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Introduction

Atoms in materials fluctuate and oscillate around their equilibrium positions at
any temperature, even at absolute zero due to quantum zero-point motion. These
vibrations determine many physical and chemical properties of materials, such as
their thermodynamic and transport characteristics. Specifically, the temperature
dependence of a material’s thermodynamic properties is primarily governed by the
atomic vibrations, as they are excited at much lower temperatures than electrons.
As a result, atomic fluctuations significantly influence various key phenomena, in-
cluding phase transitions, specific heats and thermal expansion. On the other side,
electrical and thermal transport in materials cannot be understood without con-
sidering the interaction of electrons with the quanta of atomic vibrations, known
as phonons, nor neglecting the interaction between phonons themselves. Even su-
perconductivity, one of the most intriguing phenomena that emerges in materials,
is often the result of the electron-phonon interaction. Additionally, the vibrational
dynamics leaves different spectroscopic signatures, observable in infrared, Raman,
and inelastic x-ray or neutron scattering experiments.

Nowadays, the vibrational properties of materials are typically calculated from
first principles within the harmonic approximation. In this framework, the Born-
Oppenheimer potential, which describes the dynamics of atoms, is expanded to
second order as a function of atomic displacements. However, this approxima-
tion leads to several unphysical consequences, for example, the prediction that
phonons are well-defined quasiparticles with temperature-independent energies. In
reality, phonons have finite lifetimes due to various factors, including anharmonic
interactions, as evidenced by the measurable widths of phonon peaks in inelastic
scattering experiments. Furthermore, phonon energies do depend on temperature,
as exemplified by the softening and collapse of certain modes near second-order
phase transitions. Regarding second-order phase transitions, the harmonic appro-
ximation also struggles to explain the dynamical stability of the high-temperature
undistorted phases. This failure is evident from the presence of imaginary phonon
frequencies in the harmonic phonon spectra of the high-temperature phase, which
suggest that certain atomic displacements can trigger spontaneous distortions. To
effectively capture all these phenomena, it is necessary to move beyond the stan-
dard harmonic approximation and incorporate anharmonic terms to the theoretical
description.
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Introduction

One way to include anharmonic effects is through perturbation theory applied
on top of the harmonic results. Although perturbative approaches can effectively
capture important phenomena like the temperature dependence of phonons and
their finite lifetimes, they completely collapse when the anharmonic terms in the
potential become comparable to or larger than the harmonic terms within the
range of the atomic fluctuations. This breakdown frequently occurs in systems
with significant atomic displacements, particularly those involving light ions, as
well as in materials approaching displacive phase transitions such as charge density
waves (CDW), and in low-dimensional materials where atoms have greater free-
dom to fluctuate. In all these scenarios, anharmonic effects dominate the system’s
behaviour and properties, requiring non-perturbative approaches for an accurate
analysis.

Precisely, this thesis focuses on analysing the impact of non-perturbative an-
harmonic effects in the ionic dynamics of diverse physical systems. In this context,
the self-consistent harmonic approximation (SCHA) [1] emerges as the most ef-
fective method for incorporating these anharmonic effects at a non-perturbative
level while also accounting for quantum effects. Consequently, the SCHA serves
as the core ab initio method employed throughout this work. Although this thesis
examines a range of systems where anharmonicity plays a crucial role, they are
all interconnected by a common theme: reduced dimensionality, particularly in
two-dimensional (2D) and quasi-2D systems. Even if each chapter focuses on a
different system and includes its own introduction, this general introduction aims
to provide an overview of the theoretical challenges we face and highlight their key
aspects.

The first problem deals with the prediction of charge density wave instabili-
ties and their understanding through ab initio calculations. Nowadays, the correct
theoretical characterization of this phenomenon based on first principles calcula-
tions is limited for systems undergoing CDW transitions due to the breakdown of
the standard harmonic approximation for atomic dynamics, which cannot explain
the stability of the high-temperature undistorted phases. These limitations hin-
der the study of both the origin and the melting of the charge modulated state,
complicating the comprehensive understanding of the CDW formation. In the first
part of this thesis, we address these challenges by incorporating non-perturbative
anharmonic effects. In the text that follows, we provide an overview of the CDW
phenomenon, a key concept that is ubiquitous throughout the first part of this
manuscript and that requires careful examination.

A charge density wave is a many-body state of matter characterized by the
static modulation of the conduction electron density, which is accompanied by
the corresponding crystal lattice distortion. Phase transitions to this electronic
charge ordering state have been reported indeed in low dimensional materials [2,
3], high-temperature superconductors [4–8], as well as many other compounds at
low temperatures. While numerous compounds can exhibit CDW transitions, the
origin and stabilization of this phenomenon remain topics of ongoing debate, es-
pecially in systems with dimensions higher than 1D or quasi-1D.

2



Introduction

The concept of a CDW was first proposed by Rudolf Peierls in the 1930s [9],
who predicted the electronic instability of a one-dimensional metallic chain with
equally spaced atoms. In such a chain, where each metallic ion contributes one
valence electron, the valence band is half-filled, and the electron density remains
constant in space. These features are illustrated in Fig. 1 (a).

Figure 1: A 1D system in: (a) High temperature metallic state. A lattice with a
period of a exhibits a constant ρ(r) charge density and the electron states are filled
up to the Fermi level. (b) Peierls distorted insulating lattice: CDW state. Due to
electron-phonon interaction, the lattice period changes while the charge density is
periodically modulated in a wave-like pattern. The new periodicity opens a gap at
the Fermi level, lowering the electronic energy and at the same time resulting in a
transition to an insulating state. Figure taken from Refs. [10, 11].

Peierls proposed that this metallic state is energetically unstable, as the sys-
tem’s electronic energy can be reduced by opening a gap at the Fermi wavevec-
tor, as displayed in Fig. 1 (b). This transition to an insulating behaviour is
achieved by changing the periodicity of the chain. In the half-filled valence band
scenario Peierls proposed, this modification occurs through a process known as
dimerization: the new period becomes twice the original, resulting in a new unit
cell that contains two atoms. This periodic lattice displacement, characterized by
a wavevector of 2kF , induces a corresponding modulation in the charge density,
forming a charge density wave with the same periodicity. The stability of the CDW
phase depends on two factors: first, the reduction of electronic energy outweigh-
ing the increase in elastic energy required to displace the atoms, and second, the
competition between the minimization of the total energy and the maximization
of entropy. That is, as the temperature rises, increased thermal fluctuations can
disrupt the ordered charge density state, leading to the temperature-dependent na-
ture of CDW transitions. Consequently, this model predicts a second-order phase
transition, known as the Peierls transition, from a high-symmetry metallic state at
high temperatures to a reduced symmetry insulating ground state at the transition
temperature, TCDW.
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Introduction

Within linear response framework, the rearrangement of the conduction elec-
tron density ρ(q) can be related to the periodic modulation of the starting potential
Φ(q) through the so-called Lindhard response function: ρ(q) = χ(q)Φ(q), which
is given by:

χ(q) =
1

LD

∑
nn′

1BZ∑
k

fnk − fn′k+q

ϵnk − ϵn′k+q

. (1)

where ϵnk and ϵn′k+q represent the energies associated with the electronic bands
n and n′, and wavevectors k and k+ q, respectively. The corresponding Fermi
distribution functions, fnk and fn′k+q, describe the occupation of these electronic
states. D is the dimensionality of the system, which significantly influences the
electronic susceptibility. This dependence on dimensionality is shown in Fig. 2,
where the response function is evaluated at different wavevector values for the 1D,
2D and 3D free electron gas. In 1D systems, the response function diverges at q
= 2kF , leading in the real space to a charge density wave with the same wavevec-
tor. In contrast, this peak becomes less pronounced in higher-dimensional systems.

Figure 2: Lindhard response function for the free electron gas in 1D, 2D, and 3D
at T = 0 K. The figure illustrates the distinct behaviour of the response function
across dimensions, highlighting the divergence observed in 1D systems at q = 2kF .
Figure taken from Ref. [12].

The behaviour of the Lindhard response function is closely linked to specific
topologies of the Fermi surface, which is defined as the set of constant-energy sur-
faces in reciprocal space that separates occupied from unoccupied states. Fermi
surface nesting refers to a configuration where parallel regions of the Fermi surface
are connected by a specific wavevector q, known as the nesting vector. According
to the Eq. (1), the larger contribution to the electronic susceptibility χ(q) comes
from the electron-hole pair of states (one full, one empty) differing in q and with
similar energies. Hence, in the case of having many q-coupled k electronic states,
χ(q) will diverge at this specific nesting vector.
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In the case of a one-dimensional metal embedded in 3D space, the Fermi
surface consists of two parallel planes separated by the wavevector 2kF , as shown in
Fig. 3 (a). This configuration enables numerous possible electron-hole excitations
near the Fermi surface, a phenomenon known as perfect nesting that is manifested
in the divergence of the electronic susceptibility χ(q) at q = 2kF . In higher
dimensions, free electron-like systems typically lack nested surfaces. For instance,
2D free electron systems exhibit cylindrical Fermi surfaces, while 3D systems have
spherical Fermi surfaces in the free electron limit. Both configurations prevent
the existence of nested regions, resulting in the absence of peaks in χ(q). In
contrast, quasi-1D systems often present parallel Fermi surfaces arranged in a
one-dimensional manner that allow for better nesting, as illustrated in Fig. 3 (c).

(c) Quasi-1D(a) 1D

q = 2kF

-kF kF

-kF kF

(b) 2D

-kF kF

Figure 3: Fermi surface nesting across different dimensions. (a) In a 1D system
embedded in 3D space, the Fermi surface consists of two parallel sheets at ±kF .
A wavevector q = 2kF can connect the entire Fermi surface, resulting in perfect
nesting. (b) In a 2D free electron system with a cylindrical Fermi surface, only a
very small portion of the surface can be connected by q = 2kF , leading to poor
nesting. (c) In a quasi-1D system with an elliptical Fermi surface, large parallel
regions allow for better nesting.

Walter Kohn predicted in 1959 [13] that any divergence in the electronic sus-
ceptibility affect not only the charge density distribution but also phonon spectra.
He proposed that electron-hole excitations near the Fermi surface are driven by
phonons with the nesting wavevector q = 2kF , and as the result of this electron-
phonon interaction, the associated phonon mode is softened. The periodic modula-
tion of the lattice would be precisely the macroscopic manifestation of the phonon
softening. In fact, above the CDW transition temperature, low-energy acoustic
phonon branches can exhibit singularities at the nesting vector, resulting in signi-
ficant frequency softening, a phenomenon known as the Kohn anomaly effect. As
the temperature decreases, the frequency of these phonons continues to drop until
it becomes imaginary below the transition temperature, indicating a structural
instability and a subsequent phase transition to a different lattice configuration.
As a result, CDWs can be identified through the Kohn anomaly effect, using both
inelastic scattering experimental techniques and theoretical calculations that in-

5



Introduction

clude non-perturbative anharmonic phonon effects. Moreover, phonon softening
effects have been observed in materials where the nesting scenario does not apply,
highlighting the broader relevance of this phenomenon [14].

Definitely, the Fermi surface nesting explanation is primarily effective in ex-
plaining CDW in 1D or quasi-1D systems [15, 16] and therefore, it can be concluded
that not all charge density waves are driven exclusively by Fermi surface nesting.
Some theories suggest that CDW originate from a strong electron-phonon inter-
action, with no need of singularities in the electronic susceptibility. The electron-
phonon scenario, which will be further developed in Chapter 4, shares similarities
with the nesting mechanism in that the corresponding phonon self-energy of a
mode Πµ(q, ω) in its static limit (ω → 0) follows a formula analogous to that in
Eq. (1), but modulated by the electron-phonon matrix elements:

Πµ(q, ω = 0) =
1

Nk

∑
nn′

1BZ∑
k

|gµn′k+q,nk|2
fnk − fn′k+q

ϵnk − ϵn′k+q

. (2)

Although both mechanisms are based on electron-lattice interactions leading to
electron-hole excitations, they differ fundamentally: Fermi surface nesting involves
elastic scattering, whereas electron-phonon interaction entails inelastic scattering
from the lattice.

Among the solids exhibiting charge density wave transitions, transition metal
dichalcogenides (TMDs) are particularly interesting due to their layered structure,
which potentially features parallel Fermi surfaces like those in Fig. 3 (c) that
promote electronic instabilities. However, it has been suggested that the Fermi
surface nesting scenario may significantly break down in TMDs, highlighting the
role of electron-phonon interactions in their origin and stabilization [16]. Certainly,
TMDs, with their relatively simple crystalline structure, provide an ideal platform
for studying the competition between Fermi surface nesting and electron-phonon
interaction as mechanisms driving the formation of CDWs. Furthermore, TMDs
represent the first crystalline structures where three-dimensional (3D) charge den-
sity patterns have been observed [2]. In these 3D-CDWs, the propagation vector
qCDW possesses an out-of-plane component, indicating that the charge density
modulation extends beyond the quasi-2D nature of the system and could poten-
tially influence the interlayer distances. A final aspect worth highlighting is that
the quasi-2D structure of TMDs provides an excellent opportunity to explore how
reducing dimensionality [17] influences the transition to the charge modulated
state. A more comprehensive overview of transition metal dichalcogenides can be
found in the introduction to Part II of the thesis.

In particular, in this part of the thesis, we focus on a metallic member of the
TMD family, 1T -VSe2. Chapter 5 addresses the charge density wave transition in
the bulk form of this compound. We specifically examine whether phonon soft-
ening occurs as the temperature decreases towards the transition, employing ab
initio non-perturbative anharmonic phonon calculations and complementing our
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findings with inelastic x-ray scattering data from Dr. Santiago Blanco-Canosa’s
group. We then analyse and compare the potential mechanisms that could lead
to the emergence of the charge modulated state. Finally, we explore the pressure
dependence of the CDW transition and the anomalous enhancement of the charge
modulated state with increasing pressure. In Chapter 6, we extend our analysis
to the monolayer limit of 1T -VSe2, since the effect of dimensional reduction on
the CDWs remains a subject of ongoing debate. A significant challenge is the
lack of consensus on the nature of the CDW reconstruction in the monolayer, with
different experimental results reporting distinct orders and varying transition tem-
peratures. Aiming to resolve these experimental contradictions, we theoretically
analyse the strain dependence of the CDW orders in monolayer 1T -VSe2, while
also studying the mechanisms responsible for the CDW formation.

The second problem tackled in this thesis is of a more historical nature,
as it addresses the mechanical stability of strictly two-dimensional materials. De-
spite the evidence presented in the previous paragraph regarding the existence of
monolayer materials, historically, the possibility of having two-dimensional crys-
talline order was considered unlikely [18–20]. However, the discovery of graphene
in 2004 [17, 21, 22] challenged these longstanding theoretical predictions. Even
today, the exact mechanism behind the stability of these materials remains a topic
of intense debate. Although the state-of-the-art on the stability of 2D systems and
their connection with phenomenological theories of thermal fluctuations in elastic
membranes is explained in detail in the introduction to Part III of the manuscript,
we will proceed with a brief summary to facilitate understanding and highlight the
most relevant points.

Much of the theoretical difficulty on this problem arises from the strong ther-
mal fluctuations predicted for 2D systems, since reduced dimensionality allows
atoms to fluctuate out of the plane. These fluctuations are closely related to the
quadratic dispersion of the out-of-plane acoustic mode obtained within the har-
monic approximation, which implies that these phonon modes are quickly occupied
as the temperature increases. In fact, harmonic theory predicts that the out-of-
plane displacements in real space are comparable to the size of the material flake,
preventing any crystalline order. Standard theories propose that the anharmonic
coupling between in-plane and out-of-plane phonon modes renormalizes the dis-
persion of the ZA phonon modes, providing it with a linear term at small momenta
that somewhat cures the pathologies [23–30]. Along similar lines, it has long been
assumed that the out-of-plane vibrational frequency of any continuous membrane
acquires a linear term at small wavevectors once anharmonic interactions are in-
cluded [31]. The linear term stiffens the membrane and consequently suppresses
the amplitude of its ripples, which is usually studied from the height correlation
function in momentum space, ⟨|h(q)|2⟩. In the harmonic approximation it scales
as ⟨|h(q)|2⟩ ∼ q−4 and it is corrected to q−4+η, with η ∼ 0.80− 0.85, when the ZA
modes is linearized [32, 33]. Since the bending rigidity scales as ⟨|h(q)|2⟩q4 [31,
32, 34] in the classical limit, this interpretation implies that the bending stiffness
of all membranes and 2D materials diverges in the long wavelength limit, yielding
the dubious interpretation that the larger the membrane, the stiffer it becomes.

7
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The experimental confirmation of these ideas is challenging due to both the dif-
ficulties in measuring the bending rigidity of graphene [35, 36] and the substrate
effects on the dispersion of the ZA modes measured with helium diffraction [37–40].

The quadratic dispersion expected for the ZA mode in the harmonic approxi-
mation is imposed by the symmetries intrinsic to strictly 2D systems. In this case
phonon frequencies are obtained diagonalizing the ϕab/

√
MaMb dynamical matrix,

where a and b represent both atom and Cartesian indices. Then, Ma is the mass

of atom a, and ϕab =
[

∂V
∂Ra∂Rb

]
R0

are the second-order force constants obtained

as the second-order derivatives of the Born-Oppenheimer potential V with respect
to atomic positions R calculated at the positions that minimize V . Rotational
symmetry, together with the fact that in a strictly two-dimensional system force
constants involving an in-plane and an out-of-plane displacement vanish, makes
the ZA mode acquire a quadratic dispersion close to zone center [26]. However,
phonons observed experimentally should be derived from the imaginary part of
the phonon Green’s function that includes anharmonic effects [41]. For low en-
ergy modes, such as the ZA mode, dynamical effects can be safely neglected. In
this limit the phonon peaks coincide with the eigenvalues of the free energy Hes-
sian [ ∂F

∂Ra∂Rb
]Req

/
√
MaMb, where F is the anharmonic free energy, Ra the average

atomic positions, and the derivative is taken at the positions that minimize F [41].
This raises a formidable remark that has remained unnoticed thus far: as both F
and V are rotationally invariant, a quadratic dispersion should be expected for the
ZA mode not only in the harmonic limit but also when anharmonic interactions
are considered.

In any case, the substantial height fluctuations predicted for 2D systems sug-
gest that the problem lies in the regime where anharmonic terms in the potential
become comparable to, or even exceed, the harmonic terms. Consequently, the
most rigorous approach to address the mechanical stability of 2D systems is to em-
ploy a non-perturbative method to include anharmonic effects, just as the SCHA
does. In the second part of this thesis, we perform non-perturbative anharmonic
calculations on graphene using a membrane model. In this way, we convincingly
show that a quadratic dispersion of the ZA mode in unstrained graphene, and
any other 2D membrane, is actually expected. We also show that the bending
stiffness of graphene is barely affected by phonon-phonon interactions. Our results
are in stark contrast to the previously assumed behaviour of membranes because
we fully preserve rotational invariance. Precisely, to compare and align our hy-
pothesis with the current standard theory, we compute the Fourier transform of
the height-height correlation function, enabling a comprehensive comparison with
existing results in the literature.

In summary, this thesis explores anharmonic effects in two-dimensional mate-
rials, specifically in contexts where the harmonic approximation and the inclusion
of anharmonic effects at perturbative level are no longer adequate. In Part I,
which includes Chapters 1 to 4, we establish the theoretical framework necessary
for studying the electronic, vibrational, and electron-phonon properties of these
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materials. Part II is dedicated to analysing charge density wave transitions in tran-
sition metal dichalcogenides, focusing specifically on 1T -VSe2. Chapter 5 examines
the CDW transition in the bulk form, while Chapter 6 addresses the behaviour of
the monolayer case. Finally, in Part III, we examine the anharmonic effects on the
atomic vibrations in strictly two-dimensional systems, specifically in graphene, as
presented in Chapter 7.
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Theoretical background
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1

The Born-Oppenheimer
approximation

Matter is composed of atoms, and these, by interacting electrons and nuclei. Elec-
trons, carrying a negative charge, surround the nucleus, which consists of positively
charged protons and neutrons. In condensed matter physics, the focus is typically
on the outermost valence electrons and ions, defined as the nucleus plus the core
electrons, since these inner electrons play a negligible role in chemical bonding
and the macroscopic properties of materials. In this context, (valence) electrons
and ions can be understood as positive and negative charges interacting through
Coulomb forces, while also being influenced by their spin degree of freedom. These
microscopic interactions give raise to a great variability of macroscopic behaviours
observed in daily materials, such as conductivity, magnetism, and elasticity. Then,
by studying these fundamental interactions, we can gain insights into how these
simple particles combine to produce the diverse and complex physical properties
that characterize the different states of matter.

Whichever the state of matter is, the behaviour and properties of the con-
stituent particles are governed by the principles of quantum mechanics. At the
core of this framework lies the Schrödinger equation, which provides all the key
information about a system, including its energy levels, wavefunctions, and the
probability distributions of its particles. The equation is expressed as:

Ĥ |ΨA⟩ = EA |ΨA⟩ , (1.1)

where Ĥ is the Hamiltonian of the system, which contains both the kinetic and
potential energy contributions from all the particles. EA is the eigenvalue corre-
sponding to the quantum state labeled by A and |ΨA⟩ the associated eigenvector.
The corresponding eigenfunction is given by:

⟨r,R|ΨA⟩ = ΨA(r,R) = ΨA(r1, ..., rN ,R1, ...,RM ) (1.2)

13



Chapter 1. The Born-Oppenheimer approximation

where r ≡ {r1, ..., rN} and R ≡ {R1, ...,RM} are the position vectors for the
N electrons and M ions in the system, respectively. Hence, as the components
of the introduced system interact via the Coulomb interaction, the corresponding
Hamiltonian takes the following form1:

Ĥ =

N∑
i=1

−1

2
∇̂2

i −
M∑
I=1

1

2MI

∇̂2
I −

N∑
i=1

M∑
I=1

ZI

|r̂i − R̂I |

+
1

2

N∑
i=1

N∑
j=1
j ̸=i

1

|r̂i − r̂j |
+

1

2

M∑
I=1

M∑
J=1
J ̸=I

ZIZJ

|R̂I − R̂J |

= T̂e + T̂ion + V̂e,ion + V̂e,e + V̂ion,ion , (1.3)

where lower case indexes correspond to the electrons while the upper case ones to
the ions. In this way, MI and ZI are the mass and charge of each ion, respectively.

Examining each term of the Hamiltonian reveals that the first two terms repre-
sent the kinetic energy operators for electrons and ions. The remaining three terms
account for the Coulomb interactions between charged particles: the electron-ion,
electron-electron, and ion-ion interaction operators. These electrostatic interac-
tion terms are responsible for coupling the 3(N + M) degrees of freedom of our
N +M particle system, making the Hamiltonian extremely complex. The magni-
tude of this complexity is apparent in macroscopic systems, where the number of
particles is of the order of Avogadro’s number, NA = 6.022Ö1023. Consequently,
obtaining an exact analytical solution for such systems is virtually impossible, and
approximations have to be assumed to make the eigenvalue problem tractable.

In this context, the standard approach to addressing the problem is through
the Born-Oppenheimer approximation. As far as the electrons and nuclei are in
the same environment, the order of magnitude of the forces over them is similar
and, in principle, so is their linear momentum. However, being electrons much
lighter than ions, average electronic velocities are much greater than ionic ones
and, therefore, electronic wavefunctions can be assumed to adapt instantaneously
to the nuclear motion.

Considering this in mathematical terms, the Born-Oppenheimer approxima-
tion uncouples the electronic and ionic degrees of freedom in the total wavefunction,
which is going to allow us to split the Hamiltonian into electronic and ionic parts.
Namely,

Ψ(r,R) = Ψe(r;R)Ψion(R) (1.4)

where Ψe(r;R) is the electronic wavefunction and Ψion(R) the ionic one. Follow-
ing the reasoning above, as from the point of view of the electrons ions are still,

1Here and from now on, Hartree atomic units will be used: ℏ = me = e = 4πε0 =

1. In such system of units, the energy unit is the Hartree (1 Ha = 27.2 eV), while

the unit of length is the Bohr radius a0 (a0 = 0.529 Å).
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the ionic positions R are treated as parameters, not as variables, in the electronic
wavefunction. In the same way, their kinetic energy can be ignored when dealing
with the electronic problem.

Thus, the electronic problem for a set of fixed ionic positionsR is the following:

Ĥ
e
Ψe

n(r;R) = Ee
n(R)Ψe

n(r;R) , (1.5)

where
Ĥ

e
= T̂e + V̂e,ion + V̂e,e +Vion,ion . (1.6)

Once the electronic problem is solved, the ionic one can be faced. Within the the
Born-Oppenheimer approximation, the eigenvalue of the ionic problem corresponds
to the total energy of the original Hamiltonian in Eq. (1.3):

Ĥ
ion

n Ψion
nm(R) = EnmΨion

nm(R) , (1.7)

where
Ĥ

ion

n = T̂ion + Ee
n(R) + ∆Ĥn (1.8)

and

∆Ĥn =−
M∑
I=1

1

2MI

∫
dr Ψe∗

n (r;R)∇̂2
IΨ

e
n(r;R)

−
M∑
I=1

1

MI

∫
dr Ψe∗

n (r;R)∇̂IΨ
e
n(r;R)∇̂I . (1.9)

However, electronic and ionic Hamiltonians are still coupled, as far as the elec-
tronic energy level n enters in two terms of the ionic Hamiltonian. To deal with
this, many times the adiabatic approximation2 is assumed: the slow ionic motion
does not cause any electronic excitations, since such a slow perturbation does not
change the electronic eigenstates. This means that ∆Ĥn can be neglected and
therefore, the ionic potential is just the electronic energy Ee

n obtained in the elec-
tronic problem, which is usually named as the Born-Oppenheimer Energy Surface
(BOES).

Although the BOES changes for each electronic energy state n, we will just
focus on solving the ionic problem corresponding to the ground state one (n = 0),
which does not cause problems for most crystals at normal and low temperatures.
According to the adiabatic approximation, the nuclear motion will not cause any
electronic excitations so that the system will stay in its electronic ground state.
Namely,

V (R) ≡ Ee
n=0(R) . (1.10)

2In fact, Born-Oppenheimer approximation and adiabatic approximation terms

are often used interchangeably, although they are not intrinsically the same. The

adiabatic name comes from the absence of energy change among electrons and nuclei.
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Chapter 1. The Born-Oppenheimer approximation

In this way, the electronic index n is dropped from the nuclear problem, successfully
splitting the electronic and nuclear problems. All in all, the Hamiltonian that rules
the ionic motion within the adiabatic approximation is:

Ĥ
ion

= T̂ion + V̂ (R) . (1.11)

The main features analysed throughout the project are related to the motion of
ions and therefore, a deep understanding of the electronic problem lies beyond its
scope. However, if the ionic motion is going to be analysed, handling previously
with the electronic problem is mandatory in order to determine the BOES. In this
sense, providing at least a brief introduction to the electronic problem is justified.
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2

The electronic problem

The Born-Oppenheimer approximation has provided a crucial simplification by
allowing us to decouple the electronic and ionic problems. However, even after
this separation, the electronic problem remains challenging due to the coupling of
electronic degrees of freedom through the electron-electron interaction term. This
chapter focuses on density functional theory (DFT), the most widely used ab initio
method nowadays for accurately describing the electronic structure of matter. For
clarity and simplicity, we will omit the explicit dependence on ionic positions R
from the discussion. Additionally, since the term Vion,ion is constant for a fixed
ionic configuration in the electronic problem, it will be excluded from the following
explanations.

2.1 Density Functional Theory

DFT was developed by Pierre Hohenberg, Walter Kohn, and Lu Sham in the mid-
1960s as a novel approach to understanding the electronic structure of many-body
systems. Although its practical application was initially limited by the computa-
tional power available at the time, the rapid increase in computational capabilities
over the following decades made DFT an essential method in solid-state physics
and chemistry. Its ability to provide accurate results with relatively low computa-
tional cost has led to a widespread use, leading Walter Kohn to the Nobel Prize
in Chemistry in 1998.

As its name suggests, DFT relies on the electronic density n(r) as a fundamen-
tal quantity, offering an alternative to the complex wavefunction Ψe(r1, ..., rN ) to
obtain the properties of a system. In this way, the spatial variables of the problem
are notably reduced from 3N to 3. The electronic density is defined as the number
of electrons per unit volume at a given position r. Formally, this can be expressed
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Chapter 2. The electronic problem

as:

n(r) = ⟨Ψe|
N∑
i

δ(r− ri)|Ψe⟩ = N

∫
d3r2...d

3rN |Ψe(r, r2, ..., rN )|2 . (2.1)

In this definition the antisymmetry of the ground state wavefunction Ψe(r1, ..., rN )
with respect to the interchange of electronic coordinates has been incorporated, as
we are dealing with a system formed by fermions. Besides, as this wavefunction
is normalized, the condition

∫
d3r n(r) = N is fulfilled. Not only that, as in

Hartree units the electronic charge is the unity, the function n(r) describes both
the electronic and the charge distribution.

2.1.1 Hohenberg-Kohn theorems

DFT is based on two fundamental theorems, proposed and proved by Hohenberg
and Kohn in 1964 [42]:

� 1st Theorem: For any system of interacting particles in an external po-
tential Vext(r), the potential Vext(r) is uniquely determined, except for a
constant, by the ground state particle density n(r).

1st Corollary: Since the Hamiltonian of the whole system (up to a constant
shift in energy) is determined, in principle, so are the wavefunctions for all
states. Thus, given n(r), all the properties of the system are completely
determined.

� 2nd Theorem: There exists a functional of the electronic density for the
energy of the system E [n] for any external potential Vext(r). The ground
state energy of the system is the global minimum of this functional, being
the density that minimizes it the ground state one n0(r). The mentioned
functional can be written in the following way:

E [n] = T [n]+Vee [n]+Vext [n] = F [n]+Vext [n] = F [n]+

∫
d3r Vext(r)n(r) .

(2.2)
Here F [n] is a universal functional, independent of the external potential and
the specific system under study. It includes contributions from the kinetic
energy of the electrons and the electron-electron interaction energy.

2nd Corollary: E [n] alone is enough to determine the ground state energy
and density.

In our specific problem of the electronic structure of a solid the external
potential is the electron-ion interaction:

V̂ext(r) = −
M∑
I=1

ZI

|r̂−RI |
. (2.3)
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2.1 Density Functional Theory

2.1.2 The Kohn-Sham equations

The Hohenberg-Kohn theorems suggest solving the electronic problem by min-
imizing the functional E [n], but they do not provide a specific formula for it.
In this situation, Kohn and Sham introduced a new approach that made imple-
menting DFT feasible. Precisely, they suggested replacing the actual interacting
electronic system with a fictitious non-interacting system that yields the same
ground state density as the original one. In this auxiliary system an effective po-
tential VKS(r) acts on a set of independent electrons, so that the Hamiltonian for
the non-interacting system can be expressed as:

Ĥ =

Ne∑
i=1

ĤKS(ri) =

Ne∑
i=1

(
−1

2
∇̂2

i + V̂KS(ri)

)
. (2.4)

Thus, each Kohn-Sham orbital ϕi(r) is obtained by solving the single-particle
Schrödinger equation: (

−1

2
∇̂2 + V̂KS(r)

)
ϕi(r) = ϵiϕi(r) . (2.5)

Since electrons are fermions, the total electronic wavefunction must be constructed
as a Slater determinant to ensure antisymmetry with respect to the interchange of
any two electrons:

Ψe(r1, ..., rN ) =
1√
N !

∣∣∣∣∣∣∣∣∣∣
ϕ1(r1) ϕ1(r2) ... ϕ1(rN )
ϕ2(r1) ϕ2(r2) ... ϕ2(rN )

. . ... .

. . ... .
ϕN (r1) ϕN (r2) ... ϕN (rN )

∣∣∣∣∣∣∣∣∣∣
.

It can be shown that the electron density of Eq. (2.1) can be expressed in terms
of the single-particle wavefunctions as:

n(r) =

Ne∑
i=1

|ϕi(r)|2 , (2.6)

where the sum runs over the occupied states ϕi(r), with each orbital being dou-
bly occupied due to spin degeneracy in accordance with Pauli’s exclusion principle.

The initial step in deriving an expression for the effective potential in Eq. (2.5)
involves defining the total energy of the system through the following functional:

EKS [n] = Ts [n] + EHartree [n] + Exc [n] + Vext [n] . (2.7)

The first term in this expression is the total kinetic energy, obtained by adding
up the kinetic energy of each electron, treated as if they were independent as
determined by the KS problem:

Ts({ϕi[n]}) = −1

2

Ne∑
i=1

∫
d3r ϕ∗

i (r)∇2
iϕi(r) . (2.8)
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Chapter 2. The electronic problem

The second term, the Hartree energy functional, is the classical electrostatic re-
pulsion energy for charge distribution:

EHartree [n] =
1

2

∫
d3r1d

3r2
n(r1)n(r2)

|r1 − r2|
. (2.9)

The third term is known as the exchange-correlation energy, which is composed
by two elements. On the one hand, the exchange term has a purely quantum ori-
gin; the antisymmetry of the wavefunction. It can be understood as a repulsion
between electrons due to Pauli’s exclusion principle. On the other hand, the cor-
relation term contains all the contributions associated to the fact that the total
wavefunction cannot be written as a Slater determinant of single particle wave-
functions, and thus, contains a kinetic and potential part. Finally, the last term in
Eq. (2.7) collects the interaction between the electronic density and the external
potential, as in Eq. (2.2).

Minimizing this energy functional with respect to the orbital ϕi(ri) using
Lagrange multipliers, a single-particle Schrödinger equation of type (2.5) describing
the ground state is obtained:(

−1

2
∇̂2 + V̂Hartree(r) + V̂xc(r) + V̂ext(r)

)
ϕi(r) = ϵiϕi(r) . (2.10)

This set of equations, known as Kohn-Sham equations, allows to replace the
problem of minimizing E [n] by that of solving a non-interacting single-particle
Schrödinger equation. The ground state density is constructed with the solutions
of the Kohn-Sham equations following Eq. (2.6). Compared to Eq. (2.5), it is
evident that the effective potential to choose in the auxiliary problem is

V̂KS(r) = V̂Hartree(r) + V̂xc(r) + V̂ext(r) , (2.11)

with

V̂Hartree(r) =

∫
d3r′

n(r′)

|r̂− r′| (2.12)

V̂xc(r) =
δExc [n]

δn(r)
. (2.13)

In conclusion, the Kohn-Sham equations simplify the complex many-body
problem to a set of equations for non-interacting electrons in an effective potential
VKS . These equations are coupled because the effective potential depends on the
electronic density, which, in turn, depends on the Kohn-Sham orbitals, as described
in Eq. (2.6). Consequently, they must be solved self-consistently. The primary
limitation of this approach is the inability to describe the effective potential exactly,
as there is no explicit analytical expression for the exchange-correlation term,
requiring approximations. Among these, the local density approximation (LDA)
and the generalized gradient approximation (GGA) are the most commonly used
and will be briefly discussed.
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2.1 Density Functional Theory

2.1.3 LDA and GGA functionals

The local density approximation (LDA) assumes that the electronic density is
locally uniform, even if the electron distribution is inhomogeneous. In the LDA,
the exchange-correlation energy per particle at a point r with density n(r) is
approximated by that of a uniform electron gas with the same density:

ELDA
xc [n] =

∫
d3r n(r) ϵunifxc [n(r)] . (2.14)

Here, ϵunifxc [n(r)] represents the exchange-correlation energy per particle of a uni-
form electron gas with local density n(r). This exchange-correlation energy can
be decomposed into two components:

ϵunifxc [n(r)] = ϵunifx [n(r)] + ϵunifc [n(r)] . (2.15)

Being the exchange energy ϵunifx the one obtained in the Hartree-Fock approxima-
tion for the uniform electron gas:

ϵunifx [n(r)] = −3

4

(
3

π

) 1
3

n
1
3 . (2.16)

While there is no exact analytic formula for the correlation energy ϵunifc , this term
has been calculated numerically for a range of electron densities using Monte
Carlo methods [43]. These results have been fitted to a parametrized function

ϵc(rs), where rs is the average electron distance defined as: rs =
(

3
4πn

) 1
3 . The

parametrized function ϵc(rs) has to satisfy the known limits for both high and
low electron densities. A widely used parametrization is provided by Perdew and
Zunger [44], and is given by:

ϵc(rs) =

{
−0.0480 + 0.031 ln rs − 0.0116rs + 0.0020rs ln rs if rs < 1

−0.1423/(1 + 1.9529
√
rs + 0.3334rs) if rs ≥ 1.

(2.17)

Although this approximation may seem overly simplistic, it performs reasonably
well for many systems, except for inhomogeneous systems such as isolated atoms
or molecules. The correlation energy is typically overestimated, while the ex-
change energy is underestimated, leading to partially compensating errors [45].
Generally, LDA calculations are effective for predicting structural, elastic, and vi-
brational properties, though they fail to capture van der Waals forces due to their
local nature.

