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LABURPENA

XVII. mendean metodo zientifikoa ezarri zenetik, natur zientzien ik-
erketa lege axiomatikoetan oinarritu izan da. Proposamen arrakas-
tatsu honen aitzindaria Newton izan zen. 168yan argitaratu zuen
Principia liburuan, Mekanikaren diziplina lege matematikoetan (gaur
egun Newtonen legeak deitzen ditugunak) oinarritzea proposatu zuen.
Honako hau dio bere liburuan: Gainerako fenomeno naturalak printzi-
pio mekanikoetatik eta arrazoiketa mota berberetik ulertu ahal izatea nahiko
nuke. Bestela esanda, Newtonek gaur egun erabiltzen dugun eskema
zientifikoaren oinarriak ezarri zituen. Bere bizitzan zehar, penduluen
higidura periodikoa, jaurtigaien ibilbide parabolikoa eta gorputz as-
tronomikoen orbita eliptikoak azaldu ahal izan zituen bere legeak abi-
apuntutzat hartuz. Ikerlari inglesari esker ere ulertzen dugu, adibidez,
Lurrera erakartzen gaituen indar hori dela planetek Eguzkiaren ingu-
ruan egiten duten mugimenduaren arduraduna. Azkeneko honi gra-
bitazio unibertsalaren legea deritzogu eta naturaren funtsezko lau in-
terakzioetako bat kodifikatzen du. Newtonen arrakastak zientziaren
garapena baldintzatu zuen hurrengo belaunaldietan. Harrezkero, feno-
meno fisikoen azterketa matematikoa axiomatzat hartu beharreko eku-
azio dinamikoetan oinarritu zen.

XVIII eta XIX. mendeetan hurbilketa axiomatikoaren beste hain-
bat adibide aurki ditzakegu. Kasu paradigmatikoena ziurrenik teo-
ria elektromagnetikoaren eraikuntza da. Teoria honen ezarpena lan
esperimentaletan oinarritu zen, bereziki, Coulomb, Ampere eta Fara-
dayk egin zituzten behaketetan. Esperimentu hauetako gehienak ko-
rronte elektrikoa zeramaten kableen elkarreraginak aztertzen egin
ziren. Faradayren lanetan oinarrituta, Maxwellek eremuaren kontzep-
tua proposatu zuen arte ez ziren eraiki elektromagnetismoaren lege
matematikoak. Bere omenez, lege hauek Maxwellen ekuazioak deitzen
dira eta fenomeno elektromagnetiko guztien sintesia osatzen dute.
Hau da, ekuazio hauek axiomatzat hartuz, Maxwellek aurretik aur-
kitutako fenomeno elektriko eta magnetiko guztiak azaldu ahal izan
zituen. Gainera, lege horietan oinarrituta, Maxwellek berak proposatu
zuen lehen aldiz argia uhin elektromagnetiko bat izan zitekeela. Bere
iragarpena 1887an baieztatu zuen Hertzek, irrati uhinen izaera elek-
tromagnetikoa esperimentalki frogatu zuenean. XX. mende hasieran
ere, zientziaren perspektiba axiomatikoa nagusi zen eta erabateko
influentzia izan zuen, adibidez, teoria kuantikoan. Mekanika kuan-
tikoan dinamika determinatzen duen lege matematikoa, Schrodin-
geren ekuazioa, postulatu gisa asimilatua izan zen.

Testuinguru honetan, 1930 eta 1940ko hamarkadetan, Eugene Wig-
ner eta Valentine Bargmannen ekarpen nagusienak argitaratu ziren.
Ikerlari hauen lanek eragin handia izan zuten zientziaren adar ezber-
dinetan, baina tesi honen egiturarekin bat datozen bi aipa ditzagun.
Alde batetik, natur zientziek 250 urteetan zehar aintzat hartu izan-
dako ikuspegi axiomatikoa zalantzan jarri zuten. Izan ere, zeinbat
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ekuazio dinamiko, tartean Klein-Gordonen ekuazioa edota Diracen
ekuazioa, espazio-denboraren simetrien ondorio zirela erakutsi zuten.
Honela, lege naturalekiko hurbilketa berri bat sortu zen, non ekuazio
dinamikoak postulatu gisa onartzea ez zen beharrezkoa. Erlatibitate
bereziak ezartzen zituen kondizioen ondorio ziren, besterik ez. Beste-
tik, Wigner eta Bargmannek Maxwellen ekuazioak (espazio hutsean)
ere simetria erlatibisten ondorio zirela erakutsi zuten. Wignerren klasi-
fikazioan, eremu elektromagnetikoaren ekuazioak masarik gabeko
eta spin bateko partikula batekin erlazionaturik agertzen ziren, hau
da, fotoiarekin. Honela, Wigner eta Bargmannen lanek teoria elektro-
magnetikoa ikuspegi alternatibo batetik aztertzeko esparrua ezarri
zuten. Ikuspegi alternatibo honi jarraipena eman dioten hainbat iker-
lari daude, baina azpimarratzekoa da Iwo Bialynicki-Birula eta Zofia
Bialynicka-Birulak egin duten lana. Riemann-Silberstein bektorearen
inguruan egin dituzten ikerketekin, Wigner eta Bargmannen kontribu-
zioak gaur egungo zientzilariei transmititzea lortu dute.

Tesi honetan, Wigner eta Bargmannen lanetan inspiratuta, uhin
elektromagnetikoen dinamika aztertzeko beste ikuspegi bat proposa-
tuko dugu. Talde teoriaren aplikazio sistematikoak ongi ikertuta dau-
den gaietan emaitza berriak lortzera eraman gaitzakela erakutsiko
dugu. Gure tresna nagusiena Riemann-Silberstein bektorea izango
da, Iwo Bialynicki-Birulak eta Zofia Bialynicka-Birulak ekarpen ugar-
itan aurkeztu eta eztabaidatu dutena. Lehenik, Riemann-Silberstein
bektoreak simetria taldeekin duen erlazioaz hitz egingo dugu, eta
ondoren, teoria elektromagnetiko klasiko eta kuantikoko barreiatze
problemak ebazteko erabiliko dugu. Beraz, tesi honen helburua bi
adar ezberdinetan banatu genezakeen. Alde batetik, Riemann-Silbers-
tein bektorearen ezaugarri matematiko nagusienak aztertuko ditugu
talde teoria erabiliz. Analisi honek elektromagnetismoak beste teo-
ria fisiko erlatibista eta ez-erlatibistekin duen erlazioa ikertzera era-
mango gaitu. Eta, bestetik, Riemann-Silberstein bektorea problema
praktikoetan nola erabili dezakegun aztertuko dugu. Tesiaren kapitu-
luak honela daude egituratuta:

1. kapituluan, gaiaren sarrera historiko bat egingo dugu. Wigner
eta Bargmannen lanak bere kontextuan jarriko ditugu eta teoria elek-
tromagnetikoaren inguruan egin zituzten ekarpen funtsezkoenak aipa-
tuko ditugu. Horretaz gain, tesian jorratuko ditugun gaien estruktura
orokorra azalduko dugu.

2. kapituluan, lehenik eta behin, Maxwellen ekuazioak forma kano-
nikoan aurkeztuko ditugu eta tesian zehar erabiliko ditugun erlazio
konstitutiboak azalduko ditugu. Gainera, Riemann-Silberstein bek-
torearen hainbat bertsio aurkeztuko ditugu: espazio hutsean, inguru
homogeneotan eta inguru inhomogeneotan. Ikusiko dugunez, Max-
wellen ekuazioek forma oso bereizgarria hartzen dute Riemann-Silber-
stein bektorea erabiltzen dugunean. Hurbilketa alternatibo honek ere-
mu elektromagnetikoaren helizitatea sakonki aztertzen lagunduko
digu, Riemann-Silberstein bektorea helizitate operadorean bektore pro-
pioa delako hain zuzen. Azkenik, talde teoriako oinarrizko kontzeptu
batzuk aipatuko ditugu. Uhin elektromagnetikoek bektore espazio
bat osatzen dutenez, espazio-denborako simetria taldeen errepresen-



tazioak sor ditzakegula ikusiko dugu. Honela, adibide modura, Poin-
caré simetria taldearen posizio errepresentazioaren berezitasunak az-
tertuko ditugu.

3. kapituluan, helizitateak simetria talde ezberdinekin duen erlazioa
aztertuko dugu. Alde batetik, erlatibitate espezialeko Poincaré sime-
tria taldearekin duen erlazioa aztertuko dugu. Kasu honetan, heliz-
itatearen balioak masarik gabeko partikulen errepresentazio laburtez-
inak ezberdintzen dituela ikusiko dugu. Hau da, Poincaré taldeko er-
representazio laburtezin batzuentzako, helizitatea Casimir operadore
bat dela ikusiko dugu. Gainera, Bialynicki-Birulak proposatutako fo-
toiaren uhin funtzioa ere Poincaré taldearen errepresentazio laburte-
zinekin erlazionaturik dagoela aurkituko dugu. Honetaz gain, he-
lizitateak simetria talde euklideoarekin, hau da, ez-erlatibistarekin,
duen erlazioa aztertuko dugu. Kasu honetan ere Casimir operadore
bat dela ikusiko dugu, momentu linealaren moduloarekin batera. Be-
raz, helizitateak talde euklideoaren errepresentazio laburtezinak be-
reizten dituela ikusiko dugu. Gainera, Riemann-Silberstein bektore-
aren bertsio monokromatikoa talde euklideoaren errepresentazio la-
burtezinekin erlazionatuta dagoela ikusiko dugu. Azkenik, talde teo-
riako argumentuak erabiliz, uhin elektromagnetiko monokromatiko
batzuen expresio matematikoak eraikiko ditugu. Tartean, uhin lauak,
Bessel uhinak edota uhin esferikoak.

4. kapituluan, Riemann-Silberstein bektore monokromatikoa bar-
reiatze elektromagnetikoko problemak ebazteko erabiliko dugu. Hor-
retarako, aurreko kapituluan definituriko uhin esferikoak erabiliko
ditugu. Hasteko, barreiatze klasikoko magnitude garrantzitsuenak
Riemann-Silberstein bektorea erabiliz aurkeztuko ditugu. Besteak bes-
te, barreiatutako eta iraungitutako energia elektromagnetikoaren for-
mulak helizitate konponenteekin emango ditugu. Ondoren, partikula
dual eta partikula antidualen propietate optikoak aztertuko ditugu.
Hauek, hurrenez hurren, barreiatze prozesuan uhin elektromagneti-
koen helizitatea mantendu eta guztiz aldatzen duten laginak dira.
Ikusiko dugunez, dualak eta antidualak diren partikulak sortu ahal
izateko materialek kondizio berezi batzuk bete behar dituzte ener-
giari dagokionez. Partikula dual dielektrikoek ezin dute absortzio op-
tikorik izan eta partikula antidualak sortzeko materialei energia pon-
patu egin behar zaie. Azkenik, partikula zilindrikoen ezaugarri op-
tikoak neurtzeko erabilgarriak izan daitezkeen erlazio batzuk azter-
tuko ditugu. Konkretuki, Single Characterization Angle (SCA) meto-
doa aurkeztuko dugu, etorkizunean partikula zilindriko batzuen pro-
pietateak foto-detektore batekin bakarrik neurtzea ahal bidetu deza-
keen metodoa.

5. kapituluan, uhin elektromagnetikoen hedapena inguru magneti-
ko eta inhomogeneotan aztertuko dugu. Lehenik, Riemann-Silberstein
bektore monokromatikoa erabiliz, Maxwellen ekuazioek inguru haue-
tan hartzen duten forma aztertuko dugu. Ikusiko dugunez, analisi ho-
nen ondorioz, errefrakzio indizea eta inpedantzia konstantea duten
inguru inhomogeneoak era naturalean agertuko zaizkigu. Bi inguru
mota hauek soluzio analitikoa duten problema batzuetan aztertuko
ditugu: Fresnel eta Mieren barreiatze problemetan; hau da, uhin elek-
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tromagnetiko lau batek azalera infinitu batekin edo esfera batekin
elkareragiten duen problemetan hain zuzen. Ondoren, errefrakzio in-
dizea konstantea duten inguruak gertuagotik ikertuko ditugu. Hor-
retarako, mekanika kuantikoan sarritan erabili ohi den perturbazio
teoria aplikatuko dugu. Azkenik, errefrakzio indizea eta inpedantzia
konstante duten inguruetan kontserbatzen diren magnitude fisikoak
aztertuko ditugu. Ikusiko dugunez, 3. kapituluan azaldutako talde
teorian oinarrituta, analisi honek Kerkeren fenomenoen interpretazio
alternatibo bat ahal bidetuko du.

6. kapituluan, barreiatze kuantikoko problemak aztertuko ditugu.
Horretarako, lehenik eta behin, eremu elektromagnetikoa bigarren
kuantizazioaren formalismoan adieraziko dugu. Beam splitter kuan-
tikoaren deskripzioan oinarriturik, fotoien barreiatzea input-output er-
ako erlazio linealekin deskribatuko dugu. Ondoren, partikula zilin-
drikoetan zentratuko gara. Fotoi egoera batzuk, simetriaz-babesturiko
egoerak deritzogunak, forma honetako laginekin elkareragitean al-
datu gabe gelditzen direla ikusiko dugu. Simetriaz-babesturiko fotoi
egoera hauek, gainera, fotoi bakar batez edo fotoi askoz osaturik egon
daitezkeela ikusiko dugu. Horretaz gain, simetriaz-babesturiko ego-
erak momentu angeluarraren balio ezberdinak dituzten fotoiekin os-
atu daitezkeela ikusiko dugu ere bai. Azkenik, simetriaz-babesturiko
fotoi egoerak dekoherentziaz libre dauden azpiespazioak sortzeko
baliagarriak izan daitezkela ikusiko dugu.

7. kapituluan, tesi honetako ondorio nagusienak azalduko ditugu.
Alde batetik, lortu izan ditugun lorpen garrantzitsuenak azpimarratu
eta, bestetik, etorkizunera begira egin daitezkeen aurrera pausuak ere
aztertuko ditugu.

Gure analisiarekin, simetria printzipioak beste problema elektro-
magnetiko batzuk ikertzeko ere erabilgarriak izan daitezkeela ikusiko
dugu. Konkretuki, Riemann-Silbertein bektorearen aplikazio sistemati-
koak ongi aztertuta dauden beste hainbat gaietan emaitza eta ikus-
pegi berriak ekarri ditzakeela uste dugu. Tesi honetan egingo dugun
ikerketa magnitude elektromagnetiko zehatz batzuetan zentratuko
da, baina Riemann-Silberstein bektorearen aplikazio eremua askozez
haratago joan daitekeela uste dugu. Adibidez, barreiatze problema
klasikoetan indar eta torke elektromagnetikoak aztertzeko ere erabili
daitekeela ikusi izan dugu. Horretaz gain, partikula dual eta antid-
ualei dagokienez, materialen propietateekiko menpekotasun garrantz-
itsuak dituztela ikusiko dugu. Horregatik, diseinu esperimentalek
partikula mota horiek zein baldintzatan eraiki daitezkeen (edo ezin
daitezkeen) izan beharko dute kontutan. Azkenik, Single Characteri-
zation Angle (SCA) metodoak potentzial argia du laborategietan egi-
ten diren neurketa espektroskopikoak sinplifikatzeko. Ikerketa talde
batzuk jada metodo hau zein baldintza esperimentaletan aplikatu
daitekeen aztertzen ari dira.

Bestalde, azkeneko bi kapituluetan egindako ekarpenek inpaktu
kontzeptualago bat izango dutela uste dugu. Alde batetik, errefrakzio
indize konstanteko eta impedantzia konstanteko inguru inhomoge-
neoak elektromagnetismoko hainbat kontextutan paraleloki agertzen
direla ikusiko dugu. Gainera, errefrakzio indize konstanteko ingu-
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ruetan eremu elektromagnetikoaren helizitate konponenteen nahaste
erresonantea gertatzen dela aurkituko dugu ere bai. Fenomeno hau
beste partikula fundamentaletan aztertu izan da, adibidez, neutri-
noetan. Gure ustetan, partikula ezberdinen arteko antzekotasun mate-
matiko hauek modu sakonago batean ikertzea interesgarria litzateke.
Honetaz gain, errefrakzio indize konstanteko inguru inhomogeneoen
analisiak duela 40 urte Kerker, Wang eta Gilesek aurkitu zituzten
fenomenoen jatorria argitzen duela uste dugu. Bestetik, simetria ar-
gudioak barreiatze kuantikoko problemetan ere erabil daitezkeela er-
akutsiko dugu. Ildo honetan, sistema optiko ugari daude simetria
zilindrikoa dutenak, tartean, fibra optiko zirkularrak. Riemann-Sil-
berstein bektorearen aplikazioa sistema hauetan ere erabilgarria izan
daitekeela esan genezake.

Oro har, gure ekarpenek aurrera pausu kontzeptualak eta prak-
tikoak dakartzatela uste dugu. Teoriaren arloan eginiko ekarpen zi-
entifikoek indar handia hartzen dute kasu praktikoetan erabilgarri
direla aurkitzen denean eta, bestalde, ekarpen praktikoek indarra
hartzen dute ere bai paradigma teoriko berriak bultzatzen dituzte-
nean. Tesi honetan, zientzaren bi noranzko horietan ibiltzen saiatu
gara. Emandako pausuak datozen ikerlarientzat erabilgarriak eta in-
spiratzaileak izatea espero dugu.
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INTRODUCTION

In this Chapter, we provide some historical guidelines about how
modern physics has been structured along the past 350 years. We par-
ticularly highlight the axiomatic approach implemented by Newton
in his Principia and how it influenced physical sciences until the begin-
ning of the twentieth century. In this framework, we put forward the
works by Wigner and Bargmann, who showed that symmetry princi-
ples could replace the equations of motion under some circumstances.
Finally, we introduce the structure of this thesis.



INTRODUCTION

A BRIEF HISTORY OF MODERN PHYSICS

Medieval western philosophers defended that the comprehension of
the universe could be addressed either by religious faith or by ratio-
nal thought, commonly subjecting the latter to the former. However,
at the beginning of the Modern era, a new epistemological scheme
emerged: science. This new paradigm is based upon two fundamen-
tal pillars: experimental observation and the description of natural
phenomena through mathematical laws. From the scientific point of
view, the understanding of nature requires, on the one hand, a system-
atic empiric analysis of a particular phenomenon. Importantly, such
an analysis has to be carried out quantitatively in terms of physical
magnitudes such as time, position, velocity and so on. To complete
the scientific understanding, such observations need to match a set
of mathematical laws which relate the physical magnitudes in a par-
ticular way. One of the first achievements of the scientific method is
the experimental observations of Tycho Brahe and the determination
of Kepler’s laws of the planetary motion around the sun. Brahe dedi-
cated a great part of his lifetime to take accurate measurements of the
motion of Mars. Based on his work, Kepler tried first to fit the data
considering circular orbits, but he did not succeed. The deviations
were above the experimental uncertainty. Finally, Kepler found that
the curve which best fit Brahe’s experimental data was not a circle,
but an ellipse, leading to what is currently regarded as Kepler’s first
law of planetary motion.

A few decades after Kepler died, Newton put forward an axiomatic
approach to Physics. In his Principia, published in 1687, he proposed
that the discipline of Mechanics should be based on the assumption, a
priori, of certain mathematical laws (currently regarded as Newton’s
laws) such that all the particular phenomena regarding the motion of
bodies may be derived from them. He literally states: I wish we could
derive the rest of the phenomena of nature by the same kind of reasoning
from mechanical principles. In other words, it was Newton who imple-
mented the scientific scheme that we still employ nowadays. Such an
approach has barely 350 years and its validity has persisted in time
due to the colossal predictions that have been corroborated since then.
Only in his lifetime, Newton demonstrated that experimental obser-
vations such as the periodic motion of pendula, the parabolic trajec-
tories of projectiles and the orbits of celestial bodies could be all ex-
plained taking as a starting point his laws. These findings lead to the
idea that the same force that makes objects be attracted to the Earth is
also responsible of the motion of the Moon around the Earth and the
planets around the Sun. This is the so-called law of universal gravi-
tation and supposes the codification of one of the four fundamental
interactions of nature. Newton’s success conditioned the conception
of science in the coming generations. Since then, the mathematical
study of physical phenomena was established in terms of dynamical
equations that must be taken as axioms. And, of course, the scientific
validity of such equations was, and it is still, subjected to experimen-
tal corroboration.
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We find many other examples of this modern approach to science
during the XVIII and XIX centuries. A paradigmatic case is the build-
ing of the electromagnetic theory. It begun with the experimental
works of scientists such as Cavendish and Coulomb, who determined
that electric charges suffer an attractive or repulsive force which is
inversely proportional to the square of the distances [1, 2]. Their find-
ings lead to the so-called Coulomb’s law, which is one of the found-
ing laws of electromagnetic theory. The settling of this theory is also
based on experimental work developed during the XIX century, in
particular, on the observations carried out by Ampere and Faraday.
Most of these experiments were performed by studying the forces
and interactions of conducting wires which carried electric currents
[3]. It was not until Maxwell introduced the notion of a field, based
on Faraday’s observations, that the mathematical laws of electromag-
netism were consistently built [4]. These laws, commonly regarded as
Maxwell’s equations, are not only a collection of previously reported
laws, but constitute the synthesis of all electromagnetic phenomena
in a handful of equations. In other words, taking these equations as
axioms, Maxwell was able to explain all previously reported electric
and magnetic phenomena. Furthermore, based on those same laws,
Maxwell himself proposed, for the first time, the existence of elec-
tromagnetic waves (including light). His prediction was confirmed in
1887 by Hertz, who experimentally demonstrated the electromagnetic
character of radio waves.

By the end of the XIX century Newton’s laws and Maxwell’s equa-
tions were somehow thought to constitute the final synthesis of scien-
tific knowledge. On the one hand, light had been shown to be an elec-
tromagnetic wave and, thus, all the optical phenomena was compre-
hensible from Maxwell’s equations. Also, thermodynamics had been
explained in terms of statistical mechanics, i.e. the microscopic mo-
tion of gas molecules, which made it derivable from Newton’s prin-
ciples. As a result, in the last part of the XIX century, almost all the
physical observations of many different branches could be explained
with a handful of mathematical laws. However, there were a few ex-
periments which did not match either of the two theories, in particu-
lar, the optical spectrum of hydrogen and the so-called black bodies.
The resolution to the latter was given by Planck, who introduced the
notion of quantization. On the other hand, the understanding of the
hydrogen atom had to wait until the 1920s, when Schrédinger showed
that its spectrum could be computed from the newly proposed quan-
tum theory. These and other findings led to the theory of Quantum
Mechanics, which overcame the difficulties of Newton’s laws to de-
scribe particle dynamics at the atomic scale. Finally, the mathemati-
cal law that determines the dynamics within the quantum theory, i.e.
the Schrodinger equation, was also assimilated as a postulate and its
validity lied (and still lies) in its power to give account of a great deal
of experimental observations.

Despite of many experimental corroborations, the quantum theory
based on Schrodinger’s equation was not fully satisfactory at the time
because it does not follow the principle of relativity introduced by
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Einstein in 1905. As a result, it is only valid to describe the dynamics
of microscopic particles moving at velocities small compared to the
speed of light. This particular feature lead scientists to search for alter-
native ways of making the quantum theory compatible with special
relativity. There was a variety of proposals. For instance, Klein and
Gordon proposed an equation derived from the relativistic energy-
momentum relation for massive particles, which in the massless case
lead to the conventional wave equation. Then, Dirac proposed a rela-
tivistic equation which was of first order in the time derivatives and
accounted for the hyperfine structure of the hydrogen spectra. Also,
Weyl proposed an equation which described the relativistic dynamics
of massless particles with spin S = 1/2 and so on. In short, by the end
of the 1930s, a wide set of relativistic wave equations had been pro-
posed, each of them applying to different types of particles. It is in
this context that the seminal contributions by Wigner and Bargmann
were published. First, in 1939 Wigner showed that the emergence of
fundamental properties of elementary particles such as mass and spin
could be understood in terms of group theoretical arguments [5]. In-
deed, he provided a classification of all possible elementary particles
in terms of the unitary irreducible representations of the Poincaré
group. Then, in 1948, Bargmann and Wigner showed that the rela-
tivistic equations proposed by Klein, Gordon, Dirac, Weyl and so on
could be associated with particular types of elementary particles that
had previously been classified by Wigner [6].

The contributions of Wigner and Bargmann had an impact in many
different aspects and branches of science, but let us highlight two
which particularly concern the structure of this thesis. First, their
work challenged the perspective in which Physics had been struc-
tured in the past 250 years. Particularly, the assumption that dynam-
ical equations must be accepted as axioms. Indeed, they showed that
the emergence of such a variety of dynamical equations was a conse-
quence of the underlying symmetries of space-time. Thus, a different
approach to natural laws emerged, where one needed not to assume
the equations of motion as postulates, but only as a result of the con-
strains imposed by special relativity [7]. Second, they showed that,
apart from the reported relativistic quantum equations, Maxwell’s
equations (in vacuum) also emerged as a result of their group theo-
retical analysis. In particular, within Wigner’s classification, the equa-
tions of the electromagnetic field emerged as being associated with
a massless particle of spin S = 1, i.e. the photon. Therefore, not only
did their group theoretical approach unify the quantum mechanical
equations of elementary particles, but it also included the laws of
electromagnetism as part of the classification. In this line, the works
of Wigner and Bargmann provided a framework to study the electro-
magnetic theory from an alternative point of view [8].

Symmetries and the introduction of group theory as a mathemat-
ical tool conditioned the development of science during the second
half of the twentieth century. For instance, Wigner himself proposed
a group theoretical approach to analyze and predict the spectrum of
atoms and molecules taking into account their continuous and dis-
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crete symmetries [9]. These same tools were extended in condensed
matter physics to classify crystals, i.e. periodic arrangements of atoms,
providing crucial insights about their band structure. On the other
hand, symmetries were also central in the development of the Stan-
dard Model. Indeed, by the end of the 1970s, the study of gauge
symmetries within the framework of quantum field theory led to the
unification of the electromagnetic interaction with the nuclear weak
and strong interactions into a single theory [10]. More recently, sym-
metries and group theory have served as a platform for the develop-
ment of new research lines. An example which is, in a sense, related
with this thesis is the field of photonic crystals which settled in the
1990s [11]. Inspired by the success of the mathematical framework in
Quantum Mechanics, group theory has been systematically applied
to study a variety of electromagnetic systems. The result has been re-
markable as it has lead to completely new lines of research such as
topological photonics or symmetry based electromagnetic scattering
analysis.

MOTIVATION AND STRUCTURE OF THIS THESIS

The structure of this thesis is deeply inspired by the works of Wigner
and Bargmann. Based on their seminal contributions on Maxwell’s
equations and relativistic wave equations, we propose a different ap-
proach to study electromagnetic wave dynamics. We show that the
systematic application of some group theoretical concepts leads to
new insights on well-studied topics such as linear electromagnetic
scattering theory or the emergence of the Kerker phenomena. Our
principal tool is the so-called Riemann-Silberstein vector which has
been introduced and discussed by Iwo Bialynicki-Birula and Zofia
Bialynicka-Birula in their seminal contributions to both classical and
quantum electrodynamics. In this line, we first discuss the link of the
Riemann-Silberstein vector with space-time symmetry groups and,
then, we employ it to solve problems of classical and quantum elec-
tromagnetic scattering theory. This thesis is structured as follows:

In Chapter 2, we introduce Maxwell’s equations in the con-
ventional form and discuss the type of fields and consti-
tutive relations we will be dealing with during this thesis.
Then, we define various forms of the Riemann-Silberstein
vector in vacuum, in homogeneous media and in inho-
mogeneous media. Finally, we introduce some notions of
group theory which will be useful for the next Chapter.

In Chapter 3, we discuss the form of Maxwell’s equations
as given in the works by Wigner and Bargmann. We also
show how the Riemann-Silberstein vector and Bialynicki-
Birula’s photon wave function is linked to Wigner’s clas-
sification of elementary particles. Then, we apply group
theoretical arguments to study the propagation of electro-
magnetic waves in infinitely homogeneous media. Finally,
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we construct monochromatic electromagnetic wave solu-
tions based on similar group theoretical arguments.

In Chapter 4, we put forward a few different applications
of the monochromatic Riemann-Silberstein vector in clas-
sical electromagnetic scattering theory. After some general
considerations and definitions, we delve into the study of
dual and antidual scatterers. We show that the construc-
tion of these types of samples is subjected to some proper-
ties of the materials they are constituted from. Finally, we
introduce the Single Characterization Angle (SCA) method
that permits the characterization of cylindrical samples in
favourable experimental conditions.

In Chapter 5, we extend the analysis to the propagation
of electromagnetic waves through inhomogeneous media.
After discussing the form of Maxwell’s equations in terms
of the monochromatic Riemann-Silberstein vector, we an-
alyze the impedance and refractive index matching con-
ditions. We employ perturbation theory to get an insight
about these two conditions, leading to a quite instructive
analogy with quantum two-level systems. Finally, we study
the conserved quantities associated with such matching
conditions and we provide an alternative interpretation of
the emergence of the Kerker phenomena.

In Chapter 6, we adapt some of previously discussed con-
cepts of classical scattering theory to study the interaction

of quantum states of light with optical samples. Based

on the framework of post-selected scattering matrices, we

show that there are states which remain invariant through

the interaction, i.e. the so-called symmetry-protected states.
Finally, we show that symmetry-protection can be extended
to the multi photon regime and, also, that it enables the

construction of decoherence free subspaces.

In Chapter 7, we wrap up the main conclusions of this
thesis and propose the lines in which our work may be
developed in the future.

6



MAXWELL’S EQUATIONS AND
ELECTROMAGNETIC WAVES

In this Chapter, we first present the canonical form of Maxwell’s equa-
tions and the constitutive relations. Then, we introduce the usual def-
inition of the Riemann-Silberstein vector in vacuum. We also make
use of the monochromatic version of the Riemann-Silberstein vector
to present an alternative form of Maxwell’s equations in homoge-
neous and inhomogeneous media. Finally, we introduce some basic
notions of group theory which will be useful for future discussions. In
particular, we introduce relevant physical magnitudes, such as linear
momentum or angular momentum, as the generators of continuous
symmetry groups.



2.1 MAXWELL'S EQUATIONS

2.1 MAXWELL’S EQUATIONS
This thesis studies particular features of the electromagnetic field. As

a result, the canonical starting point cannot be other than Maxwell’s
equations.

2.1.1  General form and constitutive relations

The most general form of Maxwell’s equations is [12, 13]:

V x E(r, t) = —0¢B(r, t) (2.1)
x H(r,t) =J(r,t) + 0¢D(r, t) (2.2)
V-D(r,t) =p(rt) (2:3)
V-B(rt)=0 (2.4)

where D(r, t) is the electric displacement, B(r, t) is the magnetic in-
duction, £(r,t) is the electric field and H(r,t) the magnetic field.
Moreover, p(r, t) represents electric charge density and J(r, t) the elec-
tric current density. In short, Egs. (2.1)-(2.4) describe the local be-
haviour of the electromagnetic field in presence of electric charges
and currents, which are the sources. Note that all the fields and mag-
nitudes expressed in Egs. (2.1)-(2.4) are real. In addition, such a set
of equations already contains the charge conservation law implicitly.
Indeed, taking the divergence of Eq. (2.2) and employing Eq. (2.3) we
arrive to:

Op(r,t) +V-J(r,t) =0. (2.5)

The mathematical relation given above is usually denoted as the conti-
nuity equation and it implies that electric charge is locally conserved
at every time and point in space.

In this thesis, however, we do not study the behaviour of electro-
magnetic fields in charged media and, thus, we fix p(r,t) = 0 and
J(r,t) = 0. In turn, we will deal with macroscopic linear media, i.e.
environments in which the relations between D(r, w), B(r, w), E(r, w)
and H(r, w) are linear. In our notation, the vector field V(r, w) repre-
sents the time Fourier transform of V(r, t):

+o0
V(i t) = — J dw V(r,w)e ¢t (2.6)
—0o0
Given the relation between real fields and their Fourier transform

specified by Eq. (2.6), we may express Maxwell’s equations without
charges, in the following form:

V x E(r, w) = iwB(r, w) (2.7)
V xH(r,w) = —1wD( w) (2.8)
V-D(r,w) = (2.9)
V- -B(r,w) = (2.10)
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This form of the equations applies to physical phenomena that may
be well-described in terms of a single angular frequency, w. As a
result, the equations given by Egs. (2.7)-(2.10) are usually called the
monochromatic or time-independent Maxwell’s equations (without
charges and currents). Interestingly, note that, whenever w # 0, Fara-
day and Ampeére’s laws encoded in Egs. (2.7)-(2.8) already contain
Gauss’ laws specified in Egs. (2.9)-(2.10).

Finally, in this thesis we focus on isotropic media which are local
in space and non-local in time. In plain words, space locality implies
that relations between the different fields depend on the spatial co-
ordinate, r, whereas temporal non-locality implies that they depend
on the frequency of the field, w. Under these constrains, the constitu-
tive relations between the electric and magnetic field vectors can most
generally be written as [14]:

D(r,w) = ¢(r, w) [E(x, w) +v(r, w)V x E(r, w)] (2.11)
and
B(r,w) = u(r, w) [H(r,w) + B(r,w)V x H(r, w)] . (2.12)

In the expression above, ¢(r, w) is the electric permittivity, u(r, w) is
the magnetic permeability and, on the other hand, y(r, w) and B(r, w)
determine the chiral or bianisotropic response of the medium. During
this thesis we will mostly deal with non-chiral media for whichy =0
and = 0, except in Chapter 4 where we will study the response of
isotropic chiral spheres. Finally, we do not deal with anisotropic me-
dia, which means that constitutive relations are determined by scalar
functions.

