1 and Cε2 are empirical coefficients that depend on the flow 

regime. The k-ε model, a widely used turbulence model, incorporates these equations along 

with additional closure coefficients and auxiliary relations derived from experimental data 

to simulate turbulent flows (Spalding, 1974; Wilcox, 1998).  

Turbulent flows are characterized by complex interactions between vortices and 

fluid particles, resulting in a non-uniform velocity profile near solid boundaries. Accurately 

capturing this behavior near walls poses a significant challenge for CFD simulations. To 

address this challenge, wall functions are employed as computational tools to simplify the 

near-wall region and reduce computational cost. The logarithmic velocity profile, an 

empirical relationship derived from experimental data, provides a theoretical basis for wall 

functions. It describes the velocity distribution near a smooth wall as a function of the 

distance from the wall, y, and the friction velocity, u*.  

 

Wall functions are mathematical expressions that approximate the logarithmic 

velocity profile and the associated turbulent shear stress near a wall. For smooth walls, the 

logarithmic velocity profile holds true, and wall functions can directly incorporate the 

logarithmic profile equation. Wall functions for rough walls can employ an equivalent 

sand-grain roughness approach, which introduces an effective roughness height, ks, to 

account for the influence of surface irregularities. The impact of wall roughness is typically 

accounted for by a shift factor, ΔB, in the logarithmic velocity profile: 

 

𝑢τ =
|𝑢|

1
κv

ln δw
+ + B − ΔB

 

 

 

(4-13) 

This shift factor depends on the non-dimensional roughness height, ks+, defined as: 

 

𝑘s
+ =

ρ𝐶μ
1/4

√𝑘

μ
𝑘s 

 

 

(4-14) 
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Where, ks is the physical roughness height. The value of ΔB varies depending on 

the relative size of the roughness height compared to the viscous sublayer thickness, δ 

(Cebeci, 2004).  

Despite the inherent variability and uncertainty characterizing turbulent flow 

behavior, the k-ε model frequently selected as the preferred choice due to its robust 

capacity to manage and represent the complex interaction of variables inherent in 

turbulence (Spalding, 1974; Wilcox, 1998). Furthermore, the model's adaptability within 

the COMSOL Multiphysics platform (“COMSOL Multiphysics® v. 6.1.,” n.d.) enhances 

its appeal. This adaptability permits it to adjust or "tune" with wall functions and 

incorporate the effects of surface roughness. 

 

The CFD model simulates a hollow cylindrical structure, as shown in Figure 4-18 

(A). Figure 4-18 (B) shows the dimensions of the TES unit and the path of the HTF, in 

millimeters. The cylinder's body, made of concrete, serves as a solid-state storage material. 

Thus, the concrete cylinder functions as a TES medium, either absorbing or releasing 

thermal energy as the HTF circulates, depending on whether the system is in charging or 

discharging mode.  

 

Here, the mesh of the CFD model is of critical importance due to the complex nature 

of Multiphysics. This is especially true at the boundary where the fluid interfaces with the 

solid material. In this region, the mesh in the fluid pass must be more refined to accurately 

capture the interactions that occur. A more detailed discussion of the mesh study will be 

presented further. 
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(A)  (B)  (C)  

 

Figure 4-18. Numerical Model and Mesh for TES.  

(A) Original Model, (B) 2D Axisymmetric, (C) Meshed Model 

Modelling fluid flow and heat transfer processes under specific initial and boundary 

conditions, are outlined in Table 4-4. The initial conditions set the starting temperature and 

velocity of the air and storage material.  

The boundary conditions define the temperature, pressure, and velocity of the air at 

the inlet and outlet, and also ensure no slippage of air along the walls. These conditions set 

the simulation's starting point (initial conditions) and establish the parameters on the 

system's boundary (boundary conditions (Figure 4-20). 
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Table 4-4. Initial and boundary conditions for TES. 

 

 

 

 

 

Initial conditions 

At 𝒕𝒊𝒎𝒆 = 𝟎; 

𝑻storage = 𝑻𝟎 , 

 

𝑻air = 𝑻0 , 
 

�⃗⃗� air = 𝒗𝒊𝒏𝒍𝒆𝒕 

At 𝑡𝑖𝑚𝑒 > 0; 

𝑇air = 𝑇inlet  , 
 

𝑣 air = 𝑣𝑖𝑛𝑙𝑒𝑡 

 

 

Boundary condition applicable to 

storage 

Adiabatic: 

𝑘
𝜕𝑇(𝑧 = 0, 𝐿, 𝑡)

𝜕𝑧
= 0 

 

𝑘
𝜕𝑇(𝑟 = 𝑑2/2, 𝑡)

𝜕𝑧
= 0 

 

 

 

 

 

 

 

Boundary condition applicable to air 

At 𝑍 = 0; Inlet 

𝑣(𝑟 = 𝑑1, 𝑧, 𝑡) = 𝑣𝑎𝑖𝑟 , 

 

𝑇air (𝑟 = 𝑑1/2, 𝑧, 𝑡) = 𝑇inlet , 

 

𝑃(𝑟 = 𝑑1/2, 𝐿, 𝑡) = 𝑃𝑎𝑡𝑚𝑜𝑠𝑝ℎ𝑒𝑟𝑖𝑐 

 

At 𝑍 = 𝐿; Outlet 

𝑃 = 𝑝out  

 

At 𝑟 = 𝑑1/2; No slip condition 

 

𝑣(𝑥, 𝑡) = 0 

 

 

In executing the CFD and numerical analysis, the following assumptions were 

established: 

1. The concrete material utilized in the energy storage system is assumed to be 

homogeneous and isotropic, providing uniformity and consistency throughout. 

2. The energy storage system module is considered to be thoroughly insulated, 

negating any significant heat losses to the surrounding environment. 

3. The heat transfer fluid (HTF) flow was postulated to exhibit turbulent 

characteristics. 
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4. Additionally, the HTF considered incompressible and Newtonian, simplifying the 

analysis by ascribing it standard fluid properties. 

 

 

 

Figure 4-19. Schematic Diagram of the Two-Dimensional Axisymmetric Model with 

Associated Boundary Conditions. 

 

In the selected simulation scenario, an air inflow with a specific inlet velocity of 20 

m/s and pressure of 1 bar is considered. The diameter of the system's hollow core is 25 

mm, leading to a Reynolds number of 7081.28. This Reynolds number exceeds the critical 

value for laminar flow, Moody Diagram of Figure 4-16, indicating the presence of turbulent 

flow.  

As for simulation accuracy insurance, a parametric analysis of the mesh was 

conducted, focusing on a detailed mesh convergence analysis. The goal was to strike a 

balance between computational efficiency and solution accuracy. To achieve this, a study 

across six different meshes, as shown in Table 4-5, was conducted. This table presents the 

results of the parametric study, detailing the resolution of the computational mesh, defined 

by the number of vertices (simulation nodes) and elements (mesh cells).  

The quality of the mesh elements is also evaluated, with higher quality meaning 

more uniform, regular cell shapes which yield more accurate solutions. The 'Average 

Element Quality' scores suggest that the quality of the elements generally improves as the 

mesh resolution increases, although the Ultra Fine mesh shows a slight dip in quality 

compared to the Finer mesh.  
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The transient analysis was conducted across all mesh types to assess their impact 

on the thermal system. This transient study spanned a duration from 0 to 90 seconds, 

examining only 100 mm of the cylinder to reduce computational costs. The starting 

temperature of the air inflow was set at 450 °C. Concurrently, the TES unit, embodied by 

the concrete body of the cylindrical system, sustained an initial temperature of 200 °C. 

Table 4-5. Parameters and quality of each mesh type studied. 

Mesh 

Resolution 
Coarse 

Moderate 

Coarse 
Medium Fine Finer 

Ultra 

Fine 

Mesh Vertices 148 203 350 501 759 1774 

Number of 

elements 
196 285 524 784 1245 3024 

Average 

Element Quality 
0.777 0.8344 0.8407 0.8523 0.8493 0.8273 

 

The mesh study examined parameters such as the absolute total heat flux and the 

average temperatures at both the contact line and the HTF exit, as illustrated in Figure 4-

20. Table 4-6 compares the simulation results for different mesh resolutions. Results reveal 

that the Absolute Total Heat Flux, exhibit a high degree of similarity across all mesh 

resolutions. This indicates that variation in resolution does not substantially impact the 

model's overarching heat transfer characteristics. This is a promising outcome as it enables 

computational efficiency without significantly compromising the outlet heat flux accuracy. 

 

  

(A) (B) 

Figure 4-20. (A) Average Temperature Line Evaluation (°C), and (B) Absolute total heat 

flux (W/m2) and Temperature (°C) at the exit of heat transfer fluid. 
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The flux values differ by only 0.83%, from 4.1693x105 W/m2 at the 'Coarse' 

resolution to 4.1346x105 W/m2 at the 'Ultra Fine' resolution.  

The 'Contact Line Average Temperature (°C)' progressively increases as the mesh 

resolution refines, peaking at 316.43°C for the 'Finer' resolution before marginally 

decreasing to 316.36°C for the 'Ultra Fine' resolution. This shift represents a maximum 

variation of 0.96% from the 'Coarse' to the 'Finer' resolution. The 'Outlet HTF Temperature 

(°C)' remains notably consistent across all mesh resolutions, with negligible fluctuations. 

The temperature varies from 430.49°C at the 'Coarse' resolution to 430.42°C at the 'Ultra 

Fine' resolution, a variation of only 0.02%. 

Table 4-6. Simulation results for mesh study (end of simulation = 90 seconds) 

Mesh Resolution Coarse 
Moderate 

Coarse 
Medium Fine Finer 

Ultra 

Fine 

Absolute total heat 

flux, z component 

(W/m2), *10^5 

4.1693 4.1693 4.1486 4.1455 4.1426 4.1346 

Contact line average 

temperature (°C)  
313.42 313.89 316.02 316.37 316.43 316.36 

Outlet HTF 

temperature (°C)  
430.49 430.49 430.52 430.52 430.51 430.42 

 

The 'Fine' or 'Finer' mesh resolutions seem to offer the optimal balance between 

computational efficiency and solution accuracy. They offer high Average Element Quality; 

relatively low computational expenditure compared to the 'Ultra Fine' resolution and 

deliver precise readings for both heat flux and temperature metrics. 

The selected mesh, 'Fine', was then used in examining the effect of timesteps. 