Taking advantage of the good results obtained by the LDA scheme, semilocal
approximations were developed in order to take into account the inhomogeneities
of the electronic density. Semilocal functionals depend not only on the density at
point r, but also on neighbouring ones. In this sense, the gradient of the electronic
density can be considered, as the generalized gradient approximation (GGA) does:

EGGA
xc [n] =

∫
d3r f (n(r),∇n(r)) . (2.18)
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Chapter 2. The electronic problem

There is no universal formula for the function f (n(r),∇n(r)), and a variety of mod-
els have been developed to approximate the exchange-correlation energy within the
GGA framework. Among these, the PBE parametrization proposed by Perdew,
Burke, and Ernzerhof [46] is particularly well-regarded and widely used for a broad
range of applications.

2.1.4 Van der Waals interactions in DFT

LDA and GGA functionals have turned out successful in predicting structural, elas-
tic and vibrational properties of materials with metallic, ionic or covalent bonds.
However, due to their local or semilocal nature, these functionals only consider
the electron density around a single point in space. This limitation is particularly
problematic when dealing with van der Waals interactions, which are inherently
non-local, arising from long-range interactions between fluctuating dipoles. As a
result, conventional DFT functionals struggle to accurately describe these disper-
sive forces.

A straightforward way to account for van der Waals interactions is through
the addition of empirical potential to conventional functionals. Specifically, the
DFT-D approach involves adding a semi-empirical dispersion correction on top of
a converged Kohn-Sham energy:

EDFT−D = EDFT + Edisp . (2.19)

The DFT-D2 method of Grimme [47] proposes a semiempirical GGA−type density
functional representing van der Waals interactions via a long-range pairwise force
field:

Edisp = −s6

M−1∑
i=1

M∑
j=i+1

Cij
6

R6
ij

fdamp(Rij) , (2.20)

where s6 is a global scaling factor that depends on the exchange-correlation func-
tional used, having been optimized for the PBE functional. Cij

6 denotes the dis-
persion coefficient for the atom pair ij and Rij the interatomic distance. To avoid
divergences at small distances, this function is damped at short range via

fdamp(Rij) =
1

1 + exp−d(
Rij
Rr

−1)
. (2.21)

Here Rr is the sum of the van der Waals radii for atoms i and j, and d is an ad-
ditional parameter. Default values for both Rr and Cij

6 are proposed in Grimme’s
original paper [47]. This empirical approach effectively balances accuracy and
computational efficiency, making it a popular choice in practical DFT calculations.

Beyond these empirical methods, many efforts in recent years have focused
on developing truly non-local exchange-correlation functionals that can effectively
incorporate van der Waals dispersive interactions within DFT. One notable ex-
ample is the vdW-DF functional proposed by Dion et al. in 2004 [48], which is
particularly attractive as it is fundamentally based on the electron density.
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2.2 Crystal periodicity

The overall exchange-correlation energy is divided into two components: a
GGA-type exchange-correlation part and a truly non-local correlation part Enl

c [n]:

Exc[n] = EGGA
xc [n] + Enl

c [n], (2.22)

where the non-local part accounts for the van der Waals forces. This non-local
component is expressed in a computationally tractable form involving a universal
kernel Φ(r, r′):

Enl
c [n] =

1

2

∫
dr dr′ n(r)Φ(r, r′)n(r′). (2.23)

The kernel depends on the distance |r−r′|, as well as on the electronic density n(r)
and its gradient ∇n(r). Due to the double integration inherent in this formulation,
non-local functionals tend to be quite computationally demanding . However, sig-
nificant computational efficiency can be achieved by expressing the kernel in terms
of cubic splines, allowing the two spatial integrals to be replaced by a single inte-
gral over Fourier-transformed quantities, which results in a considerable speedup
[49].

2.2 Crystal periodicity

A crystalline solid is composed of periodic repetitions of its unit cell. Due to this
inherent periodicity, the effective potential experienced by the electrons within the
independent electron approximation (denoted in our DFT calculations as VKS(r))
will also exhibit the periodicity of the Bravais lattice. Consequently, for any vector
T belonging to the Bravais lattice:

VKS(r) = VKS(r+T). (2.24)

Bloch’s theorem proves [50] that the eigenstates of a single electron Hamiltonian
with a periodic potential can be expressed as plane waves modulated by a function
with the periodicity of the lattice:

ϕnk(r) = eik·runk(r), (2.25)

where unk(r) = unk(r+T) is the periodic part of the Kohn-Sham state. Note
that now the eigenstates and eigenvalues of the Kohn-Sham Hamiltonian can be
identified with the band index n and the wavevector k instead of the quantum
number i that has been used so far: ϕi → ϕnk and ϵi → ϵnk.

An equivalent formulation of Bloch’s theorem is given by:

ϕnk(r+T) = eik·Tϕnk(r). (2.26)

This formula demonstrates that if Bloch’s theorem holds for a wavevector k within
the first Brillouin zone (1BZ), it also holds for the wavevector k’ = k+G, where
G is a reciprocal lattice vector. Since eiG·T = 1 by definition of reciprocal lattice
vectors, the eigenstates and eigenvalues are periodic with respect to the reciprocal
lattice vectors:

ϕnk+G(r) = ϕnk(r), ϵn,k+G = ϵn,k. (2.27)
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Chapter 2. The electronic problem

Thus, the entire electronic structure can be determined by calculating the eigen-
values and eigenstates only for wavevectors within the first Brillouin zone, avoiding
redundancy. This information defines the electronic band structure of the solid.

It is important to note that the wavevectors k cannot take arbitrary values.
Due to the Born–von Karman (BvK) periodic boundary conditions, which impose
periodicity over the entire crystal by treating it as if it was infinitely repeating
in all directions, the wavevectors k are quantized. Specifically, these boundary
conditions restrict the number of allowed k vectors to be equal to the number of
primitive cells Ncell in the crystal:

k =

3∑
i=1

ni

Ni

bi ; ni ∈ (0, Ni − 1) (2.28)

where bi, i = 1, 2, 3 are the primitive reciprocal lattice vectors, and Ni is the
number of primitive cells in the direction of bi. Consequently, the total number of
primitive cells in the crystal is given by Ncell = N1N2N3 .

2.2.1 The plane-wave basis

As it is well-established, a Hamiltonian operator can be expressed in any orthonor-
mal basis. For periodic systems, a plane-wave basis, denoted as |k⟩, is particularly
appropriate because it naturally aligns with the translational symmetry of the
crystal lattice. The plane-wavefunctions are defined as:

⟨r|k⟩ = 1√
Ω
eik·r, (2.29)

where Ω denotes the volume of the entire crystal.

Due to the periodicity of the crystal potential, the Kohn-Sham Hamiltonian
takes the following form in the plane-wave basis:

⟨k+G|ĤKS |k+G′⟩ = 1

2
|k+G|2δG,G′ + VKS(G−G’). (2.30)

Here the kinetic energy is diagonal. The periodicity of the crystal potential results
in coupling only those plane waves whose wavevectors differ by a reciprocal lattice
vector G. The strength of this coupling is characterized by VKS(G −G’), which
represents the Fourier component of the Kohn-Sham potential.

Then, the Hamiltonian in the plane-wave basis is block-diagonal, with each
block characterized by a specific crystal momentum k. Consequently, each block
can be independently diagonalized by solving the Kohn-Sham Hamiltonian at every
k-point allowed by the Born–von Karman boundary conditions within the 1BZ.
The eigenvalues obtained at each k-point correspond to the band energies ϵnk. For
a given band index n, the eigenvectors are formed by the coefficients Cn

k+G. These
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2.2 Crystal periodicity

coefficients are the essential components needed to construct the Kohn-Sham states
from the plane-wave expansion:

|ϕnk⟩ =
∑
G

Cn
k+G |k+G⟩ , (2.31)

ϕnk(r) = ⟨r|ϕnk⟩ =
1√
Ω

∑
G

Cn
k+Gei(k+G)·r = eik·r

(
1√
Ω

∑
G

Cn
k+GeiG·r

)
. (2.32)

It is therefore evident that the resulting eigenfunctions are indeed Bloch functions.

Although each wavevector k can, in principle, couple with any reciprocal
lattice vector, resulting in theoretically infinite block sizes, this is impractical for
actual computations and approximations have to be made. Thus, for practical
calculations, we restrict the blocks to a finite size by defining a cutoff energy, Ecut,
such that only plane waves with energies below this cutoff are included in the
expansion:

1

2
|k+G|2 ≤ Ecut. (2.33)

This criterion may sometimes be insufficient. As discussed in the next section,
localized electron wavefunctions might require a significantly larger number of G
vectors for an accurate description.

Finally, the electron density can be computed from the Kohn-Sham states
using the following expression:

n(r) =
∑
n

1BZ∑
k

fnk|ϕnk(r)|2, (2.34)

where the summation is performed over the 1BZ, and the occupation number fnk
is given by the Fermi-Dirac distribution:

fnk =
2

eβ(ϵnk−ϵF ) + 1
. (2.35)

Here, the factor of 2 accounts for the spin degeneracy of the Kohn-Sham states. β
= 1/kBT , where kB is Boltzmann’s constant and T the temperature. The Fermi
energy ϵF represents the highest occupied energy level.

In principle, the Kohn-Sham Hamiltonian in Eq. (2.30) should be diagonalized
at every k-point within the first Brillouin zone allowed by the Born-von Karman
boundary conditions. However, since the number of allowed k-points is of the order
of Ncell ∼ 1023, sampling the entire Brillouin zone is computationally infeasible.
Instead, the zone is divided into a finite grid of k-points using the Monkhorst-Pack
algorithm [51], which must be optimized. The Monkhorst-Pack mesh should be
fine enough to ensure convergence of the k-point sum in Eq. (2.34) and produce
an accurate electronic density.
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Chapter 2. The electronic problem

Moreover, in metals, the discretization of the reciprocal space is specially criti-
cal, as at T = 0 K the k-points that are occupied or unoccupied change abruptly.
As a consequence, the electronic density changes considerably between iterations of
the self-consistent cycle, which slows down the convergence drastically. To mitigate
this issue without using a denser k-point grid, the Fermi-Dirac step function is sub-
stituted by a smoother one, the so-called smearing function, introducing effectively
a fake temperature. For this purpose, we have employed the Methfessel-Paxton
smearing method [52], in which the broadening of the smearing function is an ad-
ditional parameter to optimize. The ultimate goal is to obtain converged values
using the smallest possible k-point grid, approaching the limits of zero smearing
and an infinite number of k-points.

2.3 The pseudopotential approximation

In a solid, core and valence electrons play fundamentally different roles. Core elec-
trons are tightly bound to the nucleus, experiencing minimal influence from other
atoms. As a result, their wavefunctions are highly localized. In contrast, valence
electrons, which reside in the outer layers, have broader wavefunctions and are
more likely to interact with those of neighbouring atoms. These valence electrons
are primarily responsible for bonds between atoms and chemical reactions, while
core electrons largely remain uninvolved in such processes.

The localized and highly oscillatory wavefunctions of core electrons are dif-
ficult to describe accurately in a plane-wave basis without using a large number
of such functions. This scenario implies a large cutoff energy Ecut and results in
large matrices for diagonalization, requiring a great computational effort. On the
contrary, valence electrons, being less tightly bound, require fewer plane waves for
an accurate representation. In this situation, pseudopotentials are used to replace
the core electrons and the nucleus with an effective potential that acts on the va-
lence electrons. By focusing only on the valence electrons, the computational load
is reduced, while still accurately capturing the essential physics of the material.

The process of constructing a pseudopotential begins with the calculation of
the electronic configuration of an isolated atom, typically using DFT. The valence
electrons are then selected and used to construct the pseudopotential. The goal is
to create a potential that reproduces the scattering properties of the actual ion,
but with a much smoother, less oscillatory wavefunction for the valence electrons
within a certain cutoff radius around the nucleus. Inside this cutoff radius, the
true oscillatory wavefunction is replaced by a smoother function, while outside the
radius, the true wavefunction is used. The cutoff radius is chosen such that this
replacement does not affect the material’s overall description.

By inverting the Schrödinger equation, one eventually obtains the pseudopo-
tential that produces the corresponding smooth wavefunction for each valence
electron: (

−1

2
∇2

i + V ps
i (r)

)
ϕps
i (r) = ϵiϕ

ps
i (r). (2.36)
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2.3 The pseudopotential approximation

The pseudopotential V ps
i (r) replaces the full electron-ion potential Vext(r) in the

Kohn-Sham equations. As a result, the equations only need to be solved for the
valence electrons, which significantly simplifies the computational workload.

There are various types of pseudopotentials, each with its own method of con-
struction and application. In this work we have employed both norm-conserving
[53] and ultrasoft [54] pseudopotentials. Norm-conserving pseudopotentials are
designed to ensure that the pseudowavefunction preserves the total charge within
the core radius, consistent with the all-electron wavefunction. Still, the norm-
conserving constrain often requires a high plane-wave cutoff to properly describe
the core region, which can be counterproductive and computationally expensive.
To address this issue, ultrasoft pseudopotentials were developed. By removing the
norm-conservation constraint, ultrasoft pseudopotentials allow for a softer poten-
tial that approximates the effect of core electrons with a reduced plane-wave cutoff.
However, because norm-conservation is not enforced, there is a deficit of valence
charge in the core region. The price to be paid is a more complicated expression
for the charge density, where augmentation charges are introduced to compensate
for the missing valence charge.
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3

The ionic problem

The adiabatic Born-Oppenheimer approximation discussed in Chapter 1 has al-
lowed us to decouple the electronic and ionic problems. In Chapter 2, we have ad-
dressed the electronic problem assuming a fixed ionic configuration. Many proper-
ties of solids are fairly good described within this static lattice model; for instance,
this is the case of metallic transport properties. However, many others, like specific
heats and thermal expansion, arise due to lattice dynamics. Even the electron-
phonon coupling in superconductivity cannot be well characterized without taking
into account the ionic degrees of freedom. In order to know about the notable
ionic motion, the ionic problem in Eq. (1.11) has to be solved. In this problem,
the ions move in a potential defined by the previously calculated electronic to-
tal ground state energy, which is commonly referred to as the Born-Oppenheimer
Energy Surface (BOES).

In the ionic problem the positions of the nuclei are not fixed parameters any
more. That is to say, ions in a crystal oscillate around their equilibrium lattice
sites R0, which correspond to the ionic configuration that minimizes the BOES.
Precisely, the position of the sth ion in the nth unit cell is

Rns = Tn + ds + us(Tn) = R0
ns + us(Tn) , (3.1)

where Tn is the Bravais lattice vector pointing to the origin of the corresponding
primitive cell and ds is the position vector of the sth ion inside the cell. The sum of
these two vectors results in the position vector R0

ns that indicates the equilibrium
lattice site of the sth ion in the nth cell. Finally, the vector us(Tn) denotes the
displacement of the corresponding atom from its equilibrium position.

The BOES is an extremely complex energy landscape, since it contains an
enormous number of degrees of freedom, around ∼ 1023, corresponding to the
vast number of atoms in a typical solid. In this situation, as a first assumption
it is considered that the ionic displacements us(Tn) are much smaller than the
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Chapter 3. The ionic problem

interatomic distances. This premise of small oscillations seems reasonable in the
case of most solids that are at temperatures well below their melting point. In
this way, a Taylor expansion of the BOES can be developed around the R0 ionic
positions that minimize the energy:

V (R) = V (R0) +

∞∑
n=2

Vn,

Vn =
1

n!

∑
s1,...,sn
α1,...,αn
T1,...,Tn

ϕα1...αn
s1...sn

(T1, . . . ,Tn)u
α1
s1
(T1) . . . u

αn
sn

(Tn), (3.2)

with ϕα1...αn
s1...sn

(T1, . . . ,Tn) being the n-th order force constants defined as:

ϕα1...αn
s1...sn

(T1, . . . ,Tn) =

[
∂nV (R)

∂uα1
s1 (T1) . . . ∂u

αn
sn (Tn)

]
R=R0

. (3.3)

The number of possible lattice vectors T is equal to the number of unit cells. The
atom index s ranges from 1 to p, which is the number of atoms per unit cell, while
α corresponds to the Cartesian coordinates x, y and z. The first term in Eq.
(3.2) represents the energy at equilibrium. Moreover, since we are at a local min-
imum of the BOES, the first-order term in the expansion V1 is zero by definition.
Namely, each linear term is proportional to the forces acting on individual ions,
and at equilibrium all forces must be zero. Therefore, V1 does not contribute to
the energy expansion and is omitted from the formula.

In standard computational methods, understanding this energy landscape is
crucial for analysing the material’s response to variations in its lattice vectors {ai}.
These variations are described by the strain tensor ϵ, which transforms the lattice
parameters as follows:

a′iα =
∑
β

(δαβ + ϵαβ)aiβ , (3.4)

where α, β are the Cartesian coordinates. When using standard computational
approaches for lattice relaxation, the Born-Oppenheimer stress tensor is calculated
to quantify how changes in the lattice parameters affect the electronic energy of
the system. This stress tensor is defined as:

P
(BO)
αβ = − 1

Ω

[
∂V (R)

∂ϵαβ

]
ϵ=0

, (3.5)

where Ω is the volume of the simulation box. It is important to note that at this
level of approximation the contribution of the ions to the energy is neglected and
therefore, the Born-Oppenheimer stress tensor does not account for the thermal
or quantum fluctuations of the ions.
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3.1 The harmonic approximation

3.1 The harmonic approximation

The harmonic approximation assumes that the properties of a system are accu-
rately described when the expansion of the BOES about its minimum is truncated
at the second order. This is the lowest-order approximation that accounts for
ionic displacements, as the linear term vanishes when the expansion is performed
around the minimum of the BOES. Therefore, the harmonic expansion of the ionic
potential takes the following form:

V harm(R) = V (R0) +
1

2

∑
s,s′

α,α′

n,n′

ϕαα′

ss′ (Tn,Tn′)uα
s (Tn)u

α′

s′ (Tn′) . (3.6)

Before calculating the eigenvalues of the harmonic Hamiltonian, it is conve-
nient to introduce the analysis of the classical normal modes of the ions. In the
case of a crystal formed by the repetition of Ncell unit cells, each containing a
polyatomic basis of p ions, there are 3pNcell Newtonian equations of motion; one
for each of the three Cartesian components of the displacement of the total pNcell

ions. These equations can be expressed as:

Msü
α
s (Tn) = −∂V harm(R)

∂uα
s (Tn)

= −
∑
n′s′α′

ϕαα′

ss′ (Tn,Tn′)uα′

s′ (Tn′) . (3.7)

It is desirable to solve these equations for the normal modes of the crystal, namely,
those in which all ions oscillate at a common frequency w. With this aim, using a
wave ansatz, we seek solutions of the form:

uα
s (Tn, t) = ϵαs (q)e

i(q·Tn−w(q)t)) . (3.8)

Due to the well-known Born-Von Karman boundary conditions, the possible values
of q that yield different displacements reduce to the number of unit cells Ncell.
Substituting Eq. (3.8) into (3.7), the Fourier transform of the interatomic force
constants appears:

ϕαα′

ss′ (q,q
′) =

1

Ncell

∑
n,n′

ϕαα′

ss′ (Tn,Tn′)e−i(q·Tn+q′·Tn′ ). (3.9)

Due to the translational symmetry of the Bravais lattice, the force constants only
depend on the relative position between two sites: Tn−Tn′ . As a result, only the
terms with q′ = −q are non-zero, simplifying Eq. (3.9) to:

ϕαα′

ss′ (q) = ϕαα′

ss′ (q,−q) =
∑
n

ϕαα′

ss′ (Tn)e
−iq·Tn . (3.10)

Here, we have used the translational symmetry of the Bravais lattice: ϕαα′

ss′ (Tn,Tn′)
= ϕαα′

ss′ (Tn −Tn′ , 0) ≡ ϕαα′

ss′ (Tn −Tn′). Later on the index of the summatory has
been redefined.
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Chapter 3. The ionic problem

The problem is then reduced to the diagonalization of the dynamical matrix,
defined as:

Dαα′

ss′ (q) =
ϕαα′

ss′ (q)√
MsMs′

, (3.11)

which is a 3p×3p tensor. The eigenvalue problem for this matrix can be expressed
as: ∑

s′α′

Dαα′

ss′ (q)ϵ
α′

s′µ(q) = w2
µ(q)ϵ

α
sµ(q). (3.12)

In this equation, the frequencies of the normal modes w2
µ(q) are the eigenvalues,

while the polarization vectors ϵα
′

s′µ(q) are the corresponding eigenvectors. The in-
dex µ (µ = 1, ..., 3p) represents the branch index, and q is a wavevector located
within the first Brillouin zone.

Remarkably, for a crystal with a basis containing p ions, the number of normal
modes for each value of q is 3p, which matches the number of degrees of freedom
in a unit cell. Additionally, since there are as many distinct q vectors as there are
unit cells in the crystal, the total number of normal modes amounts to 3pNcell.
This coincides with the total number of degrees of freedom in the entire crystal,
underscoring the consistency of the vibrational modes with the system’s structural
properties.

In classical mechanics, the diagonalization of the dynamical matrix yields the
normal modes of the harmonic crystal, corresponding each of them to an indepen-
dent harmonic oscillator. Within quantum theory of the harmonic crystal, it can
be shown [50] through a procedure involving the bosonic creation and annihilation

operators, b̂†µq and b̂µq respectively, that the ionic Hamiltonian can be written as

Ĥ
ion

= V̂0 +
∑
µ

1BZ∑
q

wµ(q)

(
b̂†µqb̂µq +

1

2

)
. (3.13)

The second term is just the sum of 3pNcell independent quantum harmonic oscil-
lators, corresponding each addend to a classical normal mode in Eq. (3.12). It
is well known from quantum mechanics that the energy spectrum of a quantum
harmonic oscillator is discrete, being the energy step between two adjacent energy
levels constant. Specifically, the contribution to the total energy of the normal
mode with frequency wµ(q) is:

Eµq =

(
nµq +

1

2

)
wµ(q) , (3.14)

where nµq is the quantum number of excitation of the corresponding mode, which
is restricted to zero and integer values. However, it is usual not to speak about
excitation numbers, but about equivalent quasiparticles called phonons. In this
complementary nomenclature, when a certain normal mode is excited to its nth

µq

level, it is said that there are nµq phonons of type µ and momentum q. Definitely,
phonons are the energy quanta wµ(q) in lattice vibrations. As phonons must be
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3.2 Density Functional Perturbation Theory

bosons, their distribution function obeys Bose-Einstein statistics:

nB(wµ(q)) =
1

e
wµ(q)

kBT − 1
, (3.15)

where wµ(q) is the energy of the corresponding phonon.

Thus, the total energy of the Hamiltonian of the system at a given temperature
within the harmonic approximation is determined by 3pNcell quantum numbers
nµq:

E = V0 +
∑
µ

1BZ∑
q

(
nµq +

1

2

)
wµ(q) . (3.16)

If one wishes to study the phonons of a crystalline solid, the harmonic phonon
dispersion relation has to be plotted in the first Brillouin zone, which is more
commonly known as the harmonic phonon spectrum.

3.2 Density Functional Perturbation Theory

To solve the ionic problem within the harmonic approximation, it is imperative
to calculate the second derivatives of the ionic potential V (R), as these allow us
to obtain the dynamical matrices needed to describe the vibrational properties of
a system. Unfortunately, calculating ab initio these derivatives can be extremely
cumbersome. A common approach is the finite displacement method, where atoms
are displaced from their equilibrium positions, and the resulting energies and/or
forces are calculated using DFT. This method allows for a direct and intuitive way
to derive the force constants by taking numerical derivatives of the forces with
respect to the atomic displacements. However, this procedure has significant limi-
tations. Not only are calculations involving supercells in DFT computationally
expensive, but accurate phonon calculations are also restricted to q-points that
are commensurate with the supercell size, thereby limiting the exploration of the
phonon dispersion across the Brillouin zone.

As an alternative, perturbative methods such as density functional pertur-
bation theory (DFPT) can be employed, which allow for the direct calculation of
dynamical matrices and phonon frequencies at arbitrary q-points without the need
for a supercell. In particular, these approaches leverage quantum mechanical per-
turbation theory to evaluate how ionic displacements affect electronic properties,
enabling accurate phonon calculations across the Brillouin zone.

The first derivatives of the potential with respect to atomic displacements are
relatively straightforward to compute, thanks to the Hellmann-Feynman theorem
[55, 56]. According to this theorem, the force on an atom can be expressed as:

∂V (R)

∂ua

=
∂Ee(R)

∂ua

= ⟨Ψe|∂Ĥ
e

∂ua

|Ψe⟩ = ∂Vion,ion

∂ua

+

∫
drn(r)

∂Vext(r)

∂ua

. (3.17)
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Chapter 3. The ionic problem

Here and from now on, we use the single index a ≡ (Tn, s, α) to represent both
atoms and Cartesian coordinates. The relation in the previous equation holds
because the only explicit dependence on the ionic coordinates in the electronic
Hamiltonian comes from the ion-ion electrostatic interaction term and the ex-
ternal potential. The second derivatives at equilibrium, which are necessary for
calculating the force constants, are then given by:

ϕab =

[
∂2V

∂ua∂ub

]
R0

=

[
∂2Vion,ion

∂ua∂ub

]
R0

+

+

∫
dr

[
∂n(r)

∂ua

]
R0

[
∂Vext(r)

∂ub

]
R0

+

∫
dr n(r)

[
∂2Vext(r)

∂ua∂ub

]
R0

. (3.18)

This equation illustrates how the phonon properties are linked to the electronic
structure. Specifically, calculating the second derivatives of the ionic potential re-
quires not only the electron density n(r) but also its variation with respect to ionic
displacements. This dependency remarks why such calculations can be complex
and computationally demanding. By employing DFPT, these challenging deriva-
tives are handled more efficiently.

The essence of density functional perturbation theory (DFPT) [57–59] is to
apply first order perturbation theory to calculate the variation of the Kohn-Sham
levels and orbitals when the ions are displaced from their equilibrium position.
The Kohn-Sham problem was established in Eq. (2.5) and the electronic density
given in Eq. (2.6). With this in mind, it is useful to define the first order term of
the Taylor expansion of a general function f in the ionic displacements as

∆f(r) =
∑
a

[
∂f(r)

∂ua

]
R0

ua , (3.19)

and making this first order expansion in the Kohn-Sham effective Hamiltonian,
the eigenvalues, the eigenfunctions, and the density:

ĤKS → ĤKS +∆ĤKS

ϵnk → ϵnk +∆ϵnk

|ϕnk⟩ → |ϕnk⟩+ |∆ϕnk⟩
n(r) → n(r) + ∆n(r),

where the eigenvalues and eigenvectors of the Kohn-Sham Hamiltonian are identi-
fied by the band index n and the wavevector k, while ⟨r|∆ϕnk⟩ = ∆ϕnk(r). Then
the eigenvalue problem at linear order is(

ĤKS − ϵnk

)
|∆ϕnk⟩ = −

(
∆ĤKS −∆ϵnk

)
|ϕnk⟩ (3.20)

and the linear variation of the electronic density:

∆n(r) = 2 Re

[∑
n

1BZ∑
k

fnkϕ
∗
nk(r)∆ϕnk(r)

]
, (3.21)
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3.3 Beyond the harmonic approximation

where the occupation of the Kohn-Sham states is ruled by the Fermi-Dirac distri-
bution fnk.

Eq. (3.20) is known as the Sternheimer equation [60] and is the perturbed
version of the Kohn-Sham equation settled in Eq. (2.5). Finally, the expression
for the linear change of the Hamiltonian, ∆HKS , can be derived by means of
functional derivatives:

∆HKS = ∆Vext(r) +

∫
dr′
(

1

|r− r′| + fxc(r, r′, w = 0)

)
∆n(r′) . (3.22)

Remarkably, Eqs. (3.20)–(3.22) form a set of self-consistent equations for the per-
turbed system that can be solved following an analogous loop to the one introduced
in the Kohn-Sham problem. Equivalently, we could have defined the problem in

terms of
[
∂n(r)
∂uα

s

]
R0

instead of ∆n(r), as the set of self-consistent equations must

hold for each coefficient in the linear expansion (3.19). In conclusion, the DFPT
formalism introduced above gives the derivatives of the density required to obtain
the dynamical matrices.

In this work, harmonic dynamical matrices have been obtained within DFPT
using the ph.x package from the Quantum Espresso software [61, 62]. Ideally,
dynamical matrices should be computed for all q-points in the first Brillouin zone,
corresponding to the number of cells in the crystal. However, due to the computa-
tional expense of DFPT, a more feasible approach is to sample the first Brillouin
zone with a small uniform grid of q-points, for which dynamical matrices are sub-
sequently calculated. Then, a discrete Fourier transform is performed to obtain
the interatomic force constants matrix for the real-space supercell. In this sense,
basic properties of discrete Fourier analysis reveal that longer-ranged real-space
force constants require finer q-point grids for convergence. Finally, Fourier inter-
polation estimates phonon modes and frequencies at arbitrary wavevectors using
the interatomic force constants. These final steps are carried out using the q2r.x
and matdyn.x packages in Quantum Espresso.

3.3 Beyond the harmonic approximation

Thus far, the resolution of the ionic problem has relied on two key assumptions.
First, we have assumed that the ionic displacements from their equilibrium posi-
tions are much smaller than the interatomic distances. Second, we have assumed
that the properties of solids can be adequately described by truncating the ex-
pansion of the ionic potential at second order around its minimum. The first
assumption, known as the small oscillations approximation, is generally valid for
most solids at temperatures below their melting point. However, the second as-
sumption, referred to as the harmonic approximation, is more restrictive, as many
important physical phenomena arise from the anharmonic terms that are neglected
in this approach.
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Chapter 3. The ionic problem

The harmonic approximation predicts that phonons are well-defined quasipar-
ticles with an infinite lifetime and whose energy does not depend on temperature.
These two characteristics represent inherent failures of the harmonic approxima-
tion. In reality, phonons have finite lifetimes due to anharmonic interactions with
other phonons (and other interactions, such as the electron–phonon coupling), as
evidenced by the measurable width of phonon peaks in inelastic x-ray or neutron
scattering experiments. Additionally, experimental observations show that phonon
energies do depend on temperature, as exemplified by the softening and eventual
collapse of certain phonon modes near second-order phase transitions. In fact, one
of the primary objectives of this thesis is to theoretically characterize this phe-
nomenon through ab initio calculations in charge density wave systems. This task
is even more challenging considering that the harmonic approximation also fails
to explain the stability of the corresponding high-temperature undistorted phase,
as evinced by imaginary phonon frequencies that indicate that certain atomic
displacements can lead to spontaneous distortions. Finally, the harmonic approxi-
mation can sometimes even fail to predict the correct equilibrium positions of the
ions, as the experimentally observed positions may not correspond to the mini-
mum of the potential. Therefore, to accurately address all such phenomena, it is
necessary to move beyond the standard harmonic approximation and incorporate
anharmonic terms into the description.

A common method for introducing anharmonic effects is through perturbation
theory, where the higher-order terms in the expansion of the BOES are treated as
perturbations. These terms describe interactions between phonons, giving rise to
processes such as phonon creation, annihilation, and scattering. Although pertur-
bative approaches can effectively capture important phenomena like the temper-
ature dependence of phonons and their finite lifetimes, they completely collapse
when the anharmonic terms in the potential become comparable to or larger than
the harmonic terms within the range of the ionic fluctuations. This situation typ-
ically arises when ionic displacements are large, particularly in systems containing
light ions or when the material approaches a displacive phase transition, such as
the previously mentioned charge density wave instabilities. In all such cases the an-
harmonic effects are no longer small corrections but rather dominate the system’s
behaviour, requiring non-perturbative approaches for an accurate description.

Therefore, to effectively address strong anharmonic effects, as we aim to do
in this thesis, employing a non-perturbative approach is essential. Anharmonic
effects at a non-perturbative level are typically addressed using molecular dynam-
ics simulations [63]. However, these methods are computationally intensive and
do not account for quantum fluctuations. Path-integral molecular dynamics [64]
do incorporate the quantum nature of atomic vibrations, but it involves an even
greater computational cost. In this thesis, we will employ instead a stochastic im-
plementation of the Self-Consistent Harmonic Approximation (SCHA) [1]. Despite
its computational demands, this method provides a more efficient alternative to
path integral molecular dynamics while still accurately capturing quantum effects.
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3.3 Beyond the harmonic approximation

3.3.1 The Self-Consistent Harmonic Approximation (SCHA)

The Self-Consistent Harmonic Approximation (SCHA), introduced by Hooton in
1955 [1], provides a non-perturbative treatment of anharmonicity that incorporates
both thermal and quantum effects on the ionic vibrations. The non-perturbative
nature entails that the Born-Oppenheimer energy surface is not approximated at
any stage. Instead, the SCHA establishes a variational method based on the free
energy of the ionic Hamiltonian, making it suitable at any temperature.

Namely, at a fixed temperature T , the free energy of the ionic Hamiltonian in
Eq. (1.11), denoted as H ≡ H ion in this section, is determined by the sum of the
internal energy and the entropic contribution:

FH = tr(ρHH) +
1

β
tr(ρH ln ρH) = − 1

β
lnZH , (3.23)

where the partition function is ZH = tr(e−βH), the density matrix ρH = e−βH/ZH

and β = 1/(kBT ).

Given the complexity of the many-body system, directly calculating the exact
free energy is not feasible. Instead, a quantum variational principle in the free
energy can be formulated by replacing the actual density matrix by any other ρH
defined by a trial Hamiltonian H = Tion + V. The resulting free energy functional
is then expressed as:

FH(H) = tr(ρHH) +
1

β
tr(ρH ln ρH) , (3.24)

which satisfies the so-called Gibbs-Bogoliubov inequality:

FH ≤ FH(H) . (3.25)

Adding and subtracting tr(ρHH) in equation (3.24) leads to:

FH(H) = FH + tr[ρH(V − V)] . (3.26)

The equality in equation (3.25) is evidently satisfied when H = H. Therefore,
minimizing FH(H) with respect to the trial Hamiltonian H establishes a quantum
variational principle for the free energy valid at any temperature.

Even if the variational principle is valid for any trial potential V, the SCHA
method restricts it to a harmonic one. As a result, the trial Hamiltonian takes the
well-known general form:

H = Tion + V =

3M∑
a=1

Pa
2

2Ma

+
1

2

3M∑
ab

(Ra −Ra)Φab(Rb −Rb) . (3.27)
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Chapter 3. The ionic problem

The trial Hamiltonian H is then determined by two groups of parameters: the
ionic equilibrium positions R and the auxiliary second-order force constants ma-
trix Φ. Here and henceforth, we will use bold symbols to denote vectors or tensors
in component free notation.

The assumption of a harmonic trial potential simplifies the minimization pro-
cess, as the probability density to find the system in a general ionic configuration
R ≡ {R1, ...,RM} can be expressed in an analytic form in terms of the parameters
of the auxiliary Hamiltonian H. Specifically, the SCHA probability distribution
function itself is expressed as a product of Gaussians:

ρH(R) = ⟨R|ρH|R⟩ =
√
det(Ψ−1/2π) exp

(
−
∑
ab

1

2
Ψ−1

ab (Ra −Ra)(Rb −Rb)

)
.

(3.28)
Here, det represents the determinant. At this point, it is important to emphasize
that what we have referred to as “ionic equilibrium positions” are, in fact, the
expected values of the position operator:

⟨R⟩ρH = R, (3.29)

which in turn correspond to the centroids of the trial Gaussian probability distri-
bution function. In this sense the centroid positions are not necessarily equivalent
to the ionic positions at the minimum of the BOES. On the other hand, the vari-
ance of the Gaussians is represented by Ψ, which is the displacement–displacement
correlation matrix, defined as:

Ψab = ⟨uaub⟩ρH =
1√

MaMb

∑
µ

(1 + 2nB(ωµH))

2ωµH
εaµHε

b
µH, (3.30)

where ua = Ra −Ra indicates the displacement from the average atomic position.
This analytic form depends on the phonon frequencies ωµH and polarization vectors
εaµH that are obtained by diagonalizing the dynamical matrix associated with the
auxiliary force constants matrix Φ:

∑
b

Φab√
MaMb

εbµH = ω2
µHε

a
µH. (3.31)

On the other hand, nB(ω) in Eq. (3.30) is the bosonic average occupation number.
To ensure that the distribution function ρH(R) is normalizable, it is essential for
Ψ and thus Φ to be positive-definite matrices.