2.1.2  Boundary conditions

As we have just mentioned, we exclusively study the response of lin-
ear isotropic media, i.e. systems for which the constitutive relations
are determined by Egs. (2.11)-(2.12). More specifically, many practi-
cal examples we discuss along the thesis deal with piecewise homo-
geneous media. This type of optical environments are composed of
various regions or domains in which the constitutive relations are con-
stant in r. For instance, a non-chiral piecewise homogeneous medium
is an optical system for which ¢(r, w) = ¢;(w) and p(r, w) = p;(w) for
r € Vj, where Vj represents a particular region of space. As a result,
this type of media are characterized for having sharp boundaries.
Due to the presence of such boundaries, the electromagnetic field
may have discontinuities. In this context, the boundary conditions de-
termine exactly the effect of those discontinuities in the field compo-
nents. Let us consider the discontinuities of the electromagnetic field
at some point ry within the interface between V7 and V, domains. Let
us also consider that, at that point, the normal vector pointing from
region V7 to region V, is denoted as fi. As we do not consider the
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presence of charges or currents, the boundary conditions acquire a
relatively simple form [12]:

- [Dz(r, w) — D1 (r, w)] e 0 (2.13)
- [Ba(r, w) —By(r, w)] T 0 (2.14)
AL x [BEa(r, w) — Eq (1, w)] T 0 (2.15)
A x Ha(r @) ~Hi(r )| =0. (2.16)

These expressions are employed in many situations such as the scat-
tering of electromagnetic waves by spheres or planar surfaces, which
we discuss in Chapters 4 and 5. Also, the same relations are useful
to solve other relevant physical problems such as finding the guided
modes in optical fibers, among many others. In all these situations,
boundary conditions permit the determination of the amplitude of
the electromagnetic field in the different regions Vj.

2.2 RIEMANN-SILBERSTEIN (RS) VECTOR

After introducing the general form of Maxwell’s equations, we would
like to present the Riemann-Silberstein (RS) vector. The interest of in-
troducing this field is closely related with the effects we study along
this thesis. Indeed, the RS vector is fundamental in the description
of the internal degrees of freedom of electromagnetic waves. Electro-
magnetic waves are of transverse nature and, as such, oscillations of
the fields can only happen in two specific directions, i.e. the two or-
thogonal directions to the direction of propagation. This degree of
freedom has commonly been related to the spin angular momentum
of the waves, however, as it has been shown by some authors, the in-
trinsic characteristic of a field representing a massless particle is not
the spin, but its helicity [8, 15]. This is the main reason to consider a
description of electromagnetic waves based on the RS vector, because
it naturally splits the two helicity components of the electromagnetic
field.

2.2.1 Vacuum

The RS vector is usually defined in terms of the electric displacement,
D(r,t), and magnetic induction, B(r, t). In vacuum, it is most com-
monly constructed as [8]:
1 [D(r,t) CB(r, t)
FMNr,t) = — TN ,
V2 [ VeEo V' Ho
where A = £1, ¢ is the electric permittivity in vacuum and po the
magnetic permeability in vacuum. Please note that the fields D(r, t)
and B(r,t) are real and, thus, one has that ¥ (r,t) = [F(r, t)]*. As
we will see, A represents the helicity of the electromagnetic field. How-
ever, for the time being, we can just take it as a parameter that allows

(2.17)

10
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us express the electromagnetic field as a superposition of electric and
magnetic fields.

In terms of the RS vector, Maxwell’s equations in vacuum can be
expressed as:

10 F (1, t) = AV x FN(r, 1) (2.18)
V-FMr,t) =0, (2.19)

where we have set the speed of light in vacuum ¢ = 1/,/¢opo = 1.
The form of Maxwell’s equations written above has been regarded as
the "hamiltonian" formulation of electrodynamics. This follows from
the analogy between Eq. (2.18) and the Schrodinger’s equation. In-
deed, the time-evolution equation for a quantum massive particle is:
i0¢¥(r,t) = HY¥(r, t), where ¥(r,t) is the wave function of the par-
ticle and H is the hamiltonian of the system. As we will show in
the following Chapter, the RS vector plays, in some sense, the role
of the wave function in electrodynamics, which makes the analogy
with Schrodinger’s equation even sounder. In this line, it can also be
checked that the RS vector in vacuum may also fulfill the wave equa-
tion. In other words, starting from Egs. (2.18)-(2.19), we can build
electromagnetic fields which are also solutions to the wave equation:

V2FN (1, 1) — 8%5}‘(1‘,‘[) =0. (2.20)

The expression above represents the wave equation in terms of the RS
vector. We denote as electromagnetic waves the electromagnetic fields
which, apart from Maxwell’s equations, also fulfill Eq. (2.20).

Let us now look for solutions of electromagnetic waves in terms
of the RS vector. In what follows, we just consider the field J(r,t) =
F*(r,t) and assume that ¥ (r, t) can be obtained by complex conju-
gation. The natural way of solving Maxwell’s equations as expressed
in Egs. (2.18)-(2.19) is by applying the space Fourier transform [16].
Defining the spatial Fourier transform as:

“+00
J dk V(k, t)etkr, (2.21)

—00

1

V(r,t) = W

we arrive to the following form of Egs. (2.18)-(2.19):

0¢F(k,t) =k x F(k, t) (2.22)
k-F(k,t)=0. (2.23)
These relations imply that the RS vector, in reciprocal space, is con-

tained in a plane orthogonal to k, which allows us to express it in the
very general form:

F(k,t) = o (k, t)e* (k) + o (k, t)e~ (Kk), (2.24)

where the two unitary vectors, é*(k), are orthogonal to k and the am-
plitude functions a®(k,t) are complex. These few constrains permit
the election of the unitary vectors in a quite free manner, concretely,
Bialynicki-Birula chooses them such that [16]:

ik x e* (k) = £[kle* (k), (2.25)

11
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which also fulfill ¢~ (k) = [6T(k)]* = é"(—k) and [¢F(k)]* - e* (k) =
et (k) - e+ (k) = 0. The explicit form of ¢+ (k), such that Eq. (2.25) is
tulfilled, had previously been derived by a few authors [16, 17]:

_k x (M x k) Fik(m x k)

At
et (k) =
(k) V2K x K|

7 (2.26)

where 1h is an arbitrary unit vector.

As we see, the role of the polarization vector ¢+ (k) is central when
representing electromagnetic fields in terms of the RS vector. It fixes
a basis to represent the polarization of the Fourier components. In
particular, if we choose ™ = Z and employ spherical coordinates in
reciprocal space, i.e. ky = ksin0Oycos ¢y, ky = ksin Oy sin i and
k., = kcos 0y, then, we are lead to the following form of the polariza-
tion vector:

cos ¢ cos Oy F isin Py
e* (k) = —= | sin by cos Oy + i cos by (2.27)
V2
— sin O.

For instance, if we fix that our wave is propagating in the OZ direc-
tion, i.e. O = 0 and ¢ = 0, we retrieve the form: é* = (1, +1,0)//2,
which is the usual circular polarization vector associated with a plane-
wave propagating in the positive OZ direction. The polarization vec-
tor given by Eq. (2.27) constitutes a general expression of a circular
polarization vector associated with a plane-wave that propagates in
an arbitrary direction. Note that the + sign determines whether the
unitary vector is left or right polarized. In our convention, the left po-
larized unitary vector, é* (k), has positive helicity, whereas the right
polarized vector, &~ (k), has negative helicity.

With this election of the unitary vectors, we are ready to obtain a
general expression of the RS vector in reciprocal space. Introducing
the expression in Eq. (2.24) into Eq. (2.22) and using the algebraic
property given in Eq. (2.25) we arrive to:

0ty (k,t) = —ilkloey (K, t) (2.28)
ot (k, t) = +Hilkla_ (Kk, t), (2.29)

which results in a4 (k,t) = ot (k)eT®xt, where wy = [k| (recall that
¢ = 1). In conclusion, the RS vector in reciprocal space can be written
as:

F(k,t) = fH(k)et (k)e Wit 4 [~ (—k)e— (—k)]*etwxt, (2.30)

where we have defined a new set of complex amplitudes f* (k) =
ot (k) and [f~(—k)]* = «~ (k). Finally, if we undo the spatial Fourier
transform, we are left with the following form of the RS vector in real
space:

+00

J dk {f+ (k)é+ (k)eik-rfiwkt

—00

1

F(r, t) :W

+ [ (k)e (k)]re trtienty - (2.31)

12
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where we have changed the integration variable of the second term
of the integral as k — —k. Importantly, note that the expression of
the RS vector given in Eq. (2.31) is not only a solution to Maxwell’s
equations specified in Egs. (2.18)-(2.19), but also to the wave equation
given by Eq. (2.20).

From the result obtained in Eq. (2.31) we observe that the RS vec-
tor naturally splits the positive helicity components associated with
positive frequencies and negative helicity components with negative
frequencies. Here, however, we only deal with positive frequencies,
i.e. with the so-called analytic signal of the fields [13]. As a result, we
may define a new field, WA (1, 1), which precisely takes on the positive
energy parts of the RS vector and its complex conjugate [18]:

+o0
YA(r,t) = (2;)3/2 J dk (k)& (k)etkrtext, (2.32)

—00
Note that W+ (r,t) takes the positive frequency component of F(r, t)
field given by Eq. (2.31), while ¥ (r, t) takes the positive energy com-
ponent of I (r, t). Such a representation of an electromagnetic field
is nothing but the statement that one can construct any propagat-
ing electromagnetic wave as a superposition of circularly polarized
plane-waves with different frequencies and propagation directions.
This, might seem quite obvious at this stage, but we will see that the
expansion of electromagnetic waves in helicity Fourier components
has interesting applications. In particular, this representation of the
fields is useful in situations in which one aims to split the two po-
larization degrees of freedom. As we infer from Eq. (2.32), 1l’}‘(r,’c)
naturally separates the Fourier components which are left (A = 1) or
right (\ = —1) polarized. Thus, employing W (r, t) to describe elec-
tromagnetic waves, instead of the usual electric and magnetic fields,
permits the separation of the helicity components in coordinate space.

2.2.2  Homogeneous media

Following the construction of Eq. (2.17), the monochromatic RS vector
in an infinitely homogeneous medium may be defined as:

N 1 [D(r, w) .B(r, w)

F*(r,w) = 7 NG + Al Nk (2.33)
With respect to the previous definition of the RS vector, we see that
in this case we consider the electric permittivity, ¢, and magnetic per-
meabilities, y, different from those of vacuum. In addition, note that
the monochromatic version of the RS vector is built from the com-
plex displacement, D(r, w), and magnetic induction, B(r, w), fields.
This implies that, unlike FA(r,t), the two helicity components of the
monochromatic RS vector, FA (r, w), contain different information of
the electromagnetic field, i.e. F A r,w) # [FMr, w)]*.

13
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In an infinitely homogeneous medium, time-independent Maxwell’s
equations can be expressed in a very compact form with the aid of
the monochromatic RS vector:

| A _aFA
an x F*(r, w) = AF*(r, w) (2.34)
V- -FMr,w) =0, (2.35)

where n = /et is the refractive index of the medium and we have
again set the speed of light in vacuum c = 1. Note that, as we have
previously indicated, the four time-independent Maxwell’s equations
are fully contained in Eq. (2.34). In other words, Gauss’ laws ex-
pressed in Eq. (2.35) can be derived just by taking the divergence
of Faraday-Ampere’s laws in Eq. (2.34). In addition, we may also con-
sider electromagnetic wave solutions propagating in infinitely homo-
geneous environments. In this case, as we are dealing with monochro-
matic fields, the wave equation is expressed in a particular form:

—V2FM 1, w) = K2F (1, w), (2.36)

with k = wn. The expression above represents Helmholtz’s equation
and it is the monochromatic version of the wave equation presented
in Eq. (2.20).

Even though we will properly introduce the helicity operator in
the following Chapter, let us now qualitatively show that the curl
operator is directly related to the helicity of the electromagnetic field.
Helicity, A, is defined to be proportional to the projection of the total
angular momentum onto the linear momentum, i.e. A o J-P, where
the total angular momentum is J = L+ S. Here, L represents the
orbital angular momentum and S is the spin angular momentum.
However, as it is known from classical and quantum mechanics, the
orbital angular momentum is orthogonal to the linear momentum, i.e.
L = r x P. This simplifies the expression of the helicity and one is left
with the equivalent relation A oc S - P. Now, the action of the linear
momentum over wave type solutions is known to be represented as
P — —i(0x, 0y, 0;). And, on the other hand, the representation of the
S operator is made in electrodynamics through the three dimensional
matrices of spin S = 1. In other words, one considers the spin of the
electromagnetic field through the mapping S — (SX,Sy, S.), where
the Cartesian components of the spin operator are given by:

0 0 0
o —i|,Sy=10o

i 0 —

, S, = . (2.37)

o o O
S O e
oS o O

i 0
0 0
Strictly speaking, we will show that such maps are associated with
the representations of continuous group generators in specific vector

spaces, but for the time being one can just take them as a "natural”
correspondence.

14
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Thus, from one side, we have that the helicity operator in electro-
dynamics is represented by the matrix:

0 =0, 0y \ (Vxl®)
AVir)xS-PV()=| 2, 0 —a|[wml]- (2:38)
—9y Ox O V. (r)

On the other hand, let us now show how the curl operator acts over
a generic vector field expressed in Cartesian coordinates:

V x V(1) = &[0y Va[r) — 9, Vy ()] — G35 V2 (1) — 3, Vi (1)]+

=
+ 2[5 Vy (1) — 3y Vi (1)]. (2.39)

By comparing Eq. (2.38) and (2.39), we can conclude that the curl
operator is very closely related to the helicity of the electromagnetic
field, i.e. we have just shown that AV(r) « V x V(r). Through this
first intuitive derivation, it can be inferred that the monochromatic RS
vector has the very specific property of being an eigenfunction of the
helicity operator (see Eq. (2.34)). As we show throughout this thesis,
such a property is extremely helpful for the study of the internal
degrees of freedom in electromagnetic wave solutions.

2.2.3 Inhomogeneous media

Another useful application of the monochromatic RS vector deals
with the form of Maxwell’s equations in inhomogeneous media, i.e.
in environments where the electric permittivity and magnetic perme-
ability are functions of position vector r. To derive the RS form of
Maxwell’s equations in this kind of environments, it is convenient to
consider an auxiliary field which is defined in terms of the complex
electric and magnetic fields:

_ 1
V2

GMr, w) (2.40)

E(r, w) ,H(r,w)]

Jam e

with FMr, w) = n(r)G* (r, w) and n(r) = /e(r)u(r) is the local refrac-
tive index. It can be checked the conventional electromagnetic fields
are expressed in terms of the Fr, w) and G*(r, w) vectors as:

Dl w) = /5 [Fn w4 F () (2.41)
Blx,w) = it/ ! [P wl - F () (2.42)
E(r, ) = “(Z”[Gﬂr,w)m(r,w)] (2.43)
H(r @) = E(Z”[Gﬂr,w)—c(r,w)] (2.42)

To construct Maxwell’s equations in inhomogeneous media one
may start by computing the equivalent Faraday-Ampére’s laws for

15
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the F?(r, w) vector. In the derivation steps we explicitly omit the (r, w)
dependence of the fields, the electric permittivity and magnetic per-
meability:

—iw [ 1 1
—iwF = — {D +MB]

V2 Ve VE

]

=5 [\]ﬁVXH_M\}EVXE}

:\1@[\_/;VX\/§[G+—G va\fGﬂrG]

By employing the vector identity V x (fV) = Vf x V+f(V x V), one
obtains the following form of the time derivative of the RS vector:

(UF}\:}\[VXG)\—FVIH\/T»LXG)\-FVIH\EXGJ\}, (2.45)

where Z(r) = \/u(r)/e(r) is the local impedance of the medium and
Vinf(r) = Vf(r)/f(r) for any arbitrary function f(r). Finally, making
use of the constitutive relations, we arrive to the form of Faraday-
Ampere’s laws expressed only in terms of the monochromatic RS vec-
tor [8]:

1 FA 1

wF}‘:?\[Vx< >+ —VInVZ xF } (2.46)
vn vn

On the other hand, to build Gauss’ laws in inhomogeneous media

one should evaluate the divergence of the monochromatic RS vector:

ol () e (3]
1 1 1
Sl () oo ()
[fv(f> (F*+F7) +?\\/EV<\%)‘(F+—F)],

where we have used the vectorial identity V - (fV) = V.- V+f(V . V).
Rearranging the terms, one is finally left with the following expres-
sion of Gauss’ laws [8]:

V-F=—-Vinyn-FA+VInvVZ-F (2.47)

Let us remark a few properties of the form of Maxwell’s equations
specified by Eq. (2.46) and Eq. (2.47). Note that when describing
Maxwell’s equations in terms of the monochromatic RS vector, the
relevant medium parameters are not the electric permittivity and
the magnetic permeability, but the local refractive index, n(r), and
impedance, Z(r). In particular, it can be readily seen that the spatial
derivatives of each of these parameters appear associated with the
same, A, or opposite helicity components, —A, of the electromagnetic
field. We will come back to this in Chapter 5, where we study the
helicity properties of electromagnetic waves propagating through in-
homogeneous magnetic media.
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2.3 SOME NOTIONS OF GROUP THEORY

In the previous Section we have presented the form of Maxwell’s
equations in terms of the RS vector, both in homogeneous and inho-
mogeneous environments. We have also shown that electromagnetic
wave solutions can be expressed in terms of this vector field. In this
line, note that electromagnetic wave solutions fulfill the superposition
principle, i.e. a linear combination of electromagnetic waves is also an
electromagnetic wave. This fundamental property implies that the set
of all electromagnetic wave solutions forms a particular mathemati-
cal structure, i.e. a vector space. In this Section, we make use of this
fundamental property of electromagnetic wave solutions to introduce
group representations.

Even if the approach may not seem natural, it is, in our opinion, the
clearest way of introducing the operator form of the physical magni-
tudes we will be dealing with in this thesis. We start by introducing
the notions of a group and a representation of a group in a vector
space. We then discuss the concept of irreducible representations and
some of their properties. Finally, we delve into the discussion of con-
tinuous symmetry groups and, in particular, the Poincaré group. We
show that the usual operator forms of frequency, linear momentum,
angular momentum and boosts generate a particular representation
of the Poincaré group over the vector space of electromagnetic wave
solutions.

2.3.1  Groups and representations

In this Subsection we introduce some basic definitions of group the-
ory which will aid us in the following Chapter. We employ the defini-
tions as provided in various books of reference and, in particular, we
follow Wu-Ki Tung’s [19] and Hamermesh’s [20] books.

* Group: a set of elements G = {g1, gz, ...} is a group provided

that there is a multiplication rule, symbolically denoted by "-",
so that the product of any two elements of the set, g; - g;, fulfills:

1. Multiplication rule is associative, i.e. gi - (gj - gx) = (gi -
gj) - gk for any element in the set.

2. If g; and g; are elements of the set, then g; - gj is also an
element of the set.

3. The set G contains an element e € G called the identity,
which has the property e - g; = gi - e = g3, for every g; in
the set.

4. For every g; element of the set there is also an element g;
in G such that g; - g;' = g;' - gi = e. The element g;' is
called the inverse of element g;.

¢ Subgroup: given a group G, we can select from its elements a
subset H C G. If the subset H forms a group, under the same
multiplication rule that is used in G, H is said to be a subgroup
of the group G.

17
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* Representation of a group: a representation of a group is a
map of the elements of a group into a set of operators acting
over a particular vector space, such that the multiplication rule
is preserved. Symbolically we write that a representation is:

gi € G— Oi, (248)

where O; is an operator, such that if g; - g; = gy, then, 0; x C)j =
Ox. Here, the symbol "x" represents the multiplication rule be-
tween operators. A simple way of thinking about a representa-
tion is by assigning to each element of a group, gi, a square
matrix, M;. A set of matrices R = {M;, M, ...} forms a represen-
tation of group G with the matrix multiplication as an operator
multiplication rule only if the matrix multiplication respects the
group multiplication rule.

Let us consider the dihedral group, D3, as an specific example.
This group consists of four group elements which we will de-
note as D, = {e, a,b, c} and the multiplication rule specified by
Table 1. A set of Matrices R = {M,, My, My, M.} may form a
representation of D, only if by matrix multiplication the rela-
tions provided in Table 1 are respected. A particular represen-
tation of the D, group is constructed by the following set of
matrices:

]\A/le _ 1 0 , Ma — _1 0 ,
0 1 0 1

Ny — 1 0 N = -1 0 ‘
0 -1 0 -1

Even if matrix representations are common for physical appli-
cations, they are not the only ones. In general, to construct a
representation, one just requires a set of operators. An impor-
tant type of operators which are not matrices are differential
operators such as time or spatial derivatives. These operators
act in vector spaces of functions and will be further discussed
when dealing with continuous groups.

Finally, a representation is said to be unitary if the operators
associated with the group elements are unitary. As a result, the
construction of unitary representations is possible only in vector
spaces equipped with a scalar product.

ela|b|c
elelal|b|c
alale|c|b
b|b|c|e]a
clc|blale

Table 1: Multiplication table of the dihedral group, D;. The first row and
columns represent all the group elements (in bold) and the rest
indicate the results of their multiplications.
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* Invariant subspace: consider a representation R = {04,0,,..}
of a group G = {g1,92,...} on a vector space V and let us also
define a subspace V7 of V. Now, if for all the operators O; of
the representation and for every vector vi € V; we have that
O;v; € V;, then, V; is said to be an invariant subspace of V. An
invariant subspace is said to be proper if it does not contain any
further invariant subspaces.

¢ Irreducible representation: a representation R is said to be irre-
ducible on a vector space V if there is no invariant subspace in
V with respect to R.

For instance, in the example given above the representation of
the dihedral group, D3, is not irreducible. This is so because we
can easily identify subspaces which are invariant, in particular,
the subspace V; with basis vector vi = (1,0) and the subspace
V5 with basis vector v, = (0, 1) are invariant.

¢ Schur’s lemma: given R = {04,0,, ...}, an irreducible represen-
tation of a group G on the vector space V, consider an arbitrary
operator A on V. If A commutes with all the operators of the
representation, i.e. AOQ; = O;A, V i, then A must be a multiple
of the identity operator 1, i.e. A = Al where A is a number.

A close version of this important lemma of group theory will
be employed in the next Chapter for the determination of irre-
ducible representations of continuous groups. In particular, for
this kind of groups, operators which commute with all the ele-
ments of a representation are called Casimir operators and they
permit the labelling of inequivalent irreducible representations.

2.3.2  Continuous groups and physical magnitudes

In the previous Subsection we have discussed the general notions of
a group and a representation. We have seen that group representa-
tions are built as a set of operators acting over a particular vector
space. Electromagnetic wave solutions form a vector space. In what
follows, we show that the canonical operator forms of the frequency
(energy), linear momentum, angular momentum and boost operators
are associated with a representation of the Poincaré group.

The basic underlying idea is that the magnitudes that we usually
evaluate in Physics such as linear momentum, angular momentum
and so on are closely related to symmetry groups. Symmetry groups
are associated with transformations that we can apply to an "object"
such that it remains invariant. For instance, an equilateral triangle is
invariant under discrete rotations, i.e. we can rotate it by 6 = 7t/3 and
the remaining system is exactly the same as the one we started with.
Also, a square is invariant under rotations of 6 = 7/4 and so on. In
general, we say that a regular polygon of N sides is invariant under
rotations of ® = 71/N. However, a circle, which can be understood
as the limit of a regular polygon for N — oo, is invariant under in-
finitesimally small rotations. This is what we refer to as a continuous
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symmetry. Continuous symmetries are those which can be built out
from infinitesimally small changes of a given parameter. As a result,
one associates discrete symmetry groups to systems which are invari-
ant under discrete transformations and continuous symmetry groups
to systems which are invariant under continuous transformations.

Some of the problems we deal with in Optics are invariant un-
der certain continuous transformations. For instance, the scattering of
waves by a plane surface (a problem addressed by Augustin Fresnel
in the XIX century) is invariant under translations in two dimensions
and rotations in one dimension. On the other hand, the scattering of
waves by a sphere (solved by Gustav Mie in 1908 [21]) is invariant
under rotations in three dimensions. Also, the propagation of electro-
magnetic waves through an infinite circular optical fiber is invariant
under translations and rotations in one dimension. In addition to this,
if the properties of the materials that constitute these optical systems
do not change in time, we say that the problem is invariant under con-
tinuous time translations. This basically means that the features of the
problem do not change if we wait a certain amount of time, i.e. that
the constituent materials are static. From this particular examples,
we can infer that there is a whole set of continuous transformations
under which our problems may remain invariant. In particular, the
simpler our system is the larger the set of symmetry transformations
under which the system remains invariant.

Continuous symmetry transformations are central in Physics as,
through Noether’s theorem, they imply the conservation of certain
physical magnitudes [22]. More specifically, invariance under space
translations is associated with the conservation of linear momentum
components, Pi; invariance under rotations with the conservation
of total angular momentum components, J;; invariance under time
translations with the conservation of frequency (or energy), Po; and
invariance under Lorentz transformations with the conservation of
boost components, K;. In the language of group theory, these con-
served quantities are linked to the generators of the different sym-
metry transformations. In short, generators are physical magnitudes
which, by complex exponentiation, define the elements of the contin-
uous group they are derived from [19]. As the continuous symmetry
groups we are interested in are composed of an infinite number of
group elements, it is much easier to keep track of a finite number of
generators. For instance, we can keep track of all the possible time
translations, T, through the association T, = e 1tPo, just by consid-
ering different values of the parameter T € IR. In this line, for each
different value of 1, we build a particular element of the time trans-
lations group which is infinite. However, note that all the group ele-
ments are built from a single generator, Po.

A prominent example is the Poincaré group, which is the continu-
ous symmetry group under which every relativistic physical theory
must be invariant. The Poincaré group is generated by all the genera-
tors we have discussed so far, i.e. by the set {Po, Py, Ji, Ki}. This implies
that every relativistically invariant theory must be symmetric under
spatio-temporal translations, rotations and Lorentz transformations.
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[Po,Pol =0 | [Po,Pn] =0 [Po, Jnl =0 [Po, Kn] = iPn
[Pm/ Pn] =0 [Pm/ In] = i“:TanlPl [Pmr Kn] = iémnPO

Um/ In] =1iemnt Um/ Kn) =iemniKy

[Km/ Kn] = _iemnlll

Table 2: Commutation relations of the generators of the Poincaré group. The
indices can have the values {m,n,1} = {1, 2,3}, each representing a
different Cartesian component. €511 is the Levi-Civita symbol and,
by convention, €123 = 1. eqn1 = 1 if mnl is an even permutation
of 123 and emn1 = —1 if it is an odd permutation. e;q vanishes
if two indices are repeated. 6y is the Kronecker delta such that
dmn=1lifm=nand dyn =0if m #n.

An important property of the generators of a continuous group is
that they have an associated algebra. The generator algebra, which
ultimately is a set of commutation relations, is a central feature of
continuous groups because it completely determines the multiplica-
tion properties of the group [23]. In the case of the Poincaré group,
the algebra is given by the the commutation relations specified by
Table 2 [19, 24, 25]. It is important to note that, until this point, all
the discussion on continuous groups is general and does not depend
on the specific physical system one may be dealing with. However, in
this thesis we will deal with electromagnetic wave solutions, which as
explained above form a specific vector space. This very particular fea-
ture of wave solutions permits us the construction of representations
of any group and, in particular, of the Poincaré group.

A representation of a group is technically defined as a map of the
elements of a group into a set of operators on a particular vector
space, such that the multiplication rule of the group is preserved. As
mentioned above, the multiplication rule of a continuous group is
completely determined by the commutation relations of the genera-
tors. Thus, to find a representation of the Poincaré group on the vector
space of electromagnetic wave solutions, we just have to find an ap-
propriate operator form of the generators of the Poincaré group, such
that the commutation relations given by Table 2 are preserved. For in-
stance, in what is known as the position representation, the generators
of the Poincaré group are expressed as [26, 27]:

Po — 10¢ (2.49)
P— —iV (2.50)
J— —irxV+S (2.51)
K — —i[rdy +tV] +18§, (2.52)

where we have chosen natural units, i.e. ¢ = h = 1. Note that the
relations given by Egs. (2.49)-(2.52) constitute the canonical correspon-
dence rule employed in quantum mechanics to derive the Schrodinger
or Klein-Gordon wave equations from the classical expressions of the
energy-momentum relations [28, 29]. In this line, all the operators,
except S, are already well-defined, i.e. they are differential operators
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which act over functions expressed in coordinates (r,t). This, how-
ever, is not the case of the spin operator. S acts on the internal space
of the particles that the theory describes.

Electromagnetic wave solutions are associated with photons which
can be regarded as particles with spin S = 1. Moreover, as the de-
scription of electromagnetic waves is usually done in terms of three
component vector fields, we shall employ a three dimensional repre-
sentation of the spin matrices, i.e. exactly the one given by Eq. (2.37).
Indeed, it can be checked that that such matrices represent the inter-
nal degrees of freedom of a particle of spin S = 1 just by computing
the §2 = S2 + Sﬁ + S2 operator. This leads §? = 21, where I is the
three dimensional identity matrix. As the spin of a particle is defined
through the eigenvalue of the $2 operator, i.e. 2 = 5(S + 1), it gives as
aresult S = 1. In this precise sense we say that the matrices given by
Eq. (2.37) represent a particle of spin S = 1. Note that this association
gives a physical meaning to the vector nature of the electromagnetic
field. Frequently, and in analogy with massive particles, the spin an-
gular momentum has been regarded as the fundamental magnitude
associated with the internal degrees of freedom of the electromag-
netic field. However, we should bear in mind that electromagnetic
waves are associated with a massless particle and, thus, the funda-
mental magnitude representing the internal degrees of freedom is
not spin, but helicity.

Helicity as a physical magnitude is defined as A =] -P/|P|, i.e. it
is the projection of the total angular momentum in the direction of
propagation. However, as the total angular momentum is ] = L+ S
and as the orbital angular momentum, L, is orthogonal to the lin-
ear momentum, P, helicity is sometimes defined as the projection of
the spin angular momentum onto the direction of propagation. In
this thesis, we will stick to the first definition because it defines the
helicity in terms of two generators of the Poincaré group. In the posi-
tion representation, helicity is most naturally defined for monochro-
matic solutions. This is because there is not an easy representation
for the magnitude [P| 7', i.e. the inverse of the linear momentum mod-
ulus, in position space. This, of course, would not be a problem if
we would have chosen to represent electromagnetic solutions in re-
ciprocal space. However, we prefer to stick to the representation as
given by Egs. (2.49)-(2.52) because it results in the canonical form of
the operators. If we further restrict to monochromatic electromagnetic
waves, helicity is represented in position space as A — k™ 'V x, where
k is the modulus of the wave vector.

Summing up, we have just shown that we can define the usual
operators associated with energy, linear momentum or angular mo-
mentum as the generators of continuous symmetry groups. Moreover,
in Egs. (2.49)-(2.52) we have presented a representation of the gener-
ators of the Poincaré group on the vector space of electromagnetic
wave solutions. However, we should take into account that this is not
the only possible representation and, as long as the commutation re-
lations given by Table 2 are fulfilled, other representations may be
constructed.
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2.3.3 A representation of the Poincaré group

To end this Section, let us show that the operators given by Egs. (2.49)-
(2.52) actually generate a representation of the Poincaré group. To that
end, we must show that the commutation relations given in Table 2
are fulfilled by the operators in Egs. (2.49)-(2.52). In this line, we will
explicitly evaluate a representative example for each of the commuta-
tion relations.

e Time translations, [Py, Pol: the commutation of Py with itself
can be proved from the definition of the commutator:

A A

[Po, Pol = PoPo — PoPo = 0. (2.53)
The same holds for the commutator of any operator with itself.

e Time and spatial translations, [Py, P,]: the commutation of Py
and any Cartesian component of linear momentum P;, directly
follows if we consider sufficiently smooth functions on variables
(r,t). Let us compute this result explicitly by operating over an
arbitrary scalar function P (r, t).

(ISO]SX)II) = (atax)w
(]SXISO)II) = (axat)lp

For the functions we will be dealing with, derivatives over time
and space coordinates are interchangeable. In proper mathemat-
ical terms, we constrain our analysis to complex functions of
real variables that fulfill Clairaut’s theorem of second order par-
tial derivatives. Thus, we have that [Py, Py] = 0.

e Spatial translations, [P,n, Prl: the commutation of the different
components of the linear momentum also follows if we assume
functions subjected to Clairaut’s theorem. Explicitly, we have
that:

which are equivalent for the functions we will be dealing with.
Thus, in the example above, we get that []Sy, P,] = 0. In the fol-
lowing examples, we will implicitly employ the fact that deriva-
tives in different variables commute.

e Time translations and rotations, [Py, Tn]: the commutation of P,
with the angular momentum operator components, J,,, is based
of the commutation of spatial and time derivatives discussed
above, but not only. It is also based of the fact that the spin op-
erator, S, commutes with all the differential operators acting on
the spatial or temporal coordinates. This follows from the fact
that § operator is constructed from constant matrix components.
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Let us evaluate the example [Py, Ty] = [Py, fy] + [Py, §y]. For the
orbital part, we have:

(]SOI:y W= (f—y]SO)lp = (yataz _Zatay 1>

whereas for the spin part we get

0 0 —d
PoSy =SyPo=|0 0 0
3 0 0

Thus, we finally have that Po, Ty] =0.

