Despite all the difficulties, 2020 has been a record year in terms of research output, with an unprecedented number of publications and exceptional quality.

Iñaki Juaristi Oliden, Vicedirector

2020 has been a complicated and strange year. For several months, many of us looked around us with a feeling of disbelief, helplessness and sadness as we saw our certainties, routines and, ultimately our way of life tragically transformed due to the Covid-19 pandemic. We have witnessed how many of our neighbors, friends and family were affected and sadly some were unable to overcome it. We have felt fear and loneliness. We have been away from our loved ones, whom we have not been able to comfort and help as we would have liked. All this has left a trace of sadness that is only now beginning to dissipate thanks to the renewed hope brought by advances in the vaccination process and the slow return to normality.

However, from the point of view of science and research activity, the year 2020 has been somewhat more ambiguous. Of course, the pandemic had a negative initial impact. The Centro de Física de Materiales (CFM), following the regulation imposed by the University of the Basque Country (UPV/EHU), remained closed and without face-to-face activity for almost two months. During the second half of May, we resumed our activity using a system that combined teleworking with face-to-face activity in shifts, which allowed us to maintain a low occupancy of our facilities. Other measures were imposed, such as the mandatory use of the mask, the closure of communal areas such as the cafeteria and the auditorium, and courses, workshops and scheduled meetings were suspended, etc. Thanks to these measures, and to the discipline and stoicism with which all the staff adopted these measures, it was possible to prevent the appearance of large outbreaks of Covid-19 in the CFM. There have only been isolated cases that were quickly reported, the people involved swiftly confined in their homes, and the possible transmission in the center was avoided. Fortunately, none of these cases had serious consequences. For this civic, responsible and understanding attitude, I want to warmly congratulate all the CFM staff. Finally, in October 2020 the work shifts were definitively abandoned, since they considerably hindered the activity in the laboratories. However, to this day, part of the staff still carries out part of their activities by teleworking.

Despite all these difficulties, 2020 has been a record year in terms of the number of publications (217 articles) and with exceptional quality, as can be seen in this report. It is possible that the pandemic was partially responsible of this, giving us more time to reflect on the results we already had and to finish those manuscripts that were resisting completion. Additionally, there were 82 ongoing research projects (18 of them European and international ones, including one ERC Starting Grant and ERC Advanced Grant), with more than 3,8 million euros granted to CFM researchers only in 2020 and 12 PhD theses defended.

During 2020 our CFM family grew with new members. In April 2020, during the general confinement, Amaia González Azpeitia joined CFM as our new Administration Manager. Despite this unusual start, and the cancellation of several of the training courses organized by CSIC for new administrative personnel, she rapidly got familiar with the center and is progressively taking the
reins of CFM’s administration. We wish her the best in this certainly challenging task.

In summer 2020, with an unusually long delay after obtaining their permanent positions, three new CSIC permanent researchers finally joined CFM scientific faculty: Marek Grzelczak, who brings his expertise in the synthesis and characterization of nanomaterials for health care and energy applications to the “Nanomaterials and Spectroscopy” group; Pedro Braña Coto, that applies quantum chemistry methodologies to the field of optoelectronics and molecular physics, and has created the “Theoretical and Computational Chemistry” group in CFM; and Rubén Esteban, an expert in the theory of nanoplasmonics, who has joined the successful “Theory of Nanophotonics” group.

Also in summer 2020, we could celebrate that one of our postdoctoral researchers, Julen Ibañez Azpiroz, was awarded an ERC Starting Grant in the 2020 call (that will start in June 2021) with CFM-MPC as its host institution. Julen will create his own group devoted to apply diverse ab initio and theoretical tools to understand in depth the optical and electronic properties of solids. Another reason to celebrate was that our colleague Javier Aizpurua Irazabal was included for the fourth year in a row in the list of Highly Cited Researchers elaborated by Clarivate Analytics.

Autumn 2020 started with the replacement of Andrés Arnaud Pino as Deputy Director of CFM by Iñaki Juaristi Oliden. We really want to thank Andrés for all his great work during the last five years and particularly for his support during the last year, when he had to act both as CFM Deputy Director and Acting Administration Manager. Another important event in Autumn 2020 was the official retirement of our colleague and friend Pedro Echenique Landiribar, a teacher both in science and in life for many of us. He is one the main personalities behind CFM and had a key role in the creation and development of CFM and its research environment (DIPC, nanoGUNE, etc.). He continues with his research, science popularization and science policy advising activities as an Emeritus Professor at UPV/EHU.

As mentioned at the beginning of this foreword, 2020 was a year full of sad moments. For many of us at CFM, a devastating event was the sudden death of our friend and colleague Juan Jose Saenz, Ikerbasque Professor at DIPC, an expert in photonics and optical forces. We miss his kindness and friendly demeanor to all the members of our DIPC-CFM-nanoGUNE community, his generosity, his love of science, and all his good qualities.

The brilliant trajectory and international visibility gained by CFM in the last years was only possible thanks to the commitment of all CFM personnel and to the decisive and continuous support of the three key institutions behind CFM: CSIC, UPV/EHU and the Basque Government. We also count on the support from Gipuzkoa Province Government. With these allies we are fully confident that we will keep producing basic science at the highest level.

Thank you all for your commitment and support.

Daniel Sánchez Portal
Iñaki Juaristi Oliden
CFM

Centro de Física de Materiales (CFM) is a joint center of the Spanish Consejo Superior de Investigaciones Científicas (CSIC) and the University of the Basque Country (UPV/EHU). The main Board of Governance of the Center is constituted by the Governing Board, where representatives from both CSIC and UPV/EHU designate a Direction Board which runs the daily administrative and scientific strategy of the Center. To that end, the Direction Board is supported by the Center’s Board and the Scientific Board.

CURRENT DIRECTION BOARD OF CFM

Director: Daniel Sánchez Portal
Vice director: Iñaki Juaristi Oliden
Secretary: Amaia González Azpeitia

SCIENTIFIC BOARD OF CFM

All scientific permanent staff of CFM participates in the Scientific Board. The board is thus made of UPV/EHU staff, CSIC staff, as well as Ikerbasque staff.
The association Materials Physics Center (MPC) is a non-profit organization declared as Basic Excellence Research Center (BERC) which is intrinsically united to CFM, and shares its goals and scientific activity, serving as an instrumental body in a totally synergistic and combined activity. The body of governance of the MPC-BERC is constituted by the Basque Foundation for Science (Ikerbasque), the Gipuzkoa Provincial Council (Gipuzkoako Foru Aldundia), and the Donostia International Physics Center (DIPC), who appoints the scientific director of the association. The combined and united strategic activity of both CFM-MPC is ensured by the joint appointment of the same person as director of both institutional bodies.
PROFILE

SCIENTIFIC COMMUNITY

Researchers in Action
194

Research Groups
18

TRAINING

PhD Theses defended
12

Master Theses Defended
17

Undergraduate Projects
3

RESEARCH OUTPUT

ISI Publications
217

Citations
13,021

International Collaborations
81%

Q1 Publications
69%

H Index
133

DI Publications
43%
49% of the Research Community is international

Researchers from 36 countries

ACTIVITIES AND EVENTS

Seminars	Conferences, Workshops and Courses\(^4\)	Science and Society
14 | 3 | 28 Activities

10 000 Attendees

PROJECTS AND FUNDING

Ongoing Projects	Funding
82 | 5 088 818,50 €

\(^1\) In the framework of the nanoscience master or supervised by CFM staff
\(^2\) Including Physical Review B: 81%
\(^3\) Source: Web of Science Core Collection as of April 2021
\(^4\) Due to the pandemic, 6 events scheduled in 2020 had to be cancelled.
PEOPLE

ALL THE CFM COMMUNITY

CFM Staff
181

Researchers in Action
194

- Permanent Researchers: 46
- Post-doctoral Researchers: 49
- Pre-doctoral Researchers: 62
- Laboratory Technicians: 5
- Master students\(^1\): 12
- Undergraduate students\(^2\): 3
- Guest Researchers: 17
- Administration and Services: 14

Total: 208

\(^1\) Four of those receive scholarships during their stay at CFM and are considered staff
\(^2\) One of those receive scholarships during their stay at CFM and is considered staff
\(^3\) Including Guest researchers, undergraduate and master students
DISTRIBUTION OF CFM STAFF according to the origin of their financial support

<table>
<thead>
<tr>
<th></th>
<th>2017</th>
<th>2018</th>
<th>2019</th>
<th>2020</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSIC</td>
<td>24</td>
<td>33</td>
<td>37</td>
<td>40</td>
</tr>
<tr>
<td>UPV/EHU</td>
<td>24</td>
<td>25</td>
<td>33</td>
<td>34</td>
</tr>
<tr>
<td>MPC-BERC</td>
<td>39</td>
<td>51</td>
<td>51</td>
<td>56</td>
</tr>
<tr>
<td>IKERBASQUE</td>
<td>7</td>
<td>9</td>
<td>11</td>
<td>11</td>
</tr>
<tr>
<td>COLLABORATORS</td>
<td>33</td>
<td>43</td>
<td>40</td>
<td>40</td>
</tr>
<tr>
<td>Total</td>
<td>127</td>
<td>161</td>
<td>172</td>
<td>181</td>
</tr>
</tbody>
</table>

Distribution of CFM staff in absolute numbers according to the origin of their financial support through the years

- CSIC: 24, 33, 37, 40
- UPV/EHU: 24, 25, 33, 34
- MPC-BERC: 39, 51, 51, 56
- IKERBASQUE: 7, 9, 11, 11
- COLLABORATORS: 33, 43, 40, 40
- Total: 127, 161, 172, 181

Distribution of CFM staff in percentage according to the origin of their financial support in 2020

- CSIC: 23%
- UPV/EHU: 22%
- MPC-BERC: 19%
- IKERBASQUE: 6%
- COLLABORATORS: 30%
- Total: 100%
DIRECTION BOARD

Director: Daniel Sánchez Portal
General Manager: Amaia Gonzalez Azpeitia

Before September 2020
Vicedirector: Andrés Arnau Pino

From September 2020
Vicedirector: Iñaki Juaristi Oliden

ADMINISTRATION AND SERVICES

Administration
Adolfo del Arco Garcia, Administrative, CSIC
Amaia Gonzalez Azpeitia, Administration Manager, CSIC
Ane Iturriza Semperena, Administrative, MPC
Arantza Iturrioz Ezeiza, Project and Technology Transfer Manager, MPC
Elixabet Sarasketa Zabala, Project and Technology Transfer Manager, MPC
Idoia Mugica Mendiola, Outreach Manager, MPC
Jasone Ugarte Garcia de Andoin, Executive Secretary, UPV/EHU
Laura Martín Montañez, Outreach Internship, MPC
Maria Formoso Ferreiro, Administrative, MPC
Marta López Perez, Administrative, MPC
Txema Ramos Fernandez, Administrative, CSIC

Computing and IT Services
Iñigo Aldazabal Mensa, Computer Center Manager, CSIC
Ioritz Paulis Garmendia, IT Systems Technician, MPC

Maintenance
Juan Manuel Burgos Jiménez, MPC

LABORATORY TECHNICIANS

Amaia Iturrospe Ibarra, CSIC
Luis Botana Salgueiros, CSIC
Maria Isabel Asenjo Sanz, MPC
Maria Lourdes Leza Fernandez, UPV/EHU
Silvia Arrese-Igor Irigoyen, CSIC
RESEARCHERS

Research Line:

Chemical Physics of Complex Materials

01 Gas/Solid Interfaces

Permanent Researchers
Inaki Juaristi Oliden, Associate Professor, UPV/EHU
Maite Alducin Ochoa, Tenured Scientist, CSIC
Ricardo Diez Muño, Research Scientist, CSIC

Post-doctoral Researchers
Alberto Pablo Sánchez Muzas
Raúl Bombín Escudero

Pre-doctoral Researchers
Alberto Rodríguez Fernández
Alfredo Serrano Jiménez
Auguste Tétenoire

Guest Researchers
Raidel Martín Barrios, Pre-doctoral Researcher
Steven Lindner, Pre-doctoral Researcher

02 Quantum Phenomena on Surfaces

Permanent Researcher
Nicolás Lorente Palacios, Research Scientist, CSIC

Ikerbasque Fellow
Deungjang Choi, MPC

Post-doctoral Researchers
Felix Mouhat
Roberto Robles Rodríguez
Vladimir Zobac

Pre-doctoral Researchers
Cristina Mier González
José Reina Gálvez

03 Nanophysics Lab

Permanent Researchers
Celia Rogero Blanco, Tenured Scientist, CSIC
Enrique Ortega Conejero, University Professor, UPV/EHU
Frederik Michael Schiller, Tenured Scientist, CSIC
Maider Ormaza Saezmiera, Associate Professor, UPV/EHU
Martina Corso, Tenured Scientist, CSIC

Ramon y Cajal Researcher
Sara Barja Martínez

Post-doctoral Researchers
Andrew P. Weber
Djuro Bikaljevic
Jan Patrick Calupitan
Khadiza Ali
Laura Fernández Gómez-Recuero

Pre-doctoral Researchers
Marco Gobbi (Ikerbasque fellow on leave at CIC nanoGUNE)
Maxim Ilin
Rishav Harsh
Tao Wang
Vahagn Mkhitaryan

Guest Researchers
Lorena Glatthaar, Master Student
Naoya Sumi, Pre-doctoral Researcher
04 Modelisation and Simulation

Permanent Researchers
Andrés Arnau Pino, University Professor, UPV/EHU
Daniel Sánchez Portal, Research Professor, CSIC

Pre-doctoral Researchers
Joseba Goikoaibidea Perez
Masoud Mansouri

Post-doctoral Researchers
Carlos García Fernández
Mikhail Otrokov

05 Spectroscopy at Atomic Scale

Permanent Researcher
Lucia Vitali, Ikerbasque Professor, UPV/EHU

Pre-doctoral Researcher
Francisco Javier Manterola Marañón

Post-doctoral Researchers
Ana Barragán Durán
Jie Hou

06 Theoretical and Computational Chemistry

Permanent Researcher
Pedro Braña Coto, Research Scientist, CSIC

Pre-doctoral Researchers
Joseba Goikoetxea Perez
Masoud Mansouri

Post-doctoral Researchers
Joseba Goikoetxea Perez
Mikhail Otrokov

Guest Researchers
Carlos Corona García, Pre-doctoral Researcher
Emre Bolen, Pre-doctoral Researcher
Pavel Jelinek, Senior Scientist

Research Line:

Electronic Properties at the Nanoscale

07 Electronic Excitations in Surfaces and Nanostructures

Permanent Researchers
Andrés Ayuela Fernández, Research Scientist, CSIC
Eugene Tchoulkov, University Professor, UPV/EHU
Pedro Miguel Echenique Landiribar, University Professor, UPV/EHU

Pre-doctoral Researchers
Mikel Arruabarrena Larrarte
Raúl Guerrero Aviñes

Post-doctoral Researchers
Ilya Nechaev
Marta Z. Pelc

Guest Researcher
Jozef Janovec, Pre-doctoral Researcher
08 Quantum Theory of Materials

Permanent Researchers
Aitor Bergara Jauregui, Associate Professor, UPV/EHU
Ion Errea Lope, Associate Professor, UPV/EHU
Jose Maria Pitarke de la Torre, University Professor, UPV/EHU

Post-doctoral Researcher
Raffaello Bianco

Pre-doctoral Researchers
Antonella Meninno
Francesco Belli

Iñigo Robredo Magro
Josu Diego López
Martín Gutiérrez Amigo
Oscar Rodríguez Ballesteros
Pugeng Hou
Unai Aseguinolaza Aguirreche

Guest Researcher
Lorenzo Monacelli, Pre-doctoral Researcher

09 Mesoscopic Physics

Permanent Researchers
F. Sebastián Bergeret Sbarbaro, Tenured Scientist, CSIC
Vitaly Golovach, Ikerbasque Associate, UPV/EHU

Post-doctoral Researcher
Stefan Ilic

Pre-doctoral Researchers
Alberto Hijano Mendizabal
Cristina Sanz Fernández
Mikel Rouco Martin
Xian-Peng Zhang

10 Nano-Bio Spectroscopy

Permanent Researcher
Ángel Rubio Secades, University Professor, UPV/EHU

11 Souza Research Group

Permanent Researcher
Ivo Souza, Ikerbasque Professor, UPV/EHU

Post-doctoral Researcher
Julen Ibañez Azpiroz

Pre-doctoral Researcher
Miguel Ángel Jiménez Herrera

Guest Researcher
Cheol-Hwan Park, Senior Scientist

12 Ceramic and Cement-Based Materials

Permanent Researcher
Jorge Sánchez-Dolado, Tenured Scientist, CSIC

Post-doctoral Researcher
Guido Goracci

Pre-doctoral Researcher
Mohammad Rahjoo

Guest Researchers
Mohammadreza Izadifar, Pre-doctoral Researcher
Valentina Musumeci, Pre-doctoral Researcher
Research Line:

13 Theory of Nanophotonics

Permanent Researchers
Alberto Rivacoba Ochoa, University Professor, UPV/EHU
Javier Aizpurua Iriazabal, Research Professor, CSIC
Nerea Zabala Unzalu, Associate Professor, UPV/EHU
Rubén Esteban Llorente, Tenured Scientist, CSIC

Post-doctoral Researchers
Edurne Gorraitz Eusa
Mario Zapata Herrera
Luca Bergamini
Roberto Álvarez Boto

Pre-doctoral Researchers
Adrián Juan Delgado
Alvaro Nodar Villa
Antton Babaze Aizpurua
Bruno Candelas Peñalba
Carlos Maciel Escudero
Jonathan Antonio Sepúlveda Henríquez

Guest Researchers
Marvin Martin Müller, Pre-doctoral Researcher
Nahia Fagoaga Moreno, Master Student
Thomas Dutkiewicz, Master Student

14 Nanomaterials and Spectroscopy

Permanent Researchers
Yuri Rakovich, Ikerbasque Professor, UPV/EHU
Marek Grzelczak, Research Scientist, CSIC

Post-doctoral Researchers
María Sanromán Iglesias
Thomas Hendel

Pre-doctoral Researchers
Alba María Jumbo Nogales
Joscha Kruse
Sara Luisa Marina Barbier

Guest Researcher
Aimar Marauri Iriberri, Undergraduate Student

15 Laser Physics and Photonic Materials

Permanent Researcher
Rolindes Balda de la Cruz, University Professor, UPV/EHU

16 Quantum Nanophotonics Laboratory

Permanent Researcher
Gabriel Molina Terriza, Ikerbasque Professor, MPC

Post-doctoral Researchers
Francesc Monrabal Capilla
Juan José Miguel Varga
Rubén González Moreno

Pre-doctoral Researchers
Iker Gómez Viloria
Jon Lasa Alonso
Martin Molezuelas Ferreras

Master Student
Harriet Kumi

Guest Researchers
Marvin Martin Müller, Pre-doctoral Researcher
Nahia Fagoaga Moreno, Master Student
Thomas Dutkiewicz, Master Student
Research Line:

Polymers and Soft Matter

17 Polymers and Soft Matter

Permanent Researchers
Ángel Moreno Segurado, Tenured Scientist, CSIC
Ángel Alegria Loinaz, University Professor, UPV/EHU
Arantxa Arbe Méndez, Research Professor, CSIC
Daniele Cangialosi, Tenured Scientist, CSIC
Fernando Álvarez González, Associate Professor, UPV/EHU
Gustavo A. Schwartz Pomeraniec, Tenured Scientist, CSIC
Josepto Pomposo Alonso, Ikerbasque Professor, UPV/EHU
Juan Colmenero de León, University Professor, UPV/EHU
Silvina Cerveny Murcia, Tenured Scientist, CSIC

Ikerbasque Fellows
Jon Maiz Sancho, MPC
Paula Malo de Molina Hernández, MPC

Post-doctoral Researchers
Beatriz Robles Hernández
Daniel Enrique Martinez Tong
Daniel José Arismendi Arrieta
José Ángel Martínez González
María Ester Verde Sesto
Mohammad Ali Aboudzadeh Barihi
Soheil Sharifi
Xabier Gaetan Monnier

Pre-doctoral Researchers
Agustín Blazquez Martín
Amaia Matanza Corro
Ane Izaskun Aranburu Leiva
Claudia Borredon

18 Quantum Beams and Sustainable Materials

Permanent Researcher
Félix Fernández Alonso, Ikerbasque Professor, MPC

Post-doctoral Researcher
Kacper Druzbicki

Pre-doctoral Researcher
Balthasar Braunewell

Guest Researcher
Mohammed Ali Al Assiri, Master Student

Research Line:

Polymers and Soft Matter

17 Polymers and Soft Matter

Permanent Researchers
Ángel Moreno Segurado, Tenured Scientist, CSIC
Ángel Alegria Loinaz, University Professor, UPV/EHU
Arantxa Arbe Méndez, Research Professor, CSIC
Daniele Cangialosi, Tenured Scientist, CSIC
Fernando Álvarez González, Associate Professor, UPV/EHU
Gustavo A. Schwartz Pomeraniec, Tenured Scientist, CSIC
Josepto Pomposo Alonso, Ikerbasque Professor, UPV/EHU
Juan Colmenero de León, University Professor, UPV/EHU
Silvina Cerveny Murcia, Tenured Scientist, CSIC

Ikerbasque Fellows
Jon Maiz Sancho, MPC
Paula Malo de Molina Hernández, MPC

Post-doctoral Researchers
Beatriz Robles Hernández
Daniel Enrique Martinez Tong
Daniel José Arismendi Arrieta
José Ángel Martínez González
María Ester Verde Sesto
Mohammad Ali Aboudzadeh Barihi
Soheil Sharifi
Xabier Gaetan Monnier

Pre-doctoral Researchers
Agustín Blazquez Martín
Amaia Matanza Corro
Ane Izaskun Aranburu Leiva
Claudia Borredon

18 Quantum Beams and Sustainable Materials

Permanent Researcher
Félix Fernández Alonso, Ikerbasque Professor, MPC

Post-doctoral Researcher
Kacper Druzbicki

Pre-doctoral Researcher
Balthasar Braunewell

Guest Researcher
Mohammed Ali Al Assiri, Master Student
OTHER POSITIONS

Associate Professor
Isabel Telleria Echeverria, UPV/EHU

Senior Scientists
Dimas García de Oteyza Feldermann, Ikerbasque Professor, DIPC
Fabienne Barroso Builans, Ikerbasque Professor, DIPC
Miguel Moreno Ugeda, Ikerbasque Associate, DIPC

Post-doctoral Researchers
Wen Wan, DIPC (Miguel Moreno’s group)
James Lawrence, DIPC (Dimas García de Oteyza’s group)

Pre-doctoral Researchers
Alejandro Berdonces Layunta, DIPC (Dimas García de Oteyza’s group)
Mohammed Sabri Gamal Mohammed, DIPC (Dimas García de Oteyza’s group)
Pablo Herrero Gómez, DIPC (Dimas García de Oteyza’s group)
Paul Lukas Dreher, DIPC (Miguel Moreno’s group)

Master Students
Andrés Felipe Bejarano Sanchez, MPC / DIPC
Nathaniel Andrés Capote Robayna, MPC / DIPC

Guest Researcher
Jan Holec, Post-doctoral Researcher (Dimas García de Oteyza’s group)
EXTERNAL ADVISORY COMMITTEE

Professor
Peter Saalfrank
Institut für Chemie, Universität Potsdam, Germany
Expertise in the line of Chemical Physics of Complex Materials

Honors and Awards

Research Interests
Theoretical Surface Science; System-bath quantum dynamics; Laser-driven electron dynamics; Theoretical photophysics and chemistry; Electronic structure theory.

Professor
Francisco J. García Vidal
Department of Theoretical Condensed Matter, Universidad Autónoma de Madrid, Spain
Expertise in the line of Photonics

Honors and Awards
Director of Instituto de Magnetismo Aplicado (IMA) from 1989 to 2017; Académico Numerario de la Real Academia de Ciencias Exactas, Físicas y Naturales; Honoris Causa Doctor by the UPV/EHU and by the Cantabria university; Gold Medal by the Real Sociedad Española de Física; Miguel Catalán research award by the Autonomous Community of Madrid; Fellow of the American Physical Society; Dupont science award; Juan de la Cierva national research award.

Research Interests
Photonics and nanophotonics.

Professor
Dieter Richter
Jülich Center for Neutron Science (JNCS) and Institute of Complex Systems, Jülich, Germany
Expertise in the line of Polymers and Soft Matter

Honors and Awards
Director of the Institute for Neutron Scattering at the FZJ (1989-2014); Chair at the Materials Physics Department of the University of the Basque Country founded by the Bank of Bilbao Vizcaya (1997); "Staudinger-Durrer Prize of the ETH" (2015); "Walter Hälg Prize" of the European Neutron Scattering Association (2009); "Erwin-Schrödinger Award" (2002); "Max-Planck Award" (1990) among others.

Research Interests
Structure and Dynamics of Polymers and Soft Matter; Neutron Techniques and Instrumentation.
CFM focuses on the study of four main strategic aspects of matter that cover some of the main structures and systems in advanced materials research, within the general objective to target excellence in the research on materials physics, namely: Molecules, Solid State Systems, Photons, and Soft Matter. The research activities in the center have thus been structured during the last years into the corresponding four research lines that give response to the aforementioned targets. The current research lines in the center are: (i) Chemical Physics of Complex Materials, (ii) Electronic Properties at the Nanoscale, (iii) Photonics and (iv) Polymers and Soft Matter.

Gathered under these four research lines, at CFM the fundamental unit of organization is the research group, although the structure remains fully horizontal, actively seeking cross-linked multidisciplinary research.
Sixteen of these groups develop their activity in the premises of CFM in Donostia / San Sebastián, while the laboratories of the “Laser Physics and Photonic Materials” group are located at the Engineering School of Bilbao (UPV/EHU), and the “Nano-Bio Spectroscopy” group is located in the Joxe Mari Korta (UPV/EHU) research building, in the Ibaeta Campus in Donostia / San Sebastián.

In 2020, Pedro Braña Coto, Research Scientist of CSIC, joined the staff of CFM. Together with Felix Fernández Alonso, Ikerbasque Professor at CFM since 2019, both of them have consolidated two new groups this year, “06 Theoretical and Computational Chemistry” and “18 Quantum Beams and Sustainable Materials”, to reinforce the Chemical Physics of Complex Materials and Polymers and Soft Matter research lines respectively.