Considering this probability density, the quantum statistical average of any
observable O(R) that is exclusively function of the ionic positions is given by

⟨O⟩ρH = tr(ρHO) =

∫
dR ρH(R)O(R) . (3.32)
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3.3 Beyond the harmonic approximation

Making use of this last expression, the free energy in the equality (3.26) can be
rewritten through the simple formula:

FH(H) = FH +

∫
dR[V (R)− V(R)]ρH(R) , (3.33)

where FH is the harmonic free energy given by

FH =

3M∑
µ=1

{
1

2
ωµH − 1

β
ln [1 + nB(ωµH)]

}
, (3.34)

V (R) the BOES of ionic configuration R and V(R) is the trial harmonic energy
for the same configuration.

The quantum variational principle for free energy involves minimizing the
functional FH(H) with respect to the trial harmonic Hamiltonian H. This mini-
mization process depends on knowing the gradient of the free energy with respect
to its independent coefficients. Given that the harmonic free energy and the proba-
bility density have analytic forms, these gradients can be computed analytically
as follows:

∂FH(H)

∂Ra

= −
〈
fa(R)− fa

H(R)

〉
ρH

, (3.35)

∂FH(H)

∂Φab

=
1

2

∑
cd

∂Ψcd

∂Φab

〈(
fd(R)− fd

H(R)
)∑

e

Ψ−1
ce (Re −Re)

〉
ρH

, (3.36)

where ∂FH(H)
∂Ra

is the gradient with respect to the centroid positions and ∂FH(H)
∂Φab

with respect to the force constants. Here, f(R) represents the atomic forces for
the ionic configuration R, and fH(R) denotes the forces derived from the auxiliary
potential V:

fa
H(R) = −∂V(R)

∂Ra

= −
∑
b

Φab(Rb −Rb). (3.37)

The main challenge in calculating the free energy and its gradient arises from
the integrals in Eqs. (3.33)-(3.36), due to the unknown explicit formulas for the
potential V (R) and by extension, for the atomic forces f(R). The usual approach in
this situation is assuming a Taylor expansion of the potential [65], but computing
higher-order force constants can be a complex and time-consuming task. Instead,
the stochastic implementation of the SCHA method proposes using a random
sampling method to estimate these integrals, taking advantage of the analytic
nature of the ionic probability density ρH(R), as detailed in the next section.
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Chapter 3. The ionic problem

3.3.2 The Stochastic Self-Consistent Harmonic
Approximation (SSCHA)

The stochastic implementation of the Self-Consistent Harmonic Approximation
(SSCHA) was introduced to address the challenges of computing the integrals
in the gradient of the free energy analytically [66]. In this method, these inte-
grals are substituted by finite sums using a set of stochastic ionic configurations
{RI}I=1,...,Nc

generated in a supercell from the harmonic distribution ρH(R) in Eq.
(3.28). The calculation of quantum statistical averages for operators dependent
only on the ionic positions is then simplified as:∫

dRO(R)ρH(R) ≃ 1

Nc

Nc∑
I

O(RI). (3.38)

Here Nc are the number of created ionic configurations, while O(RI) is the value
of the operator O(R) at a certain ionic configuration RI . Evidently, the sum re-
covers the value of the integral in the limit Nc → ∞, where the stochastic error
vanishes. Therefore, the free energy gradients in Eqs. (3.35)-(3.36) can be deter-
mined through this stochastic procedure by calculating the energies and atomic
forces on each of the RI configurations.

The SSCHA minimization is conducted using a conjugate gradient (CG) algo-
rithm, and it takes place within a subspace of parameters that preserves the crystal
symmetries. The whole minimization process is sketched in the flowchart of Fig.
3.1. The minimization of the free energy is started from an arbitrary initial har-
monic Hamiltonian H0 (in the initial step j = 0). The usual procedure is to start
from the real harmonic Hamiltonian of the system obtained through a previous
DFPT calculation. However, it is essential to adjust any imaginary frequencies to
ensure stability in the harmonic approximation. Then, based on the correspond-
ing density matrix ρH0

, Nc ionic configurations are generated. The energy and
atomic forces for each configuration are then computed within supercells, which
allows to perform the stochastic calculation of the free energy gradients. Sub-
sequently, a conjugate gradient step is performed to update both the equilibrium
positions R and the force constants Φ, leading to a new auxiliary Hamiltonian Hj .

In principle, in order to obtain the gradient in the next step of the CG min-
imization, Born-Oppenheimer energies and atomic forces should be recalculated
using a new set of configurations generated with the updated distribution ρHj

(R).
However, from experience is known that generally hundreds of steps are needed
to reach the minimum of the free energy, so that, undoubtedly, calculating total
energies and forces every CG step using an ab initio engine would be exorbitantly
time-demanding. To address this problem, a reweighting technique is introduced,
which consists of introducing the factor ρHj

(R)/ρHj0
(R) in the integral evaluation

at step j of the CG minimization:

⟨O⟩ρHj
=

∫
dRO(R)ρHj

(R) ≃ 1

Nc

Nc∑
I=1

O(RI)
ρHj

(RI)

ρHj0
(RI)

, (3.39)

40



3.3 Beyond the harmonic approximation

where j0 is the step of the minimization at which the configurations where gener-
ated. This reweighting technique is valid as far as the normalization condition of
ρHj

, given by ⟨ρHj
/ρHj0

⟩, does not deviate significantly from the unity. Actually,
the Kong-Liu effective sample size is a more reliable statistical parameter to check
[67] :

N eff
j =

∑Nc

I=1 ρ
2
j(I)(∑Nc

I=1 ρj(I)
)2 , (3.40)

where ρj(I) =
ρHj

(RI)

ρHj0
(RI)

. The Kong-Liu ratio quantifies how much of the weighted

samples contribute to the averages, helping to determine whether the sample set is
diverse or dominated by a few high-weight configurations. If the effective sample
size N eff

j remains sufficiently large, it suggests that the reweighting process is
effective and that the weighted samples provide a reliable estimate. In this case
the CG step is performed, updating the auxiliary Hamiltonian Hj and allowing
the minimization loop to proceed. On the contrary, if at any step j the following
condition is met:

N eff
j

Nc

< η, (3.41)

where η is input parameter around 0.5, it signals a potential problem. Specifically,
the set of configurations RI created out of Hj0 does not represent accurately the
updated distribution ρHj

, and the minimization is stopped due to poor statistics.
In this case, the minimization is restarted with new configurations generated from
Hj . Each of these sets of ionic configurations is formally referred to as a “pop-
ulation”. Multiple populations may be needed before reaching the free energy
minimum, depending primarily on the starting point of the minimization process.

In principle, the minimization loop has to go on until the gradient goes to
zero. Since achieving a true vanishing gradient is nearly impossible, it is accepted
that the minimum of the free energy is reached when all components of the gra-
dient are below a specified threshold value. In practice, different threshold values
may be required for each of the gradients, and these should be chosen to ensure
proper convergence of the SCHA frequencies and equilibrium positions. Once the
convergence is reached, one can always add extra configurations to the penultimate
population, reducing the statistical error and obtaining more accurate results.

The centroid positions at the free energy minimum Req are the average ionic
positions fully accounting for quantum, thermal and anharmonic effects, following
Eq. (3.29). The dynamical matrix based on the final force constants Φ,

D
(S)
ab =

1√
MaMb

Φab(Req), (3.42)

determines the amplitude of the vibrations around these equilibrium positions,
and is, thus, positive definite by construction; as explained, the harmonic density
matrix would diverge otherwise. In this sense, the positive phonon frequencies
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Define initial trial Hamiltonian
H0

Create a set of ionic conf.-s with Hj0

{RI}I=1,...,Nc

Calculate total energies and
atomic forces on supercells

V(RI) and f(RI)

Calculate gradient of free energy

∇FH(Hj)
j0 = j

CG step and new parameters

R(j+1) and Φ(j+1)
j = j + 1

Out of statistical range?

Minimum found?

Increase precision?

Create extra ionic
configurations

{RI}I=Nc+1,...,Nc̄

Output quantities

H = Hj

FH(H), Req, {ωµH}, {εaµH}

j = 0 and j0 = 0

No

Yes

Yes

No

Yes

No

Figure 3.1: Flowchart of the SSCHA minimization process. The block in red, which
corresponds to the calculation of the total energies and atomic forces on supercells,
is where nearly all the computation time goes when an ab initio method is used.
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3.3 Beyond the harmonic approximation

derived from this dynamical matrix do not represent the true renormalized an-
harmonic phonon spectra, as they fail to account for second-order phase transi-
tions where frequencies can collapse to zero. As it is explained in Section 3.3.4,
these auxiliary phonon frequencies should just be considered as components of the
variational problem, and only acquire physical meaning beyond this mean-field
approximation.

3.3.3 The stress tensor in the SSCHA

At the conclusion of the SSCHA minimization, it is also possible to obtain the
anharmonic stress tensor P, which incorporates the effects of both quantum and
thermal ionic fluctuations. This stress tensor is calculated by evaluating the deriva-
tives of the free energy with respect to the strain tensor ϵ as follows [67]:

Pαβ = − 1

Ω

[
∂FH(H)

∂ϵαβ

]
ϵ=0

=
〈
P

(BO)
αβ (R)

〉
ρH

− 1

2Ω

M∑
s=1

〈
uα
s (R)fβ

s (R) + uβ
s (R)fα

s (R)
〉
ρH

.

(3.43)

In this formula, we explicitly distinguish the Cartesian coordinates α, β and the
atomic index s. For atomic displacements u(R) and forces f(R), the lower index
refers to the atomic index, while the upper index denotes the Cartesian coordi-
nate. On the other side, Ω is the volume of the simulation box, and P(BO)(R) is
the classical stress tensor for the configuration with the ions displaced to R, as
defined in Eq. (3.5). Thus, to numerically compute the SCHA stress tensor within
the stochastic framework of Eq. (3.38), it is necessary to calculate both the forces
and the classical stress tensor for each structure in the ensemble.

Additionally, the knowledge of the anharmonic stress tensor P allows for the
relaxation of the lattice parameters during the SSCHA minimization. To update
the lattice, the stress tensor is computed when the free energy minimization with
respect to R and Φ at constant volume has stopped, whether due to poor statistics
or because the free energy minimum has been reached. Then, the following strain
is applied:

ϵαβ = Ω(Pαβ − P ∗δαβ) . (3.44)

where P ∗ is the target pressure of the relaxation, and δαβ is the Kronecker delta.
With this strain, the lattice vectors {ai} are updated for the next population as
follows:

a′iα = aiα + λ{ai}
∑
β

ϵαβaiβ , (3.45)

where λ{ai} is the update step. The best λ{ai} step is obtained with λ{ai} = 1
3ΩB0

,
with B0 being the bulk modulus.
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Chapter 3. The ionic problem

3.3.4 Second-order structural phase transitions
in the SSCHA

Ehrenfest’s classification scheme, proposed in 1933 [68], was the initial attempt to
categorize phase transitions based on thermodynamic properties. In this scheme,
second-order phase transitions are characterized by a discontinuity in the second
derivative of the free energy with respect to a thermodynamic variable, while the
first derivative remains continuous across the transition. This implies that quanti-
ties like entropy and magnetization change smoothly, without any abrupt jumps,
while response functions like the heat capacity or the magnetic susceptibility show
sudden changes at the transition point.

Landau’s theory, formulated in 1937 [19, 69], refined the understanding of
second-order phase transitions by introducing the concept of an order parameter,
a scalar or vectorial magnitude that distinguishes between different phases. In
this framework, at high temperatures, the system exhibits higher symmetry, and
the order parameter is typically zero. As the temperature drops below the critical
temperature Tc, the order parameter changes continuously from zero to a non-
zero value, signalling the emergence of a new phase with lower symmetry. This
gradual evolution, characteristic of second-order phase transitions, contrasts with
the abrupt jumps in the order parameter observed in first-order transitions. The
different behaviour of the order parameter in first and second-order phase transi-
tions is illustrated in Fig. 3.2. This distinction emphasizes that Landau’s theory
specifically applies to second-order phase transitions, making the order parameter
a crucial variable for characterizing their nature. In the case of displacive phase
transitions, such as ferroelectric and charge density wave transitions, the order
parameters are the average atomic positions measured in diffraction experiments,
which correspond to the centroid positions that the SSCHA minimization specifi-
cally optimizes.
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Figure 3.2: Comparison of the order parameter behaviour in (a) first-order and (b)
second-order phase transitions. (a) In a first-order transition, the order parameter
exhibits a discontinuous jump at Tc, indicating a sudden phase change. (b) In
a second-order transition, the order parameter evolves smoothly and continuously
from zero to a finite value as the temperature decreases below Tc.
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3.3 Beyond the harmonic approximation

A key aspect of Landau’s framework for second-order phase transitions is that
the free energy of a system near the transition can be expressed as an expansion in
terms of the order parameter. Since a system at equilibrium will always minimize
its free energy, above the critical temperature Tc, this minimum corresponds to
the high-symmetry phase where the order parameter is zero. As the temperature
approaches the critical temperature, this free energy minimum becomes shallower,
ultimately turning into a saddle point at Tc. At lower temperatures, the system
transitions to a lower-symmetry configuration with non-zero order parameter, for
which the free energy minimum is lower. This behaviour is plotted in Fig. 3.3. In
displacive phase transitions, this change of curvature can be characterized through
the second derivative of the free energy with respect to the centroids in the high-
symmetry configuration. Namely, the free energy Hessian is positive-definite at
high temperatures, but lowering the temperature it develops at least a null eigen-
value right at the critical temperature. Lowering further the temperature, this
eigenvalue finally becomes negative, indicating a distortion that decreases the free
energy. Definitely, the knowledge of the temperature evolution of the free energy
curvature with respect to the centroids in a high-symmetry configuration allows
the identification of second-order displacive phase transitions, including charge
density waves. However, it should be remarked that not all charge density waves
are associated with second-order transitions [70], and therefore, this theory may
not fully address those scenarios.

Order parameter Q

Q = 0
High-symmetry phase

Free Energy HessianFree Energy Hessian

F

Q ≠ 0
Low-symmetry phase

F = E -TS

Figure 3.3: Free energy landscape in a second-order phase transition. As the tem-
perature decreases towards the critical temperature, the free energy minimum shifts
from a high-symmetry state, flattens at the critical temperature, and transitions into
a lower-symmetry phase. The temperature-dependent evolution of the free energy
curvature, particularly with respect to the order parameters in a high-symmetry
configuration, is crucial for identifying and characterizing second-order phase tran-
sitions.
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Chapter 3. The ionic problem

Using the SSCHA code, one could compute the free energy for a set of dis-
torted atomic configurations, which then enables the numerical calculation of the
mentioned curvature at each temperature using finite differences, as described in
Ref. [71]. However, this numerical approach is computationally intensive due to
the large number of configurations in the ensemble required by the finite differ-
ences method to reduce the stochastic error. Moreover, it involves performing
SCHA minimizations in the low-symmetry distorted phase, which is more chal-
lenging because the reduced symmetry increases the number of free parameters in
the trial Hamiltonian.

To address this issue, Bianco et al. [41] presented a specific analytic formula
for the SCHA free energy curvature with respect to centroid positions, which avoids
the departure from the high-symmetry configuration to calculate derivatives of
the free energy and estimate the occurrence of second-order phase transitions. In
component-free notation the curvature is given by:

∂2F

∂R∂R = Φ+
(3)

ΦΛ(0)[1−
(4)

ΦΛ(0)]−1
(3)

Φ , (3.46)

where
(n)

Φ are the n-th order anharmonic force constants, which are calculated as

quantum averages taken with the SSCHA density matrix:
(n)

Φ =
〈

∂nV
∂Rn

〉
ρH

. The

negative-definite fourth-order tensorΛ(0) is the static limit of the dynamical tensor
Λ(z). For a generic complex number z, the components of the latter tensor are
defined as:

Λabcd(z) = −ℏ2

8

∑
µν

F (z, ωµ, ων)

ωµων

εaµε
b
νε

c
µε

d
ν , (3.47)

where ω2
µ and εaµ are the eigenvalues and corresponding eigenvectors of the auxiliary

SSCHA dynamical matrix D(S) in Eq. (3.42), and

F (z, ωµ, ων) =
2

ℏ

[
(ωµ + ων)[1 + nB(ωµ) + nB(ων)]

(ωµ + ων)2 − z2
− (ωµ − ων)[nB(ωµ)− nB(ων)]

(ωµ − ων)2 − z2

]
.

(3.48)

Then, the free energy Hessian based dynamical matrix can be considered a tempera-
ture-dependent generalization of the harmonic dynamical matrix, in which quan-
tum, thermal and anharmonic effects are included. Namely:

D(F) =
1√
M

∂2F

∂R∂R
1√
M

= D(S) +
(3)

DΛ(0)[1−
(4)

DΛ(0)]−1
(3)

D. (3.49)

Here, Mab = δabMa is the mass matrix, D(S) is the auxiliary dynamical matrix in
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3.3 Beyond the harmonic approximation

Eq. (3.42), and
(n)

D are the dynamical matrices associated with the n-th order
anharmonic force constants:

(3)

Dabc =

(3)

Φ abc√
MaMbMc

=
1√

MaMbMc

〈 ∂3V

∂Ra ∂Rb ∂Rc

〉
ρH

, (3.50)

(4)

Dabcd =

(4)

Φ abcd√
MaMbMcMd

=
1√

MaMbMcMd

〈 ∂3V

∂Ra ∂Rb ∂Rc ∂Rd

〉
ρH

. (3.51)

Then, the temperature-dependent anharmonic phonons are obtained by diagonal-
izing this matrix through the equation:∑

b

D
(F)
ab ϵbµ = Ω2

µϵ
a
µ. (3.52)

Negative values of the anharmonic phonon frequencies Ωµ indicate a structural dis-
tortion that decreases the free energy. This information can be used to determine
CDW transition temperatures, since the CDW will appear when D(F) develops a
negative eigenvalue in the high-symmetry phase upon lowering the temperature.
This technique has been successful in the characterization of displacive structural
phase transitions in a large variety of strongly anharmonic systems, such as su-
perconducting hydrides [72, 73], thermoelectric compounds [74, 75], and materials
hosting CDWs [76–78].

3.3.5 Dynamical theory of the SSCHA

The theory introduced in the latter section is static in the sense that it is not
based on time-dependent properties, but on the variation of the free energy with
respect to a static variation of the centroid positions. In order to build a quantum
anharmonic dynamical theory, Bianco et al. [41] formulated an ansatz for the
interacting phonon Green function G(iΩn) for the variable

√
Ma(R

a − Ra
eq). In

this formulation, Ωn = 2πn/β is the nth bosonic Matsubara frequency [79]. Later,
Monacelli et al. [80] and Lihm et al. [81] simultaneously proved this ansatz to
be correct. The interacting SCHA phonon propagator can be calculated from the
Dyson-type relation:

G(iΩn) = G(0)(iΩn) +G(0)(iΩn)Π(iΩn)G(iΩn), (3.53)

as illustrated in the Feynman diagram representation shown in Fig. 3.4 (a). Here

G(0)(iΩn) is the non-interacting SCHA auxiliary phonon propagator, described by
the dynamical matrix of the SSCHA effective harmonic Hamiltonian:

[G(0)]−1(iΩn) = (iΩn)
21−D(S). (3.54)

By combining these equations, one arrives to:

G−1(iΩn) = (iΩn)
21− (D(S) +Π(iΩn)). (3.55)
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Chapter 3. The ionic problem

In these equations Π(iΩn) is the SCHA dynamical self-energy, and it is defined as:

Π(iΩn) =
(3)

DΛ(iΩn)[1−
(4)

DΛ(iΩn)]
−1

(3)

D . (3.56)

where the n-th order anharmonic dynamical matrices
(n)

D are defined in Eqs. (3.50)
and (3.51). The fourth-order tensor Λ(iΩn) is defined in Eq. (3.47) for a general
complex number z; in the last equation, z specifically denotes a Matsubara fre-
quency. Figure 3.4 (b) provides the diagrammatic representation of this self-energy.
For future applications, it is useful to express the SCHA self-energy in the basis
of the SCHA auxiliary modes, after performing a Fourier transform. This gives:

Πµν(q, iΩn) =
∑
ab

Πab(q, iΩn)ε
a
µ(−q)εbν(q), (3.57)

where εaµ(q) are the eigenvectors of the SCHA auxiliary dynamical matrix in the

reciprocal space, D(S)(q).

In the static limit (iΩn = 0), the quasiparticle energies correspond to the
frequencies of the free energy Hessian, aligning with the static theory discussed in
the previous section:

G−1(0) = −(D(S) +Π(0)) = −D(F). (3.58)

= + Π(iΩn)

(a)

(b)

+ +

+ ...+

=

Π(iΩn) = DΛ(iΩn)D
(B) (3) (3)

Π(iΩn)

(iΩn) (iΩn)(iΩn)(iΩn)

Figure 3.4: (a) Diagrammatic representation of the Dyson equation for the SCHA
phonon propagator, as given in Eq. (3.53). (b) Diagrammatic representation of the
SCHA self-energy in Eq. (3.56). The bubble approximation, highlighted in blue,
consists of retaining only the first term in the expansion.
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3.3 Beyond the harmonic approximation

The bubble approximation

The bubble approximation consists on retaining only the first term in the Taylor
expansion of the SCHA dynamical self-energy in Eq. (3.56), neglecting in this way

the terms containing fourth-order force constants
(4)

D. This simplification, which
often yields good results, effectively reduces the calculation to just the bubble term
in the corresponding Feynman diagram, as highlighted in blue in Fig. 3.4 (b). The
so-called bubble self-energy is then given by:

(B)

Π (iΩn) =
(3)

DΛ(iΩn)
(3)

D . (3.59)

The spectral function

The physical phonons measured in experiments, such as inelastic scattering, are
not the eigenvalues of D(S) nor D(F), but the spectral functions associated to
the displacement-displacement correlation functions. By performing an analytic
continuation of the Green function defined in Eq. (3.55) to the real frequency
domain, with the substitution iΩn → ω + iδ+, the spectral function σ(ω) can be
expressed as [72]:

σ(ω) = −2 Im
(
Tr
[
G(ω + iδ+)

])
, (3.60)

where ω is the energy (frequency) and δ+ an infinitesimally small positive real
number. Peaks in the spectral function as a function of the frequency ω indicate
phonon quasiparticles having certain frequencies after anharmonic renormaliza-
tion. Precisely, the lifetime of these collective vibrational excitations is inversely
proportional to the peaks’ width. Therefore, sharp peaks indicate long-lived and
stable quasiparticles, while a broad spectrum suggests that anharmonicity has re-
moved the existence of well-defined particles.

By exploiting lattice translational symmetry, the quantities can be Fourier
transformed, so that the spectral function for a given point q of the BZ is given
by:

σ(q, ω) = −ω

π
Im
(
Tr
[
G(q, ω + iδ+)

])
, (3.61)

or alternatively:

σ(q, ω) = −ω

π
Im

(
Tr
[
(ω + iδ+)21−D(S)(q)−Π(q, ω + iδ+)

]−1
)
. (3.62)

The non-interacting solution is obtained by neglecting the SCHA self-energy, re-
sulting in the expression:

σ(0)(q, ω) = −ω

π
Im
(
Tr
[
G(0)(q, ω + iδ+)

])
= −ω

π
Im

(
Tr
[
(ω + iδ+)21−D(S)(q)

]−1
)
.

(3.63)
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Each mode contributes to the energy spectrum with a Dirac delta peak, centered
around the frequencies ωµ(q) that are obtained by diagonalizing D(S)(q), the re-
ciprocal space version of the SSCHA auxiliary dynamical matrix in Eq. (3.42).
That is:

σ(0)(q, ω) =
∑
µ

σ(0)
µ (q, ω) =

1

2

∑
µ

[δ(ω − ωµ(q)) + δ(ω + ωµ(q))] . (3.64)

Within an interacting picture, the simplest solution is provided by the so-called
static approximation, which consists of replacing the full dynamical SCHA self-
energy Π(q, ω) with its static value Π(q, ω = 0). Consequently, the spectral
function is:

(stat)
σ (q, ω) = −ω

π
Im
(
Tr
[
(ω + iδ+)21−D(S)(q)−Π(q, 0)

]−1
)

= −ω

π
Im
(
Tr
[
(ω + iδ+)21−D(F)(q)

]−1
)
.

(3.65)

In this static approximation, the quasiparticle spectrum remains non-interacting,
where there is no mode mixing or broadening due to anharmonic interactions.
Indeed, each mode contributes a sharp Dirac delta peak to the energy spectrum,
but in this case centered at the frequencies Ωµ(q), which are derived from the

reciprocal space dynamical matrix based on the free energy Hessian D(F)(q). The
corresponding eigenvalue problem in real space is defined in Eq. (3.52). Then:

(stat)
σ (q, ω) =

∑
µ

(stat)
σµ (q, ω) =

1

2

∑
µ

[δ(ω − Ωµ(q)) + δ(ω +Ωµ(q))] . (3.66)

The full dynamical SCHA self-energy (iΩn ̸= 0) can only be computed in the
current SSCHA code within the bubble approximation introduced in Eq. (3.59).
In the mode basis defined in Eq. (3.57), the bubble term at any q-point is obtained
through the formula:

(B)

Π µν(q, ω + iδse) = − ℏ2

8Nq

∑
q1q2
ρ1ρ2

∑
G

δG,q+q1+q2

F (ω + iδse, ωρ1
(q1), ωρ2

(q2))

ωρ1
(q1)ωρ2

(q2)

×
(3)

Dµρ1ρ2
(−q,−q1,−q2)

(3)

Dρ1ρ2ν(q1,q2,q).

(3.67)

The meaning of the different variables remains consistent with previous defini-
tions, where δse represents an infinitesimally small positive number, similar to the
δ+ used above. The qi sums are performed on a mesh of Nq q-points within the
Brillouin zone. The reciprocal lattice vectors are denoted by G, and the function
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3.3 Beyond the harmonic approximation

F is defined in Eq. (3.48). Besides,
(3)

Dµρ1ρ2
(q,q1,q2) are the SCHA normal com-

ponents of
(3)

D(q,q1,q2), which is the Fourier transform of
(3)

D(T1,T2,T3). Finally,

ωρ(q) are the frequencies obtained from D(S)(q).

Note that, as long as the real-space dynamical matrices D(S)(T1,T2) and
(3)

D(T1,T2,T3) decay faster with distance than the supercell size, they can be
Fourier interpolated at any point in reciprocal space. Consequently, in Eq. (3.67),
neither q nor qi are restricted to the commensurate grid of the supercell used
in the SSCHA minimization, which allows us to compute the dynamical SSCHA
self-energy at any q-point. The self energy must be converged with respect to the
qi grids in which the summation is performed, which can be arbitrarily increased
up, and the infinitesimally small smearing value δse.

No-mode mixing approximation

Computing the full spectral function in Eq. (3.59) for a given wavevector value q
can involve significant computational effort, as it requires inverting a large matrix
for each frequency value ω. The no-mode mixing approximation simplifies this
process by assuming that the self-energy Π(q, ω + iδ+) is diagonal in the mode
basis:

Πµν(q, ω + iδ+) ≃ δµνΠνν(q, ω + iδ+). (3.68)

This approach, which is often highly accurate, not only reduces the computational
cost but also entails that the total spectral function is given by the sum of indi-
vidual mode spectral functions:

σ(q, ω) =
∑
µ

σµ(q, ω). (3.69)

The contribution to the spectral function from each phonon mode (q,µ) is given
by:

σµ(q, ω) =
1

2π

[ −ImZµ(q, ω)

[ω − ReZµ(q, ω)]2 + [ImZµ(q, ω)]2

+
ImZµ(q, ω)

[ω +ReZµ(q, ω)]2 + [ImZµ(q, ω)]2

]
,

(3.70)

where

Zµ(q, ω) =
√

ω2
µ(q) + Πµµ(q, ω + iδse), (3.71)

with Πµµ(q, ω+ iδse) being the diagonal part of the self-energy in the mode basis.
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Lorentzian approximation

The shape of the contribution of each phonon mode to the spectral function
σµ(q, ω) in Eq. (3.70) resembles that of a Lorentzian function, but with frequency-
dependent centers and widths. As a result, the overall spectral function σ(q, ω)
generally differs from a simple superposition of real Lorentzians. However, in cer-
tain cases σµ(q, ω) can be approximated with a true Lorentzian, indicating that
the quasiparticle picture is still valid after the inclusion of anharmonicity. In such
cases the individual spectral functions can indeed be expressed as:

σµ(q, ω) =
1

2π

[
Γµ(q)

[ω −Θµ(q)]2 + [Γµ(q)]2
+

Γµ(q)

[ω +Θµ(q)]2 + [Γµ(q)]2

]
, (3.72)

where the center of the Lorentzian Θµ(q) is the quasiparticle energy and Γµ(q) is
the half width at half maximum (HWHM) anharmonic linewidth of the µ mode
with momentum q, respectively. All in all, the Lorentzian approximation im-
plies that each mode corresponds to an anharmonic phonon with a specific energy,
shifted from the SSCHA auxiliary frequencies by ∆µ(q) = Θµ(q) − ωµ(q), and a
finite lifetime τµ(q), given by τµ(q) = 1/(2Γµ(q)). These features are illustrated
in Fig. 3.5.

 σ
 (

q
, ω

)

0
0

ω
Θμ(q)

 Δμ(q)

2Γμ(q)

ωμ(q)

Figure 3.5: Red dashed vertical lines indicate the Dirac delta-shaped spectral func-
tion of non-interacting SSCHA auxiliary particles from Eq. (3.64) at a fixed point
q. In contrast, the blue lines represent the spectral function within the no-mode
mixing approximation, in the particular case where the contribution of mode µ is
Lorentzian-shaped. The vertical blue lines mark the anharmonic phonon frequencies
within the quasiparticle picture, Θµ(q). The double-headed blue arrow denotes the
full width at half maximum (FWHM), highlighting the spectral broadening due to
anharmonic effects. The horizontal black arrow remarks the frequency shift, ∆µ(q),
between the two approaches.
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3.3 Beyond the harmonic approximation

Within the Lorentzian approximation, the SSCHA code offers several methods
to estimate quasiparticle frequencies and linewidths. The most accurate approach
involves solving the self-consistent equation:

Θµ(q) = ReZµ(q,Θµ(q)), (3.73a)

which provides an estimate for Θµ(q) and subsequently yields the linewidth:

Γµ(q) = −ImZµ(q,Θµ(q)). (3.73b)

Alternatively, one can avoid solving this equation by evaluating the expression
with auxiliary phonon frequencies within the so-called “one-shot” approximation:

(os)

Θµ(q) = ReZµ(q, ωµ(q)) (3.74a)

(os)

Γµ (q) = −ImZµ(q, ωµ(q)). (3.74b)

When the SCHA self-energy is a small perturbation of the SCHA free propagator
(Πµµ << ω2

µ), a further approximation can be taken by truncating the Taylor
expansion of Eq. (3.71) at first order:

(pert)

Θµ (q) = 1
2ωµ(q)

ReΠµµ(q, ωµ(q)), (3.75a)

(pert)

Γµ (q) = − 1
2ωµ(q)

ImΠµµ(q, ωµ(q)). (3.75b)

The Lorentzian approximation is not always valid and must be evaluated at
each specific case. In systems with strong anharmonicity the ideal Lorentzian peak
shape associated with well-defined phonon modes can become disrupted. As a re-
sult, the phonon quasiparticle picture breaks down, and parameters like Θµ(q) and
Γµ(q) become inadequate for describing the system’s vibrational properties. Fig-
ure 3.6 illustrates a scenario where this approximation fails due to the appearance
of a shoulder, an extra bump next to the main phonon peak. Another signatures
of strong anharmonicity in spectral functions include peak broadening, mode mix-
ing, and extra peaks (satellites). These anomalies complicate the interpretation of
experimental data and can easily lead to misinterpretations. The appearance of
extra peaks, for example, might be wrongly attributed to phase transitions.
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0
0

ω

 σ
 (

q
, ω

)

Figure 3.6: Spectral function at point q showing a shoulder, an additional, less
pronounced bump next to the main peak. This feature indicates deviations from the
ideal Lorentzian shape and suggests the presence of strong anharmonicity and mode
interactions.

In summary, the SSCHA code calculates several types of frequencies for a
phonon mode. The auxiliary phonon frequencies ωµ(q) coming from the varia-
tional problem do not have actual physical meaning since they are positive definite
and simple parameters of the variational minimization. However, they are crucial
for defining the density matrix that minimizes the free energy and therefore, for
computing averages. The static frequencies Ωµ(q) obtained from the free energy

Hessian D(F)(q) are physically significant quantities that can be used to identify
second-order phase transitions, as a collapse to zero frequency indicates a struc-
tural instability. Finally, although inelastic scattering experiments measure the full
spectral function, the phonon frequencies Θµ(q) extracted through the Lorentzian
approximation offer the most accurate representation of a true physical quantity,
as long as the quasiparticle picture is preserved.

54



4

The electron-phonon
interaction

Until now, our study has relied on the adiabatic approximation, enabling us to
address the electronic and nuclear problems separately, without accounting for
any interactions between electrons and phonons. However, the assumption that
the ionic motion has no influence on the electronic states is not always valid. In
fact, the interaction between electrons and phonons is fundamental to significant
physical phenomena, such as superconductivity and the formation and stabiliza-
tion of charge density waves. To explain these physical phenomena, one has to
go beyond the adiabatic approximation by incorporating the previously neglected
electron-phonon interaction term, ∆Ĥn, in Eq. (1.9).

Regarding the ∆Ĥn term, the first addend involves second order derivatives
of the electronic wave function with respect to nuclear positions while the second
one involves first order derivatives. Hence, only the latter component contributes
at linear order in displacement, making it the dominant term. At this linear order,
the electron-phonon Hamiltonian can be simplified to:

Ĥe−ph =
∑
I

1

MI

[
P̂I

]
e
P̂I , (4.1)

where
[
P̂I

]
e
means that the ionic momentum operator is applied over the elec-

tronic states. This operator can be rewritten in second quantization using the
standard fermionic creation and annihilation operators:

[
P̂I

]
e
=
∑
nn′

1BZ∑
kk’

ĉ†n′k’ ĉnk ⟨ϕn′k’| P̂I |ϕnk⟩ , (4.2)

where ĉ†n′k’ creates and ĉnk annihilates a Kohn-Sham state.
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Chapter 4. The electron-phonon interaction

Following a procedure involving the expansion of Kohn-Sham electronic states
to linear order as in Section 3.2, |ϕnk⟩ → |ϕnk⟩ + |∆ϕnk⟩, within quantum per-
turbation theory and the transformation of the ionic momentum operator into
bosonic ladder operators, the electron-phonon Hamiltonian can be rewritten in
the Fröhlich way:

Ĥe−ph =
1√
Nq

∑
µ

∑
nn′

1BZ∑
kq

gµn′k+q,nk ĉ†n′k+q ĉnk

(
b̂µq + b̂†µ−q

)
, (4.3)

where the electron-phonon matrix elements are given by

gµn′k+q,nk =
∑
m

∑
s

eiq·Tm
1√

2Mswµ(q)
⟨ϕn′k+q|

∑
α

[
∂ĤKS

∂uα
s (Tm)

]
R0

ϵαsµ(q) |ϕnk⟩ .

(4.4)
The Fröhlich Hamiltonian given in Eq. (4.3) describes processes in which an elec-
tron in the band n and with momentum k either absorbs a phonon of mode µ
with momentum q or emits a phonon of mode µ with momentum -q, changing
its state to one in the band n′ and with momentum k+q. The electron-phonon
matrix element gµn′k+q,nk quantifies the probability amplitude for these transitions.
Remarkably, the electronic ground state and harmonic phonon spectra DFPT cal-
culations provide all the necessary information to construct He−ph.

Once the electron-phonon Hamiltonian is properly established, the Green’s
function method is the suitable formalism for addressing the electron-phonon
many-body problem. The Green’s functions are derived from the Dyson equa-
tions [79], which, in this context, are expressed as follows:

Gn(k, iωm) = G0
n(k, iωm) +G0

n(k, iωm)Σn(k, iωm)Gn(k, iωm) (4.5)

for the electron Green function Gn(k, iωm) and

Dν(q, iΩm) = D0
ν(q, iΩm) +D0

ν(q, iΩm)Πν(q, iΩm)Dν(q, iΩm) (4.6)

for the phonon Green function. In the equations above, G0
n(k, iωm) andD0

ν(q, iΩm)
are the non-interacting phonon Green functions, and Σn(k, iωm) and Πν(q, iΩm)
are the electron and phonon self-energies, respectively, due to the electron-phonon
interaction.