Timesteps of 0.1, 0.4, 0.7, and 1 second were evaluated to further optimize the model's 

accuracy and efficiency. Table 4-7 demonstrates the insignificant impact of varying 

timesteps on the simulation results. The 'Temperature (°C) Contact Line' values remain 

relatively constant, varying by a mere 0.02% from 316.37°C at timesteps of 0.1, 0.4, and 1 

second to 316.31°C at a timestep of 0.7 seconds.  

Similarly, the 'Temperature (°C) Outlet' demonstrates minor fluctuations, with a 

variation of less than 0.002% between the maximum temperature of 430.52°C (at timesteps 

of 0.1, 0.4, and 1 second) and the minimum temperature of 430.51°C (at a timestep of 0.7 
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seconds). The 'Heat Flux (W/m2)' values also exhibit minimal variations across the 

differing timesteps. All timesteps display values around 4.1455x105 W/m2, with a slight 

decrease to 4.1449x105 W/m2 at a timestep of 0.7 seconds. This represents a negligible 

variation of approximately 0.01%. These results suggest that timesteps within the range of 

0.1 to 1 second do not significantly impact the model's output metrics. Therefore, using a 

larger timestep such as 1 second can help to improve the computational efficiency of the 

model without significantly affecting its accuracy.  

Table 4-7. Simulation results for timesteps effect (end of simulation = 90 seconds). 

Mesh 
Time steps 

(s) 

Temperature (°C) 
Heat Flux 

(W/m2)·105 

Contact Line Outlet Outlet 

 

Fine 

0.1 316.37 430.52 4.1455 

0.4 316.37 430.52 4.1455 

0.7 316.31 430.51 4.1449 

1 316.37 430.52 4.1455 

 

It is important to acknowledge that COMSOL Multiphysics' inherent capability to 

adjust and manage timesteps according to the problem's requirements can also influence 

the results. This feature can adaptively refine or coarsen the timestep depending on the 

problem's complexity, contributing to both the accuracy and computational efficiency of 

the simulation. 

 

4.2.6 Numerical Results 

In Table 4-8 the effect of surface roughness on fluid dynamic parameters after 10 

hours of charging is presented. This table collates the average parameters recorded along 

the z-axis of the wall at the point of contact with the HTF, Figure 4-20 (A). These 

parameters are obtained from simulations conducted with five different roughness levels: 

0 mm, 0.3 mm, 1 mm, 2 mm, and 3 mm, all under the same conditions discussed in the 

preceding sections. The simulation time for each was 600 minutes (10 hours) to charge the 

TES unit, maintaining an air velocity of 20 m/s and an inlet temperature of 450 °C. There, 

it can be seen that a distinct increase in friction velocity corresponds with an escalation in 
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surface roughness. For a smooth surface (0 mm roughness), the friction velocity is 1.1842 

m/s. This value experiences a rise of roughly 30.2%, reaching 1.5635 m/s when the surface 

roughness is increased from 0.3 mm to 1 mm. Further adjustments in roughness to 2 mm 

and 3 mm yield smaller increases in friction velocity, of about 18.7% and 7.6% 

respectively. This pattern appears to present a diminishing return in terms of friction 

velocity, potentially due to the turbulent characteristics of the fluid flow at higher levels of 

roughness. 

In contrast, both the shear rate and vorticity magnitude are seen to decline as surface 

roughness increases. The shear rate witnesses a decrease of approximately 33.5% with a 

transition in roughness from 1 mm to 2 mm, followed by a further decrease of 22.4% as 

roughness reaches 3 mm. A similar pattern is observed for the vorticity magnitude, with 

reductions of approximately 31.6% and 21.2% recorded when roughness increases from 1 

mm to 2 mm, and 2 mm to 3 mm, respectively. Pressure, conversely, demonstrates a 

consistent increase as surface roughness elevates, with an approximate growth of 61.3%, 

34%, and 15.3% when transitioning from 0.3 mm to 1 mm, 1 mm to 2 mm, and 2 mm to 3 

mm in roughness, respectively. 

Table 4-8. Effect of surface roughness on fluid dynamic parameters after 10 hours of 

charging the TES unit. 

Roughness 
Friction 

velocity 

Shear 

rate 

Vorticity 

magnitude 

Wall 

roughness in 

viscous units 

Pressure 

(mm) (m/s) (1/s) (1/s) (1) (Pa) 

Smooth (0) 1.1842 5359.9 5358.3 0.00 41.326 

0.3 1.2005 6015.6 6013.8 7.3348 46.964 

1 1.5635 5996.6 5993.7 32.383 75.633 

2 1.8559 4102.2 4099.1 76.327 101.34 

3 1.9970 3179.9 3176.7 122.10 116.98 

 

The no-slip condition sets the fluid velocity to zero at solid surfaces. So, the 

velocity will be at the minimum (zero) in the layer of elements directly adjacent to the wall 

boundary. Figure 4-22 shows the evolution in velocity along the flow pipe. Starting with a 

smooth surface, velocities fluctuate between 12.70 m/s near the wall to a maximum of 

23.77 m/s in the central and downstream regions. Near the wall suggest the elements with 
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height up to around 2 mm from the boundary are significantly influenced by the no-slip 

condition before velocities increase rapidly away from the wall. A marginal roughness of 

0.3 mm sees the velocity close to the wall slightly decrease to 11.96 m/s, while the 

maximum velocity in the central and downstream sections exhibits a minor increment to 

24.23 m/s. 

With a further increase in roughness to 1 mm, the wall-adjacent velocity drops by 

roughly 8.7% to 10.92 m/s. In contrast, the central and downstream maximum velocity 

records an increase of approximately 6.2%, reaching 25.74 m/s. When the roughness level 

is heightened to 2 mm, the velocity close to the wall experiences a roughly 10.9% increase 

to 12.11 m/s, and the maximum velocity elevates by a smaller rate of about 3.4%, 

amounting to 26.61 m/s.  

For the maximum roughness level of 3 mm, the wall-adjacent velocity marks an 

approximate 7.9% increase to 13.07 m/s. However, the maximum velocity in the central 

and downstream regions sees only a marginal rise of about 0.3%, peaking at 26.7 m/s. The 

maximum velocity difference between the smooth surface and the 3 mm rough surface is 

2.93 m/s, as depicted in Figure 4-21. 

 

 

Figure 4-21. Minimum and maximum velocities observed along the flow pass. 
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These observations illustrate a consistent pattern where both the wall-adjacent 

minimum and central and downstream maximum velocities increase with the increase of 

surface roughness. Nevertheless, the increment rate exhibits a steady decline, suggesting 

that the impact of surface roughness on fluid flow velocity may follow a pattern of 

diminishing returns as roughness increases. Near the wall, the effect of roughness creates 

a buffer layer, increasing the local turbulence, and thus decreasing the near-wall velocity. 

As the flow moves away from the wall, the effects of wall roughness reduce, and the impact 

of turbulence becomes more prominent, enhancing momentum exchange and leading to 

increased velocity at the center and downstream, see Figure 4-22. The flow direction is 

indicated from left to right, and the different panels (A through E) show the impact of 

increasing roughness on the flow pattern within the pipe. Panel A represents an ideally 

smooth surface with no roughness, while panels B through E depict increasing roughness 

levels from 0.3 mm to 3 mm. As the roughness increases from panel B to E, we observe 

more disturbances in the flow, with the blue regions indicating higher velocities and the 

red regions indicating lower velocities due to the presence of turbulent eddies. 

 

 Flow Direction 

(A) 

 

 

(B)  

 

(C)  

 

(D)  

 

(E)  

 
 

Figure 4-22. Velocity Streamlines for Different Levels of Surface Roughness.  

.(Velocity unit: m/s) (A) Ideally smooth surface (0 mm roughness), (B) 0.3 mm, (C) 1 mm, (D) for 2 mm, 

(E) 3 mm . 
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The evaluation of pressure profiles in this study further substantiates the 

considerable effect of surface roughness on the pressure distribution within the system. In 

accordance with fluid dynamics principles, a higher degree of surface roughness 

contributes to increased friction losses, which manifest as an increase in  pressure drop. 

For an ideally smooth surface (zero roughness), no pressure drop is observed due to the 

absence of friction losses. 

Upon assessing other four distinct levels of surface roughness, a positive correlation 

between the surface roughness degree and the entrance pressure is revealed. This means, 

as surface roughness escalates, so does the entrance pressure, indicating a higher-pressure 

requisite to initiate and sustain fluid flow in the system. A lesser degree of increase is also 

observed in the outlet pressure with the rise in surface roughness. This minor increment 

suggests a potential gradual equalization of pressure as the fluid flows through the system 

and a diminishing effect of roughness near the outlet, possibly owing to a more stabilized 

flow. 

To quantify the observed pressure drops, the following data is provided: 

• A surface roughness of 0.3 mm incurs a pressure drop of 101.97 Pa. 

• Expanding the surface roughness to 1.0 mm leads to a pressure drop rise by 

approximately 62%, reaching 163.26 Pa. 

• Enhancing the surface roughness to 2.0 mm culminates in a further pressure drop 

to 214.03 Pa, denoting an increase of around 31% from the 1.0 mm case. 

• At the maximum roughness level of 3.0 mm, the pressure drops peaks at 242.78 Pa, 

representing a relatively smaller increment of about 13.4% from the 2.0 mm 

roughness scenario. 

 

There is a consistent trend of rising pressure drop with the escalation in roughness: 

from 101.97 Pa at 0.3 mm roughness to 242.78 Pa at 3.0 mm roughness. This denotes a 

substantial increase of nearly 138% equal to ~140 Pa. 

The thermal consequences of surface roughness within the system are visually 

presented in Figure 4-23. This figure displays the HTF temperature along the centerline of 

the flow path for five distinct levels of surface roughness at the simulation's conclusion. 
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Starting with a smooth surface (0 mm roughness), the entrance temperature begins 

at 450 °C and ends with an outlet temperature of 441 °C. This equates to a ΔT of 9 °C, 

indicating a moderate heat transfer rate from the HTF to the system, predominantly to the 

concrete components of the thermal energy storage unit. 

In the case of a slight roughness of 0.3 mm, the outlet temperature decreases 

marginally to 440.7 °C  (ΔT of approximately 9.3 °C). When the roughness is further 

increased to 1 mm and 2 mm, the outlet temperatures are noted to be 439.4 °C and 437.5 

°C, respectively. The maximum roughness level of 3 mm records the lowest outlet 

temperature of 436.3 °C, reflecting a larger ΔT of around 13.7 °C. This growing ΔT 

suggests a stronger temperature gradient between the HTF and the system surface with 

each increase in roughness. This intensified temperature gradient results in a more vigorous 

heat transfer from the HTF to the storage material. 