Spatial translations and rotations, P, Tn]: Table 2 indicates
that translations and rotations in different Cartesian do not com-
mute. However, note that P and § commute, which implies that
we just have to compute the commutator with the orbital angu-
lar momentum operator, L.

(
(

-

xf—y W= (_Zai +x0x0z + 02 )
yP )b = (203 +x0x0:)b.

—

Thus, we get that [ISX,Ty] = [lADX,IA_y] = iP,, which is in agree-
ment with Table 2. Note that, in this case, mnl = 123 and, thus,
€Emnl = €123 = 1.

Rotations, [Tm, Tn]: the commutator of the total angular momen-
tum components can be split into two contributions, i.e. the or-
bital and the spin ones. In other words, [Tm, Tn] = Lo, Lnl +
[Sin, Snl. Let us just show a particular example:

(
(

—>

WL = (—xydyd; + Y2050 + X207 —yz0xdy — z3x )
2L = (—xydy 0z + Y2050z + x207 —yzdxdy — X021

—

From the orbital angular momentum we, thus, get L, L] =
—ily. Regarding the spin contribution we have to compute the
matrices:

00 0\ /[0 —i 0 0 0
S8 :=(0 0 —i| | =|o0 00
oi o/ \o ~1 0 0
0 —i 0\ (o 0 00 —1
S:5«=1[i o ol]loo —i|=]0oo0 o[,
o 0o o/ \oi o 00 0

which leads that [Sy,S,] = —i§y. Thus, we have that, [J,].] =
—i(f_y + §y) = —ify. Note that, in this case, mnl = 132 which is
an odd permutation of 123.
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e Time translations and Lorentz transformations, [Py, K, ]: to eval-
uate this commutator we should first note that time derivatives
commute with S. Thus, we only have to compute:

(PoRy)w = (yof + t3¢dy + 3y )
(RyPo)b = (ydF +t2:dy ).

-

The result is [ISO,IA(y] = ilsy, which is in agreement with the
result in Table 2.

Spatial translations and Lorentz transformations, [P, Knl: in
this case we should also take into account that S operator does
not play a role in the computation of the commutator. As an
example we can evaluate:

(PR )W = —(20¢d, + 132 + 3 )V
(]A(z]sz)ll) = —(20¢0, + taﬁ)ll)/

which leads to [P,, K,] = iP,.

Rotations and Lorentz transformations, [Tm, Knl: this is the
first situation in which we should also take into account the
spin part of the boost operator given by Eq. (2.52). We will de-
note the orbital and spin parts of the boost operators by K and
Ks,, respectively. Let us give an example:

(LR = —(yzd10, + tydZ — 220,09y — t20:dy + Yo )P
(RO )W = —(yzd1 9, + tydZ — 220,09y — t20,d, — tdy Y.

On the other hand, we should also compute the commutators
of the spin parts. This leads to:

0 0 0 0 00

SiKS = —i| | -1 =10 0o

i 0 0 —i 0 0

0 1 0 0 00 —i
KeSy=1-1 0 0 -i|l=|o o0 o],

0 0 i 0 00 0

As a result, summing both contributions of the commutator, we
obtain [Jy, K] = —(yd¢ + tdy) + §y = —ilzy, which is exactly the
result given by Table 2. Note that 132 is and odd permutation
of 123.

Lorentz transformations, [K,,, K,]: let us now show that the
commutation relations also hold for the Lorentz boosts. Let us
tirst compute the orbital part for a given example:

RO = —(yzdf + tydid, + t20¢dy + t?9yd, +yd )W
P = —(yzd7 + tydid, + t20¢dy + t20yd, + 23y )W
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. On the other hand, for the spin contribution we have that:

0 0 i)\ (0 —i 0 00 0
KsRE=—10 0 o [i o =100 0
—i 0 0/ \o o 010
0 —i 0 00 0
KsKE=—11i 0 0 =(o 0 1
0 0 0\~ 00 0

which implies that this part is exclusively computed in terms
of the spin matrix commutation relations that have been previ-

ously computed. As a result, we have that [lA(y, K. = —(yd, —
z9y) —iSx = —iJx and note that 231 is an even permutation of
123.

Finally, the position representation of the Poincaré group is con-
structed by a complex exponentiation of the generators. For instance,
a rotation by angle 6 around the OX axis is represented by the action
of the operator Re(8) = exp(—iGTX) and a Lorentz transformation
along the OZ direction is represented by the action of the operator
£.(&) = exp(—iEK,). This very specific way of constructing the group
elements determines whether the representation is or not unitary. In-
deed, note that whenever the generators are represented by hermitian
operators, the complex exponentiation leads to a unitary operator.
However, the hermiticity of an operator depends on the definition of
the scalar product, which is not unique. For instance, it can be shown
that the operator given by Eq. (2.52) is not hermitian with respect to
the usual scalar product (V;|V,) = [ dr Vi(r,t) - Va(r,t) [8, 27]. The
most direct way of checking this is by noting that the Cartesian com-
ponents of the matrix operator iS are not the same if we conjugate
and transpose them. In addition, it can also be shown that the orbital
part of the boost generators or the generator of time translations are
not hermitian either. This implies that, the position representation of
the Poincaré group provided by the operators defined in Egs. (2.49)-
(2.52) is not unitary with respect to the usual scalar product.

Unitary representations of the Poincaré group are most commonly
built over the vector space of solutions expressed in reciprocal space
variables (k, w) [24, 25]. Accordingly, such representations are usually
denoted as momentum representations. This kind of representations are,
for instance, employed in Quantum Field Theory to check that the
quantization of free fields is congruent with special relativity [30, 31].
Also, Bialynicki-Birula has proposed a particular representation of the
Poincaré group in coordinate space which is unitary with respect to a
particular Lorentz invariant scalar product [8]. Importantly, except in
some Sections of Chapter 3, we will mainly study systems which are
not invariant under Lorentz transformations. In this line, by making
a slight modification on the generator of time translations, one can
construct a unitary representation of the subgroup of the Poincaré
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group which does not contain Lorentz transformations. Indeed, the
mapping:

P0—>w
P— —iV
] > —irxV+S$

results in a hermitian form of the generators with respect to the con-
ventional scalar product, provided that w is a real number. This result
anticipates the important role that monochromatic electromagnetic
wave solutions are going to play in systems or environments which
are not relativistic. Regarding the representation fixed by Egs. (2.49)-
(2.52), we will employ it as a correspondence rule between physical
magnitudes and operators acting in the vector space of electromag-
netic wave solutions [32, 33] (see also Part I, Chapter II, Section II
in Ref. [28]). This will aid us in translating abstract results of group
theory into specific systems of partial differential equations.

2.4 SUMMARY

In Section 2.1, we have introduced the canonical form of Maxwell’s
equations with a quite general form of the constitutive relations which
remain valid for chiral media. Then, in Section 2.2, we have intro-
duced various forms of the RS vector. First, we have introduced the
conventional RS vector, F*(r, t), which is built from the real displace-
ment field and real magnetic induction. Second, we have introduced
the monochromatic RS vector, F*(r, w), which is built from complex
fields. Third, we have employed the monochromatic RS vector to ob-
tain a particular form of Maxwell’s equations in inhomogeneous me-
dia. Finally, in Section 2.3, we have introduced some basic notions of
group theory. Moreover, making use of the linearity of electromag-
netic wave solutions, we have introduced the so-called position repre-
sentation of the Poincaré group in Egs. (2.49)-(2.52).
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FOUNDATIONS OF ELECTROMAGNETIC HELICITY

In this Chapter, we introduce the fundamental physical and math-
ematical concepts associated with electromagnetic helicity. First, we
show how the emergence of electromagnetic helicity can be under-
stood in terms of the symmetries of special relativity. Then, we dis-
cuss the role of electromagnetic helicity in the presence of material
media based on similar symmetry arguments. Finally, we construct
particular solutions of monochromatic electromagnetic waves propa-
gating in material media.

Some derivations of Section 3.1 and most of Section 3.2 have been
adapted from Contribution VIL
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3.1 HELICITY AND RELATIVISTIC SYMMETRIES

In the previous Chapter we have introduced electromagnetic wave
solutions and we have seen that one can construct a representation
of the Poincaré group on the vector space that they form. Further-
more, we have also shown that if the generators of the group are
mapped into hermitian operators, the resulting representation is uni-
tary. Unitary representations of the Poincaré group play a central role
in Physics due to a fundamental contribution by Eugene P. Wigner.
Indeed, he determined that in every relativistic linear theory without
interactions, the unitary representations of the Poincaré group could
replace the equations of motion [5]. This might seem quite unneces-
sary at this point, as we have already introduced in Egs. (2.18)-(2.19)
the form of Maxwell’s equations in vacuum. However, we will see
that, from the analysis of the Poincaré group and its representations,
the notion of helicity emerges in a quite natural manner.

The relevance of the unitary representations of the Poincaré group
is due to the fundamental assumption in Physics that all acceptable
theories should lead to the same results in different inertial reference
frames. This, also known as the relativistic invariance principle, trans-
lates into the fact that physical observables cannot be modified when
changing from one reference frame to another. In particular, if such
observables are associated with the modulus squared of scalar prod-
ucts, then the representation associated with the symmetry transfor-
mations must be based on operators that preserve the norm. And,
within complex vector spaces, it implies that the symmetry opera-
tors must be unitary (or antiunitary). This is a result of the so-called
Wigner’s theorem [34]. Even if the argument was derived in the con-
text of Quantum Mechanics, it is also known to hold for other linear
relativistic theories such as Maxwell’s equations in vacuum [5, 18, 35].
In the following Sections, we introduce some basic concepts to study
the theory of representations of the Poincaré group applied to elec-
tromagnetism.

In particular, we will delve into the study of unitary irreducible rep-
resentations (UIRs) of the Poincaré group. We do this for two reasons.
First, because all the unitary representations of the Poincaré group
can be expressed as direct sums of UIRs [5]. Thus, classifying the
UIRs leads to an identification of all possible unitary representations
of the Poincaré group. Second, according to Wigner’s classification,
the vector states (or wave functions) of elementary physical systems
must transform according to such UIRs [6, 19]. From this algebraic
perspective, elementary particle states are defined as vectors that be-
long to the invariant space associated with an UIR of the Poincaré
group. In our case, as we are interested in the description of elec-
tromagnetic waves, we will analyze the UIRs that define the photon
as an elementary particle. In the upcoming discussion, we closely
follow the mathematical prescriptions for the construction of such
irreducible representations. Particularly, we will stick to the tools pro-
vided by Wu-Ki Tung’s book, Group theory in Physics [19].
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3.1.1  Electromagnetic waves in vacuum

For the determination of the UIRs we may employ two results of rep-
resentation theory. The first one is related to the existence of Casimir
invariants. These magnitudes commute with all the generators of a
continuous group, i.e. a Casimir element C fulfills [C, G] = 0, where
G is any generator of a given continuous group. In the case of the
Poincaré group, its generators are {Py, Pi, Ji, Ki} and, thus, a Casimir
of this group must be an invariant quantity under time and space
translations, rotations and relativistic boosts. It is a result of represen-
tation theory that every vector belonging to the invariant space of an
UIR must be an eigenstate of all the Casimir operators of the group.
This result can be understood as the generalization of Schur’s lemma
to continuous group representations [19] (see also pages 598 and 599
in Ref. [36]). The second one will be introduced later and it is related
with the explicit construction of the invariant vector spaces associated
with the UlIRs.

In the case of the Poincaré group, there are two principal Casimir
operators which determine the nature of the irreducible representa-
tions [19, 24]:

»

P.P— P2 (3.1)

W-W-—(j-P)?, (3-2)

1
2

Oy

N

which are, respectively, the modulus of the 4-momentum, p, = (150, P),
and the modulus of the Pauli-Lubanski pseudo-vector, w, = (J-
P,W), with the opposite sign. Here, the spatial components of the
Pauli-Lubanski pseudovector are W = PoJ + K x P and we fix the
Minkowski metric with the sign convention (+,—, —, —) [26]. As the
modulus of the 4-momentum is related to the mass of the particles
in the rest frame, M, we conclude that the eigenvalue of the Casimir
operator C is actually —M?. This implies that different values of the
rest mass lead to different irreducible representations of the Poincaré
group. In particular, the eigenvalue of C; indicates whether the ir-
reducible representation is associated with a massive (M > 0) or a
massless (M = 0) particle. The electromagnetic theory in vacuum is
associated with the massless UIRs of the Poincaré group. Note that in
this case, the condition M = 0 implies that the vector states belonging
to a massless irreducible representation fulfill the wave equation in
vacuum. This can be more explicitly checked by substituting the op-
erator forms given by Eq. (2.49) and (2.50) in the expression for Cyin
Eq. (3.1). Indeed, by doing so, one retrieves the differential equation
given by (2.20).

The analysis of the second Casimir invariant, C,, is straightforward
for the massive representations. As this type of particles do not travel
at the speed of light, one can always evaluate the expression of the
C, operator in the rest frame of the particle. As it is a relativistic in-
variant, the value of C, cannot depend on the particular reference
frame one may choose. Thus, for massive particles we can fix P =0,
which implies that, in this case, C; = 15(2) (J - J). Moreover, as we have
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fixed the reference frame in which the massive particle is in rest, we
further have that L = # x P = 0 and, thus, J = S. We finally ar-
rive to the form C, = ]sg(g .S) for any irreducible representation of
the Poincaré group with M > 0. Note that, in the frame in which
the particle is in rest the eigenvalue of the P} operator is, precisely,
the invariant magnitude M?. Thus, we can conclude that the eigen-
value of the second Casimir operator is M2S(S+1), where S(S+1)
represents the eigenvalues of the square of the spin angular momen-
tum S2 = S - S. Thus, the derivation above indicates that the second
Casimir is proportional to the spin angular momentum of the parti-
cles. This implies that massive irreducible representations are further
classified by the eigenvalues of the spin angular momentum. How-
ever, as it can be noted, this derivation is only possible if there exists
a reference frame in which the particle is at rest. And, as a result, this
interpretation of the second Casimir invariant is not possible when
we consider massless particles.

Massless representations are split into two possibilities which are
denoted as the continuous- or discrete-spin representations [6, 24],
depending on the eigenvalue of the second Casimir operator, =. The
continuous-spin representations are characterized for having 0 < = <
0o, whereas the discrete-spin representations for having = = 0. As we
are exclusively interested with the irreducible representations asso-
ciated with the electromagnetic theory, here we will just discuss the
discrete-spin case. Unfortunately, for this specific class, the second
Casimir invariant does not provide a complete characterization [6].
In other words, for massless particles with discrete spin, like the pho-
ton, C, does not account for the internal degrees of freedom. How-
ever, a third Casimir operator emerges for this specific class of UIRs
of the Poincaré group [24]: j-P/Py. As we are dealing with massless
particles 155 = P - P and, thus, the expression of the third Casimir is
equivalent to the definition of helicity, i.e. A = j-P/[P|. In this line,
its eigenvalues A may take on any positive or negative integer or half
integer value. Choosing the two representations A = +S for a fixed
positive value of S, one describes the two internal degrees of freedom
of a given massless elementary particle with discrete spin. Bargmann
and Wigner showed that the invariant vector spaces associated with
the discrete-spin irreducible representations are characterized by the
set of operator equations: W, = AP, [6, 29]. Note that the temporal
component of such equation represents exactly that solutions must
be eigenstates of the helicity operator.

Furthermore, as H. Bacry explicitly showed (see Egs. 21a and 21b
in Ref. [26]), the set proposed by Bargmann and Wigner in 1948 cor-
responds to the equations found in 1936 by Dirac for particles of null
mass and spin S [32, 33]:

(SPo + SxPx +SyPy +S5.P,) ¥(r, t) =0 (3.3)
(SPx + SxPo — 1Sy P, +1iS,Py) ¥(r,t) = 0 (3.4)
(SPy + Sy Po —1S.Px +154P,) ¥(r, t) = 0 (3.5)
(SP. +S,Po —iSxPy +1iSyPx) ¥(r,t) =0, (3.6)

32



3.1 HELICITY AND RELATIVISTIC SYMMETRIES

where ¥(r, 1) is a 25 + 1 component wave function. Now, considering
the case S = 1, employing the representation of spin matrices as given
by Eq. (2.37) and the operator representations for Py and P as given
by Egs. (2.49) and (2.50), it can be checked that the first of these equa-
tions leads to Faraday-Ampere equations as given in Eq. (2.18) setting
A = —1[33]. Indeed, the derivation is quite direct if we recall the iden-
tity: S P=S5,P + §y 15y +§,P, = Vx. Furthermore, it can be shown
that substituting Py from Eq. (3.3) into Egs. (3.4)-(3.6), Gauss’ laws
as expressed in Eq. (2.19) can also be derived [26, 33]. We can, then,
state that the constraint W, = AP, over the massless irreducible rep-
resentations with spin S = 1 is equivalent to requiring that the vector
states are solutions of Maxwell’s equations in vacuum. Finally, note
that the massless irreducible representations are also characterized by
the condition M = 0, from where the wave equation in vacuum can
be derived. Thus, we reach the conclusion that the states belonging to
the invariant vector space of the massless and discrete-spin UIRs of
the Poincaré group are electromagnetic wave solutions propagating
in vacuum.

Let us just remark a few important results we have obtained in this
Subsection. First, we have seen that helicity emerges as a Casimir op-
erator for the massless and discrete-spin UIRs of the Poincaré group.
For this specific type of UIRs, helicity is shown to be a relativistic
invariant regardless of the spin of the particle, which indicates that
it is a fundamental magnitude for the description of other massless
particles such as the graviton (S = 2) or others. Moreover, we have
related the electromagnetic wave solutions with the representation
theory of the Poincaré group. This provides us with a solid mathe-
matical framework in which further investigations may be structured.
In particular, in the next Subsections, we will show that the UIRs of
the subgroups of the Poincaré group are related to electromagnetic
wave solutions in environments with less symmetries than vacuum.
Finally, in the derivation above, we have also found that the 25 + 1
component wave function, ¥(r, t), appearing in Dirac’s equation for
zero rest mass particles naturally relates with the RS vector for the
case S = 1. As we show next, this is no mere coincidence. Indeed,
there are arguments to defend that the field specified in Eq. (2.32)
plays the role of the photon wave function in vacuum [8, 37].

3.1.2  Photon wave function in vacuum

To finish the discussion of electromagnetic waves in vacuum, let us
explicitly show in what sense the RS vector may be considered a good
electromagnetic wave function candidate. As we have previously in-
troduced, UIRs of the Poincaré group are commonly employed to clas-
sify elementary particles. In particular, we have just seen that such a
classification is done in terms of the Casimir invariants of the group.
This means that different elementary particles are labelled by the dif-
ferent values of the rest mass, M, and spin or helicity, S/A. In short,
we say that two particles are identical if they share the same labels
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or different if they do not. In addition to the Casimir labels, UIRs
have an associate invariant vector space which is also related with
the description of such fundamental particles. In particular, the vec-
tor spaces of the UIRs of the Poincaré group are associated with the
wave functions of elementary particles. Citing Wu-Ki Tung’s book
[19]: In fact, the natural correspondence between the basis vectors of unitary
irreducible representations of the Poincaré group and quantum mechanical
states of elementary physical systems stands out as one of the remarkable
monuments to unity between mathematics and physics. Let us now show
that the RS vector as expressed in Eq. (2.32) can also be associated
with the massless and discrete-spin irreducible representations of the
Poincaré group.

In the upcoming derivation, we closely follow the indications dic-
tated by Wu-Ki Tung’s book for the construction of invariant vector
spaces. As it is indicated by Theorem 10.14 [19], the basis vectors
for the "light-like" UIRs of the Poincaré group can be constructed by
operating over a standard vector. Such a vector is chosen to be an
eigenstate of the 4-momentum operator P,, ie. an eigenstate of the
Py and P operators. Moreover, as the standard vector belongs to the
invariant vector space, it also has to be an eigenstate of the Casimir
operators C; and A. All these constraints imply that the standard vec-
tor is a circularly polarized monochromatic plane-wave. If we fix the
direction of propagation to be in the OZ direction, we are finally left
with the following explicit form of the standard vector:

W (r,t) = katet=t)) (3.7)

where 0* = (1,A1,0)/v/2 is a normalized circular polarization vector,
with helicity A = £1, and wavevector k; = k{Z. Finally, the intro-
duction of k; in the amplitude of the standard vector makes it trans-
form unitarily under Lorentz transformations [38]. With the defini-
tion above and using the expressions of the operators in the position
representation specified by Egs. (2.49)-(2.52), it can be checked that
the following relations hold:

Po Wi (r,t) = k¥p (1, 1) (3.8)
P, WR (1 t) = K(Wh (1, 1) (3.9)
G W () =0 (3.10)
AWR (1) = AWR (1, 1). (3.11)

Now, the basis vectors of the invariant space associated with the
massless and discrete-spin UIRs of the Poincaré group are constructed
by operating over the state given in Eq. (3.7). We will represent the el-
ements of the basis by the eigenvalue of the helicity and the direction
of propagation, i.e. we will denote an element of this set as Wg (r, t).
Here, superscript A indicates that the basis vectors all have a well-
defined helicity and subscript k that they propagate in a well-defined
direction, which, in general, is going to be different from kj. In this
notation, the construction of a generic basis vector is carried out by
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applying a Lorentz transformation and a rotation to the standard vec-
tor (see Eq. 10.4-22 and Eq. 7.1-12 in Ref. [19]):

Wi(rt) = [Re (b Ry (01) L (8)] Wi, (1, 1), (3.12)

We choose to write the rotation angles with a subscript k because
they will actually represent the spherical polar angles of vector k. At
this point, we could choose to write the expression of the rotation
and Lorentz transformation operators as an exponential of the oper-
ators given in Eq. (2.51) and Eq. (2.52). However, a much more con-
venient approach is just to employ the widely known expressions for
the transformations of electromagnetic fields under such operations.
The expressions for the rotations can be found in books dealing with
vector fields such as Rose (see Eq. 5.40 in Ref. [39]). The expressions
for the Lorentz transformations can be found in books of reference in
electrodynamics such as Jackson (see Eq. 11.149 in Ref. [12]).

Following the operator order in Eq. (3.12), we should first apply the
Lorentz transformation, iz(é), to the electromagnetic wave expressed
in Eq. (3.7). The way in which an arbitrary electromagnetic field with
well-defined helicity, VA(r,t), transforms under Lorentz transforma-
tions can be derived from the usual expressions of the electric and
magnetic field transformations [8, 12]:

2
VM, t) =y [VMr,t) — Aib x VA(r, )] — —
y+1

b[b-Vrt)]. (3.13)

Here, the Lorentz transformation is generally considered into the di-
rection specified by the b vector and into a reference frame moving
with speed v = tanh(&). The following relations hold between the pa-
rameters defining the transformation: [b| = v and vy = (1 —v2)1/2,
As the Lorentz transformation specified by Eq. (3.12) is in the OZ di-
rection in our case b/|b| = 2. Now, specifying that the electromagnetic
field VX(r, t) is given by the standard vector in Eq. (3.7), we have that
Aib x VA (r,t) = [b|[V*(r,t) and, also, b- VA (¢, t) = 0. To complete the
transformation, we just need the specific form in which space-time
coordinates (r,t) are transformed into the new (r/,t’). This is also
given by Jackson (see Egs. 11.19 and 11.21 in Ref. [12]):

t cosh& 0 0 sinh§& t/
x| 0 1 0 0 x!
1 el PP, y (3.14)
z sinh 0 0 cosh§ z'

By substituting all these expressions into the standard vector ex-
pression, we are finally left with the following form of the state in the
boosted frame of reference:

L ()W (1, t) = [y (1 —v)kgJatel YT )kt (3.15)

Let us discuss this result in detail. First, if we check the transforma-
tion rule in Eq. (3.13), the helicity of the monochromatic plane-wave
is explicitly shown to be invariant. This, of course, is related with the
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fact that helicity is a Casimir operator for particles with zero mass and
discrete spin. Also, it can be noted that the modulus of the wavevec-
tor, or the frequency, of the plane-wave is modified by the effect of
the Lorentz transformation. As rotations do not further modify this
parameter, we have that the modulus of the wavevector of the state
W) (r, t) is specified by:

k| = v(1 —v)ki = (cosh & —sinh &)k; = e~ ki (3.16)

In other words, parameter & € (—oo, c0) modulates the frequency of
the monochromatic plane-wave. By choosing different Lorentz trans-
formations into reference frames moving at different speeds in the OZ
direction, Eq. (3.16) indicates that one is able to modify the modulus
of the wavevector in the range k € (0, co0). Finally, it can be checked
that the Lorentz transformation affects the amplitude of the standard
vector, ‘Pﬁl(r,t), by a factor y(1 —v). However, the introduction of
the ki amplitude term in Eq. (3.7) absorbs it into a change over the
wavevector modulus, recovering the appropriate transformation rules
[19, 38].

Let us now analyze the role of the rotations in the construction of
the basis vectors of the invariant space. For convenience, here, we will
follow the convention that a vector field, V(r, t), is rotated through the
operation RV(R'r, t), where R is a conventional 3 x 3 rotation matrix
[15]. Following the sign convention of Wu-ki Tung’s book, we have
that the composition of rotation matrices around the OY and OZ axis
can be expressed as (see Egs. 7.1-13a and 7.1-13b in Ref. [19]):

cos O cos P —sindy sin Oy cos Py
Rz ($1)Ry(Ok) = | cos O sindpy  cos by  sin Oy sindy | - (3.17)
—sin 0y 0 cos O

As the matrix given above is orthogonal, then, the inverse matrix is
just the transpose, i.e. R”' = R'. Moreover, in the standard vector
expression given by Eq. (3.7), note that the position operator is con-
tained in the exponent in the following form: k; - r, with k; = (0,0, ky)
as a row vector and r = (x,y,z) as a column vector. Thus, apply-
ing the inverse rotation matrix R™' to vector r is the same as ap-
plying the rotation matrix R to vector k;. As a result, we have that
the rotated monochromatic plane-wave propagates in the direction
Uy = (sin Ok cos Py, sin Oy sin Py, cos Oy ). From this expression, it is
clear that (0y, ¢i) represent the spherical polar angles in reciprocal
space. Finally, as previously stated, the rotation also applies to the
vectorial part of the electromagnetic field, i.e. to the polarization vec-
tor 0 = (1,Ai,0)/v/2. It can be checked that applying the rotation
matrix in Eq. (3.17) to 1 one recovers the expression for the polariza-
tion vector with well-defined helicity é*(k) given in Eq. (2.27).

Altogether, we have arrived to the final expression of the basis vec-
tors of the massless and discrete-spin UIRs of the Poincaré group. The
expression of the basis vector elements in the position representation
is:

WA (r, t) = [k[eM (k)etkriwxt, (3.18)
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where k = ki and k = wy = e %k;. For convenience, we have
dropped the primes in the expression of the space and time coordi-
nates. Note that considering the domains 6y € (0, 7) and ¢y € (0, 2m)
and & € (—o0,00), one actually spans all the possible points in re-
ciprocal space. Thus, a general vector belonging to the invariant vec-
tor space associated with the massless and discrete-spin UIRs of the
Poincaré group can most generally be written as a linear superpo-
sition of the states given in Eq. (3.18). We are finally left with the
following fundamental relation:

+oo
1 k
Wt = s | PR (319)

The expression above indicates that electromagnetic wave solutions
expressed in terms of the RS vector in Eq. (2.32) are directly related
with the basis vectors given by Eq. (3.18). Indeed, the W*(r, t) field can
be constructed as a linear superposition of the basis vectors associated
with the massless and discrete-spin UIRs of the Poincaré group. In
this specific sense, it can be stated that the RS vector plays the role of
the wave function in the electromagnetic theory [8, 18]. Finally, there
is an argument that explains the presence of only positive frequencies
in Eq. (3.19). It is that the sign of the frequency is also a Casimir
invariant of the Poincaré group [24]. This justifies a posteriori our
choice of positive frequencies in Eq. (2.32).

The discussion about the wave function of the photon in coordinate
space has been long and intense through the years. A nice compila-
tion can be found in Ref. [8]. It is not our aim to place ourselves in
any specific position with respect to this discussion. We just choose
the RS representation of electromagnetic wave solutions for the fol-
lowing practical reasons:

1. The RS vector is directly related with the symmetries of space-
time and, particularly, to the UIRs of the Poincaré group. This
features makes it suitable for the study of light-matter interac-
tions in the context of symmetries. In particular, as we show in
the next Subsection, it facilitates the construction of electromag-
netic wave solutions propagating in infinitely homogeneous me-
dia and the analysis of conserved quantities.

2. The RS vector is a mathematical object which is directly related
with electric and magnetic fields. This makes it applicable to
many different problems in which electromagnetic wave solu-
tions are explicitly given in terms of electric, D or E, and mag-
netic, B or H, fields. We will use this approach in Chapter 4,
where the RS vector will be shown to be a useful object in the
framework of linear scattering theory.

3. As we will show in Chapter 5, the RS vector is also useful in
the analysis of electromagnetic waves propagating through in-
homogeneous media. The terms accounting for the conserva-
tion and mixing of electromagnetic helicity components natu-
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rally emerge when writing Maxwell’s equations in terms of the
RS vector.

4. The description of the helicity components in terms of the RS
vector is also possible within the framework of second quantiza-
tion. This will employed in Chapter 6 to describe the scattering
of multi photon states with cylindrically symmetric samples.

3.2 HELICITY AND EUCLIDEAN SYMMETRIES

In the previous Section, we have analyzed how electromagnetic wave
solutions expressed in terms of the RS vector are related with the
Poincaré group. As we have shown, the discussion is valid for waves
propagating in vacuum. In this Section, we study the propagation
of electromagnetic waves in infinitely homogeneous media. The di-
rect and straightforward way of approaching this problem is proba-
bly considering solutions to the wave equation in Eq. (2.20) but, now
considering the material parameters for a different medium. Here,
however, we choose a different path which, in our view, further un-
derlines the role of helicity within the electromagnetic theory. The
analysis is adapted from Contribution VIL

Even though the derivation in the previous Subsection is elegant
in its form, it is not applicable to any particular realistic problem.
When dealing with optical problems, at least one of the symmetries
of relativity is broken. This is just because, in common situations,
electromagnetic waves interact with samples which, of course, are
less symmetrical than vacuum itself. In particular, all problems of in-
terest consider the presence of some medium different from vacuum.
So, at this stage, we may ask ourselves: does just the presence of a
medium reduce the symmetries in an optical problem? This is proba-
bly the first question we should answer before moving forward. As a
starting point, we will consider the simplest underlying medium, i.e.
one which is non-chiral, linear, static, homogeneous, isotropic and in-
finite in extension. In this context, non-chiral implies that the consti-
tutive relations do not mix electric and magnetic types of fields; linear
means that constitutive relations relate proportionally D/B and E/H;
the term static indicates that constitutive relations do not change with
time; homogeneous refers to the fact that the constitutive relations are
the same all over space; finally, isotropic indicates that constitutive re-
lations are determined by scalar functions. Such a medium, which
will in short be denoted as homogeneous, is characterized for having a
constant scalar electric permittivity, ¢, and a constant scalar magnetic
permeability, p.

3.2.1  Electromagnetic waves in homogeneous media

Let us discuss whether this kind of medium is left invariant under the
whole Poincaré group of transformations. First, the fact that such a
medium is static makes it invariant under translations in time. Then,
homogeneity implies that the medium is invariant under continuous
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translations, i.e. the response of the medium does not change from
one point to another in space. In addition, isotropy ensures that ev-
ery direction in the medium is equivalent and, thus, that it is also
invariant under rotations. Finally, we are left with Lorentz transfor-
mations. We need to check whether a medium characterized by a
constant electric permittivity, ¢, and constant magnetic permeability,
W, is left invariant when observing it from a frame of reference mov-
ing at speed —v. This situation is, of course, equivalent to being in a
frame of reference in which the medium moves at speed v. In other
words, to answer this question, we should check whether the motion
of a dielectric affects its constitutive relations. This problem was ad-
dressed by Minkowski in 1908 [40, 41], but it can be also checked
in more recent books such as the series by Landau and Lifshitz (see
Section 76 in Ref. [42]). The result is that a homogeneous medium
generally becomes bianisotropic when it moves at certain speed v.
Thus, we can conclude that such a medium is not invariant under
Lorentz transformations.

The fact that a homogeneous medium is not invariant under Lorentz
transformations indicates that it is not invariant under the whole
Poincaré group. In group theoretical terms, we say that the symme-
try group associated with the system is a subgroup of the Poincaré
group in which Lorentz transformations are not included. Such a par-
ticular way of addressing physical problems is commonly denoted
as the symmetry breaking principle and it is extensively employed in
the context of condensed matter and photonic crystals. The principle
can be compactly stated in the following terms [35, 43—48]: consider
a physical system which is described by a given group G and an external
influence reduces the symmetry from the original G to a subgroup Gi C
G. Then, the subgroup Gi can be used to study the properties of the new
modified system. In particular, the generators and Casimir operators of the
subgroup will provide conserved quantities and the UIRs will determine
the new wave functions or, at least, some of their properties. In our case,
the physical system of departure are electromagnetic waves and G
is the Poincaré group. Thus, following the symmetry breaking prin-
ciple, to study the properties of electromagnetic waves propagating
in homogeneous media, we should analyze the subgroup G; which
does not include Lorentz transformations. Following the notation of
Ref. [48], the group generated by the set {Py, Pi, Ji} will be denoted as
P . Note that the subgroup of time translations T, generated by {Po},
commutes with the Euclidean group in three dimensions E(3), gener-
ated by {P;, Ji} (see Table 2). As a result, we say that P, is isomorphic
to the direct product of two of its subgroups, i.e. P;; = E(3) x T [49].