In principle, one would need to consider an infinite series of diagrams to
fully address the electron-phonon many-body problem. However, according to
Migdal’s theorem, all vertex corrections are of order

√
me/MI [82]. Consequently,

the lowest-order diagram is typically the most significant and provides a good
approximation for the self-energies. After summing over Matsubara frequencies
and analytically continuing the functions to real frequencies, the self-energies can
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be expressed as follows:

Σn(k, ω) =
1

Nq

∑
ν,q,n′

∣∣gνn′k+q,nk

∣∣2 [ nB(ων(q)) +
1
2
fn′k+q

ω + iδ + ων(q)− ϵn′k+q

+
nB(ων(q)) + 1− 1

2
fn′k+q

ω + iδ − ων(q)− ϵn′k+q

]
(4.7)

for electrons, and

Πµ(q, ω) =
1

Nk

∑
nn′

1BZ∑
k

|gµn′k+q,nk|2
fnk − fn′k+q

ϵnk − ϵn′k+q + ω + iδ
(4.8)

for phonons. In Eq. (4.7), the sum over phonon wavevectors is performed on a
mesh of Nq q-points within the corresponding first Brillouin zone. This value of
Nq may differ from Nk, which denotes the number of k-points used in the sum
over electron wavevectors in Eq. (4.8). These self-energies capture the effects of
electron-phonon interactions on the respective quasiparticles, providing a detailed
account of how this coupling modifies their intrinsic characteristics from their bare,
non-interacting states. Specifically, the real part of the self-energies corresponds to
the renormalization of the quasiparticle energy, while the imaginary part is linked
to the linewidth of the respective electron or phonon band.

The renormalization of the phonon frequencies due to the electron-phonon
interaction is inherently included in DFPT harmonic phonon calculations through
the static limit of the corresponding electron-phonon self-energy, Πµ(q, ω = 0).
This inclusion arises because calculating the second derivatives of the ionic po-
tential within DFPT, in Eq. (3.18), involves the linear response of the electron
density to static ionic displacements, which is an effect captured in Πµ(q, ω = 0).
In fact, the electron-phonon self-energy Πµ(q, w) closely resembles the Lindhard
function shown in Fig. 2 [12, 83], which characterizes the linear response of a free
electron gas to external perturbations, but in this case incorporating the square of
the electron-phonon matrix elements. Since the real part of the Lindhard function
is negatively defined, the electron-phonon interaction will always soften phonon
frequencies, potentially leading to instabilities. Moreover, the softening of phonon
modes can result in increased ionic displacements, especially if the system is near
a structural phase transition, thereby increasing the anharmonicity of the system.
Consequently, a strong electron-phonon interaction is generally linked to signif-
icant anharmonic effects, which further enhance the renormalization of phonon
frequencies, as explained in the previous chapter.

On the other hand, the electron-phonon contribution to the linewidth of a
phonon mode γµ(q) is related to the imaginary part of the phonon self-energy:

γµ(q) = −ImΠµ(q, wµ(q)) , (4.9)

where γµ(q) represents the half width at half maximum (HWHM) of the phonon
mode. Consequently, the full width at half maximum (FWHM) is given by: 2γµ(q).
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Chapter 4. The electron-phonon interaction

For temperatures well below the Fermi temperature, the occupation factor can
be approximated as fnk ≈ 2θ(ϵF − ϵnk). Additionally, given that the phonon
frequencies (on the order of meV) are much smaller than the electronic energy
scales (on the order of eV), the linewidth formula can be simplified to:

γµ(q) =
2πwµ(q)

Nk

∑
nn′

1BZ∑
k

|gµn′k+q,nk|2δ(ϵn′k+q − ϵF )δ(ϵnk − ϵF ) . (4.10)

This formula indicates that the electron-phonon contribution to the phonon line-
width depends solely on excitations occurring at the Fermi surface. Notably, the
electron-phonon linewidth γµ(q) is independent of the phonon frequency wµ(q)
since the electron-phonon matrix elements scale as wµ(q)

−1/2. This property al-
lows us to calculate γµ(q) at the harmonic level using DFPT even if the system is
dynamically unstable at this level of approximation.

Indeed, the strength of the electron-phonon interaction can be characterized
by analysing the phonon linewidth, which can be measured experimentally using
techniques such as inelastic x-ray or neutron scattering. However, it is essential to
note that the linewidth expression in Eq. (4.10) considers only the contribution
from electron-phonon interactions. Experimental linewidths may also include ad-
ditional contributions, such as those arising from anharmonic effects, as previously
discussed.

4.1 The electron-phonon interaction with the
SSCHA

In strongly anharmonic systems, the SSCHA significantly renormalizes the har-
monic phonon spectrum, and the average atomic positions are given by the centroid
positions at the minimum of the SSCHA free energy. To account for electron-
phonon interactions in such systems, one combines the electron-phonon matrix
elements, as expressed in Eq. (4.4), with the renormalized quantities obtained
from the SSCHA. In particular, the variation of the Kohn-Sham Hamiltonian with
respect to the ionic displacements is no longer evaluated at the ionic configuration
that minimizes the BOES, but rather at the average ionic positions in the SSCHA

free energy minimum. This is expressed as
[

∂ĤKS

∂uα
s (Tm)

]
R0

→
[

∂ĤKS

∂uα
s (Tm)

]
Req

in Eq.

(4.4). Furthermore, the harmonic polarization vectors and frequencies are sub-
stituted with those derived from the SSCHA. In this sense, the results obtained
using the SSCHA auxiliary dynamical matrices are similar to those derived from
the dynamical matrices based on the free energy Hessian. Although the differ-
ences between these two approaches are usually small, in certain cases they can
be significant. In such instances, the most accurate method is to calculate the
electron-phonon properties using the full spectral function, which is in fact the
most exact theoretical solution [84].
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Part II

Charge density wave
transitions in transition
metal dichalcogenides
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Transition Metal
Dichalcogenides

The family of layered two-dimensional transition metal dichalcogenides (TMDs)
is formed by compounds with the general chemical formula MX2, where M is a
transition metal and X a chalcogen: an element of the group 16 in the periodic
table, such as S, Se or Te. The position of transition metals and chalcogens in the
periodic table is indicated with red boxes in Fig. 4.1, with shaded areas specifying
those elements forming TMDs.

Figure 4.1: Periodic table highlighting transition metals and chalcogens, outlined
with red boxes. Shaded regions highlight specific transition metals (M) and chalco-
gens (X) known to form MX2 compounds, that is to say, TMDs.
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TMDs are known to display a quasi-2D layered structure, in which electrical
and thermal transport phenomena take relevance along the layers. Each layer is
formed by a set of transition metal atoms sandwiched between two layers of chalco-
gen atoms. The atoms within each layer are held together through strong covalent
bonds, while the chalcogen atoms between adjacent layers interact through weak
van der Waals forces. This bonding structure makes these materials easy to exfoli-
ate into thin 2D layers [17]. Notably, monolayer TMDs can also be directly grown
by chemical means [85].

The arrangement of the covalently bonded chalcogen atoms around the central
transition metal atom, along with the stacking patterns of these layers, defines the
different crystalline structures of TMDs, known as polytypes. The most commonly
observed ones include the one-layer trigonal form (1T ), two-layer hexagonal form
(2H ) and three-layer rhombohedral form (3R). That is, the number indicates the
layers found within the unit cell, while the italicized letter denotes the symmetry
of the unit cell.

In TMDs, the interplay between strong electron-electron correlations aris-
ing from the d electrons of transition metals and the significant electron-phonon
interactions results in rich phase diagrams, exhibiting a wide range of ground
states such as CDWs [2], superconductivity [86] and excitonic instabilities [87, 88].
Among the collective electronic orderings, CDWs are particularly relevant because
they compete/coexist with superconductivity [89–92] in a similar fashion as in
high-temperature superconductors [4–8]. While the exact mechanism behind both
CDW and superconducting instabilities in TMDs is linked to electron-phonon in-
teractions, it is not yet fully understood [93–95]. In this sense, the relatively simple
crystalline structure of TMDs, with a small number of atoms per unit cell, makes
these materials excellent candidates to study the origin of CDW phases and even-
tually, their interaction with superconductivity. Precisely, the main objective of
this chapter is to analyse comprehensively the CDW transition in members of the
TMD family. By understanding the fundamental mechanisms in such straight-
forward systems we aim to provide insights that are relevant for exploring more
complex strongly correlated materials.

Regarding CDW phases in TMDs, previous works using high-resolution in-
elastic x-ray scattering (IXS) experiments have provided evidence that the cor-
responding transition in prototypical members like 2H -NbSe2 [96] and 1T -TiSe2
[97] is triggered by the softening of a low energy phonon mode with the CDW
wavevector qCDW, together with an eventual collapse at the critical temperature
TCDW. However, the correct theoretical characterization of this phenomenon based
on ab initio calculations is limited for all these TMDs undergoing CDW transitions
due to the breakdown of the standard harmonic approximation for ionic dynamics,
which cannot explain the stability of the high-temperature undistorted phases [94].
This hinders the study of both the origin and the melting of the charge modulated
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state1, complicating the comprehensive understanding of the CDW formation. Re-
cent studies have shown that in order to suppress the CDW phases in TMDs and
understand their phase diagrams large anharmonic effects are required, both in
the bulk and in the monolayer limit [76–78, 94]. Moreover, in the paradigmatic
case of 2H -NbSe2 ionic fluctuations play a more dominant role than electronic
ones in the melting of the CDW order [77]. In Chapter 5 we present a com-
prehensive study of the anharmonic lattice dynamics and the CDW transition of
1T -VSe2, which is a metallic member of the TMD family subject to strong debate.

Undoubtedly, the key factor that rekindled interest in layered TMDs at the
start of the century was the opportunity to explore how reducing dimensionality
[17] affects various physical phenomena. In this sense, there is an open debate
on how the dimension reduction affects CDWs. As a system shifts from 3D to
2D, Fermi surfaces are more likely to exhibit parallel regions that enhance nest-
ing. What is more, the electronic confinement in 2D systems limits their capacity
to screen Coulomb interactions, enhancing electron-phonon interactions. These 2
factors favour the emergence of CDW orders. On the contrary, stronger thermal
fluctuations in monolayers tend to destroy long-range orders. These competing
effects lead to a great variability of behaviours. For instance, in NbSe2, the CDW
temperature hardly changes between the bulk and monolayer forms [77, 91]. On
the contrary, the CDW is enhanced in the monolayer limit of the isoelectronic and
isostructural NbS2, whereas its bulk form does not exhibit charge ordering at all
[76]. In monolayer TiSe2 the critical temperature is also enhanced with respect to
that in the bulk single crystal [98] and strongly depends on the substrate material
[99].

In summary, there is no clear trend so far that, in general, allows the CDW
order in the single-layer limit to be deduced from its bulk counterpart. What is
clear is that experimental results in monolayers may be strongly conditioned by
environmental factors or the different substrates on which they are deposited [76–
78, 99]. Regarding the single-layer limit of VSe2, there is a big debate in literature
on which the CDW reconstruction is, as unrelated experiments have reported
different orders with varying transition temperatures [100–105]. In Chapter 6 a
purely theoretical analysis of the CDW transition in monolayer VSe2 is performed
by means of the SSCHA with the aim at clarifying the picture.

1The term “melting” is used here as a synonym for the transition to a phase with

greater entropy. Hence, “CDW melting” describes the transition from the CDW

state to a more uniform and symmetric high-temperature phase [78, 94].
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5

Bulk VSe2

5.1 Introduction

1T -VSe2, shown in Fig. 5.1, belongs to the series of layered TMDs that develop
a three-dimensional charge modulated state as a function of temperature. In par-
ticular, a complex incommensurate 3D-CDW with a propagation vector1 qCDW

= (0, 1/4, 0.3) emerges below TCDW = 110 K [106]. This onset temperature is
not only the lowest among the 1T -polytypes, e.g. TCDW[1T -TiSe2] ≈ 200 K, and
TCDW[1T -TaS2] = 550 K [3], but also resembles more closely those of selenium-
based 2H -polytypes: e.g. TCDW[2H -NbSe2] = 33 K and TCDW[2H -TaSe2] = 122
K. This stark contrast in transition temperatures raises intriguing questions about
the underlying mechanisms, suggesting that substantial fluctuation effects could
significantly influence the reduction of the mean-field transition temperature [107],
while the out-of-plane coupling between VSe2 layers, affected by weak van der
Waals interactions, may also play a role in this phenomenon [108]. Additionally,
in clear contrast to the pressure induced CDW suppression in similar TMDs such
as 1T -TiSe2 [90, 109] and 2H -NbSe2 [94], an enhancement of the charge mod-
ulated state has been reported in bulk VSe2 up to almost room temperature at
∼ 13 GPa [92]. Overall, 1T -VSe2 represents a unique and intriguing case within
TMDs in general and the family of 1T polytypes in particular. However, while
the electronic structure of bulk VSe2 and its interplay with the CDW formation
has been exhaustively analysed in the literature [110–113], the role of the lattice
dynamics in this context has not been explored in detail.

1In this chapter and the following one, wavevectors are expressed in reciprocal

lattice units, defined as: q = (h, k, l) = hb1 + kb2 + lb3, where b1, b2, and b3 are

the reciprocal lattice vectors.
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This chapter of the thesis provides a comprehensive characterization of the lat-
tice dynamics in 1T -VSe2, with special focus on the effects associated to the CDW
transition. In particular, we examine whether phonon softening effects occur as
the temperature decreases towards the transition, using ab initio non-perturbative
anharmonic phonon calculations, complemented by inelastic x-ray scattering ex-
perimental results from Dr. Santiago Blanco-Canosa’s group. We then analyse
and compare the potential mechanisms that could lead to the emergence of the
charge modulated state. Finally, we explore the pressure dependence of the CDW
transition and the anomalous enhancement of the charge modulated state with
increasing pressure. This comprehensive study aims to provide a clearer insight
into key processes driving the CDW formation in this material, which may also be
relevant in other members of the TMD family.

5.2 Crystal structure

At room temperature bulk VSe2 crystallizes in a 1T -phase (space group P 3̄m1)
shown in Fig. 5.1. This trigonal (T ) crystal system has an hexagonal crystal
lattice defined by the following set of primitive vectors in Cartesian coordinates:

a1 = a (1, 0, 0) , a2 = a

(
−1

2
,

√
3

2
, 0

)
, and a3 = c (0, 0, 1) .

The lattice vectors a1 and a2 define an in-plane hexagonal basis with a lattice
constant a, while the perpendicular lattice vector a3 determines the height c of the
unit cell. The experimental values of the lattice parameters at room temperature
are a = 3.35 Å and c = 6.09 Å.

(a) (b)

V Se

a

a

c

a1

a2
a3

a1

dvdW

dlayer

Figure 5.1: (a) Top and (b) side views of the crystal structure of 1T -VSe2. The
unit cell is indicated with black lines, being a the in-plane lattice constant and c its
height. Vanadium and selenium atoms are represented by grey and green spheres,
respectively. In total there are 3 atoms per unit cell.

66



5.2 Crystal structure

Regarding atomic positions, the 1T polytype of TMDs is characterized by hexag-
onal layers of transition metal atoms with chalcogen atoms covalently bonded
to them with an octahedral coordination. The described atomic arrangement is
shown in Fig. 5.1 and implies the equilibrium atomic positions listed in Table 5.1.
Therefore, the position of vanadium atoms is fixed by symmetry at the origin of
the primitive cells. Otherwise, the in-plane position of selenium atoms is as well
fixed by symmetry2, and they are only free to move along the ẑ axis. Particularly,
the classical relaxation of atomic coordinates with the cell parameters fixed to ex-
perimental values yields a relative distance of z ≃ 0.256 from the vanadium plane
to each covalently bonded selenium layer, which corresponds to a vertical distance
of dV-Se vert ≃ 1.559 Å. The total thickness of a single VSe2 layer is thus about
dlayer ≃ 3.118 Å. The remaining space between adjacent layers constitutes the van
der Waals gap, measuring around dvdW ≃ 2.972 Å.

Atom Wyckoff Position Crystal Coordinates

Vanadium (V) 1a (0, 0, 0)

Selenium (Se) 2d
(
1
3
, 2
3
, z
)
,
(
2
3
, 1
3
,−z

)
Table 5.1: Wyckoff positions and crystal coordinates of the three atoms in the unit
cell of 1T -VSe2.

The reciprocal lattice is determined by the following vectors:

b1 =
2π

a

(
1,

1√
3
, 0

)
, b2 =

2π

a

(
0,

2√
3
, 0

)
, and b3 =

2π

c
(0, 0, 1) .

Figure 5.2 shows the first Brillouin zone that corresponds to the defined recipro-
cal lattice together with the high-symmetry points. Table 5.2 lists the reciprocal
coordinates of the high-symmetry points that will be used in upcoming phonon
dispersion analyses.

The reciprocal coordinates of the CDW wavevector are qCDW = (0, 1/4, 0.3).
The inelastic x-ray scattering (IXS) energy-loss experiments performed by Dr.
Blanco-Canosa and his group scanned the low energy acoustic phonon branches
dispersion around the point (2.25, 0, 0.7). The symmetries of the space group
P 3̄m1 (164) establish that both points are equivalent to the critical wavevector.
This equivalence is derived from the following sequence of symmetry operations:
translation by -2b1, inversion symmetry, C3 rotational symmetry and translation
by +b3. On the contrary, for instance, the critical point qCDW = (0, 1/4, 0.3)
and (1/4, 0, 0.3) are not equivalent, which is a consequence of the fact that the
above mentioned space group does not have the sixfold rotational symmetry C6.

2The octahedral coordination implies that selenium atoms in the same unit cell

are not aligned in the top view as illustrated in Fig. 5.1(a), which is the reason why

this structure does not have 6 fold rotational symmetry.
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Figure 5.2: First Brillouin zone and the high-symmetry points of the space group
P 3̄m1 (164). Figure taken from Ref. [114].

High-symmetry point Reciprocal Coordinates

Γ (0, 0, 0)

M
(
1
2
, 0, 0

)
K

(
1
3
, 1
3
, 0
)

A
(
0, 0, 1

2

)
Table 5.2: High-symmetry points of space group P 3̄m1 (164) and their coordinates
with respect to the reciprocal lattice vectors.

5.3 Computational details

5.3.1 Anharmonic lattice dynamics: The SSCHA method

The SSCHA theory was applied to the normal state phase of 1T -VSe2 (P 3̄m1),
with the experimental lattice parameters at room temperature: a = b = 3.35 Å
and c = 6.09 Å. The Born-Oppenheimer energies and forces required for the SS-
CHA variational minimization were calculated in 4×4×3 sized supercells (almost
commensurate with qCDW) using plane-wave based DFT within the PBE approx-
imation [46] of the exchange-correlation functional, making use of the Quantum
Espresso package [61, 62]. We also performed calculations by including van der
Waals interactions using Grimme’s semiempirical approach [47] and within the
non-local functional developed by Dion et al. [48]. To avoid highly oscillating wave
functions near the nucleus, we used an ultrasoft pseudopotential that includes 4s2

3d3 valence electrons for V and a norm-conserving one with 4s2 4p4 electrons in
the valence for Se. We used a plane-wave energy cutoff of 40 Ry for the wave
functions and 450 Ry for the charge density. The BZ integrals were performed in
a 3×3×3 k-point grid in the supercell with a Methfessel-Paxton smearing [52] of
0.01 Ry.
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Both static and dynamical SSCHA calculations were performed in the so-

called bubble approximation [41], setting
(4)

Φ = 0 in Eqs. (3.46) and (3.56). The
static anharmonic spectra were obtained by interpolating the difference between
anharmonic and harmonic dynamical matrices along the corresponding q-point
path (see Appendix A for more details). The SSCHA dynamical self-energy was
obtained following the equation based on Fourier interpolation described in Eq.
(3.67), with a broadening of δse = 0.5 cm−1 and a 48×48×32 q-point grid. The
phonon frequencies and third-order force constants at these points were indeed
determined through Fourier interpolation from the 4×4×3 grid. The spectral
function was calculated within the “no mode-mixing” approximation, i.e. directly
from Eqs. (3.69) and (3.70), as well as in the “one-shot” approximation (Eqs.
(3.74)), and in the perturbative case (Eqs. (3.75)).

5.3.2 Harmonic phonons and the electron-phonon
interaction: DFPT calculations

Harmonic phonon frequencies and electron-phonon matrix elements of the normal
state phase of 1T -VSe2 were calculated within density functional perturbation
theory (DFPT) [115] as implemented in Quantum Espresso [61, 62]. DFPT
calculations were performed with the ions in the relaxed positions that maintain
the original symmetry of the structure, and with the same electronic calculation
parameters as in the SSCHA, but with a 24×24×16 k-point grid and a Methfessel-
Paxton smearing of 0.005 Ry for the BZ integrals. The election of these parameters
ensures that the frequency of the phonon mode driving the CDW transition (which
is expected to be one of the most pathological ones in terms of the Fermi surface
sampling) is converged, as shown in Fig. 5.3. In this figure, convergence is deter-
mined by observing a plateau in the phonon frequency as the k-point grid density
increases and the smearing decreases. This plateau indicates that further refine-
ment no longer affects the result, meaning the calculation has reached the k-grid
infinite and vanishing smearing limit, where the phonon frequency is well-sampled
across the Fermi surface. Harmonic phonon calculations were carried out both in
4×4×3 and 8×8×6 q-point grids. The electron-phonon linewidth is given by Eq.
(4.10), in which we use a 48×48×32 k-point grid and a Gaussian broadening of
0.003 Ry for the Dirac deltas. These parameters are chosen to ensure the conver-
gence of the linewidth of the CDW driving mode, following a convergence criterion
similar to that used in the harmonic phonon calculations.
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Figure 5.3: k-point grid and smearing optimization curve of the CDW driving mode.
For a 24×24×16 k-point grid, a plateau shape appears at the smallest smearing val-
ues, so that harmonic phonon calculations are considered converged with a smearing
width of 0.005 Ry.

5.4 Electronic properties

In this section, we summarize the current understanding of the electronic structure
of the high-symmetry phase of 1T -VSe2. We focus on analysing the Fermi surface,
as it will be crucial when determining whether nesting is the driving mechanism
behind the CDW transition. First, we summarize the angle-resolved photoemis-
sion (ARPES) experimental findings on the Fermi surface, and then we compare
these results with those from our theoretical calculations. Finally, we review ex-
periments in the literature that explore how the CDW modifies the Fermi surface.

From the electronic point of view, ARPES experiments report that the Fermi
surface of 1T -VSe2 consists of an intense feature at Γ and ellipsoidal electron pock-
ets centered at M(L) points that extend along the kz direction of the BZ exhibiting
a warped dispersion [110]. These large ellipsoids, which come from the 3d orbitals
of vanadium atoms, present in-plane parallel sections that theoretically should be
susceptible to electronic instabilities [111]. Indeed, qCDW connects these portions
of the Fermi surface, so that photoemission experiments usually infer that the
CDW in 1T -VSe2 follows the nesting scenario. The 3D nature of the CDW is
consequently attributed to the 3D warping of the Fermi surface [112].

Figure 5.4 displays the theoretically calculated Fermi surface. The top view in
panel (a) illustrates that the Fermi surface contains pockets centered around both
the K and M points. The side view in panel (b) emphasizes the three-dimensional
warping of the Fermi surface along the kz direction. In the top view of the kz =
0 plane displayed in panel (c), the surface reveals a single Fermi pocket at the K
point. Additionally, the features observed in ARPES experiments, specifically the
intense peak at Γ and the ellipsoidal electron pockets located near the M(L) points,
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are more accurately reproduced at -200 meV below the Fermi level, as shown in
panel (d).

Figure 5.4: (a) Top and (b) side view of the Fermi surface of 1T -VSe2. Fermi surface
in the kz = 0 plane at (c) the Fermi energy and (d) a constant energy cut at -200
meV. The colour scale indicates the relative Fermi velocity, ranging from blue (lower
velocity) to red (higher velocity).

Electronic transport experiments performed by Dr. Blanco-Canosa shown in
Fig. 5.5 provide an experimental evidence that VSe2 remains metallic after the
CDW transition. The transition to the CDW state can be identified by a slight in-
crease in the resistance (a tiny hump) at the critical temperature 110 K. This little
loss of carriers can be better appreciated as a kink in the temperature derivative.
In the same vein, photoemission experiments report that the CDW transition in
1T -VSe2 causes the depletion of electronic states near the Fermi level below the
critical temperature, but with no traces of total gap openings [110, 111]. Remark-
ably, this partial suppression of the electronic density of states at the Fermi Energy
level, known as pseudogap opening, suffices to prevent the emergence of ferromag-
netism in this itinerant electron system [116]. Definitely, from an electronic point
of view, the transition from 1T -VSe2 to the charge modulated state is not the
prototypical Peierls transition from the metallic high-temperature state to the low
temperature insulating one.
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Figure 5.5: Electronic transport experiments in the VSe2 single crystals, showing
the CDW transition at 110 K from the resistance as a function of temperature.

5.5 Characterization of the CDW transition

This section analyses theoretically the response of the lattice to the CDW forma-
tion by calculating the phonon spectrum of 1T -VSe2, the high-symmetry phase, as
the temperature lowers towards the transition. First, the temperature-independent
harmonic approximation is considered to find unstable modes in the phonon spec-
trum that could indicate potential structural instabilities towards the formation
of a low-symmetry phase. However, as the temperature dependence of phonons is
a purely anharmonic effect, this method will inevitably fail describing the lattice’s
response to the CDW emergence. Therefore, in the second part of this section, non-
perturbative anharmonic phonon calculations are performed to accurately capture
the temperature-dependent behaviour of the CDW mode. The latter theoretical
calculations are supported by experimental measurements performed by Dr. San-
tiago Blanco-Canosa by means of high-resolution x-ray scattering in the Argonne
National Laboratory (University of Chicago).

5.5.1 Harmonic phonon spectra

Harmonic dynamical matrices have been calculated within DFPT in a q-point
grid of 4× 4× 3. This grid includes the point q = (0, 1/4, 1/3), which is almost
commensurate with the CDW wavevector qCDW = (0, 1/4, 0.3). Therefore, to
optimize our computational calculations, we have considered that the propagation
vector of the CDW is commensurate: qCDW ≡ (0, 1/4, 1/3) instead of the exact
one. Throughout the rest of the chapter it will be proven that this simplification
does not affect significantly the accuracy of the theoretical results when compared
to experimental data.
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5.5 Characterization of the CDW transition

Fig. 5.6 shows the harmonic phonon curves obtained by the Fourier inter-
polation of the calculated dynamical matrices along two relevant q-point paths.
The first path, shown in the left panel, covers the Γ −M direction at a height of
qz = c/3; that is: (0, k, 1/3) with 0 < k < 1/2. In this way it goes through the
considered qCDW halfway. The second path, in the right panel, goes through the
high-symmetry points Γ−M−K− Γ−A.
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Figure 5.6: Harmonic phonon spectra along (0, k, 1/3) and Γ − M−K − Γ − A
paths. The black lines correspond to calculations including vdW interactions through
Grimme’s semiempirical approach, while red dashed lines indicate calculations that
do not consider vdW interactions. The points on the curves are part of the 4× 4× 3
q-point grid and therefore, exact DFPT calculations.

Harmonic phonon calculations in Fig. 5.6 show a sharp instability at qCDW

regardless of whether van der Waals (vdW) interactions have been included. That
is, the standard harmonic approximation is not able to explain the dynamical sta-
bility of 1T -VSe2, as it concludes that this high-temperature phase is dynamically
unstable towards a 4× 4× 3 CDW reconstruction in any case. Yet, the harmonic
spectra are affected by the inclusion of vdW interactions. Without vdW inter-
actions (red dashed lines) the lowest energy acoustic branch shows also phonon
softening effects towards an eventual collapse in the Γ−M and Γ−K paths. The
inclusion of van der Waals dispersion forces with the DFT-D2 method of Grimme
[47] (black lines) tends to stabilize the high-temperature phase. Specifically, while
the instability at qCDW still exists, the corresponding softening it is not as pro-
nounced. What is more, the softening of the lowest energy acoustic branch in the
Γ−M and Γ−K paths is not so evident.

By performing DFPT calculations in a denser 8 × 8 × 6 q-point grid it can
be checked whether the hints of phonon softening effects in the Γ−M and Γ−K
paths are real results within the harmonic approximation or just numerical arte-
facts of the Fourier interpolation. Fig. 5.7 shows the harmonic phonon spectra
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interpolated from the DFPT calculations in the 8 × 8 × 6 q-point grid compared
to the previous results in a 4 × 4 × 3. The denser q-point grid corrects previ-
ous interpolation errors by localizing in momentum space the instability at the
CDW wavevector. Moreover, if vdW interactions are not considered in denser grid
calculations (grey dashed lines), the system shows two additional instabilities at
q1 ≃ 1/2ΓM and q2 ≃ 3/5ΓK. The inclusion of van der Waals dispersion forces
(blue lines) stabilizes both of them, but corroborates that phonon softening effects
in the Γ−M and Γ−K paths reported in the calculation in 4× 4× 3 q-point grid
are not interpolation errors. In the analysis of the CDW transition in bulk VSe2,
the softening of the latter phonon modes is not relevant according to experimental
evidence. However, we will revisit this point in the next chapter when we analyse
the monolayer limit.
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Figure 5.7: Harmonic phonon spectra along (0, k, 1/3) and Γ−M−K−Γ−A paths
for different q-point grids. Black (4 × 4 × 3) and blue (8 × 8 × 6) continuous lines
correspond to calculations including vdW interactions through Grimme’s semiem-
pirical approach, while grey dashed lines indicate 8× 8× 6 calculations that do not
consider vdW interactions. The points on the curves are part of the 8×8×6 q-point
grid and therefore, exact DFPT calculations.

All in all, harmonic phonon calculations in this section do not agree with
the experimental evidence above the CDW transition temperature, as they cannot
explain the stability of the high-temperature undistorted phase. These findings
highlight the need of incorporating non-perturbative anharmonic effects to ac-
curately understand the phase diagrams of TMDs undergoing CDW transitions.
Nevertheless, the harmonic calculations have brought into focus that weak van der
Waals interactions between neighbouring VSe2 layers seem to play an important
role in this compound. As we will see in the next section, it will be essential to
consider them in the anharmonic calculations.
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5.5 Characterization of the CDW transition

5.5.2 Anharmonic phonon spectra

The transition to the charge modulated state can be correctly characterized the-
oretically through the temperature dependent anharmonic phonons in the static
limit. These are obtained by diagonalizing the free energy Hessian at the minimum
of the free energy. This minimum was reached within the SSCHA ab initio with
and without considering vdW corrections at all the temperatures at which the IXS
experiments were carried out.

We first center the analysis on the study of the temperature dependence of
the frequency of the softest acoustic mode ω1(qCDW). Figure 5.8 compares the ex-
perimental data with the SSCHA calculations using different exchange-correlation
functionals for the vdW interactions. Experimental results (black squares) indi-
cate that the CDW transition in 1T -VSe2 is characterized by the softening of this
phonon mode, which eventually collapses exactly at the critical temperature. The
experimental data for the phonon collapse fits well with the square-root power law
predicted by mean-field theory [117], just like in 2H -NbSe2 [96], so that fluctua-
tion corrections are unnecessary to explain the low critical temperature observed
in 1T -VSe2 [107]. Regarding theoretical results, when the SSCHA anharmonic
calculation is performed without including the van der Waals corrections (green
squares), the softest acoustic mode at qCDW remains unstable in all the temper-
ature range where the experiments were carried out, even at room temperature.
Remarkably, the inclusion of vdW forces in the SSCHA variational minimization
melts the CDW below room temperature.

Experimental
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)  
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Figure 5.8: Experimental temperature dependence of the frequency of the softest
mode, ω1(qCDW), together with the theoretical anharmonic frequencies obtained
with and without vdW corrections. The shaded area defines the experimental CDW
region. Dashed lines are guides to the eye.
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The physical reason behind the CDW melting with increasing temperature is the
enhancement of thermal ionic fluctuations, which sample the anharmonic part of
the potential. Accurately describing the anharmonic free energy landscape in the
case of 1T -VSe2 involves including the weak vdW interactions (around ∼1 mRy/a0
for a typical SSCHA supercell calculation), in stark contrast with the rest of the
TMDs previously studied through the SSCHA [76–78]. This particular requirement
can be related to the three-dimensional nature of the CDW, as the soft phonon
mode driving the transition exhibits out-of-plane displacements of selenium atoms
that modulate the interlayer distance. Definitely, anharmonicity stabilizes the 1T
structure of VSe2 at high temperatures thanks to the crucial role played by the
weak van der Waals forces.

The calculated CDW critical temperature strongly depends on how vdW in-
teractions are included in the ab initio calculation of energies and forces. The best
agreement with the experimental result is obtained with the DFT-D2 method of
Grimme [47], plotted with blue squares in Fig. 5.8, which simply adds a semiem-
pirical dispersion correction on top of a converged Kohn-Sham energy. This theo-
retical result predicts that the soft mode frequency vanishes between 75 and 110
K, in good agreement with the experimental value of TCDW = 110 K. The, a pri-
ori, more sophisticated vdW-DF functional proposed by Dion et al. [48], which is
truly non-local, is plotted with red squares and succeeds in melting the CDW, but
overestimates the critical temperature by approximately 80 K.

Figure 5.9 displays the experimental IXS spectra of the low-energy acoustic
phonons at 300 K and 150 K, together with anharmonic calculations that include
vdW interactions through Grimme’s semiempirical approach. The scanned di-
rection (2+h, 0, 0.7) is practically equivalent by space-group symmetry to the
previously analysed (0, k, 1/3). Optical phonons, which will be analysed in the
next section, appear above 17 meV and do not overlap with the acoustic branches.
At both temperatures the spectrum consists of 2 phonon branches, labeled as ω1

and ω2, which belong to the same irreducible representation and, thus, do not
cross. The third acoustic branch (plotted with grey lines) is silent in this direction
of the reciprocal space in IXS experiments since the corresponding polarization
vectors are perpendicular to the scanned wavevectors.

The theoretical dispersions nicely match the experimental data from the zone
center to the border of the BZ. Namely, at room temperature anharmonic phonon
calculations confirm the experimental evidence that both ω1 and ω2 branches de-
velop a dip at h ≈ 0.25 as shown in Fig. 5.9 (a). When lowering the temperature
to 150 K, the dispersion of the branch ω2 barely changes. Contrarily, the branch ω1

lowers its energy specially around qCDW, softening from room temperature down
to 110 K as previously reported in Fig. 5.8. At 150 K the softening extends over
a wide region of momentum space 0.2 < h < 0.3 (0.2 Å−1), which is also well
captured in the anharmonic phonon calculations. The sizeable momentum space
range of the phonon softening is considered an experimental indicator for electron-
phonon interaction driven CDW transitions [96, 97], given that it contrasts with
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Figure 5.9: Experimental (points) and calculated (solid lines) dispersions of the
low-energy acoustic phonons along the (2+h, 0, 0.7) direction at (a) 300 K and
(b) 150 K.

the sharp dips associated with the electronic instabilities induced by Fermi surface
nesting [118]. The momentum space spread of the phonon softening in ω1 branch
is revisited and thoroughly analysed in Section 5.7, which is devoted to analyse
the origin of the CDW transition.

5.6 Lattice dynamical properties

While anharmonic phonon frequencies in the last section have been obtained from
the diagonalization of the free energy Hessian, actual physical phonons measured in
experiments are related to peaks in the spectral function that includes anharmonic
effects. The positions of the phonon peaks coincide with the eigenvalues of the free
energy Hessian when the spectral function is calculated using the static value of
the full dynamical SSCHA self-energy, Π(ω = 0), as described in Eqs. (3.65)–
(3.66). This approximation of neglecting the dynamic effects in the anharmonic
self-energy is valid for low-energy modes (where ω → 0), such as the CDW driving
mode, because the corresponding value Π(ω → 0) is practically equal to the static
one Π(ω = 0). Therefore, the static analysis based on the free energy Hessian
performed in the last section accurately characterizes the CDW transition. For
high-energy phonon modes, the static limit fails due to significant dynamic effects,
making it mandatory to calculate the anharmonic spectral function to capture
them accurately.

In this section we present a theoretical analysis of the anharmonic spectral
functions σ(q, ω) at two relevant temperatures: the experimental critical tem-
perature (110 K) and room temperature. In these calculations we include vdW
interactions within Grimme’s semiempirical approach, since the static calculations
of the previous section have shown that it is the functional that best reproduces
the physics of 1T -VSe2.
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First, we check the adequacy of the approximations introduced in Section 3.3.5
by calculating the anharmonic phonon spectral function at the critical wavevector
σ(qCDW , ω) and 110 K. As shown in Fig. 5.10 (a), not all modes have a Lorentzian
profile. For instance, the highest energy mode has a clear satellite peak, indicat-
ing that anharmonicity makes the quasiparticle picture questionable for this mode
and, consequently, the Lorentzian approximations do not work well. This result
emphasizes that anharmonicity is not only crucial to stabilize the lowest energy
mode at qCDW as seen in the previous section, it also impacts high-energy opti-
cal modes considerably in their spectral properties. Nevertheless, the spectrum
obtained within the Lorentzian “one-shot” approximation, plotted with blue solid
lines, yields a reasonable result for most modes. In particular, for the lowest en-
ergy branch, the one driving the CDW transition, the result is not identical to the
non-Lorentzian “no-mode mixing” approximation, but in both cases the positions
coincide. The spectrum obtained in the perturbative limit, plotted with dashed
yellow lines, is generally in agreement with the “one-shot” calculation. However,
the frequency attributed to the phonon that drives the CDW transition is blue
shifted in the latter case. This means the SSCHA self-energy cannot be consid-
ered small for the softened mode, and the perturbative approach fails.