RESEARCH LINE GROUP ACTIVITY

<table>
<thead>
<tr>
<th>RESEARCH LINE</th>
<th>GROUP</th>
<th>ACTIVITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemical Physics of Complex Materials</td>
<td>01 Gas/Solid Interfaces</td>
<td>Theoretical</td>
</tr>
<tr>
<td></td>
<td>02 Quantum Phenomena on Surfaces</td>
<td>Experimental and Theoretical</td>
</tr>
<tr>
<td></td>
<td>03 Nanophysics Lab</td>
<td>Experimental</td>
</tr>
<tr>
<td></td>
<td>04 Modelisation and Simulation</td>
<td>Theoretical</td>
</tr>
<tr>
<td></td>
<td>05 Spectroscopy at Atomic Scale</td>
<td>Experimental</td>
</tr>
<tr>
<td></td>
<td>06 Theoretical and Computational Chemistry</td>
<td>Theoretical</td>
</tr>
<tr>
<td></td>
<td>07 Electronic Excitations in Surfaces and Nanostructures</td>
<td>Theoretical</td>
</tr>
<tr>
<td></td>
<td>08 Quantum Theory of Materials</td>
<td>Theoretical</td>
</tr>
<tr>
<td></td>
<td>09 Mesoscopic Physics</td>
<td>Theoretical</td>
</tr>
<tr>
<td></td>
<td>10 Nano-Bio Spectroscopy</td>
<td>Theoretical</td>
</tr>
<tr>
<td></td>
<td>11 Souza Research Group</td>
<td>Theoretical</td>
</tr>
<tr>
<td></td>
<td>12 Ceramic and Cement-Based Materials</td>
<td>Experimental</td>
</tr>
<tr>
<td>Electronic Properties at the Nanoscale</td>
<td>13 Theory of Nanophotonics</td>
<td>Theoretical</td>
</tr>
<tr>
<td></td>
<td>14 Nanomaterials and Spectroscopy</td>
<td>Experimental</td>
</tr>
<tr>
<td></td>
<td>15 Laser Physics and Photonic Materials</td>
<td>Experimental</td>
</tr>
<tr>
<td></td>
<td>16 Quantum Nanophotonics Laboratory</td>
<td>Experimental</td>
</tr>
<tr>
<td>Photonics</td>
<td>17 Polymers and Soft Matter</td>
<td>Theoretical and Experimental</td>
</tr>
<tr>
<td>Polymers and Soft Matter</td>
<td>18 Quantum Beams and Sustainable Materials</td>
<td>Theoretical and Experimental</td>
</tr>
</tbody>
</table>
The research line Chemical Physics of Complex Materials addresses the structural and electronic properties of complex nanostructured materials, particularly in the presence of molecules.

Six research groups are included in this research line, with a high degree of complementarity. Four of the groups devote their activity to the ab-initio theoretical study of electronic structure and dynamical processes of nanostructures and molecules, as well as to condensed matter states, which show interesting topological properties. These groups are the “Gas/Solid Interfaces” group (01), the “Quantum Phenomena on Surfaces” group (02), the “Modelisation and Simulation” group (04), and the “Theoretical and Computational Chemistry” group (06).

The other two groups in this research line develop experimental activity on the electronic properties of molecules and low dimensional structures, which are experimentally studied with the use of Scanning Tunneling Microscopy (STM) at ultrahigh vacuum and low temperature, together with a combination of Surface Physics techniques. These are the “Nanophysics Laboratory” (03) and the “Spectroscopy at Atomic Scale” (05) groups.

In what follows, some aspects of the activity of the six research groups included in this research line are described.

1. Gas/Solid Interfaces

Group Leader: Ricardo Díez Muño, Research Scientist, CSIC

The “Gas/Solid Interfaces” group focuses on the atomic-level understanding of physical and chemical processes arising at the interface between gas and solid phases of matter. The understanding of these elementary reactive and non-reactive processes is crucial in many energy- and environmental-related applications, including heterogeneous catalysis, electrochemistry, hydrogen storage, and fusion reactors.

The activity of the “Gas/Solid Interfaces” group relies on the development of new methodologies as well as on the use of first-principles electronic structure calculations to describe the interaction dynamics in such complex systems. Particular attention is paid to the development of theoretical models able to describe the non-adiabatic contributions and the energy dissipation channels that come into play, because they can drastically change the output of the dynamics.

Current research in the group also includes methodological advance in the simulation and analysis of photo-induced adsorbate dynamics and reactions, as well as the use of machine learning strategies specifically adapted to study the gas/solid interface dynamics.
Quantum Phenomena on Surfaces
Group Leader: Nicolás Lorente Palacios, Research Scientist, CSIC

The activity of the “Quantum Phenomena on Surfaces” group focuses on the development of computational schemes to unveil the richness of realistic spectral functions, with Dr. Deung-Jang Choi leading the experimental work and Dr. Nicolas Lorente leading the theoretical work. The main research topics in the group are electronic, vibrational and magnetic excitations, particularly of molecular and nanomagnetic systems on solid surfaces, ranging from semiconductors and metals to superconductors.

In recent years, the following objectives have been addressed on these topics: (i) the use of density functional theory to understand the geometrical and electronic structure of different surface systems, and (ii) the development of theories and numerical treatments to understand phenomena revealed by STM.

Nanophysics Lab
Group Leader: Enrique Ortega Conejero, University Professor, UPV/EHU

The “NanoPhysics Lab” (NPL) group studies structural, electronic, magnetic and chemical properties of in-situ and ex-situ grown nanostructures, in the context of experimental surface science. NPL aims at exploring relevant but yet-widely-unknown phenomena taking place at the surface of solid materials, such as the atomic-level control of on-surface chemical reactions and catalysis, the bottom-up fabrication of 1D or 2D functional materials, and also the growth of novel layered materials with potential application in state-of-the-art technology devices. It is also worth to mention the exploration of such surface properties and phenomena using curved crystals of varied nature as substrates, defining a radically new experimental approach that is becoming the hallmark of the group.

The NPL holds some of the most modern and complete set of surface-sensitive techniques and instrumentation, combined in a variety of multi-technique ultra-high-vacuum setups, distributed in five different laboratory rooms.
Modelisation and Simulation
Group Leader: Daniel Sánchez Portal, Research Professor, CSIC

The activity of the “Modelisation and Simulation” group focuses on the theoretical study of the electronic and structural properties of complex materials, clean and decorated surfaces, and nanostructures. It pursues the following objectives: (i) to develop the basic theory and ab-initio simulation tools in order to study the behavior of different nanoelectronic devices, particularly those based on graphene derivatives, (ii) to study the optical properties of complex organic/inorganic interfaces, (iii) to study the magnetic properties of different nanostructures, ranging from one dimensional systems to coordination networks and multilayer heterostructures at surfaces, and (iv) to continue to foster the development of the SIESTA code.

Most of the research activity of this group is performed in close collaboration with other experimental and theoretical groups at CFM, and also with groups from other research centers in the Basque Autonomous Community.

Spectroscopy at Atomic Scale
Group Leader: Lucia Vitali, Ikerbasque Professor, UPV/EHU

The activity of the “Spectroscopy at Atomic Scale” group is devoted to explore the structural and spectroscopic characteristics of materials at the local scale, with the use of Scanning Tunneling Microscopy (STM) techniques. The objectives of this activity focuses on: (i) the understanding of different mechanisms that influence the electronic, magnetic and vibrational properties on surfaces, (ii) the study of electron transport and chemical reactivity of surface supported nanostructures, (iii) the investigation of new strategies leading to the formation of covalently bonded conjugated structures with functional groups, and (iv) two dimensional properties emerging in layered materials.

The experimental research activity is based on a low temperature scanning probes microscope, which is used to correlate structure, electronic and vibrational properties of nanostructures and interfaces at the atomic scale. The growth of the interfaces as well as their characterization take place in ultra-high vacuum and at temperatures down to 1K, a challenging situation from the methodological point of view.

Theoretical and Computational Chemistry
Group Leader: Pedro Braña Coto, Research Scientist, CSIC

The group’s research is focused on the theoretical investigation of excited state reactivity and dynamics in complex molecular systems. Researchers at this group use theory and simulation to characterize fundamental aspects of the photophysics and photochemistry of these systems with emphasis on charge and energy transfer and transport processes in novel materials with applications to nanoelectronics, organic photovoltaics, and lighting.
The research line *Electronic Properties at the Nanoscale* mainly focuses on the theoretical investigation of electronic properties of solids, surfaces, nanostructures, and low-dimensional systems. Research within these topics has tackled the electronic properties of both ground and excited states of these systems, in particular, the electronic response of materials under different perturbations. Different experimental probes are investigated in this research line: electromagnetic radiation, electrons, ions, etc. Size and border effects, topology, as well as the dimensionality of nanosized materials are studied as a way to change their properties.

Six theoretical research groups develop the activities of this research line. The activity of all these groups covers the study of a wide range of advanced materials at microscopic and mesoscopic scales, based on state-of-the-art methodologies. Some of the materials studied show special conditions of interest in a particular subfield of interest, such as materials under high pressure, spintronics, nanomagnetism, or attosecond dynamics in solids as well as, the development of experimental characterization and design of cement based materials. The list of activities developed by the different groups follows:

Electronic Excitations in Surfaces and Nanostructures
Group Leader: Andrés Ayuela Fernández, Research Scientist, CSIC

The activity of the “Electronic Excitations in Surfaces and Nanostructures” group is devoted to the theoretical study of electronic and magnetic properties of solids, surfaces and low-dimensional systems, particularly focusing on systems of nanometer size. The general interests of this activity include: (i) spin dependent electronic excitations in metals, (ii) electronic states and excitations in topological insulators, (iii) many-body theory of electrons’ lifetimes, (iv) basic properties, such as energy dispersion and lifetimes of novel low-energy collective excitations, and (v) nanostructures of carbon nanotubes, inorganic nanotubes and minerals with silicate chains.

In recent years, electronic and magnetic properties of materials have been investigated by this group using first principles methodologies. Electron dynamics in different systems have been also studied, with particular emphasis on ultrafast processes and size effects. Advanced materials, such as topological insulators and cement-related systems, are current targets of these activities.
Quantum Theory of Materials
Group Leader: Ion Errea Lope, Associated Professor, UPV/EHU

The activity of the “Quantum Theory of Materials” group focuses on the first-principles calculation of materials properties and the development of new ab initio techniques. The group develops new theoretical methods to overcome the problems associated to standard theoretical approaches, specially, to describe with improved accuracy the quantum description of the electron-phonon and phonon-phonon interactions. These new techniques are applied to understand the electronic and vibrational properties of complex materials as well as to predict new compounds with interesting properties fully ab initio.

In the last years the team has concentrated its efforts to study (i) high-temperature superconducting hydrogen-based compounds at high pressure, as well as hydrogen itself; (ii) thermoelectric and charge-density wave materials both in the bulk and the monolayer, aiming at characterizing their phase diagram and their transport properties; (iii) collective electronic excitations in metals; and, finally, (iv) optical lattices.

Mesoscopic Physics
Group Leader: F. Sebastián Bergeret Sbarbaro, Research Scientist, CSIC

The “Mesoscopic Physics” group activity focuses on the theoretical aspects of quantum transport in nanostructures and mesoscopic systems. The main research covers various materials and structures, including metals, ferromagnets, semiconductors, superconductors, low dimensional systems, and topological matter. In addition to the theoretical activity, the group has a large network of experimental collaborators.

In the past years, particular emphasis is placed on the following research objectives: (i) to develop theoretical tools for studying spin-dependent transport in hybrid systems with spin-orbit coupling, exchange fields, and superconductivity; (ii) to analyze the electronic heat transport at the nanoscale; (ii) to explore the possibility of using superconducting materials for sensing and detection; and (iv) to design electronic and spintronics devices with new functionalities.

Nano-Bio Spectroscopy
Group Leader: Ángel Rubio Secades, University Professor, UPV/EHU

The activity of the “Nano-Bio Spectroscopy” group is devoted to the field of theory and modelling of condensed matter electronic and structural properties, with special emphasis in the optical response of nanosystems. A strong program focusing on developing novel theoretical tools and computational codes to investigate the electronic response of solids and nanostructures to external electromagnetic fields has been settled in this group. The main research interests of this activity are as follows: (i) foundations of time-dependent density
Souza Research Group
Group Leader: Ivo Souza, Ikerbasque Professor, UPV/EHU

The activity of this group focuses on fundamental condensed-matter theory, using computational techniques to study the properties of advanced materials from first principles. The activities that the group continues to pursue are: (i) the study of the ground-state, optical, and transport phenomena that arise from broken symmetries such as time reversal (magnetic order) and spatial inversion, and (ii) the description of electronic properties of solids by using geometric phases and related concepts. In recent years, the work has involved the development of new theoretical approaches and algorithms, and their application to problems of current interest, including methods to study insulators in finite electric fields, as well as to construct localized Wannier orbitals for metals. Phenomena that arise from the interplay between the collective magnetic order in solids and the spin-orbit interaction inside the constituent atoms have been also successfully addressed.

Ceramic and Cement-Based Materials
Group Leader: Jorge Sánchez Dolado, Tenured Scientist, CSIC

The group researches a variety of properties of cement-based and ceramic materials experimentally and theoretically. Combining knowledge from different disciplines like solid-state physics, soft-matter physics, geochemistry and chemical engineering, the “Ceramic and Cement-based Materials” group focuses on the computational design and synthesis of new ceramic and cement-based materials with lower CO₂ fingerprint. The initial objectives of the group are: (i) the use of atomistic and colloidal simulations to study the structure and properties of cement-based materials, (ii) the implementation of new technologies in hydrothermal and supercritical fluids (SCF) for the ultra-fast synthesis of ceramic nanoparticles, (iii) the development of new sintering methodologies through the use of autoclaves or microwaves that allow notable energy savings and a drastic reduction of CO₂ emissions, and (iv) the development of energy storage solutions derived from cement-based materials, including both chemical storage (batteries) and thermal storage systems (TES) applications.
The research line on Photonics deals with the experimental and theoretical study of the interaction of radiation with matter from different and complementary approaches: (i) the interaction of light with metallic and semiconductor nanostructures to confine and engineer electromagnetic fields in the nanoscale, (ii) the optical properties of new materials and elements that provide improved properties in a variety of lasing effects, as well as the design of novel photonic structures that provide laser confinement for bioimaging, and (iii) spectroscopy and photonic applications of nanoscale functional units, including different types of low-dimensional systems. Several research activities along these lines are developed by the groups listed below, including theoretical and experimental activities.

Theory of Nanophotonics

Group Leader: Javier Aizpurua Iriazabal, Research Professor, CSIC

The activity of the “Theory of Nanophotonics” group is devoted to the theoretical study of the interaction between electromagnetic radiation and nanostructured materials. The research activity of the group focuses on the theoretical study of the excitation of plasmons, quantum dots and dielectric nanostructures in the context of a variety of microscopy and spectroscopy configurations: Dark Field Microscopy (DFM), scattering-type Scanning Near-Field Optical Microscopy (s-SNOM), Electron Energy Loss Spectroscopy (EELS), Scanning Tunneling Microscopy (STM), Surface-Enhanced Raman Scattering (SERS), Surface-Enhanced Infrared Absorption (SEIRA) and Surface-Enhanced Fluorescence (SEF), among others.

In recent years, the following specific objectives have been addressed by this group: (i) understanding and characterization of the collective excitations of an electron gas in nanostructures, the so-called surface plasmons, in a variety of spectroscopy and microscopy techniques, (ii) study of metallic nanostructures as electromagnetic field enhancers and localizers, (iii) development of protocols and models to better interpret and describe the images obtained by the scattering-type scanning near-field optical microscope, (iv) study and exploitation of the interaction of fast electrons and matter to develop new paradigms of spectroscopy in the nanoscale, (v) description of quantum effects derived from the coherent nature of the electrons that constitute a plasmonic excitation, (vi) study of the magnetic activity of dielectric nanostructures at optical frequencies, (vii) characterization of the dynamics and the coupling of emitters to be used in quantum information technology, and (viii) address non-linearities and collective effects in molecular optomechanics.
Nanomaterials and Spectroscopy

Group Leader: Yury Rakovich, Ikerbasque Professor, UPV/EHU

The activity of the “Nanomaterials and Spectroscopy” group focuses on the experimental study of spectroscopy and photonic applications of nanoscale functional units, including semiconductor quantum dots and quantum wires, metal nanoparticles and nanoantennas, as well as organic/inorganic nano-hybrid systems. A nanophotonics laboratory, where lifetime microscopy based on fluorescence emission spectroscopy is the fundamental equipment, allows this activity.

Over the past years, the research on this topic has targeted the following specific objectives: (i) the development of novel nano-hybrid materials using nanoscale building blocks, (ii) the investigation of the interaction between light and nanoscale systems, (iii) the experimental study of the energy transfer and conversion in nanostructures down to single quantum dot / molecule level, and (iv) the development of novel experimental approaches to control, manipulate and probe with light on nanoscale.

Laser Physics and Photonic Materials

Group Leader: Rolindes Balda de la Cruz, University Professor, UPV/EHU

The activity of the “Laser Physics and Photonic Materials” group concentrates most of the research efforts on the study of optoelectronic properties of new materials and structures for solid state lasing and photonic crystal properties.

In recent years, the following specific objectives have been pursued on this topic: (i) the investigation on rare earth-doped vitroceramics for integrated optics applications, (ii) the study of the laser emission processes in dye-doped micro-nano structured hybrid materials for optoelectronic and biomedical applications, (iii) the synthesis and development of new eutectic materials for biomedical applications, (iv) the study of slow light in micro-nano structured materials with forbidden band gaps, (v) the experimental and theoretical study of light generation in rare-earth doped micro-nano-crystalline dielectric powders for infrared random lasers, (vi) the study of laser-induced refrigeration in rare earth-doped micro-nano structured materials, and (vii) the design and making up of an optical wave guide writing system by using a femtosecond laser.
Quantum Nanophotonics Laboratory
Group Leader: Gabriel Molina Terriza, Ikerbasque Professor, MPC

The “Quantum Nanophotonics Laboratory” is composed by a team of scientists endeavoring to unveil the physics of the interactions of quantum light and matter at the nanoscale. The group experiments with exotic states of light such as single photon states, entangled photons or squeezed states of light, and forces them to interact with very small structures, aiming to control the quantum features of nanoparticles by exploiting their interaction with light. This allows to design more precise quantum enhanced sensors, improve information processing and above all, pierce through the frontiers of knowledge and excite our curiosity.

The Laboratory was created in early 2018 and since then has expanded to encompass a series of experimental techniques, including optical spectroscopy with classical and quantum light, development of quantum sources of light, quantum control of nanostructures, optical tweezers and optical levitation.

Currently, the laboratory hosts three optical tables, an optically addressable closed-cycle cryostat, a set of tunable laser sources, and an optical tweezers platform, among other optical equipment.

POLYMERS AND SOFT MATTER

The research line Polymers and Soft Matter focuses on the experimental and theoretical study of the structure and dynamics of complex molecular systems with an emphasis on polymers, soft matter and functional materials. Recently the “Quantum Beams and Sustainable Materials” group (18) was added to this research line, expanding the field of research and expertise on this area.
The general scientific objective of the activity program of this group is to achieve a fundamental understanding of the interplay between structure and dynamics at different length and time scales (micro, nano, meso, macro) in materials of increasing complexity based on polymers, glass-forming liquids and soft matter, in particular: polymers with different architectures, single-chain polymer nano-particles, multi-component, nano-structured and biopolymer systems. These materials exhibit complex dynamics and rheology and, in many cases, show hierarchical relaxations over many different length- and time-scales, which need to be unraveled. This in turn affects the processing and properties of the final materials. In order to rationally design appropriate materials and processes for various technological applications, a rigorous knowledge of the interplay between structure and dynamics at different length and time scales is demanded.

Taking inspirations from classical polymer physics, soft matter physics and the physics of condensed matter, over last years the “Polymers and Soft Matter” group has developed a robust and pioneering methodology to carry on this program. This methodology is based on the combination of different experimental relaxation techniques with neutron, XR and light scattering methods, molecular dynamics simulations and chemical synthesis oriented to polymers. The organization of the group is in fact driven by this methodology and the staff of the group (scientists belonging to the CSIC, the UPV/EHU and Ikerbasque) is composed by experts in different techniques/methods, all of them being involved in the scientific objectives defined at any time.

The “Quantum Beams and Sustainable Materials” group makes extensive use of beams of quantum particles like neutrons or photons in tandem with computational materials modelling to interrogate, understand, and design novel functional materials for energy applications and sustainability. This research program is underpinned by the development of new techniques and methodologies for materials discovery, in close collaboration with leading neutron and X-ray laboratories from around the globe.

Current areas of focus include hybrid organic-inorganic materials for photovoltaics & photonics, or carbon-based nanostructured media for the storage of chemical and thermal energy.
<table>
<thead>
<tr>
<th>Highlight</th>
<th>CFM Groups Involved</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Quantum corrections in the dynamics of hydrogen molecules at surfaces</td>
<td>Gas/Solid Interfaces</td>
<td>37</td>
</tr>
<tr>
<td>Physical Chemistry Chemical Physics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 Vibron-assisted spin excitation in a magnetically anisotropic molecule</td>
<td>Quantum Phenomena on Surfaces</td>
<td>39</td>
</tr>
<tr>
<td>Nature Communications</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 Simultaneous ignition of the CO oxidation at all facet planes of a curved platinum Surface</td>
<td>Nanophysics Lab, and Modelisation and Simulation</td>
<td>41</td>
</tr>
<tr>
<td>Angewandte Chemie-International Edition</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 Strong interfacial exchange field induced by EuS ferromagnetic insulator measured in combination with heavy metals</td>
<td>Nanophysics Lab, and Mesoscopic Physics</td>
<td>43</td>
</tr>
<tr>
<td>Nano Letters</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 Magnetism of topological boundary states induced by Boron substitution in graphene nanoribbons</td>
<td>Modelisation and Simulation</td>
<td>45</td>
</tr>
<tr>
<td>Physical Review Letters</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 Anisotropic electron conductance driven by reaction byproducts on a porous network of dibromobenzothiadiazole on Cu(110)</td>
<td>Spectroscopy at Atomic Scale</td>
<td>47</td>
</tr>
<tr>
<td>Angewandte Chemie-International Edition</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7 Fabrication of a novel magnetic topological heterostructure and temperature evolution of its massive Dirac cone</td>
<td>Electronic Excitations in Surfaces and Nanostructures, and Modelisation and Simulation</td>
<td>48</td>
</tr>
<tr>
<td>Nature Communications</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8 Quantum fluctuations sustain the record superconductor</td>
<td>Quantum Theory of Materials</td>
<td>50</td>
</tr>
<tr>
<td>Nature</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9 A Josephson phase battery</td>
<td>Mesoscopic Physics</td>
<td>52</td>
</tr>
<tr>
<td>Nature Nanotechnology</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10 Twisted 2D material gives new insights into strongly correlated 1D physics</td>
<td>Nano-Bio Spectroscopy</td>
<td>54</td>
</tr>
<tr>
<td>Communications</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CFM GROUPS INVOLVED</td>
<td>PAGE</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>Directional shift current in mirror-symmetric BC₂N</td>
<td>56</td>
<td></td>
</tr>
<tr>
<td>Physical Review Research</td>
<td></td>
<td></td>
</tr>
<tr>
<td>The Boson peaks of water govern the THz response</td>
<td>57</td>
<td></td>
</tr>
<tr>
<td>of Cement-Based Materials</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ceramic and Cement-Based Materials</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atomic-Scale dissection of molecular flashes</td>
<td>58</td>
<td></td>
</tr>
<tr>
<td>Nature Nanotechnology</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Strongly coupled exciton-plasmon nanohybrids reveal</td>
<td>59</td>
<td></td>
</tr>
<tr>
<td>extraordinary resistance to harsh environmental</td>
<td></td>
<td></td>
</tr>
<tr>
<td>stressors: temperature, pH and irradiation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nanoscale</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Femtosecond laser direct inscription of 3D</td>
<td>61</td>
<td></td>
</tr>
<tr>
<td>photonic devices in Er/Yb-doped oxyfluoride nano-glass</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ceramics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Optical Materials Express</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kerker conditions upon lossless, absorption, and</td>
<td>63</td>
<td></td>
</tr>
<tr>
<td>optical gain regimes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physical Review Letters</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coherent structural relaxation of water from meso-</td>
<td>65</td>
<td></td>
</tr>
<tr>
<td>to inter-molecular scales measured using neutron</td>
<td></td>
<td></td>
</tr>
<tr>
<td>spectroscopy with polarization analysis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physical Review Research</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Direct observation of desorption of a melt of long</td>
<td>67</td>
<td></td>
</tr>
<tr>
<td>polymer chains</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nature Communications</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Single-chain nanoparticles: opportunities provided by</td>
<td>69</td>
<td></td>
</tr>
<tr>
<td>internal and external confinement</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Materials Horizons</td>
<td></td>
<td></td>
</tr>
<tr>
<td>The instrument suite of the European Spallation</td>
<td>71</td>
<td></td>
</tr>
<tr>
<td>Source (ESS)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nuclear Instruments and Methods in Physics Research A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quantum Beams and Sustainable Materials</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

35
Quantum corrections in the dynamics of hydrogen molecules at surfaces

Rodríguez-Fernández A, Bonnet L, Crespos C, Larregaray P, and Díez Muiño R.

Physical Chemistry Chemical Physics 22, 22805 (2020)

Static properties of surfaces are in general well known. Computational resources have become powerful enough to describe them using first principles and there is extensive output extracted from experimental measurements on their electronic, magnetic, and optical properties. Now, the challenge is the atomic- and molecular-level understanding of surface dynamics.

Elementary processes arising in gas/solid interfaces are ever-present in our daily life as well as in many industrial applications. The oxidation and corrosion of surfaces, the catalytic converters used in cars, the surface doping of semiconductors, or the industrial production of most synthetic compounds are all of them relevant examples of the importance of surface physical and chemical processes.

Synergetic advances in theory and molecular beam experiments associated with a tremendous increase of computing power have allowed a detailed understanding of the dynamics of chemical elementary processes. For gas phase reactions involving a small number of degrees-of-freedom, quantum dynamics calculations might be now regarded as exact because they generally provide results in excellent agreement with experiments. However, the complexity of surface reaction dynamics prevents an efficient and even effective use of quantum dynamics. A crucial issue is thus to develop accurate semiclassical tools able to make realistic predictions when major quantum effects come into play in the dynamics.