On the other hand, P;; has three Casimir operators, i.e. the gen-
erator of time translations, Py, a magnitude proportional to helicity,
j- P, and the square of linear momentum, P? = P - P [48]. This implies
that every basis vector associated with the UIRs of P;; must be an
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eigenstate of these three operators. By denoting as ®7(r, t) a generic
vector belonging to the invariant vector space, we have that:

Po D (1, 1) = wdR(r,t) (3-20)
K'J-P @Y1, t) = ADR (1, 1) (3.21)
P2 @ (r,t) = K2 D(r, t). (3.22)

In principle, the possible spectra of the Casimir eigenvalues is the
following: the values of w and k are unrestricted, whereas helicity
can only take certain values A = 0,%+1,+2... and so on [19]. Like in
the case of the Poincaré group, different choices of these parameters
lead to the description of different physical systems. For instance, we
may choose the zero helicity representations (A = 0) and consider
the dispersion relation w = k?/2M + V, where M and V are real
constants. In this case, we are lead to a non-relativistic description
of a spinless particle of mass M propagating in an environment of
constant potential V. Indeed, making use of the correspondence rule
dictated by Eq. (2.49) and Eq. (2.50), it can be check that in this case Eq.
(3.20) and Eq. (3.22) represent the time-independent Schrodinger’s
equations in a homogeneous environment (for a detailed discussion
see Section 18 in Ref. [49]).

However, the description of electromagnetic waves cannot be asso-
ciated to the zero helicity representations, but to the case A = =+1.
Moreover, to recover the electromagnetic equations of motion, we
have to consider the dispersion relation of waves propagating in an
homogeneous environment, i.e. w = kn, where n = /e is the refrac-
tive index of the medium. Employing again the correspondence rule
given by Egs. (2.49)-(2.51), it can be checked that Egs. (3.20)-(3.22)
lead now to the dynamic equations of monochromatic electromag-
netic waves propagating in homogeneous media. Indeed, Eq. (3.20)
represents the monochromaticity of the fields; Eq. (3.21) represents
all four monochromatic Maxwell’s equations as expressed in Eq. (2.34)
and Eq. (2.35); and, finally, Eq. (3.22) represents Helmholtz’s equation
as expressed in Eq. (2.36). This is coherent with the previous results
obtained for vacuum, where the Casimir invariants were also related
with the equations of motion. From the derivation above it is also
clear that the role of helicity is central in the description of electro-
magnetic waves propagating in homogeneous media. Indeed, helicity
can be written as a product of two Casimirs of the group and, there-
fore, A = k'j - P can also be regarded as an invariant of P;,. This is
due to the fact that products of Casimir operators also commute with
all the generators of a continuous group.

3.2.2  Photon wave function in homogeneous media

At this point, and following the prescription of the symmetry break-
ing principle, we should be able to obtain some information about the
wave functions by analyzing the invariant vector spaces of the UIRs.
As we mentioned before, P;; can be split as the direct product of two
of its subgroups which are the Euclidean group in three dimensions,
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E(3), and the one parameter subgroup of time-translations, T. As a
result, the UIRs of P;, are constructed as the product of the UIRs of
E(3) and the UIRs of T (see pages 60 and 61 in Ref. [49]). A simpler
way of understanding this is by noting that the basis vectors (I){(‘(r, t)
are necessarily constructed as the product of a spatial function and a
temporal function. Indeed, Eq. (3.20) determines the temporal depen-
dence of the basis vectors, whereas Egs. (3.21)-(3.22) determine their
spatial form. Thus, the basis vectors of the UIRs of P;,; associated
with electromagnetic waves are constructed in the following way:

D (1, 1) = b (r)e ", (3-23)
where d)ﬁ(r) is a basis vector associated with the UIRs of the E(3)
group.

Thus, to construct the UIRs of P;; we need to check how the UIRs
of E(3) are obtained. As indicated by Wu-Ki Tung’s Theorem 9.13
[19], whenever k # 0, the basis vectors can also be constructed by
operating over a given standard vector. Such a vector is chosen to be
an eigenstate of the P operator. In addition, as the standard vector
belongs to the invariant space, it has to be also an eigenstate of the
two Casimir invariants of E(3), i.e. J - P and P2. All these constraints
imply that the standard vector is a circularly polarized plane-wave.
Fixing the direction of propagation in the OZ axis, we are finally left
with the following explicit form of the standard vector:
ﬂ?\eikz

Py, (1)

, (3-24)

where @} = (1,Ai,0)/v/2 is a normalized circular polarization vector,
with A = +1, and ko = kZ, where k = wn # 0. With the definition
above and using the expressions of the operators given by Eq. (2.50)
and Eq. (2.51), it can be checked that the following relations hold:

P2 b, (1) = ki (1) (3-25)
K- P g, (1) = Ay, (1) (3.26)
P2 i, (1) = K> i, (1). (3-27)

Now, the basis vectors of the invariant space associated with the
UIRs of the E(3) group are constructed by operating over the state
given in Eq. (3.24). Indeed, the construction of a generic basis vector,
¢p (1), is carried out by applying a rotation over the standard vector
(see Eq. 9.7-8 and Eq. 7.1-12 in Ref. [19]):

DR (1) = [Re(dr)Ry (0x)] i, (7). (3-28)

Interestingly, the rotation matrices acting over the standard vector
o , (1) are exactly the ones which previously acted over the standard
vector 11’172l (r,t) of the Poincaré group. This implies that the basis vec-
tors of the UIRs of P;, are also related with the polarization vector
&M (k) specified by Eq. (2.27). More explicitly, we have that the expres-
sion of the E(3) basis vectors is:

dp (1) = eM(k)ekr, (3-29)
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In this line, any vector belonging to the invariant vector space asso-
ciated with the UIRs of E(3) can be written as a superposition of the
states given by Eq. (3.29). As k| = k is fixed by Eq. (3.22), such a
superposition may only consider different propagating directions in
reciprocal space.

As a result, any vector belonging to the invariant space of the
P;,; UIRs that are associated with electromagnetic wave solutions, i.e.
with k # 0, may be written as:

O (x, 1) = Jdok g™ (O, b1 (5, 1), (3.30)

where dQy = sin6,d0ddy and g (0, py) is an arbitrary complex
function. Note that we would have obtained the same result just
by considering in Eq. (2.32) an amplitude f* (k) = (27)*/?[k|28(/k| —
wn)g? (0, i), i.e. by considering monochromatic plane-waves with
a fixed frequency w in the Fourier decomposition of the RS vector. In
other words, the state given by Eq. (3.30) is nothing but an abstract
form of the monochromatic RS vector. This is in agreement with the
fact that no Lorentz transformation is applied in Eq. (3.28), in contrast
with the expression given by Eq. (3.12). As we have previously shown,
the presence of T, (&) modifies the frequency of the electromagnetic
waves through the relation specified by Eq. (3.16). In the case of P;;,
the basis vectors are constructed just by applying rotations to the stan-
dard vector and, thus, all the plane-waves in the superposition share
the same frequency. This is related with the fact that Py is a Casimir
invariant of P;;, but not of the Poincaré group.

Summing up, we have shown that the description of electromag-
netic waves in homogeneous media is also possible through the the-
ory of group representations. Following the symmetry breaking prin-
ciple, we have shown that such a description must be based on the
P;, subgroup of the Poincaré group which does not include Lorentz
transformations. In particular, we have shown that the Casimir oper-
ators Py, A and P? can be associated with the equations of motion
of monochromatic electromagnetic waves. Moreover, we have also
reached to the conclusion that the basis vectors of the UIRs of P;, are
related with the monochromatic RS vector. Thus, we may expect the
monochromatic RS vector to be a useful tool in the study of the prop-
agation of electromagnetic waves through matter. In the next Subsec-
tion we show that, by properly fixing the complex function g* (0, d)
in Eq. (3.30), we can construct different monochromatic electromag-
netic wave solutions [15, 50]. We will also show that the monochro-
matic RS vector plays a fundamental role in classical (Chapters 4 and
5) and quantum (Chapter 6) electromagnetic scattering theory.

3.3 MONOCHROMATIC ELECTROMAGNETIC WAVE SOLUTIONS

In the previous Section we have shown how helicity is intimately re-
lated with space-time symmetries. In particular, we have shown that
it emerges as a Casimir invariant of both Poincaré and P;; groups.
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In addition, we have found that different forms of the RS vector ex-
pressed in Eq. (2.17) and Eq. (2.33) are also associated with the UIRs of
such symmetry groups. In what follows, we show how the results of
the previous discussion may also be useful for the construction of par-
ticular electromagnetic wave solutions. As we will mainly deal with
the propagation of electromagnetic waves in material environments,
we focus on the vector field given by Eq. (3.30). As we show next, dif-
ferent choices of the complex amplitude g™ (0, i) lead to different
electromagnetic wave solutions. In particular, we discuss the construc-
tion of solutions which are eigenstates of maximal sets of commuting
operators of P;;. As 153 and P? are proportional for electromagnetic
wave solutions, we just consider P2 in the following discussion.

3.3.1 Plane-waves

Let us first consider the set of commuting operators: (A, P2, P, ]Sy 1
The construction of monochromatic plane-wave solutions which are
eigenstates of the aforementioned operators is reached by choosing
the amplitude function:

9" Ok, bx) = (sin8)'5(0x — 0)8(dpx — ), (331)

where 6 here represents the Dirac delta function. This form of the
amplitude results in an electromagnetic wave solution of the form:

@y (r) = (6, ek, (3:32)

where the polarization vector is specified by Eq. (2.27). Due to the
general properties of the state given by Eq. (3.30), it is not necessary
to show that the solution specified by Eq. (3.32) is an eigenstate of
{A, P2} with eigenvalues {A, k2}. However, it can also be checked that
it is also an eigenstate of the linear momentum components:

P, @} (r) =ksinBcos d @} (r) (3.33)
13y d)f;(r) = ksin 0 sin (I)l)g(r) (3-34)
P, @} (r) = kcos B @ (r). (3.35)

Note that the eigenvalue of the P, operator can be computed in terms
of the operator P2 — P2 — 155.

3.3.2 Bessel beams

Bessel beam wave solutions are eigenstates of the set {A, f’z,ISZ,TZ}
and are constructed by choosing the amplitude function [15]:

g™ (01, b)) = (sin0) ' 5(0y — B)et™Px, (3.36)
By substituting the amplitude given above in Eq. (3.30), one obtains
the following abstract form of Bessel beams:
27

O () = L ddpic €™ [R, () Ry (0)] 0162 (337)
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It can be noted that the complex exponential amplitude makes the
solution be an eigenstate of |, operator. Indeed, operating with the
rotation operator R., one gets:

27 .
Ro(o) @}, (1) = JO ddy €™k [R (i + )Ry (8)] 11he™ . (3.38)

And, by making the change of variable ¢’ = ¢ + «, it can be checked
that [51]:

Ro(a) @} (1) = e ™M@} | (1) (3-39)

Moreover, the presence of the delta function in Eq. (3.36), makes the
electromagnetic wave solution be an eigenstate of P, operator with
eigenvalue k, = k cos 0.

Now, to obtain the coordinate space representation of the Bessel
beam solution, we should carry out the integration indicated by Eq.
(3-37). To that end, we should expand the plane-wave exponential
term in cylindrical waves (see Section 6.10 in Ref. [52]):

e*r= 3 iMn(kp)elM (PP ez, (3-40)

n=—oo

In the expression above, {p, d,z} refer to the real space cylindrical
coordinates, k¥ = k? — k2 and J,,(x) is the Bessel function of the first
kind of order n. The result is conveniently expressed in terms of the
eigenvector of the S, operator given by Eq. (2.37): 1 = (& +1i0)/v?2,
# = (R —1i0)/v2 and 2. Tt is important to note that the components
of a generic vector field in this basis are obtained from the Cartesian
components in the following way: Vi = (Vx —1iVy)/ V2, Ve = (Vg +
iVy)/V2 and V,. Taking all this into account, the integral specified by
Eq. (3.37) results in:

ez | k .
OF (p, §,2) = —(iMm)e == | (7\+ kz) ]m1(ktp)e“m”¢}

oz | k :
035,21 = (e [ (A=) e gl

@Xp,0,2) =~ V2 () Tmllp)e ™| G

From the expressions above, it can be explicitly computed that the
wave solutions are eigenstates of the total angular momentum oper-

ator TZ =0,+8, operator, where L, = —104. Indeed, Bessel beam
wave solutions fulfill:
P, (Dﬁzm(r) =kcos 0 d)ﬁzm(r) (3-42)
Jo @F (1) =m @F . (r). (3.43)

3.3.3 Multipolar beams

Multipolar beams are constructed as eigenstates of the set (A, P2,§2, TZ}
of commuting operators. And, they can be constructed by choosing
the following amplitude function (see Eq. 9.8-6 in Ref. [19]):

*

6 (B, &) = | D) (1,04, 0)] (3.44)
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where Dj;n,m(oc, B,v) represents Wigner’s rotation matrix. The use
of the amplitude above leads to the construction of vector fields with
total angular momentum eigenvalue j(j + 1) and z component of total
angular momentum eigenvalue m.

It is also possible to build a coordinate space representation of mul-
tipolar beams by expanding the plane-wave term in scalar spherical
harmonics, Yjm (0, ¢). Such an expansion can be found, for instance,
in Section 8.7 of Ref. [19]. Making use of the relation of scalar spheri-
cal harmonics with Wigner’s matrices and by carrying out the corre-
sponding integrals, one finally retrieves an explicit expression of the
multipolar beams [53]. However, at this point, our approach will de-
viate from such a way. We choose to make use of the specific notation
introduced in Jackson’s book [12]. We do this to facilitate the follow-
ing discussions of Chapter 4, where this nomenclature is going to be
extensively employed. Indeed, Jackson defines the following vector
spherical harmonics to expand the electromagnetic field radiated by
a generic localized source (see Eq. 9.119 in Ref. [12]):

1 .

X(0,¢) = G 1)LY)m(9,<I>), (3-45)
where L represents the orbital angular momentum operator previ-
ously defined in Eq. (2.51).

Even if the expression above may seem a bit obscure, it clarifies
if we compute the components of the vector spherical harmonics in
the {1, #, 2} basis. In this basis, we are lead with the following explicit
expressions for the components of the vector spherical harmonics:

X(0,§) = \/ bt ”21].)(?;1“; Ty, i6,0) (3.46)
—— :
xr(e,cb):\/ I i (0,0 G47)
X. (0, ) = ————Y; (6, d). (3.48)
ViG+1

Due to the properties of the scalar spherical harmonics (see Eq. 3.53 in
Ref. [12]) it is direct to check that vector spherical harmonics given by
Eq. (3.45) are eigenstates of the |, operator. In addition, the presence
of the specific coefficients in Egs. (3.46)-(3.48), makes the X(6, ¢) vec-
tor functions also be eigenstates of the J operator. This property can
be understood by identifying such numerical factors as the Clebsch-
Gordan coefficients associated with the coupling of orbital and spin
angular momenta in vector fields [54].

On the other hand, the functions given by Eq. (3.45) are not, by
themselves, solutions to Helmholtz’s equation, i.e. eigenstates of the
P2 operator. They have to be multiplied by an specific radial function
fj(r) which fulfills the following differential equation:

d2f:(r)  2df;(r) iG+1)
dr)z I ér {kz_ 2 }fjm:O’ 049
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where k? is the eigenvalue of the P? operator. Spherical Bessel func-
tions constitute a complete set of solutions to the differential equa-
tion given by Eq. (3.49). In the next Chapter, depending on whether
we describe incident or scattered electromagnetic fields, we will em-
ploy different linear combinations of such functions. However, for the
time being, let us just stick with the general case and assume that a
solution to Helmholtz’s equation can be written as:

Mjm (r) = f5(r)X(6, ). (3.50)

Due to the arguments given above, we have that such a vector field is
an eigenstate of the set (P2,§2, TZ}.

However, it can be shown that the vector function given in Eq. (3.50)
is not an eigenstate of the helicity operator for monochromatic fields,
i.e A = k"'Vx. This can be explicitly checked by computing the curl
of M (r). Taking this into account, we can define a different vector
field exactly as

Njm(r) = %V X Mjm (1). (3.51)
The pair of solutions Mj, (r) and Njn (r) are usually denoted in the
literature as Hansen multipoles. And, as the helicity operator com-
mutes with all the operators we are dealing with, Nj,(r) is also an
eigenvector of the set {?Z,jz,jz} and with the same eigenvalues as
M; . (r). Moreover, it can also be checked that Hansen multipoles are
divergenceless [12, 54], which implies that for these fields the follow-
ing operator relation holds: A? = %IA’Z = fi, where 1 is the iden-
tity operator. In other words, the square of the helicity operator for
monochromatic and divergenceless vector fields acts as the identity.
This particular feature permits us define multipolar beams with well-
defined helicity by taking the following linear combinations:

1
V2

DN (1) = —= [Njm (1) + AMjn (r)] - (3.52)

3.4 SUMMARY

In Section 3.1, we have studied the theory of unitary representations
of the Poincaré group and we have seen that helicity emerges as a
Casimir operator for the massless and discrete-spin representations.
In addition, we have shown that Maxwell’s equations and the wave
equation in vacuum can be derived from group theoretical principles.
Furthermore, we have constructed the invariant space associated with
the UIRs of the Poincaré group and we have shown that it is directly
related with the RS vector, F(r, t). Then, in Section 3.2, we have fo-
cused on the propagation of electromagnetic waves through material
media, identifying the subgroup P;; as the appropriate symmetry
group for our study. We have seen that helicity is also a Casimir op-
erator of this group and that time-independent Maxwell’s equations
and Helmholtz’s equation emerge from similar group theoretical ar-
guments. For completeness, we have constructed the invariant space
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associated with the UIRs of P;; and we have shown that it is asso-
ciated with the monochromatic RS vector, F(r, w). Finally, in Section
3.3, we have applied general symmetry arguments discussed in the
previous Section to the construction of specific monochromatic elec-
tromagnetic wave solutions.






RIEMANN-SILBERSTEIN VECTOR IN SCATTERING
THEORY

In this Chapter, we study the application of the Riemann-Silberstein
vector to linear electromagnetic scattering theory. First, we introduce
the general framework of scattering theory and define basic concepts
such as the scattered energy, scattered helicity or extincted power for
an arbitrary sample. Then, we delve into the study of dual spherical
dielectric systems and show that their existence is highly restricted
when dealing with lossy dielectric materials. We also study the lim-
itations of building antidual samples from natural materials. Finally,
we show that there exist general relations between integrated magni-
tudes and local densities for cylindrically symmetric samples.

Some analytical expressions of Section 4.1 have been adapted from
Contributions III and IV. Derivations within Section 4.2 are based on
Contributions II, III, IV and V. Finally, Section 4.3 is adapted from the
results reported in Contribution VI.
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4.1 CLASSICAL ELECTROMAGNETIC SCATTERING THEORY

Classical electromagnetic scattering theory is a relevant physical frame-
work in which we can put in practice some of the mathematical con-
cepts we have discussed in Chapter 3. In this thesis, we will refer as
scatterer to a finite object whose size and shape are determined by
sharp boundaries. Excluding the boundary itself, the two regions of
space involved in the problem are considered to be homogeneous.
In addition to this, as we will only consider linear media with time-
independent constitutive relations, the frequency of electromagnetic
waves is preserved through the scattering process. Consequently, all
the fields in the problem are monochromatic, i.e. they have a fixed
time dependence of the type e *“!. These general features already
suggest that P;; symmetry group may play a relevant role in linear
electromagnetic scattering theory.

Within linear electromagnetic scattering theory, solutions are con-
structed in the following particular way: first, one proposes a solution
to the Helmholtz’s equation inside and outside the scatterers, with
free coefficients; then, with the aid of boundary conditions, those free
coefficients are fixed. The same procedure is applied to build solu-
tions of electromagnetic waves propagating through arbitrary piece-
wise homogeneous media. The technique, of course, it is not new. For
instance, the solution for the scattering of a homogeneous sphere illu-
minated by a plane electromagnetic wave was found by Gustav Mie in
1908 [21, 55]. However, our previous analysis permits us to identify
electromagnetic waves with space-time symmetries and, thus, solu-
tions will be asked to fulfill Egs. (3.20)-(3.22) in each region. This dif-
fers from the conventional approach in the fact that we may express
the wave solutions in terms of the monochromatic RS vector and not
as a function of the usual electric and magnetic fields. As we will see,
this particular approach has certain important advantages. In words
of J. A. Stratton (see Section 12, Chapter I in Ref. [52]): The procedure
has no apparent physical meaning but frequently facilitates analysis.

In contrast to Stratton’s thoughts, we have just shown that the
monochromatic RS vector does have a clear physical interpretation.
In the upcoming, we show how it facilitates analysis within linear
electromagnetic scattering theory.

4.1.1  General framework

The general situation considered in linear electromagnetic scattering
problems is depicted in Fig. 4.1. There, a given incident electromag-
netic wave scatters off a sample which, in turn, emits a scattered elec-
tromagnetic field. The black arrows represent the directionality of the
fields, the green color represents the frequency (which is conserved)
and the red/blue rotating arrows represent the polarization vector
associated with each spatial Fourier component of both incident and
scattered waves. Moreover, we also consider that a certain number of
detectors are placed at a fixed distance |R| with respect to the center of
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Figure 4.1: Generic scattering set up. An incident electromagnetic wave illu-
minates a samples which, in turn, emits a scattered wave. Detec-
tors are placed in all directions at a fixed distance, [R|, from the
origin which is large with respect to the wavelength of the fields
(KIR[ > 1).

the sample. Most commonly, this distance is large with respect to the
wavelength of the fields, k|R| > 1 and, thus, results within scattering
theory are usually employed to replicate experimental measurements
carried out far from the samples. Just to be precise, by detector we gen-
erally mean a set of photo-detectors and wave plates that may serve
for the analysis of the properties of electromagnetic waves. If the de-
tectors are small enough, for instance if their area fulfills A <« IR|%,
the field measured by each detector can be associated with a single
spatial Fourier component.

Regarding the incident field, one may well choose any type of il-
lumination as long as it is a solution of Helmholtz’s equation. Of
particular interest are those which have a preferable propagation di-
rection such as plane-waves or Bessel beams, as they represent more
closely experimental situations in which a source of light, such as a
laser, illuminates a sample. The most general incident propagating
electromagnetic field can be conveniently expressed in the following
form [12]:

Z Cfm N) 1)+ C M’ (1) (4.1)
iZH; ( Zce M’ 1)+ Ch, N’ (1), (4.2)

where Z is the impedance of the surrounding medium; also, C).em and
CjT, are the electric and magnetic expansion coefficients for the in-
cident field and the summations include the terms j = 1,2,3, ... and
m = —j,—j+1,..,j — 1,j. Hansen multipoles have been chosen to be
of the form MJ _(r) = j;(kr)X(6,$) and N} (r) = k'V x M]_ (),
where the radial part is determined by the spherical Bessel functions
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of the first kind, j;j(kr). The reason to employ spherical Bessel func-
tions of the first kind has to do with the behaviour of the incident field
in the origin, O, where the sample is placed. Most generally, to repre-
sent feasible physical situations, the incident field cannot diverge at
the position of the sample and, thus, spherical Bessel functions of the
second kind, y;(kr), should be avoided in this case. Summing up, by
fixing different expansion coefficients in Eq. (4.1), one may represent
different types of incident illuminations.

A relevant type of illumination that will be extensively employed in
this thesis is one which has a well-defined helicity, A. In terms of the
monochromatic RS vector, this implies that the illumination has a van-
ishing amplitude for the —A component or, in other words, F~*(r) = 0.
The easiest way of translating this constraint into the electric and mag-
netic expansion coefficients is just by explicitly computing the linear
superpositions of Eq. (4.1) and Eq. (4.2):

€

FM(x) = /5 [Ee(x) = MZH (1)

Njm(6) AMgm(r)] (4-3)

zx/E;(Cfm—Aijm) [ 7

where ¢ is the electric permittivity of the surrounding medium. Thus,
to fulfill the condition F_»(r) = 0 at every point of space, the only
possibility is that C§;;, = ACj},. An important example of this type of
illumination is a circularly polarized plane-wave propagating in the
OZ direction. This type of field has already been introduced in Eq.
(3.24) and it is usually represented by the electric field: E;(r) = 0*e'*?,
with @* = (1,A1,0)/v2. Making use of the properties of the vector
spherical harmonic components in Egs. (3.46)-(3.48), it can be shown
that for this kind of illumination Cfm = 7\C]T§§1 = V/27(2j + 1)0ma
(see Section 3, Chapter 10 in Ref. [12]).

Regarding the scattered field, an expansion similar to the one given
by Egs. (4.1)-(4.2) may be done. However, in this case, as the field is
not evaluated at the origin, both j;(kr) and y;(kr) may be used to rep-
resent scattered waves. Due to their appropriate behaviour at large
distances, the spherical Hankel function of the first kind, h;” (kr) =
jj (kr) 4+ 1y; (kr), is most commonly employed for this task. As a result,
the electromagnetic field scattered by a completely generic linear sam-
ple may be expanded as follows:

Es(r) = Z ‘ijN?m(r) + ﬁij]hm(r) (4-4)
jm
ZH, (r) = |V x Eur), (4.5)

where o5, and Pjm are the electric and magnetic expansion coef-
ficients for the scattered field and the summations also include the
termsj =1,2,3,... and m = —j,—j +1,...,j — 1,j. Hansen multipoles
are now written in terms of the spherical Hankel function of the first
kind, i.e. MJ}, (r) = h;”(kr)X(e,q)) and NJ}, (r) = k 'V x M} (r). In
general, the scattered fields of a generic scatterer contains both helic-
ity components. Thus, in principle, we should consider the positive
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Figure 4.2: a) Sketch of a dual scatterer, i.e. one which preserves the helic-
ity of an incident electromagnetic wave. b) Sketch of an antidual
scatterer, i.e. one which completely flips the helicity of an inci-
dent electromagnetic wave.

and negative helicities of the scattered electromagnetic field. With the
aid of the RS vector, these can be computed as:
A €

F)Mr) = 3 [Es(r) + MZH,(r)]

h by h
NI (1) + AMjm(r)] 46)

:\/Ejzm(ajm+7\[5jm) [ \ﬁ

where the symbol A = +1 is employed to differentiate the scattered
helicity components from the incident helicity components.

Finally and for completeness, we may also compute the scattered
electromagnetic field for an arbitrary scatterer illuminated by a beam
with a well-defined helicity A. For that aim, it is convenient to define
the ratios between the expansion coefficients, i.e. ajm = &jm/ C)-em
and bjm = Bjm/ C)T‘;l. In the particular case of spherical scatterers,
—@jm and —bj, correspond with the Mie coefficients [56]. Imposing
the constraint Cfm = ?\ijm over the incident illumination, we are
left with the following suggestive form of the scattered field helicity
components:

NI, (1) + AMD, (1
V2

F)Mr) = \/EZ CSim (@jm + AAbjm) [ ] . (47)
jm

Given the expression above, note that we can split the scattered field
into its helicity conserved (A = A) and helicity flipped (A = —A) com-
ponents. Taking this into account, we can define two very specific
types of scatterers, i.e. dual and antidual scatterers. Dual scatterers
are those which conserve the helicity of the incident field and, thus,
only emit in the same helicity component (see Fig. 4.2a). On the other
hand, antidual scatterers are those which completely flip the helic-
ity of the incident field and, consequently, only emit in the opposite
helicity component (see Fig. 4.2b). From the expression of the scat-
tered field in Eq. (4.7), it can be seen that dual scatterers are obtained
under the condition aj;,, = bjmn, whereas antidual scatterers emerge
whenever aj, = —bjm.
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4.1.2  Energy conservation law

Since we are considering that all the fields have a time-dependence
e '@t we should employ the monochromatic version of Poynting’s
theorem to derive the energy conservation law. Moreover, the scatter-
ing problems we are interested in do not contain any free charges,
which implies that the theorem results in the following simplified
relation (see Section 9, Chapter 6 in Ref. [12]):

—% dS S(r)-A = ZwJ dr Im [u, (1) —ue (1)1, (4.8)
S \%

tor, Ue(r) % [E(r) - D*(r)] the electric energy density and um(r) =

+ [B(r) - H*(r)] the magnetic energy density. The result given by Eq.
(4.8) indicates that, in the absence of free charges, the flux of the
Poynting vector over a closed surface S, with normal vector #, is re-
lated with the imaginary parts of the local energy densities in the
volume V enclosed by the surface.

The usual way of employing Poynting’s theorem in linear electro-
magnetic scattering theory is by evaluating the integral given in the
left hand side of Eq. (4.8) over a closed surface S that contains the
scatterer (see Fig. 4.3). In this line, note that if the scatterer is embed-
ded in a lossless surrounding medium, the integral in the right hand
side of Eq. (4.8) is reduced to the volume of the particle, V},. Further-
more, for scatterers with fixed electric permittivity, ¢, and magnetic
permeability, u,, we arrive to the following expression of the flux of
the Poynting vector:

where S(r) = ;Re E(r) x H*(r)] is the time-averaged Poynting vec-

_fi; dS S(r) - — wIm[ep]J dr [E(r) + wIm[up]J dr [H(r)1.
S 2 Vo 2 Vi

(4-9)

-
v

Figure 4.3: Integration surfaces and volumes for a linear scatterer embed-
ded in a lossless medium. S is a closed surface that contains the
particle and 7 is its normal vector. V is the volume enclosed by
surface S and V), is the volume of the scatterer.
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From the result in Eq. (4.9) we can infer that the flux of the time-
averaged Poynting vector over a surface S that contains the scatterer
is directly related with the absorption in the particle. Indeed, if the
particle is lossless, i.e. Im[ep,] = Im[u,] = 0, then, the flux of the
time-averaged Poynting vector vanishes.

Consequently, it is natural to evaluate the power absorbed by a
linear scatterer as (see Section 4, Chapter 3 in Ref. [14]):

Wq = —% dS S(r) - L. (4.10)
S

This implies that, for any linear scatterer, we may compute the ab-
sorbed power in terms of the Poynting vector evaluated over a closed
surface outside the scatterer. As the fields outside are computed as
the superposition of the incident and scattered electromagnetic fields,
i.e. E(r) = Ei(r) + Es(r) and H(r) = H;(r) + H;(r), we may expand the
time-averaged Poynting vector outside the scatterer as follows:

S(r) = Si(r) 4+ Ss(r) + Sext (1), (4.11)

where the terms in the right hand side are

1

Si(r) = 5Re [E;(x) x H (x) (4.12)
Ss(r) = %Re [Es(r) x H (r)] (4.13)
Sext(r) = %Re [Ei(r) x H(r) + Es(r) x Hi (r)]. (4.14)

However, we should note that S;(r) is constructed from a solution of
Maxwell’s equations in the absence of the scatterer. Thus, from Eq.
(4.9) it can be seen that, if the surrounding medium is considered to
be lossless, the flux of this component across surface S vanishes, i.e.
§S ds Si(l') - =0.

As a result, we are left with the following general statement of the
energy conservation law in linear electromagnetic scattering theory:

Wext = Wa + Ws: (415)

where Wyt and Wy are usually denoted as the extincted and scat-
tered powers, respectively, and are computed as:

sz—iﬁ&umﬁ (4.16)
Wi :§ dS S¢(r) - 1. (4.17)
S

The energy conservation law encoded in Eq. (4.15) can be understood
in different ways, but let us briefly state the interesting interpretation
proposed by Bohren and Huffman [14]. Indeed, due to the analyti-
cal form of Eq. (4.14), the extincted power can be understood as the
power removed by the scattered field from the incident field by inter-
ference. In this line, Eq. (4.15) would just represent the fact that all
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such power is then converted into absorption in the particle and scat-
tering in all directions. This interpretation is actually strengthened
when expressing Sex¢(r) in terms of the monochromatic RS vector:

Sext(r) = 5 1m [f (1) x (B (1)* ~ F (1) x (B (1)), (419
where n is the refractive index of the surrounding medium and we
have employed the definition of the monochromatic RS vector given
by Eq. (2.33). When writing the extinction in terms of the RS vector,
it is clear that it only considers the power transfer between the same
helicity components. The absence of cross helicity terms in Eq. (4.18)
reinforces Bohren and Huffman’s idea of extinction emerging as an
interference between the incident and the scattered electromagnetic
fields.

Regarding the scattered power specified by Eq. (4.17), it is inter-
preted as the total power emitted by the particle in all directions.
Moreover, W is experimentally associated with the power measured
by the detectors depicted in Fig. 4.1. Thus, it is most commonly eval-
uated far from the scatterer. Taking the appropriate limits of the
Hansen multipoles far from the sample [57], it can be checked that, in
this region, the scattered electric and magnetic fields fulfill ZH;(r) =
? x Eg(r), where t is the unitary vector in the radial direction. As a
result, far from the sample, we can generally rewrite the scattered
power in terms of the vector: Ss(r) = n'us(r)#, where ug(r) is the
sum of the electric and magnetic energy densities associated with the
scattered electromagnetic field. In other words, far from any linear
sample, Ss(r) always points in the radial direction and its modulus
is proportional to the energy density. Without any loss of generality,
the local energy density can be expressed in terms of the RS vector
defined in Eq. (4.6), leading to the following form of the scattered
power:

1
W =4anIZJdQ IS (R], 6, )1+ [F5 (IR0, $)1*],  (4.19)

where the integrating surface S has been considered a sphere of ra-
dius |R|, such that k|R| > 1. Moreover, dQ)Q = sin98d0d¢ and the
integration domains are 0 € (0,7t) and ¢ € (0, 2m).