Fig. 5.10 (c) still shows the spectral function at the critical wavevector, al-
beit now at room temperature. Increasing temperature flattens and broadens all
phonon peaks due to enhanced scattering between phonons, hindering their experi-
mental detection. Interestingly, the soft mode is strongly blue shifted with temper-
ature up to ∼ 5 meV at 300 K as expected from the static calculations presented in
the previous section, while the other two acoustic modes become quasi-degenerate.

In Fig. 5.10 (b) and (d) the anharmonic phonon spectral function is presented
at the Γ point for both 110 K and 300 K. For low-energy excitations the phonon
quasiparticle picture is rather well defined. However, the huge phonon satellite
ascribed to the highest-energy optical mode confirms this mode is strongly anhar-
monic throughout the whole BZ despite its high energy and that anharmonicity
removes its quasiparticle nature. In fact, the splitting of this peak in two can lead
to confusions during experiments. The highest energy mode is infrared (IR) and
not Raman active, so that it might be difficult to observe the peak splitting with
either of these techniques due to the large reflectivity of metals in the IR.
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Figure 5.10: Anharmonic phonon spectral functions at 110 K at (a) qCDW = (0, 1/4,
1/3) and (b) Γ points, and at room temperature at (c) qCDW and (d) Γ points. The
orange filled area indicates the result obtained with the “no mode-mixing” approxi-
mation in Eq. (3.69). The blue solid line is the spectrum calculated in the “one-shot”
Lorentzian approximation in Eqs. (3.74). The center of these Lorentzians, speci-
fied with vertical blue lines in the grey shaded area below, indicate the anharmonic
phonon frequencies in the quasiparticle picture. The dashed yellow line is the spec-
trum in the perturbative limit (see Eqs. (3.75)).
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Figure 5.11: Anharmonic phonon spectral functions at 110 K and 300 K along (0,
k, 1/3) and Γ −M−K − Γ − A paths. The dashed white lines are the anharmonic
phonon frequencies extracted from the center of the Lorentzians in the “one-shot”
approximation, while red dashed lines are the harmonic phonon spectra interpolated
from DFPT calculations in a 4× 4× 3 q-point grid.

In Fig. 5.11 the full anharmonic phonon spectrum is plotted both at 110 K
and 300 K and is compared to calculations using the harmonic approximation. The
figure clearly illustrates that the main anharmonic renormalization of the phonon
frequency concentrates around qCDW. The frequency of the CDW driving ω1 mode,
unstable in the harmonic approximation, is strongly temperature dependent as
reflected by the spectral function. It is interesting to remark that the lowest energy
acoustic modes halfway between Γ-M and Γ-K, which display softening effects in
the harmonic approximation, are slightly stabilized by anharmonic effects, but
with a weak temperature dependence. The full spectral function reveals that the
highest energy optical mode shows a clear double peak structure in most of the BZ
at low and high temperatures and the highest energy longitudinal acoustic mode
exhibits a satellite peak close to A at 300 K.
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5.7 Origin of the CDW

Having established that the CDW formation is characterized by the collapse of a
low-energy acoustic phonon mode, in this section we analyse which is the mech-
anism causing the phonon softening of the CDW mode ω1(qCDW). Being TMDs
systems with dimensions higher than 1D or quasi-1D, Peierls’ initial proposal of
the Fermi surface nesting as the CDW driving mechanism probably does not hold
[16]. In fact, IXS and theoretical calculations already highlighted the importance
of a highly momentum dependent electron-phonon interaction in the formation of
the CDW in similar compounds of the TMD family, such as 2H -NbSe2 [96, 119]
and 1T -TiSe2 [93, 97]. Regarding 1T -VSe2, the critical role of the momentum de-
pendence of the electron-phonon interaction was already pointed out in Ref. [120]
by means of quantitative models. However, ARPES experiments have endorsed to
a pure electronic mechanism the formation of the charge modulated state, consid-
ering that qCDW connects many portions of the Fermi surface [112].

In this section we analyse in detail the role of the Fermi surface nesting and
the electron-phonon interaction in the formation of the charge modulated state in
1T -VSe2. Since the momentum localization of the soft phonon mode is a presumed
hint of the nesting mechanism easily accessible in IXS experiments [96, 97, 118],
we first analyse experimentally and theoretically the momentum spread of the
phonon softening and the electron-phonon interaction linewidth around qCDW.
We then corroborate our results by comparing the nesting and the electron-phonon
interaction scenarios in a purely theoretical, yet more rigorous, analysis.

5.7.1 Anisotropic electron-phonon interaction

Since inelastic x-ray phonon measurements trying to elucidate the CDW origin
base their conclusions on the width of the BZ range in which the phonon branch is
damped [96, 97, 118], we consider useful to provide a deeper analysis by extending
both the experimental and theoretical results to the perpendicular directions (h,
k, l) around qCDW.

In Fig. 5.12, we compare the frequencies and total linewidths of the soft
phonon branch at 150 K, probing the perpendicular directions around qCDW. The
total linewidths include electron-phonon and anharmonic contributions. Figures
5.12 (a-c) display the momentum dependence of the phonon softening along the
three directions. Once again, theoretical calculations considering anharmonicity
within the SSCHA, represented by blue lines, nicely match the experimental data.
The softening of the phonon modes is accompanied by an enhancement in their
linewidth as shown in Figures 5.12 (d-f). The experimental phonon broadening
reported in the latter Figures is also well captured by the total linewidth obtained
theoretically, drawn with black lines.
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Figure 5.12: (a-c) Experimental (points) and calculated (solid lines) dispersions of
the soft mode at 150 K around qCDW; probing the perpendicular directions (h, k,
l). (d-f) Experimental (points) and theoretical (solid lines) linewidth in the same
momentum range. The calculated linewidth (black line) includes the contribution of
the electron-phonon interaction (red shaded line) and anharmonicity (blue shaded
line).

In finer detail, we find that the region of momenta that undergoes a phonon
softening (linewidth broadening) is anisotropic in momentum space, both experi-
mentally and theoretically. This anisotropic behaviour is also present at the har-
monic level (red lines in Fig. 5.12 (a-c)) and in the electron-phonon linewidths (red
shaded lines in Fig. 5.12 (d-f)). In both of the latter cases the observed anisotropies
are strongly correlated through the static limit of the electron-phonon self-energy
for phonons, as described in Eq. (4.8). This correlation arises because the real
part of the self-energy affects the harmonic phonon behaviour, while the imaginary
part determines the electron-phonon linewidth. Since the electron-phonon matrix
elements influence the mentioned phonon self-energy, these calculations capture
effectively the anisotropy of the electron-phonon matrix elements in momentum
space, and nesting in a lower extent.

In fact, considering the Fermi surface nesting scenario as the driving force of
the CDW formation, naively one would expect a narrow and therefore isotropic
softening (broadening) in momentum space. This is in clear contrast with the data
reported in Fig. 5.12. Moreover, the anisotropic behaviour we report highlights
the weakness of relying on the width of the BZ range where the phonon branch
is damped to propose nesting as the origin of the CDW. Precisely, this kind of
arguments may be conditioned by the direction in which the scan is performed, at
least in the case of 1T -VSe2. Still, the fact that the anisotropy is accentuated in
the out-of-plane l direction, suggests that it may be related to the quasi-2D na-
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5.7 Origin of the CDW

ture of the compound and, thus, it is reasonable to think that the electron-phonon
interaction and anharmonic effects are also anisotropic in other compounds of the
TMD family and in other strongly correlated electron systems. Regardless of any
potential generality, our results allow us to indicate that a pure nesting scenario
for 1T -VSe2 cannot solely act as the driving force, and clearly support previous
claims that point to the electron-phonon coupling as the trigger for the CDW for-
mation.

5.7.2 Role of FSN and electron-phonon interaction

In this subsection, we move beyond the heuristic argument of electron-phonon
anisotropy as the primary reason for discarding the nesting scenario. For this
purpose, we conduct a detailed theoretical analysis to compare how the nesting
and electron-phonon mechanisms influence the CDW formation. As a first step, we
calculate the nesting function ζ(q) to better understand the electronic structure
of VSe2 and its impact on lattice dynamics:

ζ(q) =
1

Nk

∑
nn′

1BZ∑
k

δ(ϵn′k+q)δ(ϵnk) . (5.1)

The nesting function probes the Fermi surface by peaking at nesting q wavevectors,
revealing whether the CDW could emerge from an electronic instability. In Fig.
5.13 (a-c) we plot the nesting function around the perpendicular directions (h, k,
l) of qCDW. The nesting function peaks just at the CDW vector for h and k in-
plane scans, and nearby for the out-of-plane l scan, so that qCDW coincides with a
nested region of the Fermi surface, in agreement with ARPES experiments in Ref.
[112]. However, it must be remarked that a peak at qCDW in the nesting function
is not sufficient condition to determine whether the origin of the CDW is purely
electronic. In order to reach a firm conclusion, the nesting function results have
to be compared with the electron-phonon interaction scenario.
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Figure 5.13: Nesting function around the perpendicular directions (h, k, l) of qCDW.

83



Chapter 5. Bulk VSe2

To evaluate their respective impacts on the CDW formation, we plot in Fig.
5.14 the ratio between the electron-phonon linewidth contribution to the total
linewidth and the nesting function for each acoustic phonon branch. In this way
we assess directly the momentum and mode dependence of the electron–phonon
coupling matrix elements following Eq. (4.4): if the electron-phonon matrix ele-
ments were constant, the ratio should be flat. Clearly this is not the case in Fig.
5.14, since the ratios suggest that the electron-phonon matrix elements are strongly
mode and momentum dependent. In fact, each ratio for the softest branch ω1 has
a very similar shape to the electron-phonon linewidth itself, which was plotted in
red shaded lines in Fig. 5.12 (d-f). This is a signature that the electron-phonon
matrix elements depend more strongly on momentum than the nesting function
itself. Remarkably, the scan alongside the out-of-plane direction shows that while
the nesting function favours a commensurate 4×4×3 CDW reconstruction, it is the
electron-phonon mechanism that leads to the incommensurate CDW reconstruc-
tion reported in our experiments with l ≃ 0.7. In conclusion, the electron-phonon
coupling is the main driving force of the CDW transition in 1T -VSe2 despite the
presence of nesting at qCDW, whose role is rather to be a factor enhancing the
electron-phonon interaction than the main mechanism itself.
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Figure 5.14: Ratio between the electron-phonon linewidth (full width at half maxi-
mum) and the nesting function around the perpendicular directions (h, k, l) of qCDW.

Last but not least, it is important to highlight that the theoretical analysis
of this section has focused on the imaginary parts of both the electronic suscep-
tibility (the nesting function) and the electron-phonon self-energy. However, if
the CDW instability is driven by any of these mechanisms, it is the real part of
these quantities that must diverge, as this relates directly to the renormalization of
phonon frequencies. In any case, calculating the ratio between the imaginary parts
has allowed us to confirm the anisotropic behaviour of the electron-phonon matrix
elements. And in fact, this anisotropy is also evident in the harmonic phonons,
which are influenced by the real part of the static limit of the electron-phonon
self-energy, as discussed in the previous subsection. This correlation confirms that
the divergence observed in the imaginary part of the electron-phonon self-energy
also manifests in the corresponding real part, further emphasizing the critical role
of electron-phonon interactions in driving the CDW transition.
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5.8 Effect of pressure on the CDW

5.8 Effect of pressure on the CDW

Having comprehensively described the lattice dynamics and CDW transition of 1T -
VSe2, we finally analyse the effect of pressure on the charge modulated state. The
trend observed so far in other members of the TMD family is that pressure causes
the suppression of the CDW. 2H -NbSe2 is a paradigmatic case of this behaviour,
in which the CDW suppression is related to the strong anharmonic character of
the lattice potential, which stabilizes the high temperature phase under pressure
[94]. TMDs apart, pressure induced CDW destructions have also been reported in
correlated materials such as high-Tc cuprates [121] and kagome metals [122, 123].

In clear contrast to the typical behaviour observed in systems hosting CDWs,
an enhancement of the CDW order in bulk VSe2 up to ∼ 290 K (almost room
temperature) at ∼ 13 GPa has been recently observed in transport experiments
[92]. At this pressure VSe2 undergoes a first order phase transition to a new
C2/m phase, which destroys the charge order and allows superconductivity to
emerge below a critical temperature of Tc ∼ 4 K. High-pressure Raman [124], x-
ray diffraction, and spectroscopic experiments [125] confirmed that the transition
to the C2/m phase starts at room temperature. The P − T phase diagram of
1T -VSe2 is shown in Fig. 5.15, which is a figure adapted from Ref. [92] with the
aim of clarifying the scenario. All in all, seen the anomalous behaviour shown by
the CDW phase of 1T -VSe2 under pressure, in this section we finish our survey
by studying both experimentally and theoretically the evolution of the soft mode
with pressure at room temperature. The difficulties encountered in lowering the
temperature during the experiments forced us to operate at this temperature, even
tough it is actually slightly above the range where the CDW enhancement is ob-
served.
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Figure 5.15: Experimental P − T phase diagram of 1T -VSe2. Theoretical critical
temperatures and pressures, obtained considering anharmonicity within the SSCHA
using different vdW corrections, are included as squares. Dashed lines are guides to
the eye. Figure adapted from Ref. [92].
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For this purpose, SSCHA anharmonic calculations have been performed at
room temperature for some pressure values inside the experimental range, making
use of the experimental lattice parameters obtained through high-pressure x-ray
powder diffraction experiments [110] and shown in Fig. 5.16. The application of
pressure leads to a decrease of the lattice parameters. It is noteworthy that the
reduction of the interlayer distance c lowers the out-of-plane vdW interactions,
which have proven to be essential for melting the CDW state under temperature.
Consequently the choice of exchange-correlation functional in the SSCHA calcula-
tions under pressure has to be performed carefully.
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Figure 5.16: Experimental pressure dependence of the lattice parameters a and c,
along with the unit cell volume, at room temperature.

Before entering into the debate about which functional best resembles our
system under pressure, let us analyse the experimental phonon results obtained by
means of high-pressure IXS. These are shown in Fig. 5.17 with black symbols. In
this case the pressure dependence of the two visible branches ω1 and ω2 at qCDW is
shown. The frequency of the ω2(qCDW) mode in the upper panel has the expected
behaviour under pressure, exhibiting an increase attributed to the stiffening of the
lattice. Specifically, the frequency shows a linear grow (∼ 0.3 meV/GPa) up to 13
GPa. In contrast, the experimental frequency of the soft mode ω1(qCDW) remains
pressure independent up to 10 GPa as shown in the bottom panel of Fig. 5.17,
without collapsing on approaching the high-pressure phase, but softens ∼10% be-
tween 10 and 13 GPa. The distinct behaviour of the CDW driving phonon mode
ω1(qCDW) with temperature and pressure demonstrates that the measured phase
transitions are fundamentally different.
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panel) branches at qCDW at room temperature, together with the theoretical an-
harmonic frequencies obtained with and without vdW corrections. The shaded area
defines the CDW region. Dashed lines are guides to the eye.

The theoretical phonon frequencies calculated with different exchange-correla-
tion functionals are also presented in Fig. 5.17. While all functionals yield accurate
trends and frequencies for the ω2 phonon branch, that is not the case regarding
the soft mode ω1(qCDW). GGA-PBE wrongly predicts that, at 300 K, the system
stays in the CDW phase for all pressures. Therefore, out-of-plane vdW interac-
tions are still relevant when melting the charge modulated phase, even though
they are expected to be quenched with increasing pressure. In fact, the non-local
vdW exchange-correlation functional captures the CDW transition under pressure
as the ω1 phonon at qCDW softens with increasing pressure, indicating that this
functional correctly describes the increase of the CDW critical temperature with
pressure. However, it underestimates the transition pressure to the new phase, in
agreement with the fact that it overestimates at 0 GPa the CDW critical temper-
ature, as indicated by red dashed lines in Fig 5.15. The semiempirical approach
yields a phonon frequency ω1 that increases with pressure, the opposite to the
expected behaviour and the experimentally observed trend, even if the absolute
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Chapter 5. Bulk VSe2

values obtained with this approach yield the closest frequencies to the experimen-
tal ones.

The behaviour of the frequency of the soft mode with respect the choice of
functionals resembles the situation in the monolayer limit analysed in the next
chapter [126], in which the inclusion of the non-local vdW interactions in the
exchange-correlation functional will be mandatory to obtain a good description
of the transition to the CDW phase. The reason is that, in the bulk case with-
out pressure, although Grimme’s semiempirical approach yields the best results,
it introduces spurious intralayer interactions by applying a similar correction for
vdW interactions between chalcogen atoms in adjacent layers and within the same
layer. This oversimplifies the treatment of intralayer interactions as the screening
effects from the transition metal are neglected. Thus, under pressure, these un-
desirable intralayer effects begin to dominate compared to the interlayer effects,
which are increasingly quenched. Therefore, to accurately describe the transition
to the CDW phase under pressure, it is crucial to adopt an approach that prop-
erly accounts for non-local interactions, as Grimme’s method is insufficient in this
context.

To sum up, high-pressure IXS experiments at room temperature show that the
soft mode ω1(qCDW) remains nearly constant under pressure up to 13 GPa, with
only a slight softening before the transition to the high-pressure monoclinic C2/m
phase. Regarding the corresponding theoretical calculations, the results obtained
with the non-local vdW exchange-correlation functional show the increase of the
CDW critical temperature with pressure reported in previous experiments, despite
the fact that the simulated CDW transition differs from the one reported in the
experiments. In conclusion, theoretical results indicate that the complexity of
lowering the temperature in the experiments has prevented us from observing
experimentally how the CDW phase emerged under pressure.

5.9 Conclusions and outlook

In this chapter the CDW transition of 1T -VSe2 has been comprehensively anal-
ysed. Non-perturbative anharmonic phonon calculations in conjunction with high-
resolution IXS experiments have provided the first direct evidence that the CDW
transition in this compound is driven by the collapse of a low-energy acoustic
phonon mode with qCDW = (0, 1/4, 0.3) at TCDW = 110 K. This softening be-
haviour has also been reported in some similar TMD compounds like 2H -NbSe2
[96] and 1T -TiSe2 [97].

The theoretical analysis has highlighted that anharmonic effects play a cru-
cial role in the collapse of the phonon mode driving the CDW transition. Phonon
spectra show substantial changes when anharmonicity is considered, and, in fact,
these anharmonic effects are responsible for stabilizing the high-symmetry phase
of VSe2 at high temperatures. In the same way as in other TMDs like 2H -NbSe2
[77], it is not necessary to consider the electronic entropy in the formalism to
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achieve anharmonic results comparable to experimental findings. However, in no-
table contrast to other TMDs previously investigated using the SSCHA [76–78],
the inclusion of weak vdW interactions between neighbouring VSe2 layers is vital
to melt the CDW. In fact, anharmonic calculations are only comparable to exper-
imental results if vdW corrections are considered. The particular importance of
vdW forces on 1T -VSe2 could be understood through the out-of-plane nature of
the CDW. In fact, this explains in some way why the CDW critical temperature is
enhanced in monolayer VSe2 [100–105], in which evidently interlayer interactions
are absent. Following the same logic, for the cases in which the CDW has an
in-plane nature, it is expected the bulk and monolayer critical temperatures to
be rather similar. Precisely, this is what happens in the paradigmatic member of
TMDs family 2H -NbSe2 [77, 91]. The controversial CDW transition in monolayer
VSe2 deserves its own research line so that the next chapter is entirely devoted to
its analysis.

The CDW transition in 1T -VSe2 is primarily driven by the electron-phonon
interaction, rather than pure Fermi surface nesting. While our nesting function
calculations reveal a Fermi surface nested by qCDW, consistent with ARPES exper-
iments, further calculations indicate that nesting alone cannot explain the CDW
formation [112]. The wide and anisotropic phonon softening in momentum space,
the strong momentum and mode-dependent electron-phonon linewidth peaking at
the CDW wavevector, and the weaker wavevector dependence of the nesting func-
tion all point to electron-phonon coupling as the dominant mechanism. Recent
ARPES experiments have observed kinks in the dispersion of electronic bands
near the Fermi energy, providing additional experimental confirmation of a strong
electron-phonon coupling in this compound [113]. In conclusion, the electron-
phonon interaction is the main driving force of the CDW transition in 1T -VSe2
despite the presence of nesting at the CDW wavevector, whose role is rather to be
a factor intensifying the electron-phonon matrix elements rather than being the
principal mechanism itself.

Finally, the effect of pressure on the charge modulated state has been analy-
sed. Unlike the suppression of CDWs under pressure observed in similar TMDs,
transport experiments on bulk VSe2 report that the charge modulated phase ac-
tually enhances up to nearly room temperature. Our theoretical anharmonic re-
sults obtained with non-local vdW exchange-correlation functional support the
enhancement of the CDW phase with pressure. This suggests that accounting
for long-range vdW interactions remains essential for melting the CDW and ac-
curately describing the transition, even when the interlayer distance is reduced.
On the contrary, the high-pressure transition observed in the IXS experiments at
room temperature is better described by a first-order phase transition. The P −T
phase diagram in Fig. 5.15 shows that the enhancement of the CDW phase in bulk
VSe2 is up to ∼ 290 K, close to room temperature but still slightly below it. This
suggests that the complexity of lowering the temperature in the experiments may
have prevented the observation of the CDW phase’s emergence under pressure,
while the first-order phase transition to the C2/m phase was probably measured
instead.
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6

Monolayer VSe2

6.1 Introduction

In Chapter 5 both inelastic x-ray scattering experiments and non-perturbative an-
harmonic phonon calculations have provided evidence that the CDW transition in
bulk VSe2 is driven by the collapse of a low-energy acoustic mode. In the monolayer
limit the CDW transition may also be characterized by similar phonon softening ef-
fects, but a less significant influence of van der Waals interactions can be expected.

The main problem in the monolayer of VSe2 is the lack of consensus on which
the CDW reconstruction is, as unrelated experiments have reported distinct orders
with varying transition temperatures. A 4 × 4 order was observed in VSe2 films
grown on bilayer graphene on top of SiC and on highly oriented pyrolytic graphite
(HOPG), with a TCDW of ∼ 140± 5 K and a lattice parameter of a = 3.31± 0.05
Å[100]. On the contrary, a

√
3×

√
7 modulation has been observed in VSe2 sam-

ples grown on several substrates by molecular beam epitaxy by different groups,
with a consistent TCDW = 220 K [101, 103]. Some other orders have also been
reported: a combination of 2 ×

√
3 and

√
3 ×

√
7 with a TCDW ∼ 135 K [102,

105], and a 4× 1 modulation with TCDW ∼ 350 K [102, 104]. These experimental
contradictions point to the presence of different competing CDW orders, which
can lead to different low-temperature phases depending on the substrate.

In fact, theoretical studies in the literature have already remarked the critical
role of the substrate strain in the phase diagram of monolayer VSe2. In particular,
harmonic phonon calculations in the high temperature state have described the
competition of different CDW orders as a function of strain [127]. However the
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range of the simulated strain values1 is not an entirely realistic representation of the
experimentally reported lattice parameter a = 3.31± 0.05 Å. Moreover, harmonic
calculations cannot explain that above TCDW the 1T phase is the ground state, just
like analysed in Chapter 5 for bulk 1T -VSe2. Once again, only non-perturbative
anharmonic calculations can provide a reliable analysis of the dynamical stability
of this compound, as they predict correctly the transition temperature for each
lattice parameter.

In this chapter, we analyse the strain effects on the CDW orders in monolayer
VSe2 by means of non-perturbative anharmonic phonon calculations. Since sam-
ples of at least 60µm thickness are needed to perform IXS experiments, our study
is purely theoretical in this case.

6.2 Crystal structure

Similar to its bulk counterpart, monolayer VSe2 crystallizes in a 1T -phase with a
space group P 3̄m1 at room temperature, but it naturally consists of only a single
layer, as shown in Fig. 6.1. The corresponding 2D hexagonal crystal lattice is
defined by the following set of primitive vectors in Cartesian coordinates:

a1 = a (1, 0, 0) , and a2 = a

(
−1

2
,

√
3

2
, 0

)
.

The lattice structure is therefore fully determined by the lattice parameter a. The
value of the experimentally reported lattice parameter a = 3.31 ± 0.05 Å [100]
shows reasonable agreement with the theoretical one of 3.35 Å obtained at the
Perdew-Burke-Ernzerhof [46] level without considering the zero-point motion [101].

The usual way of defining 2D structures in simulation softwares based on
3D periodic boundary conditions, as it is the case of Quantum Espresso, is to
increase hugely the cell size in the direction perpendicular to the layer. In this
way, the large vacuum gap between two adjacent layers effectively prevents any
interlayer interaction. In case of our simulations in monolayer VSe2, the distance
between vanadium atoms of adjacent layers was set equal to 4 cbulk = 24.36 Å,
which is enough to avoid any interplay between adjacent layers. The atomic posi-
tions for the 1T polytype, as listed in Table 5.1, are still valid for the monolayer
structure shown in Fig. 6.1. In this case the classical relaxation of atomic coordi-
nates with the in-plane lattice parameter fixed at 3.35 Å yields a vertical distance
of dV-Se vert ≃ 1.598 Å from the vanadium plane to each covalently bonded sele-
nium layer, which corresponds to a total thickness of a single VSe2 layer of about
dlayer ≃ 3.196 Å.

1The magnitude of the strain is defined as ϵ = a−a0

a0
× 100%, where a0 = 3.356

Å is the lattice parameter theoretically obtained at the PBE level. The range of

the applied strain covers values of ϵ ∈ [−4, 4]%, which in terms of lattice parameter

means that a ∈ [3.22, 3.49] Å [127].
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(a) (b)

V Se
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a1

a2

dlayer
a

a1

Figure 6.1: (a) Top and (b) side views of the crystal structure of monolayer 1T -VSe2.
The unit cell is indicated with black lines, being a the lattice constant. Vanadium
and selenium atoms are represented by grey and green spheres, respectively. In total
there are 3 atoms per unit cell.

The 2D reciprocal lattice of the monolayer is determined by the following
vectors:

b1 =
2π

a

(
1,

1√
3
, 0

)
, and b2 =

2π

a

(
0,

2√
3
, 0

)
,

which represent the in-plane projection of the 3D reciprocal lattice of the bulk.
Figure 6.2 shows the first Brillouin zone that corresponds to the defined reciprocal
lattice together with the high-symmetry points. Table 6.1 lists the reciprocal
coordinates of the high-symmetry points that will be used in upcoming phonon
dispersion analyses.

b2

M

Γ

K b1

Figure 6.2: In-plane first Brillouin zone and the high-symmetry points of the space
group P 3̄m1 (164).
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High-symmetry point Reciprocal Coordinates

Γ (0, 0, 0)

M
(
1
2
, 0, 0

)
K

(
1
3
, 1
3
, 0
)

Table 6.1: In-plane high-symmetry points of space group P 3̄m1 (164) and their
coordinates with respect to the reciprocal lattice vectors.

6.3 Computational details

6.3.1 Anharmonic lattice dynamics: The SSCHA method

The SSCHA theory was applied to the normal state phase of monolayer 1T -VSe2
for two lattice parameters that provide a good representation of the experimental
range: a1 = 3.35 Å and a2 = 3.30 Å. The free energy minimization was performed
by calculating forces on 4×4×1 supercells making use of DFT as implemented
in Quantum Espresso package [61, 62]. These force calculations include vdW
interactions through a non-local exchange-correlation functional [48]. We employed
the same pseudopotentials as in the bulk analysis: an ultrasoft pseudopotential
for vanadium, accounting for its 4s2 3d3 valence electrons, and a norm-conserving
pseudopotential for selenium, including its 4s2 4p4 valence electrons. We used a
plane-wave energy cutoff of 50 Ry for the wavefunctions and 550 Ry for the charge
density. The Brillouin zone integrals were performed in a 4×4×1 k-point grid
with a Methfessel-Paxton smearing [52] of 0.01 Ry. All the theoretical anharmonic
phonon spectra were calculated in the static limit of the SSCHA theory, based
on the free energy Hessian formalism. The difference between anharmonic and
harmonic dynamical matrices was interpolated to a finer q-grid of size 8×8×1
in order to obtain other anharmonic phonon frequencies in more q-points (see
Appendix A for more details).

6.3.2 Harmonic phonons and the electron-phonon
interaction: DFPT calculations

Harmonic phonon frequencies and electron-phonon matrix elements of the normal
state phase of monolayer 1T -VSe2 were calculated within density functional per-
turbation theory (DFPT) [115] as implemented in Quantum Espresso. DFPT
calculations were performed for the same two lattice parameters, a1 = 3.35 Å and
a2 = 3.30 Å , with the ions in the corresponding relaxed positions that keep the
original symmetry of the structure. We used the same non-local van der Waals
exchange-correlation functional, pseudopotentials and parameters described in the
previous section, but with a 32×32×1 grid in the unit cell for the Brillouin zone
integrals. Harmonic phonon calculations were carried out in a 8×8×1 q-point grid.
The nesting function and the electron-phonon linewidth were calculated using a
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48×48×1 k-point grid and a Gaussian broadening of 0.003 Ry for the Dirac deltas,
which were enough to converge their values at the wavevectors associated with the
CDW instabilities.

6.4 Characterization of the CDW transition

This section analyses theoretically the response of the lattice to the CDW forma-
tion by calculating the temperature dependence of the phonon spectrum of mono-
layer 1T -VSe2, the high-symmetry phase, for two lattice parameters that provide
a good representation of the experimental range: a1 = 3.35 Å and a2 = 3.30 Å.
However, the temperature-independent harmonic approximation is considered in
first place to find unstable modes in the phonon spectrum that could indicate po-
tential structural instabilities towards the formation of a low-symmetry phase. In
the second part of this section, non-perturbative anharmonic phonon calculations
are performed to accurately capture the temperature-dependent behaviour of the
CDW driving phonon modes.

In both approaches the analysis about the stability of the different CDW
orders is performed with a non-local van der Waals density exchange-correlation
functional [48]. The previous chapter demonstrated that the inclusion of vdW
interactions is vital to melt the CDW phase in the bulk form of this compound. In
that case, Grimme’s semiempirical approach provides the best match with exper-
imental results because it effectively captures the weak vdW interactions between
layers through its dispersion corrections. However, the semiempirical approach
introduces some spurious intralayer interactions in the calculations, as it applies a
similar correction for the vdW interactions between chalcogen atoms in adjacent
layers and within the same one. That is, this practice oversimplifies the treat-
ment of intralayer interactions by not accounting for the screening effects from
the transition metal. This issue is particularly critical in single-layer cases, where
Grimme’s approach can lead to significant errors by introducing mostly unrealistic
intralayer interactions. In such scenario, vdW interactions must be accounted for
using the non-local method [126].

6.4.1 Harmonic phonon spectra

Harmonic dynamical matrices have been calculated within DFPT in a q-point grid
of 8 × 8 × 1 for two lattice parameters that reflect the experimental range: a1 =
3.35 Å and a2 = 3.30 Å. Fig. 6.3 shows the harmonic phonon curves obtained
by the Fourier interpolation of the calculated dynamical matrices along a q-point
path covering the high-symmetry points K− Γ−M−K.
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Figure 6.3: Harmonic phonon spectra along the K− Γ−M−K path for two lattice
parameters that reflect the experimental range: a1 = 3.35 Å (red lines) and a2 =
3.30 Å (blue lines).

For both lattice parameters, harmonic phonon spectra show two principal in-
stabilities at q1 = 3/5ΓK and q2 = 1/2ΓM. The latter instability corresponds to
the in-plane projection of the CDW wavevector qCDW in the bulk. The instability
at q1 is associated with a

√
3×

√
7 reconstruction, while the one at q2 leads to a

4× 4 modulation, as shown in Fig. 6.4. An interesting aspect to highlight is that
both softened phonon modes exhibit out-of-plane displacements of selenium atoms,
as it was the case in the CDW transition in the bulk. This detail indicates that
intralayer van der Waals interactions may also play a role in this transition, justi-
fying the inclusion of vdW interactions in the calculations, though by no means as
significant as their function in the bulk case. On the other hand, it is worth noting
that phonon softening effects at q1 and q2 were already present in the harmonic
phonon calculations for bulk 1T-VSe2, as analysed in Section 5.5.1. However, in
that case these effects were totally overshadowed by the principal instability.

In spite of providing the two intrinsic CDW orders, harmonic calculations do
not suffice to predict neither which of these CDW orders prevails nor the associ-
ated transition temperature for each lattice parameter. In fact, a realistic change
in the lattice parameter does not have a significant impact on the result at the
harmonic level, as shown in Fig. 6.3. In the same way as in bulk 1T -VSe2, only
non-perturbative anharmonic calculations can provide a reliable analysis of the
dynamical stability of this compound.
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(a)   q1 = 3/5 ГK

q2 = 1/2 ГM(b)   

Figure 6.4: Intrinsic CDW orders with
√
3 ×

√
7 and 4 × 4 modulations associated

to the instabilities at q1 and q2, respectively. The displacement vectors associated
to each CDW order are plotted as brown arrows. Planes perpendicular to the z-
direction for V (Se) are plotted in gray (green) for a better characterization of the
displacement vectors.

6.4.2 Anharmonic phonon spectra

In this section we present non-perturbative anharmonic phonon calculations in
the high-symme-try phase of monolayer VSe2, with the aim of capturing the tem-
perature dependence of the CDW driving phonon modes. Figure 6.5 shows the
temperature evolution of the anharmonic phonon spectra, obtained in the static
limit of the SSCHA method, for the two lattice parameters a1 = 3.35 Å (in red in
the top panels of Fig. 6.5) and a2 = 3.30 Å (in blue in the lower panels of Fig. 6.5).
At high enough temperature, 250 K, the 1T phase is dynamically stable for both
lattice parameters as shown in Figs. 6.5(a) and 6.5 (d). Therefore, anharmonicity
melts the CDW phases in monolayer VSe2, as it happens in the bulk form of this
compound and other TMDs [76–78].

As the temperature decreases, the phonon modes associated with the CDW
instabilities at q1 and q2 soften. In particular, for a1 = 3.35 Å at 200 K (shown in
Fig. 6.5(b)) we can observe that the mode at q1 = 3/5ΓK becomes unstable, even
if the one at q2 remains stable. This result indicates that for the bigger lattice
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Figure 6.5: Anharmonic phonon spectra along the K − Γ − M−K path for two
different lattice parameters: a1 = 3.35 Å (top panels with red lines) and a2 = 3.30
Å (bottom panels with blue lines). Panels (a-c) correspond to temperatures of 250
K, 200 K, and 100 K, respectively, for a1. Panels (d-f) display data for temperatures
of 250 K, 200 K, and 150 K, respectively, for a2.

parameter the
√
3×

√
7 CDW order dominates. However, for a2 = 3.30 Å at 200

K (illustrated in Fig. 6.5(e)), the phonon mode at q2 = 1/2ΓM is the unstable
one, while the phonon mode at q1 is stable this time. Therefore, for the smaller
lattice parameter, the 4 × 4 CDW order is the dominant one. At low enough
temperatures both q-vectors show unstable modes, as depicted in Figs. 6.5(c) and
6.5(f). However, note that this situation is not indicating that at low temperatures
both CDW orders coexist. Once one of the CDW orders gets stable when decreas-
ing the temperature, the system collapses to it, and the analysis in terms of the
anharmonic phonons of the high-symmetry phase is no longer useful to describe
the evolution of each of the CDW phases at low temperatures. Nevertheless, the
anharmonic phonons at low temperature shown in Figs. 6.5(c) and 6.5(f) confirm
that both q1 and q2 are the intrinsic CDW orders of VSe2 that can be accessed
through a transition from the high-symmetry phase.

To further analyse the competition between the two CDW orders as a func-
tion of the lattice parameter, Fig. 6.6 shows the temperature-dependence of the
frequency of the phonon mode that softens at q1 and q2. As shown in red in Fig.
6.6 (a), for the larger lattice parameter a1 = 3.35 Å, the phonon frequency at q1

becomes negative (imaginary) at higher temperature than at q2 and hence the
√
3

×
√
7 CDW order is the dominant one. The opposite behaviour is observed for

the small lattice parameter a2 = 3.30 Å. As shown in blue in Fig. 6.6 (b), the
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phonon frequency at q2 becomes negative at higher temperature that at q1, indi-
cating that the 4 × 4 CDW order is dominant. From Fig. 6.6 we can obtain the
transition temperature for each lattice parameter: for a1 = 3.35 Å the

√
3 ×

√
7

order emerges at TCDW = 217 K, while for a2 = 3.30 Å the 4 × 4 order arises at
TCDW = 223 K.
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Figure 6.6: Temperature dependence of the theoretical anharmonic frequencies of
the soft modes at q1 and q2 for (a) a1 = 3.35 Å and (b) a2 = 3.30 Å. Lines are
guides to the eye.