In this work, the authors improve over a classical trajectory method by including quantum corrections. The interaction between the molecules and the surface are described by density functional theory. They assign statistical weights to classical paths on the basis of two semiclassical corrections: Gaussian binning and the adiabaticity correction. This approach was previously applied by them to the heterogeneous gas–surface reaction between H₂ in its internal ground state and the Pd(111) surface [Rodríguez-Fernández et al., J. Phys. Chem. Lett., 2019, 10, 7629]. Its predictions of
the sticking and state-resolved reflection probabilities were found to be in surprisingly good agreement with those of exact quantum time-dependent calculations where standard quasi-classical trajectory calculations failed. This subsequent work shows that the quality of the calculations is kept when the incident H₂ molecules are rotationally excited, a feature extremely difficult to describe accurately.

“Within the Transborder Joint Laboratory QuantumChemPhys, CFM researchers and colleagues from the University of Bordeaux advance in the theoretical description of hydrogen sticking on metals.”

Figure: Sticking probability for H₂ on Pd(111) as a function of the collision energy. Black symbols are purely quantum calculations. Red and green symbols represent quantum-corrected classical calculations.
Vibron-assisted spin excitation in a magnetically anisotropic molecule

Nature Communications 11, 1619 (2020)

The Scanning Tunneling Microscope (STM) drives electronic currents through a very small spatial region, allowing the excitation of single atoms and molecules. When an excitation is produced, the current increases because there are more transmission channels for the passing electrons. Then, by recording the current as a function of the applied bias between the tip of the STM and the surface, it is possible to obtain information on the molecule.

In this work, the authors use nickelocene molecules (see the figure a). This molecule is magnetic and anisotropic. This means that the molecular spin does not have complete symmetry. As a consequence, there are two degenerate excitations taking place at 3.8 meV and they correspond to turning the molecular spin by 90 degrees.

In the present work Bachellier et al. show that the molecule can also have vibrational excitations, and when the electrons have enough energy to simultaneously excite vibrational and spin degrees of freedom, they do it with an enormous efficiency. This is really surprising because inelastic electron transmission is usually thought to be less efficient than the corresponding elastic process, let alone to have two simultaneous excitations of the spin-excitation signal.

The authors have rationalized these findings in terms of the high efficiency of the spin excitation. It happens so likely that it is not deterred by the excitation of the vibration, leading to a very important spin+vibration signal. From the theory point of view, the results were equally puzzling. It was necessary to use a many-body formulation of the problem to be able to capture the excitation process. The model Hamiltonian contains electronic correlations that allow obtaining clear spin excitations by changing the electronic configuration. The surprise comes when an electron-vibration interaction is added to the Hamiltonian. Automatically the experimental result is recovered, not only opening the vibrational excitation, but also the vibrational and spin combined excitation. This is a surprise because there is no direct vibration-spin interaction in the Hamiltonian, but as in the experiment, the strong electron correlation suffices to create it.
“Electronic correlations give rise to very complex molecular excitations”

Figure: (a) A nickelocene molecule (C_{10}H_{10}) trapped by an atom of the STM tip over a surface. (b) Energy levels with spin and vibrational degrees of freedom. D is the magnetic anisotropy equal to 3.8 meV and the frequency (ħω) is equal to 34 meV. (c) Differential conductance over the nickelocene adsorbates showing the first rapid increase at 3.8 mV, a second shoulder at 34 mV and the combined excitation at 38 mV.
Simultaneous ignition of the CO oxidation at all facet planes of a curved platinum surface

CO oxidation (2CO + O₂ → CO₂) on platinum metal surfaces is a model heterogeneous gas/surface catalytic reaction. Here, researchers investigated CO oxidation at different Pt crystal planes around the (111) direction, using a curved Pt surface. They surprisingly found that the ignition occurs simultaneously at all surface facets.

Platinum (Pt) is of upmost importance as a catalyst for car exhaust cleaning or for the water gas shift reaction, whereas Pt crystal surfaces are model systems for investigating the catalytic CO oxidation at the atomic scale. During decades, researchers have studied the sequential and simultaneous interaction of CO and O₂ with Pt under high vacuum conditions, providing a detailed description of fundamental steps in the reaction: O₂ dissociation, CO and O chemisorption, and CO-O interaction. Laterly, a deeper insight is being gained through techniques operating at millibar pressures, such as Near Ambient Pressure X-ray Photoemission Spectroscopy (NAP-XPS).

All these studies agree on the fundamental picture: the abrupt transition at “ignition”, from the low-temperature poisoning stage, when CO covers the surface and blocks the reaction, to the high-temperature active stage, when CO is displaced from the surface by chemisorbed oxygen. However, the mechanism of such CO → O transition, and the differences among crystal planes, of enormous relevance in nanoparticle catalysis, remain unknown.

Researchers from the Nanophysics Lab of CFM, and Lund investigated the ignition of the CO oxidation reaction using a curved Pt surface (Figure a). Experiments combined Planar Laser Induced Fluorescence (PLIF) of CO (Lund, Figure b), with operando NAP-XPS (Brookhaven synchrotron, Figure c). PLIF images the ignition moment in the entire curved sample, showing that it occurs in all points simultaneously, irrespective of the reaction parameters. NAP-XPS identifies chemical species across the same surface at fixed temperature, providing the clues for this surprising behavior: as surface CO concentration decreases near ignition, minor amounts of O build up at the subsurface. DFT theory indicates that a CO-Pt-O complex develops that binds CO molecules to (111) terraces strongly, equaling CO adsorption energy in flat and stepped planes, and explaining why CO desorbs at the same temperature from all facets in the curved Pt surface.
Researchers demonstrate that CO desorbs from flat and vicinal Pt surfaces at once, leading to a simultaneous CO oxidation reaction.

Figure: Simultaneous ignition of the CO oxidation on a curved Pt surface. (a) Sketch of the c-Pt(111) curved crystal sample featuring A-type and B-type vicinal surfaces. (b) Top-middle, two-dimensional snapshots of Planar Laser Induced Fluorescence (PLIF) of CO$_2$ for a 6 mbar CO:O$_2$ mixture in front of the c-Pt(111) surface, right before (575 K) and after (590 K) light-off, illustrating the simultaneous ignition of the CO oxidation at all points. Bottom, CO$_2$ PLIF signal measured at the stepped A- and B-edges of the sample, marking the ignition at \sim580 K. (c) O 1s (left) and C 1s (right) photoemission intensity images measured at three different points on the c-Pt(111) sample exposed to \sim1 mbar CO:O$_2$ during a heating cycle. Vanishing of CO and emergence of oxygen-related species mark an abrupt, simultaneous ignition of the reaction.
Strong interfacial exchange field induced by EuS ferromagnetic insulator measured in combination with heavy metals

Nano Letters 20, 6815 (2020)

Spin-dependent transport at heavy metal/magnetic insulator interfaces is the origin of many phenomena at the forefront of spintronics research. A characteristic feature of these heterostructures is the spin-dependent scattering of conduction electrons that gives rise to non-equilibrium but stationary states with non-uniform distribution of electrons with different spin orientations. Maintenance of this imbalance is achieved via dynamic separation of electrons and can be considered as a steady flux of spins (spin current). The concept of spin currents is widely used to describe many different phenomena such as spin pumping, spin Seebeck effect or spin Hall magnetoresistance. Furthermore, it is of key importance for the development of spin-torque based devices such as magnetic random-access memory (STT-MRAM), currently ready for mass production.

Despite the importance of spin currents, there are not many heterostructures capable of generating this effect. Insulating magnetic materials (MI) are abundant, but the majority of them are ferri- or antiferromagnets, where the competing contributions from interfacial moments of opposite orientation complicate or cancel the net effect. Furthermore, archetypical insulating ferrimagnets like garnets have very complex crystal structures that complicate the growth of thin films with low density of defects, a crucial ingredient of high-quality heterostructures. For this reason, the development of a suitable technology for the growth of the ferromagnetic insulator EuS, accomplished by researchers of the Nanophysics Lab at CFM, is a crucial achievement.

Heterostructures of Pt/EuS were grown and patterned in Hall bars shape in collaboration with the Nanodevices
Figure: Scheme of the fabricated Hall-bar devices and transverse resistivity measurement in Hall configuration. Dash purple lines correspond to the linear fit performed at large magnetic fields and extrapolated to zero. The red arrow shows the clear $\Delta \rho^2/\rho$.

group at CIC nanoGUNE. Generation of spin current in these devices was studied via measuring of Spin Hall magnetoresistance (SMR) at low temperatures and in high magnetic fields. The theoretical model developed by researchers of the Mesoscopic Physics group at CFM allowed to quantify all three parameters defining the spin current through the interface: the spin-sink conductance G_s, which originates when the electron spins of the nonmagnetic metal are collinear with the MI magnetization and both the real and imaginary parts of the spin-mixing conductance $G_{\uparrow\downarrow} = G_r + iG_i$, which originate from torques that the electron spins of the nonmagnetic metal exert to the magnetization of the MI when they are noncollinear. G_r is determined by the Slonczewski (or damping-like) torque, a quantity crucial for the spin−torque devices. On the other hand, G_i quantifies the exchange field between the electrons of the nonmagnetic metal and the magnetic moments of the MI, exerting a field-like torque when spin accumulation is induced. This interfacial exchange field is very relevant in different areas. For instance, when the nonmagnetic metal is a superconductor, it leads to a spin-splitting field, even in the absence of an external magnetic field.

A key finding of the work was a first time experimental demonstration that in ferromagnetic MI such as EuS, G_i is larger than G_r and at least 3 times larger at the lowest measured temperature (2.5K), as was predicted theoretically for europium chalcogenides. It was confirmed that the field-like torque plays an important role in Pt/EuS because all magnetic moments of the interface contribute to the interfacial exchange field, as opposed to the ferrimagnetic case, where there is a compensation of the magnetic moments.
Magnetism of topological boundary states induced by boron substitution in graphene nanoribbons

Physical Review Letters 125, 146801 (2020)

Graphene nanoribbons (GNRs), low-dimensional platforms for carbon-based electronics, show the promising perspective to also incorporate spin polarization in their conjugated electron system. However, these magnetic moments are usually localized around zigzag edges, difficult to fabricate and very reactive. This combined theoretical and experimental study demonstrates that magnetism can also be induced away from physical edges through atomically precise engineering of topological defects in its interior. A pair of substitutional boron atoms inserted in the carbon backbone breaks the conjugation of their topological bands and builds two spin-polarized boundary states around them.

GNRs can be classified according to the topology of their electronic band structures. This allows predicting the appearance of zero-energy states bound at the boundaries between GNRs of different topological classes or at the edges of topologically non-trivial ribbons. These localized states give rise to spin polarization once electron-electron repulsion is taken into account. Beyond an academic problem, this offers the promise of using topology to induce magnetism in carbon-based platforms. Unfortunately, the magnetism of topologically protected boundary states in carbon systems had yet to be demonstrated, while topological engineering of boundary states seems restricted to exotic cases, always involving the highly reactive zigzag edges.
The authors of this work show that magnetic boundary states can be created in the interior of a GNR simply by embedding substitutional heteroatoms in the carbon backbone. A pair of boron atoms substituting carbon turns out to act as a physical termination for the topological valence band of the ribbon (7-AGNR) and, hence, creates end states that are singly occupied and spin polarized. First indications of the presence of magnetism were given by the appearance of characteristic Kondo peaks in electrical transport experiments performed at CIC nanogUNE. Transport was measured through boron-substituted GNRS suspended between the tip and the sample of a Scanning Tunneling Microscope (STM). These observations were rationalized in terms of the theory and first-principles simulations performed at CFM and DIPC, which predicted for each isolated boron pair a S=1 spin state as well as a strong dependence on the spacing between pairs. The interaction between two of such topological defects was further explored, outlining a route to engineer topological spin chains, with the promising tunability of their magnetism by modifying their spacing.

This work presents a remarkable combination of high precision electrical transport experiments of an atomically perfect system in a free-standing configuration between source/drain electrodes with atomistic simulations of the experimental configuration (involving a large number of atoms). These complex simulations were further used to develop and parametrize intuitive models governing the onset of magnetism in this system.

“These results demonstrate a route to embed spin chains in graphene nanoribbons, turning them into basic elements of spintronic devices”
Anisotropic electron conductance driven by reaction byproducts on a porous network of dibromobenzothiadiazole on Cu(110)

Barragan A, Sarasola A, and Vitali L.

Organic compounds offer a variety of functional properties eligible almost on demand. However, the application of organics into devices requires in addition excellent charge transport properties at energies larger than 2eV, where electronics works. Here, Barragan et al. show a mechanism enabling one-dimensional conductance-channels connecting discrete molecular states at 2.1eV through the pores of a metal-organic network on Cu(110).

In the last decade, a considerable scientific attention has been devoted to the formation of ordered organic structures ensuring molecular functionalities and good electrical properties. In this context, a valuable approach was offered by Ullmann cross-coupling reactions where halogenated molecules catalyzed by metal surfaces promoted the synthesis of extended structures through the molecular polymerization. This chemical approach results in good mechanical and electrical contacts between components. In this collaborative work between the Donostia International Physics Center (DIPC), the University of the Basque Country (UPV/EHU) and CFM, the authors show that the electron conductance of benzothiadiazole molecules, extensively used in electronics, can be enhanced even before their polymerization. Indeed, despite the formation of a porous network, two adjacent, periodic and isoenergetic contributions, namely a molecular electronic resonance and the confined surface-state, sum-up forming one-dimensional conductance channels, observable in energy-resolved maps of a 2D-metal-organic network. Though they do not contribute directly to the conductance, the adsorption configurations of Br atoms, inorganic byproduct of the redox-reacted 4,7-dibromobenzo[c]-1,2,5-thiadiazole molecules on the copper surface critically control the channel continuity. These halogen atoms enable the delocalization of the molecular electronic resonance into a continuous channel acting on the confinement of the Cu(110) surface state on the pores. Small displacements of the Br atoms change the local surface potential misaligning the energy levels and creating discontinuity into the channels. This work opens new perspectives on charge-transport mechanisms controlled by an order-disorder transition determined by the movement of single atoms limiting carrier’s mobility in two-dimensional organic networks.

Figure: Graphical representation of the conductance channels and the topographic structure that enables them. The molecular modeling of the 4,7-dibromobenzo[c]-1,2,5-thiadiazole (2Br-BTD) molecules on the copper surface is superposed: Br atoms are depicted as bright red dots in the sketch.
Fabrication of a novel magnetic topological heterostructure and temperature evolution of its massive Dirac cone

Nature Communications 11, 4821 (2020)

Using Angle Resolved Photoemission Spectroscopy (ARPES) and ab initio calculations, Hirahara et al. have studied the molecular beam epitaxy grown heterostructure Mn$_4$Bi$_2$Te$_7$/Bi$_2$Te$_3$ achieved by self-organization of the Mn and Te adatoms co-deposited on Bi$_2$Te$_3$. The authors reveal a sizable Dirac point gap and study its temperature evolution.

Although the interfaces between trivial magnetic and topological nonmagnetic insulators have recently attracted a great deal of attention, no photoemission evidence of the Dirac point gap opening in the topological interface state has been reported. To bridge this gap, the authors have synthesized a novel magnetic topological heterostructure with a built-in interface achieved via self-organization of the MnTe film inside of the Bi$_2$Te$_3$ surface quintuple layer block (e.g., Te−Bi−Se−[MnTe]−Bi−Te), where the magnetic film has adopted its bulk-like (NiAs-like) structure, see Figure (a). The resulting structure can be written as Mn$_4$Bi$_2$Te$_7$/Bi$_2$Te$_3$. Strikingly, the realization of this scenario leads to a unique situation when the heterostructure’s magnetic part is based on a material that intrinsically does not show Van der Waals bonding (MnTe), but turns out to be Van der Waals coupled to a topological insulator substrate.

ARPES measurements of Mn$_4$Bi$_2$Te$_7$/Bi$_2$Te$_3$ reveal a massive Dirac cone with a gap of 40-75 meV at 16 K (Figure b). The system showed long-range magnetic order with a critical temperature of about 20 K. Ab initio calculations predict a complicated magnetic configuration for Mn$_4$Bi$_2$Te$_7$/Bi$_2$Te$_3$ combining both ferromagnetic and antiferromagnetic couplings between adjacent layers (Figure c, inset). Surface electronic structure calculations confirm the existence of the gapped Dirac cone for these crystal and magnetic structures (Figure c). Further, by tracing the temperature evolution, they find the Dirac point gap to gradually decrease with increasing temperature, with a transition from a massive to a massless Dirac cone occurring around 200–250 K. Thus, these results show for the first time that the Dirac
point gap of the interface topological state of the magnetic topological heterostructure eventually closes, albeit at a temperature well above the magnetic critical temperature. Such findings open a new direction in studies of the magnetic insulator/topological insulator interfaces and restore their potential for the observation of the quantum anomalous Hall and topological magnetoelectric effects.

“In this heterostructure, a non Van der Waals material connects in a Van der Waals fashion to a topological insulator, which makes the magnetic insulator/topological insulator interfaces good for observing the quantized topological effects”

Figure: (a) Scanning transmission electron microscope image of the MnBi$_2$Te$_7$/Bi$_2$Te$_3$ heterostructure measured at room temperature. The inset shows the atomically-resolved image. (b) Band dispersion of the heterostructure sample measured with ARPES. The white line shows the energy distribution curve at the Γ-point. (c) Calculated band dispersion of the MnBi$_2$Te$_7$/Bi$_2$Te$_3$ heterostructure. The inset shows the predicted magnetic structure.
Quantum fluctuations sustain the record superconductor

Nature 578, 66 (2020)

Reaching room-temperature superconductivity is one of the biggest dreams in physics. Its discovery would bring a technological revolution by providing electrical transport with no loss, ultra efficient electrical engines or generators, as well as the possibility of creating huge magnetic fields without cooling. The recent discoveries of superconductivity first at 200 kelvin in hydrogen sulfide and later at 250 kelvin in LaH$_{10}$ have spurred attention to these materials, bringing hopes for reaching room temperatures soon. It is now clear that hydrogen-rich compounds can be high-temperature superconductors, at least at high pressures; both discoveries were made above 100 gigapascals, one million times atmospheric pressure.

The 250 kelvin (-23ºC) obtained in LaH$_{10}$, the usual temperature at which home freezers work, is the hottest temperature for which superconductivity has ever been observed. The possibility of high-temperature superconductivity in LaH$_{10}$, a superhydride formed by lanthanum and hydrogen, was anticipated by crystal structure predictions back in 2017. These calculations suggested that above 230 gigapascals a highly symmetric LaH$_{10}$ compound (Fm-3m space group), with a hydrogen cage enclosing the lanthanum atoms (see figure), would be formed. It was calculated that this structure would distort at lower pressures, breaking the highly symmetric pattern. However, experiments performed in 2019 were able to synthesize the highly symmetric compound at much lower pressures, from 130 to 220 gigapascals, and to measure superconductivity around 250 kelvin in this pressure range. Therefore, the crystal structure of the record superconductor, and thus its superconductivity, remained not entirely clear.

Now, this work shows that atomic quantum fluctuations “glue” the symmetric structure of LaH$_{10}$ in all the pressure range in which superconductivity has been observed. In more detail, the calculations show that if atoms are treated as classical particles, that is, as simple points in space, many distortions of the structure tend to lower the energy of the system. This means that the classical energy landscape is very complex, with many minima (see figure), like a highly deformed mattress because many people are standing on it. However, when atoms are treated like quantum objects, which are described with a delocalized wave function, the energy landscape is completely reshaped: only one minimum is evident (see figure), which corresponds to the highly symmetric Fm-3m structure.

Somehow, quantum effects get rid of everybody in the mattress but one person, who deforms the mattress only in one single point.
“This result suggests that superconductivity approaching room temperature may be possible in hydrogen-rich compounds at much lower pressures than previously expected with classical calculations.”

Furthermore, the estimations of the critical temperature using the quantum energy landscape agree satisfactorily with the experimental evidence. This supports further the Fm-3m high-symmetry structure as responsible for the superconducting record.

Figure: Crystal structure of the Fm-3m phase of LaH$_{10}$, where a highly symmetric hydrogen cage encloses the lanthanum atoms. In the top a sketch of the complex classical energy landscape is shown, where many minima are present. On the other hand, in the bottom the image shows a sketch of the completely reshaped much simpler quantum energy landscape, where only one minimum survives.
A Josephson phase battery

Strambini et al. demonstrate a quantum device that provides a persistent phase bias to a superconducting circuit. It consists of an n-doped InAs nanowire (red) with unpaired-spin surface states, proximitized by Al superconducting leads (blue). The authors found that the ferromagnetic polarization of the unpaired-spin states is efficiently converted into a persistent phase bias across the wire. The observed symmetries in the magnetic field confirm the predictions of the theoretical model previously presented by the authors.

A classical battery converts chemical energy into a persistent voltage bias that can power electronic circuits. We denote a phase battery as a quantum device that provides a persistent phase bias to a quantum circuit’s wave function. It represents a key element for quantum technologies based on phase coherence. In the present work, the authors demonstrate the first implementation of a phase battery in a hybrid superconducting circuit.

The device is shown in figure (a). It consists of an n-doped InAs nanowire (red) with unpaired-spin surface states, proximitized by Al superconducting leads (blue). The authors found that the ferromagnetic polarization of the unpaired-spin states is efficiently converted into a persistent phase bias \(\phi_0 \) across the wire, leading to the anomalous Josephson effect. The phase bias can be controlled by an external magnetic field [figure (b)], achieving a continuous tuning of \(\phi_0 \) [figure (c)]. Hence, it is possible to charge and discharge the quantum phase battery. The observed symmetries of the anomalous Josephson effect in the vectorial magnetic field agree with the theoretical predictions calculated by the authors [figure (d)] in a previous work\(^1\)\(^2\).

“Predictions done by the Mesoscopic Physics group at CFM on spontaneous currents in systems with strong spin-orbit coupling have been experimentally verified in this collaboration”

\(^1\) Bergeret FS, and Tokatly IV
Theory of diffusive \(\phi_0 \) Josephson junctions in the presence of spin-orbit coupling.

\(^2\) Konschelle F, Tokatly IV, and Bergeret FS
Theory of the spin-galvanic effect and the anomalous phase shift \(\phi_0 \) in superconductors and Josephson junctions with intrinsic spin-orbit coupling.
These results demonstrate how the combined action of spin-orbit coupling and exchange interaction induces a strong coupling between charge, spin, and superconducting phase, able to break the phase rigidity of the system. This quantum element, providing a controllable and localized phase bias, can find applications in different quantum circuits, such as an energy tuner for superconducting flux and hybrid qubits, or a persistent multi-valued phase-shifter for superconducting quantum memories as well as superconducting rectifiers. Moreover, the magnetic control over the superconducting phase opens new avenues for advanced schemes of topological superconducting electronics based on InAs junctions.

Figure: (a) Scanning electron microscopy image of the active region of the phase battery composed by the two φ_0-junctions. B_y is the in-plane magnetic field orthogonal to the nanowire. (b) Sketch of the interferometer with the reference axes of the in-plane magnetic field (B_{in}) and the angle θ with respect to the nanowire axis. (c) Dependence of the extrinsic anomalous phase φ_{ex} on B_y. It results in an odd symmetry and non-hysteretic back and forth sweeps (blue and red traces). Inset: the $\varphi_{ex}(B_y)$ dependence obtained from our theoretical model. (d) Plot of $\partial\varphi_{ex}/\partial B_{in}$ versus θ together with a theoretical fit (red curve).
Twisted 2D material gives new insights into strongly correlated 1D physics

Kennes DM, Xian L, Claassen M, and Rubio A.
Nature Communications 11, 1124 (2020)

Researchers from the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) in Hamburg, the RWTH Aachen University (both in Germany), the Flatiron Institute in the USA, and CFM have revealed that the possibilities created by stacking two sheets of atomically thin material atop each other at a twist are even greater than expected.

The four scientists examined germanium selenide (GeSe), a material with a rectangular unit cell, rather than focusing on lattices with three- or six-fold symmetries like graphene or WSe$_2$. By combining large scale ab-initio and density matrix renormalization group calculations, the researchers showed that the Moiré interference pattern creates parallel wires of correlated one-dimensional systems.

This considerably broadens the scope for realizable structures using Moiré twisting physics and provides an inroad into the challenging question of how a correlated system crosses over from two dimensions to one. Because the particles cannot pass each other as they would in a multi-dimensional context, one-dimensional systems are intriguing, as correlations necessarily lead to collective excitations.

Dante Kennes says the combined analysis of the two numerical methods yielded great results: "We were able to classify the phase diagram of two sheets of twisted GeSe and found a plethora of realizable phases of matter, including correlated Mott insulators and the so-called Luttinger liquid phase, which reveals physics defying our independent particle picture in fundamental ways. "Leod Xian adds: "We established twisted GeSe as an exciting platform to understand strongly correlated 1D physics and the crossover from one to two dimensions in a highly tunable and experimentally accessible manner."

"The present work provides valuable insights into how twisting 2D materials can be used to create properties on demand in quantum materials"
This research opens up many future directions. One particularly intriguing approach is to substitute elements in GeSe to achieve higher spin-orbit coupling. Martin Claassen from the Center for Computational Quantum Physics at the Flatiron Institute points out: "Coupling such a system to a superconducting substrate would result in topologically protected Majorana edge modes under the right conditions". Those states are particularly important as they could be used as so-called qubits; the quantum equivalent of a classical bit, which is the fundamental computational building block.

Therefore, the ability to create many parallel Moiré wires with Majoranas attached at their ends reveals an intriguing future inroad for unlocking topological quantum computing in a naturally scalable way. Ángel Rubio, the director of the MPSD’s Theory department, concludes: "The present work provides valuable insights into how twisting 2D materials can be used to create properties on demand in quantum materials".

Figure: One-dimensional correlated states emerge in twisted bilayer germanium selenide. The figure shows the charge density distribution of such states obtained from density function theory calculations. © Lede Xian, Jörg Harms, MPSD
In this work, the authors report a distinctive shift-current response at the band-edge of a noncentrosymmetric polytype of graphitic BC$_2$N, a quasi two-dimensional layered semiconductor made of alternating zigzag chains of carbon and boron nitride. They perform accurate density functional theory calculations of the shift photoconductivity employing a recently developed formalism based on Wannier interpolation.

The group’s ab initio calculations show that near the fundamental band gap the calculated response exhibits strong anisotropy, due to the vanishing of certain tensor components not foretold by phenomenological symmetry arguments. They trace the origin of this anisotropy to the mirror symmetry of the crystal, which imposes quantum selection rules on dipole transitions between the valence and conduction bands near the fundamental band gap. In addition to the density functional theory analysis, the researchers also capture the essential physics of this phenomenon with a two-band $k \cdot p$ model, thus providing a suitable framework for a broad class of materials.