 

Figure 4-23. Variation of HTF temperature along the centerline flow path for different 

surface roughness conditions at the end of the simulation. 
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The temperature contours illustrated in Figure 4-24 provide an axi-symmetric view 

of the temperature distribution within the TES unit, further strengthening the insights 

gathered from previous observations. Notably, these contours highlight how changes in 

surface roughness influence the heat transfer dynamics within the TES system. In all cases, 

it is clear that the hollow, denoted by the highest temperature, illustrates distinct variations 

in heat distribution across different surface roughness conditions.  

Evident in the contours, higher levels of surface roughness appear to enhance the 

heat dispersion throughout the system. This is likely due to an increase in surface area and 

turbulence that comes with increased roughness, amplifying the convective heat transfer 

between the HTF and the surrounding solid. As a result, a lower temperature gradient in 

the solid and a higher HTF input-output temperature difference are noted, reflecting a more 

effective and faster heat exchange.  

 

In resume, higher surface roughness generally equates to a larger HTF input-output 

temperature difference, increased friction velocity and pressure drop. The results suggest 

that surface roughness can be used to optimize the thermal performance of TES systems. 

By understanding the complex relationship between surface roughness, velocity, pressure, 

and temperature, it is possible to manipulate these parameters to improve the system's 

efficiency.  
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 Axi-symmetric TES models 
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Figure 4-24. Axi-symmetric temperature distribution in the TES unit for different surface 

roughness conditions at the end of the simulation (10 hours) 

 

Nonetheless, achieving an optimal balance between the pressure drop instigated by 

surface roughness and the escalated heat exchange rate is a focal aspect in practical 

application contexts. The calculated parameters such as charging efficiency, HTF outlet 

heat transfer rate, and energy stored during charging (as defined by equations 4-15 to 4-
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17) indeed serve as benchmarks for optimization efforts. It is assumed that there are no 

thermal losses to ambience. 

 

Qstorage(t) = ρSVSCp,S(< TTES(𝑡) > −Tinit) 

 

(4-15) 

Q̇storage(t) = ṁCp,F(TF,avg(t) − Tinlet) 

 

(4-16) 

ηcharge =
< TTES(t) > −Tinit

Tinlet − Tinit
 

 

(4-17) 

In these equations, the average temperature of the solid element, <TTES>, is 

considered to be a representative of its temperature distribution performance. Symbols t, 

ρ, and Cp respectively refer to time, density, and the heat capacity of 'solid' and 'fluid', this 

last one as indicated by the subscript and 'F'.  

From the data delineated in Table 4-9, the correlations between surface roughness 

and the performance metrics are apparent. With respect to charging efficiency, an upward 

trend can be observed as surface roughness escalates. The efficiency increases from 53.6% 

in the perfectly smooth case to 57.9% in the system with a surface roughness of 3 mm. This 

represents an approximate increase of 7.4% in efficiency. The HTF outlet heat transfer rate 

also manifests a similar ascending trend.  

 

When the surface roughness is at its minimum, i.e., 0 mm, the heat transfer rate is 

183.78 W. However, this value increases substantially with surface roughness, reaching up 

to 279.43 W when roughness is at its peak at 3 mm. This represents a notable increase of 

approximately 52.0% compared to the initial case, corroborating the earlier assertions that 

an increase in surface roughness enhances heat exchange due to increased turbulence. 

Lastly, the trend in the energy stored during charging also rises with surface 

roughness. The energy stored ascends from 77.4 MJ in the case of zero roughness to 83.7 

MJ at a 3 mm roughness, marking an increase of about 8.1%. These results mean that for 

storing the same amount of energy, it would be required a volume of a TES unit with 3mm 

roughness of around 92% lower than the TES unit having an ideal smooth surface. 
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Table 4-9. Charging Efficiency, HTF Outlet Heat Transfer Rate, and Energy Stored During 

Charging for Different Surface Roughness Conditions. (at the end of simulation) 

Roughness 
Charging 

Efficiency 

HTF Outlet Heat 

Transfer Rate 

Thermal Energy 

Stored 

(mm) (%) (W) (MJ) 

0 53.6% 183.78 77.4 

0.3 53.8% 190.00 77.8 

1 55.7% 217.67 80.4 

2 57.4% 254.80 83.0 

3 57.9% 279.43 83.7 

 

In conclusion, this study has tried and illustrated the influence of surface roughness 

on the fluid dynamic and thermal parameters within a TES system. As expected, the 

computational investigation revealed a clear relationship between surface roughness and 

the friction velocity, shear rate, vorticity magnitude, pressure, and temperature. The study 

has quantified how the increased surface roughness results in a rise in friction velocity and 

pressure, while leading to a decrease in shear rate and vorticity magnitude. Furthermore, 

the thermal analysis denotes an amplified heat transfer between the HTF and the system as 

the roughness increases.  

The results underscore the potential to enhance thermal performance and overall 

efficiency of TES systems by manipulating surface roughness. However, to ensure an 

optimal balance, the pressure drop incurred due to enhanced roughness and the increased 

rate of heat exchange need to be carefully weighed. The need for more detailed studies to 

inform the design and operation of TES systems, considering the balance between pressure 

drop, heat transfer rate, and storage efficiency. Moreover, the derived parameters like 

charging efficiency, HTF outlet heat transfer rate, and energy stored during charging could 

be instrumental in future research to pinpoint an optimal surface roughness level, leading 

to the creation of more efficient TES systems. Through such data-driven visions, there is a 

compelling scope for refining system design and linking surface roughness as a tool to 

enhance performance in practical applications.  
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In situations where the TES material directly contacts the HTF, and both have 

relatively low thermal conductivities, the use of artificial surface modifications, such as 

indentations or fins, can be beneficial. These modifications not only increase surface 

roughness but also expand the effective surface area for heat transfer. The design and 

application of internal fin configurations is a well-established field in industrial 

applications(Shah and Sekulic, 2003). These configurations, each with its unique benefits 

and potential challenges, have been successfully implemented in areas from tubing to heat 

exchangers (Masliyah and Nandakumar, 1976; CARNAVOS, 1980; Zhang and Faghri, 

1996; Xie et al., 2008). It is suggested that these established practices be studied for their 

potential application in TES systems where material and HTF are in direct contact. 

 

As the optimization study in Chapter IV concludes, it provides a comprehensive 

understanding of the influential parameters and optimal configurations that could enhance 

the efficiency of TES systems. These insights represent a significant milestone in the 

research and form a solid foundation for the subsequent chapter, which will utilize machine 

learning techniques. This transition from conventional optimization methods to machine 

learning approaches represents an evolutionary step in TES design optimization. 
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Chapter V. 

Machine Learning Approaches for TES Design 

Starting with, the research introduces machine learning, ML, techniques to the field 

of thermal energy storage design. Capitalizing on the knowledge and insights gathered 

from the preceding chapters—from the role of cementitious materials in TES, to the 

potential of geopolymer concrete, and through to the stages of prototype development, 

experimental validation, and system optimization—the objective of this chapter is to 

significantly enhance the efficiency and accuracy of TES design. This chapter begins with 

a detailed overview of machine learning in the context of TES, followed by an application 

of a proposed machine learning algorithm, and ultimately culminates in the optimization 

of TES design through the use of advanced machine learning methodologies. The ML 

model, once trained, has the capacity to oversee a significantly larger array of combinations 

of parameters for TES design. 

5.1 Introduction to Machine Learning in TES 

 

Artificial Intelligence (AI), at its core, emulates human cognitive abilities through 

computational processes, including learning, reasoning, and self-correction (Abdalla et al., 

2021; Senior et al., 2020). Nested within AI is a subset called Machine Learning, which 

uses empirical data to enhance performance on tasks without the need for explicit 

programming (Abualigah et al., 2022; Benti et al., 2023; Lai et al., 2020). A more refined 

subclass, Deep Learning, utilizes intricate neural networks to tackle complex data 

interpretation tasks, such as image recognition, speech recognition, and natural language 

processing (Abdalla et al., 2021; Graves et al., 2013; Senior et al., 2020; Wang et al., 2019). 

Particularly in the renewable energy sector, Deep Learning has notably outclassed 

traditional approaches in forecasting accuracy (Benti et al., 2023). 
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Furthermore, the application of Multi-Criteria Decision Analysis (MCDA) and 

Multi-Objective Optimization (MOO) techniques allows for the handling of conflicting 

criteria and simultaneous optimization of multiple factors, respectively (Paradowski and 

Sałabun, 2021), (Deb, 2011). Specifically, within the framework of MCDA and MOO, 

Evolutionary Multi-Objective Optimization (EMO) emerges as a potent technique for 

evaluating options such as Concentrated Solar Power systems against various performance 

measures (Klein, 2013). 

 

Expanding our focus to the renewable energy sector, we see AI and ML assuming 

vital roles in addressing myriad challenges, from integration and control to stability 

assessment and system optimization (Bose, 2017; Chen et al., 2021; Rahman et al., 2020), 

(Perera et al., 2014). Coupled with MCDA and MOO techniques, they aid in crucial 

processes such as materials selection for thermal energy storage and optimal system design 

(Paradowski and Sałabun, 2021). These technologies prove instrumental for functions like 

power prediction, grid management, and optimal sizing  (Perera et al., 2014). They also 

enhance forecasting accuracy for wind farm production (Malakouti, 2023), solar irradiation 

(Voyant et al., 2017), and revenue predictions for integrated energy systems (Lin et al., 

2022), thereby facilitating optimal utilization of renewable energy resources. 

 

 

ML techniques have found significant application in TES systems by automating 

tasks, enhancing decision-making processes, and optimizing system performance (Borri et 

al., 2021; He et al., 2022; Lee et al., 2022; Olabi et al., 2023). These technologies have 

been integral in optimizing TES performance (Olabi et al., 2023), augmenting system 

efficiency under diverse loads (Lee et al., 2022), and elevating the stability of thermal 

energy storage (Chandan et al., 2022). Of particular note is their proficiency in enhancing 

the reliability and efficiency of phase change material-based TES systems (Ren et al., 2022; 

Shettigar et al., 2020). Nevertheless, ongoing research efforts are necessary to continually 

innovate and address existing limitations in these technologies. 
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In this vein, the current study introduces an innovative framework that brings 

together ML with MCDA for the design and optimization of solid-based sensible TES 

units. It's a versatile approach that can be applied across both non-renewable and renewable 

sectors, including Concentrated Solar Power plants, Solar Process Heat (SPH) (Famiglietti 

et al., 2020), and Industrial Waste Heat (IWH).  