The calculation of the anharmonic strain tensor through Eq. (3.43), which
includes both the ionic zero-point motion and thermal fluctuations, yields an as-
sociated in-plane pressure of 0.7 GPa for the lattice parameter of a1 = 3.35 Å and
1.3 GPa for a2 = 3.30 Å. Given the lower in-plane pressure, these results point
out that the natural CDW order in monolayer VSe2 is

√
3 ×

√
7 with a TCDW =

217 K, which is in perfect agreement with the experiments on Refs. [101, 103].
Besides, the 4 × 4 order, which is the in-plane projection of the bulk 4 × 4 × 3
CDW order, appears only under strain conditions. These results provide an ex-
planation for the different CDW orders observed for small variations (∼1.5%) of
the lattice parameter [100, 101]. Note that, eventually, other modulations could
appear in monolayer VSe2 as experimentally reported [102, 104, 105]. However,
anharmonic calculations confirm that the

√
3×

√
7 and 4× 4 modulations are the

intrinsic CDW orders in monolayer VSe2, and point out that those different modu-
lations are a consequence of the interplay between the highly dynamically-unstable
high-symmetry phase and the particular substrate.
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6.5 Origin of the CDWs

In the last chapter we established that in bulk 1T -VSe2 the electron-phonon inter-
action is the main driving force of the CDW transition. Yet, the three-dimensional
critical wavevector qCDW connects many portions of the Fermi surface due to its
warped dispersion in the kz direction, but all in all the role of nesting in the
CDW formation mainly serves to enhance the electron-phonon interaction. As the
system shifts from bulk to monolayer, both Fermi surface nesting and electron-
phonon interactions are expected to become more pronounced. In this part, we
will examine the origin of the competing intrinsic CDW orders in monolayer VSe2
by comparing these two scenarios for both lattice parameters.

Figure 6.7: Fermi surface of the high-symmetry phase of monolayer VSe2 for two
different lattice parameters: a1 = 3.35 Å (left panel) and a2 = 3.30 Å (right panel).
The colour scale indicates the relative Fermi velocity, ranging from blue (lower ve-
locity) to red (higher velocity).

In order to do so, we perform a similar analysis to the one detailed in Sec-
tion 5.7 for bulk 1T -VSe2, that is, we compute both the nesting function and the
electron-phonon linewidth by means of DFPT. First, we present the calculated
Fermi surfaces of the high-symmetry phase for both lattice parameters in Fig. 6.7.
These Fermi surfaces exhibit ellipsoidal electron pockets centered at the M point
that present parallel sections that should be prone to electronic instabilities, but
in this case with no warping in the out-of-plane direction. However, in Figs. 6.8
(a-b) it can be seen that, for both lattice parameters, the nesting function does not
show any strong peak at the CDW vectors despite the existence of small shoulders
near q1 and q2. Therefore, the two critical wavevectors connect certain regions
of the Fermi surface, but they are not particularly distinctive. This is in stark
contrast with the clear peaks found in the nesting function for the correspond-
ing critical wavevector in the bulk. In the bulk case, the three-dimensional CDW
wavevector qCDW connects multiple sections of the warped Fermi surface. How-
ever, in the monolayer limit, the lack of kz dispersion leads to a different scenario.
The absence of a wavevector clearly nesting the Fermi surface suggests that the
electron-phonon matrix elements play a crucial role inducing the phonon softening
at both critical wavevectors.
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6.6 Conclusions and outlook

In fact, Figs. 6.8 (c-d) show that the electron-phonon contribution to the
linewidth of the soft phonon mode abruptly peaks at both q1 and q2 for both
lattice parameters. Therefore, in all cases, the linewidth enhancement (as well as
the phonon softening) comes from the mode and momentum dependence of the
electron-phonon matrix elements. Therefore, the two intrinsic CDW orders devel-
oped by monoloyer VSe2 are exclusively driven by the electron-phonon coupling,
in agreement with the theoretical predictions for 2D systems [16].
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Figure 6.8: (a-b) Nesting function and (c-d) electron-phonon linewidth of the soft
phonon mode along the K − Γ −M path for two different lattice parameters: a1 =
3.35 Å (left panels with red lines) and a2 = 3.30 Å (right panels with blue lines).

6.6 Conclusions and outlook

In this chapter we have analysed theoretically the strain dependence of the CDW
orders of monolayer 1T-VSe2 with the aim of solving previous experimental con-
tradictions. Our non-perturbative anharmonic phonon calculations reveal that
monolayer VSe2 develops two independent CDW orders that compete as a func-
tion of strain. Since variations of only 1.5% in the lattice parameter are enough
to stabilize one order or the other, these results provide an explanation for the
different modulations observed in experiments performed in different substrates
[100–105].
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In particular, our results show the natural CDW order in monolayer VSe2 is√
3×

√
7, while the 4 × 4 order, which is the in-plane projection of the bulk 4 × 4

× 3 CDW order, appears only under strain conditions. This behaviour contrasts
with the usual behaviour reported in TMDs such as 2H-NbSe2 [91] and 1T-TiSe2
[78], where the monolayer CDW orders are the in-plane projection of the bulk one.
The unexpected change of order when reducing dimensionality, together with the
role played by vdW interactions in the bulk, remarks the importance of interlayer
interactions in VSe2. On the other side, the calculated CDW critical tempera-
tures, as well as those reported in experiments, are enhanced in the monolayer
with respect the one in the bulk. Since considering vdW interactions have turned
out to be indispensable to melt the charge modulated phase in the bulk form of
this compound, it seems logical that the absence of interlayer interactions leads to
more robust CDW orders.

The intrinsic CDW orders reported for monoloyer VSe2 are exclusively driven
by the electron-phonon coupling, with no particular signatures of nesting at the
CDW wavevectors. The lack of clear peaks in the nesting function contrasts with
the ones found in the bulk. This absence of peaks is notable because both our
theoretical calculations and ARPES experiments in monolayer 1T -VSe2 report a
similar Fermi surface to that of the bulk at the kz = 0 plane [100, 101]. The
Fermi surface of the high-symmetry phase exhibits then ellipsoidal electron pock-
ets centered at the M point that present parallel sections that should be prone to
electronic instabilities, but in this case with no warping in the out-of-plane direc-
tion. However, ARPES measurements find that both the critical wavevectors q1

[101] and q2 [100] satisfy the nesting condition, because the analysis is focused on
one or the other depending on the reported order. Definitely, as our theoretical
results show, there is nothing special about the critical wavevectors q1 and q2 in
terms of Fermi surface nesting.

While our analysis based on the strain of the substate provides the theoretical
support to understand the huge variability of CDW orders and transition tempera-
tures reported by independent experiments in monolayer VSe2, it does not account
for other substrate-related effects. A clear example is the potential charge transfer
between monolayer VSe2 and the substrate, which has been shown to significantly
impact CDW orders in other TMDs, such as 1T-TiSe2 [78]. Analysing this aspect
would require a detailed VSe2-substrate sample study, which goes beyond the ca-
pabilities and scope of this work. However, this could be an interesting proposal
for future research.
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Mechanical properties of 2D
systems
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7

2D systems: Graphene

7.1 Introduction

For a long time, the possibility of having 2D crystalline order was considered un-
likely. Nearly a century ago, Peierls [18] and Landau [19] argued that thermal
fluctuations in 2D systems are so strong that they would destroy long-range order,
preventing the atoms to maintain a periodic structure over long distances. Mer-
min formalized this argument with a rigorous mathematical proof [20], showing
that for a 2D crystal with pairwise interactions the Fourier components of the
one-particle density ρ(r) must vanish for all non-zero reciprocal lattice vectors in
the thermodynamic limit, thereby impeding true long-range order. The discovery
of graphene in 2004 [17, 21, 22], a single layer of carbon atoms arranged in the
honeycomb lattice shown in Fig. 7.1 (a), challenged these longstanding theoretical
predictions. Still today the exact mechanism behind the stability of these materi-
als is under strong debate.

The strong thermal fluctuations predicted for 2D systems are directly related
to the quadratic dispersion of the out-of-plane acoustic (ZA) mode obtained within
the harmonic approximation. In contrast, in-plane longitudinal (LA) and trans-
verse (TA) acoustic modes exhibit a linear dispersion close to the zone centre,
which is the typical behaviour of all acoustic modes in 3D crystals. The harmonic
phonon dispersion of graphene, the prototypical 2D crystal, is shown in Fig. 7.2,
where the different dispersions of the out-of-plane and in-plane acoustic modes in
the long-wavelength limit are clearly visible. Indeed, such a low-energy quadratic
dispersion leads the mean square out-of-plane displacement of the particles to di-
verge with the system size L, following the relation ⟨h2⟩ ∼ L2.
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(a) (b)
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Figure 7.1: (a) Top view of the crystal structure of graphene. The unit cell is indi-
cated with black lines, being a the lattice constant. Carbon atoms are represented
by blue spheres, with each unit cell containing a total of two atoms. (b) Side view
of graphene, highlighting the invariance of energies and atomic forces under any ro-
tation of the whole system.

The anomalous dispersion expected for the ZA mode in the harmonic approx-
imation is imposed by the combination of symmetry properties intrinsic to pure
2D systems. In first place, by the fact that the potential energy has to remain
unchanged under a complete rotation of the system, as shown in Fig. 7.1 (b).
This rotational invariance, together with the fact that the mirror symmetry in a
strictly 2D system decouples in-plane and out-of-plane components of the second
order force constants, makes the ZA mode acquire the mentioned quadratic dis-
persion close to zone center [26]. The explicit mathematical proof is included in
Appendix B.

The theoretical debate on the stability of 2D crystalline systems resembles
strongly the discussion regarding the stability of elastic membranes, which are
low-dimensional flexible systems embedded in a space of higher dimension. Stud-
ies of 2D elastic membranes within a 3D space have shown that their flat phase
tends to crumple due to strong thermal fluctuations [31, 34], similar to how such
fluctuations can disrupt long-range positional order in 2D crystalline systems [20].
In the case of membranes, it has long been assumed that incorporating anhar-
monic interactions resolves this crumpling issue by introducing a linear term at
small wavevectors in the out-of-plane vibrational frequency [31]. The reason is that
the linearization of the ZA mode affects macroscopic properties of the material.
In particular, it renormalizes its bending rigidity κ, which quantifies how much
energy is required to bend the material to a unit curvature, and it is related to the
dispersion relation of the ZA mode as:

ωZA(q) =

√
κ(q)

ρ
q2, (7.1)
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Figure 7.2: Harmonic phonon spectrum of graphene along high-symmetry direc-
tions of the Brillouin zone. The acoustic modes are illustrated, with the out-of-plane
acoustic (ZA) mode showing a quadratic dispersion near the Γ point, while the trans-
verse acoustic (TA) and longitudinal acoustic (LA) modes exhibit a linear dispersion.
The optical modes, including the out-of-plane optical (ZO), transverse optical (TO),
and longitudinal optical (LO) branches, are also indicated. Figure taken from Ref.
[128].

where ωZA(q) is the frequency of the ZA mode, q is the wavevector, and ρ is the
mass density of the membrane. As the ZA mode is linearized, the bending rigid-
ity is renormalized from constant κ to a momentum-dependent effective bending
rigidity κ ∼ q−η, where η is a positive exponent. Attempts to obtain the value of
the exponent η by means of analytical calculations, including the Self-Consistent
Screening Approximation (SCSA) [32] and renormalization group (NPRG) calcu-
lations [33], result in: η ∼ [0.80−0.85]. In any case, a diverging bending rigidity in
the long-wavelength limit yields the interpretation that the larger the membrane,
the stiffer it becomes. The stiffening of the membrane partially suppresses the
amplitude of its height-fluctuations, which is usually studied from the height cor-
relation function in momentum space, ⟨|h(q)|2⟩. In particular, while in the classical
harmonic approximation it scales as ⟨|h(q)|2⟩ ∼ ωZA(q)

−2 ∼ q−4, it is corrected
to q−4+η when the ZA modes are linearized, which in real space translates to
⟨h2⟩ ∼ L2−η [31, 32, 34]. The quenching of height fluctuations is interpreted as
the stabilization of a long-range orientational order, so that the flat phase for the
membrane is stable, but not perfectly flat as it might exhibit significant height
fluctuations.
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The discovery of graphene provided a real-world context to these theoretical
debates. In particular, the observation of ripples and fluctuations in suspended
graphene [22] resembled strongly to the long-range orientational order predicted
by anharmonic models of elastic membranes. At that point it became clear that
graphene was the ideal playground to prove the old phenomenological theories of
thermal fluctuations in elastic membranes [129]. The fact that classical Monte
Carlo [24, 130] and molecular dynamics [131] simulations in graphene obtain sim-
ilar values for the exponent η to the analytical calculations within the membrane
model, strongly supports the idea that continuous models of polymerized mem-
branes are suitable for describing the elastic properties of graphene [26]. In this
sense, it is considered that the anharmonic coupling between in-plane and out-of-
plane phonon modes renormalizes the dispersion of the ZA phonon modes also in
graphene [23–30], providing it with a linear term at small momenta that cures the
pathologies, as it happens in phenomenological models for membranes.

All of the above has established a standard theory on the stability of graphene,
and in general of 2D materials, so far. Even tough, the experimental confirma-
tion of these ideas is challenging due to both the difficulties in measuring the
bending rigidity of graphene [35, 36] and the substrate effects on the dispersion
of the ZA modes measured with helium diffraction [37–40]. At this point it has
to be brought into focus that the out-of-plane displacements in real space pre-
dicted by the harmonic theory are of the order of the length of the graphene flake,
with ⟨h2⟩ ∼ L2. In contrast, the standard anharmonic treatment predicts that
out-of-plane fluctuations scale as ⟨h2⟩ ∼ L2−η, resulting in fluctuations that are
much smaller than the sample size but potentially still larger than the interatomic
distance. Given the significant height fluctuations predicted by both approaches,
it is more sensible to tackle the problem of the mechanical stability in graphene
through a non-perturbative inclusion of anharmonicity. As it has been demon-
strated already in this manuscript, the SCHA method is an ideal way to carry
out this task. Moreover, the quantum character of the method allows to consider
ionic quantum fluctuations, otherwise neglected in classical approaches [24, 31–34,
129, 130]. In fact, a straightforward estimation of graphene’s Debye temperature
based on the harmonic dispersion yields TD ∼ 1000 K, a higher value than room
temperature, highlighting the importance of accounting for these quantum effects
in the calculations [132].

This chapter is devoted to offer a new perspective to this longstanding puzzle
by combining non-perturbative anharmonic effects with the intrinsic symmetries
of strictly 2D systems, which are factors known to be relevant to this problem.
Namely, physical phonons measured in experiments are related to peaks in the
spectral function associated to the phonon Green’s function including anharmonic
effects. For low-energy modes such as the ZA mode in question, the static limit
can be taken, such that their phonon peaks coincide with the eigenvalues of the
free energy Hessian [41]. It is worth pointing out that physical phonons at the
static limit coinciding with the eigenvalues of the free energy Hessian is not a par-
ticular result of the SCHA formalism; it is exact for any static theory, as proven
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in Ref. [133]. Then, being both F and V thermodynamic quantities, they have to
obey the same symmetry properties and in conclusion, the ZA mode should still
be quadratic once anharmonic interactions are included, just as was the case in
the harmonic approach. This result is compatible with a non diverging bending
rigidity in the long-wavelength limit. These hypotheses were proven for graphene
in Unai Aseginolaza’s doctoral thesis by means of both atomistic simulations and
the membrane model [128]. Since these statements are based on symmetry argu-
ments, they can be generalized to any strictly 2D material, not only graphene.

This new perspective clearly contradicts the claims of the standard theory
regarding the mechanical stability of graphene, which, as described, has been val-
idated through various analytical and computational methods. Therefore, it is
crucial to be as rigorous as possible when presenting such an innovative hypoth-
esis. A critical limitation in the previous calculations presented in Ref. [128]
is that some results do not reach the order of magnitude of wavevectors where
the linearization in the ZA mode dispersion due to anharmonic effects should be
observed. Specifically, for graphene at ambient temperatures, the anharmonic
renormalization is expected to manifest at a wavevector magnitude on the order

of q ∼ 0.01Å
−1

[34]. Importantly, the work presented here reaches these small
orders of magnitude, allowing us to explore anharmonic effects that were previ-
ously inaccessible. Moreover, this advancement allows us to perform meaningful
comparisons with the literature data, highlighting in this way the contributions of
our findings to the understanding of the mechanical stability of 2D materials.

This chapter begins with the presentation of the theoretical foundations of
the membrane model and its implementation within the SCHA. The general ex-
pression for the equal time displacement-displacement correlation function is then
derived using the SCHA formalism, with a focus on the height-height correlation
function within the membrane model. Employing an interacting picture in this
mathematical derivation enables a precise comparison with previously published
results. Following this, we present results reinforcing the hypotheses concerning
the quadratic out-of-plane mode dispersion and the non-diverging bending rigid-
ity of graphene. Finally, the Fourier transform of the height-height correlation
function is computed, allowing for a thorough comparison of our hypothesis with
existing results in the literature.
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7.2 The membrane model

The membrane model is widely used in the literature to describe crystals as elastic
2D continuum systems, overlooking in this way the microscopic atomic structure
of the solid. Such a continuum approach is particularly well-suited for characteriz-
ing long-wavelength acoustic phonons, as these low-energy vibrational phenomena
occur over length scales that are significantly larger than atomic distances.

Specifically, the model assumes an average flat configuration where the equi-
librium positions are represented by the continuous vector x = (x0, y0, 0). Devia-
tions from these equilibrium positions are captured by a continuous displacement
field, which can be separated into in-plane displacements u(x) = (ux(x), uy(x)) ≡
u and out-of-plane fluctuations h(x) ≡ h.

Up to second-order on phonon fields, the most general rotationally invariant
membrane potential that accounts for the coupling between in-plane and out-of-
plane acoustic modes is given by [134]:

V =
1

2

∫
Ω

d2x
(
κ(∇2h)2 + Cijkluijuil

)
. (7.2)

The sum over identical indexes ijkl = x, y is implicit in the previous equation.
Here, Ω is the area of the membrane in equilibrium, κ is the bending rigidity and
h is the out-of-plane component of the displacement field. The first term in the
potential describes then the bending energy, accounting for the energy penalty due
to deviations from a flat configuration. The second term represents the stretching
energy, which considers the energy cost associated with changes in the in-plane
distances and bond angles between atoms. The elastic constants tensor Cijkl is
affected by the symmetry constraints of the underlying crystalline structure. In
the case of an isotropic solid, it is determined by just 2 elastic constants, λ and µ,
known as the Lamé coefficients: Cijkl = λδijδkl + µ(δikδjl + δilδjk), where δij is
the Kronecker delta. On the other hand, the rotationally invariant strain tensor
uij is defined using the in-plane displacement field ui:

uij =
1

2
(∂iuj + ∂jui + ∂iu · ∂ju+ ∂ih∂jh). (7.3)

By inserting this strain tensor in Eq. (7.2), the potential can be rewritten as

V =
1

2

∫
Ω

d2x[κ(∇2h)2 + Cijkl∂iuj∂kul + Cijkl∂iuj∂kh∂lh+

+
Cijkl

4
∂ih∂jh∂kh∂lh+

Cijkl

2
∂iu · ∂ju∂kh∂lh+

+ Cijkl∂iuj∂ku · ∂lu+
Cijkl

4
∂iu · ∂ju∂ku · ∂lu]. (7.4)
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7.2 The membrane model

In the harmonic approximation, by neglecting the high-order non-linear terms in
the strain tensor in Eq. (7.3), the out-of-plane and in-plane modes are decoupled.
Neglecting these anharmonic terms results in two in-plane acoustic phonons with
linear dispersion relations: the longitudinal mode ωLA(q) =

√
(λ+ 2µ)/ρq and the

transverse mode ωTA(q) =
√

µ/ρq, where ρ is the mass density of the membrane.
On the contrary, the out-of-plane acoustic phonon mode displays a quadratic dis-
persion: ωZA(q) =

√
κ/ρq2. In the case of graphene, fitting the parameters to the

atomistic potential in Ref. [135] yields the values [128]: λ = 4.3 eVÅ
−2

, µ = 9.3

eVÅ
−2

, κ = 1.5 eV and, ρ/ℏ2 = 1097 eV−1Å
−4

.

At this point, it is important to emphasize that the hypotheses we aim to
validate are restricted to membranes that exhibit rotational invariance. In this
sense, it is crucial to note that a strained membrane loses its rotational symme-
try due to the strain causing an uneven deformation. To ensure that the system
remains strainless at each temperature, it is necessary to account for the relax-
ation of the lattice parameter a in the free energy minimization. The thermal
expansion is included in this formalism by modifying the in-plane derivatives as
∂iuj → ∂iuj + δijδa, with δa = (a − a0)/a0, and a0 the lattice parameter that
minimizes V .

By taking the Fourier transform of the potential and minimizing the SCHA
free energy with respect to both the lattice constant and the auxiliary force con-
stants, we derive the SCHA equations in the membrane model (we use ℏ = kB = 1):

∂F(V)
∂δa

= 0 = 2Ω
(
2δa+ 3δa2 + δa3

)
(λ+ µ)

+
1

2

∑
q

g[ω
(ZA)
SCHA(q)]

[
2(1 + δa)(λ+ µ)|q|2

]
+

1

2

∑
q

g[ω
(LA)
SCHA(q)]

[
2(1 + δa)(λ+ 2µ)|q|2 + 2(1 + δa)(λ+ µ)|q|2

]
+

1

2

∑
q

g[ω
(TA)
SCHA(q)]

[
2(1 + δa)µ|q|2 + 2(1 + δa)(λ+ µ)|q|2

]
(7.5)

Φ
(ZA)
SCHA(q) = κ|q|4 + 2(1 + δa/2)δa(λ+ µ)|q|2

+
λ+ 2µ

2Ω

∑
k

g[ω
(ZA)
SCHA(k)]

[
|q|2|k|2 + 2(q · k)2

]
+

1

2Ω

∑
k

{
g[ω

(LA)
SCHA(k)] + g[ω

(TA)
SCHA(k)]

} [
λ|q|2|k|2 + 2µ(q · k)2

]
(7.6)
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Φ
(LA)
SCHA(q) = (λ+ 2µ)|q|2 + 2(1 + δa/2)δa(λ+ 2µ)|q|2

+ 2(1 + δa/2)δa(λ+ µ)|q|2

+
1

2Ω

∑
k

g[ω
(ZA)
SCHA(k)]

[
λ|q|2|k|2 + 2µ(q · k)2

]
+

1

4Ω

∑
k

{
4g[ω

(TA)
SCHA(k)]

[
λ(q · k)2 + µ|q|2|k|2 + µ(q · k)2

]
(q̂⊥ · k̂⊥)

+ 2g[ω
(TA)
SCHA(k)]

[
λ|q|2|k|2 + 2µ(q · k)2

]
+ 2g[ω

(LA)
SCHA(k)]

[
λ|q|2|k|2 + 2µ(q · k)2

]
+ 4g[ω

(LA)
SCHA(k)]

[
λ(q · k)2 + µ|q|2|k|2 + µ(q · k)2

]
(q̂ · k̂)

}
(7.7)

Φ
(TA)
SCHA(q) = µ|q|2 + 2(1 + δa/2)δaµ|q|2

+ 2(1 + δa/2)δa(λ+ µ)|q|2

+
1

2Ω

∑
k

g[ω
(ZA)
SCHA(k)]

[
λ|q|2|k|2 + 2µ(q · k)2

]
+

1

4Ω

∑
k

{
4g[ω

(TA)
SCHA(k)]

[
λ(q · k)2 + µ|q|2|k|2 + µ(q · k)2

]
(q̂⊥ · k̂⊥)

+ 4g[ω
(LA)
SCHA(k)]

[
λ(q · k)2 + µ|q|2|k|2 + µ(q · k)2

]
(q̂⊥ · k̂)

+ 2g[ω
(TA)
SCHA(k)]

[
λ|q|2|k|2 + 2µ(q · k)2

]}
(7.8)

where Φ
(α)
SCHA (α = ZA,LA, TA) are the SCHA force constants, and ωα

SCHA(q) =√
Φ

(α)
SCHA(q)

ρ
the corresponding SCHA auxiliary frequencies. The function g(ω),

which was previously introduced in real space for periodic crystals in Eq. (3.30),
now appears in its Fourier-transformed form for the membrane model. Indeed,
it represents the Fourier transform of the displacement-displacement correlation
function calculated using the SCHA density ρH, and is given by g(ωα(q)) =

⟨uα(q)uα(-q)⟩ρH = 1+2nB(ωα(q))
2ρωα(q)

, where ρ is the mass density of the membrane.

When solving this set of coupled equations, it has been taken into account
that the assumed periodic boundary conditions make the reciprocal space discrete.
In order to reach wavevectors an order of magnitude smaller than in the atom-
istic calculations in Ref. [128], we have worked with a squared membrane of size
Lx = Ly = 2π

0.01
Å. On the other side, the implicit continuity of the membrane

Hamiltonian makes Fourier transforms to be non-periodic. Then, as displacement
fields u(x) and h(x) are smooth functions in real space, their discrete and non-
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7.2 The membrane model

periodic Fourier transforms u(q) and h(q) (and related magnitudes) are expected
to decay rapidly in reciprocal space. Therefore, we can converge our results with
respect to a cut-off radius in momentum space, defining in this way a circular grid.
The value of this cut-off radius is temperature dependent, because modes with
greater wavevector values are thermally excited when increasing the temperature.

We have found that with a value of Rcut = 0.8 Å
−1

convergence is achieved for
temperatures close to 0 K. This radius encloses 20080 q-points, which yields a
total of 3nq+1 = 60241 coupled equations that we have solved by applying the
Newton-Raphson method [136].

To deal with such a complex scenario efficiently, the code implementing the
SCHA minimization for the membrane model has been substantially improved
during this thesis. Key enhancements include the use of analytical derivatives
instead of finite differences for computing the Jacobian matrix in the Newton-
Raphson method, and the integration of the LAPACK package [137] to optimize
matrix-vector operations. These changes successfully reduce the complexity of the
algorithm, resulting in faster execution times and the ability to handle the required
larger q-point grids optimally.

Regarding the second derivative of the free energy, the exact correction to the
SCHA auxiliary force constant matrix of the out-of-plane mode is given by:

Φ(ZA)
corr (q) =

∑
γδϵζ

∑
pk

(3)

Φhγδ(−q,p, q − p)×

× [1−
(4)

Φ γδϵζ(−p,p− q,k, q − k)]−1
(3)

Φ ϵζh(−k,k − q, q). (7.9)

where the subindexes run on the normal coordinates α, β, γ, δ, ϵ, ζ = h, uLA, uTA

and the third and fourth-order SCHA force constant tensors are defined as:

(3)

Φαβγ(q,k,p) =

〈
∂3V

∂α(q)∂β(k)∂γ(p)

〉
ρH

√
Gβγ(k,p), (7.10)

(4)

Φαβγϵ(q, q
′,k,k′) =

〈
∂4V

∂α(q)∂β(q′)∂γ(k)∂ϵ(k′)

〉
ρH

√
Gαβ(q,k)Gγϵ(q′,k′).

(7.11)

The matrix Gαβ(q,k) is defined as:

Gαβ(q,k) =
F (0, ωα

SCHA(q), ω
β
SCHA(k))

ωα
SCHA(q)ω

β
SCHA(k)

, (7.12)

F (0, ωα
SCHA(q), ω

β
SCHA(k)) being the static limit of the function defined in Eq.

(3.48).

The correction formula can be simplified by noting that the only terms in the
potential that will contribute to the statistical average in the third-order SCHA
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Chapter 7. 2D systems: Graphene

force constant tensor in Eq. (7.10) are those of the type
∫
Ω
d2xCijkl∂iuj∂kh∂lh.

Then, Eq. (7.9) can be rewritten as:

Φ(ZA)
corr (q) = 4

∑
αβ

∑
pk

(3)

Φhhα(−q,p, q − p)×

× [1−
(4)

Φhαhβ(−p,p− q,k, q − k)]−1
(3)

Φhβh(−k,k − q, q), (7.13)

where now the subindexes only run over the in-plane normal coordinates: α, β =
uLA, uTA. The required statistical averages are given by:

〈
∂3V

∂h(k1)∂h(k2)∂uLA(k3)

〉
ρH

=
1 + δa√

Ω
δk1+k2+k3,0×

×
[
λ|k3|k1 · k2 + 2µ

(k3 · k1)(k3 · k2)

|k3|

]
, (7.14)

〈
∂3V

∂h(k1)∂h(k2)∂uTA(k3)

〉
ρH

=
µ(1 + δa)√

Ω
δk1+k2+k3,0×

×
[
(k3 · k1)(k3⊥ · k2) + (k3 · k2)(k3⊥ · k1)

|k3|

]
, (7.15)

〈
∂4V

∂h(k1)∂h(k2)∂uLA(k3)∂uLA(k4)

〉
ρH

=

1

Ω
δk1+k2+k3+k4,0

k3 · k4

|k3||k4|
[λ(k3 · k4)(k1 · k2)+

+ µ(k3 · k1)(k4 · k2) + µ(k3 · k2)(k4 · k1)], (7.16)

〈
∂4V

∂h(k1)∂h(k2)∂uTA(k3)∂uTA(k4)

〉
ρH

=

1

Ω
δk1+k2+k3+k4,0

k3⊥ · k4⊥

|k3||k4|
[λ(k3 · k4)(k1 · k2)+

+ µ(k3 · k1)(k4 · k2) + µ(k3 · k2)(k4 · k1)], (7.17)

and〈
∂4V

∂h(k1)∂h(k2)∂uLA(k3)∂uTA(k4)

〉
ρH

=

1

Ω
δk1+k2+k3+k4,0

k3 · k4⊥

|k3||k4|
[λ(k3 · k4)(k1 · k2)+

+ µ(k3 · k1)(k4 · k2) + µ(k3 · k2)(k4 · k1)]. (7.18)
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7.2 The membrane model

The equations cannot be simplified further, but we have all the elements needed to
calculate them numerically. We have checked numerically that the contribution of

the fourth-order SCHA force constants tensor
(4)

Φ is practically negligible even at the
smallest wavevectors, as shown in Fig. 7.3. The red crosses in the figure represent

the first term of the Taylor expansion of the inverse matrix [1−
(4)

Φ]−1 ≈ 1 +
(4)

Φ in
Eq. (7.13), while blue dots correspond to the sum of these 2 terms. The results
are identical for both cases across all wavevectors, which is consistent with the
atomistic calculations of Refs. [128, 133].
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Figure 7.3: ZA physical phonons in the static approach within the membrane model

at 12.5 K, neglecting and including
(4)

Φ in Eq. (7.13), and presented on a logarithmic
scale.

7.2.1 The non-rotationally invariant membrane

Given that out-of-plane fluctuations are significantly larger than in-plane ones at
the harmonic level, anharmonic terms involving out-of-plane displacement fields
are expected to be dominant compared to those including only in-plane displace-
ment fields. Consequently, most analytical works in the literature [23, 25, 27, 31–
34, 130] neglect the ∂iu · ∂ju term in the strain tensor:

uij ≈
1

2
(∂iuj + ∂jui + ∂ih∂jh). (7.19)

This corresponds to neglecting the fourth-order terms containing in-plane displace-
ment fields in the membrane potential:

V ≈ 1

2

∫
Ω

d2x[κ(∇2h)2+Cijkl∂iuj∂kul+Cijkl∂iuj∂kh∂lh+
Cijkl

4
∂ih∂jh∂kh∂lh].

(7.20)
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Chapter 7. 2D systems: Graphene

In the SCHA framework, where averages are computed using a harmonic Gaussian
distribution, the average of the odd terms is zero. Since fourth-order terms involv-
ing in-plane displacement fields are neglected at this level of approximation, the
SCHA equations simplify significantly. In particular, the in-plane and out-of-plane
components become decoupled. In-plane phonons are not renormalized and retain
their harmonic values. The SCHA equations for out-of-plane phonons, including
thermal expansion as previously described, are given by:

δa = − 1

4Ω

∑
q

|q|2g[ω(ZA)
SCHA(q)], (7.21)

Φ
(ZA)
SCHA(q) = κ|q|4+2δa(λ+µ)|q|2+λ+ 2µ

2Ω

∑
k

g[ω
(ZA)
SCHA(k)][|q|2|k|2+2(q·k)2].

(7.22)

As a result, the number of coupled equations is reduced from the previous 3nq+1
to nq+1, significantly simplifying the numerical implementation of the problem.
Even more, this approach enables the analytical solution of the corresponding
SCHA equations by inserting Eq. (7.21) in Eq. (7.22) and considering the infinite
volume limit (Ω → ∞):

Φ
(ZA)
SCHA(q) = κ|q|4 + γ|q|2, (7.23)

where γ is given by the solution of

γ =
λ+ 3µ

4π

∫ Λ

0

dpp3g[ω
(ZA)
SCHA(p)]

= γ
λ+ 3µ

16πκ
√
ρκ

∫ Λ
√

κ/γ

0

ds
s2coth[γs

√
1 + s2/(2T

√
ρκ)]√

1 + s2
. (7.24)

Here, Λ is an ultraviolet cutoff used to avoid divergences. Eqs. (7.23) and (7.24)
indicate that the dispersion of the SCHA auxiliary ZA modes is linear at long-

wavelengths due to the presence of the coefficient γ: ω
(ZA)
SCHA(q) ∼

√
γ
ρ
|q|. When

calculating the correction needed to obtain physical phonons in the static approach
in Eq. (7.13) (with the fourth-order tensor being zero in this case), the result is

Φ
(ZA)
F (q) = κ|q|4 + (γ − σ)|q|2 +O(|q|4), (7.25)

where at T = 0 K

σ =
ρ
√
γ

8πκ3/2

∑
α=LA,TA

vαf(Λ
√
κ/γ, vα

√
ρ/γ), (7.26)

with

f(x, y) =

∫ x

0

ds
s2√

1 + s2[
√
1 + s2 + y]

. (7.27)
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Eq. (7.25) shows that the dispersion of the physical ZA phonon modes remains
linear at long-wavelengths, due to the coefficient γ − σ in this case. To compare
the linear terms of the auxiliary and physical phonons, we estimate the ratio γ−σ

γ
.

Setting the ultraviolet cutoff to the Debye momentum, Λ =
√

8π
31/2a2

0
= 1.55 Å

−1
,

we find that 1−σ/γ = 20%. This means that the linear component of the physical
frequencies is approximately 40% smaller than that of the SCHA auxiliary fre-
quency. The presence of a non-zero linear term in the physical frequencies results
from the fact that neglecting the fourth-order terms involving in-plane displace-
ments breaks the rotational invariance of the potential, as proved in Appendix
C.

7.3 The height-height correlation function

The ripples observed in graphene arise due to out-of-plane fluctuations of carbon
atoms and they have a significant impact on its overall roughness and texture.
The roughness of a crystalline membrane, and therefore its degree of corrugation,
can be quantified by the height-height correlation function h2(r). This function
measures how the height fluctuations of the membrane are correlated at a fixed
in-plane distance r and it is defined as:

h2(r) =
1

Ω

∫
Ω

d2x h(x)h(x+ r). (7.28)

The height-height correlation function can be transformed into reciprocal
space to obtain information about how the amplitude of the corrugations is dis-
tributed across different wavelengths. Inserting the Fourier transform of the height
displacement field and applying the closure relation for periodic systems, one ob-
tains:

h2(r) =
∑
q

h(q)h(-q)e−iq·r =
∑
q

|h(q)|2e−iq·r (7.29)

The Fourier transform of the height-height correlation function, |h(q)|2, represents
the power spectrum of the height fluctuations, which shows how the amplitude of
fluctuations varies with the wavevector. As the displacement field h(x) is a smooth
function, its discrete and non-periodic Fourier transform h(q) and related magni-
tudes are expected to decay in reciprocal space. In particular, the smoother h(x)
is, the faster h(q) decays. Therefore, for rougher surfaces, which are characterized
by shorter wavelength ripples, the power spectrum |h(q)|2 will have significant
contributions at higher wavevector values.