As, far from the sample, the field is composed of plane-waves prop-
agating in the radial direction, we can interpret the expression given
by Eq. (4.19) in terms of the Stokes parameters in the circular po-
larization basis [12]. Indeed, W can be associated with the measure-
ment of the local Stokes parameter I = [F{ (|R|, 6, $)> +[F; (IR, 0, )]
(sometimes it is also denoted as s¢) in the detectors placed at a fixed
distance |R|, as depicted in Fig. 4.1. In this line, Eq. (4.19) indicates
that such measurements must be carried out in detectors covering all
the possible scattering angles. Wy is finally obtained by integrating
all the measurements of parameter I at each angle (6, ¢) [58].
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4.1.3  Scattered helicity and helicity expectation value

In line with what we have just discussed, there is another magnitude
which may also be computed in terms of the RS vector. Indeed, in
Eq. (4.19) we have computed the scattered power as the sum of the
power associated with positive and negative helicity components of
the electromagnetic field. With the same detection system, we may
also compute the difference in power between the positive and nega-
tive helicity components. This leads to the definition of the scattered
helicity:

Ao = g RE [ 4Q [ELIRL0, )P~ IF, (R,8,6)%].  (320)
nw

Exactly as we have associated a Stokes parameter with the expression
of the scattered power, we can similarly associate the local Stokes
parameter V = IF;“(IRI,E),(I))I2 — [F; (IR], 6, $)|? (sometimes it is also
denoted as s3) to the measurement of the scattered helicity. In this
line, the expression given by Eq. (4.20) indicates that the scattered
helicity, A, is obtained by summing up all the measurements of the
Stokes parameter V at each scattering angle (0, ¢) at a distance |R| far
from the optical sample.

A magnitude of interest is built when considering the unit-less ratio
of the scattered helicity and the scattered power. This is what we
call the normalized helicity or the helicity expectation value and it is
defined as:

A) = = .
™ =W, = Tan [FE(R,6,4)7 + Fs (K, 0, )7

(4.21)

Again, note that this is a physical magnitude which can be quantified
through the measurement of I and V Stokes parameters. Furthermore,
it is a bounded observable, i.e. (A) € (—1,1) and, if the incident beam
has a well-defined helicity, its extreme values correspond to a dual
and an antidual scatterer. Employing the expression of the RS vector
given by Eq. (4.6), we obtain the following general form of the helicity
expectation value in terms of the expansion coefficients:

</\> = Zim (|(ij + B]’m|2 - |(x)'m - ﬁjm|2)

ij (|Ocjm + Bjm|2 + |0()'m - Bjm|2)

where we have employed the orthogonality relations of the Hansen
multipoles [12, 57]. Furthermore, if we fix the incident illumination

to a beam with-well defined helicity (C’,, = ACj) and rearrange the
terms given by Eq. (4.22), we are left with the following form:

(4.22)

ij\Cjemlz Re(a?, b; )

jmYjm
2 im CEnl? (lajml? + [bjml?)

In this last expression, the signs have been chosen such that (A) = +1
implies a dual scatterer and (A) = —1 implies an antidual scatterer.
The expression given by Eq. (4.23) (or similar versions) is widely em-
ployed in scattering theory as it helps identify important features of
the scattered fields.

(A) =2

(4-23)
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At this point, let us discuss a particular example and show how
to employ the monochromatic RS vector in the study of scattering
problems which already have a solution in terms of the usual electric
and magnetic fields. Our derivation will be based on a problem with
analytical solution, but please note that exactly the same procedure
may also be considered for problems with numerical solutions. In
particular, we will construct an analytic expression of the helicity ex-
pectation value, (A), for isotropic spherical scatterers whose response
may depend on the helicity of the incident illumination. In short, we
call this kind of samples chiral and they are characterized for having
the constitutive relations specified by Egs. (2.11)-(2.12). The solution
to such a scattering problem is given in Section 3, Chapter 8 of Ref.
[14] in terms of the scattered electric and magnetic fields.

To begin with, it is important to note that the incident field cho-
sen for the solution given in Ref. [14] is a linearly-polarized plane-
wave. As we are interested in building a magnitude, (A), which deter-
mines whether a sample preserves or not the helicity of the incident
beam, we should consider the illumination to be circularly-polarized
instead. An incident linearly-polarized plane-wave can be split as a
superposition of left-polarized (m = 1) and right-polarized (m = —1)
plane-waves. In addition, a cylindrical sample preserves the eigen-
value of the z component of the total angular momentum, m. Thus,
to compute the scattered field associated with an incident circularly-
polarized field with helicity A, we just need to consider the compo-
nents of the scattered field given in Ref. [14] that have a fixed value
of the total angular momentum, m = A [54, 59]:

Es(r) =AY K-{ [a’ O —Aiﬁc-] @\ ()
j ) \ﬁ ) )

+ [‘”\_ﬁbﬂ <Dj£(r>}, (4-24)

where aj,b; and c; are the Mie coefficients for chiral spheres [60]
and Kj = V,/2m(2j + 1) is the expansion coefficient for an incident
circularly-polarized plane-wave. Note that the magnetic field is com-
puted as iZH;(r) = k7 'V X E(r) and the multipolar fields with well-
defined helicity are built as d)]?‘m(r) =27V 2[N}11n(r) + 7\M}1m(r)].

With the solution given by Eq. (4.24) we can construct the RS vector
associated with the scattered field of a chiral sphere. In particular, we
get the following form of the helicity components of the scattered
field:

5 < [as+b .
FA (r) = —\E; Kj{(xw\) [a)ﬂ]—mﬁcj] @3 (1)

+(A— 7\) [Gj\;zbj ] q);{‘(r) }, (4.25)

where, again, A represents the helicity components of the scattered
field. By considering the helicity conserved (A = A) and helicity flipped
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(A = —A) of the scattered field, we are finally left with the following
expression of the helicity expectation value:

552+ 1) {Re(arb;) + lej|? + Aml(a; + bj) el }
Z)(Z) +1) {‘aﬂz + |b]'|2 +2|Cj|2 —I—Z?\Il’l’l[(ﬂi —|—b]')*C]']}

Ny =2 . (4.26)
Let us highlight the generality of the expression given above. In its
full form, as we have just mentioned before, it represents the helic-
ity expectation value for isotropic chiral spheres under circularly-
polarized plane-wave illumination. However, note that imposing c; =
0 in the solution given by Eq. (4.24) the scattered field of both con-
ventional spheres and core-shells is recovered (see Section 3, Chapter
4 and Section 1, Chapter 8 in Ref. [14]). Thus, the expression of (A)
given in Eq. (4.26) applies to, at least, three different types of systems:
conventional spheres, core-shells and chiral spheres.

A few physical conclusions may be extracted from the expressions
given by Egs. (4.25)-(4.26). First, note that the scattered fields for a
generic chiral sphere depend on A, i.e. the helicity of the incoming
electromagnetic field. This is the reason why this parameter is also
present in the expression of the helicity expectation value in Eq. (4.26).
Second, note that regardless of the sphere being chiral or not, the du-
ality condition is a; = b;. Under this condition the helicity expecta-
tion value given by Eq. (4.26) yields (A) = 1. Third, from the expres-
sion of the monochromatic RS vector in Eq. (4.25) we may also note
that the antiduality condition must be 2Aic; = aj + bj, as it is the con-
dition that vanishes the components of the scattered field with same
helicity. In this line, note that under this other condition the helicity
expectation value in Eq. (4.26) yields (A) = —1. In the case of non-
chiral spherical particles (c; = 0), the antiduality condition reduces
to a; = —bj. This last condition only applies for conventional spheres
and core-shells.

4.2 DUALITY, ANTIDUALITY AND ENERGY CONSERVATION

In the previous Section, we have shown that the interpretation of cer-
tain physical magnitudes is simplified when employing the monochro-
matic RS vector. We have introduced the notion of dual and antidual
scatterers as those which preserve or completely flip the helicity of
the incident field (see Fig. 4.2). Also, we have shown that the RS
vector sheds light on the expressions of relevant quantities such as
the extincted and scattered powers or the helicity expectation value.
In particular, we have seen that the mapping between these theoret-
ical magnitudes and experimentally measurable Stokes parameters
is quite direct with the aid of the monochromatic RS vector. Finally,
as a practical example, we have derived an expression of the helicity
expectation value which applies to different systems.

In this Section, we employ the tools developed in Section 4.1 to
discuss the relation between dual and antidual scatterers with the
conservation of energy. As we have just discussed, many relevant
physical magnitudes defined within linear electromagnetic scattering
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theory can be related to the monochromatic RS vector. Thus, in prin-
ciple, when studying particular types of scatterers, such magnitudes
may be correlated in some way. In particular, we will show that the
presence of losses and gain in the constituent materials modulates
the possibility of building dual and antidual scatterers. We will first
discuss the case of conventional spheres as a general symptom of the
aforementioned phenomena. Then, we will show that the correlations
between dual scatterers and losses in dielectric media are also present
in other systems such as core-shells and chiral spheres. Finally, we
will demonstrate that gain is a necessary condition to build antidual
scatterers of any size and form.

4.2.1  Conventional spheres as a general trend

Let us begin by the fundamental result reported in Contribution II.
The main result of that work is to demonstrate analytically that losses
preclude the existence of spherical dual scatterers made of dielectric
materials. On the one hand, by dielectric materials, we refer to those
which do not have a magnetic response, i.e. p = 1. On the other
hand, by lossy particles we refer to those which fulfill Re(n,) > 0
and Im(n,) > 0, implying that Im(ep) = Im(nf,) > 0. As we usually
fix the sign of the frequency to be positive, the conditions above imply
that the absorbed power given by Eq. (4.10) is positive, i.e. W > 0,
for a lossy dielectric scatterer. In this setting, we showed that helicity
preservation, (A) = 1, is not reachable for lossy dielectric scatterers.

The proof is valid for conventional spheres, which implies c; = 0.
Thus, the expression of the helicity expectation value applicable to
this particular type of scatterers is:

5 5(2j + 1Re(alb;)

=2 ,
N =2 05+ 1) (gl + 1oy2)

(4-27)

where a; and b; are the usual electric and magnetic Mie coefficients.
As it can be checked, for this type of particles, the only possibility of
getting a dual scatterer is by fulfilling a; = bj. This means that for a
dual conventional sphere, the electric and magnetic scattering coeffi-
cients must be equal both in amplitude and phase [61]. However, as
it is shown in Contribution II, the condition above cannot be met for
lossy dielectric spheres due to fundamental properties of the Riccati-
Bessel functions and its derivatives. In Fig. 4.4 we show the helicity
expectation value for a Germanium-like sphere (Re(n,) = 4) embed-
ded in vacuum as a function of the imaginary part of the refractive
index, Im(n,), and the size parameter, x. The size parameter, x = ka,
is the product of the modulus of the wave vector in the surrounding
medium, k, and the radius of the sphere, a. Note that in the range
x < 1, the sphere is smaller than the illuminating wavelength. In Fig.
4.4 we show a particular example where the emergence of dual dielec-
tric scatterers ((/A) = 1) is constrained to the condition Im(n,) = 0.
Note that, as losses or gain are introduced in the system, the helicity
expectation value decreases.
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Conventional sphere  (A)

Im(n,)

i

Figure 4.4: Helicity expectation value for a conventional dielectric sphere
in terms of the imaginary part of the refractive index, Im(n;),
and the size parameter, x. The real part of the refractive index
is fixed to Re(ny,) = 4, which implies that the response is of a
Germanium-like material. The fact that x < 1 implies that the
sphere is small and, thus, its response is exclusively determined
by the dipolar Mie coefficients a; and b;. Figure adapted from
Contribution II

On the other hand, Fig. 4.4 also indicates that the emergence of an-
tidual spherical scatterers ((A) = —1) requires from optical gain, i.e.
Im(n,) < 0. This result is also general for spherical antidual scatter-
ers and it is based on symmetry arguments. Indeed, it can be shown
that an antidual cylindrically symmetric scatterer illuminated by a
plane wave propagating along the symmetry axis must have zero for-
ward scattering amplitude [62]. The argument is as follows: because
of cylindrical symmetry the scatterer must conserve the total angular
momentum of the incident plane wave and, thus, the forward scat-
tered component must have the same circular polarization than the
incident field. On the other hand, as the scatterer is antidual, the for-
ward scattered field must have the opposite circular polarization than
the incident field. As both conditions cannot be met at the same time,
the forward scattered field must vanish. This is also true for systems
with discrete rotational symmetries [63].

However, systems which have zero forward scattering when illumi-
nated by a plane-wave have problems regarding energy conservation.
The reason lies on the specific form that the extincted power adopts
under this type of excitation [64]. Indeed, the power extincted by a
sample under plane-wave illumination can be computed as [14, 65]:

27

—— Re[A] - A(r)] (4.28)

X=y :O,z:IRII
where A; = E;(r)e '*? represents the vector amplitude of an incident
plane-wave propagating in the OZ axis, As(r) = —ikrEq(r)e '*T is the
vector amplitude of the scattered field and we have used the fact that
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the irradiance of a plane-wave is |A;|%2/2Z. Finally, the expression is
evaluated at a point (x = 0,y = 0,z = |R|) far from the scatterer. The
expression given by Eq. (4.28) is usually denoted as the optical theo-
rem. From the optical theorem it is direct to check that having a zero
forward scattering amplitude, [Ag(r)] = 0 at (x =y = 0,z = |R|),
implies a null extincted power, i.e. Wexy = 0. As a result, it can
be concluded that antidual spheres under plane-wave illumination,
necessarily produce a null extincted power [64]. In other words, all
the scattered power is obtained from the optical gain of the material,
ie. Wy = =W, (see Eq. (4.15)). This means that either the absorbed
power is negative, which implies that Im(n,) < 0, or the scattered
power must vanish. Therefore, we can conclude that gain is a nec-
essary condition to build spherical antidual scatterers under plane-
wave illumination.

4.2.2  Dual dielectric scatterers and optical losses

As we have just seen, losses preclude the existence of dual dielectric
spheres. However, the previous proof only applies to conventional
spheres and, in principle, we cannot tell anything about the behaviour
of other types of lossy scatterers. To shed light on this point, we may
employ the general form of the helicity expectation value expressed
in Eq. (4.26) and identify the behaviour of lossy core-shells and chiral
spheres. This is the approach we follow in Contribution III.

In this line, we first provide the maps of the helicity expectation
value, (A), for lossless core-shells and chiral spheres (see Fig. 4.5).
The absence of losses is imposed by constraining the imaginary parts
of the different refractive indices. In particular, we have considered
that Im(n;) = 0 and Im(n,) = 0, where n; and n; are the refractive
indices of the core and the shell, respectively. Also, we have consid-
ered that Im(np) = 0 where n, = ng — Ax is the refractive index of
a chiral sphere. Here, A = £1 refers to the helicity eigenvalue of the
incident field and x determines the degree of chirality of the scatterer.
Regions in which the particles behave as dual ((A) = 1) are found
both in Fig. 4.5a and Fig. 4.5b. Also, we identify certain regions in
which the particles efficiently flip the helicity of the incident wave,
but never reaching the antidual condition (A) = —1. This, of course,
is due to the fact that the systems have no optical gain and, thus,
as we have previously shown, a complete flip in the helicity of the
scattered field is precluded by the optical theorem.

In Fig. 4.6 we show how helicity preservation is lost when intro-
ducing losses into the system. For that aim, we have reproduced the
maps in Fig. 4.5 but for non-zero values of the imaginary part of the
refractive index. Then, for each value of Im(n), we have picked the
maximum value of the helicity expectation value map, max((A)). If
helicity cannot be preserved in lossy core-shells and chiral spheres,
then, whenever Im(n) > 0, the maps should not contain any dual
region, i.e. the helicity expectation value should fulfill max((A)) < 1.
The results of these calculations are depicted in Fig. 4.6. In green,
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a) Core-shell <A>
g
=

Re(n1 )
b) Chiral sphere (A)
=

Re(ng)

Figure 4.5: a) Helicity expectation value for a core-shell without losses. The
refractive indices of the core and the shell are, respectively, ny
and n;. Size parameters of the core and the shell are x = 0.8 and
y = 1.5, respectively. b) Helicity expectation value for a chiral
sphere without losses. The refractive index of the chiral sphere
is np, =ngp —Ax, and we have fixed the helicity eigenvalue of the
incident wave to A = 1. The size parameter in this case is x = 0.8.
Figure adapted from Contribution III.

we show the case of losses being only present in the core, in other
words, Im(ny) > 0 and Im(n;,) = 0. In dashed red we plot the com-
plementary situation in which the losses are considered in the shell
instead, i.e. Im(nz) > 0 and Im(n¢) = 0. Finally, in dashed yellow
we depict the result obtained for a lossy chiral sphere in which losses
have been introduced as Im(ng) > 0. Our results indicate that losses
preclude the existence of dual dielectric scatterers beyond the conven-
tional sphere case. Some situations seem more robust to the presence
of losses, such as the case of a lossy core, however we always find
that max((A)) < 1 whenever Im(n) > 0.

Based on the analytical proof for conventional spheres and the nu-
merical results reported for core-shells and chiral spheres, we suspect
that optical losses preclude the preservation of helicity in other dielec-
tric scatterers. However, we have not succeeded in giving a general
proof for this. At least we know that this phenomenon, if present in
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Lossy core
Lossy shell
Lossy chiral

max((A))

Im(n)

Figure 4.6: Maximum of the helicity expectation value, (A), for a core-shell
and a chiral sphere with losses. We first consider the case when
losses are only introduced in the refractive index of the core,
Im(ny) > 0 (green). We also depict the result for losses being
only present in the shell, Im(n;) > 0 (dashed red). Finally, we
show the case in which a chiral sphere has losses, Im(ng) > 0
(dashed yellow). Figure adapted from Contribution IIL

other systems, must be subjected to the presence of dielectric media.
This is because lossy dual scatterers may indeed be built from lossy
magnetic media [61]. There are a few ways in which we think that a
further analysis of this phenomenon could be tackled. For instance,
the expressions of the scattering expansion coefficients may be ana-
lyzed in terms of the sources of the field (see Section 10, Chapter 9
in Ref. [12]). In particular, it could be checked whether the constrains
up = land Im(e,) > 0 have some fundamental consequences on such
coefficients. In this line, the presence of both helicity components in
the scattered might be a property of how lossy dielectric particles re-
emit the energy that they absorb. Another interesting approach may
be to study the effect of such constrains in the expression of the ab-
sorbed power given by Eq. (4.10).

4.2.3 Antidual scatterers and optical gain

As we have just shown, optical losses in dielectric materials seem to,
quite generally, prevent the existence of dual scatterers. This is a prop-
erty well understood for spheres and also numerically identified for
core-shells and chiral spheres. In this Subsection, we analyze whether
optical gain is also a necessary condition to build antidual scatterers
of other sizes and forms. The first step towards the generality of this
result can be carried out through the application of the optical the-
orem given by Eq. (4.28) to a non-spherical antidual particle. This
approach is valid to study the extincted power under a circularly-
polarized plane-wave illumination. In particular, the lack of geomet-
rical symmetries in the scatterer does not impose any constrain on
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the forward scattering amplitude which implies that, in general, we
have that |[As(r)| # 0. This may seem to indicate that the extincted
power does not vanish in the general case. However, this is not the
case. The extincted power vanishes for a generic antidual scatterer,
even if there is light scattered in the forward direction. As we show
next, under plane-wave illumination, this occurs due to the orthogo-
nality of the fields with opposite helicities. The derivation is adapted
from Contribution IV.

If a sample is illuminated by a beam with well-defined helicity
(G = ACST), such as a circularly-polarized plane-wave propagating
in the OZ direction, and has an antidual behaviour (ajm = —bjn), the
incident and scattered vector amplitudes acquire the following form:

T .. .
A= \ﬁ(x + Aig) (4-29)
= —ikr Z Cmajm [N ho(r)— AM;‘m(r)} e kT, (4.30)

As the optical theorem, given by Eq. (4.28), requires the fields evalu-
ated far from the scatterer, we have to consider the following limits
of the Hansen multipoles [57] (see also Appendix of Contribution V):

eikr (—i)j+1

h o .

k¥1g100N (r) = G +])£]m(9;¢) (4-31)
" B etkr (—i)j'H .

WM ) = ey &) 42

where we have defined the vector functions &;,,(0, ) = TVYj,, (0, d)
and 1, (6, d) = F x &m (0, d), with Yji, (0, d) the scalar spherical
harmonics. Thus, far from the antidual particle, the scattered vector
amplitude can be generally expressed as:

)C a;
lim As( — m ™
krlinoo )Zm ,/ _|_]

Note that, in the expression given by Eq. (4.33) the vectorial nature
of the scattering vector amplitude is determined by a particular lin-
ear combination of &;:, (6, ¢) and n;,,, (6, ) vectors. By analyzing the
components of such a linear combination, it can be checked that it
can be written in the following suggestive form:

[&5m (6, d) — Ainjin (6, d)] . (4.33)

Ejm (0, &) —Ainjm (6, d) = yjm (6, d) [0 —Aid], (4.34)

where y;jm (0, ¢) is a scalar function of the spherical harmonics and its
derivatives. Crucially, the optical theorem given by Eq. (4.28) should
be evaluated at a point along the OZ axis, i.e. at a point at which f = 2.
In this situation, the angular unitary vectors 8 and ¢ are indistin-
guishable from the Cartesian % and {J unitary vectors. Most generally,
the angular unitary vectors along the OZ axis can be expressed as
an arbitrary rotation of the Cartesian unitary vectors, i.e. 0 =R, (y)&k
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and ¢ = R.(v)0, with v € (0,27). This implies that the scattering
amplitude far from the sample along the OZ axis can be written as:

As(r)

(0,7)eMY [& — Aig]
x=y=0,z=IR| )% \/ﬁ Um0 )e 91, (4.35)

where we have used the fact that the vector X — Ai{ is an eigenvector
of the R, (y) rotation matrix. Finally, considering Eq. (4.29) and (4.35),
it is direct to check that A} - A((r) = 0 along any point along the OZ
axis far from the sample. Thus, for an antidual scatterer of any size
and form, under plane-wave illumination the extincted power van-
ishes, i.e. Wyt = 0, due to the orthogonality of fields with opposite
helicities.

However, the proof above is still restricted to scatterers under plane-
wave illumination. As a result, the existence of antidual scatterers
might still be subjected to a particular choice of the incident field.
Let us now show that the result is even more general and applies
to any type of incident illumination. For that aim, we should look
at a previous form of the extincted power expressed in terms of the
monochromatic RS vector, this is Eq. (4.16) and Eq. (4.18). Note that,
in Section 4.1, to define a generic antidual scatterer, we have imposed
that the incident electromagnetic field has a well-defined helicity A.
For this particular type of illumination, we have that:

Sext (1) =~ Tm [E)r) x (EX(r))"]. 436)

This enlightening relation expresses that the only helicity component
of the scattered field which contributes to the extinction is A = A. In
other words, if the sample only radiates in the opposite helicity com-
ponent, as do antidual scatterers, then, from Eq. (4.36), one has that
Sext(r) = 0. Therefore, the definition of an antidual scatterer implies,
by construction, that Wext = 0 and, thus, the presence of optical
gain in the constituent materials is a necessary condition. The proof
applies regardless of the size, form, material constituents, or, even,
the spatial shape of the incident illumination, making the demonstra-
tion completely general within linear electromagnetic scattering the-
ory. This general result is a paradigmatic example of the advantages
of employing the RS vector. The use of the monochromatic RS vec-
tor clarifies concepts and helps simplify complex calculations within
linear electromagnetic scattering theory.

Summing up, we have shown that duality, antiduality and energy
conservation are closely correlated in linear electromagnetic scatter-
ing theory. We have first discussed the case of conventional spheres as
a general trend of these phenomena. Then, we have shown that losses
in dielectric materials also impede the existence of dual core-shells
and chiral spheres. Altogether, these results indicate that the pres-
ence of losses in dielectric media preclude the construction of dual
scatterers. Finally, we have shown in full generality that the construc-
tion of antidual scatterers leads to a zero extinction condition and,
thus, requires from optical gain. We have first given a proof based on
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the optical theorem, which applies to plane-wave illumination. How-
ever, based on the expression of the extincted power in terms of the
monochromatic RS vector given in Eq. (4.18), we have shown that the
result also holds under arbitrary illumination conditions.

4.3 SOME SPECIFIC RELATIONS FOR CYLINDRICAL PARTICLES

To conclude the Chapter, we would like to emphasize another aspect
of linear electromagnetic scattering theory in which the monochro-
matic RS vector may also be useful. Up to now, we have been fo-
cused in the analysis of the helicity of the electromagnetic fields and,
seemingly, the use of the RS vector may only be practical for this
kind of studies. In this Section, we show that the possibilities of the
monochromatic RS vector in linear electromagnetic scattering theory
go far beyond the study of the polarization degree of freedom. Re-
sults are adapted from Contribution VL

More specifically, we will delve into the study of cylindrical par-
ticles which have already been mentioned in the previous Sections.
This kind of scatterers is characterized for conserving the eigenvalue
of the z component of the total angular momentum, m. In other
words, given an incident field which fulfills J2Ei(r) = mE;(r), the scat-
tered field produced by cylindrical particle necessarily fulfills ], E(r) =
mEj (r), where ], is the z component of total angular momentum op-
erator as defined in Chapter 3. This implies that the field scattered
by a cylindrical sample which has been illuminated by a beam with
a well-defined total angular momentum, m, does not contain terms
m’ # m in the expansion given by Eq. (4.4). Moreover, if the fields
emitted by the scatterer contain just a single multipole order, j, we
can also get rid of the summation over this index in the expression
given by Eq. (4.4). These two constrains are only feasible under par-
ticular circumstances where the response of the cylindrical particle is
well-described by a single multipole order, j. However, as we show
next, some fundamental relations obtained under these two partic-
ular constrains may be useful to characterize multipolar cylindrical
samples.

4.3.1 Integrated magnitudes and angular densities

In Section 4.1, we have seen that relevant physical magnitudes of lin-
ear electromagnetic scattering theory, such as the scattered powered
or the helicity expectation value, can be easily expressed in terms of
the RS vector. In addition to this, we also mentioned that the map-
ping between the RS vector and the Stokes parameters in the circular
basis is quite straightforward. This is just because, far from the sam-
ple, the monochromatic RS vector naturally splits the left- and right-
polarized components in each of the scattering directions. And, it is
exactly the absolute value of such components what is actually mea-
sured through the standard Stokes parameters I and V [12]. Taking
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all this into account, we can express the Stokes parameters measured
in each of the detectors depicted in Fig. 4.1 as:

I([R|, 0, d) = [F{(IR], 0, d)I* +|F; (IR0, ) (4-37)
V(IR|,6,$) = [F{(IR], 6, $)1* — [F5 (IR], 0, d) . (4.38)

Now let us explicitly evaluate the local expressions of the Stokes
parameters for a cylindrical sample well-described by a single multi-
polar order j. Employing the expression of the scattered field in terms
of the RS vector given by Eq. (4.6) and making use of the limits ex-
pressed in Eq. (4.31) and Eq. (4.32), we finally arrive to the following
expression of the fields scattered by a sample with fixed j and m
eigenvalues:

F£(IRI,0, )2 = ARIB T ,

(4-39)

where we have defined A4+ = \/e(ajm £ Bjm) and, also, we have
used that the vector functions defined in page 65 fulfill: |&;,,,(0, $) |2 =
Mjm (6, $)|2. With the expression given by Eq. (4.39) we can compute
the local densities of the Stokes parameters defined in Eq. (4.37) and
Eq. (4.38). However, the total scattered power and helicity expectation
value are related to the angular integrals of such magnitudes (see Eq.

(4.19) and Eq. (4.20)):
I, = (KIR))? J dQ (IR}, 0, ) (4.40)
Vs = (KIRJ)? j dQ V(IR 0, ). (4.41)

It is direct to check that, in the case of a cylindrical sample well-
described by a single multipolar order, j, such integrals result in [57]:

I = AP +IA_P (4-42)
Ve =I[A P =A% (4-43)

Moreover, considering the expressions above and by explicitly com-
puting the Stokes parameters defined in Eq. (4.37) and (4.38) in terms
of the RS vector of Eq. (4.39), we reach the following relation:

1

0= TR+

[£5m(0) L5 — gjm (0) V] (4.44)

V(|R|/ 9) = [_gjm(e)ls + fjm(e)vs] ’ (4-45)

(KIR))%5(G +1)

where fj,,(6) = [£5m (6, $)I%, gjm (0) = Im [£],,(6,d) - N (6, )] and
the dependence on ¢ variable drops due to the cylindrical symmetry
of the problem. Finally, inverting the expression we arrive to:

L) _ (KRD%GG1) (f5m(0) gim(0)) (TIRLO)) o
Vo) (0= 05.(0) \ g (0) 5m(0)) \V(R,0))
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The fundamental relation given by Eq. (4.46) indicates that for cylin-
drical samples illuminated with a beam with total angular momen-
tum, m, and well-described by a single multipolar order, j, integrated
magnitudes and angular densities are linearly related. In other words,
for this type of scatterers, we can infer integrated magnitudes such
as the scattered power or the helicity expectation value from local
measurements of the Stokes parameters.

4.3.2  Single Characterization Angle (SCA) method

Let us briefly illustrate how can the relation given by Eq. (4.46) be
employed to characterize cylindrical samples. In particular, we will
discuss the Single Characterization Angle (SCA) technique which em-
ploys tightly-focused Laguerre-Gaussian (LG) beams to determine
the different multipolar contributions of cylindrical particles. This
kind of illumination is characterized for having a total angular mo-
mentum m = { + A, where { is the eigenvalue of the orbital angular
momentum in the z direction [15].

When illuminating a cylindrical sample with a beam with total an-
gular momentum, m, the multipolar contributions j < |m/| of the scat-
tered field are cleared out. This is because, in the expansion of the
scattered fields given by Eq. (4.4), the maximum value of the mod-
ulus of the total angular momentum is, max(|/m|) = j. This implies
that, in cylindrical samples, a beam with angular momentum m = 2
cannot excite dipolar resonances (j = 1), a beam with angular mo-
mentum m = 3 cannot excite quadrupolar resonances (j = 2) and so
on. In addition, the expansion coefficients of the incident LG beams
can be tailored by focusing them with high numeric aperture systems
such as a microscope objective. In particular, for tightly-focused LG
beams, the expansion coefficients of order j ~ m dominate, even if
this may depend on specific parameters of the focusing system and
the incident field [66]. As a result, tightly-focused LG beams are good
candidates to excite single multipolar resonances in cylindrical sam-
ples, a condition which is necessary to employ the relation given in
Eq. (4.46).

Most commonly, the measurement of integrated quantities such
as the scattered power, W, requires the measurement and integra-
tion of the components of the scattered field in all directions. How-
ever, employing the expression in Eq. (4.46), important features of
the scattering spectrum of cylindrical particles can be inferred from
measurements at a single angle, 6. This is so because, through that
expression, we have related the local value of the Stokes parameters,
I(IR],0) and V(|R|, 8), with the integrated quantities, I and V. In this
regard, note that the scattered power is proportional to I, whereas
the scattered helicity defined is proportional to V. Importantly, the
expression specified in Eq. (4.46) is valid for all scattering angles or,
in other words, it does not rely on the measurements of the Stokes
parameters at a specific location. This crucial feature permits us to
distinguish the regimes at which the method ceases to be valid. We
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Figure 4.7: Normalized scattered power of a Silicon sphere of radius a = 230
nm in the infrared computed with the SCA method. In black the
exact computation and in colors the values obtained from the
evaluation of Stokes parameters at 6 = 60° (dashed pink), 6 =
90° (dashed green) and 6 = 120° (dotted blue). EDR, MDR and
MOQR denote the electric dipolar, magnetic dipolar and magnetic
quadrupolar resonances, respectively. a) Spectra obtained with
a tightly-focused LG beam with m = 1 and A = 1. b) Spectra
obtained with a tightly-focused LG beam with m =2 and A = 1.
Figure adapted from Contribution VI. Simulation performed by
Iker Gémez-Viloria.

may evaluate the local Stokes parameters at a few different scattering
angles, 0, but only rely on the measurements which lead to the same
integrated magnitudes. This is the basis of the SCA technique.

An example is depicted in Fig. 4.7, where the SCA method is em-
ployed to characterize the optical resonances of a Silicon sphere of ra-
dius a = 230 nm in the infrared. In the long wavelength range, close
to the so-called Rayleigh regime, dipolar resonances are expected.
Thus, in that spectral region, we may employ a tighly-focused LG
beam with m = 1 to characterize the response of the particle. This
physical situation fixes m = j = 1 and, thus, it leads to a particu-
lar form of the matrix in Eq. (4.46), i.e. f11(0) = (3/87)(1 + cos? 0)
and g11(0) = —(3/4m) cos 6. In Fig. 4.7a we have computed the exact
scattered power normalized to its maximum, Wpax, (solid black) and
the result obtained through SCA method by evaluating the Stokes
parameters at angles 6 = 60° (dashed pink), 0 = 90° (dashed green)
and 0 = 120° (dotted blue). As we can infer, the scattered power is
fully captured in the wavelength range 1300 — 2000 nm, where the
response of the particle can be described with electric and magnetic
dipoles. However, due to the presence of the quadrupole, the scatter-
ing spectrum is ill-captured below 1300 nm because the response can
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no longer be described with a single multipolar order j. Note that
the disagreement in the measurements for different scattering angles
at ~ 1300 nm is helpful to identify the regime at which the sample
ceases to be dipolar.