 

This proposed framework expands upon previous researches focused on 

introducing TES material, conducting thermal assessments, performing experiments, and 

developing as well as validating numerical models for a TES module based on geopolymer 

concrete (Rahjoo et al., 2023, 2022b, 2022a). Utilizing an EMO, generating a set of Pareto-

optimal solutions, which are evaluated using an ML-based Decision Support System 

(DSS). The DSS incorporates decision tree ML algorithms (Breiman, 2017; SONG and 

LU, 2015) to classify and assess the suitability of these solutions.  

 

The decision tree model's viability lies in its simplicity, interpretability, and 

computational efficiency. It provides a framework that encapsulates evolved, non-linear 

decision-making, closely resembling human reasoning. As such, it has wide applicability 

in numerous domains where complex relationships need to be learned, understood, and 

explained (Fürnkranz, 2010; Kotsiantis, 2013; SONG and LU, 2015). The effectiveness of 

the proposed framework is then going to be demonstrated through its application to a TES 

system tied to a parabolic trough CSP plant in Morocco (Zanganeh, 2014). Finally, the 

optimized design parameters are going to be validated through simulations conducted with 

COMSOL software (Multiphysics, 2022), resulting in a scalable design proposal for a TES 

unit fitting the plant's specifications (Zanganeh, 2014). 
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5.2 Application of Proposed ML Algorithm 

 

The approach comprises several stages, as depicted in Figure 5-1. The process 

initiates with laboratory investigations to gather empirical data relevant to the TES system's 

functioning from previous chapters. Subsequently, a representative numerical model of the 

TES system is developed and validated. The approved numerical model becomes 

instrumental in generating diverse datasets, which are subject to intensive data mining. This 

aids in unearthing patterns and connections between the input variables and the 

corresponding outputs. Data normalization and pre-processing steps are then undertaken to 

standardize the dataset and prime it for application into a decision tree model. 

The decision tree model is built with the aim of forecasting the performance metrics 

of the TES system using the pre-processed data. For ensuring predictions, the dataset is 

partitioned into a training set for model construction and a testing set for validating the 

model's accuracy. Further, to minimize overfitting, the decision tree model is pruned and 

its hyperparameters are optimized to deliver performance on the testing set. The model's 

performance is gauged using diverse metrics, and its accuracy is corroborated by 

juxtaposing its predictions with the testing dataset. 

Following the model validation, multi-objective optimization and multi-criteria 

decision analysis techniques are deployed to pinpoint favorable design parameters and 

operating conditions based on defined targets. These findings are contrasted with the results 

of a specific Computational Fluid Dynamics simulation, where the optimized design 

configuration and operating conditions are implemented (designated as 'COMSOL 

Validation'). Given the resemblance in outcomes from both methods, the validation of the 

MOO and MCDA techniques can be confirmed. 

The project culminates with an upscale evaluation that aims to design an entire TES 

system. This design hinges on the optimized module design paired with the refined 

operating conditions, cumulating in a pragmatic 'TES Heat Exchanger Design'. 
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Figure 5-1. Overview of the machine learning methodology for solid TES system 

optimization 
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5.2.1 Decision Tree ML Model 

Decision Tree (DT) Models are a type of supervised machine learning algorithm 

that have been widely used to build classification models (Fürnkranz, 2010; Kotsiantis, 

2013; SONG and LU, 2015). These models closely resemble human reasoning and are easy 

to understand. They are efficient and can be induced from data (Fürnkranz, 2010). The 

induction of decision trees is one of the oldest and most popular techniques for learning 

discriminatory models (Fürnkranz, 2010). DT models create a hierarchical structure, 

resembling a tree, where every node signifies a decision, and each terminal leaf node 

signifies an ultimate outcome. These models are trained through a recursive process of 

partitioning the training data into progressively smaller subsets, guided by the input feature 

values. During each partition, the algorithm selects the feature that most effectively 

segregates the data into two distinct groups. This recursive process continues until each 

node contains sufficiently homogeneous data (Fürnkranz, 2010; Kotsiantis, 2013; SONG 

and LU, 2015). The algorithm's inherent parallelizability, coupled with its streamlined 

prediction process of navigating the tree structure, results in exceptional computational 

efficiency. In the present work, it is employed a decision tree model to predict key 

performance parameters of solid TES units, even though there are other models such as 

Support Vector Machines (SVM) (Noble, 2006), Random Forests (Breiman, 2001), and 

Neural Networks (YEGNANARAYANA, 2009). The focus of what is presented here is 

not on a comparative study of these models. Rather, the emphasis is on assessing the 

feasibility and effectiveness of the decision tree model in this specific context. 

As shown in Figure 5-2, the tree evolves from the root node, that initially holds all 

the examples, and rows out through a recursive, divide-and-conquer strategy. This strategy 

results in partitioning the entire dataset into smaller, increasingly pure subsets. The root 

node, at the highest level, comprises the entire dataset. The decision nodes, depicted at 

subsequent levels, represent the points where the tree splits based on the value of a 

particular attribute. The selection of this attribute is crucial and governed by an objective 

function. This process of progressive partitioning continues until the remaining examples 

in a leaf node are of the same class, or the remaining examples can no longer be split. At 

this point, the leaf node, depicted at the lowest level of Figure 2, represents the final 

outcome or decision made by the model. 
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In this work, a DT Model is implemented as part of a machine learning 

methodology for designing and optimizing solid-state TES units. The implementation 

process involves several steps, as outlined in the earlier section of the work. The Decision 

Tree Model is constructed to forecast key performance metrics of the TES system using 

pre-processed data. Scikit-learn library (Pedregosa et al., 2011)has been used to implement 

the decision tree model.  

They initialize the model with the DecisionTreeRegressor class, setting the 

random_state hyperparameter to ensure reproducibility. To find the best hyperparameters 

for the DT model, the GridSearchCV class has been used. This class performs grid search 

with cross-validation to evaluate different combinations of hyperparameters and select the 

best-performing model. Later, by evaluating the performance of the decision tree model on 

the testing data, the feature importance study was done to understand the significance of 

each feature in making predictions. 

 

 

Figure 5-2. Schematic representation of a decision tree model. 

To facilitate the training of the decision tree model, a comprehensive dataset was 

curated from an extensive array of simulation runs, encompassing 675 different charging 

scenarios. Each charging scenario was characterized by a specific set of design parameters, 

including initial TES module temperature (T0), inlet air temperature (Tinlet), tube radius (R), 

module size (S), heat transfer fluid (HTF) velocity (v), and charging time (tcharge). The 

parameter value ranges are detailed in Table 5-1.  
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These simulations were conducted utilizing a computational fluid dynamics model 

developed within COMSOL Multiphysics (Multiphysics, 2022). As discussed in previous 

chapters, the CFD model underwent thorough validation against experimental findings to 

ascertain its accuracy and dependability. 

Table 5-1. Design Parameters for solid TES module simulations.  

Design Parameter Values Units 

Initial temperature (T0) 215, 265, 315 °C 

Inlet air temperature (Tinlet) 400, 450, 500, 550, 600 °C 

Tube radius (R) 1/2, 3/4, 1 Inch 

Module size (S) 100, 150, 200, 250, 300 mm 

HTF (Air) velocity (v) 3, 6, 9 m/s 

Charging time (tcharge) 2, 4, 6, 7.5, 8, 10 hour 
The tube radius values are given in inches, since this unit is technically the most widely one used and not SI 

units, so it is clearly identified which size of tubes the work refers to. 

The selection of parameter values sought to encompass an extensive spectrum of 

operational conditions. This broad coverage was designed to equip the machine learning 

model with the capability to adapt and extrapolate to novel scenarios. The chosen design 

and performance parameters draw upon the comprehensive research and metrics provided 

by previous studies, thereby ensuring that the design and performance parameters are 

grounded in rigorously examined scientific theory (Cabeza et al., 2022c; Mikkelson and 

Doster, 2022; Tamme et al., 2004b; Meseret Tesfay, 2014). The objective of the machine 

learning model is to forecast following six key performance metrics for the TES unit:  

• Heat transfer fluid outlet temperature (THTF_out, in ºC) 

• Heat transfer fluid pressure drop (ΔP in Pa) 

• Solid TES bulk average temperature (<TTES> in ºC) 

• Solid TES bulk thermal storage capacity (Qst in J) 

• Heat transfer fluid output heat rate (Q̇storage in W) 

• Charging efficiency (ηcharge non-dimensional) 

 

 



 

 

114 

 

The first three targets are directly derived from the CFD simulation results, while 

the latter three are computed using Equations 4-15 to 4-17 presented in previous chapter. 

The average temperature of the solid element, <TTES>, is deemed representative of its 

temperature distribution performance.  

 

5.2.2 Model Accuracy  

The decision tree model was trained using the resulting data, with the objective of 

forecasting key performance parameters of the solid TES model based on the 

aforementioned design parameters. The model's efficacy in predicting the six targets was 

assessed, and hyperparameter tuning was executed to improve the model's performance. A 

grid search, accompanied by cross-validation, was employed to identify the optimal 

estimator for each target. Also, a thorough evaluation of the model's performance was 

conducted by comparing its predictions to the experimental and simulation results.  

 

The evaluation metrics included R-squared value (R2), mean absolute error (MAE), 

mean squared error (MSE), root mean squared error (RMSE), explained variance score 

(EVS), and mean absolute percentage error (MAPE), which are commonly used to assess 

the accuracy and robustness of machine learning models (Pedregosa et al., 2011; Raschka 

and Mirjalili, 2019). Metrics used are presented in Eqs. 5-1 to 5-6 where, yi refers to the 

actual value of the target variable, ŷi denotes the predicted value, and ȳ represents the mean 

of the observed values.  
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R-squared 
𝑅2 = 1 −

∑  𝑛
𝑖=1 (𝑦𝑖 − 𝑦�̂�)

2

∑  𝑛
𝑖=1 (𝑦𝑖 − �̅�)2

 
(5-1) 

Mean absolute error 
𝑀𝐴𝐸 =

1

𝑛
∑  

𝑛
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|𝑦𝑖 − 𝑦�̂�| 
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Mean squared error 
𝑀𝑆𝐸 =

1

𝑛
∑  

𝑛
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(𝑦𝑖 − 𝑦�̂�)
2 

(5-3) 

Root mean squared error 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑  

𝑛

𝑖=1

(𝑦𝑖 − 𝑦�̂�)2 

(5-4) 

Explained variance score 
𝐸𝑉𝑆 = 1 −

𝑉𝑎𝑟(𝑦𝑖 − 𝑦�̂�)

𝑉𝑎𝑟(𝑦𝑖)
 

(5-5) 

Mean absolute percentage error 
𝑀𝐴𝑃𝐸 =

1

𝑛
∑  

𝑛

𝑖=1

|
𝑦𝑖 − 𝑦�̂�

𝑦𝑖
| × 100 

(5-6) 

 

The mean absolute error (Equation  5-1) and mean squared error (Equation  5-2) 

were utilized to measure the average magnitude of errors between predicted and actual 

values. Additionally, the root mean squared error (Equation  5-3) was employed to gauge 

the magnitude of errors while maintaining the same scale as the target variable. The 

explained variance score (Equation  5-4) was used to measure the proportion of variance 

in the target variable that the model explained while accounting for the baseline variance. 