Quick, manipulable and efficient conversion of light into electricity is key for future clean-energy technologies. The bulk photovoltaic effect, also known as the shift current, is a nonlinear absorption process that converts light into electrical current intrinsically, and has attracted increased attention in recent years due to potential applications in solar cells.

“Dipole selection rules determine the nonlinear response to light of graphitic BC$_2$N”

Figure: (Left) Crystal structure of one layer of BC$_2$N, where magenta, grey and yellow balls represent boron, nitrogen and carbon atoms, respectively. (Right) Heatmap plot across the 2D Brillouin zone at $k_z = 0$ of the yx matrix element of the shift photoconductivity.
To find materials with an appropriate response to THz radiation is key for the incoming THz technology revolution. Unfortunately, this region of the electromagnetic spectra remains largely unexplored in most materials. In particular, ubiquitous and cheap materials like cementitious materials deserve due attention.

Cementitious materials contain many structural features that seem to favour the response to the THz radiation. On the one hand, their local structure is glassy and amorphous, something which is known to give rise to an overpopulation of vibrational states at the THz frequencies, the so-called Boson Peaks. On the other hand, they contain plenty of water molecules that strongly interact with light due to their intrinsic electric dipole. Besides, the nanoporous skeleton of cement-based materials provides a rich topology for investigating the intrinsic Bosonic states of water, often studied in supercooled or nanoconfined water.

In this work, researchers from the CFM, in collaboration with researchers from the TU Delft (Netherlands), Povazska Cementaren (Slovakia) and Huazhong University of Science and Technology (China), have identified the THz fingerprints of cement-based materials. To this end, THz transmission experiments have been carried out over cement pastes in combination with atomistic simulations. Interestingly both the experiments and simulations have revealed that cementitious materials exhibit three main peaks at frequencies around ~0.6 THz, ~1.05 THz and ~1.35 THz, which are related to the Bosonic states of their water content. Additionally, two extra signals appear at ~1.95 THz and ~2.75 THz, coming from modes of the floppy parts of the dried skeleton.

Figure: (a) Experimental absorbance of the Ordinary Portland Cements (OPC) cement paste, together with the deconvolution of the spectra. (b) Computational prediction of the absorbance of C-S-H gel (the most important ingredient of cementitious materials). In the inset the Vibrational Density of States (VDOS) and their projections are displayed.
Atomic-scale dissection of molecular flashes

Molecules are key building blocks for future optoelectronic devices at extremely low dimensions, as they can carry electronic current, emit photons, or switch on and off a signal. Thanks to an ultra-resolved nanoscopy technique, it is now possible to map the origin of light emitted from a switching molecule with intramolecular resolution. Single-molecule devices open up functionalities that go beyond today’s electronics due to their intrinsic quantum nature. The concept of single molecule optoelectronics, which consists in combining optical and electronic properties within a single molecule, strongly emerges in this context. In molecular optoelectronics it is envisioned that light could be used to convey information at high frequency between well-separated components (atoms) within a single-molecule. This objective to access the molecular internal structure and its dynamics is closer thanks to the achievement by researchers at IPCMS of Strasbourg. These researchers implemented a nanoscopic technique which allowed to distinguish the exact origin of a molecular flash inside a molecule at the atomic scale. The team of researchers observed an unexpected blinking of the emitted light from the molecule, and together with theoretician colleagues from the “Theory of Nanophotonics” group at CFM in San Sebastian, they identified and associated the molecule’s flash fluctuation to the switching of hydrogen atoms between two positions of the molecule (about 1000 times per second), in a mechanism known as tautomerization. This result provides new information on this reaction, and shows that a molecule may be used as an intermittent emitter, potentially controllable, and relevant for optical communications at the nanoscale.

“Hyper-resolved map of single-molecule light emission achieved”

The researchers used the sharp metallic tip of a scanning tunneling microscope as an optical nanoantenna capable, simultaneously, of confining light to sub-molecular volumes and to excite a single-molecule with electrons. Located on top of a free-base phthalocyanine, a prototypical single-molecule switch, this nanoantenna was capable of amplifying the intensity of the molecular flashes by several orders of magnitude. By scanning the antenna with respect to the molecule, a spatial map of the flash emission was obtained with unprecedented atomic resolution. These results turn the dream of molecular optoelectronics into a closer reality.

Figure: (Left) Artistic view of the amplified fluorescence of a molecule induced by a nanoantenna tip. The two central hydrogen atoms are switching positions, and producing specific light flashes. (Right) Top: Structure of the phthalocyanine molecule under study. Bottom: Light-emission map with intramolecular resolution, allowing for identification of the origin of the flashes within the molecule.
Strongly coupled exciton-plasmon nanohybrids reveal extraordinary resistance to harsh environmental stressors: temperature, pH and irradiation

Hendel T, Krivenkov V, Sanchez-Iglesias A, Grzelczak M, and Rakovich YP.
Nanoscale 12, 16875 (2020)

The enhancement of light-matter interaction through strong coupling is a convenient strategy for the development of photonic devices. Usually, the systems under strong coupling regime suffer from poor structural stability. The present study demonstrates outstanding resistance of these structures to harsh stressors.

Hybridized plexcitonic states have unique properties that have been widely studied in many research fields targeted at both fundamental science and innovative applications. However, to make these applications come true, one needs to ensure the stabilization and preservation of electronic transitions in hybrid nanostructures under the influence of external stressors in regimes that have not yet been comprehensively investigated.

Among other strongly coupled structures, localized plasmon/exciton complexes attract special attention because of the possibility to enormously minimize the mode volume in these systems. However, the use of plasmonic nanoparticles as nanoresonators and J-aggregates as quantum emitters imposes specific requirements on the hybrid system, one of which is the stability of exciton–plasmon hybridization under environmental stress.

The present work shows that nanohybrid systems, composed of plasmonic nanoparticles and J-aggregates of organic molecules, display outstanding resistance to harsh environmental stressors such as temperature, pH and strong light irradiation as well as demonstrate long-term stability and processability of the nanostructures both in weak and strong coupling regimes.

Specifically, the spectral features associated both with weak and strong coupling effects in hybrids based on Au nanoparticles and J-aggregates of cyanine dye were found to be stable over several weeks, upon temperature changes between 10 and 70 °C and pH in the range 14

14
from 4 to 10. They are also able to withstand high-power irradiation on an unprecedented timescale. In addition, a morphologically induced alteration of the plasmon–exciton coupling strength has been revealed, which is the consequence of the difference in quality factors and local field enhancement generated by nanoparticles of two different shapes. Research envisage that these findings can be exploited for the development of advanced highly stable devices for optoelectronic, bio-imaging and sensing applications. These findings also contribute to a deeper understanding of the physico-chemical properties of plexcitonic nanoparticles.

“The present work shows that the nanohybrid system, composed of plasmonic nanoparticles and J-aggregates of organic molecules, displays outstanding resistance to harsh environmental stressors.”

Figure: Photostability of nanohybrids irradiated with varying power density and size distribution histograms of two hybrid samples (TEM images in inset) before and after irradiation.
Femtosecond laser direct inscription of 3D photonic devices in Er/Yb-doped oxyfluoride nano-glass ceramics

The present work demonstrates the potential of transparent oxyfluoride nano-glass ceramics co-doped with Er$^{3+}$/Yb$^{3+}$ ions for the integration of 3D photonic devices by femtosecond laser inscription in the low repetition-rate regime (1 kHz). The results suggest that this target material is an excellent host for the integration of active photonic devices.

The use of ultrashort laser pulses for the inscription of optical waveguides in transparent dielectrics has attracted great attention since the first demonstration due to the intrinsic properties of the technique; the fabrication is direct and can be applied to almost any transparent dielectric, it does not require any specific sample preparation and, more remarkably, it allows the implementation of 3D structures. Among the different substrates used for waveguide inscription by femtosecond laser irradiation, oxyfluoride nano-glass ceramics containing rare-earth doped fluoride nanocrystals combine the good mechanical and chemical stabilities of oxide glasses with the low phonon energy of fluoride crystals, thus being of great interest in the operation of active devices.

This collaborative work carried out by the groups led by Javier Vázquez de Aldana (University of Salamanca), Alicia Durán (ICV-CSIC) and Rolindes Balda (CFM, UPV/EHU), demonstrates the potential of transparent oxyfluoride nano-glass ceramics co-doped with Er$^{3+}$/Yb$^{3+}$ ions for the integration of 3D photonic devices by femtosecond laser inscription. The fabrication is not critical, finding a wide range of irradiation conditions (pulse energy and scanning velocity) in which guiding structures are produced supporting high-quality modes. The technique of multi-scan inscription was successfully applied to tailor the refractive index profile of the waveguides, obtaining multimodal structures.

The suitability of the glass-ceramics as substrate for the integration of complex photonic elements was demon-
strated by implementing several splitter designs, both 2D and 3D (Figure 1, left column). The modal profiles at output preserved the single mode behavior at 633 and 800 nm (see normalized intensity for 800 nm in the Figure, central column). The results demonstrate the optimum behavior of Er3+/Yb3+ oxyfluoride nano-glass ceramics as a host material for the integration of complex 3D active photonic circuits by femtosecond laser irradiation.

Figure: Scheme of the implemented photonic elements (left column), normalized near-field modal profiles at 800 nm (central column), and microscopic pictures of the output facet (right column). From top to bottom, 1×2 splitter, Mach-Zehnder interferometer, 1×4 splitter (2D), and 1×4 splitter (3D).
Kerker conditions upon lossless, absorption, and optical gain regimes

Physical Review Letters 125, 073205 (2020)

A nanoantenna with balanced electric and magnetic dipole moments exhibits a directive radiation pattern with zero backscattering. This is known as the first Kerker condition after Kerker, Wang, and Giles, who predicted in 1983 that, under plane wave illumination, magnetic spheres with equal relative permittivity and permeability radiate no light in the backscattering direction. They also concluded that, for certain permittivity and permeability relations for nanospheres, this zero optical light scattering condition happened in the forward direction.

Three decades later, a renewed version of these ideas was proposed for subwavelength dielectric spheres of high refractive index (HRI) materials, reinvigorating the interest on these light scattering conditions. Interestingly, the scattering properties of HRI nanospheres can be fully described by dipolar modes. At the first Kerker condition the electric and magnetic dipolar modes oscillate in phase with equal amplitude. This optical response drives to destructive interference between the scattered fields at the backscattering direction, which is commonly referred to as the zero optical backscattering condition.

However, recent results suggest that the concept of small particle is sufficient, but not necessary, to guarantee a dipolar response in the optical scattering of an object. Consequently, the mentioned backscattering anomalies could also be measured on larger dielectric particles.

The absence of backscattered light emerges at the first Kerker condition for dipolar particles regardless of the incoming polarization. On the other hand, for cylindrically symmetric particles, the absence of backscattered light follows from the preservation of electromagnetic helicity. Conservation of helicity has proven crucial in many applications such as enhanced chiral light-matter interactions, or in the spin-orbit interactions of light. Remarkably, it has been reported that from a relatively simple far-field measurement of the electromagnetic helicity at a right angle, the radiation pattern of the dipolar particle is inferable.

Now, a team of researchers analytically demonstrates that either losses or optical gain inhibit the first Kerker condition for homogeneous spheres regardless of the particle’s size, incident wavelength, incoming polarization, and multipole order. It follows that dissipating spheres such as dielectric Mie spheres in the visible spectral range and plasmonic particles, such as metal spheres, cannot exhibit the first Kerker condition.
For a germanium (Ge) sphere in the dipolar regime, the team quantifies the gradual drift from the ideal zero optical backscattering condition as the absorption rate is increased. Finally, that optical gain is mandatory to reach the zero forward light scattering condition is demonstrated.

The researchers show that the electromagnetic helicity cannot be preserved after scattering by an arbitrary dielectric sphere in the presence of losses or optical gain. Hence, neither can the zero optical backscattering condition be fulfilled in that scenario.

These results unveil a hidden connection between two symmetries from fundamental principles: energy conservation, mathematically expressed in terms of the optical theorem, and the electromagnetic duality, which is restored at the first Kerker condition. This intriguing link opens new insights into Mie theory.

“This work shows that either losses or optical gain inhibit the emergence of this condition for homogeneous spheres regardless of the particle’s size, incident wavelength, incoming polarization, and multipole order.”
Coherent structural relaxation of water from meso- to intermolecular scales measured using neutron spectroscopy with polarization analysis

Arbe A, Nilsen GJ, Stewart JR, Alvarez F, Sakai VG, and Colmenero J.

Physical Review Research 2, 022015 (2020)

Applying recently implemented neutron scattering polarization analysis capabilities at the time-of-flight spectrometer LET (ISIS Neutron and Muon Source, UK), the authors report the separate measurement of the coherent and incoherent dynamic structure factor of heavy water with high resolution and in a wide range of scattering vector for the first time.

The collective dynamics of water in the terahertz range has been intensively investigated since the 1970’s. Most studies used Inelastic X-ray Scattering (IXS), and invoked a viscoelastic model that assumes the existence of a “structural” relaxation process. A direct observation by IXS of this relaxation is, however, difficult due to the current resolution of IXS. IXS is also usually limited to mesoscopic scales (scattering vector 0.2 ≤ Q ≤ 0.7Å⁻¹). Thus, the crossover towards the inter-molecular scale (Q ≈ 2Å⁻¹ for water) had not been well explored up to now.

Quasielastic Neutron Scattering is the ideal technique to directly observe the structural relaxation in a wide Q-range and with high-energy resolution. However, the intensity always contains coherent and incoherent contributions. The LET spectrometer with polarization analysis allowed separately measuring coherent and incoherent dynamic structure factor of heavy water with sub-meV resolution in a wide Q range (Figure 1). This breakthrough experiment revealed a striking decoupling of collective and single-particle motions completely hidden in previous experiments. At mesoscales, the decorrelation of the collective fluctuations hardly depends on Q. The directly deduced characteristic time for the structural relaxation there agrees well with that deduced from IXS. In the crossover range towards inter-molecular scales, the results are nicely described by
the convolution of a Q-independent mode and diffusion. The combination with Molecular Dynamics simulations carried out at the Materials Physics Centre was very helpful for the data interpretation.

This work is a reference for future studies involving water under different conditions or as one of the components, influencing fields as broad and diverse as biology, soft matter or geology. In addition, it illuminates one of the most crucial open questions for liquids and glass-forming systems: the collective dynamics in the region of intermediate length scales, and how it develops toward the intermolecular ones.

“This work opens a new way of approaching the unknown territory of coherent scattering not only in water under different conditions, but also in H-bonded liquids and glass-forming systems.”

Figure: Projections of coherent and incoherent contributions to the neutron intensity scattered by D₂O at 295 K and separated by PA.
Direct observation of desorption of a melt of long polymer chains

Monnier X, Napolitano S, and Cangialosi D.

Nature Communications 7, 2292 (2020)

A polymer in contact with an inorganic substrate spontaneously forms bonds via Van der Waals forces at the substrate’s surface. Though each of these bonds is intrinsically weak, the presence of numerous pinpoints for each polymer chain results in strong polymer adhesion. This phenomenon, known as polymer adsorption, takes place spontaneously and with reasonably fast kinetics in the polymer melt, underlying the phase transformation from the “standard” unadsorbed to the adsorbed polymer melt, thermodynamically driven by a decrease in the free energy.

The concomitant decrease of enthalpy and entropy in adsorption is analogous to the well-known phenomenon of crystallization. Within this analogy, increasing the temperature entails the progressive enhancement of the entropic part of the free energy and, thereby, the opposite phenomenon — that is, desorption, analogous to melting, is expected on heating [see panel (a) of the Figure]. Unveiling the existence of this scenario by heating has so far remained elusive due to polymer degradation on heating at low rates [dotted line, panel (b) of the Figure]. To circumvent degradation, this study exploits the capabilities of fast scanning calorimetry allowing heat exchange by a material while the temperature is rapidly varied. With this technique, polymer molecules can be brought to high temperature within a fraction of a second, thus preventing degradation [dashed line, panel (b) of the Figure].

Heating scans at 10^4 K/s on poly(t-butyl styrene) (PTBS) samples adsorbed for different times above the glass transition temperature are shown in panel (c) of the Figure. The signature of polymer desorption is an endothermic overshoot at about 660 K, underlying the previous adsorption phenomenon. The position of this overshoot is independent of annealing conditions, highlighting the thermodynamic nature of the transition. The magnitude of the overshoot increases with annealing time, signifying increasing amounts of adsorbed polymer. The time evolution of the enthalpy of desorption at different annealing temperatures is shown in panel (d) of the Figure. Decreasing the adsorption temperature renders adsorption slower. Analysis of temperature dependence of the adsorption time [inset of panel (d) of the Figure] indicates that adsorption is triggered by the same process responsible for the glass transition, that is, the primary relaxation of the polymer.

In summary, fast calorimetry permitted to fully characterize the previously elusive phase transition reverting adsorbed polymer chains to standard desorbed polymer melts. This is an important advance on the state of the art of polymer physics. In addition to such advance of the study of phase transitions, this study paves the way to developing new methods that allows tailoring properties of nanomaterials in applications such as smart coatings, flexible electronics and more. The properties of these innovative systems, in fact, depend on
“Fast scanning rates allows detecting the first order phase transition from adsorbed to desorbed chains, thus allowing tuning the amount of polymer adsorbed on a solid surface”

how many molecules are adsorbed, and, in this work, Monnier et al. anticipate that by adequately mastering the adsorption/desorption transition it is possible to fabricate better performing and more durable materials.

Figure: (a) Free energy vs. temperature for the desorbed (red line) and the adsorbed (green line) phases. (b) Schematic representation of time–temperature–transformation diagram for an adsorbed polymer layer. The blue dashed line and the dark blue dotted line indicate constant heat transformation at, respectively, fast and slow rate. (c) Heating scans at 10^4 K/s after annealing at 458 K for various times. Inset: enlargement in the temperature range where desorption takes place. (d) Heat of desorption as a function of annealing time, at 448 K (blue), 458 K (cyan) and 468 K (green). Vertical arrows indicate the timescale to reach a plateau in the enthalpy of desorption. Inset: equilibration time as a function of the inverse temperature (stars). The red line depicts the temperature dependence of the relaxation time.
Single-chain nanoparticles: opportunities provided by internal and external confinement

Verde-Sesto E, Arbe A, Moreno AJ, Cangialosi D, Alegria A, Colmenero J, and Pomposo JA.

Materials Horizons 7, 2292 (2020) - REVIEW

Single-Chain NanoParticles (SCNPs) result from the folding individual synthetic polymer chains by means of multiple intra-chain (reversible or irreversible) bonding interactions. The size of these soft nano-objects can be easily tuned between 3 and 30 nm. Only a rough analogy exists between the process of SCNP formation and the precise, specific folding of a polypeptide chain to its native, functional state (e.g., enzymes). Most SCNPs result in a typical morphology in solution more akin to those displayed Intrinsically Disordered Proteins (IDPs).

Strategies to induce globule formation in SCNPs were also investigated, most of them based on tuning the hydrophobic/hydrophilic balance of the SCNP precursor. The conformational degrees of freedom in SCNPs are severely restricted, giving rise to notorious local domain formation and, hence, to interesting topological self-confinement effects.

Self-confinement in SCNPs has already been exploited for catalysis, encapsulation, transport and delivery of therapeutic cargos, sensing, targeting and bioimaging applications, as well as a variety of other advanced applications. Further progress is expected in these fields accompanied by the development of new methods of rigorous sequence control and precise placement of single functional monomer units at multiple positions along the polymer backbone. This development will presumably lead to precise control of the SCNP topology and, hence, to highly accurate structure–property relationships.

External confinement – as imposed under different geometrical constraints as well as in crowded solutions, in the melt state and on surfaces – is an extra parameter to tune the size, shape, dynamics and, hence, potential functionality/foreseen applications of SCNPs. The unifying vision that results by combining recent experiments, simulations and theory suggests that, in addition to the global size and shape, external confinement also affects the local internal structure of SCNPs and their dynamics, which are critical e.g. for catalysis and drug delivery applications. This recent knowledge opens up new avenues to tune the properties and functionality of SCNPs (see Figure).

“Both self-confinement and external confinement offer a plethora of opportunities to tune the properties of SCNPs for a variety of practical applications”
Hence, innovative purification techniques of SCNPs can be envisioned based on their expected behavior during ultrafiltration through nanopores under an elongational flow field. The compact crumpled globule conformation that sparse SCNPs, adopted under crowding in the melt and in all-polymer nanocomposites, often induces significant viscosity reduction effects that could be beneficial for the development of improved all-polymer nanocomposites. Smart responsive surfaces could be foreseen based on a dense array of SCNPs attached to a surface loaded with active substances to be delivered through stimuli-mediated rupture of intra-chain cross-links. Moreover, new topological nanostructures could result by increasing the complexity of the polymer precursors used for SCNP synthesis, their hydrophobic/hydrophilic balance, self-assembly properties, and so on.

Figure: Illustration of external confinement imposed on SCNPs: (a) Crumpled globule morphology of sparse SCNPs (drawn in different colours) in a concentrated solution as revealed by MD simulations. (b) Change in conformation of SCNPs on passing from dilute solution (sparse open conformation, scaling exponent $\nu = 0.46$) to all-polymer nanocomposites (crumpled globule conformation, scaling exponent $\nu = 0.37$) as determined by SANS experiments. (c) Schematic illustration of arrays of SCNPs on surfaces. (d) Change in conformation of SCNPs in nanopores.
The instrument suite of the European Spallation Source (ESS)

ESS Collaboration, including Fernandez-Alonso F.
Nuclear Instruments and Methods in Physics Research A 957, 163402 (2020)

The use of the neutron as an exquisite probe of the structure and dynamics of condensed matter is not only well established, but it also continues to evolve in exciting directions, particularly in our continent. Currently under construction in Lund (Sweden), the European Spallation Source (ESS) seeks to offer order-of-magnitude gains in scientific capabilities relative to the state-of-the-art.

The instrument suite described in this work represents the culmination of continued efforts across a wide range of disciplines and institutions over the past decade. The ESS is an accelerator-based, pulsed-neutron source optimized to provide high flux, flexible resolution, and broad bandwidth, capabilities that translate into a plethora of new scientific opportunities. A total of fifteen instruments have been designed to this end, with a view to their imminent construction and subsequent deployment: two small-angle scattering instruments and two reflectometers; an imaging station; five diffractometers for the study of single crystals, macromolecular systems, magnetism, and engineering; and five inelastic neutron spectrometers spanning a wide range of length- and time scales simultaneously — one of the primary merits and strengths of neutron-scattering techniques, as illustrated in the accompanying figure. The team at the Materials Physics Center has been particularly focused on the VESPA spectrometer, including its science case and specification. This task has benefitted greatly from recent and joint developments at other neutron sources worldwide, most notably on TOSCA at the ISIS Pulsed Neutron & Muon Source in the United Kingdom. Both VESPA and TOSCA are high-resolution broadband spectrometers ideally suited to explore the properties of new materials, from fuel stores and nanostructured media to supramolecular frameworks for carbon-dioxide capture. On VESPA, the variable spectral resolution coupled to simultaneous diffraction also paves the way for parametric and kinetic studies that would offer an unprecedented level of detail and insight currently beyond our reach.

“An international team from forty-one institutions across twelve countries introduce the initial instrument suite of the European Spallation Source, currently under construction in Sweden.”

Figure: Length and time scales accessible to neutrons, along with a qualitative comparison with other experimental probes. Adapted from Fernandez-Alonso F and Price DL, Neutron Scattering – Fundamentals (Academic Press, 2013).
CFM infrastructure has been envisioned to characterise nanoscale materials with high sensitivity. Thus, CFM headquarters building was built on the basis of sophisticated architectural and engineering solutions to create a unique environment, free of electromagnetic interference and with an ultralow level of vibration. Since the opening of CFM headquarters in 2010, state of the-art facilities have been launched progressively, which complete a set of very sophisticated and specialised experimental techniques, ready to give response to the needs in advanced materials characterisation. These needs involve both fundamental research in nanomaterials, as well as specifically targeted systems of interest for energy and in bio environmental strategic areas.
The following equipment and infrastructures are hosted and run at CFM by the different research groups:

CHEMICAL PHYSICS OF COMPLEX MATERIALS

HIGH RESOLUTION ANGLE RESOLVED PHOTOEMISSION LAB

The "High Resolution Angle Resolved Photoemission" laboratory is equipped with an Angle Resolved Photoemission Spectroscopy (ARPES) system combined with atomic-resolved microscopy (Scanning Tunneling Microscope, STM). These two techniques can be used either jointly or separately. The ARPES instrument allows achieving ultra-high resolution (0.1 degrees, 5 meV) and can deal with samples at low temperature (40K). Samples can be prepared independently at two different preparation chambers and they can be inserted in the instrument via a fast-entry lock.

ULTRA-LOW TEMPERATURE SCANNING TUNNELING MICROSCOPY LAB

The "Ultra-Low Temperature Scanning Tunneling Microscopy" laboratory hosts an Atomic Force Microscopy (AFM) / Scanning Tunnel Microscope (STM) operable at 1K for characterisation of materials at atomic scale.

SURFACE CHEMICAL-PHYSICS LAB

The "Surface Chemistry" laboratory is equipped with an Ultra High Vacuum chamber combining different surface characterisation techniques: X-Ray Photoemission Spectroscopy (XPS), Ultraviolet Photoelectron Spectroscopy (UPS), Low Energy Electron Diffraction (LEED) and Scanning Tunnel Microscope (STM) (with the possibility to use in Atomic Force Microscope (AFM) mode). The chamber has two samples preparation chambers, with the required Molecular Beam Epitaxy (MBE) and sample preparation tools.

SURFACE MAGNETISM LAB

The "Surface Magnetism" laboratory hosts equipment for surface characterisation of samples by means of a homemade Magneto Optic Kerr Effect (MOKE, 15-300 K, 0.1 Tesla) and Scanning Tunnel Microscope (STM, Omicron, 70-800K) (combined or separately). The measuring ultra high vacuum chamber includes Low Energy Electron Diffraction (LEED) and Molecular Beam Epitaxy (MBE).