At this point, we may change the incident beam and excite the
particle with a tightly-focused LG beam with m = 2 to fully capture
the quadrupolar resonance. The result is depicted in Fig. 4.7b. Such a
remarkable outcome stems from the fact that the illuminating beam
cannot excite any dipolar (j = 1) resonances within the scatterer. As
a result, the underlying dipolar resonances are cleared out, and the
SCA technique can still be applied to characterize the particle below
1300 nm. Of course, when exciting a quadrupolar mode (j = 2) with
a LG beam with total angular momentum m = 2, the matrix given by
Eq. (4.46) has to be re-evaluated. In this case, the functions that have
to be employed are f,,(0) = (15/8m) sin? 8(1 4 cos? 0) and g22(0) =
—(15/47) sin’ 0 cos 0. Note that this procedure is recursive, i.e. a LG
beam with m = 3 can be employed to characterize octupolar (j = 3)
spectral regions and so on. Also, the numerical aperture employed
in Fig. 4.7a and 4.7b is the same (NA = 0.9). This implies that SCA
technique can be implemented within a single set up in which the
angular momentum of the incident beam is switchable.

4.4 SUMMARY

In Section 4.1, we have first introduced the relevant physical mag-
nitudes of linear electromagnetic scattering theory in terms of the
monochromatic RS vector. In particular, we have defined dual and an-
tidual scatterers as those which preserve or completely flip the helic-
ity of an illuminating wave. Then, in Section 4.2, we have seen that the
construction of dual and antidual scatterers is subjected to the energy
properties of the constituent materials. We have shown that the pres-
ence of optical losses in dielectric materials impede the construction
of dual samples and, also, that optical gain is a necessary condition
to build antidual particles of any size and form. Finally, in Section
4.3, we have shown that the possibilities of the monochromatic RS
vector in scattering theory go far beyond the analysis of the helicity
features of the electromagnetic field. Indeed, we have shown that, for
cylindrical particles well-described by a single multipolar order j, in-
tegrated and local values of the Stokes parameters are linearly related.
This is the basis of the SCA technique which permits the characteriza-
tion of cylindrical particles through local measurements of the Stokes
parameters.
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ELECTROMAGNETIC WAVES IN MAGNETIC MEDIA

In this Chapter, we study the form of Maxwell’s equations in inhomo-
geneous magnetic media with the aid of the monochromatic RS vector.
We examine the impedance and refractive index matching conditions
based on the so-called photon hamiltonian and discuss the implications
over Fresnel and Mie coefficients. Then, to get some additional phys-
ical insight into the matching conditions, we employ perturbation
theory in 1D inhomogeneous systems. Finally, we discuss the con-
served quantities associated with both matching conditions following
the symmetry arguments developed in Chapter 3. Based on these de-
velopments, we propose a global explanation about the emergence of
Kerker phenomena in piecewise homogeneous environments.

Derivations within Sections 5.1 and 5.2 are based on Contribution
IV. Section 5.3 is based on results reported in Contribution VIL
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5.1 MAXWELL'S EQUATIONS IN INHOMOGENEOUS MEDIA

In Chapter 4 we have discussed the application of the monochromatic
RS vector to linear electromagnetic scattering theory. This implies that
we have restricted the analysis of light-matter interactions to situa-
tions in which the angular frequency of the fields, w, is fixed and the
samples under consideration have sharp boundaries. In other words,
we have been constrained to linear samples for which the constitutive
relations are defined through step functions. In this Chapter, we relax
this last assumption and consider that light may propagate through
inhomogeneous environments for which the constitutive relations are
scalar functions of the spatial coordinates. Moreover, we will not deal
with chiral media, which implies that the constitutive relations for
the electric and magnetic fields are going to be: D(r) = ¢(r)E(r) and
B(r) = u(r)H(r), where ¢(r) and p(r) are the local electric permittivity
and magnetic permeability, respectively.

In this Section, we first present the form of Maxwell’s equations
in inhomogeneous media in terms of the monochromatic RS vec-
tor. Our derivation is based on Maxwell’s equations as specified by
Eq. (2.46) and Eq. (2.47) of Chapter 2. We discuss the link of such
form of Maxwell’s equations with the so-called photon hamiltonian
[8]. Also, we identify the impedance and refractive index matching
conditions as naturally emerging from this particular way of express-
ing Maxwell’s equations. Then, we analyze two physical situations in
which both matching conditions play an important role, i.e. the scat-
tering of a circularly polarized plane-wave by a plane magnetic sur-
face and by a magnetic sphere. Indeed, we show that both impedance
and index matching conditions have relevant consequences on the an-
alytical form of Fresnel and Mie coefficients. Finally, we demonstrate
that index-matched spheres flip the helicity of the incoming field as
close as energy conservation law allows.

5.1.1 The photon hamiltonian

As previously mentioned, our starting point is Maxwell’s equations
in inhomogeneous media expressed in terms of the monochromatic
RS vector (see Chapter 2 for a detailed derivation):

wF = \%V X <\F/;> —i—% (Vln ﬁ) x F~ (5.1)
wF™ = —\)HV X <\F/_ﬁ> —% (V In ﬁ) x F* (5-2)
V~F+:—(V1n\/ﬁ)-F++(Vlnﬁ>-F* (5.3)
V-F*:—(Vln\/ﬁ)‘Ffﬁ—(Vlnﬁ)-F*, (5.4)

where, for convenience, we have omitted the dependence on the spa-
tial variable, r. Also, we have defined the local impedance Z(r) =

u(r)/e(r) and local refractive index n(r) = /e(r)u(r), with ¢ = 1
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5.1 MAXWELL’S EQUATIONS IN INHOMOGENEOUS MEDIA

(natural units). Please note that Egs. (5.1)-(5.4) are completely equiva-
lent to the time-independent Maxwell’s equations in an isotropic and
inhomogeneous magnetic medium. Indeed, such a particular form
of Maxwell’s equations is simply obtained through a change of basis
where, instead of the usual electric and magnetic fields, the monochro-
matic RS vector is employed (see Section 2.2). Furthermore, it can be
checked that, in this form, the equations only contain two different
types of fields:

e _ 1 [Dm . B
F (r)—ﬂ[milm]. (5.5)

This is because in the derivation we have explicitly substituted the
constitutive relations, F*(r) = n(r)G*(r).

The particular form of Maxwell’s equations given by Egs. (5.1)-(5.4)
was first derived by Bialynicki-Birula in his seminal work "Photon
wave function” published in 1996 [8]. There, the author sought a first
quantized form of the dynamic equations for massless particles, in
analogy to the formalism already developed for massive particles. In
his view, such an analogy may lead to new methods to study the prop-
erties of electromagnetic waves and, thus, also photons [67]. In partic-
ular, he proposed that certain problems of electromagnetism may be
addressed as quantum mechanical eigenvalue problems, in full anal-
ogy with the time-independent Schrédinger equation. In this line, he
proposed an alternative way of interpreting Ampere-Faraday laws en-
coded in Egs. (5.1)-(5.2). He indicated that such dynamical equations
may also be expressed in the following form:

+ +
o (F =w F , with
F~ F~

. LV x (—) 1VInvZx
= ﬁVlngx —EHV X (ﬁ) ' (56

T

Here, the H operator represents the photon hamiltonian in inhomo-
geneous media. Importantly, note that, as in the conventional form of
monochromatic Maxwell’s equations (without charges and currents),
Ampere-Faraday laws encoded in Eq. (5.6) represent themselves all
four Maxwell’s equations. This is just because Gauss’ laws specified
by Eq. (5.3)-(5.4) can be derived from Egs. (5.1)-(5.2). As a result, we
can conclude that the photon hamiltonian, A, contains all the infor-
mation about the dynamics of electromagnetic fields in isotropic and
inhomogeneous media without charges and currents.

Interestingly, such a particular manner of expressing Maxwell’s
equations directly reminds us of a well-known physical problem in
quantum mechanics: the dynamics of a two-level system. Indeed, if
it were not for the vector nature of the fields and the operators con-
stituting the photon hamiltonian, the concordance would be straight-
forward. Such an analogy is based on associating the helicity com-
ponents of the electromagnetic field with two different levels whose
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states are coupled by the environment. Curiously, when expressing
Maxwell’s equations in terms of the helicity components of the field,
it is not ¢(r) or u(r) which appear as crucial parameters, but their
ratio, Z(r), and their product, n(r). In this line, we see that the role of
such material parameters is divided into two different contributions.
On the one hand, the spatial derivatives of the impedance contribute
to the coupling of the two helicity components of the field. On the
other hand, the spatial derivatives of the refractive index contribute
exclusively to the diagonal terms. In particular, given the form of
the operator in Eq. (5.6), we can identify two specific types of envi-
ronments in which the electromagnetic field may have a particular
behaviour: media for which the impedance is constant, VZ = 0, or
media for which the refractive index is constant, Vn = 0. We denote
this two situations as the impedance matching and the refractive in-
dex matching conditions, respectively.

In general terms, the impedance matching condition, VZ = 0, leads
to a decoupling in the evolution of the two helicity components of the
electromagnetic field. This can be deduced from the fact that the anti-
diagonal terms of the photon hamiltonian, H, vanish under this par-
ticular condition. Thus, if we fix the initial conditions such that only
one of the two helicities is present (imposing, for instance, an illumi-
nation with well-defined helicity), the interaction with an impedance-
matched medium only generates new field components of the same
helicity. On the other hand, the refractive index matching condition,
Vn = 0, seems to have a similar effect but over the diagonal terms
of the photon hamiltonian. It is clear that this matching condition
implies having an environment in which the helicity components are
mixed. At first sight, however, one is not able to tell the difference
with a common dielectric medium (n = 1 and, thus, Z = 1/n) in
which the helicity components are also coupled. Indeed, the interpre-
tation of the index matching condition is not so straightforward and
it will take us a bit to understand it in detail. However, before going
on with the analysis, let us give a few practical examples about what
we have just discussed. Indeed, if the impedance and refractive index
are such fundamental parameters, as they seem to be from the form
of Maxwell’s equations in Eq. (5.6), they must have some significant
effects in problems with well-known solutions.

In what follows, we analyze the consequences of the impedance
and refractive index matching conditions in two problems with an-
alytical solutions, i.e. the scattering of a circularly-polarized plane-
wave by a magnetic flat interface and by a magnetic sphere.

5.1.2  Matching conditions in Fresnel coefficients

The scattering of a plane-wave by a flat interface is a standard prob-
lem whose solution is given in terms of the so-called Fresnel coeffi-
cients. These coefficients relate the amplitude of the incident plane-
wave with the amplitudes of the reflected and refracted plane-waves.
In particular, the incident field is usually split in its § and P polariza-
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tions, which represent, the perpendicular and parallel components
with respect to the plane of incidence, respectively. Fresnel coeffi-
cients determine the amplitude of the reflected and transmitted waves
in each of these components. More specifically, if the incident electric
field is expressed as E;(r) = (E{§+ EPp) e'kiT, where k; is the wave
vector of the incident field, the amplitudes of the reflected, E; (r), and
transmitted, E;(r), field components are determined as:

1=1E, E} =PE} (57)
ES = t°ES, ED = tPEP. (5.8)

In the expression above, the r5/P and t5/P coefficients represent the
reflection and transmission Fresnel coefficients for § and p polariza-
tions. In particular, if we choose a circularly-polarized incident field
of helicity A, i.e. we impose E = AiE§, the reflected and refracted
fields, in terms of the monochromatic RS vector, are:

F}(r) = vEES [r* + ARrP] (”\/)%m> etk (5.9)
A S S X § + 7\113 iky-r
Fz (r) = \/gEl [t + A)\tp] T e <2 , (5.10)

where ki and k> are the wave vectors of the reflected and refracted
waves, respectively. Also, note that § x p = k.

For magnetic media, Fresnel reflection and transmission coefficients
acquire the following analytical form [65]:

kz, —mskz, skz, —mk,,

T8 = , P=" =2 11
kz, +msk, skz, +mk,, (5.11)
2k 2k
8= — L tP=— = (5.12)
kz, +msk;, skz, +mkz,

where s = Z1/Z; and m = ny/ny; here, Z; and n are the impedance
and refractive index in the medium of incidence; also, Z, and n, are
the impedance and refractive index in the medium of transmittance;
finally, k., and k., represent the z component of the wave vector in
the medium of incidence and in the medium of transmittance, respec-
tively. On the one hand, it is direct to check that, under the impedance
matching condition (s = 1), the following relations are fulfilled:

kz, —mk
S _ P — Z Zz2 .
T S Tk, (5.13)
2k
=t = —— :
o+ mks, (5.14)

On the other hand, under the refractive index matching condition
(m =1, which also implies k., = k,,), we get:

1—s
= = (5.15)
s P 2
t? =tP = (5.16)

1+s

+
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a) Impedance matching (Z; = Z5)

Reflected
light

Incident
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b) Index matching (n; = ng)
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Figure 5.1: Matching conditions in Fresnel’s scattering problem. a) Under
the impedance matching condition incident, reflected and trans-
mitted waves have the same helicity. b) Under the index match-
ing condition incident and transmitted waves have the same he-
licity, whereas the reflected wave has the opposite helicity.

The effect of both matching conditions over the Fresnel reflection
and transmission coefficients was first identified by Giles and Wild in
1982 [68]. Later, in 1990, a nice study was also provided by Lakhtakia
in terms of circularly-polarized plane-waves [69], which is the basis
of our analysis. The first result, as it can be checked from Egs. (5.13)-
(5.14), indicates that the reflection and transmission coefficients are
equal under the impedance matching condition, VZ = 0. Taking into
account the expression of the fields given in Egs. (5.9)-(5.10), this im-
plies that both the transmitted and reflected waves have the same
helicity as the incident field (see Fig. 5.1a). This in concurrence with
the general features of the impedance matching condition we have
just discussed. Indeed, this particular matching condition decouples
the evolution of both helicity components in Eq. (5.6) and, thus, the
interaction cannot generate field components of the opposite helic-
ity. Secondly, the expressions in Egs. (5.15)-(5.16) indicate that un-
der the refractive index matching condition, Vn = 0, the transmitted
wave has the same helicity as the incident field, whereas the reflected
beam only has the opposite helicity component (see Fig. 5.1b). More-
over, under this matching condition, the reflection and transmission
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coefficients are independent of the incidence angle and they are com-
pletely determined by the impedance contrast parameter, s = Z7/Z;.
This results confirm that the refractive index matching condition has
relevant consequences over Fresnel coefficients.

5.1.3 Matching conditions in Mie coefficients

The scattering of a plane-wave by a sphere is also a well-studied prob-
lem in electrodynamics whose solution is given in terms of the so-
called Mie coefficients. The problem has been partially studied in
Chapter 4, where the expression of the field scattered by a chiral
sphere has been provided in Eq. (4.24). In this Subsection, we will ex-
clusively deal with the solution for a conventional sphere whose com-
plete solution is given in terms of both the scattered field, E;(r), and
the internal electric field, Eq(r). For an incident circularly-polarized
plane-wave with helicity A, the scattered and internal fields are:

= —AZK Ka] 0 ) D + (aj\;;"> d%-{‘] (5.17)
Ei(r) = ?\Z K [(d"\g]) ) + <d"k‘:5> éjQ] ) (5.18)

j

where K; = V4/27(2j +1); also, a; and bj are the electric and mag-
netic scattering Mie coefficients; on the other hand, d; and c; are the
electric and magnetic internal Mie coefficients; finally, note that the
radial function of the multipolar field which determines the scattered
field, d)]?‘m, is the spherical Hankel function of the first kind, h;”, and
the radial function of the multipolar field that determines the internal
field, (T)])\ m is the spherical Bessel function of the first kind, j;.
For a magnetic sphere, the scattering Mie coefficients are [14]:

(M0 — st (x)b{ (mx) 10)
T, (mxE(x) — sa]( X)W (mx) o9
sw (mx)p! (x) — ()w (mx)
EAFTNE j’(x) 3] (5:20)
and, the internal Mie coefficients are:
b 0E0 — & X))
& = S ] () — 8 (X! () 521
b, ()& () — £ ()1} (x)
cj =ms (5.22)

s (mx) ] (x) — & (x)h] (mx)’

where s = Z7/Z; and m = nj/n; are the impedance and refrac-
tive index contrasts, with subscript 1 now referring to the sphere and
subscript 2 to the surrounding medium; also, x = ka is the size pa-
rameter, with k the wave vector in the surrounding medium and a
the radius of the sphere; finally, ll))-(Z) = zjj(z) and &;(z) = zh](-”(z)
are the Ricatti-Bessel functions. On the one hand, it can be checked
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a) Impedance matching (Z; = Z2)
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Figure 5.2: Matching conditions in Mie’s scattering problem. a) Under the
impedance matching condition incident and scattered waves
have the same helicity. b) Under the index matching condition
incident and scattered waves almost have the opposite helicity.

that, whenever the impedance matching condition is fulfilled (s = 1),
the following relations hold:

R O B S -
C NEN )
dj=cj = mll)j(mx)é)-’(x) TE )’ vj. (5.24)

On the other hand, it can also be checked that, under the refractive
index matching condition (m = 1):

6 4 s E) — &)%)

dj  swy )&
b; ¢ ; (x) & (x) — s&; ()i (x)”

V. (5.25)

The effect of the matching conditions over the Mie coefficients was
analyzed for the first time in the seminal paper by Kerker, Wang and
Giles in 1983 [70]. Indeed, they were the first ones to report the rela-
tion of the scattering Mie coefficients under the impedance matching
condition given in Eq. (5.23). However, to the best of our knowledge,
the relations given by Eq. (5.24) and Eq. (5.25) have been reported
for the first time in Contribution IV. On the one hand, under the
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v =3 (A)

m

Figure 5.3: Helicity expectation value, (A), for a passive sphere of size pa-
rameter x = 3 illuminated by a circularly-polarized plane-wave.
(A) is given as a function of the impedance contrast, s = Z1/Z;,
and refractive index contrast, m = ny/n;. In particular, (A) =1
implies a dual scatterer and (A) = —1 an antidual one. The
impedance matching condition is fulfilled through the line s = 1
and refractive index matching condition through the line m = 1.
Figure adapted from Contribution IV.

impedance matching condition, VZ = 0, we see that the electric and
magnetic coefficients are equal for both the scattered and the inter-
nal fields. Bearing in mind the expression of the fields in Egs. (5.17)-
(5.18), this implies that the scattered and internal fields only contain
the same helicity component as the incident field (see Fig. 5.2a). This
is in concurrence with the properties of the photon hamiltonian and
what we have just discussed for Fresnel coefficients. On the other
hand, under the refractive index matching condition, Vn = 0, we see
that Mie coefficients are analytically related in a very specific way.
In addition, from the relation in Eq. (5.25), it can be further checked
that lims_,7 a;/b; = —1 holds. In other words, for index-matched
spheres in the limit of low impedance contrast, one analytically has
that a; = —bj, which implies an antidual scatterer. However, please
note that the relation is fulfilled in the very particular situation of
having both m = 1 and s = 1, meaning that, in the limit, there is no
scatterer at all. Without reaching such a limit, we may say that index
matched spheres flip the helicity of the incoming field very efficiently
(see Fig. 5.2b).

In Fig. 5.3 we summarize the effect of both impedance and refrac-
tive index matching conditions in magnetic spheres. We plot the he-
licity expectation value, (A), for a sphere of size parameter x = 3
in terms of the impedance contrast, s, and refractive index contrast,
m. On the one hand, whenever the impedance of the sphere and the
surrounding medium are matched, along the horizontal s = 1 line,
the system behaves as dual, i.e. it preserves the helicity of the inci-
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dent field ((A) = 1). On the other hand, an outstanding behaviour
is found when the index matching condition is fulfilled, through the
line m = 1. Values of (A) ~ —1 are obtained in the vicinities of such a
line but never reaching the exact antiduality condition. Of course, this
is because we are considering both s and m real parameters, which
implies that the sphere has no optical gain and, thus, it cannot behave
as an antidual scatterer. However, although passive antidual scatter-
ers are precluded by the energy conservation law, we see that one can
obtain a pretty similar behaviour for index-matched spheres. This is
due to the analytical form of the Mie coefficients under the refractive
index matching condition given in Eq. (5.25), which had previously
been overlooked in the literature.

5.2 ANALOGY WITH A TWO-LEVEL SYSTEM

From the results in the previous Section, we can conclude that both
matching conditions lead to very specific forms of Fresnel and Mie
coefficients and, thus, imply very particular behaviours of the fields.
Indeed, we have shown that the impedance matching condition com-
pletely uncouples the evolution of the two helicity components of the
field. Also, we have seen that the refractive index matching condi-
tion leads to a singular type of helicity mixing. More specifically, in
spherical scatterers, this matching condition enables the construction
of samples which almost completely flip the helicity of the incident
beam. However, while the study of the impedance matching condi-
tion is widespread [61, 62], the refractive index matching condition
has been quite ignored in the literature.

In this Section, we characterize the refractive index matching con-
dition making use of some standard tools employed in quantum me-
chanical eigenvalue problems. All the previous analysis points in the
direction that the Vn = 0 condition allows for helicity flipping media
as close as energy conservation allows. However, the exact mecha-
nism for this helicity conversion still remains hidden. To shed light
on this, we derive the form of Maxwell’s equations for smooth inho-
mogeneous media and compute the energies of the propagating elec-
tromagnetic waves in terms of Z and n. We choose smoothly varying
media because, as we will see, for this particular type of media the
eigenvalue problem given in Eq. (5.6) can be solved in terms of time-
independent perturbation theory. In this line, we first compute the
exact solutions for the unperturbed system, i.e. an infinitely homoge-
neous medium. Then, we derive the form of the photon hamiltonian
in smoothly varying 1D inhomogeneous media and we apply stan-
dard perturbation theory. Finally, we propose an interpretation of the
impedance and refractive index matching conditions through a for-
mal analogy with quantum two-level systems.
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5.2 ANALOGY WITH A TWO-LEVEL SYSTEM

5.2.1  Unperturbed solutions and perturbation term

Standard perturbation theory may only be employed if the opera-
tor given by Eq. (5.6), can be expressed as a sum of two terms, i.e.
A = Hy + V, where Hy is the hamiltonian of the unperturbed system
and V is the perturbation term. In general, the method permits the
construction of approximate solutions to the perturbed system based
on already known exact solutions to the unperturbed problem. In our
case, the unperturbed system is an infinitely homogeneous medium
and, thus, Hy represents the photon hamiltonian in a medium with
constant Z and n. Based on the exact solutions of Hy, we will then
compute the approximate solutions for a smoothly varying 1D inho-
mogeneous medium.

We consider that inhomogeneities are exclusively given in the OX
direction, namely, that the impedance and refractive index are ex-
pressed as Z(x) = Zp + d(x) and n(x) = no + e(x), respectively. Trans-
lation symmetry in the OY and OZ directions suggests that the solu-
tions to this problem must be of the form:

D(r) = O(x)etkvytikez (5.26)

where ®@(x) = [F(x),F~(x)]" is a six component vector field whose
first (last) three Cartesian components constitute the positive (nega-
tive) helicity components of the field. Please note that, in this Section,
the field ®@(r) does not represent a multipolar beam. Moreover, as
the OY and OZ directions are physically equivalent, the result cannot
change depending on the direction of propagation in the YZ plane.
Thus, for simplicity, we can fix the transverse linear momentum com-
ponent to be, for instance, in the OY direction, i.e. we fix the axes such
that ky = k¢ and k, = 0. Thus, for a 1D inhomogeneous medium, the
unperturbed hamiltonian, i.e. time-independent Maxwell’s equations
in an infinitely homogeneous medium, can be expressed as:

0 0 ik¢ O 0 0
0 0 —0x O 0 0
Pl = T —ike ox O 0 0 0 (5.27)
no 0 0 0 0 0 —ike
0 0 0 0 0 Ox
0 0 0 ik¢ —0x O

The solution to the unperturbed system is obtained from the reso-
lution of the system of differential equations Ho®(x) = wd(x). The
exact solution to such a system of equations is found by applying
the usual techniques and it is most generally given in terms of four
integration constants. Fixing such integration constants, we find four
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different types of normalized solutions to the unperturbed hamilto-
nian:

vﬁ;<1kt,_;§%,Lo,qo)Te““x (5.28)
9=/ (8 51,000) e 29
¢u(x)=:vég(o<)o,;ﬁ; $§51)Te*““x, (5:31)

where we have defined k2 = wzno k2 As we see, the exact solu-

tions to the unperturbed system are circularly-polarized plane-waves
propagating along the positive and negative OX directions. Moreover,
by construction, all of them fulfill Ao @ (x) = wd(x), which implies
that they are degenerate.

Once we have computed the solutions to the unperturbed system,
we should compute the perturbation term, V. However, depending
on whether we consider the perturbation in the direction of constant
impedance or constant refractive index, the perturbation has a differ-
ent analytical form. At first order, the perturbation potential in an
arbitrary direction of the (Z,n) parameter space can be constructed
as a linear combination of the perturbation potentials in each direc-
tion. Thus, we may discuss each of these cases independently. Let us
first consider the case of a medium where the refractive index is con-
stant and the impedance is only a function of one space coordinate.
In this case, the photon hamiltonian directly splits into the sum of
two operators and the perturbation term is:

o 0 0 0 0 0
o 0 0 0 0 —IKx
v, o 0 00 o | (532)
nlo 0 0 0 0 0
0 0 ¢x) 0 0 0
0 —¢x) 0 0 0 0

where ((x) = 0xIny/Z(x) is a real function. For smoothly varying
media we can consider that Z(x) = Zo + d(x), with d(x)/Zy << 1,
and, thus, the perturbation is determined by the function ((x) ~
(2Zo)~"0xd(x).

In the complementary case where the impedance is constant and
the refractive index is only a function of one space coordinate, the
photon hamiltonian cannot be generally separated as the sum of two
terms as H = o + V. For this particular system, the photon hamilto-
nian can be expressed:

H = TL(]X) (TL()]:{O + V(X)N), (533)
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where v(x) = =94 In y/n(x) and N is the following matrix operator:

00 0 0 0 0

00 -10 0 0

« o1 0 0 0 o
N = (5.34)
00 0 0 0 0 >34
00 0 0 0 1

00 0 0 —1 0

However, if we now expand the inverse of the refractive index func-
tion, n7'(x) = [ng + e(x)]"" in Taylor series, at first order we have
that n='(x) ~ ng'[1 — e(x)/nol. Also, if employ that [ng —e(x)]v(x) ~
—0xe(x)/2, the operator in Eq. (5.33) splits and we are left with the
following expression of the perturbation term:

0 0 ike(x) 0 0 0
0 0 —dx 0 0 0
N 1 | —ikee(x) &y 0 0 0 0
Vn=—— .
ny 0 0 0 0 0 —ikee(x)
0 0 0 0 0 dx
0 0 0 ikie(x) —dx 0

(5-35)

We have defined the differential operator oy = y/e(x)0x[\/e(x) - ],
which acts as: §xeTH* = [E(x) + ikye(x)]er***, over the one dimen-
sional complex exponential, with E(x) = 0xe(x)/2.

5.2.2  Approximate perturbed solutions

With the exact solutions to the unperturbed system given in Egs.
(5.28)-(5.31) and the perturbation term V=Vz+V, specified by Eq.
(5.32) and Eq. (5.35), we can already apply standard time-independent
perturbation theory. At this point, we should take into account that
the solutions to the unperturbed system are all degenerate, i.e. they
share the same hamiltonian eigenvalue w. This implies that, to find
the approximate solutions to our problem, we must employ degener-
ate perturbation theory. Technical details of how to apply degenerate
perturbation theory can be found in standard textbooks [71-73]. In
the case of 4-fold degeneracy, the solution to the perturbed system
is given in terms of a square 4 x 4 matrix, P, whose elements are
computed as:

+o0
Py = [ av @it [V o], (536)
where @y (x) are the exact solutions to the unperturbed system given
in Egs. (5.28)-(5.31). Once the matrix P is computed, its eigenvectors
are the approximate solutions to the perturbed system and its eigen-
values are associated with the frequency corrections. More specifi-
cally, the computation of the integrals specified by Eq. (5.36) results
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in the matrix equation PK = AT‘”K, where K = (K7,K3,K3,K4)" are
the coefficients of the perturbed solutions in the unperturbed state
basis. In other words, any solution of the perturbed system can be ex-
pressed as @ (x) = >, Ki®@i(x). And, Aw represents the first order
correction to the frequency such that the frequencies of the perturbed
states are determined as w'" = w + Aw.

In our case, the perturbed solutions and energies are obtained from
the following eigensystem:

D F C o) /X K,
F D o c ||k Aw | K
==1". (5.37)
- 0 -D —F]| |xs w | Ks
0 C -F -D/ \K4 K,

In the expression above, it is important to note that K; and K; rep-
resent the amplitudes of positive helicity modes, whereas K3 and K4
represent the amplitudes of negative helicity modes. On the other
hand, the matrix elements are:

iky 1 ([
= | dxdyd 38
C= gz | o (538)
w o
D—-2 [ axel (539)
no J-
2 00 .
F=-— kt3 J dx e(x)e?txx, (5.40)
wng )

To keep the matrix P hermitian and, thus, have real corrections to the
frequency we have considered that n(x) and Z(x) are real functions
and, also, that limy_, e(x) = limy_,  e(x). Note that parameter C
captures the effect of the inhomogeneities in the impedance, i.e. C
vanishes whenever 0xZ(x) = 0. On the other hand, ID and F capture
the effect of the inhomogeneities in the refractive index, i.e. ID and
F are zero whenever 0,1 (x) = 0. Finally, the expressions of the four
energy corrections are Aw = +w[vID? + C? + [F|l.

Even if the matrix P specified in Eq. (5.37) contains all the infor-
mation of the perturbed system, much more insight is obtained if we
write it in a different basis. This is equivalent to choosing a different
set of solutions of the unperturbed system instead of the one given in
(5.28)-(5.31). As all four states are degenerate, we may choose any lin-
ear combination to express the matrix P. In particular, we may express
it in the basis which diagonalizes its upper-left and bottom-right 2 x 2
blocks:

K VE —VF 0 0 K/
Ko | VER VIR0 0 K (5-41)
K3 0 0 VF —VF||K}
Ka 0 0 VF VF/ \K]

In the new basis, K} and K} still represent positive helicity compo-
nents and the negative helicity components are also associated with
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K% and K. By doing so we arrive to a very suggestive form of the
equations. Indeed, in the primed basis, the eigensystem reads as:

D+[F  C* 0 0 K/ K/
C -—(D-F) o 0 Ki | Aw |4
0 0 D—|F  C* K| w |k
0 0 C —(D+IF)/) \Kj K4

(5.42)

Note that K{ amplitudes are reordered in this last expression.

Given the matrix in Eq. (5.42), we can straightforwardly analyze
the effect of both matching conditions in 1D inhomogeneous systems.
First of all, it is clear that for an arbitrary perturbation in the (Z,n)
parameter space, the whole system can be split into two independent
subsystems: one concerning K; and K} and the other one K} and Kj.
Indeed, the matrix equation given by Eq. (5.42) can be understood as
a simplified version of the general expression of the photon hamilto-
nian given by Eq. (5.6). The matrix components in Eq. (5.42) are now
complex numbers, which takes the previous analogy with quantum
two-level systems even closer. In particular, the case of impedance
matching (C = 0) implies, in this formalism, that the levels are de-
coupled and, thus, there is no mixing between the helicities. This can
be inferred from the fact that, in this case, the anti-diagonal terms
of both subsystems vanish. In addition to this, the form of the matrix
in Eq. (5.42) makes the interpretation of the refractive index matching
(F = ID = 0) much more clear. As it can be checked, this matching con-
dition makes the diagonal terms of each subsystem to be equal, while
still keeping a non-zero coupling term. Such a situation is commonly
denoted as quantum resonance in the language of two-level systems.

5.2.3 Resonant helicity mixing and avoided crossing

In the previous Subsection we have seen that perturbation theory fa-
cilitates an interpretation of the matching conditions through an anal-
ogy with quantum two-level systems. In particular, in this formalism,
the impedance matching condition leads to the decoupling of the lev-
els, whereas the refractive index matching condition leads to a situa-
tion analogous to quantum resonance. Let us now show an example
and discuss this in detail.

In Fig. 5.4 we have numerically computed a particular case of a
one-dimensional inhomogeneous system. We have considered that
the inhomogeneities are determined by the functions d(x) = «/[1 +
exp (x/0)] and e(x) = —B exp (—x2/0?) (see Fig. 5.4a). The amplitude
of the perturbation in the impedance is determined by the parame-
ter o and in the refractive index by 3. Note that whenever & = 0
or B = 0 the impedance or refractive index matching condition is
fulfilled, respectively. To meet the requirements imposed by pertur-
bation theory we have chosen & = 0.01 < Zy and [B] < 0.01 < np.
In Fig. 5.4b we have computed the corrections to the frequency as a
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Aw Mixing parameter

B B

Figure 5.4: a) Sketch of an inhomogeneous medium with Z(x) = Zy + d(x)
and n(x) = ng + e(x), with the functions d(x) = o/[1 + exp (x/{)]
and e(x) = —P exp (—x?/¢?). b) First order frequency corrections:
Zo =ng =1, w =1,k =04, =1and « = 0.01 (in col-
ors). All units are normalized to an arbitrary frequency wp and
c = 1. The grey dashed lines are obtained with the same param-
eters but fixing « = 0, which implies that C = 0 in this case.
¢) Mixing parameter of the analogous two-level systems [72]:
4|W1212 /[4W12|? + (Eq —E2)?]. Here, Wy, = C, Ey = D +|F|and
E; = —(ID — [F|). Whenever 3 = 0, the refractive index matching
condition is fulfilled. Figure adapted from Contribution IV.

function of B (in colors). For comparison, in the same figure, we also
display the frequency corrections for the case in which o« = 0 (grey
dashed lines). Whenever « = 0 we have that C = 0 and, thus, the
helicity components are decoupled in this case. In addition, from the
form of the matrix in Eq. (5.42) it can be checked that the ascending
(descending) diagonal grey lines in Fig. 5.4b correspond to solutions
with well-defined positive (negative) helicity. Finally, in Fig. 5.4¢, we
have computed the mixing parameter of the two subsystems identi-
fied in Eq. (5.42) for the case o = 0.01. Among others, this parameter
has been employed to study the resonant mixing of neutrino flavours
in matter [74, 75] and it is a signature of quantum resonance when it
approaches unity [72].