Lastly, the mean absolute percentage error (Equation  5-6) was used to measure the 

percentage difference between predicted and actual values, proving useful for 

understanding the relative magnitude of errors irrespective of scale.  

 

The accuracy of the model in predicting several critical metrics for the TES system 

was notable. Table 5-2 provides precise metrics for the model's accuracy in predicting key 

variables for the TES system. High R-squared values (>0.9) indicate strong precision, while 

low MAE and MSE values (<15 and <300, respectively) reflect minimal prediction errors. 

Table 5-2. ML Model Evaluation Metrics 
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Metrics/ 

targets 
R2 MAE MSE RMSE EVS MAPE 

THTF_out 0.9086 12.1396 282.1680 16.7979 0.9104 0.0307 

ΔP 0.9999 0.0429 0.0421 0.2052 0.9999 0.0014 

<TTES> 0.9373 13.1174 257.5234 16.0475 0.9375 0.0381 

Qstorage 0.9803 0.3637 0.3210 0.5666 0.9805 0.0672 

Q̇storage 0.9572 14.2906 386.7021 19.6647 0.9577 0.0920 

ηcharge 0.9816 0.0170 0.0009 0.0307 0.9817 0.0974 

 

The ML model's quality was further evaluated by plotting the predicted values 

against the actual values for each target variable. Figure 5-3 displays the plots for each 

target variable, with the x-axis representing the actual values and the y-axis representing 

the predicted values after training. The plots exhibit the correlation between the predicted 

and actual values, as most data points are situated close to the diagonal line.  

This proximity signifies that the model has satisfactory prediction control between 

the predicted and actual values. 
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(A) (B) 

  

(C) (D) 

  

(E) (F) 

Figure 5-3. Predicted values trained by machine learning.  

(A) <TTES>, (B) Qstorage, (C) THTF_out , (D) Q̇storage, (E) ΔP and (F) ηcharge.  

Table 5-3 summarizes the performance of six decision-tree regression models, each 

trained on a different target variable. The models were trained with a random state of 42, 
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which ensures that the results are reproducible. The appropriate models were identified 

based on the criteria of max_depth and min_samples_split, with the optimal depth being 

generally between 15 to 17. The tree node count, signifying the complexity of the model, 

varied from 587 for the ' ΔP ' model to 1079 for the ' THTF_out ', '<TTES>' models, 

demonstrating the variety in the models' structures.  

 

Computational time, RAM, and CPU are essential for evaluating the practicality of 

a model, particularly in real-time applications where speed and resource utilization are 

critical. Interestingly, ' ΔP' and ' ηcharge' models performed well not only in accuracy metrics, 

Table 5-3, but also have relatively lower computational times. 

Table 5-3. Decision Tree Regression Model Performance (random_state=42) 

Metric Unit THTF_out ΔP <TTES> Qstorage Q̇storage ηcharge 

DT Model 

(max_depth) 
- 16 17 15 16 15 15 

Tree Node 

Count 
- 1079 587 1079 1077 1051 1057 

Tree Max 

Depth 
- 16 13 15 16 15 15 

Computational 

Time 
s 2.6 2.08 2.21 3.10 3.52 2.10 

RAM Usage bytes 351868 351868 351868 351868 351868 351868 

CPU Usage 
CPU- 

s 
155.59 157.67 159.87 162.94 165.93 168.03 

 

5.2.3 Model Sensitivity Analysis 

The significance of specific features in predicting target values has been scrutinized 

using the feature_importances_ attribute through the scikit-learn package (Pedregosa et al., 

2011). Employing a feature importance metric provides quantifiable data regarding the 

relative contribution of each input feature in a machine learning model's prediction of the 

target variable.  

When dealing with Decision Trees, the importance of a feature is typically gauged 

by the resultant decrease in impurity (such as Gini impurity) from partitioning the data on 

the basis of that particular feature (Breiman, 2017; SONG and LU, 2015).  
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This method quantifies the importance of each feature as the aggregate over the 

number of splits (across all trees) comprising the feature, proportionally accounting for the 

number of samples it divides. A higher importance score for a feature indicates that it plays 

a more significant role in predicting the target variable. The relevant general formula for 

the Gini Importance equation is detailed in (“1.10. Decision Trees,” n.d.).  

Furthermore, the PolynomialFeatures (Pedregosa et al., 2011) function was then 

used to create a polynomial equation for each target value, which facilitated in clarifying 

the relationship between the design parameters and the performance metrics of the TES 

module. The equation format of a fitted regression model using “PolynomialFeatures” in 

scikit-learn is given as follow: 

 

𝑦 = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + ⋯+ 𝛽𝑛𝑥𝑛 + 𝛽𝑛+1𝑥1
2 + 𝛽𝑛+2𝑥1𝑥2 + ⋯+ 𝛽2𝑛𝑥𝑛

2 + 𝜖 (5-7) 

 

Where y is the target values, x1,2,….,n are design parameters, β1,2,……,n are the 

coefficients of the model, and 𝜖 is the error term. The first part of the equation represents 

the linear relationship between the independent and dependent variables, while the second 

part represents the nonlinear relationships captured by the polynomial terms. 

PolynomialFeatures generates a new feature matrix consisting of all polynomial 

combinations of the original features up to a specified degree. By doing so, it can provide 

a more accurate representation of the relationships between the variables, capturing 

nonlinearities in the data. The transformed feature matrix is then used to fit a regression 

model to the data, allowing for the calculation of equations that can be used to predict the 

values of the target variables. The regression equations derived from the feature importance 

and equation 5-7 are presented in Table 5-4.  

Figure 5-4 integrates dual graphical illustrations to elucidate the role of design 

parameters' feature importance in the system under study. The inaugural visual, denoted as 

a heatmap (A), color codes the varying levels of importance among the design parameters 

based on their relative significance. In contrast, the Sankey diagram offers a visually 

intuitive representation of the impactful design parameters on the system's performance, 

demonstrating how they intricately interweave. The dimension of the arrows within the 

Sankey flow diagram serves as a symbol of the magnitude of each design parameter's 
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influence on the output. The most important parameters for each target variable are as 

follows: 

1. For HTF outlet temperature, THTF_out, the most important parameter is inlet air 

temperature, Tinlet, followed by module size, S, and HTF velocity, v. 

2. For HTF pressure drop, ΔP ,the most important parameter is HTF velocity, v, 

followed by tube radius, R, and initial temperature, T0. 

3. For solid TES module bulk average temperature, <TTES>, the most important 

parameter is module size, S, followed by inlet air temperature, Tinlet, and tube 

radius, R. 

4. For concrete TES module bulk thermal storage capacity, Qstorage, the most 

important parameter is inlet air temperature, Tinlet, followed by initial 

temperature and tube radius. 

5. For HTF output heat rate, Q̇storage, the most important parameter is module size, 

S, followed by HTF velocity, v, and inlet air temperature, Tinlet, 

6. For charging efficiency, ηcharge, the most important parameter is module size, 

S, followed by initial temperature, T0, and inlet air temperature, Tinlet, 
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(A) 

 

(B) 

Figure 5-4. Design Parameter Importance Visualization. 
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In essence, the feature importance analysis implies that the inlet air temperature 

(Tinlet) and module size (S) are key design parameters when it comes to predicting most 

target values. However, the proportional significance of each parameter varies depending 

on the specific target value in question. It is therefore crucial to meticulously assess their 

individual and collective effects to enhance system performance optimization. 

Additionally, understanding which design parameters are not as influential is equally vital. 

This knowledge enables their final values to be dictated by other technical constraints, such 

as ease of manufacturing. In clearer terms, the less impactful parameters can be adjusted 

to meet other technical considerations without significantly affecting the system's 

performance.  

The results from Table 5-4, which showcases the regression coefficients for design 

parameters, can be compared and contrasted with the feature importance analysis.  
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Table 5-4. regression coefficient table for design parameters. 

 

Coefficients 
THTF_out  

 

ΔP 

 

<TTES> 

 

Qstorage 

 

Q̇storage 
ηcharge 

intercept 1,09E+18 3,88E+10 -5,27E+10 -1,30E+17 4,57E+10 7,81E+07 

T0 -4,10E+15 -1,39E+07 6,81E+08 4,89E+14 3,90E+08 -5,00E+05 

Tinlet 9,05E+15 -9,00E+04 3,51E+08 -1,08E+15 -3,57E+08 7,10E+05 

R 1,32E+10 -6,61E+09 7,41E+09 -5,45E+08 8,76E+08 5,06E+07 

S -5,51E+08 -3,39E+07 -5,70E+08 -1,31E+07 -3,37E+08 -5,01E+06 

v 1,48E+10 1,21E+10 1,01E+10 -6,20E+08 1,98E+09 6,70E+07 

tcharging -6,88E+17 8,00E+04 5,70E+05 8,21E+16 -6,85E+06 1,00E+04 

T0 × Tinlet 0 0 -4,12E+05 4,08E+12 -4,50E+04 0 

T0 × R -3,69E+07 6,90E+05 1,05E+08 -2,40E+06 0 -1,00E+03 

T0 × S 1,77E+06 -3,63E+06 3,22E+06 -6,00E+04 -3,17E+06 0 

T0 × v 0 -4,14E+06 -3,18E+07 -3,10E+06 3,05E+07 -1,00E+04 

T0 × tcharge 2,59E+15 0 1,62E+06 -3,10E+14 4,61E+07 2,50E+05 

Tinlet × R 3,89E+07 0 2,34E+07 2,16E+06 4,62E+07 0 

Tinlet × S -1,66E+06 -1,00E+04 -2,84E+06 5,00E+04 2,28E+06 0 

Tinlet × v 4,55E+07 1,00E+04 2,88E+07 2,75E+06 6,05E+07 0 

Tinlet × tcharge 1,95E+07 -1,39E+04 2,72E+07 2,53E+06 -2,57E+07 1,00E+04 

R × S -9,18E+06 2,12E+06 0 0 9,53E+07 -1,40E+05 

R × v -1,57E+08 -5,72E+08 0 0 9,80E+07 4,70E+04 

R × tcharge 7,29E+07 6,00E+04 3,26E+08 3,79E+07 -1,17E+09 1,66E+06 

S × v -1,50E+07 -3,63E+06 -4,12E+07 0 1,15E+08 -1,70E+05 

S × tcharge -3,47E+07 0 -4,97E+07 1,67E+06 6,05E+07 -2,60E+05 

v × tcharge 1,62E+08 1,70E+05 4,27E+08 5,07E+07 -1,46E+09 2,18E+06 

T0
 2 -4,00E+04 2,00E+04 1,50E+05 2,00E+01 1,30E+05 0 

T0
 2 -2,60E+05 0 -5,00E+04 0 -2,30E+05 -1,00E+01 

R 2 -4,26E+08 2,53E+08 -1,40E+08 -8,70E+06 -4,44E+08 -5,50E+05 

S 2 2,63E+06 2,00E+04 3,87E+06 -9,00E+01 -4,50E+06 2,00E+01 

v2 -9,79E+08 3,36E+08 -5,12E+08 -3,80E+07 -1,27E+09 -2,04E+06 

tcharge
 2 -1,52E+08 3,00E+05 -2,81E+08 -1,37E+07 3,64E+08 -1,52E+06 

 