ULTRA-LOW TEMPERATURE SCANNING TUNNELING MICROSCOPY LAB

ELECTRONIC PROPERTIES AT THE NANOSCALE

CERAMICS AND CEMENT-BASED MATERIALS LAB

The "Ceramic and Cement-based Materials" laboratory consists of the following specific equipment for synthesizing ceramics and cements:

- High temperature ceramic ovens (Thermolyne model from ThermoFisher Scientific)
- A high temperature microwave oven that features 3100 Watts of microwave power and controllable temperature up to 2000°C (BP-211/50 model from Microwave Research and Applications, Inc.)
- Sub- and super-critical reactors (Novoclave 600ml HP 500bar/500°C)

In the "Ceramic and Cement-based Materials" laboratory, there is also an isothermal calorimeter (TAM Air 8-channel model from TA Instruments) for cements characterisation.
PHOTONICS

LASER SPECTROSCOPY LAB

In the "Laser Spectroscopy" laboratory, continuous and time-resolved (with nano-picoseconds excitation laser sources) spectroscopy systems with high spectral resolution in the ultraviolet-visible-infrared (UV-VIS-IR) radiation domains, together with low temperature facilities (2K), are used to characterise the properties of rare-earth-doped materials for lasing, spectral conversion, energy transfer and laser cooling. A homemade photoacoustic spectrometer is also available. These facilities are physically located at the Engineering School of Bilbao (out of the CFM main premises in Donostia / San Sebastián).

ULTRAFast SPECTROSCOPY LAB

The "Ultrafast Spectroscopy" laboratory consists of picosecond (Infrared-Visible-Ultraviolet, IR VIS UV) and femtosecond (Infrared-Visible, IR-VIS) sources (with regenerative amplification) with high speed detectors in the picosecond domain (Streak camera), capable of measuring the fluorescence of atoms and ions of technological interest. There is also a multiphoton microscope with time-resolved possibilities to this end. These facilities are physically located at the Engineering School in Bilbao (out of the CFM main premises in Donostia / San Sebastián).

NANOPHOTONICS LAB

The "Nanophotonics" laboratory hosts a scanning confocal time-resolved photoluminescence (TRPL) microscopy setup (MicroTime200, PicoQuant) with single molecule detection sensitivity, equipped with two lasers (405 and 485 nm), two single-photon counting avalanche photodetectors, heating stage, and cryostat. The system contains the complete optics and electronics for recording all main aspects of the luminescence dynamics down to single nanoparticle / molecule level with wide range of capabilities: 2D and 3D Confocal photoluminescence microscopy imaging; Single molecule imaging; 2D and 3D Fluorescence Lifetime Imaging (FLIM); the minor carriers lifetime mapping; carriers recombination dynamics; and Forster Resonance Energy Transfer (FRET).

Other available set-ups include:

- QUEPRO high-performance spectrophotometer connected to IX71 Olympus microscope for microphotoluminescence spectroscopy
- MayaPro2000 spectrophotometer (Ocean Optics)
- Cary50 spectrophotometer (Agilent) for absorption and transmission spectroscopy
- Cary 3500 (Agilent) with kinetics and temperature control
- Cary Eclipse Spectrophotometers (Agilent) for range of applications including photoluminescence and photoluminescence excitation spectroscopy, photoluminescence anisotropy spectroscopy, photoluminescence kinetics, phosphorescence and delayed fluorescence lifetime measurements
- Chemat KW4A precision spin-coater for deposition of thin organic and inorganic films from solutions and self-assembly of nanostructures
- Thermal cycler (Applied Biosystems) for 96 wells
- Two programmable syringe pumps (WPI) operating at wide range of flow rates
- Two illumination sources of 150 W quartz halogen fiber optic illuminator (Dolan- Jenner) equipped with the set of bandpass and long-pass filter (Edmund Optics, and Intor)
- Portable photometer equipped with global radiometer sensor (400 – 2000 nm)
- Oxygen sensor (Neo Fox, Ocean Optics)
- Thermocouples operating in wide range of temperatures and solvents (ThorsLab)
FACILITIES

MATERIALS SYNTHESIS LAB

In the "Materials Synthesis" laboratory, materials' crystal growth is investigated by using homemade Bridgman and Czochralski furnaces. These facilities are physically located at the Engineering School of Bilbao (out of the CFM main premises in Donostia / San Sebastián).

QUANTUM NANOPHOTONICS LAB

The "Quantum Nanophotonics" laboratory is fully stabilised in temperature and humidity, and hosts state-of-the-art facilities for the generation and control of quantum states of light:

- Three optical tables for manipulating the polarisation as well as spatial and frequency degrees of freedom of entangled and single photon states: 1200 x 2400 x 305 mm table with isolators (784-65-12DR model from TMC), 1500 x 3000 x 305 mm table with isolators (784-675-12DR model from TMC) and 900 mm x 1800 mm x 305 mm table with isolators (from Newport)

- A set of laser systems, including continuous wave lasers covering the ultra violet, visible and infrared regions, for producing different photon states: a 633nm, 10mW, He-Ne laser (from Thorlabs); an 403nm, 100mW, diode (from Toptica); a 680nm, 50mW, diode (from Toptica); an 808nm, 10mW, diode (from Thorlabs)

- A source of entangled photons based on a periodically poled potassium titanyl phosphate (ppKTP) crystal

- Optically addressable cryostat, equipped with state-of-the-art nanopositioners, for cooling down nanostructures and nanoparticles to cryogenic temperatures (attoDRY 100 model from Attocube)

- A set of spatial light modulators (from Cambridge Correlators), polarisers (from Thorlabs and Standa) and Single Photon Counting Modules (SPCM, APDs SPCM-AQ4C model from Excelitas), for analysing the photons interacting with nanostructures at cryogenic temperatures

DIELECTRIC SPECTROSCOPY LAB

The "Dielectric Spectroscopy" laboratory provides characterisation of dielectric properties of materials, particularly polymers and soft matter. The combined use of several types of spectrometers, listed below, allows covering a wide dynamical range of more than 16 orders of magnitude (in frequency and time domain) and different sample environments:

- Broad-Band Dielectric Spectrometers (BBDS): ALPHA-S & ALPHA-A Novocontrol

- High-Frequency Dielectric Spectrometer (HFDS): Agilent E4991A RF-Impedance Analyzer

- Micro-Wave Dielectric Spectrometer (MWDS): Agilent E8361A Microwave Network Analyzer

- Terahertz Spectrometer (THS): Teraview 3000 spectrometer

- High-Pressure Dielectric Spectrometer (HPDS): Concept 100 Novocontrol

- Low-Temperature Dielectric spectrometer (LTDS): ALPHA-A Novocontrol

- Time-Domain Dielectric Spectrometer (TDDS): Novocontrol

- Thermally Stimulated Depolarisation Currents (TSDC): Novocontrol

POLYMERS AND SOFT MATTER

Microwave generators and amplifiers (SMB100A model from Rohde & Schwartz), for addressing the electronic states of Nitrogen Vacancy centres in diamond
MICROSCOPY LAB
The “Microscopy” laboratory allows materials structural characterisation by means of:

• Optical Confocal Microscopy (Leica TCS SPE DM5500, 120-520K)
• Scanning Electron Microscopy (SEM, Hitachi TM 3000, 250-320K)
• Atomic Force Microscopy (AFM, MultiMode V, Vee-co, 250-470K)

THERMAL CHARACTERISATION LAB
The “Thermal Characterisation” laboratory hosts the following equipment for material characterisation, particularly polymers and soft matter:

• Differential Scanning Calorimetry analysis (DSC): Q2000 TMDSC - TA Instruments (100-700K) and Flash DSC1 - Mettler Toledo (180-700K)
• Thermogravimetric analysis (TGA): Q500, TA Instruments (290-1300K)
• Dilatometry (DIL): Zero Friction L75V, Linseis (100-800K) dual push rod version
• Pressure-Volume-Temperature (PVT): PVT100, Thermo Haake (200-550K, 200-2500 bar)

CHEMISTRY LAB
The “Chemistry” laboratory is specialised in synthesis of polymers and soft-matter based materials, with special focus on click chemistry methods. This laboratory can characterise physicochemical properties and stability of molecular and supramolecular chemical compounds using the following equipment:

• Absolute molecular mass distribution meter: Agilent 1200 GPC-SEC Analysis System + Light scattering Wyatt miniDAWN TREOS, viscosimeter ViscoStar II and Optilab rEX Refractive Index Detector
• Nanoparticle size and z-potential meter: Malvern Zetasizer Nano
• Viscometers: EMS-1000 and Malvern SV-10 Vibro
• Surface tension meter: Contact Angle meter OCA 15 EC DataPhysics Instruments GmbH
• Liquid/solution density meter: ANTON PAAR, DMA 4500 M model
• UV-VIS spectrometer: Agilent 8453A with Peltier thermostated cell holder, T-controller 89090A
• Close vessel microwave assisted reactor: CEM Discover SP System (200-550K, 0-27 bar)

REOLOGICAL CHARACTERISATION LAB
The “Reological Characterisation” laboratory hosts the following equipment to perform rheological analysis in polymer and soft matter samples:

• ARES-LS2 rheometer - TA Instruments (130-800K) (1mHz-50Hz), with simultaneous electric impedance analyser (20Hz-1MHz)
• Minimat 200 Rheometrics Scientific (200-500K) miniature material tester

ABSORPTION SPECTROSCOPY TECHNIQUES LAB
The “Absorption Spectroscopy Techniques” laboratory hosts the following equipment to characterise solid and liquid samples, particularly polymers and soft matter:

• For the molecular spectroscopy in the infrared (IR) domain: FT-IR - JASCO 6300 (130-400K)
• For the molecular spectroscopy in the terahertz (THz) domain: TPS SPECTRA 3000, TeraView
• Raman scattering: FT-RAMAN, JASCO RFT-6000
FACILITIES

X-RAY LAB

The “X-Ray” laboratory can provide structural characterisation of polymer and soft matter samples by means of Small Angle X-Ray Scattering (SAXS) and Wide Angle X-Ray Scattering (WAXS) techniques (individually or simultaneously), using the following equipment:

- SAXS: Rigaku PSAXS-L (120-520K), which can operate with simultaneous WAXS measurements
- WAXS: Bruker AXS DB ADVANCE (120-520K)

LIGHT SCATTERING LAB

The “Light Scattering” laboratory can provide characterisation of polymer and soft matter samples by means of Static and Dynamic Light Scattering techniques (SLS and DLS, respectively), using a Light Scattering Spectrometer (288 – 363K) with modulated 3D technology.

HIGH PERFORMANCE COMPUTING (HPC) CENTRE

In addition to the experimental facilities, CFM has a High Performance Computing (HPC) Centre that provides scientific computing capabilities and support across all CFM research lines. The CFM Computing Centre consists of two Data Centers hosting four HPC clusters of different sizes, kinds and purposes, all adding up a total of 240 computing nodes with more than 4800 cores and 24TB or RAM. This provides CFM with a computing time of more than 42 million CPU hours a year, and an aggregated computing power of 110 TFLOPS of Theoretical Peak Performance.

There are currently four CFM HPC clusters:

- **Oberon** cluster (the main, general purpose, CFM HPC cluster), composed of 182 computing nodes with two Xeon processors and a memory range of 24 GB up to 256 GB per node, all of them sharing a high speed-low latency Infiniband connection network and a high performance shared parallel filesystem, giving a total of 2000 cores and 15 TB of memory. This cluster gives service to the whole CFM research community.

- **Nostromo** cluster, targeted to shared memory – single node molecular dynamics calculations. It is composed of 17 AMD Opteron 6300 series computing nodes with 64 cores and 64 GB of RAM each node, giving a total of 1088 cores and about 1.1 TB of memory.

- **Ekhi** cluster, designed specifically for novel Quantum ESPRESSO calculations, is composed of 28 computing nodes with two Xeon Cascade Lake-SP 6230 processors (40 computing cores) and 96 GB of memory in each node, with an Infiniband FDR interconnection network, giving a total of 1120 cores and 2.7 TB of memory.

- **Sama** is a multipurpose cluster designed for high-level ab initio electronic structure calculations and molecular dynamics simulations. It is composed of 13 computing nodes with two Intel Xeon Gold 6240R processors (48 cores), 384 GB of memory, and 1 TB NVMe SSD disk per node, all interconnected through an Infiniband HDR 100 Gb/s network, and giving a total of 624 cores and 4.8TB of memory.

These four HPC clusters service a wide range of computational needs in the CFM, mainly related to ab-initio calculations of advanced materials, a transverse topic within the Centre. Apart from these four clusters, 12 workstations are dedicated to running specific numerical applications, and are also used for data analysis and code development and testing. All these equipments are managed by the CFM Scientific Computing Service that, in addition to administering the aforementioned equipments, also provides scientific and general computing advice to the CFM researchers, and organises scientific computing workshops and tutorials.
EXTERNAL SERVICES

CFM offers external services based on the centre equipment and infrastructure to academic and industrial users. External services are open facilities carried out by CFM qualified researchers and technicians for researchers and technologists from different research fields and businesses. The CFM external services that can be commissioned are as follows:

SMALL-ANGLE X-RAY DIFFRACTION
The service offers the structural characterisation of materials by means of Small-angle X-ray scattering (SAXS) technique, using a Rigaku PSAXS-L (120 - 520 K) SAXS instrument that enables simultaneous Wide Angle X-ray Scattering (WASX) measurements.

DIFFERENTIAL THERMAL ANALYSIS (DTA)
The Service offers the thermal characterisation of materials by means of differential scanning calorimetry technique, using a Flash Differential Scanning Calorimeter (180 - 700 K) from Mettler Toledo.

ISOBARIC THERMAL EXPANSION
The Service offers the characterisation of polymer and soft matter samples by means of dilatometry and PVT measuring system, using a L75V (100 - 800 K) from Linseis, and a pVT100 (200 - 550 K, 200 - 2500 Bar) from Thermo Haake, respectively.

ABSORPTION SPECTROSCOPY IN TERAHERTZ (THZ) DOMAIN
The service offers the molecular characterisation of samples by means of molecular spectroscopy in the THz domain, using a Terahertz spectrometer, TPS SPECTRA 3000 from TeraView.

DIELECTRIC CHARACTERISATION
The service offers the characterisation of dielectric properties of materials by means of a Broadband Dielectric Spectrometer (BDS) from ALPHA Novocontrol.

MATERIALS SURFACE CHARACTERISATION
The service offers the surface characterisation of materials by means of X-ray Photoelectron Spectroscopy (XPS), Ultraviolet Photoemission Spectroscopy (UPS), Atomic Force Microscopy (AFM) and Scanning Tunnel microscopy (STM) techniques, either combined or separately.

NANOPHOTONICS LAB
The service offers time- resolved Photoluminescence (TRPL) measurements of materials using a MicroTime200 setup from PicoQuant that provides single molecule sensitivity and high temporal resolution.

HIGH PERFORMACE COMPUTING (HPC) SUPPORT
• Technical support and consulting service for the design, implementation, installation and optimization of software for HPC applications
• Technical support and scientific consulting service for modelling, computing and simulation in the domain of Materials Sciences (electronic structure techniques, classical and semiclassical models, molecular dynamics, Monte-Carlo, etc.)
Among all the articles published at CFM, **81%** were published in the framework of **international collaborations**, showing the international dimension and positioning of the Centre in the field of Materials Science.

<table>
<thead>
<tr>
<th>Research Output</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISI Publications</td>
<td>217</td>
</tr>
<tr>
<td>Q1 Publications</td>
<td>142</td>
</tr>
<tr>
<td>D1 Publications</td>
<td>89</td>
</tr>
<tr>
<td>H-Index</td>
<td>133</td>
</tr>
<tr>
<td>ISI Web of Science citations in 2020</td>
<td>13,021</td>
</tr>
</tbody>
</table>

*As of April 2021
Total number of ISI publications * since 1999 as of April 2021: **3116**

Total number of ISI citations since 1999: **117,718**

H index as of April 2021: **133**
Total number of publications with impact factor larger or equal than that of Physical Review Letters:

<table>
<thead>
<tr>
<th>Journal</th>
<th>Number of articles</th>
<th>Impact factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nature</td>
<td>2</td>
<td>42.78</td>
</tr>
<tr>
<td>Nature Materials</td>
<td>2</td>
<td>38.66</td>
</tr>
<tr>
<td>Nature Nanotechnology</td>
<td>3</td>
<td>31.54</td>
</tr>
<tr>
<td>Nature Photonics</td>
<td>1</td>
<td>31.24</td>
</tr>
<tr>
<td>Advanced Materials</td>
<td>2</td>
<td>27.40</td>
</tr>
<tr>
<td>Nature Physics</td>
<td>1</td>
<td>19.26</td>
</tr>
<tr>
<td>Wiley Interdisciplinary Reviews-Computational Molecular Science</td>
<td>1</td>
<td>16.78</td>
</tr>
<tr>
<td>National Science Review</td>
<td>1</td>
<td>16.69</td>
</tr>
<tr>
<td>Annual Review of Condensed Matter Physics</td>
<td>1</td>
<td>14.83</td>
</tr>
<tr>
<td>Journal of the American Chemical Society</td>
<td>3</td>
<td>14.61</td>
</tr>
<tr>
<td>ACS Nano</td>
<td>7</td>
<td>14.59</td>
</tr>
<tr>
<td>Science Advances</td>
<td>2</td>
<td>13.12</td>
</tr>
<tr>
<td>Angewandte Chemie - International Edition</td>
<td>5</td>
<td>12.96</td>
</tr>
<tr>
<td>Physical Review X</td>
<td>2</td>
<td>12.58</td>
</tr>
<tr>
<td>ACS Catalysis</td>
<td>1</td>
<td>12.35</td>
</tr>
<tr>
<td>Materials Horizons</td>
<td>1</td>
<td>12.32</td>
</tr>
<tr>
<td>Nature Communications</td>
<td>7</td>
<td>12.12</td>
</tr>
<tr>
<td>Nano Letters</td>
<td>7</td>
<td>11.24</td>
</tr>
<tr>
<td>Chemical Engineering Journal</td>
<td>2</td>
<td>10.65</td>
</tr>
<tr>
<td>Chemical Science</td>
<td>1</td>
<td>9.35</td>
</tr>
<tr>
<td>NPJ Computational Materials</td>
<td>1</td>
<td>9.34</td>
</tr>
<tr>
<td>2D Materials</td>
<td>1</td>
<td>9.32</td>
</tr>
<tr>
<td>ACS Applied Materials & Interfaces</td>
<td>1</td>
<td>8.76</td>
</tr>
<tr>
<td>Physical Review Letters</td>
<td>7</td>
<td>8.38</td>
</tr>
</tbody>
</table>
1. **Theory of the thickness dependence of the charge density wave transition in 1 T-TiTe$_2$**
 Zhou JS, Bianco R, Monacelli L, Errea I, Mauri F, and Calandra M.
 2D Materials 7, 45032 (2020)

2. **Cellulose as an inert scaffold in plasmon-assisted photoregeneration of cofactor molecules**
 Tarnowicz-Staniak N, Vazquez-Diaz S, Pavlov V, Matczyszyn K, and Grzelczak M.
 ACS Applied Materials & Interfaces 12, 19377 (2020)

3. **Kinetic and thermodynamic hysteresis in clustering of gold nanoparticles and information storage in dynamic systems**
 Kruse J, Merkens S, Chuvin A, and Grzelczak M.
 ACS Applied Nano Materials 3, 9520 (2020)

4. **Ultrafast real-time dynamics of CO oxidation over an oxide photocatalyst**
 ACS Catalysis 10, 13650 (2020)

5. **Resolving segmental polymer dynamics in nanocomposites by incoherent neutron spin-echo spectroscopy**
 Musino D, Oberdisse J, Farago B, Alegria A, and Genix AC.
 ACS Macro Letters 9, 910 (2020)

6. **Cyclic polyethylene glycol as nanoparticle surface ligand**
 Aboudzadeh MA, Iturrospe A, Arbe A, Grzelczak M, and Barroso-Bujans F.
 ACS Macro Letters 9, 1604 (2020)

7. **Present and future of surface-enhanced Raman scattering**
 ACS Nano 14, 28 (2020)

8. **Band depopulation of graphene nanoribbons induced by chemical gating with amino groups**
 ACS Nano 14, 1895 (2020)

9. **Single photon emission from a plasmonic light source driven by a local field-induced coulomb blockade**
 ACS Nano 14, 4216 (2020)

10. **Probing the magnetism of topological end states in 5-armchair graphene nanoribbons**
 Lawrence J, Brandimarte P, Berdonces-Layun A, Mohammed MSG, Grewal A, Leon CC, Sanchez-Portal D, and de Oteyza DG.
 ACS Nano 14, 4499 (2020)
11 Molecular approach for engineering interfacial interactions in magnetic/topological insulator heterostructures
ACS Nano 14, 6285 (2020)

12 Multiscale analysis of phase transformations in self-assembled layers of 4,4´-Biphenyl dicarboxylic acid on the Ag(001) Surface
ACS Nano 14, 7269 (2020)

13 Topologically nontrivial phase-change compound GeSb2Te4
ACS Nano 14, 9059 (2020)

14 Effect of paclitaxel in the water dynamics of MCF-7 breast cancer cells revealed by dielectric spectroscopy
Martins ML, Bordallo HN, Arrese-Igor S, Alegria A, and de Leon JC.
ACS Omega 5, 18602 (2020)

15 Second-harmonic generation from a quantum emitter coupled to a metallic nanoantenna
Babaze A, Esteban R, Aizpurua J, and Borisov AG.
ACS Photonics 7, 701 (2020)

16 Probing the radiative electromagnetic local density of states in nanostructures with a scanning tunneling microscope
ACS Photonics 7, 1280 (2020)

17 The crystal field plasmon splitting
Mezzasalma SA, Grzelczak M, and Sancho-Parramon J.
ACS Photonics 7, 1551 (2020)

18 Optomechanical collective effects in surface-enhanced Raman scattering from many molecules
Zhang Y, Aizpurua J, and Esteban R.
ACS Photonics 7, 1676 (2020)

19 Surface-enhanced circular dichroism spectroscopy on periodic dual nanostructures
ACS Photonics 7, 2978 (2020)

20 Terahertz nanoimaging and nanospectroscopy of chalcogenide phase-change materials
ACS Photonics 7, 5499 (2020)
21 Relevance of the quadratic diamagnetic and self-polarization terms in cavity quantum electrodynamics
Schafer C, Ruggenthaler M, Rokaj V, and Rubio A.
ACS Photonics 7, 975 (2020)

22 Infrared permittivity of the biaxial Van der Waals semiconductor alpha-MoO₃ from near- and far-field correlative studies
Alvarez-Perez G, Foland TG, Errea I, Taboada-Gutierrez J, Duan JH, Martin-Sanchez J, Tresguerres-Mata AIF, Matson JR, Bylinkin A, He MZ, Ma WL, Bao QL, Martin JI, Caldwell JD, Nikitin AY, and Alonso-Gonzalez P.
Advanced Materials 32, 1908176 (2020)

23 The importance of quantifying the composition of the amorphous intermixed phase in organic solar cells
Advanced Materials 32, 2005241 (2020)

24 Recent advances in solid-state lighting devices using transition metal complexes exhibiting thermally activated delayed fluorescent emission mechanism
Mahoro GU, Fernandez-Cestau J, Renaud JL, Coto PB, Costa RD, and Gaillard S.
Advanced Optical Materials 8, 2000260 (2020)

25 Enhanced light-matter interaction in B-10 monoisotopic boron nitride infrared nanoresonators
Advanced Optical Materials, 2001958 (2020) (Early Access)

26 Probing the network topology in network-forming materials: The case of water
Formanek M, and Martelli F.
AIP Advances 10, 55205 (2020)

27 Self-reporting of folding and aggregation by orthogonal hantzsch luminophores within a single polymer chain
De-La-Cuesta J, Verde-Sesto E, Arbe A, and Pomposo JA.
Angewandte Chemie- International Edition (Early Access)

28 Electrochemical stability of the reconstructed Fe₃O₄(001) surface
Angewandte Chemie-International Edition (Early Access)

29 Controlling single molecule conductance by a locally induced chemical reaction on individual thiophene units

30 Anisotropic electron conductance driven by reaction byproducts on a porous network of dibromobenzothiadiazole on Cu(110)
Barragan A, Sarasola A, and Vitali L.
Catalytic oxidation of CO on a curved Pt(111) surface: simultaneous ignition at all facets through a transient CO-O complex

Effect of spectral overlap and separation distance on exciton and biexciton quantum yields and radiative and nonradiative recombination rates in quantum dots near plasmon nanoparticles
Krivenkov V, Dyagileva D, Samokhvalov P, Nabiev I, and Rakovich Y.
Annalen der Physics 523, 2000236 (2020)

Superconducting hydrides under pressure
Pickard CJ, Errea I, and Eremets MI
Annual Review of Condensed Matter Physics 11, 57 (2020)

Signatures of temperature driven antiferromagnetic transition in the electronic structure of topological insulator MnBi$_2$Te$_4$
Estyunin DA, Klimovskikh II, Shikin AM, Schwier EF, Otrokov MM, Kimura A, Kumar S, Filnov SQ, Aliev ZS, Babanly MB, and Chulkov EV.
APL Materials 8, 21105 (2020)

Quantification of interfacial spin-charge conversion in hybrid devices with a metal/insulator interface
Sanz-Fernandez C, Pham VT, Sagasta E, Hueso LE, Tokatly IV, Casanova F, and Bergeret FS.

Very large thermal rectification in ferromagnetic insulator-based superconducting tunnel junctions
Giazotto F, and Bergeret FS.