The results are completely compatible with the phenomenon of the
avoided level-crossing. Indeed, as we see from Fig. 5.4b levels cross
in the absence of perturbation, i.e. whenever & = 3 = 0. We cer-
tainly expect this from the fact that the unperturbed states given by
Eq. (5.28)-(5.31) are all degenerate. Now, if we turn on a perturba-
tion which does not couple the levels (we take 3 # 0 while keeping
o = 0), we see that frequency corrections are linear with respect to
the perturbation parameter 3 (dashed grey lines). This behaviour is
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analogous to how the perturbed energies depend on the initial en-
ergies on a decoupled two-level system [72]. In addition to this, the
analogy also holds whenever we switch on the coupling term, i.e.
whenever « # 0. In this case, the crossing of levels at 3 = 0 is avoided
(in colours). On the other hand, in this situation, the perturbed ener-
gies are analytically computed as w'" = w + w|C|, which is the exact
mathematical form that energies take in a resonant two-level system.
Finally, whenever 3 = 0 and « # 0, perturbed states can be written
as linear superpositions of the unperturbed states with amplitudes of
the same modulus, which is also a key characteristic of the systems
undergoing quantum resonance [72].

Summing up, with this extensive discussion based on perturba-
tion theory, we have been able to study the particularities of the
impedance and refractive index matching conditions. The analysis
has been particularly fruitful to characterize the dynamics of electro-
magnetic waves propagating through media in which the refractive
index is matched. Our results indicate that this type of media induce
a resonant helicity mixing on the electromagnetic waves that propa-
gate through them. Strikingly and completely unexpectedly, we have
identified that the refractive index matching condition leads to the
phenomenon of avoided level-crossing. A great deal of phenomena
in physics are related to the avoided crossing of energy levels, but
this is the first time that such a connection is reported for the helicity
components of electromagnetic fields.

5.3 CONSERVED QUANTITIES

The results of the previous Section confirm that both the impedance
and refractive index matching conditions have profound physical con-
sequences over Maxwell’s equations, as initially suggested by the pho-
ton hamiltonian given by Eq. (5.6). However, there is an important
aspect of these conditions which we have not discussed yet in detail:
conserved quantities. An astute reader may have noticed that, at least,
the impedance matching condition seems to imply the conservation
of the electromagnetic helicity, A. Indeed, this is correct. In what fol-
lows, we show that both matching conditions lead to the conservation
of a physical magnitude.

The discussion of the conserved physical magnitudes is frequently
considered in the framework of generators of continuous groups. In
other words, conserved quantities have usually been associated with
the restoration of a symmetry through Noether’s theorem. However,
from the discussion in Chapter 3, we know that conserved quantities
are not only linked to the generators of continuous groups. For in-
stance, the rest mass M or the spin S are preserved magnitudes in
the context of relativistic massive particles, but they are not related to
any particular generator of the Poincaré group. They are preserved be-
cause they are the eigenvalues of two Casimir operators of the group,
i.e. C; and C,. This implies that, the association between conserved
magnitudes and symmetries is not perfectly bidirectional. Given a
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symmetry of a problem it is quite straightforward to associate it with
a conserved quantity, but not the other way around. That is, given a
conserved physical magnitude, in principle, it may not be so direct to
link it with a particular generator or Casimir invariant of a specific
group. As a matter of fact, this is exactly what happened with the
mass of the particles, which has longly been known to be a preserved
magnitude in free space. However, its identification as a Casimir in-
variant of the Poincaré group was not put forward until the middle
of the 20t century.

In this Section, we first analyze the symmetries of piecewise homo-
geneous media, which are the environments in which we are going to
discuss the emergence of conserved quantities. Then we identify helic-
ity, A, and square of linear momentum, P2, as the magnitudes which
are preserved under the impedance and refractive index matching
conditions, respectively. As we show, the conservation of A and P?
naturally relates to their condition of Casimir operators of P;; sub-
group. Finally, based on these considerations, we propose a general
interpretation of the emergence of the Kerker effects. The results are
adapted from Contribution VIL

5.3.1 Symmetries of piecewise homogeneous media

Before going on, let us center the discussion of the conserved quan-
tities on a specific type of inhomogeneous medium, i.e. those which
are piecewise homogeneous. By a piecewise homogeneous medium,
we refer to an inhomogeneous medium which can be split in volumes,
Vj, which are, themselves, homogeneous. This type of environments
is characterized for having a local electric permittivity and magnetic
permeability defined in terms of steplike functions, i.e. e(r) = ¢; and
uw(r) = w for r € V;j. Consequently, in a piecewise medium, the
impedance and the refractive index are defined as: Z(r) = /uj/¢;j
and n(r) = ,/gju for r € V;. Importantly, the domains Vj can be of
arbitrary shape and size, which makes our discussion quite general.
Also, note that solutions to Maxwell’s equations in this type of media
are constructed by finding a solution to the equations in each homoge-
neous domain and, then, applying boundary conditions. This implies
that, exactly as we argued in Chapter 4, solutions may be asked to
tulfill Egs. (3.20)-(3.22) in each region V;.

In static piecewise homogeneous media there is only one symme-
try left, i.e. the one parameter subgroup of time translations, T. Thus,
only a few things can be generally stated about the solutions in this
type of media, i.e. that frequency, w, is conserved and that the elec-
tromagnetic wave solutions are eigenstates of Po. For completeness,
and following the discussion of Chapter 3, the UIRs of the time trans-
lations group can be labelled as (see Ref. [19], Chapter 6, Section 6):

]5011)(1‘/ t) = (Ull)(l', t)/ (543)

where 1 (r, t) represents any electromagnetic wave solution in a piece-
wise homogeneous medium. In practice, the condition above simply
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implies that the time dependence of the solutions is fixed and it is
given by a complex exponential. On the contrary, the spatial func-
tional form of the solutions will strongly depend on the specific sym-
metries of the particular system one may consider. The generators
and Casimir invariants of the subgroups of E(3) associated with the
different piecewise media are not the same and, thus, the bases of the
invariant vector spaces will be required to be eigenfunctions of differ-
ent operators [48]. As a result, conserved quantities strongly depend
on the geometry of each particular problem.

In plain words, in piecewise homogeneous media, one only expects
Py to be generally conserved. And, then, depending on the particular
geometry of each problem other conserved quantities may emerge.
For instance, in Fresnel’s scattering problem, apart from 150, we have
that two components of the linear momentum, P, and lsy, are also pre-
served, due to the translational symmetries in the directions parallel
to the interface. Also, TZ is preserved due to rotational symmetries in
the direction orthogonal to the interface. On the other hand, in Mie’s
scattering problem, all three components of total angular momentum,
Ti/ and the modulus squared, j?, are conserved. The first three mag-
nitudes are conserved due to their condition of generators, whereas
the conservation of the last magnitude can be associated with its con-
dition of Casimir invariant in rotationally symmetric problems. We
conclude that, apart from Py, conserved quantities strongly depend
on the particular geometries. This is the context in which the peculiar-
ities of the impedance and refractive index matching conditions can
be better understood.

5.3.2  Helicity and square of linear momentum

In piecewise homogeneous media, the matching conditions can be
expressed in terms of the values of the electric permittivity and mag-
netic permeability in each of the regions. We say that the impedance
matching condition, VZ = 0, is fulfilled in a piecewise homogeneous
medium when the ratio p;/¢; is constant in all domains Vj. On the
other hand, the refractive index matching condition, Vn = 0 is ful-
filled whenever the product ¢;y; is constant in all domains Vj.

In this line, Fernandez-Corbaton and coworkers indicated that the
impedance matching condition leads to the conservation of electro-
magnetic helicity [61]. It was shown that, whenever 1 /¢; is constant,
Maxwell’s equations in the whole piecewise medium remain invari-
ant under electromagnetic duality transformations. As helicity had
previously been identified as the generator of the duality transforma-
tion [76], it was then concluded that helicity had to be preserved in
an impedance-matched piecewise homogeneous medium. However,
there is also a dynamical way of understanding the conservation
of helicity in impedance-matched media. Indeed, given the form of
Maxwell’s equations specified in Egs. (5.1)-(5.2), it can be checked
that the impedance matching condition makes the two helicity com-
ponents of the electromagnetic field to be decoupled. This implies
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. (n2, Z2) ;
-V2p(r, t) = k3ep(r, 1) ;’ (na, Z3)
s -V (r, t) = k24(r, 1)

T

V24 (r,t) = kZap(r, t)

Vs

Figure 5.5: Sketch of a piecewise homogeneous medium. Electromagnetic
wave solutions are obtained by solving Helmholtz’s equation and
applying boundary conditions in the interfaces.

that, if we fix the initial conditions at time t = 0 to contain a single he-
licity component, the solutions in an impedance-matched piecewise
medium will have a single helicity component at times t > 0. In this
line, any electromagnetic wave solution under the impedance match-
ing condition, 1, (r, t), fulfills: APy (r,t) = Mpy(r,t), with A = £1.
As a result, in piecewise media, we can also infer the conservation
of helicity from the fact that eigenstates of A, acting as the Casimir
operator given by Eq. (3.21), remain being eigenstates of A.

In this sense, the helicity operator has a double role. On the one
hand, it is the generator of dual transformations, but as seen in Eq.
(3.21), it also acts as a Casimir operator. This could raise the question
of whether Casimir operators are of some interest to study electro-
magnetic wave dynamics in piecewise homogeneous media. We will
show now that, in the case of index-matched piecewise media, the
conserved quantity is not associated with the generator of a contin-
uous symmetry transformation, but with another Casimir operator:
the square of linear momentum, P2,

Under the refractive index matching condition, the conservation
of a physical magnitude can be inferred from how electromagnetic
wave solutions are built in piecewise media. Indeed, as it is shown in
Fig. 5.5, solutions of electromagnetic waves propagating in this type
of environments are constructed by solving Helmholtz’s equation in
each domain Vj and, then, applying boundary conditions. This im-
plies that, in a generic piecewise homogeneous medium, electromag-
netic wave solutions fulfill, —V2(r,t) = katl)(r,t) for r € Vj, where
k; = wnj. Note that, for a generic piecewise homogeneous medium,
k; changes depending on the region of space we may consider. Thus,
the eigenvalue of P? = —V? operator varies from one region V; to
another Vj,, as long as nj # n;.. However, whenever the refractive
index matching condition is fulfilled (n; = n;;, ¥j,j’), the wavevec-
tor modulus is constant all over the medium and the square of linear
momentum operator fulfills: P2 (r,t) = k2P, (1, 1), where now k is
fixed and 1 (r, t) represents any electromagnetic wave solution in an
index-matched piecewise medium. Note that this way of represent-
ing the conservation of the square of linear momentum is exactly the
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same as in Eq. (3.22). The refractive index matching condition recov-
ers that same relation, but in piecewise environments.

Following the previous discussion on helicity conservation, we may
try to link the conservation of P? with the restoration of a symmetry.
This, however, is not possible because the square of linear momen-
tum is not a generator of any continuous symmetry transformation.
Therefore, we are led to comprehend the conservation of P2 from its
condition of Casimir invariant. Indeed, Casimir operators of a group
G may remain as conserved quantities in environments whose sym-
metry group is a subgroup G; C G [77]. This phenomenon is not
a particularity of electromagnetic waves, it is known to occur also
in the dynamics of massive particles. Let us put forward an example
which very closely mimics the refractive index matching condition for
electromagnetic waves. As we have shown in Section 3, the conserva-
tion of P? for non-relativistic massive particles can also be related to
the symmetries of Euclidean space [49]. Thus, in principle, we may
expect the square of linear momentum to be exclusively preserved
when massive particles propagate in free space. This, however, is not
true. There is a particular interaction potential (or environment), i.e.
the hard sphere potential, for which P? is a conserved quantity. The
same also holds for classical mechanics, where the kinetic energy, pro-
portional to the square of the linear momentum, is known to be pre-
served provided that the interactions are elastic. To the best of our
knowledge, the conservation of kinetic energy in elastic collisions has
not been linked, through Noether’s theorem, with the restoration of
any continuous symmetry.

There are more cases in which a Casimir invariant of a group G is
preserved in an environment whose symmetry group is a subgroup
Gi. A well-known example is the conservation of mass, M, and spin,
S. As we have shown in Section 3, the conservation of these magni-
tudes can be concluded from their condition of Casimir invariants of
the Poincaré group. This, in principle, would imply that M and S are
exclusively preserved for massive particles propagating in vacuum.
We know, however, that these magnitudes are preserved in a great
deal of problems for which the symmetry group is a subgroup of the
Poincaré group. For instance, there are many situations in which the
mass and spin of the particles are preserved in the framework of non-
relativistic quantum scattering theory. Indeed, mass is quite generally
assumed to be conserved in this context, whereas spin may not be con-
served only in particular cases such as spin-orbit or nucleon-nucleon
interactions [78]. All these examples point in the direction that the
conservation of certain physical magnitudes cannot be related with
the restoration of a continuous symmetry, but to their condition of
Casimir invariants.

5.3.3 Origin of the Kerker phenomena

Finally, let us apply the previous analysis to a case of special signif-
icance, i.e. the emergence of the Kerker effects in magnetic spheres.
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As we show, the origin of these unusual effects can be explained in
terms of Py, A and P?, i.e. the Casimir operators of P;, subgroup.

In Fig. 5.6, we show the analysis of conserved quantities associ-
ated with the helicity map previously discussed in Section 5.1. Let
us briefly remind that (A) represents the helicity expectation value,
which is an observable that determines whether electromagnetic helic-
ity of the incident wave is conserved, (A) = 1, or completely flipped,
(A) = —1, upon scattering [59]. Along the vertical axis we tune the
impedance contrast, s, which is the ratio between the impedances of
the sphere and the surrounding medium. In the horizontal axis, we
fix the refractive index contrast, m, which is the ratio between the
refractive indices. Due to the static nature of the media involved, all
the solutions represented in the figure are constructed as eigenstates
of the generator of time-translations, Po. Then, under the duality con-
dition, along the line s = 1, helicity is conserved and, thus, solutions
are eigenstates of A. In addition to this, under the resonant helicity
mixing condition, whenever m = 1, the square of linear momentum
is conserved and, as a result, the solutions are eigenstates of P2 oper-
ator. The line s = 1/m indicates the response of dielectric materials.
Finally, note that in the singular point [m, s] = [1,1] of the colormap
solutions are eigenstates of all three operators Py, A and P2. This is
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Figure 5.6: Emergence of the duality and resonant helicity mixing condi-
tions in a magnetic sphere embedded in a homogeneous sur-
rounding. The helicity expectation value, (A), quantifies the he-
licity of the scattered electromagnetic field. s is the impedance
contrast and m the refractive index contrast. Frequency, w, is
preserved at every point due to the static nature of the piece-
wise system. Helicity, is preserved whenever the impedance is
constant (horizontal dashed line). Square of linear momentum,
is conserved whenever the refractive index is constant (vertical
dashed line). The singular point [m, s] = [1,1] represents an in-
finitely homogeneous medium. Figure adapted from Contribu-
tion VIL
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because the particular case m = s = 1, represents an infinitely homo-
geneous medium and, by means of Egs. (3.20)-(3.22), monochromatic
electromagnetic wave solutions are built as eigenstates of the three
Casimir operators of P;; group.

This phenomena can also be interpreted making use of the photon
hamiltonian given by Eq. (5.6). Indeed, under both matching condi-
tions, i.e. VZ = 0 and Vn = 0, the environment ceases to be inhomo-
geneous and it becomes infinitely homogeneous. In this situation, the
photon hamiltonian converges to the analytical form of Maxwell’s
equations as expressed in Eq. (3.21), i.e. electromagnetic wave solu-
tions are constructed as eigenstates of Py, A and P? operators. This
situation is equivalent to the dynamics represented by [m,s] = [1,1]
point in Fig. 5.6. Then, it is clear that the photon hamiltonian indi-
cates two preferential directions in which the homogeneity of space
may be broken. These two preferential directions are associated with
the impedance and index matching conditions. On the one hand, ho-
mogeneity of space may be broken while still keeping the impedance
constant. In piecewise media, this leads to the conservation of both
Py and A and the situation is equivalent to the s = 1 line in Fig. 5.6.
On the other hand, homogeneity of space may also be broken while
keeping the refractive index constant. In piecewise media, this leads
to the conservation of Py and P? and the situation is equivalent to the
m = 1 line in Fig. 5.6.

In our view, this analysis provides a harmonic interpretation of
time-independent Maxwell’s equations in inhomogeneous media as
expressed in Egs. (5.1)-(5.4). Such a particular form of Maxwell’s equa-
tions is simply obtained through a change of basis. Indeed, instead
of the usual electric, E(r), and magnetic, H(r), fields we rewrite the
equations in terms of the monochromatic RS vector, FA(r), which
has previously been shown to be linked with P;, subgroup of the
Poincaré group. As a result, we obtain a completely equivalent form
of Maxwell’s equations in which instead of the usual material param-
eters, derivatives of the local impedance and refractive index appear.
Finally, as we have just discussed, we find that this new material
parameters are closely related with the Casimir invariants of P;,. It
really seems like the connection of Maxwell’s equations with space-
time symmetries is clarified when expressing them in terms of the
RS vector. In this line, the phenomena reported by Kerker, Wang and
Giles in 1983 [70] can be interpreted as the materialization of this fun-
damental connection in a particular electromagnetic scattering prob-
lem.

5.4 SUMMARY

In Section 5.1, we have first introduced Maxwell’s equations in inho-
mogeneous media in terms of the monochromatic RS vector. Based on
this form of Maxwell’s equations we have analyzed the impedance
and refractive index matching conditions, showing that they have
relevant consequences over both Fresnel and Mie coefficients. Then,
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5.4 SUMMARY

in Section 5.2, we have characterized the matching conditions with
the aid of time-independent perturbation theory. We have concluded
that they can be interpreted in close analogy with the dynamics of
quantum two-level systems. In particular, we have understood the
impedance matching as the condition which decouples the levels,
whereas the index matching conditions leads to the phenomenon
of avoided crossing. Finally, in Section 5.3, we have studied the con-
served quantities associated with both matching conditions. We have
concluded that helicity, A, is conserved under the impedance match-
ing condition and the square of linear momentum, P?, is conserved
under the refractive index matching condition. As a conclusion, we
have linked the condition of Casimir invariants of these magnitudes
with the emergence of the Kerker effects in magnetic spheres.
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SYMMETRIES IN QUANTUM SCATTERING THEORY

In this Chapter, we introduce the second quantized form of the elec-
tromagnetic field. Based on this, we discuss the input-output descrip-
tion of quantum scattering theory and the construction of the scatter-
ing matrix. Then, we analyze the scattering of photon states by cylin-
drically symmetric samples. Due to the symmetry of the problem, we
choose Bessel modes as input states and construct the post-selected
scattering matrix associated with this type of structures. Finally, we
show that there are certain input states which are preserved in the
interaction with all cylindrical samples. This kind of states, denoted
as symmetry-protected states, are found both in the form of single
photon and multi photon states.

Derivations within Sections 6.2 and 6.3 have been adapted from
Contribution L.
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6.1 QUANTUM ELECTROMAGNETIC SCATTERING THEORY

In the previous Chapters we have studied the scattering and propaga-
tion of electromagnetic waves in different environments. We have ana-
lyzed some of the properties of light such as helicity, angular momen-
tum, linear momentum and so on. In this line, we have shown that
the use of the RS vector facilitates the study of many relevant physi-
cal phenomena and, in particular, those associated with the helicity of
the electromagnetic field. So far, all the analysis has been developed
within the framework of electromagnetic waves, i.e. considering that
the field has a continuous energy spectrum. In this Chapter, we show
that many of the previously discussed concepts can also be applied
in the framework of quantum electrodynamics. We focus on the topic
of scattering of photon states by linear optical samples, which can be
regarded as the quantum version of the scattering theory discussed
in Chapter 4.

In this Section, we formally introduce the second quantization of
the electromagnetic field and its fundamental excitation: the photon.
As we show, this formulation of electromagnetism allows to study the
scattering of non-classical states of light by linear optical samples. For
that aim, we first discuss a paradigmatic linear electromagnetic scat-
tering problem: a beam splitter. We see that the quantization of the
action of this optical device can be carried out within the input-output
formalism, just by substituting the electric field amplitudes with the
corresponding annihilation operators. Based on this, we quantize the
action of a generic linear scatterer, leading to a quantum version of the
scattering theory discussed in Chapter 4. Such a procedure naturally
results in the construction of the scattering matrix which contains all
the information of the dynamics of the system.

6.1.1  Quantization of the electromagnetic field

The quantization of the electromagnetic field is usually carried out
by expressing the energy of the electromagnetic field in free space in
canonical variables. We start by considering the field of a circularly-
polarized monochromatic plane-wave propagating in free space:

E(r) = EoeM(6, p)e™” (6.1)
1

iZH(r) = EV x E(r), (6.2)
where Eg is a complex amplitude, whereas eM(6, d) is a circular polar-
ization vector orthogonal to the wavevector, k. Note that other types
of monochromatic electromagnetic wave solutions can be expressed
as superpositions of circularly polarized plane-waves propagating in
different directions (see Eq. (3.30)). The total energy, U, of such a field
in a volume V can be obtained by integrating the local energy density:

U=y | ar (B +1281(02) = JVIESP: (6:3)
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Now, let us define the following magnitudes in terms of the complex
amplitude Eo [79, 8o]:

q=w "VV Re(Eo) (6.4)
p=VVIm(E), (6.5)

Note that, inverting the relations above, the amplitude of the electric
field can be expressed as:

1
Eo = ﬁ (wq+1ip). (6.6)

Finally, with the aid of the q and p variables, we can express the total
energy U in the following particular form:

1
U= (p? +w?q?). (6.7)

The expression given by Eq. (6.7) can be recognized as the energy
of a harmonic oscillator expressed in terms of canonical variables.
Thus, the quantization of the electromagnetic field can be carried out
following the rules of quantization of a harmonic oscillator. The usual
procedure to quantize the dynamics of a harmonic oscillator is to
associate the classical variables, q and p, with operators, § and P, such
that they fulfill: [q, p] = ih." In this line, within second quantization,
the operator form of the classical observables is simply obtained by
expressing them in terms of the § and p operators, instead of the
classical q and p variables. For instance, the energy operator is:

L]
U= (p*+wa?), 6.8)

whereas the complex electric and magnetic field operators are:

. 1

E(r) = 7 (wa +1p) Mo, pletr (6.9)
iZH(r) = \;\V (wq +1ip) eMNO, p)etrr. (6.10)

The expressions given by Eq. (6.9) and (6.10) represent the second
quantized versions of the electric and magnetic fields given by Eq.
(6.1) and Eq. (6.2).

For many purposes, it is convenient to deal with a different set
of operators, i.e. the creation and annihilation operators, which are
defined as:

1
= —(wq+1ip 6.11
e (@ +ip) (6.11)

1

At PO

' = —(wq—1ip), 6.12
Vahe (@A) (612)
and fulfill the commutation relation [a, 4] = 1. In terms of these

operators, the energy operator is expressed as:

Il =hw (a*a + ;) , (6.13)

1 Note that, in natural units, h = 1, however, for historical reasons, we keep the de-
pendence on Planck’s constant explicit during this Subsection.
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whereas the second quantized electric and magnetic fields adopt the

form:
Er)=a \/T’éx(é,&)eik'r] (6.14)
iZH(r) = a |A\y/ ZT’;Ué)‘(é,&)eik'r] ) (6.15)

This implies that both the complex electric and magnetic field oper-
ators are proportional to the annihilation operator, . Taking a look
at the classical expression of the fields in Egs. (6.1)-(6.2), we see that
the role of the complex amplitude Ey, in the second quantized electro-
magnetic theory, is played by the @ operator. As we show in the next
Subsection, this correspondence is useful to translate well-known re-
sults of classical optics into quantum optics.

Finally, let us briefly discuss the eigenstates and spectrum of the
energy operator. From Eq. (6.13) it is clear that the energy eigenstates
are also eigenstates of the afa operator. We usually refer to this op-
erator as the number operator, N, and its eigenvalues, N, conform a
discrete set N € (0,1,2...). The N operator takes count of the number
of excitations of the electromagnetic field, which are most commonly
regarded as photons. If we denote by [N) the eigenstates of the num-
ber operator, we have the following relations:

NIN) = N|N) (6.16)
aN) = VNN —1) (6.17)
afIN) = VN + 1IN +1). (6.18)

Thus, we see that the action of the @ and a' operators is to destroy
and create an excitation of the electromagnetic field, respectively. The
state for which the number of excitations is zero, |0), is known as
the vacuum state. To conclude, note that the quantization of the elec-
tromagnetic field could have been done choosing different values of
the wave vector, k, and helicity, A. Thus, to be more precise in the
notation, we may represent the annihilation and creation operators
defined in Egs. (6.11)-(6.12) as G, , and le(’)\. In this line, the opera-
tors associated with other types of waves, such as Bessel beams or
multipolar modes, can simply be expressed as linear combinations of
these operators with different weights (see Eq. (3.30) in Chapter 3).

6.1.2  Beam splitters and input-output formalism

The second quantized form of the electromagnetic field can be ap-
plied to a wide variety of different physical phenomena. However, in
this Chapter, we are interested in quantum scattering problems, i.e.
situations in which a photon impinges on a sample and then it is
scattered into a particular direction. Moreover, we strictly constrain
to situations in which the scattering is linear. As we have discussed
in Chapter 4, this means that the frequency of both the incident and
scattered fields is fixed, but note that this has further effects in the
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Figure 6.1: Sketch of a beam splitter, both in the classical and quantum pic-
tures. Eli(,)\ and Ey 5 represent the electric field amplitudes in the
input and output ports, respectively. In the quantum version of
the beam splitter, the transformation is performed over the input,
ﬁi’)\, and output, df(’/)\, annihilation operators.

quantum regime. Keeping the frequency of the fields fixed implies
that the scattering occurs at the single photon level, i.e. if a single
photon impinges on a sample, then, only a single photon may be scat-
tered away. This can be understood from the energy conservation law
and the operator in Eq. (6.13).

To fix ideas, let us discuss a system which can be regarded as
the simplest non-trivial linear electromagnetic scattering problem: a
beam splitter. This system will aid us to translate some of previously
discussed classical results into the quantum regime. A sketch of the
problem is depicted in Fig. 6.1. As it can be checked, a conventional
beam splitter has two input ports and two output ports and, assum-
ing that the device preserves the polarization state of light, the input
and output ports represent exactly the same modes (monochromatic
plane-waves propagating in a certain direction k;y or k;), but in dif-
ferent regions of the space. As a result, a beam splitter can be under-
stood as a device which carries out a linear transformation over the
input fields. Indeed, this can be explicitly checked from the classical
solution to the problem [81]:

Ep A =tE, A +TEl, A (6.19)

Eon = TEliq,)\ + tEliQ,)\/ (6.20)

where Eli<,7\ represents the amplitude of the input electric field, E 5
is the amplitude of the output electric field and {r,t} are the com-
plex reflection and transmission amplitude coefficients of the beam
splitter.

The relations given by Egs. (6.19)-(6.20) indicate that the amplitude
of the electric field in the output ports is given as a linear superposi-
tion of the amplitudes in the input ports. Following the quantization
procedure explained in the previous Subsection, this would indicate
that the annihilation operators associated with such electric field am-
plitudes are related exactly in the same way. In other words, if we
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would like to translate the classical results to the quantum regime,
we would just need to consider the following transformation [82]:

A O Al Al
ak1,)\ = tak1,)\ + Takz,}\ (6.21)

A0 Al Al
i, A = Tl A+ Hg, 2 (6.22)

This indicates that a linear optical phenomena, such as the action of
a beam splitter, can be translated to the quantum regime just as a
linear transformation of the annihilation operators. As we have pre-
viously mentioned, this implies that the process occurs at the single
photon level as the relations given by Egs. (6.21)-(6.22) do not include
quadratic terms of the annihilation operators. On the other hand, the
input annihilation operators fulfill the commutation relations previ-
ously discussed, but, in principle, nothing ensures that the output
annihilation operators also fulfill such commutation relations. It can
be proved that the commutation relations of the output modes only
hold provided that Ir]2 4 [t}2 = 1 and rt* + tr* = 0, which ensures the
energy balance in the beam splitter [81].

In our view, the beam splitter problem clarifies the relation between
classical and quantum fields, and permits us to elucidate the way
in which other linear scattering problems may be quantized. Indeed,
even if we have not discussed it in detail in Chapter 4, the relation be-
tween the scattered and incident field amplitudes is also linear in clas-
sical electromagnetic scattering theory [83, 84]. This implies that, for
every linear scattering problem, we may build a relation analogous to
that given by Egs. (6.19)-(6.20), where the "input port" is now associ-
ated with the incident field and the "output port" with the scattered or
total field. Following exactly the same procedure, we may substitute
the electric field amplitudes of each mode by the corresponding anni-
hilation operators. In this way, we may represent a generic quantum
scattering problem just as a linear transformation that relates input
and output annihilation operators.

6.1.3 Scattering matrix

In a linear electromagnetic scattering problem, the fields are not usu-
ally expressed in terms of plane-waves, but as a superposition of mul-
tipolar modes (see Egs. (4.1) and (4.4) in Chapter 4). Moreover, due
to the linearity of Maxwell’s equations and boundary conditions, the
relation between the incident (C]?m and C}’}n) and scattered field (otjm
and f3;r,) multipolar expansion coefficients can be expressed as [84]:

&m = ) [T Chm + TR Cla] (6-23)
™M

Bim = Y [T Chu + TR CTM] (624
™M

ee em me mm
where T72,,, TET,, TS, and T] 7L, are components of the so-called

T matrix; also, the summations include the terms | = 1,2,3,... and
M=-],—-]+1,...]—1,].
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Given the relations above, we could already consider the second
quantized form of the scattered and incident electromagnetic field
amplitudes. However, in line with the previous Chapters, we pre-
fer to give a formulation of the quantum scattering problem based
on the helicity components instead. This implies considering a linear
combination of the incident and scattering expansion coefficients, as
discussed in Chapter 4, which leads to the following quantum form
of the scattering problem:

@ = D [Thm@im ot + Tm@im, -] (6.25)
M

&= > [Tudim« + Tiudim -] - (6.26)
M

Here, d;m,)\ and d}m)\ (with A = £1) are the annihilation operators
associated with the scattered and incident field amplitudes, respec-
tively. The components of the T matrix in the helicity basis are [85]:

(THM T;]M) 1 (1 1 ) (Tfn‘fm T%) (1 1 ) - 627)
Tt Toow/ 2\1 =1/ \Tme, Tmm ) \1 —1
The relations expressed in Eq. (6.25) and Eq. (6.26) represent the quan-
tum formulation of the linear electromagnetic scattering theory. The
difference with the classical theory is that this formulation permits
to analyze the scattering of non-classical states of light, such as multi
photon states or entangled states.

Finally, the scattering matrix is computed taking into account that
the total field also includes the incident field. This way we obtain

a complete representation of the quantum scattering problem in an
input-output form:

& =D [Shimaims TS iomim,- (6.28)
™M

@ =D [Srumims + Srm@im_] (6.29)
M

where a7 | represent the annihilation operators associated with the
output (or total) field amplitudes. In this line, the components of the
scattering matrix are Compute~d as S?‘nz‘]M = T?‘nz‘m + 6]1 6%‘6%, where 6}
is the Kronecker delta and A (A) represents the helicity of the incident
(scattered) field. The necessity of introducing the identity operator in
the definition of the scattering matrix stems from the fact that, in the
absence of a scatterer, the input and output modes must be the same.
Moreover, the expressions given by Egs. (6.28)-(6.29) indicate that a
generic scatterer does not preserve neither the total angular momen-
tum, nor the helicity of the incident states. However, as we show in
the next Section, we may try to simplify such general input-output
relations by studying particular physical situations in which some of
these magnitudes may not be considered. This leads to more tractable
scattering matrices from which new phenomena can be inferred.
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6.2 QUANTUM SCATTERING WITH CYLINDRICAL PARTICLES

In the previous Section we have discussed a procedure to translate
classical results of electromagnetism to the framework of second quan-
tization. We have seen that the input-output formalism is particularly
useful to describe linear optical phenomena, such as the action of a
beam splitter. Based on this, we have introduced the second quan-
tized form of a generic linear scattering problem. We have shown
that such a problem can be studied, within the input-output formal-
ism, considering that the annihilation operators are linearly related
through the scattering matrix. This matrix contains all the informa-
tion of the scatterer and, thus, it also contains the information about
its symmetries. For instance, if a scatterer is dual, this implies that the
scattering matrix does not couple different helicity components and,
thus, S?‘nz‘]M = Sj)‘mIMZS%. Also, if the sample is spherically symmetric,
we have that both the square and the z component of total angular
momentum are preserved, i.e. S?‘nz‘]M = Sf‘ﬁ?éjl oM.