In practice, the average of the Fourier transform of the height-height corre-
lation function, ⟨|h(q)|2⟩, serves as a measure to characterize the corrugation of
membranes in most studies in the literature. This average can be obtained either
by time averaging or ensemble averaging. Both approaches will yield equivalent
results provided that the system is ergodic.
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In the next section, we will derive the formula for the ensemble average of
this correlation function within the SCHA formalism. We will begin by deriving
the general expression for equal-time displacement-displacement correlation func-
tions within the SCHA framework, using an interacting picture for the first time.
Following this, we will specifically address the height-height correlation function
within the membrane model.

7.3.1 The equal time height-height correlation function
within SCHA

As a mean-field theory, SCHA has traditionally used a non-interacting picture for
ensemble averages, relying on the harmonic density matrix derived from the mean-
field solution of the SCHA free energy minimization [41]. However, in a similar
way to the anharmonic renormalization of the frequencies, an interacting picture
is necessary to go beyond mean-field and obtain correlation functions comparable
to those in the literature. In this section we will obtain for the first time the gen-
eral expression of the equal time displacement-displacement correlation function
within the SCHA formalism using an interacting picture. Subsequently, we will
focus specifically on the height-height correlation function in the framework of the
membrane model.

Within an interacting picture, the ensemble average of any displacement-
displacement correlation function is given by the following equal time Green func-
tion (we still use ℏ = kB = 1):√

MaMb⟨uaub⟩ = Gab(τ = δ+) = −T
∑
n

Gab(iΩn), (7.30)

where a and b represent both atom and Cartesian indices, Ma is the mass of the
atom a and ua the corresponding displacement component. Gab(iΩn) is the SCHA
Green function in the frequency domain for the variable

√
Ma(R

a−Ra
eq), as defined

in Eq. (3.55). Here, Ωn = 2πTn represents the bosonic Matsubara frequencies and
Ra

eq are the centroid positions that minimize the SCHA free energy.

The summation in Equation (7.30) is performed by expressing the Green’s
function in its Lehmann representation and then applying standard techniques for
Matsubara frequency summations [138], resulting in:

√
MaMb⟨uaub⟩ = −T

∑
n

Gab(iΩn) =

∫ ∞

−∞

dω

2π
σab(ω)nB(ω), (7.31)

being nB(ω) the Bose-Einstein distribution function and σab(ω) the spectral func-
tion of the interacting Green function, defined in this case as:

σab(ω) = −2Im [Gab(ω + iδ+)]. (7.32)
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7.3 The height-height correlation function

In order to avoid divergences in the integral, the sum is redefined as:√
MaMb⟨uaub⟩ = −TGab(0) +

∫ ∞

−∞

dω

2π
σab(ω)

[
nB(ω)−

T

ω

]
. (7.33)

Regarding the first term in the sum, according to Eq. (3.58), the static limit of the
Green function corresponds to the inverse of the free energy dynamical matrix:

Gab(iΩn = 0) = −[D(F)]−1
ab =

∑
µ

ϵaµϵ
b
µ

(
− 1

Ω2
µ

)
, (7.34)

where Ωµ are the phonon frequencies and ϵaµ the polarization vectors obtained by
diagonalizing the free energy Hessian.

Retaining only the first term of the dynamical SCHA self energy Π(iΩn) and
neglecting the mode-mixing, the spectral function σab(ω) resembles a superposition
of Lorentzians, but with frequency dependent shifts and widths. When the quasi-
particle picture is valid after the inclusion of anharmonicity, the spectral function
can actually be expressed as a superposition of Lorentzians:

σab(ω) =
∑
µ

ϵaµϵ
b
µ

(
1

ω

[
Γµ

(ω −Θµ)2 + (Γµ)2
+

Γµ

(ω +Θµ)2 + (Γµ)2

])
, (7.35)

where Θµ is the frequency of the SCHA quasiparticle in the Lorentzian approxi-
mation, and Γµ represents the half-width at half maximum (HWHM) of the an-
harmonic linewidth.

Inserting Eqs. (7.34) and (7.35) in Eq. (7.33) we get:

√
MaMb⟨uaub⟩ =

∑
µ

ϵaµϵ
b
µ

(
T

Ω2
µ

+

∫ ∞

−∞

dω

2π

(
1

ω

[
Γµ

(ω −Θµ)2 + (Γµ)2
+

+
Γµ

(ω +Θµ)2 + (Γµ)2

])[
nB(ω)−

T

ω

])
. (7.36)

This integral can be simplified when the phonon-phonon linewidth tends to zero.
For those cases, the Lorentzian representation of the Dirac delta function can be
used:

δ(x) =
1

π
lim
ϵ→δ+

ϵ

x2 + ϵ2
. (7.37)

Then,

√
MaMb⟨uaub⟩ =

∑
µ

ϵaµϵ
b
µ

(
T

Ω2
µ

+
1

2

∫ ∞

−∞
dω×

×
(
1

ω
[δ(ω −Θµ) + δ(ω +Θµ)]

)[
nB(ω)−

T

ω

])
. (7.38)
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And

⟨uaub⟩ =
1√

MaMb

∑
µ

ϵaµϵ
b
µ

(
T

Ω2
µ

+
−nB(−Θµ) + nB(Θµ)

2Θµ

− T

Θ2
µ

)
. (7.39)

Finally, when the static phonons coming from the free energy Hessian and the
ones extracted from the Lorentzian shaped spectral function are nearly identical
(Ω2

µ ≈ Θ2
µ), we recover the formula of the non-interacting case but evaluated with

the physical phonons in the static approach:

⟨uaub⟩ =
1√

MaMb

∑
µ

ϵaµϵ
b
µ

[
(nB[Ωµ]− nB[−Ωµ])

2Ωµ

]
=

1√
MaMb

∑
µ

ϵaµϵ
b
µ

[
(1 + 2nB[Ωµ])

2Ωµ

]
. (7.40)

In the continuous case of the membrane model, the displacement-displacement
correlation function is:

⟨ua(x)ub(x
′)⟩ = 1

ρ

∑
µ

ϵaµ(x)ϵ
b
µ(x

′)

[
(1 + 2nB[Ωµ])

2Ωµ

]
, (7.41)

where a and b are just the Cartesian indexes and µ = ZA,LA, TA in this case.
Essentially, discrete magnitudes are now continuous, while the individual atomic
masses Ma and Mb are replaced by the mass density of the membrane ρ. The
corresponding Fourier transform is given by

⟨ua(q)ub(-q)⟩ =
∑
µ

ϵaµ(q)ϵ
b
µ(−q)

[
(1 + 2nB[Ωµ(q)])

2ρΩµ(q)

]
. (7.42)

We are particularly interested in the Fourier transform of the out-of-plane correla-
tion function. As in the membrane model ZA is the only mode with an out-of-plane
component, we finally obtain:

⟨|h(q)|2⟩ = (1 + 2nB[ΩZA(q)])

2ρΩZA(q)
, (7.43)

which is the formula that will be implemented to obtain the Fourier transform of
the height-height correlation function.

Nearly all the approximations taken in this mathematical derivation were
proved for the ZA mode of graphene in the atomistic calculations in Refs. [128,
133]. In summary, dynamic effects have no impact on frequencies as low as those
of the quadratic mode. Therefore, the frequencies obtained from the dynamical
spectral function are the same as those in the static limit, that is, by diagonalizing
the free energy Hessian, as shown for different temperatures in Fig. 7.4 (a-b). The
only task left was showing that anharmonicity does not remove the quasiparticle
picture of ZA modes, which is indeed the case, as depicted in Fig. 7.4 (c).
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Figure 7.4: Harmonic, and SCHA auxiliary and physical phonons (static and dy-
namic) calculated at 0 K (a) and 300 K (b) with the atomistic potential for the ZA
mode. These calculations showing the negligible dynamic effects in the ZA mode
frequencies are taken from Refs. [128, 133]. (c) Linewidth (full width at half maxi-
mum) of the ZA phonon mode divided by its frequency at 300 K calculated within
the membrane model. The ratio never exceeds 1 (marked by the horizontal blue
line), indicating that anharmonicity does not remove the quasiparticle picture for
this mode.

7.4 Results

All the results presented in this chapter were obtained using the membrane po-
tential described earlier. In first place, we examine the validity of the membrane
model in accounting for the negative thermal expansion observed in graphene.
This paves the way for a deep analysis of the dispersion of the ZA mode in the
long-wavelength limit and its implications on the bending rigidity of graphene. By
doing so, we aim to confirm and solidify the conclusions drawn in previous studies
[128]. The performed code refinement allows to reach wavevector values an order
of magnitude smaller than those in earlier calculations, enabling the observation of
relevant physical phenomena such as the potential anharmonic linearization of the
ZA phonon modes predicted by other works. In the second part, we focus on the
nature of the ripples by analysing the scaling of the equal time out-of-plane correla-
tion function, a well-explored quantity in the literature. Throughout the chapter,
the results for the rotationally invariant membrane are compared with those for
the non-invariant counterpart, as the latter is a commonly used approximation in
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most analytical studies in the literature. In this way, we perform a comprehensive
comparison between our results and those in the existing literature, explaining
how our novel hypothesis fits within the established knowledge.

7.4.1 Thermal expansion in graphene

Solving numerically the coupled set of SCHA equations (7.5)–(7.8) reveals that
the membrane model accurately captures phenomena such as the negative ther-
mal expansion of graphene, as shown by the black connected dots in Fig. 7.5. This
behaviour originates from the low-energy dispersion of the out-of-plane bending
modes, which generate an effective contraction of the material’s area. The contri-
bution of the in-plane acoustic modes to the obtained thermal expansion is minimal
due to their low thermal occupation at the temperatures considered in this study,
particularly in view of the much higher thermal population of the out-of-plane
modes.
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Figure 7.5: Graphene’s negative thermal expansion. (a) Percentage of the relative
change in the lattice parameter, δa, as a function of temperature in the membrane
model (black connected dots), compared to the quantum atomistic calculations of
Refs. [128, 133] (orange connected dots). (b) The same data, but with a constant
shift applied to the quantum atomistic calculations, neglecting the effect of the zero-
point motion of the optical modes.

The atomistic quantum calculations in Refs. [128, 133] have been included
with orange connected dots in Fig. 7.5 to evaluate the validity of the thermal
expansion results predicted by the membrane model. In Fig. 7.5 (a), the atom-
istic calculations show a consistent shift from the membrane model results at each
temperature, attributed to the zero-point energy of the optical modes, which the
membrane model does not account for. In panel (b) the effect of the zero-point
motion of the optical modes is virtually neglected by applying a constant shift to
the quantum atomistic calculations. The close alignment of both results suggests
that the membrane model effectively captures the impact of the acoustic modes
on the thermal expansion.
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Definitely, while the membrane model successfully addresses the competition
among various acoustic modes, it fails to consider the contributions of optical
modes at both low and high temperatures. In fact, at higher temperatures than
those considered, the thermal occupation of the optical modes drives a transi-
tion towards positive thermal expansion [139]. This observation underscores the
need for a more comprehensive model to fully capture graphene’s complex thermal
response, particularly at elevated temperatures.

7.4.2 The dispersion of the ZA mode and the bending
rigidity

Aiming at identifying quadratic dispersions, Fig. 7.6 presents the frequency of the
ZA mode over the squared momentum at two temperatures: 0 K and 300 K. In
particular, we compare the constant ratio obtained with the quadratic harmonic
phonon dispersion with the one obtained with the SCHA auxiliary dynamical ma-
trix based on Eq. (7.6) (light blue dots) and the static physical phonons coming
from the free energy Hessian (green dots). Due to the low frequencies of the
ZA modes, taking this static limit for the physical phonons is perfectly valid, as
demonstrated in the atomistic calculations of Fig. 7.4 (a-b). Then, while the ra-
tio calculated with the auxiliary phonons represents the mean-field approximation,
the truly renormalized anharmonic phonons, which are the only ones with physical
significance, are those derived from the free energy Hessian.

The results obtained for the rotationally invariant membrane are displayed
with filled dots in both panels. The ratio calculated with ZA phonons obtained
from the auxiliary SCHA force constants, plotted with light blue filled dots, di-
verges in the long-wavelength limit as a consequence of the linearization of the
ZA phonons at small momenta. In contrast, the ratio calculated with the physical
ZA phonons derived from the free energy Hessian, shown with green filled dots,
remains independent of the wavevector. This indicates that, indeed, the ZA an-
harmonic phonons exhibit a quadratic dispersion in the long-wavelength limit in
an unstrained membrane once high-order interactions are considered, as expected
by symmetry. In fact, the ratio gets practically on top of the harmonic values even
at the smallest wavevectors at any temperature. Therefore, the bending rigidity,
which is proportional to this ratio, is barely affected by anharmonic interactions,
in contradiction to the broadly assumed result that it diverges at small momentum
in membranes due to thermal fluctuations [31]. In particular, the bending rigidity
that we obtain is around the harmonic value of 1.5 eV, in good agreement with
the experiments by Al Taleb et al. [38] and Tømterud et al. [40].

Empty symbols in Fig. 7.6 show the results obtained by breaking rotational
invariance of the membrane model through different mechanisms. In particular,
empty dots in Fig. 7.6 (a) show the result obtained when neglecting the high-
order ∂iu · ∂ju term in the membrane potential of Eq. (7.4). In this case the
bending rigidity shows a divergent tendency in the long-wavelength limit due to
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Figure 7.6: (a) Frequency of the ZA mode divided by the squared momentum,
calculated within the harmonic approximation and within the SCHA auxiliary and
physical cases at 0 K in the membrane model. We name rotationally invariant (RI)
the results considering the full potential in Eq. (7.4). We name no rotationally
invariant (No RI) the results neglecting the ∂iu · ∂ju term in Eq. (7.3). (b) Same
results at 300 K with the full membrane potential in the rotationally invariant case.
The results without considering thermal expansion (NTE) are also shown.

the linearization of the ZA dispersion predicted in our analytical calculation in Eq.
(7.25). The departure from the results obtained in the rotationally invariant model
highlights the importance of including these high-order terms in the potential to
accurately estimate the mechanical properties of membranes, even though they
tend to be neglected in the literature [23, 25, 27, 31–34, 130]. On the other side,
a similar effect occurs in the anharmonic calculation when the lattice parameter
is not relaxed to the minimum of the free energy, as shown with empty squares in
Fig. 7.6 (b). In this case the bending rigidity also diverges in the long-wavelength
limit due to the ZA mode linearization caused by the strain, although the exponent
is different. Definitely, a strained membrane is no longer rotationally invariant,
which emphasizes that properly accounting for thermal expansion is essential to
recover the quadratic dispersion of the flexural modes.
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In conclusion, our results upturn the conventional wisdom of 2D membranes
[23, 25, 27, 31–34, 130]: interactions do not linearize the dispersion of the ZA mode
and the bending rigidity does not diverge at small momentum. The main reason
behind the observation of these phenomena in previous analytical works is that
the ∂iu · ∂ju term in the strain tensor, which guarantees the rotational invariance
of the potential (see Appendix C), is neglected. This omission unavoidably lowers
the power of the ZA phonon frequency to ∼ qd, as shown in Fig. 7.6 (a). In
particular, in the range of wave numbers studied, we obtain that d ∼ 1.6, even
if in the ultimate q → 0 limit we expect a linear dispersion from our quantum
calculation in Eq. (7.25), as suggested also in Ref. [27].

7.4.3 The height-height correlation function

In practice, the anharmonic stiffening of the membrane is usually studied from the
height-height correlation function in momentum space, ⟨|h(q)|2⟩, both in analyti-
cal calculations and numerical simulations. While in the harmonic approximation
it scales as ⟨|h(q)|2⟩ ∼ q−4, the amplitude of the height-fluctuations is partially
suppressed to q−4+η when the ZA modes are linearized. Different analytical cal-
culations [23, 25, 27, 31–34, 130] yield consistent values of η ∼ 0.80 − 0.85. Our
hypothesis suggests that the amplitude of height fluctuations, or ripples, in the
long-wavelength limit would reflect the lack of rotational symmetry in these cal-
culations. However, classical Monte Carlo [24, 130] and molecular dynamics [131]
simulations of graphene, which inherently respect the rotational invariance, obtain
similar values for the exponent η. In this section we compute the Fourier transform
of the height-height correlation function, allowing for a thorough comparison of
our hypothesis with existing results in the literature.

As explained in Section 7.3.1, the ensemble average of the out-of-plane dis-
placement correlation function ⟨|h(q)|2⟩ in our membrane model can be computed
within the SCHA, which in the static limit results in the simplified expression
given by Eq. (7.43). In this equation, nB(ω) is the bosonic occupation factor and
ΩZA(q) the interacting physical flexural phonon frequency coming from the free
energy Hessian. The presence of the bosonic occupation completely determines
the dependence on q of the correlation function. Specifically, in the classical limit,
when temperature is larger than the frequency of the ZA mode, the correlation
function scales as ⟨|h(q)|2⟩ ∼ ΩZA(q)

−2. On the contrary, in the quantum limit,
when the ZA mode is not thermally occupied but exhibits zero-point motion, it
scales as ⟨|h(q)|2⟩ ∼ ΩZA(q)

−1. Therefore, this crossover occurs at different wave
numbers depending on the temperature, basically when the energy of the ZA
phonon mode is of the order of the thermal energy: ℏΩZA(q) ∼ kBT .

In Fig. 7.7 we show the Fourier transform of the height-height correlation
function at 12.5 K, evaluating Eq. (7.43) with frequencies at different levels of ap-
proximation. As predicted, there is a clear crossover between the regimes in which
thermal (orange shaded) and quantum (purple shaded) fluctuations determine the
ripples, separated with the dashed vertical line. In both regimes, the correlation
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function decays with increasing wavevectors. In the case of the classical regime,
the decaying behaviour arises from the decreasing of the thermal occupation of
the flexural phonon modes according to Bose-Einstein statistics. The fact that the
correlation function depends inversely on phonon frequencies enhances this decay-
ing behaviour, explaining why this function still decays in the quantum regime,
but with a different exponent.
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Figure 7.7: Fourier transform of the height-height correlation function at 12.5 K
in the membrane model evaluated at different levels of approximation: harmonic
(black dots), anharmonic RI result (green filled dots) and anharmonic No RI result
(green empty dots). The dashed vertical line specifies the wavevector at which
the crossover from classical (orange background) to quantum correlations (violet
background) occurs at this temperature. The dashed lines correspond to linear fits
with different exponents.

Since the exponent of the correlation function in each regime depends on the
ZA phonon dispersion, it changes depending on the approximation level. At 12.5
K, the exponent does not change in the quantum regime even if a non rotation-
ally invariant potential is considered: ⟨|h(q)|2⟩ ∼ ΩZA(q)

−1 ∼ q−2. The common
exponent arises from the fact that the linearization of the ZA phonon affects only
small wavevectors, as shown in Fig. 7.6. In the classical regime, we recover the
⟨|h(q)|2⟩ ∼ q−3.2 behaviour when we neglect ∂iu · ∂ju, as shown with empty dots,
showing that our result is consistent with previous calculations within SCSA and
NPRG methods in the wave number range studied [23, 25, 27, 31–34, 130]. How-
ever, when we keep full rotational invariance, the ZA modes acquires a quadratic
dispersion and thus ⟨|h(q)|2⟩ ∼ q−4, which is the result obtained in the harmonic
case. Consequently, anharmonicity does not suppress the amplitude of the ripples
in the long-wavelength limit, upturning the previous consensus [23, 25, 27, 31–34,
130]. It is worth noting, however, that in the renormalization group calculations
presented in Ref. [132] a q−4 behaviour was not recovered even if the Hamiltonian
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contained the ∂iu · ∂ju term and was, thus, rotationally invariant. At this point,
it should be stressed that accounting correctly for the thermal expansion and not
using a fix lattice parameter a0 is crucial to recover the quadratic dispersion of
the ZA mode as well as the consequent q−4 power law of the height correlation
function. As shown in Fig. 7.6 (b) with light blue empty squares, a strained mem-
brane results equally in a divergent bending rigidity.

Finally, we compare our results from the membrane model with the atom-
istic calculations on graphene available in the literature, which employ empir-
ical potentials that theoretically maintain rotational symmetry. Path-integral
Monte Carlo (PIMC) simulations of freestanding graphene have reported a similar
crossover between the regimes where thermal and quantum fluctuations dominate
the ripples [140]. However, atomistic classical Monte Carlo and molecular dynam-
ics simulations have estimated ⟨|h(q)|2⟩ for small wave numbers in the order of

q ∼ 0.01Å
−1

, finding a scaling law not far from the q−3.2 obtained in the mem-
brane model when rotational symmetry is broken [24, 130, 131, 140]. Even if this
contradicts our results since such atomistic calculations respect in principle rota-
tional symmetry, an uncontrolled small strain in these calculations could influence
the exponent of the height-height correlation function.

To assess the significance of small strains on the behaviour of the height-
height correlation function, we formulate a simple harmonic model that describes
the relationship between the ZA frequency and the biaxial strain δa. Biaxial
strain is incorporated in the strain tensor of Eq. (7.3) in a similar fashion to
thermal expansion, by modifying ∂iuj → ∂iuj + δijδa, but here δa is treated as a
constant external strain rather than a variable to be relaxed. In any case the only
second-order term involving out-of-plane fluctuations is δa(λ + µ)

∫
Ω
d2x ∂kh∂kh.

Consequently, the modified harmonic potential energy for h due to strain can be
expressed as

Vδa =
1

2

[∫
Ω

d2x κ(∇2h)2 + 2δa(λ+ µ)

∫
Ω

d2x ∂kh∂kh
]
, (7.44)

whose diagonalization leads to

ωZA(q) =

√
2(λ+ µ)δaq2 + κq4

ρ
. (7.45)

In Fig. 7.8, we present the explicit calculation of ⟨|h(q)|2⟩ as a function of
biaxial strain at T = 12.5 K, obtained by substituting Eq. (7.45) into the equation
for the height-height correlation function. The figure demonstrates that even the
application of a minimal tensile strain is enough to suppress out-of-plane fluctu-
ations, making it an effective mechanism for stabilizing long-range orientational
order [130]. In fact, the results suggest that an uncontrollable strain in the nu-
merical simulations as small as δa = 10−5 can lower the ripples amplitude from
the q−4 law expected for the unstrained membrane (black dashed lines) to q−3.23

(red dashed lines) in the wavevector window of the order of q ∼ 0.01Å
−1

. This
specific wavevector range is precisely the one classical atomistic simulations can
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effectively probe [24, 130, 131, 140]. Actually, the exponent for a strained mem-
brane is expected to approach q−2 for the smaller wavevectors, as predicted by Eq.
(7.45), which implies that probing the longest wavelengths, we would find that
the exponent is not -3.23 but rather -2. This indicates that the supposed anhar-
monic exponent observed in atomistic simulations can arise from a combination
of the presence of such small, uncontrollable strains and the limited wavevector
range accessible to these techniques. In short, even though our model predicts
an asymptotic value of q−2 under strain, the figure underscores how sensitive the
exponent is to factors that extend beyond the precision of current atomistic sim-
ulation methods.
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Figure 7.8: Fourier transform of the height-height correlation function at 12.5 K
in the membrane model as a function of the biaxial strain δa. The dashed lines
correspond to linear fits with the exponents found in the previous figure for the
rotationally invariant membrane (black dashed line) and for the non-rotationally
invariant membrane (red dashed line). In the long-wavelength limit, the behaviour
deviates from the q−4 law even for very small strains, such as δa = 10−5.

In addition to the impact of external strain on the stability of 2D materials,
other factors can also influence the exponent derived from atomistic simulations.

In fact, considering that the ZA mode with q ∼ 0.01Å
−1

requires about 1 nanosec-
ond to complete one period, very long simulation times are needed to describe a
thermodynamically flat phase of graphene. As a result, these Monte Carlo and
molecular dynamics numerical simulations may be affected by non-ergodic condi-
tions, impacting the determination of the height correlation function in the long-
wavelength limit. On the contrary, in our SCHA simulations the ionic equilibrium
positions are always in the plane. The positive phonon frequencies observed in all
our calculations confirm that this flat configuration is indeed a minimum of the
free energy at the studied temperatures and therefore, at least, a metastable state.
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7.4.4 Temperature effects on the height-height correlation
function

Finally, this subsection examines how temperature affects the nature of graphene’s
out-of-plane fluctuations, or ripples. To understand their shift from classical to
quantum behaviour, we compare the height-height correlation function at room
temperature (300 K) with that at absolute zero (0 K). Analysing the correlation
functions at these temperatures enables us to clarify how thermal and quantum
fluctuations influence the surface texture of graphene.

Even if graphene’s Debye temperature has a higher value than room temper-
ature, at 300 K all the out-of-plane modes are substantially thermally occupied
in the wavevector range in which we have focused our analysis on. As shown in
Fig. 7.9, thermal fluctuations dominate, and the height-height correlation func-
tion shows a classical behaviour. Again, the quadratic dispersion of both harmonic
(black dots) and anharmonic rotationally invariant results (green filled dots) leads
to an exponent of ⟨|h(q)|2⟩ ∼ q−4, consistent with classical statistics. The lin-
earization of anharmonic phonons in the long-wavelength limit when the rotational
invariance is broken makes us recover the exponent obtained in the classical coun-
terparts in the literature once more.

Harmonic
Physical
Physical No RI

∝q-3.90

 ∝q-3.20

T = 300 K

Classical Reg.

10-2

10-1

100

101

102

103

104

105

106

0.02 0.05 0.1 0.2 0.4 0.6 0.8

〈|
h
q
|2

〉

|q| (Å-1)

(Å
4
)

Harmonic
Physical RI
Physical No RI

Figure 7.9: Fourier transform of the height-height correlation function at 300 K in
the membrane model evaluated at different levels of approximation: harmonic (black
dots), anharmonic RI result (green filled dots) and anharmonic No RI result (green
empty dots). The dashed lines correspond to the linear fitting in each case.
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At 0 K there is no phonon mode thermally occupied, but all of them fluctuate
due to quantum zero-point motion. The height-height correlation function shows
a fully quantum behaviour, with no crossover to a classical regime, as illustrated
in Fig. 7.10. The harmonic (black dots) and anharmonic rotationally invariant re-
sult (green filled dots) yield the same exponents due to their quadratic dispersion:
⟨|h(q)|2⟩ ∼ q−2. When the membrane lacks rotational invariance due to neglect-
ing the ∂iu · ∂ju term in the strain tensor, anharmonic phonons (green empty
dots) are quadratic in the short-wavelength limit, consistent with Eq. (7.25).
However, in the long-wavelength limit, they exhibit a linearized behaviour with
⟨|h(q)|2⟩ ∼ ΩZA(q)

−1 ∼ q−1.62. This exponent reminds of the phonons in the
SCSA, which scale as qν with ν ∼ 1.6 [32].
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Figure 7.10: Fourier transform of the height-height correlation function at 0 K in
the membrane model evaluated at different levels of approximation: harmonic (black
dots), anharmonic RI result (green filled dots) and anharmonic No RI result (green
empty dots). The dashed lines correspond to the linear fitting in each case.

Therefore, even at absolute zero, graphene exhibits some degree of corruga-
tion, which corresponds to the macroscopic manifestation of the atomic zero-point
motion. However, quantum ripples differ significantly from their classical coun-
terparts [140]. Specifically, quantum zero-point motion results in weaker long-
wavelength flexural fluctuations compared to thermal fluctuations, which means
that quantum ripples tend to make graphene globally flatter, without crumpling
the system. However, the slower decay of the height-height correlation function
reflects how quantum zero-point motion leads to relatively more pronounced short-
wavelength fluctuations, making the surface locally rougher compared to classical
graphene.
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7.5 Conclusions and outlook

In this chapter we have analysed theoretically the mechanical properties of graphene
by means of a non-perturbative treatment of anharmonicity. Based on the con-
sideration that the anharmonic free energy fulfills the same symmetry properties
as the harmonic potential, we have proved using a membrane model that the
quadratic dispersion for the ZA mode persists even when anharmonic interactions
are considered. Remarkably, even if in the harmonic case a quadratic dispersion
implies non-propagating sound, within our anharmonic theory in-plane phonons
can propagate sound even if the flexural modes have a quadratic dispersion [128,
133]. Due to this quadratic dispersion, we find that, contrary to previous assump-
tions, graphene’s bending rigidity does not diverge in the long-wavelength limit.

In order to compare our hypothesis with results from the literature, we have
computed the height-height correlation function and examined how sensitive the
results are to factors that break rotational invariance. Specifically, our findings
suggest that literature results often show deviations from rotational invariance, pri-
marily due to the omission of high-order in-plane terms in the membrane Hamilto-
nian in analytical calculations, and the influence of strain in numerical simulations.
In summary, our results demonstrate that the temperature dependence of mem-
brane height fluctuations is indeed governed by thermal or quantum fluctuations.
However, contrary to previous assumptions, there is no anharmonic suppression of
their amplitude when a rotationally invariant model is used. All the conclusions
exposed so far are universal and can be extrapolated to any strictly 2D material
or membrane.

These results and their implications are, however, limited to intrinsic 2D sys-
tems without any external perturbation that breaks rotational symmetry and to
situations in which the average positions of the atoms in the 2D material are strictly
confined to the plane. In practice, however, 2D materials are usually grown on sub-
strates that apply some degree of strain, even if minimal, which breaks rotational
symmetry. The repercussions of our findings under these conditions remain to be
determined. Nevertheless, the simple harmonic model used to describe the effect of
biaxial strain indicates that even a minimal tensile strain can effectively suppress
out-of-plane fluctuations and stabilize long-range orientational order [130].

On the other hand, it is still unclear whether 2D materials are truly flat as
assumed or whether they exhibit static ripples. We have demonstrated that the
flat configuration is dynamically stable, given the absence of unstable phonons in
our calculations. However, these findings alone are not enough to establish that
the flat phase is energetically favourable, as the rippled configuration might rep-
resent the global minimum of the free energy landscape. Therefore, to further
validate our interpretation of the mechanical properties of 2D materials, the next
step would be to analyse whether static ripples can form in unstrained graphene,
and to evaluate if such potential formation is energetically favourable with respect
to the flat configuration within the theoretical framework of this study.
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Despite the sensitivity of the results to strain and the flatness of the sam-
ple, these findings are highly relevant as they describe the intrinsic mechanical
properties of graphene and other flat membranes. For instance, considering that
phonons are at the core of heat transport, our ideas could impact the understand-
ing of thermal conductivity in 2D systems. In particular, a quadratic dispersion of
ZA phonons would lead to a lower group velocity compared to linearly dispersing
modes.
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This thesis has systematically explored the significance of anharmonic effects in
the behaviour of various physical systems, particularly in reduced dimensionality
scenarios involving 2D and quasi-2D materials. By employing non-perturbative
approaches, we have proved that anharmonicity plays a crucial role in determining
the properties and stability of systems such as bulk and monolayer 1T -VSe2 as
well as graphene.

In the first chapter we have examined the CDW transition in 1T -VSe2, re-
vealing that it is driven by the collapse of a low-energy acoustic phonon mode
at qCDW = (0, 1/4, 0.3) and TCDW = 110 K, similar to behaviours observed in
other TMDs like 2H -NbSe2 and 1T -TiSe2. Anharmonic effects play a crucial role
in stabilizing the high-symmetry phase at high temperatures, while weak van der
Waals interactions between VSe2 layers are essential for melting the CDW. The
electron-phonon interaction is the main driving force of the CDW transition in
1T -VSe2 despite the presence of nesting at the CDW wavevector, whose role is
rather to be a factor enhancing the electron-phonon matrix elements rather than
being the principal mechanism itself. Interestingly, unlike other TMDs where the
CDW is typically quenched under pressure, bulk VSe2 shows an enhancement of
the charge modulated phase, potentially reaching around 290 K. We suggest that
the long-range vdW interactions are also crucial for understanding this behaviour.
Under pressure, the layers are brought closer together, effectively quenching the
interlayer vdW interactions and thereby enhancing the stability of the CDW phase.

Next, we have analysed theoretically the strain dependence of the CDW or-
ders in monolayer 1T -VSe2 to resolve previous experimental contradictions. Our
non-perturbative anharmonic phonon calculations have revealed that monolayer
VSe2 can develop two independent CDW orders that compete as a function of
strain. Variations as small as 1.5% in the lattice parameter are sufficient to stabi-
lize one order or the other. We have found that the natural CDW order is

√
3×

√
7,

while the 4 × 4 order, which is the in-plane projection of the 4 × 4 × 3 order in
the bulk, appears only under strain. The change in order with reduced dimen-
sionality emphasizes the significance of interlayer interactions in VSe2. Besides,
critical temperatures in the monolayer are enhanced compared to the bulk, due
to the absence of interlayer interactions, resulting in more robust CDW orders.
Our findings also indicate that intrinsic the CDW orders in monolayer VSe2 are
primarily driven by the electron-phonon coupling, without significant nesting sig-
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natures at the CDW wavevectors. While our analysis explains the variability of
CDW orders and transition temperatures in monolayer VSe2, it does not address
substrate-related effects, such as potential charge transfer that could impact CDW
orders, suggesting future research opportunities in this area.

In line with the discussion in the preceding paragraphs, the evidence gathered
in this thesis suggests that strong vdW interactions tend to suppress CDW phases
[126]. It is important to note that in all the TMDs studied prior to VSe2 using
the SSCHA method [76–78], it has not been necessary to include vdW interac-
tions in the exchange-correlation functional to melt the charge modulated phase
and achieve transition temperatures consistent with experimental values. This
does not mean that theoretical estimates could not be refined by considering these
interactions, but it is evident that vdW interactions play a unique role in both
bulk VSe2 and its monolayer, possibly due to their 3D nature. Definitely, a more
detailed analysis of when vdW effects influence CDWs in TMDs could represent
a highly interesting research avenue for the future. In this sense, an interesting
compound to analyse to gain a better understanding on the influence of vdW in-
teractions is the isostructural and isoelectronic 1T -VTe2. Similar to 1T -VSe2, the
CDW in 1T -VTe2 is also 3D; however, the corresponding transition temperature
is relatively high at 475 K [141]. That is, despite the structural, electronic and
3D CDW nature similarities with 1T-VSe2, the stronger CDW phase reported in
experiments indicates that vdW effects do not play a significant role in this com-
pound. Undoubtedly, studying the CDW transition in 1T -VTe2 would provide
deeper insights into the impact of vdW interactions in TMDs.

Finally, we have studied the mechanical properties of graphene employing the
same non-perturbative approach to include anharmonic effects. We have esta-
blished that the anharmonic free energy retains the same symmetry properties as
the Born-Oppenheimer potential, demonstrating through a membrane model that
the quadratic dispersion of the ZA mode persists despite anharmonic interactions.
Notably, our findings indicate that the bending rigidity does not diverge in the
long-wavelength limit. We have computed the height-height correlation function
and highlighted that literature results often deviate from rotational invariance due
to neglecting high-order in-plane terms and strain effects. While the temperature
dependence of membrane height fluctuations is influenced by thermal or quantum
fluctuations, we found no anharmonic suppression of these fluctuations under a
rotationally invariant model. All these conclusions are universal and applicable to
any strictly 2D material or membrane, as they are founded on symmetry properties.

Still, the fact that anharmonicity does not suppress out-of-plane fluctuations
in reciprocal space implies that these fluctuations remain significant in real space,
on the order of the graphene flake. Given that the membrane model is primarily
designed for small fluctuations, this result raises questions about its effectiveness
in describing the physics of this problem, particularly in the long-wavelength limit.
The limitations of the membrane model might not only apply to our specific case
but could also be relevant for standard anharmonic treatments in the literature.
In any case, these potential limitations do no invalidate the hypothesis that the

136



Conclusions and outlook

quadratic behaviour should be recovered within a non-perturbative treatment of
anharmonicity, since it is rooted in symmetry arguments. Rather, they suggest
that the membrane model may not be the most suitable framework for fully cap-
turing the complexities of the longstanding problem surrounding the mechanical
stability of 2D crystals. On the other hand, our results are limited to intrinsic
2D systems without external perturbations that break rotational symmetry. In
practice, 2D materials typically experience minimal strain from substrates, which
may affect our findings, as even slight tensile strain can suppress out-of-plane fluc-
tuations and stabilize long-range order. Nevertheless, we have established that
the flat configuration of graphene is dynamically stable, although it is still un-
certain if this state is energetically favourable compared to a potential rippled
configuration. Future research should investigate the energetics of static ripples in
unstrained graphene to further validate our findings.