Using gold nanoparticles to detect single-nucleotide polymorphisms: toward liquid biopsy
Iglesias MS, and Grzelczak M.
Beilstein Journal of Nanotechnology 11, 263 (2020)

Human importin alpha 3 and its N-terminal truncated form, without the importin-beta-binding domain, are oligomeric species with a low conformational stability in solution
Biochimica et Biophysica Acta-General Subjects 1864, 129609 (2020)

Keto-enol tautomerization drives the self-assembly of leucoquinizarin on Au(111)
Chemical Communications 56, 2833 (2020)

Steering alkyne homocoupling with on-surface synthesized metal-organic complexes
Mohammed MSG, Colazzo L, Gallardo A, Pomposo JA, Jelinek P, and de Oteyza DG.
Chemical Communications 56, 8659 (2020)
41 Microwave irradiation versus conventional heating assisted free-radical copolymerization in solution
Perez-Martinez BT, Aboudzadeh MA, Schubert US, Leiza JR, and Tomovska R.
Chemical Engineering Journal 399, 125761 (2020)

42 Modelling the dynamic development of the curing process and film morphology of films cast from waterborne acrylic-alkyd hybrids
Limousin E, Gonzalez E, Martinez-Tong DE, Ballard N, and Asua JM.
Chemical Engineering Journal 400, 125891 (2020)

43 Transferring axial molecular chirality through a sequence of on-surface reactions
Merino-Diez N, Mohammed MSG, Castro-Esteban J, Colazzo L, Berdonces-Layunta A, Lawrence J, Pascual JI, de Oteyza DG, and Pena D.
Chemical Science 11, 5441 (2020)

44 Smart microgels as drug delivery vehicles for the natural drug aescin: uptake, release and interactions
Dirksen M, Dargel C, Meier L, Brandel T, and Hellweg T.
Colloid and Polymer Science 298, 5050 (2020)

45 Electronic and magnetic characterization of epitaxial VSe$_2$ monolayers on superconducting NbSe$_2$
Communications Physics 3, 116 (2020)

46 Electronic decoupling of polyacenes from the underlying metal substrate by sp3 carbon atoms
Mohammed MSG, Colazzo L, Robles R, Dorel R, Echavarren AM, Lorente N, and de Oteyza DG.
Communications Physics 3, 159 (2020)

47 Thermally induced structural transitions between single-crystalline states in the first hybrid compound combining Keggin-type clusters with metal-cyclam complexes: From two-dimensional covalent assemblies to discrete molecular species
Crystal Growth & Design 20, 3499 (2020)

48 Effect of Cr on the hydrogen storage and electronic properties of BCC alloys: Experimental and first-principles study
Balcerzak M, Wagstaffe M, Robles R, and Pruneda M.

49 Melts of single-chain nanoparticles: A neutron scattering investigation

50 Chemical and structural heterogeneities in Nd-doped oxynitride phosphate laser glasses
Munoz F, Jimenez-Rioboo RJ, and Balda R.
Journal of Alloys and Compounds 816, 152657 (2020)
51 Tuning paramagnetic effect of Co-doped CdS diluted magnetic semiconductor quantum dots
Ibraheem F, Mahdy MA, Mahmoud EA, Ortega JE, Rogero C, Mahdy IA, and El-Sayed A.
Journal of Alloys and Compounds 834, 155196 (2020)

52 Structure and properties of CoCrFeNiX multi-principal element alloys from ab initio calculations
Koval NE, Juaristi JI, Muino RD, and Alducin M.

53 Octopus, a computational framework for exploring light-driven phenomena and quantum dynamics in extended and finite systems
Journal of Chemical Physics 152, 124119 (2020)

54 Siesta: Recent developments and applications
Journal of Chemical Physics 152, 204108 (2020)

55 On the microscopic origins of relaxation processes in aqueous peptide solutions undergoing a glass transition
Weigler M, Combarro-Palacios I, Cerveny S, and Vogel M.
Journal of Chemical Physics 152, 234503 (2020)

56 The CECAM electronic structure library and the modular software development paradigm
Journal of Chemical Physics 153, 24117 (2020)

57 Effect of many modes on self-polarization and photochemical suppression in cavities
Hoffmann NM, Lacombe L, Rubio A, and Maitra NT.
Journal of Chemical Physics 153, 104103 (2020)

58 Time-dependent magnons from first principles
Tancogne-Dejean N, Eich FG, and Rubio A.
Journal of Chemical Theory and Computation 16, 1007 (2020)

59 Deformability and solvent penetration in soft nanoparticles at liquid-liquid interfaces
Arismendi-Arrieta DJ, and Moreno AJ.
Journal of Colloid and Interface Science 570, 212 (2020)
Oxygen doping and polaron magnetic coupling in Alq3 films
Droghetti A.
Journal of Magnetism and Magnetic Materials 502, 166578 (2020)

4-Miktoarm star architecture induces PVDF beta-phase formation in (PVDF)₂-b-(PEO)₂ miktoarm star copolymers
Maria N, Maiz J, Rodionov V, Hadjichristidis N, and Muller AJ.
Journal of Materials Chemistry C 8, 13786 (2020)

Harvesting multiple optical energies using ZnPc/CdS-QDs hybrid organic/inorganic semiconductors
El-Sayed A, Mahdy IA, Ibraheem F, Mahmoud EA, and Ortega JE.

Insights into the non-exponential behavior of the dielectric Debye-like relaxation in monoalcohols
Arrese-Igor S, Alegria A, Arbe A, and Colmenero J.
Journal of Molecular Liquids 312, 113441 (2020)

Signature of hydrogen bonding association in the dielectric signal of polyalcohols
Arrese-Igor S, Alegria A, and Colmenero J.
Journal of Molecular Liquids 318, 114215 (2020)

Efficient ab initio multiplet calculations for magnetic adatoms on MgO
Wolf C, Delgado F, Reina J, and Lorente N.
Journal of Physical Chemistry A 124, 2318 (2020)

Magnetism and distortions in two-dimensional transition-metal dioxides: On the quest for intrinsic magnetic semiconductor layers
Aguilera-Granja F, and Ayuela A.
Journal of Physical Chemistry C 124, 2634 (2020)

Anisotropic PC₆N monolayer with wide band gap and ultrahigh carrier mobility
Wang C, Yu T, Bergara A, Du X, Li F, and Yang GC.
Journal of Physical Chemistry C 124, 4330 (2020)

Directionality in Van der Waals Interactions: The Case of 4-Acetyl biphenyl adsorbed on Au(111)
Zobac V, Robles R, and Lorente N.
Journal of Physical Chemistry C 124, 4545 (2020)

Influence of the chemical structure on molecular light emission in strongly localized plasmonic fields
Zhang Y, Dong ZC, and Aizpurua J.
Journal of Physical Chemistry C 124, 4674 (2020)

CO chemisorption on vicinal Rh(111) surfaces studied with a curved crystal
Garcia-Martinez F, Schiller F, Blomberg S, Shipilin M, Merte LR, Gustafson J, Lundgren E, and Ortega JE.
Journal of Physical Chemistry C 124, 9305 (2020)
71 **Synthesis of graphene nanoribbons on a kinked Au surface: Revealing the frontier valence band at the brillouin zone center**
Journal of Physical Chemistry C 124, 15474 (2020)

72 **Increase of polymerization yield on Titania by surface reduction**
Journal of Physical Chemistry C 124, 16918 (2020)

73 **Surface phase nucleation of lead monoatomic layers on Si(111) induced by Manganese Phthalocyanine molecules**
Journal of Physical Chemistry C 124, 19829 (2020)

74 **Energy-based plasmonicity index to characterize optical resonances in nanostructures**
Muller MM, Kosik M, Pelc M, Bryant GW, Ayuela A, Rockstuhl C, and Slowik K.
Journal of Physical Chemistry C 124, 24331 (2020)

75 **Deep-glassy ice VI revealed with a combination of neutron spectroscopy and diffraction**

76 **On-surface synthesis of a five-membered carbon ring from a terminal alkynyl bromide: A [4+1] annulation**

77 **Transmitting stepwise rotation among three molecule-gear on the Au(111) surface**

78 **Key role of the surface band structure in spin-dependent interfacial electron transfer: Ar/Fe(110) and Ar/Co(0001)**
Muller M, Echenique PM, and Sanchez-Portal D.

79 **Chemistry in quantum cavities: Exact results, the impact of thermal velocities, and modified dissociation**
Sidler D, Ruggenthaler M, Appel H, and Rubio A.

80 **Synergy of excitation enhancement and the purcell effect for Strong photoluminescence enhancement in a thin-film hybrid structure based on quantum dots and plasmon nanoparticles**
Krivenkov V, Samokhvalov P, Nabiev I, and Rakovich YP.
81 On-surface synthesis of chlorinated narrow graphene nanoribbon organometallic hybrids

82 Spectral and optical properties of Ag₃Au(Se₂, Te₂) and dark matter detection
Sanchez-Martinez MA, Robredo I, Bidaurrazaga A, Bergara A, de Juan F, Grushin AG, and Vergniory MG.

83 Wannier90 as a community code: new features and applications

84 Dominant contributions to the apparent activation energy in two-dimensional submonolayer growth:
comparison between Cu/Ni(111) and Ni/Cu(111)

85 Crystal analyzers for indirect-geometry broadband neutron spectrometers: Adding reality to idealized design

86 Covalent C-N bond formation through a surface catalyzed thermal Cyclodehydrogenation
Journal of the American Chemical Society 142, 3696 (2020)

87 The subchalcogenides Ir₂In₈Q (Q = S, Se, Te): Dirac semimetal candidates with Re-entrant structural modulation
Journal of the American Chemical Society 142, 6312 (2020)

88 Inducing open-shell character in porphyrins through surface-assisted phenalenyl pi-extension
Journal of the American Chemical Society 142, 18109 (2020)

89 Characterization of comb shaped MAA-co-PEGMA copolymers synthesized by free-radical polymerization
Emaldi I, Agirre A, Etxeberria A, Erkizia E, Dolado JS, and Leiza JR.
Macromolecular Reaction Engineering 14, 2000015 (2020)

90 Poly(ethylene oxide) melt intercalation in graphite oxide: Sensitivity to topology, cyclic versus linear chains
Barroso-Bujans F, Allgaier J, and Alegria A.
Macromolecules 53, 406 (2020)
<table>
<thead>
<tr>
<th>No.</th>
<th>Title</th>
<th>Authors</th>
<th>Journal</th>
<th>Volume</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>93</td>
<td>How does microstructural design affect the dynamics and rheology of segmented polyurethanes?</td>
<td>Heydarnezhad HR, Mohammadi N, Arbe A, and Alegria A.</td>
<td>Macromolecules 53, 5381 (2020)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
101 Evidence of nanostructure development from the molecular dynamics of poly(pentamethylene 2,5-furanoate)
Macromolecules 53, 10526 (2020)

102 Elucidation of conduction mechanism in graphene nanoplatelets (GNPs)/cement composite using dielectric spectroscopy
Goracci G, and Dolado JS.
Materials 13, 275 (2020)

103 THz fingerprints of cement-based materials
Dolado JS, Goracci G, Duque E, Martauz P, Zuo YB, and Ye G.
Materials 13, 4194 (2020)

104 Single-chain nanoparticles: opportunities provided by internal and external confinement
Verde-Sesto E, Arbe A, Moreno AJ, Cangialosi D, Alegria A, Colmenero J, and Pomposo JA.
Materials Horizons 7, 2292 (2020)

105 KIMERA: A kinetic montecarlo code for mineral dissolution
Martin P, Gaitero JJ, Dolado JS, and Manzano H.
Minerals 10, 825 (2020)

106 On-surface atom-by-atom-assembled aluminum binuclear tetrabenzophenazine organometallic magnetic complex
Soe WH, Manzano C, Robles R, Lorente N, and Joachim C.
Nano Letters 20, 384 (2020)

107 Anharmonicity and doping melt the charge density wave in single-layer TiSe₂
Zhou JQS, Monacelli L, Bianco R, Errea I, Mauri F, and Calandra M.
Nano Letters 20, 4809 (2020)

108 Visualization of multifractal superconductivity in a two-dimensional transition metal dichalcogenide in the weak-disorder regime
Nano Letters 20, 5111 (2020)

109 Room temperature terahertz electroabsorption modulation by excitons in monolayer transition metal dichalcogenides
Nano Letters 20, 5214 (2020)

110 Strong interfacial exchange field in a heavy metal/ferromagnetic insulator system determined by spin hall magnetoresistance
Nano Letters 20, 6815 (2020)
111 The Kondo effect of a molecular tip as a magnetic sensor
Garnier L, Verlhac B, Abufager P, Lorente N, Ormaza M, and Limot L.
Nano Letters 20, 8193 (2020)

112 Charge-transfer plasmon polaritons at graphene/alpha-RuCl₃ interfaces
Nano Letters 20, 8438 (2020)

113 Tunable photodetectors via in situ thermal conversion of TiS₃ to TiO₂
Nanomaterials 10, 711 (2020)

114 Non-linear optical properties of Er³⁺-Yb³⁺-doped NaGdF₄ nanostructured glass-ceramics
Nanomaterials 10, 1425 (2020)

115 Quantum theory of surface-enhanced resonant Raman scattering (SERRS) of molecules in strongly coupled plasmon-exciton systems
Neuman T, Aizpurua J, and Esteban R.
Nanophotonics 9, 295 (2020)

116 Independent engineering of individual plasmon modes in plasmonic dimers with conductive and capacitive coupling
Nanophotonics 9, 623 (2020)

117 Nanofocusing of acoustic graphene plasmon polaritons for enhancing mid-infrared molecular fingerprints
Voronin KV, Aguirreche UA, Hillenbrand R, Volkov VS, Alonso-Gonzalez P, and Nildtin AY.
Nanophotonics 9, 2089 (2020)

118 Strongly coupled exciton-plasmon nanohybrids reveal extraordinary resistance to harsh environmental stressors: temperature, pH and irradiation
Hendel T, Krivenkov V, Sanchez-Iglesias A, Grzelczak M, and Rakovich YP.
Nanoscale 12, 16875 (2020)

119 Influence of 4f filling on electronic and magnetic properties of rare earth-Au surface compounds
Nanoscale 12, 22258 (2020)

120 See how atoms dance
Aizpurua J.
National Science Review 7, 833 (2020)
121 Quantum crystal structure in the 250-kelvin superconducting lanthanum hydride
Nature 578, 66 (2020)

122 Fluorescent bicolour sensor for low-background neutrinoless double beta decay experiments
Nature 583, 48 (2020)

123 Flickering nanometre-scale disorder in a crystal lattice tracked by plasmonic flare light emission
Carnegie C, Urbieta M, Chikkaraddy R, de Nijs B, Griffiths J, Deacon WM, Kamp M, Zabala N, Aizpurua J, and Baumberg JJ.
Nature Communications 11, 682 (2020)

124 One-dimensional flat bands in twisted bilayer germanium selenide
Kennes DM, Xian L, Claassen M, and Rubio A.
Nature Communications 11, 1124 (2020)

125 Polycyclic aromatic chains on metals and insulating layers by repetitive [3+2] cycloadditions
Nature Communications 11, 1490 (2020)

126 Vibron-assisted spin excitation in a magnetically anisotropic molecule
Nature Communications 11, 1619 (2020)

127 Direct observation of desorption of a melt of long polymer chains
Monnier X, Napolitano S, and Cangialosi D.
Nature Communications 11, 4354 (2020)

128 Graphene transistors for real-time monitoring molecular self-assembly dynamics
Gobbi M, Galanti A, Stoeckel MA, Zyska B, Bonacchi S, Hecht S, and Samori P.
Nature Communications 11, 4731 (2020)

129 Fabrication of a novel magnetic topological heterostructure and temperature evolution of its massive Dirac cone
Nature Communications 11, 4821 (2020)
130 **Correlated electronic phases in twisted bilayer transition metal dichalcogenides**
Nature Materials 19, 861 (2020)

131 **Broad spectral tuning of ultra-low-loss polaritons in a Van der Waals crystal by intercalation**
Nature Materials 19, 964 (2020)

132 **Single-molecule tautomerization tracking through space- and time-resolved fluorescence spectroscopy**

133 **Topological engineering for metallic polymers**
Corso M, and de Oteyza DG.
Nature Nanotechnology 15, 421 (2020)

134 **A Josephson phase battery**
Nature Nanotechnology 15, 656 (2020)

135 **Sub-nanometre resolution in single-molecule photoluminescence imaging**
Nature Photonics 14, 693(2020)

136 **Sub-femtosecond electron transport in a nanoscale gap**
Ludwig M, Aguirregabiria G, Ritzkowsky F, Rybka T, Marinica DC, Aizpurua J, Borisov AG, Leitenstorfer A, and Brida D.
Nature Physics 16, 341 (2020)

137 **Symmetry-protection of multiphoton states of light**
New Journal of Physics 22, 123010 (2020)

138 **High-harmonic generation from spin-polarised defects in solids**
Mrudul MS, Tancogne-Dejean N, Rubio A, and Dixit G.
NPJ Computational Materials 6, 10 (2020)

139 **Tunable 3D/2D magnetism in the (MnBi$_2$Te$_4$)(Bi$_2$Te$_3$)(m)topological insulators family**
NPJ Quantum Materials 5, 54 (2020)
PUBLICATIONS

140 Dynamical amplification of electric polarization through nonlinear phononics in 2D SnTe
NPJ Quantum Materials 6, 182 (2020)

141 The instrument suite of the European Spallation Source

142 Swift charged particles in a degenerate electron gas: An estimation for the charge-sign effect in stopping
Nagy I, and Aldazabal I.
Nuclear Instruments & Methods in Physics Research Section B-Beam Interactions with Materials and Atoms 474, 74 (2020)

143 Femtosecond laser direct inscription of 3D photonic devices in Er/Yb-doped oxyfluoride nano-glass ceramics
Optical Materials Express 10, 2695 (2020)

144 Magnetic modulation of far- and near-field IR properties in rod-slit complementary spintronic metasurfaces
Armelles G, Bergamini L, Cebollada A, Gonzalez MU, Alvaro R, Torn L, Zabala N, and Aizpurua J.
Optics Express 28, 32584 (2020)

145 Enhanced thermopower in covalent graphite-molecule contacts
Droghetti A, and Rungger I.
Physical Chemistry Chemical Physics 22, 1466 (2020)

146 On the microscopic origin of the cryoprotective effect in lysine solutions
Henao A, Ruiz GN, Steinke N, Cerveny S, Macovez R, Guardia E, Busch S, McLain SE, Lorenz CD, and Pardo LC.
Physical Chemistry Chemical Physics 22, 6919 (2020)
147 Supramolecular chemistry based on 4-acetylbiphenyl on Au(111)
Robles R, Zobac V, Yeung KHA, Moresco F, Joachim C, and Lorente N.
Physical Chemistry Chemical Physics 22, 15208 (2020)

148 Steric clash in real space: biphenyl revisited
Laplaza R, Boto RA, Contreras-Garcia J, and Montero-Campillo MM.
Physical Chemistry Chemical Physics 22, 21251 (2020)

149 When classical trajectories get to quantum accuracy: II. The scattering of rotationally excited H₂ on Pd(111)
Rodriguez-Fernandez A, Bonnet L, Crespos C, Larregaray P, and Muino RD.
Physical Chemistry Chemical Physics 22, 22805 (2020)

150 Achieving high hydrogen evolution reaction activity of a Mo₂C monolayer
Lou H, Yu T, Ma JN, Zhang ST, Bergara A, and Yang GC.
Physical Chemistry Chemical Physics 22, 26189 (2020)

151 Exact exchange-correlation potential of effectively interacting Kohn-Sham systems
Sato SA, and Rubio A.
Physical Review A 101, 12510 (2020)

152 Two-channel approach to the average retarding force of metals for slow singly ionized projectiles
Nagy I, and Aldazabal I.
Physical Review A 102, 32814 (2020)

153 Berezinskii-Kosterlitz-Thouless transition in two-dimensional dipolar stripes
Bombin R, Mazzanti F, and Boronat J.
Physical Review A 102, 47302 (2020)

154 Cryogenic memory element based on an anomalous Josephson junction
Guarcello C, and Bergeret FS.
Physical Review Applied 13, 34012 (2020)

155 Plasmonic antennas with electric, magnetic, and electromagnetic hot spots based on Babinet’s principle
Hrton M, Konecna A, Horak M, Sikola T, and Krapek V.
Physical Review Applied 13, 54045 (2020)

156 Prediction of superconductivity in pressure-induced new silicon boride phases
Physical Review B 101, 14112 (2020)

157 Spin dependent transmission of nickelocene-Cu contacts probed with shot noise
Mohr M, Gruber M, Weismann A, Jacob D, Abufager P, Lorente N, and Berndt R.
Physical Review B 101, 75414 (2020)

158 Axion coupling in the hybrid Wannier representation
Varnava N, Souza I, and Vanderbilt D.
Physical Review B 101, 155130 (2020)
159 **Superconducting boron allotropes**

160 **Phase-controllable nonlocal spin polarization in proximitized nanowires**
Zhang XP, Golovach VN, Giazotto F, and Bergeret FS.
Physical Review B 101, 180502 (2020)

161 **Interplay between superconductivity and spin-dependent fields in nanowire-based systems**
Baumard J, Cayssol J, Buzdin A, and Bergeret FS.
Physical Review B 101, 184512 (2020)

162 **Nanomechanics of a hydrogen molecule suspended between two equally charged tips**
Schattke W, Frederiksen T, Van Hove MA, and Muino RD.
Physical Review B 101, 195436 (2020)

163 **Spin-orbit splitting of quantum well states in n-monolayer Ir/Au(111) heterostructures**
Silkin IV, Koroteev YM, Silkin VM, and Chulkov EV.
Physical Review B 101, 235409 (2020)

164 **Active control of ultrafast electron dynamics in plasmonic gaps using an applied bias**
Ludwig M, Kazansky AK, Aguirregabiria G, Marinica DC, Falk M, Leitenstorfer A, Brida D, Aizpurua J, and Borisov AG.
Physical Review B 101, 241412 (2020)

165 **Constraint-based wave vector and frequency dependent exchange-correlation kernel of the uniform electron gas**
Ruzsinszky A, Nepal NK, Pitarke JM, and Perdew JP.

166 **Spin structure of spin-orbit split surface states in a magnetic material revealed by spin-integrated photoemission**

167 **Collective excitations and universal broadening of cyclotron absorption in Dirac semimetals in a quantizing magnetic field**
Yasnov DI, Protogenov AP, Echenique PM, and Chulkov EV.
Physical Review B 101, 245206 (2020)

168 **Gapless hinge states from adiabatic pumping of axion coupling**
Olsen T, Rauch T, Vanderbilt D, and Souza I.
Physical Review B 102, 35166 (2020)

169 **Crossed graphene nanoribbons as beam splitters and mirrors for electron quantum optics**
Sanz S, Brandimarte P, Giedke G, Sanchez-Portal D, and Frederiksen T.
Physical Review B 102, 35436 (2020)
170 Theory of the magnetic response in finite two-dimensional superconductors
Bergeret FS, and Tokatly IV.
Physical Review B 102, 60506 (2020)

171 Electronic band structure of three-dimensional topological insulators with different stoichiometry composition
Physical Review B 102, 85118 (2020)

172 Probe-dependent Dirac-point gap in the gadolinium-doped thallium-based topological insulator TlBi0.9Gd0.1Se2
Physical Review B 102, 85149 (2020)

173 Probing and steering bulk and surface phonon polaritons in uniaxial materials using fast electrons: Hexagonal boron nitride
Maciel-Escudero C, Konecna A, Hillenbrand R, and Aizpurua J.
Physical Review B 102, 115431 (2020)

174 Parameter-free hybridlike functional based on an extended Hubbard model: DFT plus U plus V
Tancogne-Dejean N, and Rubio A.
Physical Review B 102, 155117 (2020)

175 Electronic friction coefficients from the atom-in-jellium model for Z=1-92
Gerrits N, Juaristi JI, and Meyer J.
Physical Review B 102, 155130 (2020)

176 Dual boson diagrammatic Monte Carlo approach applied to the extended Hubbard model
Physical Review B 102, 195109 (2020)

177 Topological phase transitions induced by disorder in magnetically doped (Bi, Sb)2Te3 thin films
Okugawa T, Tang PZ, Rubio A, and Kennes DM.
Physical Review B 102, 201405 (2020)

178 Photoelectron diffraction for probing valency and magnetism of 4 f-based materials: A view on valence-fluctuating EuIr2Si2
Physical Review B 102, 205102 (2020)

179 Unified description of spin transport, weak antilocalization, and triplet superconductivity in systems with spin-orbit coupling
Ilic S, Tokatly IV, and Bergeret FS.
Physical Review B 102, 235430 (2020)
180 Nature of symmetry breaking at the excitonic insulator transition: Ta₂NiSe₅
Physical Review Letters 124, 197601 (2020)

181 Cubic Rashba effect in the surface spin structure of rare-earth ternary materials
Physical Review Letters 124, 237202 (2020)

182 Kerker conditions upon lossless, absorption, and optical gain regimes
Physical Review Letters 125, 73205 (2020)

183 Long-range propagation and interference of d-wave superconducting pairs in graphene
Physical Review Letters 125, 87002 (2020)

184 Weak dimensionality dependence and dominant role of ionic fluctuations in the charge-density-wave transition of NbSe₂
Bianco R, Monacelli L, Calandra M, Mauri F, and Errea I.
Physical Review Letters 125, 106101 (2020)

185 Giant exciton mott density in anatase TiO₂
Baldini E, Palmieri T, Dominguez A, Rubio A, and Chergui M.
Physical Review Letters 125, 116403 (2020)

186 Magnetism of topological boundary states induced by boron substitution in graphene nanoribbons
Friedrich N, Brandimarte P, Li JC, Saito S, Yamaguchi S, Pozo I, Pena D, Frederiksen T, Garcia-Lekue A, Sanchez-Portal D, and Pascual JI.
Physical Review Letters 125, 146801 (2020)

187 Insight into the electronic structure of semiconducting epsilon-GaSe and epsilon-InSe
Physical Review Materials 4, 84603 (2020)

188 Living on the edge: Topology, electrostatics, and disorder
van den Berg TL, Calvo MR, and Bercioux D.
Physical Review Research 2, 13171 (2020)

189 Optimal backward light scattering by dipolar particles
Olmos-Trigo J, Abujetas DR, Sanz-Fernandez C, Sanchez-Gil JA, and Saenz JJ.
Physical review Research 2, 13225 (2020)
190 Directional shift current in mirror-symmetric BC$_2$N
Ibanez-Azpiroz J, Souza I, and de Juan F.
Physical Review Research 2, 13263 (2020)

191 Coherent structural relaxation of water from meso- to intermolecular scales measured using neutron spectroscopy with polarization analysis
Arbe A, Nilsen GJ, Stewart JR, Alvarez F, Sakai VG, and Colmenero J.
Physical Review Research 2, 22015 (2020)

192 rf-SQUID measurements of anomalous Josephson effect
Guarcello C, Citro R, Durante O, Bergeret FS, Iorio A, Sanz-Fernandez C, Strambini E, Giazotto F, and Braggio A.
Physical Review Research 2, 23165 (2020)

193 Unveiling dipolar spectral regimes of large dielectric Mie spheres from helicity conservation
Physical Review Research 2, 43021 (2020)

194 Zero-point magnetic exchange interactions
Bouaziz J, Ibanez-Azpiroz J, Guimaraes FSM, and Lounis S.
Physical Review Research 2, 43357 (2020)