Comparatively, for the HTF outlet temperature (THTF_out), the regression table 

suggests that Tinlet, S, and HTF velocity (v) significantly impact the outcome, corroborating 

the feature importance analysis. For the HTF pressure drop (ΔP), the regression coefficients 

for v, tube radius (R), and initial temperature (T0), are significant, aligning with the feature 

importance findings. In the case of the solid TES module bulk average temperature 

(<TTES>), module size (S) is singled out in both analyses as a prominent factor. Similarly, 

for the concrete TES module bulk thermal storage capacity (Qst), both analyses highlight 
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Tinlet as a key player. In terms of charging efficiency (ηcharge), S and Tinlet are consistent 

influencers in both analyses, although the regression coefficients suggest a nuanced picture 

of their specific impacts. 

In general, these findings emphasize the complex interplay between design 

parameters and target values, reiterating the need for individual and combined impact 

assessments to optimize performance. 

 

5.3 Optimization of a TES system using ML 

 

Building upon the findings of the previous section, this section aims to provide an 

in-depth analysis of the TES design parameters by employing a multi-objective 

optimization approach. To address the inherent complexity of the problem, characterized 

by a high-dimensional search space and multiple performance criteria, the Tree-structured 

Parzen Estimator (TPE) algorithm from the Optuna package (Akiba et al., 2019) is utilized 

for optimization. The TPE algorithm demonstrates a strong capacity for efficiently 

managing high-dimensional and non-convex optimization problems (“Optimization 

Problem Types - Convex Optimization,” 2011). The TPE algorithm's core functionality 

lies in its ability to learn the joint distribution of hyperparameters and objective function 

values while striking a balance between exploration and exploitation during the search for 

an optimal solution.  

Incorporating the TPE algorithm into a practical scenario, this paragraph focuses 

on the Ait Baha parabolic trough concentrated solar power (CSP) plant in Morocco 

(Zanganeh, 2014) as a case study to optimize the design of its TES unit combining Ml and 

MCDA algorithm. The Ait Baha CSP plant, Table 5-5, employs parabolic trough 

technology to harness solar energy, which is concentrated onto air and then directed 

through a packed bed of rocks that make up the TES system. This system possesses a 

capacity of 100 MWhth. During the 10-hour charging phase, the working fluid enters the 

TES module at an inlet temperature of 640 ºC and cools down to 280 ºC at the outlet. 

Subsequently, the TES system discharges over a period of 4.5 hours at a flow rate of 4.058 
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kg/s, conveying the energy to the power block for electricity generation. The plant exhibits 

an annual electricity generation capacity of 2.39 GWhe. 

Table 5-5. Ait Baha Parabolic trough plant specification (Zanganeh, 2014) 

 

 

5.3.1 Objective Function 

The objective function serves as the core of the Optuna optimization workflow, 

representing the multi-objective optimization problem at hand. This function receives 

a trial object that facilitates the suggestion of hyperparameters. The parameters are either 

varied within their respective ranges or fixed. These variables collectively form a feature 

vector, utilized in conjunction with pre-trained Decision Tree models to generate 

predictions. The function returns these objectives, which in this analysis has been fixed to 

minimize the heat transfer fluid pressure drop (ΔP) and maximize the charging efficiency 

(ηcharge) of the TES unit. The multi-objective optimization process incorporated the 

following steps: 

(A) Defining the input parameters range for MCDA, for the already defined 

design parameters (T0, Tinlet, R, S, v and tcharge), Figure 5-5. 

Location Ait Baha, Morocco 

CSP Technology Parabolic trough  

TES Technology packed bed of rocks 

TES Capacity 100 MWhthermal 

Annual electricity generation 2.39  GWh 

Working Fluid Air 

HTF inlet temperature 640 ºC 

HTF outlet temperature  280 ºC 

Ambient condition 20 ºC 

Charging time 10 h 

Charging flow rate 1.716  kg/s 
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(B) Constraining the range Tinlet at 640 ºC and tcharge at 10 hours based on the 

case study specification shown in Table 5-4. 

(C) Utilization of a categorical distribution for hyperparameter selection during 

each trial. 

(D) Identification of the best hyperparameters based on the maximum value of 

the objective function, encompassing both primary criteria: ΔP and ηcharge. 

(E) Creation of an optimization study object with the 'directions' set to 

['minimize', 'maximize'], accommodating the dual nature of the optimization 

criteria. 

(F) Acquisition of the optimized values for the design parameters (T0, Tinlet, R, 

S, v, and tcharge) along with their corresponding ΔP and ηcharge values using 

the established workflow. 

(G) Iterative execution of the optimization process to ensure result consistency. 

 

Optuna implements a form of automated hyperparameter tuning known as 

Sequential Model-based Global Optimization (SMBO). It generates a study object, which 

is subject to optimization using the objective function. The study.optimize method 

iteratively selects the next set of hyperparameters in a sequence of trials, guided by a 

sampler which utilizes past outcomes to suggest the next set of parameters. This intelligent 

search process, significantly more efficient than exhaustive search, focuses on exploring 

promising areas while limiting unnecessary trials in less promising areas. By iterating over 

such trials, Optuna effectively explores the parameter space and identifies Pareto-optimal 

solutions representing the optimal trade-offs between the objectives. 

 

The Pareto optimal solutions embody a set of trade-offs between the two criteria 

and are presented in Table 6-6. The Pareto solutions reveal that by maintaining Tinlet at 

640ºC and tcharge at 10 hours, the workflow has pinpointed a set of configurations that 

achieve the optimal balance between the competing criteria, max(ηcharge) and min(ΔP).  
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Table 5-6. Pareto solutions observed for the two main criteria. 

ηcharge ΔP T0 Tinlet R S v tcharge 

0.196 6.171 300 640 20 250 3 10 

0.111 6.265 300 640 25 450 4 10 

0.083 8.115 300 640 15 350 4 10 

0.059 11.330 300 640 10 400 3 10 

 

The Optuna package derived a systematic and iterative approach. This analysis 

anchored its primary objective to maximize the charging efficiency (ηcharge) and minimize 

the heat transfer fluid pressure drop (ΔP) of the TES unit. A zenith in charging efficiency 

(ηcharge) of 0.196, coinciding with a HTF pressure drop (ΔP) of 6.171 Pa, is achieved when 

T0 is 300 ºC, R is 20 mm, S is 250 mm, and v is 3 m/s. Figure 4 underscores that the velocity 

(v) and module size (S) are the chief objectives for the Multi-Objective Optimization, 

highlighting the concentration on performance optimization vis-à-vis these parameters.  

 

For design parameter values, the selection of the lowest velocity is rational, as this 

aligns with the priority of curbing the detrimental consequences tied to ΔP, one of the 

pivotal criteria. Figure 5-5 visualizes the extracted Pareto solutions and the prescribed 

range for each parameter, providing a graphical account of the data furnished in Table 6. 

Based on the highest charging efficiency, the final Pareto solution proffers an ηcharge of 

0.196 and a ΔP of 6.171 Pa. 

 



 

 

128 

 

 

Figure 5-5. Achieved Pareto-optimal Solutions in the range of study for each design 

parameter. Constraint applied to Inlet air temperature and Charging time for the MCDA 

domain search. 

In an effort to validate and affirm the precision and trustworthiness of the optimized 

design gleaned from the preceding sections, an analytical juxtaposition was performed with 

developed numerical model in previous chapters and within COMSOL Multiphysics 

(Multiphysics, 2022). These simulations were executed under a specific set of initial and 

boundary conditions, as follows: 

• The module was assumed to have a uniform temperature at the beginning, with the 

average temperature being equal to the initial temperature: 

o  Tavg(x, y, z, t=0) = T0 

• The external boundaries were considered to be adiabatic, implying no exchange of 

heat through the boundary, and therefore, the temperature gradient was zero: 

o  𝑘
∂T(x=0,L,t)

∂x
= 0 ; 𝑘

∂T(y=0,L,t)

∂y
= 0 ;𝑘

∂T(z=0,L,t)

∂z
= 0 

• The velocity and temperature of the fluid (air) at the inlet (z=0) were specified: 

o  𝑣(𝑟, 𝜃, 𝑧 = 0, 𝑡) = 𝑣𝑎𝑖𝑟 and 𝑇𝑎𝑖𝑟  (𝑟, 𝜃, 𝑧 = 0, 𝑡) = Tinlet 
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• At the air outlet, (z=L), the normal heat flux was taken as zero and the pressure was 

assumed to be atmospheric. At 𝑧 = 𝐿; �⃗� (𝑘”𝑎𝑖𝑟“  ∇𝑇”𝑎𝑖𝑟“  ) = 0 and 𝑃(𝑟, 𝜃, 𝐿, 𝑙) =

𝑃𝑎𝑡𝑚𝑜𝑠𝑝ℎ𝑒𝑟𝑖𝑐 

• No slip condition, i.e., there is no fluid motion at the solid interphase. At 

𝑣 (𝑟 = 𝑑𝑙/2, 𝜃, 𝑧, 𝑡) = 0  

 

Table 5-7 presents the results of the key performance parameters with MCDA using 

ML and with the COMSOL simulations. This juxtaposition serves as a verification tool, 

confirming the congruity between the optimized design parameters furnished by the 

Machine Learning model and the outcomes derived from the numerical simulations. 