The findings in this thesis underscore the importance of considering anhar-
monic effects in the study of 2D materials, as they significantly impact both their
dynamical properties and mechanical stability. In particular, our results have in-
troduced a novel perspective on the necessity of incorporating van der Waals inter-
actions to accurately characterize materials that host charge density waves. Conse-
quently, it is now common practice to include vdW interactions when analysing
CDW transitions using the SSCHA method, even in systems that are not purely
2D, such as the kagome metals. In this regard, it is important to emphasize
that Grimme’s method, which works well for layered systems like graphite, likely
introduces non-pure vdW interactions in other systems, potentially leading to a
misleading stabilization of their CDWs. Therefore, it is not advisable to apply
this correction indiscriminately without some physical intuition. In conclusion,
this thesis contributes to a deeper understanding of how anharmonicity and re-
duced dimensionality interact to shape the physical properties of low-dimensional
systems, paving the way for future research in this area.
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Appendix A

Interpolation of the SSCHA
anharmonic dynamical
matrices

The stochastic implementation of the SCHA method involves the evaluation of en-
ergies and forces in supercells, which results in obtaining the anharmonic dynami-
cal matrices on a commensurate grid of q-points. Therefore, calculating dynamical
matrices on a dense grid of q-points requires large supercells, which significantly
increases the computational cost and makes the calculations exceedingly time-
consuming. Such high computational demands represent a major drawback of the
method. To address this issue and obtain the free energy Hessian dynamical ma-
trix at any desired q-point in the reciprocal space, we have employed the following
interpolation scheme.

We begin by defining the anharmonic dynamical matrices obtained from the

SSCHA calculation on a coarse q-point grid as D
(F)
coarse(q), which corresponds to

employing a small supercell. The harmonic dynamical matrices calculated on the

same q-point grid are denoted as D
(h)
coarse(q). The difference between the SSCHA

anharmonic and the harmonic force constant matrices is then given by:

D̃coarse(q) = D(F)
coarse(q)−D(h)

coarse(q). (A.1)

This difference is assumed to vary smoothly in the reciprocal space, indicating that
it is more localized in real space than either the harmonic or anharmonic force con-
stant matrices individually. Based on this assumption, the difference D̃coarse(q)
can be interpolated using Fourier methods to any q-point in the Brillouin zone,
resulting in D̃target(q).
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Finally, by calculating the harmonic dynamical matrices at specific q-points,
which is significantly faster than computing the anharmonic ones, we can estimate
the anharmonic dynamical matrices at any arbitrary q-point not commensurate
with the supercell. This estimation is achieved through the following expression:

D
(F)
target(q) = D

(h)
target(q) + D̃target(q). (A.2)

This interpolation scheme allows us to efficiently obtain anharmonic dynamical
matrices along a specific q-point path in reciprocal space, or on a finer q-point
grid. From this finer grid, we can then Fourier interpolate to extract the phonon
dispersion, significantly improving computational efficiency and accuracy in the
calculation of anharmonic phonon properties.
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Quadratic dispersion of the
ZA mode in the harmonic
approximation

In this appendix, we present a mathematical proof demonstrating that the disper-
sion relation of the ZA phonon mode in 2D materials exhibits a quadratic behaviour
in the long-wavelength limit, q → 0, within the harmonic approximation.

To proceed, it is important to recall that in the harmonic approximation in-
troduced in Section 3.1, lattice vibrations are described as a superposition of inde-
pendent modes, known as phonons. Each phonon is characterized by a wavevector
q and a branch index µ = 1, . . . , 3p, where p represents the number of atoms per
unit cell. The squared phonon frequencies ω2

µ(q) are obtained as the eigenvalues
of the 3p× 3p dynamical matrix:

Dαα′

ss′ (q) =
∑
n

ϕαα′

ss′ (Tn, 0)√
MsMs′

e−iq·Tn . (B.1)

In the particular case of graphene, there are p = 2 atoms per unit cell. Further-
more, since both atoms in the unit cell are carbon atoms, we haveMs = Ms′ = MC ,
where MC is the mass of the carbon atom.

The elements of the force constant matrix ϕαα′

ss′ (Tn, 0), and consequently those
of the dynamical matrix Dαα′

ss′ (q), are constrained and interconnected by the sym-
metries of the underlying lattice. In strictly 2D materials, where equilibrium po-
sitions are confined to the z = 0 plane, the following constraints arise:

1. Mirror Symmetry: The mirror symmetry with respect to the z = 0 plane
leads to the vanishing of the following second-order force constant compo-
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nents:
ϕxz

ss′(Tn, 0) = ϕyz
ss′(Tn, 0) = 0. (B.2)

This constraint implies that the dynamical matrix is block diagonal:

Dxz
ss′(q) = Dyz

ss′(q) = 0, (B.3)

allowing us to analyse the in-plane and out-of-plane vibrational modes inde-
pendently.

2. Inversion Symmetry: The symmetry of inversion implies that the system
remains unchanged when all spatial coordinates are reversed, so that:

ϕαα′

ss′ (Tn, 0) = ϕαα′

ss′ (−Tn, 0). (B.4)

In the case of the dynamical matrix, it behaves the same if we replace q with
-q:

Dαα′

ss′ (q) = Dαα′

ss′ (−q). (B.5)

Additionally, in the case of graphene, the inversion symmetry with respect
to the center of the hexagon results in the relationship:

ϕαα′

11 (Tn, 0) = ϕαα′

22 (Tn, 0). (B.6)

This translates to the dynamical matrices in Equation (B.1) as follows:

Dαα′

11 (q) = Dαα′

22 (q). (B.7)

3. Translational Invariance: The principle of translational invariance dic-
tates that displacing the entire crystal without causing any internal distor-
tion results in no net forces. This condition leads to the acoustic sum rule
(ASR): ∑

ns

ϕαα′

ss′ (Tn, 0) = 0. (B.8)

As a direct consequence of the ASR, we obtain the following relation for the
dynamical matrices at the Γ point:

Dαα′

12 (q = 0) +Dαα′

11 (q = 0) = 0. (B.9)

4. Rotational Invariance: The principle of rotational invariance states that
rotating a 2D crystal as a whole in 3D space should not alter its energy or
generate any forces on the atoms. This property ensures that the physical
characteristics of the crystal remain unchanged regardless of its orientation,
and it is expressed as: ∑

ns

ϕzz
ss′(Tn, 0)T

α
n T

β
n = 0. (B.10)

As a consequence of the rotational invariance, we obtain the following relation
for the dynamical matrices at the Γ point:[

∂2Dzz
11(q)

∂qα∂qβ
+

∂2Dzz
12(q)

∂qα∂qβ

]
q=0

= 0. (B.11)
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Now, considering Eq. (B.3) in conjunction with Eq. (B.7), and using the
commutativity of partial derivatives, we can deduce that the squared frequencies
associated with the acoustic flexural mode of interest are given by:

ω2
ZA(q) = Dzz

11(q) +Dzz
12(q). (B.12)

To prove that this mode exhibits quadratic dispersion in the long-wavelength limit,
we perform a Taylor expansion of ω2

ZA(q) around the Γ point:

ω2
ZA(q) ≈ ω2

ZA(q = 0) +
∑
α

∂ω2
ZA

∂qα

∣∣∣∣
q=0

qα +
1

2

∑
α,β

∂2ω2
ZA

∂qα∂qβ

∣∣∣∣
q=0

qαqβ + . . . (B.13)

where α, β are the Cartesian components. The squared phonon frequency at the
Γ point is 0, ω2

ZA(q = 0) = 0, due to Eq. (B.9), that is, as a consequence of the
translational invariance. Additionally, due to the inversion symmetry constrain in
Eq. (B.5), ω2

ZA(q) is an even function of the wavevector q, so that all the odd-
order terms in the Taylor expansion must vanish. Finally, the constraint imposed
by rotational invariance in Eq. (B.11) implies that the Taylor expansion begins
with the fourth-order terms. As a result, in the long-wavelength limit, we find
that:

ωZA(q) ∝ q2. (B.14)

Proving in this way that the dispersion relation of the ZA phonon mode in 2D
materials exhibits a quadratic behaviour within the harmonic approximation.

It is worth emphasizing that, while rotational invariance is a crucial factor
that ultimately leads to the quadratic dispersion of the ZA mode, this symmetry
can also be present in 3D crystals. In contrast, strictly 2D systems present a
different scenario. Here, the rotational invariance combines with the inherent
mirror symmetry of the system, which effectively decouples the in-plane and out-of-
plane components of the second-order force constants. It is this unique combination
what enables the ZA mode of 2D systems to exhibit the mentioned quadratic
dispersion near the zone center within the harmonic approximation.
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Rotational invariance of the
membrane potential

In this appendix we prove explicitly that the membrane potential in Eq. (7.4) is
rotationally invariant, and that neglecting the high-order in-plane terms ∂iu · ∂ju
results in a breaking of this invariance. Let us remember the model for a continuous
elastic membrane embedded in 3D space. Without loss of generality, we assume
that the flat membrane lies in the xy plane in the equilibrium configuration. We
introduce the local deformations of the membrane from the flat geometry by means
of the vector:

δR(x) = ux(x)i+ uy(x)j+ h(x)k, (C.1)

where x = xi + yj is the coordinate relative to the flat membrane, ux, uy are the
in-plane displacements and h is the out-of-plane displacement. The strain tensor
corresponding to the deformation in Eq. (C.1) is defined as:

uij =
1

2
(∂iuj + ∂jui + ∂iu · ∂ju+ ∂ih∂jh) , (C.2)

where we omit the explicit dependence on x for simplicity. The energy cost for the
deformation is given by:

δE =
1

2

∫
Ω

d2x
(
κ(∇2h)2 + Cijkluijuil

)
. (C.3)

The sum over identical indexes ijkl = x, y is implicit in the previous equation.
As defined in the main text, κ is the bending rigidity and Cijkl = λδijδkl +
µ
(
δikδjl + δilδjk

)
the elastic moduli tensor, with λ and µ the Lamé coefficients.

In what follows we show that the potential of Eq. (C.3) is invariant under any
rigid rotation about the plane of the membrane. To this purpose, we first define
the rotation axis in the xy plane as n = nxi+nyj, where |n| = 1 ensures that n is

147



Appendix C. Rotational invariance of the membrane potential

a unit vector. The rigid rotation of the membrane around the axis n by an angle
θ is characterized by the following linear transformation:

x → x′ = exp [θn×]x. (C.4)

In this case the local deformation of the membrane is expressed as:

δR(x) = [exp (θn×)− 1]x =
∑
k≥1

θk

k!
(n×)

k
x. (C.5)

And the following identities can be derived:

n× x = (nxy − nyx)k, (C.6a)

(n×)
2
x = (nxy − nyx)(nyi− nxj), (C.6b)

(n×)
2k+1

x = (−)kn× x (C.6c)

(n×)
2k

x = (−)k−1 (n×)
2
x. (C.6d)

So that the local deformation of the membrane after a rotation by angle θ around
the axis n is finally written as:

δR(x) = sin θ (n× x) + (1− cos θ)
[
(n×)

2
x
]
. (C.7)

Identifying the latter equation with the general deformation in Eq. (C.1), and
using (C.6) yields:

ux(x) = u0
xf(x), uy(x) = u0

yf(x), h(x) = h0f(x), (C.8a)

where the coefficients, which depend only on the rotation parameters, are:

(u0
x, u

0
y, h

0) = [ny(1− cos θ),−nx(1− cos θ), sin θ] , (C.8b)

and the deformation field depends linearly on the function:

f(x) = nxy − nyx. (C.8c)

The strain tensor of Eq. (C.2) can then be written as:

uij =
1

2

{
u0
j∂if + u0

i ∂jf +
[(
u0
x

)2
+
(
u0
y

)2
+
(
h0
)2]

∂if∂jf
}
. (C.9)

A straightforward calculation using Eqs. (C.8) reveals that each component of
the strain tensor vanishes: uij = 0 ∀ij. Concerning the bending energy term

κ (∇2h)
2
in Eq. (C.3), it is trivially zero as h is a linear function of x in the rigid

rotation that we are considering. This finally shows that there is no change in
energy, δE = 0, for any rigid rotation about the membrane’s plane. Note that the
∂iu · ∂ju term in the potential is needed to keep δE = 0. When it is neglected,
δE ̸= 0 for a rigid rotation, and the model lacks rotational invariance.
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Laburpena

Materialak osatzen dituzten atomoek euren oreka posizioaren inguruan fluktu-
atzen eta oszilatzen dute edozein tenperaturatan, baita zero absolutuan ere, eu-
ren zero-puntuko mugimendu kuantikoaren ondorioz. Bibrazio hauek materialen
propietate fisiko eta kimiko ugari zehazten dituzte, hala nola euren ezaugarri ter-
modinamikoak zein garraio propietateak. Esaterako, bibrazio atomikoek materia-
len propietate termodinamikoen tenperaturarekiko dependentzia zehazten dute,
bibrazio hauek elektroiak baino askoz tenperatura baxuagoetan kitzikatzen baitira.
Ondorioz, fluktuazio atomikoek eragin handia dute fase-trantsizio, bero espezi-
fiko eta espantsio termiko bezalako fenomenoetan. Bestalde, materialen garraio
elektriko eta termikoa ezin da ulertu elektroien eta bibrazio atomikoen kuantuen,
fonoien, arteko elkarrekintza kontuan hartu gabe, ezta fonoien arteko elkarrekintza
alde batera utzita. Supereroankortasuna bera ere, materialetan azaleratzen den
fenomeno intrigagarrienetako bat, elektroi-fonoi elkarrekintzaren emaitza izaten da
askotan. Honetaz gain, dinamika bibrazionalak sinadura espektroskopiko ezber-
dinak uzten ditu, infragorri, Raman, eta x-izpi edo neutroi bidezko sakabanaketa
esperimentuetan ikus daitezkeenak.

Gaur egun, materialen propietate bibrazionalak lehen-printzipio metodoen
bidez kalkulatzen dira hurbilketa harmonikoa prozedura estandar gisa aplikatuz.
Esparru honetan, atomoen dinamika deskribatzen duen Born-Oppenheimer po-
tentziala bigarren ordenara arte garatzen da desplazamendu atomikoen funtzio
bezala. Alabaina, hurbilketa honek fonoiak ongi definituriko kuasipartikulak direla
iragartzen du, euren bizidenbora infinitua eta energia tenperaturarekiko inde-
pendente direlarik. Benetan, fonoiek bizidenbora finitua dute hainbat faktore
direla medio, elkarrekintza anharmonikoak, esaterako. Hala erakusten dute sa-
kabanaketa inelastiko esperimentuetan neurtzen diren fonoi gailurren zabalerek.
Areago, fonoi energiek tenperaturarekiko menpekotasuna dute, bigarren ordenako
fase trantsizioetatik gertu dauden moduen biguntze eta kolapsoak adierazten duen
bezala. Bigarren ordenako fase trantsizioei dagokienez, hurbilketa harmonikoak
tenperatura altuko fase ez-distortsionatuen egonkortasun dinamikoa azaltzeko or-
duan arazoak ditu baita. Hala adierazten dute simetria altuko fasearen fonoi es-
pektro harmonikoetan ageri diren maiztasun irudikariek. Fonoi maiztasun hauek
atomoen zenbait desplazamenduk distortsio espontaneoak eragin ditzaketela irado-
kitzen dute, hain zuzen. Fenomeno hauek guztiak atzemateko, hurbilketa har-
moniko estandarretik harago joan behar da, termino anharmonikoak sartuz deskri-
bapen teorikoan.
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Efektu anharmonikoak barne hartzeko modu bat emaitza harmonikoei per-
turbazio teoria aplikatzea da. Hurbilketa hau fonoien tenperaturarekiko depen-
dentzia eta bizidenbora finitua bezalako fenomeno garrantzitsuak harrapatzeko gai
da. Alabaina, hurbiltze perturbatiboak guztiz kolapsatzen du baldin eta fluktuazio
ionikoen anplitudearen ondorioz garapen harmonikoak ez badu potentzial erreala
hurbiltzen. Kolapso hau maiz gertatzen da desplazamendu atomiko esanguratsuak
dituzten sistemetan. Esaterako ioi arinak dituzten horietan, baita karga dentsi-
tate uhinak (ingelesez, charge density wave, CDW) bezalako fase trantsizio displa-
ziboetara hurbiltzen diren materialetan ere, edota dimentsio baxuko sistemetan,
non atomoek fluktuatzeko askatasun handiagoa duten. Kasu horietan guztietan,
efektu anharmonikoak dira nagusi sistemaren portaeran eta propietateetan, eta
beraz, hurbiltze metodo ez-perturbatiboak beharrezkoak dira analisi zehatz bat
gauzatzeko.

Hain zuzen ere, tesi honek efektu anharmoniko ez-perturbatiboen eragina
aztertzen du zenbait sistema fisikoren dinamika ionikoan. Egun, hurbilketa harmo-
niko autobateragarria (ingelesez, self-consistent harmonic approximation, SCHA)
[1] da anharmonikotasunaren tratamendu ez-perturbatiboa eskaintzen duen metodo-
rik eraginkorrena, bibrazio atomikoetan eragin termikoak eta kuantikoak kontuan
hartzen dituelarik. Ondorioz, SCHA da lan honetan erabilitako oinarrizko ab ini-
tio metodoa. Tesi honek material oso anharmonikoak aztertzen dituen arren, gai
komun batek lotzen ditu sistema hauek guztiak: dimentsio baxuko konposatuak
direla. Zehazki, sistema bidimentsional eta quasi-bidimentsionalak aztertu ditugu.

Tesi honen lehenengo helburua karga dentsitate uhin ezegonkortasunak
ab initio kalkuluen bidez ikertzean eta ulertzean datza. Gaur egun, lehenengo-
printzipioetan oinarritutako kalkuluen bidez fenomeno hau teorikoki ezaugarritzea
ez da tribiala, izan ere, aipatu bezala, ohiko hurbilketa harmonikoak ezin du
tenperatura altuko distortsiorik gabeko fasearen egonkortasun dinamikoa azaldu.
Muga honek karga dentsitate uhinen jatorriaren eta urtzearen atzean dauden
mekanismoak ulertzea ekiditen du. Lan honetan arazo hauei aurre egiten diegu
geure kalkuluetan efektu anharmoniko ez-perturbatiboak kontsideratuz.

Karga dentsitate uhinak dituzten solidoen artean, trantsizio-metalen dikalko-
genuroak (ingelesez, transition metal dichalcogenides, TMDs) dira bereziki interes-
garri. Izan ere, egitura geruzadun quasi-bidimentsionala duten material hauen fase
diagrama [89–92] tenperatura altuko supereroaleen diagramaren antzekoa da [4–
8], zeinetan supereroankortasuna eragiten duen akoplamendu mekanismoa ezeza-
guna den. Izatez, TMD-ak kristal-egitura sinplea duten materialak izanik, karga
dentsitate uhinen jatorria eta fase honek supereroankortasunarekin duen harre-
mana aztertzeko hautagai bikainak dira. Areago, euren egitura kristalino quasi-
bidimentsionala dela eta, material hauek geruza meheetan erraz esfoliatu daitezke
[17] eta ondorioz, CDW-ak dimentsio murrizketarekiko duten menpekotasuna azter-
tzeko plataforma paregabea eskaintzen dute. Gauzak horrela, II. atalaren helburua
TMD familiako kideetan CDW trantsizioak aztertzea da. Sistema sinple haue-
tan jazotzen diren oinarrizko mekanismoak ulertuz, korrelazio handiko material
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konplexuetan garrantzitsu izan daitezkeen ikuspegiak azalera ekartzeko helburua
dugu. Bereziki, TMD familiako kide metaliko batean zentratzen gara atal horre-
tan, 1T -VSe2-n.

5. kapituluan 1T -VSe2-ren sare dinamika modu sakon batean ezaugarritzen
da, CDW trantsizioari dagozkion efektuei arreta berezia jartzen zaielarik. Geure
fonoi anharmoniko kalkulu ez-perturbatiboek, x-izpi sakabanaketa inelastiko es-
perimentuen datuekin batera, konposatu honen CDW trantsizioa energia baxuko
fonoi modu akustiko baten kolapsoak bultzatzen duela agerira ekarri dute. Fonoi
moduaren uhin-bektore kritikoa qCDW = (0, 1/4, 0,3) da eta TCDW = 110 K. Bi-
guntze portaera hau TMD familiako antzeko konposatuetan hauteman da baita,
hala nola 2H -NbSe2-n [96] eta 1T -TiSe2-n [97]. Geure analisi teorikoak azpi-
marratzen du efektu anharmonikoak erabakigarriak direla tenperatura altuetan
VSe2-ren simetria altuko fasea egonkortzeko. Alabaina, aldez aurretik SSCHA
baliatuz ikerturiko beste TMD-tan ez bezala [76–78], kasu honetan geruzen arteko
van der Waals (vdW) elkarrekintza ahulak kontsideratzea funtsezkoa da CDW-a
urtzeko. Bestalde, elektroi-fonoi elkarrekintza da CDW trantsizioaren indar eragile
nagusia 1T -VSe2-n, nahiz eta uhin-bektore kritikoetan Fermi gainazalaren habia-
keta baden. Hala ere, egindako kalkulu gehigarriek adierazten dute habiaketa hau
ez dela trantsizioaren atzean dagoen mekanismo nagusia, baizik eta elektroi-fonoi
matrize elementuak hobetzen dituen faktore bat. Bitxia bada ere, beste TMD
batzuetan ez bezala [94], VSe2-ren egitura masiboak CDW fasearen hobekuntza
erakusten du presiopean, potentzialki 290 K ingurura iritsiz [92]. Distantzia luzee-
tan ematen diren vdW elkarrekintzak portaera hau ulertzeko erabakigarriak direla
iradokitzen dugu. Hain zuzen ere, presioak geruzak gerturatzen dituenez, euren
arteko vdW interakzioak arintzen ditu eta ondorioz, CDW fasea sendoagoa da.

6. kapituluan, 1T -VSe2 monogeruzaren CDW ordenek deformazioekiko duten
mendekotasuna aztertu dugu teorikoki, literaturan dauden kontraesan esperimen-
talak argitze aldera [100–105]. Geure kalkulu ez-perturbatibo anharmonikoek age-
rian utzi dute VSe2 monogeruzak deformazioaren arabera lehiatzen diren bi CDW
ordena independente garatzen dituela. Sare parametroan %1,5 baino txikiagoak
diren aldaketak nahikoak dira ordena bat edo bestea egonkortzeko. Beraz, emaitza
honek substratu desberdinetan egindako esperimentuetan behatutako modulazio
desberdinentzat azalpena ematen du. Zehazki, CDW ordena naturala

√
3 ×

√
7

dela aurkitu dugu, 4× 4 ordena (egitura masiboaren 4× 4× 3 ordenaren planoko
proiekzioa) soilik tentsiopean agertzen delarik. Bestalde, geruza bakarrarentzat
kalkulaturiko zein esperimentuetan behaturiko tenperatura kritikoak altuagoak
dira egitura masiboarenarekin alderatuta, joera hau geruzen arteko vdW inter-
akzio ezagatik dela iradokitzen dugu. Azkenik, geure kalkuluek adierazten dute
elektroi-fonoi elkarrekintza dela VSe2 monogeruzako CDW trantsizioen eragile,
eta uhin-bektore kritikoetan Fermi gainazalaren habiaketaren sinadura esangura-
tsurik ez dagoela. Gure analisiak VSe2 monogeruzentzat literaturan iragarritako
CDW ordenen eta trantsizio tenperaturen aldagarritasuna azaltzen duen arren, ez
ditu substratuaren efektuak kontuan hartzen. Esaterako, substratu baten karga
transferentziak CDW ordenetan eragina izan lezake [78]. Honakoa abiapuntu in-
teresgarria izan daiteke etorkizuneko ikerketei begira.
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Tesi honetan aztertu dugun bigarren problemak izaera historikoa du, bi
dimentsioko materialen egonkortasun mekanikoa baitu hizpide. Nahiz eta aurreko
paragrafoan material bidimentsionalen existitzeari buruzko ebidentziak aurkeztu,
historikoki, bi dimentsiotan kristal-ordena existitzeko aukera ezinezkotzat jotzen
zen [18–20]. Grafenoaren aurkikuntzak 2004. urtean [17, 21, 22] aspaldiko ira-
garpen teoriko hauei aurre egin zien. Material hauen egonkortasunaren atzean
dauden mekanismo zehatzen inguruko eztabaida gaur egun dirau.

Problema honek duen zailtasun teoriko handiena 2D sistementzat aurreikusi-
tako fluktuazio termiko handietatik dator, izan ere, dimentsio murrizketak ato-
moei planotik kanpo fluktuatzeko aukera ematen die. Fluktuazio garai hauek
lotura estua dute hurbilketa harmonikoaren barruan plano-kanpoko fonoi modu
akustikoentzat (ZA moduentzat) lortzen den dispertsio erlazio koadratikoarekin.
Izan ere, energia baxuko fonoi-modu hauek azkar okupatzen dira tenperatura igo
ahala. Izatez, teoria harmonikoak plano-kanpoko espazio errealeko desplazamen-
duak materialaren tamainarekin konparagarriak direla iragartzen du, modu hone-
tan edozein ordena kristalino eragotziz. Teoria estandarren arabera, plano-barneko
eta plano-kanpoko fonoi moduen arteko akoplamendu anharmonikoak ZA fonoi
moduen dispertsioa linealizatzen du, patologiak sendatuz [23–30]. Antzera batean,
luzaroan onartu izan da edozein membrana jarraituren plano-kanpoko bibrazio
frekuentziek termino lineal bat eskuratzen dutela uhin-bektore txikietan inter-
akzio anharmonikoen ondorioz [31]. Termino lineal honek membrana gogortzen
du eta, ondorioz, honek gainazalean ematen diren uhinen (ingelesez, ripples) anpli-
tudea murrizten du. Eskuarki, espazio erreziprokoko altuera-korrelazio funtziotik
aztertzen da uhinen anplitudea, ⟨|h(q)|2⟩. Hurbilketa harmonikoan, korrelazio
funtzio honek ⟨|h(q)|2⟩ ∼ q−4 bezala eskalatzen du, eta ZA moduak linealizatzean
q−4+η-ra zuzentzen da, non η ∼ 0.80−0.85 den [32, 33]. Materialaren flexioarekiko
zurruntasunak (ingelesez, bending rigidity) limite klasikoan ⟨|h(q)|2⟩q4 gisa es-
kalatzen duenez [31, 32, 34], interpretazio honen arabera, membrana guztien eta
oro har 2D materialen flexioarekiko zurruntasunak uhin-luzera luzearen limitean
dibergitzen du. Honek zalantzazko interpretazio bat sortzen du, alegia, zenbat eta
handiagoa izan membrana, orduan eta zurrunago bihurtzen dela. Ideia hauek es-
perimentuen bidez baieztatzea ez da erraza, alde batetik zaila delako grafenoaren
flexioarekiko zurruntasuna neurtzea [35, 36], eta bestalde, ZA moduen dispertsioa
helio difrakzioz neurtzean substratuaren efektuak nabariak direlako [37–40].

ZA moduarentzat hurbilketa harmonikoan espero den dispertsio koadratikoa
hertsiki 2D diren sistemen berezko simetriek ezartzen dute. Kasu honetan fonoi
frekuentziak ϕab/

√
MaMb matrize dinamikoa diagonalizatuz lortzen dira, non a eta

b indizeek aldi berean indize atomiko eta kartesiarrak biltzen dituzten. Orduan,

Ma a atomoaren masa da, eta ϕab =
[

∂V
∂Ra∂Rb

]
R0

bigarren ordenako indar kons-

tante harmonikoak, zeinak Born-Oppenheimer potentzialaren bigarren deribatua
R posizio atomikoekiko hartuz eta V -ren minimoan ebaluatuz lortzen diren. Hain
zuzen, hurbilketa harmoniko honetan, ZA moduak dispertsio koadratikoa hartzen
du Brillouin-en eskualdearen mugan simetria errotazionalaren eta planoarekiko
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ispilu simetriaren arteko konbinazioaren ondorioz [26]. Alabaina, esperimentuetan
neurtzen diren fonoiak efektu anharmonikoak kontsideratzen dituen fonoi Green-en
funtzioaren zati irudikaritik kalkulatu beharko lirateke [41]. Energia baxuko modu-
entzat, efektu dinamikoak alde batera utz daitezke segurtasunez. Limite honetan,
fonoi gailurrak bat datoz [ ∂F

∂Ra∂Rb
]Req

/
√
MaMb energia askearen Hessiarretik lor-

tutako autobalioekin, non F energia aske anharmonikoa den, Ra bataz besteko
posizio atomikoak, eta deribatua F minimizatzen duten posizioetan ebaluatzen
den [41]. Horrek ondorio harrigarri bat dakar, orain arte oharkabean geratu dena:
F -k eta V -k simetria propietate berdinak betetzen dituztenez, ZA moduaren dis-
pertsioak koadratiko izaten jarraitu behar du elkarrekintza anharmonikoak sartu
ostean.

Nolanahi ere, 2D sistementzat aurreikusitako fluktuazio garaiek iradokitzen
dute problema honetan potentzialeko termino anharmonikoek harmonikoek beza-
lako garrantzia, edo handiagoa, dutela. Beraz, 2D sistemen egonkortasun mekani-
koaren problemari aurre egiteko ikuspegirik egokiena efektu anharmoniko ez-pertur-
batiboak erabiltzea da. Hala izanik, tesi honen 7. kapituluan, hurbilketa har-
moniko autobateragarria aplikatzen diogu grafenoari membrana eredu bat erabi-
liz. Horrela, deformaziorik gabeko grafenoan eta beste edozein 2D membranan
ZA moduaren dispertsio koadratikoa espero dela frogatzen dugu modu sinesgarri
batean. Halaber, fonoi-fonoi elkarrekintzek grafenoaren flexioarekiko zurrunta-
sunean eraginik ez dutela egiaztatzen dugu. Gure emaitzak ez datoz bat aurrez
onartutako membranen portaerarekin errotazio-inbariantza erabat mantentzen du-
gulako. Hain zuzen ere, gure hipotesia egungo teoria estandarrarekin alderatu
eta lerrokatzeko, altuera-altuera korrelazio funtzioaren Fourier-en transformatua
kalkulatzen dugu, ⟨|h(q)|2⟩. Membranaren altuera fluktuazioek izaera termikoa
edo kuantikoa dutela ikusten dugu, baina errotazionalki inbariantea den eredu bat
izanik, ez dugu fluktuazio hauen murrizketa anharmonikorik aurkitu. Hau da,
⟨|h(q)|2⟩ ∼ q−4 baita efektu anharmonikoak kontuan hartzen direnean ere. Modu
honetan azpimarratzen dugu literaturan dauden emaitzak gehienak, ZA moduaren
linealizazioa eta ⟨|h(q)|2⟩ ∼ q−4+η proposatzen duten horiek, ez direla errotazio-
nalki inbariante. Inbariantza apurketa hau barne-planoko ordena altuko terminoak
edota deformazio-efektuak alde batera uzteagatik gerta daiteke.

Zentzu honetan, geure emaitzak kanpo perturbaziorik gabeko (simetria erro-
tazionala apurtu ez dadin) eta hertsiki 2D diren sistemetara mugatuta daude.
Praktikan ordea, 2D materialek substratuak eragindako deformazio txikia izan
ohi dute, eta horrek eragina izan dezake gure aurkikuntzetan. Izatez, trakzio-
deformazio txiki batek ere plano-kanpoko fluktuazioak ezaba ditzake eta irismen
luzeko ordena egonkortu [130]. Dena den, grafenoaren konfigurazio laua dinamikoki
egonkorra dela ezarri dugu, nahiz eta oraindik zalantzazkoa den egoera hau on-
dulatua den konfigurazio baten aldean energetikoki aldekoa den. Etorkizuneko
ikerketek deformaziorik gabeko grafenoan uhin estatikoen energetika ikertu be-
harko lukete gure aurkikuntzak are gehiago baliozkotzeko.
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Tesi honetako aurkikuntzek material bidimentsionalen azterketan efektu an-
harmonikoak kontuan hartzearen garrantzia nabarmentzen dute, haien propietate
dinamikoetan zein egonkortasun mekanikoan nabarmen eragiten baitute. Funtsean,
tesi honi esker sakonago ulertu dugu nola efektu anharmonikoek eta dimentsional-
tasunaren murrizketak elkarri eragiten dioten dimentsio baxuko sistemen propi-
etate fisikoak moldatzeko, etorkizunean arlo honetan egin daitezkeen ikerkete-
tarako bidea erraztuz.
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estuviera Maŕıa, la verdadera dinamizadora del grupo, menos mal que está ella
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preocupa por todos nosotros, sus sobrinos.

Por último, gracias a los de casa. A mi hermano Ander, que lleva unos años
fuera y a quien echo de menos. Pero con quien me sigo entendiendo tan bien como
siempre. Muchas veces pienso que aprendo yo más de ti, que tú de mi. Y a mis
aitas. Que siempre se han preocupado de que a Ander y mi nunca nos faltase de
nada. De educarnos, de enseñarnos y de cuidarnos. Por tanto, la persona que
soy y esta tesis en concreto es la consecuencia de vuestro buen hacer. Aśı que va
dedicada a vosotros. Sé que no lo suelo decir pero os quiero mucho.

Artziniega-Donostia, Octubre de 2024.

Josu Diego
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[48] M. Dion, H. Rydberg, E. Schröder, D. C. Langreth, and B. I. Lundqvist.
“Van der Waals Density Functional for General Geometries”. In: Physical
Review Letters 92 (2004), p. 246401.

172



Bibliography
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Peña-Dı́az, C. Rogero, J. Herrero-Mart́ın, P. Gargiani, M. Ilyn, M. M.
Ugeda, V. Pardo, and S. Blanco-Canosa. “Absence of Ferromagnetism in
VSe2 Caused by Its Charge Density Wave Phase”. In: The Journal of Phys-
ical Chemistry C 123 (2019), pp. 27802–27810.

[117] J. Diego, A. H. Said, S. K. Mahatha, R. Bianco, L. Monacelli, M. Calandra,
F. Mauri, K. Rossnagel, I. Errea, and S. Blanco-Canosa. “van der Waals
driven anharmonic melting of the 3D charge density wave in VSe2”. In:
Nature Communications 12 (2021), p. 598.

[118] M. Hoesch, A. Bosak, D. Chernyshov, H. Berger, and M. Krisch. “Giant
Kohn Anomaly and the Phase Transition in Charge Density Wave ZrTe3”.
In: Physical Review Letters 102 (2009), p. 086402.

[119] M. Calandra, I. I. Mazin, and F. Mauri. “Effect of dimensionality on the
charge-density wave in few-layer 2H-NbSe2”. In: Physical Review B 80
(2009), p. 241108.

[120] J. Henke, F. Flicker, J. Laverock, and J. van Wezel. “Charge order from
structured coupling in VSe2”. In: SciPost Physics 9 (2020), p. 56.

[121] S. M. Souliou, A. Subedi, Y. T. Song, C. T. Lin, K. Syassen, B. Keimer, and
M. Le Tacon. “Pressure-induced phase transition and superconductivity in
YBa2Cu4O8”. In: Physical Review B 90 (2014), p. 140501.

[122] K. Y. Chen, N. N. Wang, Q. W. Yin, Y. H. Gu, K. Jiang, Z. J. Tu, C. S.
Gong, Y. Uwatoko, J. P. Sun, H. C. Lei, J. P. Hu, and J.-G. Cheng. “Double
Superconducting Dome and Triple Enhancement of Tc in the Kagome Su-
perconductor CsV3Sb5 under High Pressure”. In: Physical Review Letters
126 (2021), p. 247001.

[123] Q. Wang, P. Kong, W. Shi, C. Pei, C. Wen, L. Gao, Y. Zhao, Q. Yin, Y. Wu,
G. Li, H. Lei, J. Li, Y. Chen, S. Yan, and Y. Qi. “Charge Density Wave
Orders and Enhanced Superconductivity under Pressure in the Kagome
Metal CsV3Sb5”. In: Advanced Materials 33 (2021), p. 2102813.

[124] J. Feng, R. A. Susilo, B. Lin, W. Deng, Y. Wang, B. Li, K. Jiang, Z. Chen,
X. Xing, Z. Shi, C. Wang, and B. Chen. “Achieving Room-Temperature
Charge Density Wave in Transition Metal Dichalcogenide 1T -VSe2”. In:
Advanced Electronic Materials 6 (2020), p. 1901427.

[125] Z. Guo, X. Hao, J. Dong, H. Li, J. Liao, and D. Chen. “Observation of
pressure induced charge density wave order and eightfold structure in bulk
VSe2”. In: Scientific Reports 11 (2021), p. 18157.

179



Bibliography

[126] A. O. Fumega, J. Diego, V. Pardo, S. Blanco-Canosa, and I. Errea. “An-
harmonicity Reveals the Tunability of the Charge Density Wave Orders in
Monolayer VSe2”. In: Nano Letters 23 (2023), pp. 1794–1800.

[127] J. G. Si, W. J. Lu, H. Y. Wu, H. Y. Lv, X. Liang, Q. J. Li, and Y. P.
Sun. “Origin of the multiple charge density wave order in 1T − VSe2”. In:
Physical Review B 101 (2020), p. 235405.

[128] U. Aseginolaza. “Anharmonic Effects in Thermoelectric and 2D Materials”.
PhD thesis. Universidad del Páıs Vasco (UPV/EHU), 2020.
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