195 How circular dichroism in time- and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene
Schuler M, De Giovannini U, Hubener H, Rubio A, Sentef MA, Devereaux TP, and Werner P.
Physical Review X 10, 41013 (2020)

196 Coupled cluster theory for molecular polaritons: Changing ground and excited states
Haugland TS, Ronca E, Kjonstad EF, Rubio A, and Koch H.
Physical Review X 10, 41043 (2020)

197 Modeling the high frequency mechanical relaxation of simplified industrial polymer mixtures using dielectric relaxation results
Gambino T, Alegria A, Arbe A, Colmenero J, Malicki N, and Dronet S.
Polymer 187, 122051 (2020)

198 From chemical structure to quantitative polymer properties prediction through convolutional neural networks
Miccio LA, and Schwartz GA.
Polymer 193, 122341 (2020)

199 Wrinkling poly(trimethylene 2,5-furanoate) free-standing films: Nanostructure formation and physical properties
Soccio M, Lotti N, Munari A, Rebollar E, and Martinez-Tong DE.
Polymer 202, 122666 (2020)
200 Increasing the temperature range of dipolar glass polymers through copolymerization: A first approach to dipolar glass copolymers
Bonardd S, Alegria A, Saldias C, Leiva A, and Kortaberria G.
Polymer 203, 122765 (2020)

201 Localizing and quantifying the intra-monomer contributions to the glass transition temperature using artificial neural networks
Miccio LA, and Schwartz GA.
Polymer 203, 122786 (2020)

202 Poly(alkylene 2,5-furanoate)s thin films: Morphology, crystallinity and nanomechanical properties
Polymer 204, 122825 (2020)

203 SSAfractionation of thermoplastic polyurethanes
Polymer Crystallization, e10148 (2020) (Early Access)

204 Coarsening kinetics of complex macromolecular architectures in bad solvent
Paciolla M, Arismendi-Arrieta DJ, and Moreno AJ.
Polymers 12, 531 (2020)

205 Dynamics of confined short-chain alkanol in MCM-41 by dielectric spectroscopy: Effects of matrix and system treatments and filling factor
Bartos J, Arrese-Igor S, Svajdlenkova H, Kleinova A, and Alegria A.
Polymers 12, 610 (2020)

206 Broadband dielectric spectroscopy study of biobased poly(alkylene 2,5-furanoate)s’ molecular dynamics
Polymers 12, 1355 (2020)

207 Insight into the structure and dynamics of polymers by neutron scattering combined with atomistic molecular dynamics simulations
Arbe A, Alvarez F, and Colmenero J.
Polymers 12, 3067 (2020)

208 Collective motions and mechanical response of a bulk of single-chain nano-particles synthesized by click-chemistry
Polymers 13, 50 (2020)

209 Metallic bands in chevron-type polyacenes
Kher-Elden MA, Piquero-Zulaica I, Abd El-Aziz KM, Ortega JE, and Abd El-Fattah ZM.
RSC Advances 10, 33844 (2020)
<table>
<thead>
<tr>
<th>Publication Number</th>
<th>Title</th>
<th>Authors</th>
<th>Journal</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>211</td>
<td>Vitrification decoupling from alpha-relaxation in a metallic glass</td>
<td>Monnier X, Cangialosi D, Ruta B, Busch R, and Gallino I.</td>
<td>Science Advances 6, eaay1454 (2020)</td>
<td></td>
</tr>
</tbody>
</table>
Kimera (Software)
Authors: Pablo Martín, Hegoi Manzano Moro, and Jorge Sánchez Dolado.
3905/2020

Method for colorimetric detection of bacteria in food samples
Authors: María Jesús Grilló Dolset, Victoria Eugenia Garrido González, Javier Aizpurua Iriazabal, María Sanromán Iglesias, Marek Grzelczak, and Inés Echeverria Goñi.
20382599

Superconducting electromagnetic wave sensor
Author: F. Sebastian Bergeret Sbarbaro, Francesco Giazotto, Tero Heikkila, and Ilari Maasilta.
WO 2019/058357 Al

Sensible thermal energy storage media based on alkali activated concrete
Authors: Jorge Sánchez Dolado, Guido Goracci, Pavel Martauz, and Cvopa Branislav.
20157518

Superconducting logic element
Authors: Francesco Giazotto, Elia Strambini, Giorgio De Simoni, and F. Sebastian Bergeret Sbarbaro.
WO 2019/038409 Al
Dynamics of water in partially crystallized solutions of glass forming materials and polymers: Implications on the behaviour of bulk water

Cerveny S, and Swenson J.
Crystallization as Studied by Broadband dielectric spectroscopy- chapter 7, 167 (2020)

Electronic states of vicinal surfaces

Ortega JE, Mugarza A, Schiller F, Lobo-Checa J, and Corso M.
Springer Handbook of Surface Science-Chapter 28, 351 (2020)

Magnetic impurities on surfaces: Kondo and inelastic scattering

Choi DJ, and Lorente N.

Natural topological insulator heterostructures

Eremeev SV, Rusinov IP, and Chulkov EV.
Springer Handbook of Surface Science-Chapter 28, 449 (2020)

Enhancement of the quantum dot photoluminescence using transfer-printed porous silicon microcavities

Kryukova IS, Dovzhenko DS, Rakovich YP, and Nabiev IR.

Electron–phonon interaction on metallic surfaces, overlayers and thin films

Heid R, Sklyadneva IY, and Chulkov EV.
Springer Handbook of Surface Science-Chapter 28, 783 (2020)

Glass transition and crystallization in colloidal polymer nanoparticles

Cangialosi D, and Nogales A.
Polymer Colloids: Formation, Characterization and Applications-Chapter 8, 263 (2020)

Nonadiabatic effects in gas–surface dynamics

Alducin M, Diez Muiño R, and Juaristi JI.
Springer Handbook of Surface Science-Chapter 28, 929 (2020)
As a joint center which belongs to the University of the Basque Country (UPV/EHU), the training activity at CFM includes the participation in both the Master and PhD program through the Department of Material Physics of UPV/EHU, as well as setting complementary training activities, PhD students’ seminars and post-doctoral researchers training. All these activities are strongly related and coordinated with the research activity at the different research groups at CFM. We note in the following the main aspects of the training activities at CFM.

It should be noted that, despite the health emergency in 2020, the tremendous effort made by the UPV/EHU and its teaching staff made it possible to adapt the teaching format and continue teaching at all levels, including the Undergraduate and Master’s degree classes in which many of our researchers typically participate.
POST-DOCTORAL TRAINING

Post-doctoral researchers make extremely valuable contributions to the research activity at CFM, but they are at an early stage of their scientific careers. This means that they still need to acquire further research skills to successfully develop their scientific careers at a later stage. CFM encourages the research groups to hire post-doctoral researchers through internal calls, which support around 2-3 post-doc positions every year. Each research group makes an individual follow-up and training of these young researchers.

PHD PROGRAM: PHYSICS OF NANOSTRUCTURES AND ADVANCED MATERIALS

“Physics of Nanostructures and Advanced Materials” is a PhD program of UPV/EHU that has been recognized as a highly qualified PhD program by the Spanish Ministry of Education (MEE2011-0591 citation of excellence). Within this program, 62 PhD students develop their research fully embedded in the daily life of the research groups in the center.

The aforementioned PhD program participates in the European Doctorate Program of “Physics and Chemistry of Advanced Materials” (PCAM). PCAM is a European research network of doctoral programs focusing on various aspects of the physics and chemistry of advanced materials.

DEFENDED PHD THESIS

- **Computational investigations of single-chain nanoparticles: Novel synthesis routes, complex flow behavior and reversible gel formation**
 Author: Maud Formanek
 Supervisor: Ángel Moreno Segurado
 Group: Polymers and Soft Matter
 19/01/2020

- **Quantum transport in nanowires with spin-orbit interaction effect of quasi-bound states**
 Author: Alba Pascual Gil
 Supervisors: F. Sebastián Bergeret Sbarbaro and Vitaly Golovach
 Group: Mesoscopic Physics
 03/03/2020

- **Molecular assembly and reactions on surfaces characterized by low-temperature canning probe techniques**
 Author: Ana Barragán Durán
 Supervisor: Lucia Vitali
 Group: Spectroscopy at the Atomic Scale
 20/03/2020
• **Numerical simulations for the nonequilibrium control of quantum materials**
 Author: Gabriel Topp
 Supervisors: Michael Sentef and Ángel Rubio Secades
 Group: Nano-Bio Spectroscopy
 22/04/2020

• **Novel approaches in quantum chemistry: Self-consistent density-functional embedding and polaritonic coupled-cluster theory**
 Author: Uliana Mordovina
 Supervisors: Daniela Pfannkuche and Ángel Rubio Secades
 Group: Nano-Bio Spectroscopy
 27/04/2020

• **On the interface of quantum electrodynamics and electronic structure theory: Cavity QED**
 Author: Christian Schaefer
 Supervisors: Michael Ruggenthaler and Ángel Rubio Secades
 Group: Nano-Bio Spectroscopy
 13/05/2020

• **Mixed quantum-classical dynamics in cavity quantum electrodynamics**
 Author: Norah Hoffmann
 Supervisors: Neepa Maitra and Ángel Rubio Secades
 Group: Nano-Bio Spectroscopy
 02/06/2020

• **An efficient Ab-Initio non-equilibrium Green´s function approach to carriers dynamics in many-body interacting systems**
 Author: Fabio Covito
 Supervisors: Daniela Pfannkuche and Ángel Rubio Secades
 Group: Nano-Bio Spectroscopy
 13/07/2020

• **Synthesis and characterization of cyclic polyethers with controlled orientation of the dipolar moment along the chain contour**
 Author: Jordan Ochs
 Supervisor: Fabienne Barroso Bujans
 Group: Polymers and Soft Matter
 09/09/2020

• **Anharmonic effects in thermoelectric and 2D materials**
 Author: Unai Aseguinolaza Aguirreche
 Supervisors: Ion Errea Lope and Aitor Bergara Jauregi
 Group: Quantum Theory of Materials
 18/09/2020
• Spin-and valley-dependent transport in hybrid system and 2D Dirac materials
 Author: Xianpeng Zhang
 Supervisors: F. Sebastián Bergeret Sbarbaro and Miguel Ángel Cazalilla Gutiérrez
 Group: Mesoscopic Physics
 12/12/2020

• Many electrons and the photon field: The many-body structure of nonrelativistic quantum electrodynamics
 Author: Florian Konrad Friedrich Buchholz
 Supervisors: Michael Ruggenthaler and Ángel Rubio Secades
 Group: Nano-Bio Spectroscopy
 24/11/2020

SHORT STAYS IN FOREIGN UNIVERSITIES

A very important aspect of the PhD training program consists of supporting short stays in foreign universities and centers for PhD students. This year 6 PhD students have spent about 2-3 months in some of the best international centers on their topics. This training activity combines aspects of internationalization and excellence, and has been strongly supported within the last years by CFM. The following pre-doctoral researchers benefited from an internship abroad supported by CFM in 2020:

• José Reina Gálvez
 Universidad Nacional de San Martín, Buenos Aires (Argentina)
 29 February – 31 May

• Masoud Mansouri
 Boston University (USA)
 19 February - 8 May

• Alvaro Nodar Villa
 Macquarie University, Sidney (Australia)
 3 March - 10 May

• Fernando García Martínez
 Lund University (Sweden)
 4 October - 8 December

• Mariarita Paciolla
 University of Viena (Austria)
 9 September - 10 December

• Cristina Mier González
 IPCMS Strasbourg (France)
 21 September - 13 December
MASTER IN NANOSCIENCE

Master in Nanoscience is an official Master program of UPV/EHU (held at CFM headquarters) and co-organized by CFM itself. While attending the Master, the students are also given the opportunity to develop a Master Thesis jointly with one of the groups of the center on a topic of their choice. Thus, they are exposed for the first time to an environment of excellence in research, where they can learn the methodologies and develop results together with a group devoted to the research on advanced materials.

In addition, during their Master’s thesis work, the students choose to develop the skills either in fields directly linked with applied and technology-oriented research work in technological centers, or in the basic/oriented research that is carried out in academic research groups. The students will also be able to start developing the research work that may allow them to access the PhD program.

Once again, we must thank the extra effort made by professors and students to ensure compliance with the strict security measures required by the situation, and emphasise that this has not been detrimental to the number or quality of the Master theses defended in 2020.

SCHOLARSHIPS

The Materials Physics Center (MPC) association, together with the Donostia International Physics Center (DIPC), offers scholarships to highly motivated graduates who are planning to complete their studies with a Master’s degree.

Furthermore, the MPC and DIPC collaborate with the Gipuzkoa Coopera project and Women for Africa foundation in the framework of the “Learn Africa” program with the aim of facilitating the professional growth of young African women scientists offering a grant that fully covers the stay and expenses of a student to enroll in the Master in Nanoscience program.

In 2020, five graduates were awarded scholarships for the Master in Nanoscience program:

- **Andrés Felipe Bejarano**
 Supervisor: Thomas Frederiksen (DIPC)

- **Harriet Kumi**
 Supervisor: Gabriel Molina Terriza (CFM)

- **Jean Pierre Inchaustegui Revoredo**
 Supervisors: Ángel Alegría Loinaz (CFM) and Daniel Martínez Tong (CFM)

- **Josu Diego López**
 Supervisor: Ion Errea Lope (CFM)

- **Nathaniel Andrés Capote Robayna**
 Supervisors: Alexey Nikitin (DIPC) and Pablo Alonso González (University of Oviedo)
THESES OF THE NANOSCIENCE MASTER SUCCESSFULLY DEFENDED IN 2020

• Infrared nanoimaging of ultraconfined surface phonon polaritons in MoS2-quartz heterostructures
 Author: Petr Liska
 Supervisor: Rainer Hillenbrand (CIC nanoGUNE)

• On the modelling of AFM-based nano-dielectric spectroscopy
 Author: Jean Pierre Inchaustegui Revoredo
 Supervisors: Ángel Alegría Loinaz (CFM) and Daniel Martínez Tong (CFM)

• Graphene nanoribbons with Carboxyl edge groups: On-surface synthesis and electronic characterization
 Author: Lucie Pavlásková
 Supervisors: Aran García-Lekue (DIPC) and Martina Corso (CFM)

• Anisotropy effect of nanostructure in the mechanical behaviour of pearlitic steel
 Author: Aritz Dorronsoro Larbide
 Supervisor: Jon Alkorta Barragán (CEIT)

• Anisotropic phonon polaritons in twisted biaxial Van der Waals crystal slabs
 Author: Nathaniel Andrés Capote Robayna
 Supervisors: Alexey Nikitin (DIPC) and Pablo Alonso González (University of Oviedo)

• DNA-Polymer hybrid nanostructures for stimuli-responsive systems
 Author: Diego Ramírez Revilla
 Supervisor: Thomas Schäfer (UPV/EHU)

• Strongly coupled plasmon-exciton hybrid nanostructures
 Author: Emilie Dupont
 Supervisor: Marek Grzelczak (CFM) and Yury Rakovich (CFM)

• Chemiluminescent single-chain nanoparticles for sensing cobalt ions
 Author: Andrea Aguirre Baños
 Supervisors: José A. Pomposo Alonso (CFM) and María Ester Verde Sesto (CFM)

• Endowing single-chain nanoparticles with fluorescent and drug delivery properties
 Author: Arianne Encinar Manzano
 Supervisors: José A. Pomposo Alonso (CFM) and María Ester Verde Sesto (CFM)

• Towards the development of novel bicolor sensor for neutrino detection
 Author: Lander Murillo Lekuona
 Supervisors: Celia Rogero Blanco (CFM)

• Real-time manipulation of optical trap with deformable mirror
 Author: Harriet Kumi
 Supervisor: Gabriel Molina Terriza (CFM)
• **Charge-density-wave transition in VSe2 from first principles**
 Author: Josu Diego López
 Supervisor: Ion Errea Lope (CFM)

• **Development of smart substrates for enhancing in near-field spectroscopy**
 Author: Alba Viejo Rodríguez
 Supervisor: Rainer Hillenbrand (CIC nanoGUNE)

• **Electron quantum transport in generic tight-binding models**
 Author: Andrés Felipe Bejarano Sánchez
 Supervisor: Thomas Frederiksen (DIPC)

OTHER MASTER THESIS PROJECTS SUPERVISED BY CFM STAFF AND SUCCESSFULLY DEFENDED IN 2020

• **Proximity effects in superconductor-ferromagnetic insulator bilayers of arbitrary thickness**
 Author: Maxime Infuso
 Supervisor: F. Sebastián Bergeret Sbarbaro (CFM)

• **Synthesis of poly(methacrylic-co-polyethylene glycol methacyrlate) copolymers and its application on cementitious formulations**
 Author: Sara Pavo Belderrain
 Supervisors: José Ramón Leiza (Polymat, UPV/EHU) and Jorge Sánchez Dolado (CFM)

• **Tailoring the electronic properties of graphene nanoribbons by chemical substitution**
 Author: Iñigo Delgado Enares
 Supervisors: Daniel Sánchez Portal (CFM) and Aran García-Lekue (DIPC)
UNDERGRADUATE EDUCATION PROGRAM

COURSES

In addition to the Master’s and PhD programs, the staff at CFM also participates in a variety of undergraduate courses in 4 Faculties and University Schools of the University of the Basque Country (UPV/EHU). In total, more than 1400 teaching hours spread over 6 undergraduate degrees and 3 Master degrees at UPV/EHU are delivered by CFM staff.

END OF COURSE PROJECTS AND SHORT STAY VISITS

In the framework of this teaching activity, undergraduate students can join a research group at CFM for a short stay or to fulfill their End of Course Project during the academic year. However, following the health security protocolos in place during 2020, this program was significantly downsized. CFM hosted the visit of two students, Aimar Marauri Iriberri (supervised by Marek Grzelczak) and Eric Gómez Urreizti (supervised by Ángel Alegría) in short stay visits, and one end of course project was full-filled and defended at CFM premises.

- **Estudio de mezclas poliméricas basadas en polifuranoatos mediante calorimetría diferencial de barrido**
 Author: Julen Olasagasti Imizcoz
 Supervisors: Ángel Alegría Loinaz (CFM) y Daniel E. Martínez-Tong (CFM)
 Group: Polymers and Soft Matter
 End of course project

INTERNSHIPS

CFM also offers the possibility to receive support for this training through different grant programs. In 2020 one person was granted:

- **Julen Olasagasti Imizcoz**
 Supervisor: Silvia Arrese-Igor Irigoyen (CFM)
 Group: Polymers and Soft Matter
Despite the sanitary emergency, CFM scientists organized or co-organized 9 international workshops and conferences during 2020, out of which 6 had to be finally cancelled. Many of these meetings have been historically held in close cooperation with the Donostia International Physics Center (DIPC) foundation, which is an example of the excellent results brought by the synergistic collaboration between both institutions. These activities improve dramatically the impact and relevance of the individual and groups’ research outcome.

Moreover, CFM researchers regularly give Invited and Plenary talks in international conferences, showing their leadership in their respective fields. Again, this activity was dramatically affected by the COVID19 crisis.

The list of conferences, courses, workshops and seminars organized or co-organized by CFM researchers during 2020 follows:
Total Energy and Force Methods 2020

Organizers: Ivo Souza (CFM), Ion Errea (CFM) and Aran García-Lekue (DIPC).

Carlos Santamaria Centre, UPV/EHU, Donostia / San Sebastián
8-10/01/2020

Software Carpentry Workshop

Instructors: Iñigo Aldazabal, Sonia Olaechea, Ainhoa Oliden, and Tineke van den Berg.

Helpers: Unai Aseguinolaza, Abel Carreras, Meritxell García, Mikel Iraola, Alvaro Nodar, and Xiang Xu.

CFM (CSIC, UPV/EHU, MPC), Donostia / San Sebastián
14, 15, 16 and 23/01/2020

RSC Statistical Mechanics and Thermodynamics Group

Organizers: Carlos Avendaño, Fernando Bresme, Félix Fernández, Manon Higgins-Bos, Susan Little, Andrew Masters, Martin Trusler, Karl Travis, and Patrick Warren.

Online
08/2020 (ongoing series)
Since 2013, a regular series of seminars delivered by PhD students is organized at CFM. This activity continued during 2020, mainly, in an online format as webinars. In each seminar, two PhD students present updated results of their respective theses work to the full CFM research community. Two other PhD students assume the role of opponents and are in charge of asking questions and discussing the presented results. The most important goal of this activity is to train PhD students in the necessary habits of science communication and research discussions. Furthermore, it helps to improve the internal communication about the research activity going on in the Center. The list of student seminars given in 2020 follows:

- **Study of the coadsorption of (O, CO) on Ru(0001)**
 Auguste Tetenoire
 22/01/2020

- **Transition-metal oxide chains: spin phases, magnetic anisotropy and coupling**
 Joseba Goikoetxea Perez
 22/01/2020

- **Mean field Hubbard method for non-equilibrium electron transport**
 Sofía Sanz Wühl
 19/02/2020

- **Kerker conditions in lossless, absorption and optical gain regimes**
 Jorge Olmos Trigo
 19/02/2020

- **Fluorescent single-chain polymer nanoparticles based on Aggregation-Induced Emission (AIE) molecules**
 Julen de la Cuesta Leone
 11/03/2020

- **Synthesis and characterization of cyclic poly(glycidyl phenyl ether) with controlled dipolar microstructure**
 Jordan Ochs
 11/03/2020

- **Symmetry-protection of multiphoton states of light**
 Jon Lasa Alonso
 28/05/2020

- **Isolating Mie resonances in a dielectric sphere using angular momentum beams**
 Martín Molezuelas Ferreras
 28/05/2020
MORE SEMINARS HOSTED BY CFM

• **Taming complex fluids with external fields**
 Fernando Bresme
 07/02/2020

• **Sub-Terahertz Spin Pumping from an Insulating Antiferromagnet**
 Enrique del Barco
 11/02/2020

• **Atomic-scale spin-sensing with a single molecule at the apex of a scanning tunneling microscope**
 Benjamin Verlhac
 20/02/2020

• **The polar surfaces of the delafossite oxides: from massive Rashba spin-splittings to itinerant surface ferromagnetism**
 Federico Mazzola
 09/03/2020

• **Computational Modelling of Metal-Organic Frameworks**
 Rémi Pétuya
 17/09/2020

• **Biological processes at cellular membranes - New knowledge through the use of neutron and X-ray Scattering**
 Marité Cárdenas
 18/11/2020

• **Porous materials at nanoscale - A neutron scattering insight**
 Margarita Russina
 24/11/2020

• **Nuclear Quantum effects enter the mainstream**
 Matthew Krzystyniak
 30/11/2020

• **Tailoring the interfacial assembly and the mechanical response of colloidal and biological systems**
 Armando Maestro
 02/12/2020

• **Neutron scattering and complementary investigations of fullerene solutions and polymer nanocomposites thin films**
 Timur Tropin
 04/12/2020
The projects and networks ongoing during 2020 (a total of 82 projects/networks) are listed below according to the source of competitive funding.