In this Section, we focus on the study of scattering by cylindrically
symmetric structures. In terms of the scattering matrix, this implies
dealing with samples for which S?‘QIM = S?}T{‘]ém. The classical version
of this scattering problem has already been addressed in Section 4.3
of Chapter 4. The difference with the previous approach is that we
now consider the scattering of non-classical states of light. We first
discuss the degrees of freedom that we are going to consider in our
input-output description of quantum scattering. In this line, we intro-
duce the concept of post-selection that allows to treat the scattering
problem in a simplified manner. Then, we discuss the constrains that
the mirror symmetry of the system imposes on the scattering matrix
components. Finally, we show that such constrains are different de-
pending on whether we consider single photon states with zero or
non-zero total angular momentum, m. The results are adapted from
Contribution I.

6.2.1 Post-selected scattering matrix

Let us first address the scattering problem by simplifying some of the
degrees of freedom. In particular, in our treatment we consider that
the square of the total angular momentum, j, is not going to play a
relevant role. As we have previously mentioned, regarding the imple-
mentation of the SCA method in Chapter 4, this approach is fully jus-
tified in situations in which the cylindrical scatterer is well-described
by a single multipolar order, but the approximation is not valid for
a generic cylindrical scatterer. However, there are other situations in
which the description of the scattering problem may still be reduced
to just the z component of total angular momentum, m, and helicity,
A. Such a description is possible if, by experimental means, we are
able to discard the rest of the labels describing the photon states. This
procedure is usually denoted as post-selection.
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Figure 6.2: Sketch of the post-selection process. An incident state, a
is focused into a generic scatterer and, then, a portion of the
total field is recovered through a collimating lens. Due to the

characteristics of the set up, the states in the output port have
the same linear momentum as the input states.

In our case, the procedure of post-selection can be better under-
stood representing the scattering problem in terms of Bessel beams
instead of multipolar solutions. In Fig. 6.2 we depict a typical exper-
imental situation, frequently found in quantum scattering problems.
There, an input state with well-defined z component of linear momen-
tum, k, z component of total angular momentum, m, and helicity, A,
is focused with a lens into a generic linear scatterer. Due to the in-
teraction, the field is scattered in all directions and a portion of the
total field is recovered by a second collimating lens. Finally, in Fig.
6.2, it can also be seen that we add a filter which allows us to select a
particular linear momentum component from all those that form part
of the scattered field. In this particular case, for simplicity, we choose
the same component than the incident field. However, we could have
chosen other mode filtering options and, in real experimental condi-
tions, one should choose the most convenient one. Nevertheless, one
can consider this filtering as an ideal one leading to post-selecting the
photons with the adequate linear momentum component. This means
that, due to the particular disposition of the optical elements, there
are situations in which some labels of the photon states do not play
a significant role. In the following discussion, we constrain ourselves
to these specific situations.

Moreover, if the scatterer is rotationally symmetric with respect to
the OZ axis, this implies that the z component of the total angular
momentum is preserved. As a result, if a state with total angular mo-
mentum m impinges on a cylindrical scatterer, then, the output state
must have the same eigenvalue of the ], operator. In other words,
for a cylindrical scatterer we have that the post-selected input-output
relations are reduced to:

QP =8 Ay + 88 A, (6.30)

A o S
an =8, Ay +85 an, (6.31)
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where $A are the components of the post-selected scattering matrix
of a cylindrical scatterer for modes with total angular momentum
m. Note that the relations expressed in Egs. (6.30)-(6.31) bear a re-
semblance with the transformation induced by a beam splitter. How-
ever, there are a few differences between the two systems. On the one
hand, the post-selected scattering matrix components do not fulfill
the requirements imposed by energy conservation. This is because,
due to the nature of the scattering problem depicted in Fig. 6.2, there
are field components which are not collected by the collimating lens
and, thus, part of the incident energy does not reach the output port.
Due to all this, and contrary to what happens in a unitary beam split-
ter, $M coefficients can virtually take any value. Later on we will
see that, in some particular cases, the post-selected scattering matrix
coefficients can be related due to symmetry considerations.

Finally, for future convenience, let us rewrite the relation given by
Egs. (6.30)-(6.31) in terms of the creation operators instead of the an-
nihilation operators. Moreover, inverting the relation we obtain:

d:{ﬁL — ndLﬁmL + Cﬁfﬁ,_ (6.32)
Q- = €l +Yaly (6.33)

where 1, ¢, e and 7y coefficients are computed by complex conjugat-
ing and inverting the post-selected scattering matrix specified in Egs.
(6.30)-(6.31). The advantage of specifying a transformation over the
creation operators resides in the fact that single photon states are con-
structed by applying these operators to the vacuum state, [0). Thus,
physically, it is more convenient to express the transformation in
terms of af operators, instead of d operators. Moreover, inverting the
input-output relation also helps in clarifying the effect of the scatter-
ing matrix over the states. Indeed, with the presence of the "—" sym-
bol, we want to stress that the action of the scatterer is to transform
an input state into a superposition of output states. For a detailed
discussion on the computation of such input-output relations in the
case of a spherical scatterer check Refs. [80] and [86]. Also, details of
the experimental implementation of such linear transformations can
be found in Ref. [87].

6.2.2  States with zero total angular momentum

As a first example let us discuss the quantum scattering of states
with null total angular momentum, m = 0. This particular problem
has been theoretically addressed in Contributions I and XII.

A consequence of the cylindrical symmetry of the scatterers is that
they are also mirror symmetric. In particular, let us consider the mir-
ror symmetry with respect to any plane containing the OZ axis, like,
for instance, the XZ plane. Following the usual conventions, we de-
note by M, the operator which performs a mirror transformation
with respect to the XZ plane. From the properties of classical electro-
magnetic fields it can be checked that the mirror operator, My, acts
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in the following way over states with null total angular momentum
[871:

My ﬁg,xlo> = a$,7>\|0>‘ (6.34)

The expression above implies that the states of null total angular mo-
mentum are mapped into themselves through the action of the mir-
ror operator. Due to the symmetry of the problem, the post-selected
scattering operator has to be invariant under mirror transformations,
which imposes the constrain € = ¢ and n = v, i.e. that the diagonal
and anti-diagonal terms are equal.

To avoid repeating the same symbols, let us express the transfor-
mation of a cylindrical scatterer for states with null total angular mo-
mentum, m = 0, in terms of different parameters, « and 3. Please
note that this parameters are different from the scattering coefficients
expressed in Egs. (6.23)-(6.24). As we have seen, mirror symmetry
imposes that the transformation of states with null total angular mo-
mentum is:

alf,10) = («al?, +pale ) I0) (6.35)
gl 10) — (Bale. +xal? ) 10). (636)

By inverting back the input-output relation, it can be checked that the
relations given by Egs. (6.35)-(6.36) exactly represent the transforma-
tion of a beam splitter. However, in this case, the system has losses,
which implies that the output operators do not fulfill the canonical
commutation relations [81]. There are a few ways to get around this
issue. On the one hand, one may consider extra modes to account
for all the losses of the system and, thus, recover the conservation
of energy [88]. Another approach, which is the one we follow here,
is just to accept that energy is not preserved in the scattering process
and employ Egs. (6.35)-(6.36) considering that « and {3 coefficients are
arbitrary complex numbers. Note that by considering that the scatter-
ing coefficients o and (3 are arbitrary, the description applies to any
post-selected cylindrical scattering problem, making our discussion
general.

If we do not impose any constrain over « and 3 coefficients, the
transformation given by Egs. (6.35)-(6.36) describes the interaction of
photon states with a generic cylindrical scatterer. In this line, note
that the action of a post-selected cylindrical scatterer can be resumed
into a single matrix:

s— (% B). 6.
(B oc) (6.37)

This matrix contains all the dynamical information of the evolution
of states belonging to the space Hy = span{ﬁg, +10), ﬁg,_|0>} within
the input-output formalism. The matrix form of the transformation
suggests that there may be certain single photon states that may re-
main invariant in the scattering process, i.e. those linear combinations

107



6.2 QUANTUM SCATTERING WITH CYLINDRICAL PARTICLES

which diagonalize the S matrix. Indeed, such states are also eigen-
states of the mirror operator and transform in the following way:

\1& (afl, +rall )10y —» = ;;B (af, +ral> )i, (639)
where T = +£1 is the eigenvalue of the mirror operator, M. Crucially,
note that the input states in Eq. (6.38) do not depend on « and f3
parameters, which implies that they are eigenstates of every cylindri-
cal scatterer. This is what we call symmetry-protected states: photon
states which, for symmetry considerations, remain invariant in the
scattering with all the samples that belong to a specific symmetry
group. In the case we are discussing here, the group is Cooy .

The reason why the states in Eq. (6.38) are protected in the inter-
action with all cylindrically symmetric scatterers is that, due to the
symmetries of the scatterers, both m and T labels are preserved in the
interaction. This implies that states with different angular momen-
tum and mirror eigenvalues are decoupled in the scattering process.
The states expressed in Eq. (6.38) are simultaneous eigenvectors of j.
and M, operators, with eigenvalues m = 0 and T = +1. As a result,
they cannot be mixed with any other optical mode and they remain
invariant through the scattering process. Here, with "invariant" we
mean that, if a photon is found in the output port, then, it must be in
the same state as in the input port. But, of course, it could also hap-
pen that the photon is lost due to optical absorption in the scatterer
or due to the post-selection process. Thus, if we are precise with the
wording, the states given by Eq. (6.38) are protected only if we can
further post-select on having no losses. In practice, this implies keep-
ing only the events in which the output state has the same number of
photons as the input state.

6.2.3 States with non-zero total angular momentum

In the previous Subsection, we have studied the dynamics of single
photon states with m = 0. Now, we may analyze the scattering of
states with non-zero total angular momentum, m # 0. This problem
has been theoretically addressed in Contribution I considering that
the evolution is fixed by the transformation specified in Egs. (6.32)-
(6:33).

The main difference with the previous case is that states with m # 0
do not transform into themselves under mirror transformations. This

can also be checked from the properties of clasical electromagnetic
fields:

Myal o) =al  _,10). (6.39)

Therefore, if we want to consider mirror eigenstates in our scattering
problem, we have to consider also states with total angular momen-
tum —m. By setting our space of states to

Hm = span {a;,+|o>, af, _loy,at . 10),af m,f|o>} , (6.40)
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we see that the evolution of the system is now fixed by the following
transformation:

A:[wlx + nﬁf& + CaTO ) 0) (6.41)
dTl (e ATO ATO ) 0) (6.42)
AT:m + = (Yaiom + T el ) (6.43)
al',,~ — (cal%,  +mal%, )0, (6.44)

where we have already considered the constrains that mirror symme-
try imposes over the scattering coefficients. Apart from the explicit
relations imposed by mirror symmetry, we allow 1,(, € and y coef-
ficients adopt arbitrary complex values. As before, this implies that
the expressions specified in Eqs. (6.41)-(6.44) describe the scattering
of states with total angular momentum m # 0 with any post-selected
cylindrical sample.

In analogy with the case of zero total angular momentum, we see
that the evolution of the system is now determined by the properties
of the matrix

0
0

(6.45)
v

€

o o o 3
o o < o~

¢

As we have doubled the dimensions of our space, the evolution now
resembles the action of two decoupled beam splitters. One of them op-
erates over the states with positive angular momentum, m, whereas
the other one operates over the states with negative angular mo-
mentum, —m. In this analogy, the transmission and reflection coef-
ficients of the two beam splitters are related, but the diagonal and
anti-diagonal coefficients of each of them are different. This differs
from the case of states with null total angular momentum, where
the diagonal and anti-diagonal coefficients were set to be the same
by symmetry considerations. As a result, the transformation of states
with m and —m angular momentum can be associated with the action
of two non-symmetric lossy beam splitters [82, 89, 9o].

At this point, we could try to diagonalize the S matrix and obtain
the set of states which remain invariant through the scattering pro-
cess. This, of course, can be done, but the result is not very useful, as
all the eigenstates of S depend on the 1, ¢, € and 7y coefficients. This
means, that in the single photon case there are no states with total an-
gular momentum m # 0 which remain invariant for all cylindrically
symmetric scatterers. There are just particular states that remain in-
variant for particular cylindrically symmetric scatterers. This implies
that there are no single photon symmetry protected states with m # 0.
As we show in the following Section, symmetry protection for states
with non-zero total angular momentum emerges in the multi photon
regime and due to phenomenon of quantum interference.
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63 SYMMETRY-PROTECTION OF MULTI PHOTON STATES

Once we have settled the description of the scattering of single pho-
ton states by cylindrical particles, we can take advantage of the sec-
ond quantization formalism and study the dynamics of multi pho-
ton states. The prescriptions to consider such multi particle trans-
formations are relatively simple. First, we build a multi photon in-
put state, we then apply the transformation to each of the creation
operators and, finally, we compute the output state assuming that
[di‘;)\, ﬁis/)\,] = 0 for every value of the total angular momentum and
helicity. Thus, we implicitly assume that, even if we have not explic-
itly constructed it, there exists a larger set of output modes for which
the scattering process can be expressed as a quasiunitary operator.
This is a sufficient condition to recover the canonical commutation
relations for the output modes [88].

Bearing this in mind, in this Section we discuss the construction
of multi photon symmetry-protected states. First, we discuss the two
photon case for states with both m = 0 and m # 0 total angular mo-
menta. On the one hand, we show that the emergence of symmetry
protection in the case of states with m = 0 is a natural extension of
the single particle dynamics. For the case of m # 0, we show that sym-
metry protection emerges as a consequence of quantum interference,
when considering two photon states. This is in stark contrast with
the single particle regime, where we have shown that no symmetry-
protected states can be built with m # 0. Then, we extend the notion
of symmetry protection to an arbitrary number of photons, N. We
show that multi photon symmetry-protected states can be expressed
as products of the states already discussed for the single and two
photon case. Finally, we discuss possible applications of symmetry-
protected states in the construction of decoherence free subspaces.
The results are adapted from Contribution I.

6.3.1  Two photon symmetry-protected states

Two photon symmetry-protected states with m = 0 can be built based
on what we have already discussed in the single particle regime. In-
deed, in this specific case, we may choose a different way of expand-
ing the space J{( in terms of single photon protected states specified
in Eq. (6.38):

3o = span {a} [0}, a{ .10}, (6.46)

where subscripts "s" and "a" stand for symmetric and antisymmetric,
repectively. This subscripts indicate whether the eigenvalue of the
mirror operator, My, is T = 1 (symmetric) or T = —1 (antisymmetric).
The expansion of Hp space in terms of the mirror symmetric and
antisymmetric states can be just seen as a change of basis, where we
choose to express the states in terms of their mirror eigenvalue, T,
instead of their helicity, A.
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With this choice, we may now build the space of two photon states
with m = 0, which can be expressed as:

5¢0=2 = span { (a} )0}, &} &} ,[0), (af )0} } (647)

As the commutation relations impose that ag sﬁg J0) = d:r) adg $10),

the space specified in Eq. (6.47) is three dimensional. This is closely
related with the fact that photons are bosons and, as a result, multi
particle wave functions are required to be symmetric under the par-
ticle exchange operation. It is direct to check that the three basis
vectors defined above remain invariant when scattering off a cylin-
drically symmetric sample. Indeed, employing the transformation in

Egs. (6.35)-(6.36), we get:

N 2
(ab,) 100 = (e+p) (als,) 10 (6.49)
6, adil0) = (o — B?)af3al, o) (6.49)
.\ 2 2
(adi) " 10) — (o= )2 (af2,) 10)- (6.50)

The result in Egs. (6.48)-(6.50) indicates that there are three symmetry-
protected states built from two photons with m = 0. And, in line with
what we have discussed in the previous Section, such two photon
states are protected only if we post-select on having no losses, i.e. if
we just consider the events in which two photons are found in the
output port. Experimentally, this is usually implemented by measur-
ing coincidences, i.e. only taking into account events in which two
photons arrive simultaneously to the output detectors.

On the other hand, the case of two photon states with m # 0 is
not so straightforward. Indeed, as we have previously shown, there
are no symmetry-protected single photon states. This is mainly due
to the fact that mirror eigenstates are linear combinations of states
with positive and negative angular momentum. As a result, in the
single photon regimen, eigenstates of M, operator do not have a
well-defined total angular momentum, i.e. they are not eigenstates
of J, operator. The situation is radically modified when considering
multi photon states because this type of states have total angular mo-
mentum myet = ZiN:1 mi, where N is the number of photons and m;
the angular momentum of each of them. In this line, the space of two
photon states =2 can be split in three subspaces according to the
different values of myg:

Vam = span { 4 L+am+|o> al @b, 10), @, al 10} (651)

Vom =span{al,, aly 10),al,, al 06" al 0}
(6.52)
which contain states with mi,t = 2Zm and m,t = —2m, respectively.
And, then, a subspace with mt = 0:
Vo = span! a! m,—10),a 0), & al 0),
0 = Spany Gy 4 al — fm + Am,+

- A*_m_|o>} (6:53)
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Thus, we see that, unlike the single photon regime, the two photon
space HN=2 contains a subspace with null total angular momentum.

It can be checked that V,,,, and V_;,, are mapped into each other
by My. Vo is the only subspsace which maps into itself through the
action of the mirror operator. Indeed, in the basis specified by Eq.
(6.53), the mirror operator can be expressed as:

1 0 0 0

. o 1 0 0
My = (6.54)

Y lo 0o 0o 1

o 0 1 0

This indicates that the first two states of Vo subspace are mirror sym-
metric, whereas the last two states are mapped into each other. In
other words, the eigenvectors and eigenvalues of the mirror operator
in subspace V, are:

1) =k al o) (r=1) (6.55)
o) =al, _al, ,10) (t=1) (6.56)
W) = (0l +ahal )10} (r=1) (6.57)
W) = (ol —al b YI0) (r=-1). (6.58)
In other words, there are three mirror symmetric (T = 1) and only one
mirror antisymmetric (T = —1) within the Vy subspace. Moreover, as

the total angular momentum, my, is also preserved, we reach to the
conclusion that [4) cannot be mixed with any other state through
the scattering process.

This can be explicitly checked by applying the transformations

given by Egs. (6.41)-(6.44) to [\4):
W) — (my — Ce)wg), (6.59)

which confirms that it is left invariant in the scattering process. Also,
note that the construction of the state is independent of the scatter-
ing coefficients, which implies that p4) is an eigenstate of all post-
selected cylindrical scatterers. In other words, the state given in Eq.
(6.59) is a two photon symmetry-protected state composed of photons
with angular momentum m # 0. Moreover, \p4) has a feature which
differentiates it from the protected states specified by Egs. (6.48)-
(6.50): it cannot be expressed as the product of single photon states.
In other words, in the case of m # 0, symmetry-protection is a con-
sequence of quantum interference and, thus, it is a exclusive feature
of the multi photonic nature of the states we are considering. In con-
trast to the states given by Eqgs. (6.48)-(6.50), [W4) is considered an
entangled two photon state according to most definitions [91—93].

6.3.2  Multi photon symmetry-protected states

Once we have analyzed the single and two photon cases, we may won-
der whether there are or not more symmetry-protected states. Up to
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now we have inferred the existence of these states in two particular
ways. First, by identifying photon states with null total angular mo-
mentum and mirror symmetry. If there are states which are uniquely
defined by these attributes, i.e. there is only one mirror symmetric or
mirror antisymmetric state in the subspace of null total angular mo-
mentum, then it must be protected in the interaction with cylindrical
samples. As we have explained, this is just because both the total
angular momentum and the mirror eigenvalue are conserved in the
interaction with this type of samples. Second, symmetry-protected
states can also be built from products of previously identified pro-
tected states. In the case of m = 0, we have shown that the single
particle space Hp can be expanded in terms of symmetry-protected
states and, as a result, the space .‘HON =2 can also be expanded in terms
of two photon protected states.

Following this reasoning, it is clear that there is a systematic way of
building multi photon symmetry-protected states with m = 0. To con-
struct a N photon protected state we should just consider products as
indicated in the previous Section:

wo) = (ab,)™ () " 10), (6.60)

where the number of photons is computed as N = ng +nq,. Here, ng
and n, represent the number of mirror symmetric and antisymmetric
states. All these states have null total angular momentum and their
mirror eigenvalue is given by (—1)™e. Also, when N is odd there
are (N + 1)/2 mirror symmetric and (N + 1)/2 mirror antisymmetric
states. In the case of the number of photons being even, there are
N/2 + 1 mirror symmetric and N/2 mirror antisymmetric states. In
both cases, the total number of states is N + 1. One can check that
the state given by Eq. (6.60) is protected by explicitly computing the
transformation expressed in Egs. (6.35)-(6.36), which leads to:

[WE) — (a+ B)™s (o — B)™e[Wg). (6.61)

By construction, it is clear that there are no other multi photon symmetry-

protected states for the case m = 0.

On the other hand, we may employ exactly the same procedure to
build multi photon protected states with m # 0. In this case, a state
of the form:

st A At

Wim) = (am,+ O m,+ = Om,— dT—m,—

N/2
) 10) (6.62)

must be left invariant in the scattering with any cylindrically symmet-
ric sample. Note that this state belongs to the V, subspace of the N
photon space, !\, and its mirror symmetry depends on whether N/2
is even or odd. One can check that [Vy,) is left invariant by explicitly
applying the transformation given by Egs. (6.41)-(6.44):

Wi — (ny — ce)N/2WS,). (6.63)

Interestingly, this is the only protected state for a fixed value of the
angular momentum, m, and photon number, N. This can be proved

113



63 SYMMETRY-PROTECTION OF MULTI PHOTON STATES

from the definition of symmetry-protection and exploiting the prop-
erties of the S matrix for cylindrically symmetric samples. The details
are given in Contribution I and the proof rests on the fact that a pro-
tected state must be an eigenstate of all matrices S,S’...etc compati-
ble with the group Cyy. The transformations between two infinitesi-
mally distinct matrices S and S’ sulffice to prove that the symmetry-
protected state given by Eq. (6.62) is unique. In other words, for
m # 0 and N > 2, there are no other symmetry-protected states which
emerge as a consequence of quantum interference. All the protected
states are products of the [\p4) state identified in the two photon case.

6.3.3 Construction of decoherence free subspaces

Note that so far we have discussed the protection of one-dimensional
subspaces, namely single N photon states which are preserved in the
scattering with cylindrical samples. While this provides an interesting
characterization of the scatterer and may be useful for certain appli-
cations, it is not sufficient to transmit quantum information. To profit
from symmetry-protection, at least a two-dimensional protected sub-
space is required. In this line, one would like to build superpositions
which are robust to the environmental conditions, i.e. subspaces in
which the relative amplitudes may remain unchanged through the
propagation. This kind of subspaces are most commonly denoted as
decoherence free subspaces. In this last Subsection, we show that,
with one additional assumption on the scatterer, decoherence free
subspaces may be constructed even in the presence of losses.

If the scatterer, and hence the S matrix, can be considered to be
static, i.e. constant during a time interval [t1,t;], then a protected
state lsm\0> scattered at time t; or time t, undergoes exactly the
same transformation and, therefore, if we can post-select on hav-
ing no losses, any superposition of the two would be unaffected. In-
deed, for the protected states constructed in the previous Sections,
the state after scattering is of the form Amlsm|0> + [Wr), where A,
is the eigenvalue of the symmetry-protected state and [\pg) is the
part in which at least one photon has been scattered into environ-
mental modes. If the scattering is time-independent, sending an in-
put state in a superposition of being in the first or the second time-
bin (c1Pm(t1) + c2Pm (t2))]0) will be scattered into Ay (c1Pm(t) +
2P (t2))10) + br[bg(t1)) + bahbr(t2)), where by and b, are coef-
ficients that account for the losses at times t; and t;. Thus, post-
selecting on having the input number of photons, N, either in the first
and zero in the second time-bin or vice versa yields the unchanged
input state. In principle, this post-selection can be done without affect-
ing the superposition, i.e. by filtering on the correct photon number in
the full set of employed modes. This implies that the whole subspace
can be transmitted in protected fashion, leading to a two dimensional
decoherence free subspace.

Furthermore, one can generalize this to construct d dimensional
decoherence free subspaces given by: Y& | ¢iP..(t:)[0), as long as
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the scattering matrix remains static in the time interval [t1, t4]. Since
the loss of probability only depends on the total photon number, not
on the number of time-bins, these do not suffer larger losses. Note
that the simplest realization is the use of single photon symmetry-
protected states as given in Eq. (6.38), in which case the qubit is just a
suitable angular-momentum choice of the time-bin qubit long used in
quantum communications [94] and for which efficient quantum logic
has been developed [95].

6.4 SUMMARY

In Section 6.1 we have discussed the second quantization of the elec-
tromagnetic field. We have shown that the input-output formalism
provided by the quantum beam splitter can be extended to study the
scattering of photon states by linear optical samples. In this line, we
have seen that in a linear scattering problem the input and output
modes are related by the so-called scattering matrix of the system.
In Section 6.2 we have introduced the notion of post-selection and
we have focused on situations in which photon states may be well-
described only by their total angular momentum, m, and helicity, A.
More specifically, we have discussed some general properties of the
scattering of these photon states with cylindrically symmetric sam-
ples. Indeed, we have shown that the evolution of states with zero
(m = 0) and non-zero (m # 0) angular momentum differs in cer-
tain important aspects. In Section 6.3 we have discussed the notion
of symmetry-protection. We have shown that, unlike m = 0 states,
symmetry-protection for m # 0 states is a consequence of quantum
interference and the multi photon nature of the input states. Finally,
we have discussed the possibility of building decoherence free sub-
spaces with time-bin superpositions of symmetry-protected states.
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In this brief Chapter, we discuss the main results and conclusions of
our work. We also provide an outlook of the potential applications
that our findings may have in different fields of Physics and, particu-
larly, in electromagnetic scattering theory.
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MAIN RESULTS AND CONCLUSIONS

In Chapter 2, we have introduced Maxwell’s equations both in the
conventional form and in terms of different versions of the RS vec-
tor. Also, we have shown that the canonical operator form of some
fundamental physical magnitudes such as energy, linear momentum,
total angular momentum and boosts, generates a representation of
the Poincaré group.

In Chapter 3, based on the symmetry breaking principle, we have
extended the description of electromagnetic waves in vacuum pro-
vided by Wigner and Bargmann to generic homogeneous media. More
specifically, we have shown that the description of electromagnetic
waves in homogeneous media is naturally related to the P, subgroup
of the Poincaré group. In this line, we have provided an alternative
starting point to study the dynamics of monochromatic electromag-
netic waves propagating in this type of environments. Our analysis
puts forward the fundamental role that the Casimir operators of Ps;,
i.e. the helicity operator, A, and the square of linear momentum op-
erator, P2, play in the description of monochromatic electromagnetic
waves. Moreover, we have also shown that the monochromatic RS
vector naturally emerges from the analysis of the unitary irreducible
representations of P;,. Our group theoretical analysis sheds light on
why the monochromatic RS vector constitutes such a particular (and
useful) choice to represent monochromatic electromagnetic fields. Fi-
nally, our discussion also clarifies the role of the Euclidean group in
electromagnetism and its link with the construction of wave solutions
with well-defined helicity.

In Chapter 4, we have shown that the systematic application of the
monochromatic RS vector to the study of linear electromagnetic scat-
tering phenomena leads to interesting insights and new results. For
instance, we have shown that the use of the monochromatic RS vector
reinforces Bohren and Huffman'’s idea of extinction emerging as an in-
terference between the incident and the scattered fields. Also, it facil-
itates the link between the scattered power and the scattered helicity
with the Stokes parameters. On top of this, we have provided a few
substantial contributions. First, we have shown that optical losses in
dielectric scatterers preclude the conservation of helicity in many dif-
ferent systems, such as conventional spheres, chiral spheres and core-
shell. This implies that lossy systems should be avoided if one seeks
the conservation of helicity for applications such as surface-enhanced
Circular Dichroism, directional scattering and so on. Second, we have
analytically shown that optical gain is a necessary condition to build
antidual scatterers of any size, shape and under generic illumination
conditions. This closes a long-standing controversy about the imple-
mentation of helicity flipping scatterers, while at the same time clari-
fies where the experimental efforts should be directed instead. Third,
we have reported a method to characterize cylindral particles in more
favourable experimental conditions, i.e. the Single Characterization
Angle method. Potentially, this technique may allow the experimen-
tal determination of the scattered power and the scattered helicity
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with a single photo-detector placed in the far-field in some particular
cases. The method may indeed be useful to characterize cylindrical
samples whose multipolar resonances do not overlap spectrally.

In Chapter 5, we have delved into the study of electromagnetic
waves propagating through magnetic inhomogeneous media. We have
shown that the impedance and refractive index matching conditions
naturally emerge from the form that Maxwell’s equations acquire in
terms of the monochromatic RS vector. In this line, we have shown
that, under both the impedance and the refractive index matching
conditions, Fresnel and Mie coefficients acquire very specific analyt-
ical expressions, some of which had previously been overlooked in
the literature. We have also shown that the refractive index matching
condition permits the construction of efficient helicity flipping spher-
ical scatterers while respecting the law of energy conservation. In ad-
dition, we have identified the mechanism that permits the helicity
conversion under the refractive index matching condition. Making a
formal analogy with two-level quantum systems, we have shown that
the index matching condition leads to the phenomenon of avoided
level crossing and, thus, to the resonant mixing of the different he-
licity components of the electromagnetic field. Finally, we have dis-
cussed the conserved quantities associated with the impedance and
refractive index matching conditions, i.e. helicity, A, and the square
of linear momentum, P2, respectively. We have concluded that the
emergence of these conserved quantities puts forward an alternative
interpretation of the phenomena reported by Kerker, Wang and Giles
40 years ago [70]. In our view, the emergence of such anomalous ef-
fects can also be understood in terms of the Casimir operators of P;;
group. We believe that this perspective of the Kerker phenomena is
more consistent with the analysis provided in Chapter 3.

In Chapter 6, we have applied the description of electromagnetic
waves in terms of modes with well-defined helicity to study the scat-
tering of multi photon states with cylindrically symmetric structures.
In this line, we have shown that, within post-selected quantum scat-
tering processes, there are states which are left invariant under the
action of arbitrary cylindrical scatterers, i.e. the so-called symmetry-
protected states. In our analysis we have identified both single photon
and multi photon symmetry-protected states. As we have shown, sin-
gle photon symmetry-protected states can only be built with modes
with null total angular momentum (m = 0), whereas multi photon
protected states can be built from modes with any value of the total
angular momentum. More specifically, we have demonstrated that all
of the symmetry protected states built from modes with null total
angular momentum can be expressed as products of single photon
protected states. On the other hand, we have also shown that sym-
metry protected states built with modes with m # 0 are products
of two photon protected states. Finally, we have discussed the pos-
sible application of symmetry-protected states to build decoherence-
free subspaces. We have concluded that time-bin superpositions of
symmetry-protected states may serve for this goal, the only experi-
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mental requirement is that the response of the scatterers cannot dra-
matically change in time.

OUTLOOK

Our group theoretical analysis of Chapter 3 opens the way to the ap-
plication of the symmetry breaking principle in other electromagnetic
problems. A systematic study of environments based on such princi-
ple may lead to the discovery of new optical phenomena. For instance,
the identification of relativistically invariant materials would open
the way to a completely new paradigm in which other subgroups of
the Poincaré group may be employed to anticipate the properties of
novel optical samples.

Also, the discussion in Chapter 4 proves that the monochromatic
RS vector constitutes an extremely useful tool for the analysis of elec-
tromagnetic scattering problems. Our study has mainly focused on
power measurements, but we believe that the potential of the RS vec-
tor goes well beyond this magnitude. For instance, the application
of the monochromatic RS vector may also be useful to study optical
forces and torques in linear electromagnetic scattering problems. On
the other hand, the results on dual and antidual scatterers indicate
that experimental designs should take into account the conditions
under which these types of scatterers may or not be built. Finally, the
implementation of the Single Characterization Angle method has a
clear potential in simplifying routine optical measurements. Indeed,
some research groups are already studying the experimental condi-
tions in which this method may be applied.

The impact of the results reported in Chapter 5 is more conceptual.
On the one hand, we have shown that the refractive index matching
condition is paired with the impedance matching condition in several
contexts of electromagnetism. While the role of the impedance has
been analyzed in a wide variety of problems, the refractive index has
been quite generally overlooked in the literature. Thus, we believe it
would be interesting to check whether the index matching condition
provides new insights in systems in which impedance matching has
been analyzed in the past. On the other hand, the connection of the
refractive index matching condition with the avoided level crossing
phenomenon opens the way to explore similarities in the dynamics
of other fundamental particles such as neutrinos. One should be cau-
tious when proposing this type of analogies or connections, but we
believe that there are elements in our analysis that indicate that the
refractive index matching condition is related with other phenomena
such as the Mikheyev-Smirnov-Wolfenstein effect. A deeper study in
this direction may also be interesting. Finally, we also believe that the
inclusion of the refractive index matching condition in the analysis of
the Kerker phenomena clarifies the discussion about the conserved
quantities in such scenarios.

Regarding the analysis provided in Chapter 6, we believe it may
serve to settle the study of the scattering of photon states with cylin-
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drically symmetric structures. In this line, there are many optical
systems which have cylindrical symmetry, such as circular optical
fibers, in which the analysis of helicity states may also lead to new
insights and results. Finally, it may be interesting to extend the notion
of symmetry-protection to other geometries.
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