Table 5-7 - Comparison of results obtained from MCDA and COMSOL (for a module 1 m 

long) 

 

Model 

THTF_out  ΔP <TTES> Qs Q̇storage 
ηcharge 

 

Heat 

transfer 

fluid outlet 

temperature 

Heat 

transfer 

fluid 

pressure 

drop 

Concrete 

TES module 

bulk 

average 

temperature 

Concrete 

TES 

module 

bulk 

thermal 

storage 

capacity 

Heat 

transfer 

fluid 

output 

heat 

rate 

Charging 

efficiency 

°C Pa °C MJ W - 

MCDA 437.02 6.17 366.7 11.805 328.89 0.196 

COMSOL 458 5.01 367.9 12.018 294.89 0.20 

Deviation  
20.98 1.16 1.2 0.213 34 ~0 

4.69 % 20.75 % 0.3 % 1.79 % 10.9 % 0.004 % 

 

The optimized design parameters derived from the ML model exhibit only minor 

deviations from the results obtained through numerical simulations, indicating an elevated 

level of consistency between the two approaches. This consistency lends credibility to the 

optimization process and the chosen TES module design, thus validating the effectiveness 

of the proposed methodology. Without employing the workflow described, finding the 

optimal solution would have required thousands of simulations runs depending on the 

range of study for each design parameter. This extensive search would have incurred 
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significant computational costs and time. Therefore, the proposed methodology is not only 

more efficient but also more practical for optimizing the TES module design. 

 

5.3.2 TES Design and Scale-up 

Since trained data are obtained with a module length of 1 meter, a parametric study 

of various TES lengths was conducted in COMSOL to determine the required length to 

achieve an HTF outlet temperature, THTF_out, of 280 ºC as fixed by the case study (Table 5-

4). The parametric study has been done assuming T0=250 °C, resulting that a module length 

of 4 m is required to attain such an HTF outlet temperature of 280 ºC.  

 

Figure 5-6 provides a clear representation of the outlet temperature evolution during 

the charging process over a 10-hour duration. The total pressure drop along the tube was 

estimated at 17.46 Pa. 

 

Figure 5-6. HTF Outlet Temperature, THTF_out, along 10-hour Charging Process. 
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Figure 5-7 illustrates the geometry of the simulated module, displaying both a full 

and quarter-section perspective (A), (B), and an upper view (C) with dimensions provided 

in millimeters. The quarter-section perspective (B) reveals the intricacies of the module's 

structure, demonstrating how the axisymmetric design lends itself to computational 

simplification. The upper view (C) further elucidates the module's geometric features and 

spatial relationships, enabling a comprehensive understanding of the dimensions and 

layout. Due to the axisymmetric of the solid module, only a quarter-section of the concrete 

TES module was modeled. This streamlined approach effectively captures the essential 

design characteristics while optimizing computational efficiency, ultimately facilitating a 

robust and reliable analysis of the module's performance. 

 

  

 

 

  

(A) (B) (C) (D) 

Figure 5-7. Geometry of simulated module. 

(A) isometric view of full module, (B) ¼ perspective view with dimensions in mm, (C) upper view with 

dimensions in mm and (D) meshed geometry. 

The mesh generation incorporated both tetrahedral and quadratic elements, with a 

refined resolution proximate to the boundaries, while maintaining coarser discretization in 

other regions. This strategic meshing approach ensures a balance between computational 

efficiency and solution accuracy, particularly near critical boundary regions where flow 
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phenomena necessitate higher fidelity representations, Fig. 5-7 (D). Figure 5-8 presents the 

heat distribution within a 1/3 inlet section of the TES module over various time steps, from 

the beginning (at 0h) to 10h, which is the final charging time. This time-dependent 

visualization highlights the progressive evolution of thermal gradients and the transient 

behavior of the system. 

 

 

Figure 5-8. Temporal Evolution of Heat Distribution within 1/3 Inlet Section of TES 

Module. 

It is clear from a comparison of results obtained from MCDA and COMSOL that 

employing a data-driven and machine learning-enabled design and optimization method 

significantly reduces the number of simulations required. As shown in table 5-7, out of the 

potential 2,700 combinations, only 675 were simulated and used to train DT model. This 

represents just 25% of the total possible combinations. In numerical terms, this approach, 

as a minimum, saves the need to run 2,025 simulations (2,700 - 675) which would have 

incurred significant computational resources and time.  

More so, the trained ML algorithm applied to an even much more number of 

combinations, Figure 5-5. Its flexibility to oversee different inputs makes it capable of 

running tens of thousands of simulations, a feat which would be virtually impossible or at 

least highly impractical and resource-intensive using traditional methods. To ensure the 

0 h 2.5 h 5 h 7.5 h 10 h  

( ºC) 
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best results, the model should be regularly evaluated, validated, and fine-tuned based on 

new data and changing parameters. 

Based on the MCDA, each optimized module exhibits a mass flow rate of 

0.00144kg/s. In order to achieve the required mass flow rate in the case study (1.716 kg/s, 

see Table 5-5), it is necessary to combine and arrange multiple modules in a 

square/rectangular grid configuration.  

Approximately 1192 modules are needed to achieve the required design flow rate. 

Let n represent the number of modules in each row and column; the total number of 

modules can then be expressed as 𝑛 × 𝑛 = 𝑛2. Taking the square root of both sides yields 

n ~ 34.5. Given that a fractional number of modules is infeasible, the nearest integer value 

is chosen, resulting in the need for 35 modules in each direction. This configuration enables 

the arrangement of a total of 1192 modules in a square matrix, effectively satisfying the 

plant's design flow rate requirements. 

Incorporating 35 modules in each direction results in 33 extra modules, 

necessitating an alternative approach for a more efficient arrangement. One potential 

solution is to increase the number of modules in the horizontal direction while reducing the 

vertical module count, ultimately leading to a lower overall height. This configuration can 

be beneficial as it minimizes the structure's height, potentially reducing construction costs 

and complexity. By fixing the horizontal module count at 40, the equation to determine the 

number of vertical modules can be represented as 40 × 𝑛 = 1192. Solving for n yields n 

= 29.8, which approximates to 30 vertical modules. This adjusted arrangement, consisting 

of 40 horizontal and 30 vertical modules, provides a more streamlined design while still 

achieving the desired flow rate for the plant. 

In Figure 5-9, a parallel scheme is depicted, which entails dividing the mass flow 

rate proportionally across each branch. Integrating a parallel design with the modular TES 

system offers several benefits. Firstly, the parallel configuration allows for greater 

flexibility in managing the flow rates, as it is possible to adjust the distribution of the mass 

flow rate across different rows according to the solar filed yield. Secondly, the scheme 

facilitates easier expansion and scalability of the TES system. As the energy storage 

demand grows or the site requirements change, additional modules can be incorporated 

into the existing parallel rows or new rows can be added without significantly disrupting 
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the system's operation. Lastly, the combination of parallel design and modular TES system 

improves the system's reliability and maintainability. With multiple rows operating 

simultaneously, the failure of a single module or branch would have a lower impact on the 

overall system performance. Moreover, maintenance tasks can be conducted on individual 

rows without the need to shut down the entire TES system, minimizing downtime and 

ensuring continuous operation. 

 

 

Figure 5-9. Up-scaled scheme of parallel TES module rows, PTC (Parabolic Trough 

Collector) and ORC (Organic Rankine Cycle). 

The optimized arrangement comprises 1200 modules, each with a length of 4 m, 

and has a nominal capacity of 36.58 MWhth and an energy density of 1791.8 MJ/m3. In 

comparison, the Ait Baha plant's TES capacity is 100 MWhth and has an energy density of 

944.4 MJ/m3. The energy densities are based on the total volumes of the respective 

systems: 73.5 m3 for the concrete modules and 381.2 m3 for the packed bed of rocks. The 

mentioned capacity was determined using a nominal ambient temperature to HTF inlet 

temperature method. The solid TES system demonstrates a higher energy density in terms 

of MJ/m3, which makes it more efficient in terms of storing thermal energy per unit volume. 

This advantage in energy density could be attributed to the material properties here 

considered and, to a lesser extent, the modular design of the concrete block TES system. 
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However, it is essential to note that while the energy density is a principal factor, it may 

not be the only criterion to consider when comparing these TES systems. Each system has 

its unique set of advantages and limitations, and what may be of importance in a case may 

not be the same with another application, site conditions, or performance requirements.  

 

In resume, the study highlights the transformative potential of integrating ML and 

MOO techniques for enhancing solid-state TES units. The decision tree model employed 

in the study accurately predicts essential performance parameters of TES units, 

demonstrating robustness and high predictive accuracy. The combination of ML and 

MCDA enables the identification of optimized design parameters and operational 

conditions. The TPE algorithm for MOO facilitates concurrent optimization of multiple 

performance metrics, leading to Pareto optimal solutions that balance conflicting 

objectives. Numerical simulations further validate the ML- and MCDA-derived optimized 

design parameters. The trained ML algorithm exhibits flexibility and scalability, enabling 

the processing of vast amounts of data and managing a wider range of design 

configurations. The modular design and parallel setup of TES units contribute to system 

scalability, flexibility, and ease of maintenance. The optimized arrangement of 1200 

modules demonstrate superior performance, with a capacity of 36.58 MWhthermal and an 

energy density of 1791.8 MJ/m3. The findings underscore the promising role of AI, ML, 

and MOO in enhancing TES technology, with the potential to improve performance, reduce 

costs, and mitigate environmental impact.  

 

 



 

 

Conclusion : Summary, Implications, and Future Work 

This research sets out to develop and optimize thermal energy storage (TES) 

solutions that use geopolymer (GEO) concrete, an alternative to ordinary Portland cement 

(OPC) in terms of sustainability and performance. With the successful use of thermal 

modeling and experimental validation, the potential of GEO concrete as a more efficient 

TES material is clearly evidenced, especially for higher temperature applications (>400ºC). 

 

In Chapter II, the study put forth GEO concrete as an alternative to OPC for TES 

applications by means of numerical simulation.  

1. Prepared GEO concrete samples by mixing fly ash, blast furnace slag, alkaline 

wastewater, and 20% Portland cement. Cast cylindrical samples. 

2. Experimentally measured specific heat capacity of GEO samples up to 400°C using 

differential scanning calorimetry. 

3. Experimentally measured thermal diffusivity of GEO samples using laser flash 

analysis. Normalized values using reference OPC sample. 

4. Defined properties of two hypothetical OPC concretes (OPC-1 and OPC-2) by 

extrapolating literature data on OPC beyond 400°C. 

5. Developed 2D finite element model (FEM) of concrete block with embedded tube 

to simulate heat transfer. Used measured GEO properties. 

6. Simulated and compared thermal performance of GEO, OPC-1 and OPC-2 concrete 

blocks for various initial temperatures and inlet temperatures. Calculated average 

temperature and stored energy over time. 

7. Simulated performance over repeated charge/discharge cycles between 290-565°C 

and 290-700°C. Compared temperature differences and storage capacity between 

materials. 

8. Modeled transient heat transfer at different points inside the numerical concrete 

blocks during charging and discharging to analyze temperature distribution. 
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9. The model results serve as a proof of concept. Experimental testing of OPC and 

geopolymer concrete TES prototypes is also planned. 

 

Chapter III covered the experimental validation of the prototypes. 

1. Prepared 10cm cube samples of GEO concrete and OPC concrete. GEO used a 

specific cement blend with steel slag aggregate while OPC used a standard 

formulation. 

2. Cured samples for 90 days to ensure adequate strength development. Assessed 

compressive strength. 

3. Fabricated steel pipe test modules with concrete samples cast around them. Added 

temperature probes in the concrete to monitor temperature. 

4. Developed test facility with air heater and circulation pump to deliver hot air 

through the pipe and concrete modules. Insulated prototypes to prevent heat loss. 

5. Conducted tests with two temperature ranges: 

• Low (200-450°C) 

• High (200-600°C) 

6. Ran startup preheating for 10 hours up to 120°C to prevent thermal shock. Increased 

to test temperatures gradually over hours. 

7. Performed 4 full thermal cycles for each temperature range, monitoring concrete 

temperatures. Each cycle was ~24 hours of charging and discharging. 

8. Analyzed performance metrics like temperature profiles, maximum temperatures 

attained, and thermal storage capacity. 

9. Compared GEO and OPC concrete metrics to evaluate relative performance. GEO 

showed 30-40°C higher temperatures and 2-3.5x higher storage capacity. 

 

 

In Chapter IV, a comprehensive 3D computational model was developed to 

simulate the performance of geopolymer-based TES systems. It provided an effective tool 

for design optimization, scalability assessments, and performance prediction. 
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1. Developed a 3D computational model using COMSOL Multiphysics to simulate 

the performance of geopolymer-based thermal energy storage (TES) systems. 

Validated the model against experimental data. 

2. Conducted a parametric study evaluating the effects of various design parameters 

(air velocity, tube diameter, module size, shape configuration.) on TES system 

performance, both with and without metallic tubes. 

3. Compared modular TES designs with and without metallic tubes to determine 

which configuration provided better heat transfer and storage capacity. Found the 

tubeless design performed better. 

4. Analyzed the effect of concrete surface roughness on turbulent air flow and heat 

transfer using the sand-grain method. Simulated different roughness heights to 

study their impact. 

5. Used optimization techniques and Pearson's correlation analysis to identify the 

most influential parameters and optimal configurations to maximize TES system 

efficiency and storage capacity. 

 

The developed model enables systematic evaluation of design choices and 

operating parameters to maximize the performance of not only concrete based but also any 

solid based TES systems. 

Finally, Chapter V explored the effective combination of machine learning and 

multi-objective optimization for the up scaled design and optimizations of the TES system. 

The workaround was introduced as an approach for TES design and optimization as a 

general practice.  

1. Using laboratory investigations and developed numerical model in Chapter IV to 

gather data on the thermal energy storage (TES) system's performance. 

2. Developed and validated a numerical model of the TES system using COMSOL 

Multiphysics. 

3. Used the validated model to generate datasets with diverse combinations of design 

parameters and operating conditions. 

4. Preprocessed the heterogeneous datasets and used them to train a decision tree 

machine learning (ML) model to predict TES performance metrics. 
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5. Evaluated the ML model's accuracy using metrics like R-squared, MSE, MAE etc. 

and tuned hyperparameters. 

6. Employed multi-objective optimization using the Tree-Structured Parzen Estimator 

(TPE) algorithm to identify Pareto optimal solutions balancing objectives like 

efficiency and pressure drop. 

7. Validated the optimized design parameters through comparison with numerical 

simulation results in COMSOL. 

8. Proposed a modular and parallel arrangement of 1200 concrete TES modules for 

the case study CSP plant, with superior capacity and energy density compared to 

already installed TES system. 

 

The integrated ML and multi-objective optimization methodology demonstrates 

promise for improving TES technology performance, reducing costs, lowering 

environmental impact, and enhancing integration with renewable energy systems. The 

framework's flexibility, scalability and validation through simulations make a compelling 

case for its effectiveness. Further testing across diverse operating conditions and plant 

configurations would strengthen confidence. In conclusion, this research offers original 

contributions to the field of thermal energy storage by introducing and evaluating a new 

material, geopolymer concrete.  

The research did an effort and charted new paths in TES technology, laying the 

groundwork for continued exploration, especially for high-temperature applications 

(>400ºC). Some potential real-world applications of the research findings include: 

 

1. Using geopolymer concrete for thermal energy storage systems in concentrated 

solar power plants. The improved heat storage capacity and thermal stability 

demonstrated could allow CSP plants to operate more efficiently. 

 

2. Applying geopolymer concrete thermal energy storage for industrial waste heat 

recovery and reuse. Many industrial processes produce excess low-grade heat that 

could be stored and reutilized. 
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3. Integration of geopolymer concrete thermal storage into combined heating and 

power (CHP) systems to balance electric and thermal loads. The stored heat could 

be used for district heating applications when electricity demand is low. 

 

4. Employing machine learning techniques like those developed in the study to 

optimize configurations of thermal energy storage systems using phase change 

materials, thermochemical materials, etc. beyond geopolymers. 

 

5. Replacing ordinary Portland cement concrete with geopolymer concrete for 

applications like steam accumulator vessels, thermal reservoirs, and containment 

structures that involve high temperatures and pressures. 

 

There are several key implications: 

 

1. Geopolymer concrete has the potential to replace conventional concrete as the 

material of choice for high-temperature TES systems. This could significantly 

improve the efficiency and sustainability of concentrated solar power plants, 

industrial waste heat recovery systems, and other technologies relying on TES. 

 

2. Further research and pilot projects should focus on continued optimization and real-

world testing of geopolymer TES systems for different use cases. The promising 

lab results warrant further validation and refinement. 

 

3. If implemented at scale, geopolymer TES could provide environmental benefits by 

reducing reliance on Portland cement concrete, which has a high carbon footprint. 

This aligns with global decarbonization efforts. 

 

4. The machine learning techniques developed could be applied to optimize other 

novel TES designs and configurations using different phase change or 

thermochemical materials beyond geopolymers. This demonstrates a methodology 

for accelerating sustainable energy technology development. 
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5. There is potential for expanded applications of geopolymer concrete in general 

construction and infrastructure projects requiring high temperature and pressure 

stability. The TES use case highlights the overall capabilities of this material. 

 

Some potential future research directions: 

 

1. Test scaled-up geopolymer concrete TES systems in real-world conditions - The 

current study was limited to lab prototypes. Evaluating performance in pilot 

demonstrations is an important next step. 

 

2. Explore additional geopolymer formulations and compositions - Only one mix was 

evaluated here. Further optimizing the concrete properties could enhance TES 

performance. 

 

3. Long-duration testing over months/years - The current study was relatively short-

term. Understanding durability and cyclic behavior over extended operation is 

critical. 

 

4. Techno-economic analysis and life cycle assessment - Evaluating the practical 

viability and environmental impact of full-scale systems will inform adoption. 

 

5. Physical testing of machine learning optimized designs - The ML results provide 

theoretical configurations that should be physically validated. 

 

6. Incorporate additional parameters into ML model - Expanding beyond current 

factors could improve predictions and reveal new optimization opportunities. 

 

7. Apply techniques to optimize novel TES materials - The methods could inform 

development of other storage options beyond geopolymers. 
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Appendix A 

Grid Independence Test for Numerical GEO Model 

This appendix provides an analysis of the grid independence of the numerical 

model presented in Section 2.4 of the thesis "Geopolymer as TES Material". The goal of 

this analysis is to determine the minimum mesh element size required for the model to 

produce reliable and accurate results. 

A triangular quadratic mesh was employed in the numerical model. To assess the 

dependency of numerical outcomes on the mesh element size, a simulation was conducted 

under the assumption that the module initially maintains a temperature of 200 °C while the 

inlet temperature (Tinlet) equals 700 °C. After a six-hour period, the average temperature of 

three different materials was calculated. Subsequently, the average temperature (Taverage) 

was compared for various element sizes and runs. The A-1 formula calculates the 

difference in temperature between subsequent iterations of the numerical model. 

 

𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 =
𝑇𝑎𝑣𝑒𝑟𝑎𝑔𝑒,𝑛+1 − 𝑇𝑎𝑣𝑒𝑟𝑎𝑔𝑒,𝑛

𝑛
 

(A-1) 

Figure A-1 below demonstrates that for a range of 40,000 to 50,000 elements, the 

difference between Taverage values from different runs (different element numbers) is less 

than 0.1%. This implies that a numerical model with this range of element sizes can 

produce reliable and accurate results. 

 

Figure A-1. Grid Dependency Analysis 
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To assess the shape quality of the mesh elements, the aspect ratio of the elements 

(the ratio of the smallest to the largest dimension of an element) was calculated and plotted 

against the element size (Figure A-2). The aspect ratio was found to approach a value of 1 

as the element size increased, indicating that the mesh elements were becoming more 

equilateral. This improvement in shape quality is reflected in the average element shape 

quality, which also approached a value of 1 as the element size increased. 

 

 

  

(A) Aspect Ratio (B) Shape Quality 

 

Figure A-2. Element Quality Assessments. 

(A) Aspect Ratio (ratio of minimal to maximal dimensions of an element) observed based on geometry and 

element size growth. (B) Element shape quality for mesh with 6924 elements. The quality values are numbers 

from 0 through 1, where 1 corresponds to the optimal shape of the element. 

Based on these results, it is concluded that a mesh with approximately 40,000 to 

50,000 triangular quadratic elements is sufficient for the numerical model to produce 

reliable and accurate results. Simulation used 45,000 triangular quadratic elements yields 

results with deviations less than 0.1% according to Figure A-1. However, the meshing 

process should also consider factors such as CPU usage time and computational efficiency. 
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