Research Projects and Networks

<table>
<thead>
<tr>
<th>Source</th>
<th>Competitive public fundraising in 2020</th>
</tr>
</thead>
<tbody>
<tr>
<td>BASQUE</td>
<td>415 644,34 €</td>
</tr>
<tr>
<td>SPANISH</td>
<td>1 522 011,31 €</td>
</tr>
<tr>
<td>INTERNATIONAL</td>
<td>1 926 522,85 €</td>
</tr>
<tr>
<td>MPC-BERC</td>
<td>1 224 640,00 €</td>
</tr>
<tr>
<td>TOTAL</td>
<td>5 088 818,50 €</td>
</tr>
</tbody>
</table>

The projects and networks ongoing during 2020 (a total of 82 projects/networks) are listed below according to the source of competitive funding.
BASQUE RESEARCH PROJECTS AND NETWORKS

• EJ/GV, EKIzen 2019: Adquisición Equipamiento Científico, EC19-27
 Recycling preparative SEC/GPC
 PI: Josexo Pomposo Alonso

• EJ/GV, ElkarteK 2018, KK-2018/00001
 nG8 - Investigación colaborativa para la caracterización avanzada de sistemas macroscópicos en la nanoescala
 PI: Javier Aizpurua Iriazabal

• EJ/GV, Ikertalde 2019, Grupo Consolidado IT1182-19
 Grupo de Espectroscopía Láser y Materiales Fotónicos
 PI: Rolindes Balda de la Cruz

• EJ/GV, Ikertalde 2019, Grupo Consolidado IT1260-19
 Desarrollo de nuevas metodologías en problemas destacados de Física de la Materia Condensada
 Partners: Ion Errea Lope; Aitor Bergara Jauregui

• EJ/GV, Ikertalde 2019, Grupo Consolidado IT1255-19
 Nanophysics Lab San Sebastián: desde la ciencia de superficies a los dispositivos
 PI: Enrique Ortega Conejero

• EJ/GV, Ikertalde 2019, Grupo Consolidado IT1164-19
 Q-NANOFOT - Nanofotónica cuántica para la caracterización de nuevos procesos y aplicaciones en espectroscopías moleculares, microscopía de campo cercano y tecnologías cuánticas con fotones
 PI: Javier Aizpurua Iriazabal
 co-PI: Nerea Zabala Unzalu

• EJ/GV, Ikertalde 2019, Grupo Consolidado IT1246-19
 Grupo de Fisicoquímica de Superficies y Nanoestructuras
 PI: Iñaki Juaristi Oliden

• EJ/GV, Ikertalde 2019, Grupo Consolidado IT1175-19
 PSMG - Polymers & Soft Matter
 PI: Juan Colmenero de León
• **EJ/GV, IKERTALDE 2019, Grupo Consolidado IT1249-19**
 FunTheMaS – Fundamental Theoretical Materials Science
 co-PI: Ángel Rubio Secades

• **EJ/GV, Proyectos de Investigación Básica y/o Aplicada 2018-2020 (PIBA), PIBA2018_1_0024**
 Diseño, elaboración y caracterización de materiales nano-micro estructurados ópticamente activos en el rango visible e infrarrojo próximo para la construcción de una fuente láser aleatoria de baja coherencia para aplicaciones biomédicas
 PI: Rolindes Balda de la Cruz

• **EJ/GV, Proyectos de Investigación Básica y/o Aplicada 2020-2022 (PIBA), PIBA2020_1_0017**
 Hacia la computación cuántica topológica manipulando átomos en superconductores
 PI: Deungjang Choi

• **Gipuzkoako Foru Aldundia/Diputación Foral de Gipuzkoa, Gipuzkoa Coopera 2018, 2018 IZEN-000013**
 ELLAS INVESTIGAN IV: Afrikar emakumezko ikertzaile batek egonaldi bat egin dezan MPCn / ELLAS INVESTIGAN IV: Estancia de investigación en el MPC de una investigadora africana

• **Gipuzkoako Foru Aldundia/Diputación Foral de Gipuzkoa, Gipuzkoa Coopera 2019, 2019-IZEN-02**
 ELLAS INVESTIGAN V: Afrikar emakumezko ikertzaile batek egonaldi bat egin dezan MPCn / ELLAS INVESTIGAN V: Estancia de investigación en el MPC de una investigadora africana

• **Gipuzkoako Foru Aldundia/Diputación Foral de Gipuzkoa, Gipuzkoa Coopera 2020, 2020-IZEN-000012-01**
 ELLAS INVESTIGAN VI: Afrikar emakumezko ikertzaile batek egonaldi bat egin dezan MPCn / ELLAS INVESTIGAN VI: Estancia de investigación en el MPC de una investigadora africana
BASQUE RESEARCH PROJECTS AND NETWORKS

 Desarrollo de nanopartículas poliméricas unimoleculares conteniendo metales divalentes como catalizadores para la síntesis de aditivos usados en la preparación de biodiesel
 PI: Josetxo Pomposo Alonso

 Síntesis química de materiales nanoestructurados para salud y energía
 PI: Yury Rakovich

- **Gipuzkoako Foru Aldundia/Diputación Foral de Gipuzkoa, SAREA2020 RED2020, 2020-CIEN-000009-01**
 Estudio de materiales fotovoltaicos de última generación mediante técnicas neutrónicas, microscopía y espectroscopia túnel, y cálculos de primeros principios
 PI: Félix Fernández Alonso

- **Biozientziak Gipuzkoa Fundazioa, Convocatoria de Proyectos de I+D+i COVID-19**
 DETENTE SARS - Detección mediante técnicas físico-químicas específicas y ultrasensibles de SARS-CoV-2
 PI: Celia Rogero Blanco

- **UPV/EHU, Azpiegitura Zientifikoa/Infraestructura Científica 2020, INF 20/03**
 Reómetro rotacional para polímeros y materia blanda
 PI: Juan Colmenero de León

- **UPV/EHU, EHuko Sailentzako Laguntzak/Ayudas Departamentos UPV 2020, DEP20/61**
 Polímeros y materiales avanzados: Física, química y tecnología
 PI: Iñaki Juaristi Oliden

- **UPV/EHU, Ikerketa Taldeak/Grupos de Investigación UPV/EHU 2017, GIU17/014**
 Grupo de Espectroscopía Láser y Materiales Fotónicos
 PI: Rolindes Balda de la Cruz
• **Proyectos I+D Fundamental (Excelencia) 2016, FIS2016-76617-P**
Excitaciones electrónicas en superficies y nanoestructuras
PI: Andrés Ayuela Fernández

• **Proyectos I+D Fundamental (Excelencia) 2016, FIS2016-77188-P**
Teoría y simulación de fenómenos ópticos y de transporte en materiales girotrópicos
PI: Ivo Souza

• **Retos Colaboración 2016, RTC-2016-5681-7**
SIESTA pro - Spanish initiative for electronic simulations with thousands of atoms: Código abierto con garantía y soporte profesional
PI: Daniel Sánchez Portal

• **Retos Investigación 2016, MAT2016-78293-C6-4-R**
Teoría de nanoestructuras moleculares funcionales para dispositivos optoelectrónicos
PI: Daniel Sánchez Portal

• **Retos Investigación 2016, MAT2016-78293-C6-5-R**
FunMolDev-Nanoestructuras moleculares funcionales para dispositivos optoelectrónicos: Guiando reacciones en superficies
PI: Celia Rogero Blanco

• **Proyectos I+D Fundamental (Excelencia) 2017, FIS2017-82804-P**
Transporte electrónico en estructuras híbridas: materiales de baja dimensionalidad, superconductores, materiales magnéticos, semiconductores y metales normales
PI: Sebastián Bergeret Sbarbaro
co-PI: Dario Bercioux (DIPC, Ikerbasque)

• **Proyectos I+D Fundamental (Excelencia) 2017, FIS2017-87363-P**
Nanofotónica cuántica: explorando las correlaciones cuánticas de los fotones usando nanopartículas
PI: Gabriel Molina Terriza
• **Proyectos I+D Fundamental (Excelencia) 2017, MAT2017-88374-P**
 Magnetismo exótico y fenómenos de correlación de electrones en la superficie y el sólido de materiales basadas en tierras raras
 PI: Frederik Michael Schiller
 Co-PI: Denis Vyalikh (DIPC, Ikerbasque)

• **Proyectos I+D Fundamental (Excelencia) 2017, MAT2017-87035-C2-2-P**
 Vidrios y vitrocerámicos dopados con tierras raras para aplicaciones fotónicas
 PI: Rolindes Balda de la Cruz

• **Retos Investigación 2017, MAT2017-88377-C2-2-R**
 Transistores de spin basados en heteroestructuras Van der Waals
 PI: Sara Barja Martínez
 co-PI: Miguel Moreno Ugeda (DIPC, Ikerbasque)

• **Redes de Excelencia 2017, MAT2017-90771-REDT**
 ESpin - Red: Red Española de Espintrónica
 Partner: Andrés Arnau Pino

• **Contratos Personal Técnico de Apoyo (PTA) 2017, PTA2017-14359-I**
 Técnico para el laboratorio de rayos X del CFM (CSIC-UPV/EHU): mantenimiento del servicio y explotación de nuevas oportunidades de los equipos
 Lab Technician: Amaia Iturrospe Ibarra
 Supervisor: Arantxa Arbe Méndez

• **Contratos Ramón y Cajal (RyC) 2017, RYC-2017-21931**
 Novel physical phenomena in two-dimensional materials
 PI: Sara Barja Martínez

• **Contratos Juan de la Cierva – Incorporación (JdC-I) 2017, IJCI-2017-31600**
 Polymers and Soft Matter: Nanostructures and physical properties at the nanoscale
 PI: Daniel Enrique Martínez Tong
 Supervisor: Ángel Alegria Loinaz

• **Proyectos de I+D+i Retos Investigación 2018 (RTI2018), RTI2018 097895 B C44**
 FUN–SOC – Novel Functionalities Driven by Spin-Orbit Interactions
 PI: Nicolás Lorente Palacios
 Co-PI: Deungjang Choi
• **Proyectos de I+D+i Retos Investigación 2018 (RTI2018), RTI2018 098554 B I00**

 E-CRETE - Energy storage solutions based on ConCRETE
 PI: Jorge Sánchez Dolado
 Co-PI: Juan José Gaitero Redondo (Tecnalia)

• **Proyectos de I+D+i de Generación de Conocimiento 2018 (PGC2018), PGC2018-094548-B-I00**

 SONIBOND - Tailored Soft Nano-Objects Based on Intrachain Bonding: From Design to Materials
 PI: Ángel Moreno Segurado
 Co-PI: Josetxo Pomposo Alonso

• **Redes Investigación 2018 - Red Temática, RED2018-102752-T**

 NANOLIGHT.es - Light Control on the Nanoscale
 PI: Javier Aizpurua Iriazabal

• **Redes Investigación 2018 - Red Temática, RED2018-102833-T**

 OSMoLSis - Ciencia Molecular en Superficies: Síntesis y Funcionalidad
 PI: Daniel Sánchez Portal

• **Redes Investigación 2018 - Red Temática, RED2018-102459-T**

 CAT&SCALE - (Photo-)Electrocatalysis: from the Atomic Scale to Advanced Devices
 PI, Network Coordinator: Sara Barja Martínez

• **Proyectos de I+D+i de Generación de Conocimiento 2019 (PGC2019), PID2019-104650GB-C21**

 Dinámica en soluciones acuosas de polímeros y biopolímeros (subproyecto coordinador)
 Proyecto Coordinado: BRIDGE - Cerrando la brecha entre los polímeros sintéticos y los biopolímeros - propiedades físicas y químicas
 PI: Silvina Cerveny Murcia
 Co-PI: Gustavo A. Schwartz Pomeraniec

• **Proyectos de I+D+i de Generación de Conocimiento 2019 (PGC2019), PID2019-107396GB-I00**

 GASOLIN - Interfaces gas/sólido: acoplamiento entre la dinámica nuclear y la dinámica electrónica
 PI: Maite Alducin Ochoa
 Co-PI: Ricardo Díez Muño
• **Proyectos de I+D+i de Generación de Conocimiento 2019 (PGC2019), PID2019-105488GB-I00**

2EDiSNa - Excitaciones electrónicas y dinámicas en superficies y nanoestructuras

PI: Andrés Ayuela Fernández
Co-PI: Silkin Vyacheslav (DIPC, Ikerbasque)

• **Proyectos de I+D+i de Generación de Conocimiento 2019 (PGC2019), PID2019-107432GB-I00**

QUATOPHOT - Estudio de los efectos cuánticos en nanofotónica a escala atómica

PI: Javier Aizpurua Iriazabal
Co-PI: Rubén Esteban Llorente

• **Proyectos de I+D+i de Generación de Conocimiento 2019 (PGC2019), PID2019-103910GB-I00**

VIMAGSOC - Vibraciones y magnetismo en sistemas nanoscópicos con acoplamiento spin-órbita

PI: Andrés Arnau Pino
Co-PI: Asier Eiguren Goyenechea (UPV/EHU)

• **Proyectos de I+D+i de Retos Investigación 2019 (RTI2019), PID2019-111772RB-I00**

QUATH - Análisis cuantitativo de la contribución de cargas calientes y efecto térmico en fotocatálisis asistida por efecto plasmónico

PI: Marek Grzelczak
Co-PI: Jon Mattin Matxin Beraza (UPV/EHU)

• **Proyectos de I+D+i de Retos Investigación 2019 (RTI2019), PID2019-107338RB-C63**

FunMolSys - Síntesis en Superficie de Sistemas Moleculares Funcionales (subproyecto)
Proyecto Coordinado: **MONOMET - Transferencia de sistemas moleculares funcionales a superficies no metálicas**

PI: Martina Corso
Co-PI: Dimas García de Oteyza Feldermann (DIPC, Ikerbasque)
• **Proyectos de I+D+i de Retos Investigación 2019 (RTI2019), PID2019-107338RB-C66**
 TheoFunMoSyS - Teoría de propiedades electrónicas, topológicas, magnéticas y vibracionales de nanoSistemas Moleculares Funcionales (subproyecto)
 Proyecto Coordinado: MONOMET - Transferencia de sistemas moleculares funcionales a superficies no metálicas
 PI: Daniel Sánchez Portal
 Co-PI: Arantzazu García Lekue (DIPC, Ikerbasque)

• **Contratos Personal Técnico de Apoyo (PTA) 2019, PTA2019-018134-I**
 Apoyo técnico de los laboratorios de ultra-alto vacío del Centro de Física de Materiales (CFM)-Centro Mixto CSIC-UPV/EHU
 Lab Technician: Laura Fernández Gómez-Recuero
 Supervisor: Martina Corso

• **Adquisición de Equipamiento Científico-Técnico 2019, EQC2019-005735-P**
 Installation of a liquid Helium recovery and supply plant for cryogenic experimental systems
 PI: Martina Corso

• **Acciones de Dinamización Europa Excelencia 2020, EUR2020-112116**
 ARTS - Atomic research for topological superconductors / Investigación atómica para superconductores topológicos
 PI: Deungjang Choi

• **Acciones de Dinamización Europa Excelencia 2020, EUR2020-112066**
 ReversO₂ - Oxygen conversion reactions: Fundamental insights for rational design
 PI: Sara Barja Martínez

• **CSIC, I-LINK+ 2018, Red de Internacionalización, LINKB20012**
 NEXTWATER-ilink - Network Exchanges Training program on dynamics and nanostructure of biomolecules in WATER solutions
 PI: Silvina Cerveny Murcia

• **CSIC, Fondo de Apoyo a los Servicios Científico Técnicos (FAS) 2019, FAS_19_0297**
 Servicio científico-técnico Centro de Cálculo de Altas Prestaciones - Mejora del sistema de climatización del Centro de Proceso de Datos 2 (CPD-2)
• CSIC, Programa de Apoyo a la Infraestructura (PAI) 2019-2020, PAI 06-3356
 Implementación del nuevo laboratorio de síntesis

• CSIC, Ayuda Extraordinarias para la Preparación de Proyectos en el Marco del Plan Estatal de I+D+i 2019, 2019AEP061
 Teoría de nanoestructuras moleculares funcionales para dispositivos optoelectrónicos
 PI: Daniel Sánchez Portal

• CSIC, Ayuda Extraordinarias para la Preparación de Proyectos en el Marco del Plan Estatal de I+D+i 2019, 2019AEP062
 Nanoestructuras moleculares funcionales para dispositivos optoelectrónicos: Guiando reacciones en superficies
 PI: Martina Corso

• CSIC, Ayuda Extraordinarias para la Preparación de Proyectos en el Marco del Plan Estatal de I+D+i 2019, 2019AEP042
 Excitaciones electrónicas en superficies y nanoestructuras
 PI: Andrés Ayuela Fernández

• CSIC, I-LINK+ 2019, Colaboración Científica Internacional, LINKC20002
 On-surface polymerization for high performance (opto)electronics
 PI: Martina Corso

• CSIC, I-COOP+ 2019, Cooperación Científica para el Desarrollo, COOPB20432
 Diluted magnetic quantum dots assemblies for innovative spintronics
 PI: Martina Corso

• CSIC, Fondo de Apoyo a los Servicios Científico-Técnicos (FAS) 2020, FAS2020_058
 Unidad de control para TPS SPECTRA 3000

• CSIC, Fondo de Apoyo a los Servicios Científico-Técnicos (FAS) 2020, FAS2020_059
 Sistema de refrigeración para TPS SPECTRA 3000

• CSIC, Programa de Apoyo a la Infraestructura (PAI) 2020-2021, PAI2020_4026
 Adecuación de laboratorios de ciencia de superficies del CFM
EUROPEAN AND INTERNATIONAL RESEARCH PROJECTS AND NETWORKS

• ERC Advanced Grant (ERC-2015-AdG), GA 694097
 QSpec-NewMat - Quantum Spectroscopy: exploring new states of matter out of equilibrium
 PI: Ángel Rubio Secades

• INFRAIA: Integrating Activities for Advanced Communities (H2020 INFRAIA-2016-1), GA 731019
 EUSMI - European infrastructure for spectroscopy, scattering and imaging of soft matter
 PI: Ángel Alegría Loinaz

 MEMO-Mechanics with Molecules
 PI: Nicolás Lorente Palacios

• INTERREG (ETC) V A: Cross-border Cooperation, POCTEFA 2014-2020, EFA194/16/TNSI
 TNSI-Trans-Pyrenean Node for Scientific Instrumentation
 PI: Celia Rogero Blanco

• INTERREG (ETC) V C: Interregional Cooperation, Aquitania-Euskadi-Navarre Euroregion Projects 2017
 DINaMO-FiVe – Durabilidad de Infraestructuras en ambiente marino: Nanomateriales Optimizados como Fibras Verdes
 PI: Silvina Cerveny Murcia

• Setting up European or International Scientific Networks (Montage de Réseaux Scientifiques Européens ou Internationaux, MRSEI) Instrument, ANR-18-MRS1-0014
 NaWaGui - Nanostructured Waveguides for Photonics
 PI: Rolindes Balda de la Cruz

 SUPERTED - Thermoelectric detector based on superconductor-ferromagnet heterostructures
 PI: Sebastián Bergeret Sbarbaro
 Co-PI: Celia Rogero Blanco
EUROPEAN AND INTERNATIONAL RESEARCH PROJECTS AND NETWORKS

 InnovaConcrete - Innovative materials and techniques for the conservation of 20th century concrete-based cultural heritage
 PI: Jorge Sánchez Dolado

- **COST Action 2017, CA17139**
 EUTOPIA - European Topology Interdisciplinary Action
 Management Committee Member: Ángel Moreno Segurado

- **Marie Curie Individual Fellowship (H2020-MSCA-IF-2017), GA 797109**
 MagicFACE - Magnetic hybrid metal-organic interfaces
 Supervisor: Enrique Ortega Conejero

- **ERC Starting Grant (ERC-2018-STG), GA 802533**
 SuperH - Discovery and characterization of hydrogen-based high-temperature superconductors
 PI: Ion Errea Lope

 THOR - TeraHertz detection enabled by mOleculaR optomechanics
 PI: Javier Aizpurua Iriazabal

- **Leadership in Enabling and Industrial Technologies, Space (H2020 SPACE 11 TEC-2018), GA 821932**
 SMART-FLEX - Next generation metamaterial-based SMART and FLEXible optical solar reflectors
 PI: Javier Aizpurua Iriazabal

- **EIG CONCERT-Japan: 5th Joint Call, Functional Porous Materials, PCI2019 103657**
 PoroPCM - Functional POR0us cementitious nanocomposites for heat storage in buildings using Phase Change Materials
 PI: Jorge Sánchez Dolado
• **Marie Curie Individual Fellowship (H2020-MSCA-IF-2018), GA 839237**
 PhotoWann - Bulk Photovoltaic effect via Wannier functions
 Supervisor: Ivo Souza

 POSEIDON - NanoPh0tonic devices applying SELF-assembled colloidS for novel ON-chip light sources
 PI: Javier Aizpurua Iriazabal

 ArtiBLED - Engineered Artificial Proteins for Biological Light-Emitting Diodes
 PI: Pedro Braña Coto

 NRG-Storage - integrated porous cementitious Nanocomposites in non-Residential building envelopes for Green active/passive energy STORAGE
 PI: Jorge Sánchez Dolado
In spite of being a fundamental research center, CFM is committed to give access to all the know how and technologies resulting from its scientific activity in order to have impact on industry and society. A strategy for technology transfer has been developed, generating world class basic knowledge on advanced materials to be used by local and international private initiatives that involve industrial partners, from large international corporations to SMEs, as well as Technological Centers and Cooperative Research Centers (CICs) launched by the Basque Government.

The portfolio of contracts and collaboration agreements with different companies or external parties has been very productive during 2020. Some examples of the partners involved are:
<table>
<thead>
<tr>
<th>Company / Foundation</th>
<th>Collaboration Focus</th>
</tr>
</thead>
<tbody>
<tr>
<td>Janssen Research (Belgium)</td>
<td>Study of dielectric properties of polymers</td>
</tr>
<tr>
<td>Basque Culinary Center Fundazioa</td>
<td>Food science. Physico-chemical properties of complex materials</td>
</tr>
<tr>
<td>Mugaritz</td>
<td>Gastronomy and food science</td>
</tr>
<tr>
<td>SIMUNE ATOMICS L.T.D.</td>
<td>Development of software tools to improve the capabilities and the analysis of data computed with the SIESTA/TranSIESTA package</td>
</tr>
<tr>
<td>Považská cementáreň (Slovakia)</td>
<td>Study of hydrated cement pastes</td>
</tr>
<tr>
<td>Baskrete cross-border initiative</td>
<td>Concrete science and technology</td>
</tr>
<tr>
<td>Michelin (France)</td>
<td>Understanding of “plasticizer effect” on concentration fluctuations and broadening of glass transition in dynamically asymmetric mixtures of interest for tire formulation</td>
</tr>
<tr>
<td>Mujeres por África Foundation</td>
<td>ELLAS INVESTIGAN project (V edition) to promote the leadership of African women in scientific research and technology transfer. LEARN AFRICA scholarship program for African women students</td>
</tr>
<tr>
<td>Kutxa Fundazioa</td>
<td>Scientific cultural activities</td>
</tr>
</tbody>
</table>

CFM also tackles strong collaborations devoted to technological transfer towards the Basque Industrial Network, within the framework of the ELKARTEK program from the Department of Industry of the Basque Government, as well as towards the European Industrial Network (see Research Funding section).
The pandemic we are living through has brought a crucial issue to the table: the need for the bulk of the public to have the tools to understand the flood of scientific data and information that has come their way. At CFM, supporting scientific culture has been a core policy in our understanding of the scientific community’s duty to society.

Developing a so-called “scientific culture” in the public has become crucial these days. In this major task, all the members of the scientific community have a role to play, starting from the institutions and including tenured scientists, post-doctoral researchers, pre-doctoral researchers and science communicators.

More than 10,000 people were able to participate in the activities organized in the most challenging year for social relations in history.
The efforts at CFM are devoted to achieve mainly three objectives: spreading scientific culture, generating scientific vocation, and including the gender and diversity perspective in all the activities organized, trying to maximize the visibility of our women researchers, ensuring the gender balance in the talks organized, promoting the awareness on the situation, and promoting diversity as the only possible way forward.

Within this spirit, CFM implemented a complete scientific outreach program, and during 2020 more than 28 activities and events were organized, many of them in collaboration with other institutions.

It is worth mentioning that the way we address society has necessarily changed. While adapting to the new dynamics has been a great effort, it has been worthwhile. More than 10 000 people were able to participate in the activities organized in the most challenging year for social relations in history. Thanks to all the volunteers who made it possible and to all the public who supported us by attending the events.

#scienceandsociety
Since 2013, together with the Donostia International Physics Center (DIPC), CFM has carried out a program of visits where both centers open their doors to high school students, approximately every two weeks during the academic year.

Given the situation, in 2020 CFM was only able to offer this activity during the months of January and February, hosting the visit of 152 students.

<table>
<thead>
<tr>
<th>JANUARY</th>
<th>FEBRUARY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zubiri-Manteo BHI (Donostia / San Sebastián)</td>
<td>Summa Aldapeta (Donostia / San Sebastián)</td>
</tr>
<tr>
<td>CPES Nazaret Batxilergoa BHIP (Donostia / San Sebastián)</td>
<td>Urretxu-Zumarraga Ikastola (Urretxu)</td>
</tr>
</tbody>
</table>

EMAKUMEAK ZIENTZIAN 2020

emakumeakzientzian.eus

7-14/02/2020

CIC nanoGUNE, CIC biomaGUNE, DIPC, Biodonostia, Polymat, Elhuyar, CEIT, TECNUN, and CFM

SCIENCE IS INDEED A GIRLS’ THING

In order to achieve access and full and equal participation in science for women and girls, in 2016 the United Nations General Assembly decided to proclaim 11 February as International Women’s and Girls’ in Science Day.

To commemorate this day, CFM and CIC nanoGUNE co-ordinated the program that brings together the activities of 9 research centers and science-related institutions in the Donostia / San Sebastián area, to make visible the activity of women in science, and to break with the typically masculine roles attributed to scientific-technical activities and encourage the choice of scientific careers among girls and adolescents.

In an unprecedented collaboration, with more than 60 volunteers onboard, the 9 centers joined forces to present a full week program that aimed teenager women, school kids, elder women (above 55), citizens in general and the scientific community.
The commitment of the entities has been set out in a collaboration agreement, signed by all of them. In it, the entities commit themselves, among other things, to make a financial contribution to guarantee the economic support that will allow the implementation of the program, as well as to involve their staff in the development of the programmed activities.

In addition to the financial contributions of the different entities, the initiative obtained the support of the CSIC, FECyT, the Provincial Council of Gipuzkoa and Fomento San Sebastián.

THE “EMAKUMEAK ZIENTZIAN” INITIATIVE WAS RECOGNIZED WITH THE STEAM EUSKADI SEAL

The project passed to the first phase of the I STEAM Euskadi Sariak Awards, which made it worthy of receiving the STEAM Euskadi Seal. The Technical Committee of the award was composed by the Department of Education of the Basque Government, the Research Centre for Scientific and Mathematical Education (CRECIM) of the Autonomous University of Barcelona and the Basque Agency for Innovation, Innobasque, which evaluated the 133 submitted applications.
“QUÉ SABEMOS DE...” TALK SERIES

KUTXAKULTUR PLAZA AT TABAKALERA, DONOSTIA / SAN SEBASTIÁN
6, 13, 20 and 27/11/2020

Qué sabemos de... is a peculiar series of outreach talks inspired by the intrinsic curiosity of the human being. The program, yearly organized by CFM and CSIC since 2017, takes place at the iconic cultural center Tabakalera in Donostia / San Sebastián, with the collaboration of Kutxakultur.

The format chosen included a limited on-site audience (40 attendees per talk) and a streaming of the series.

This format allowed us to reach unprecedented viewing rates, with more than 4000 views of the talks.

• Nuevos Coronavirus: Inesperados compañeros de viaje
 Isabel Sola (CNB-CSIC)
 Co-director of the Coronavirus Laboratory of the National Biotechnology Centre, CNB-CSIC

• Creando nuevos materiales en la nanoescala
 Martina Corso (CFM)
 CSIC Researcher at the Nanophysics Laboratory at CFM

• La frontera de la física fundamental
 Alberto Casas (CSIC-UAM)
 Doctor in Theoretical Physics and Research Professor at the Institute of Theoretical Physics (CSIC-UAM).

• Biotecnología con las herramientas CRISPR en los tiempos del coronavirus
 Lluís Montoliu (CNB-CSIC y CIBERER-ISCIII)
 CSIC and CIBERER-Carlos III Health Institute Researcher at the National Biotechnology Centre in Madrid.
In 2019 the DIPC, CIC nanoGUNE and CFM created the space "Pride in Science" to send a message loud and clear: in science the more diverse, the better. Breaking stereotypes is vital, and to that end, giving visibility to scientists of the LGTBIQA+ collective is fundamental to create new references.

In 2020, CFM together with CIC nanoGUNE and DIPC organized an online meeting with 6 researchers from the LGTBIQA+ community that brought together more than 400 high school students from 10 different schools.

With this initiative, CFM joined the international movement PrideinSTEM (Science, Technology, Engineering, and Mathematics), and the national organization PRISMA.
CFM, in collaboration with Eureka! Zientzia Museoa, presented “Science According to Forges”, a unique opportunity to enjoy the exhibition produced by the Spanish National Research Council (CSIC) in homage to the great Antonio Fraguas.

66 vignettes make up an exhibition that has travelled all over Spain and was on display exclusively in the Basque Country, open and free of charge in Eureka! Zientzia Museoa.

More than 2,000 attendees visited the exhibit.
In addition to the “Que sabemos de...”cycle or the “Emakumeak Zientzian” initiative, two more talks were organized by CFM, and many researchers were invited to participate in several outreach events, listed below:

ORGANIZED BY CFM

The world’s smallest car race
Nicolás Lorente (CFM) and Christian Joachim (founder of the NanoCar Race)
29/01/2020
Kutxakultur Plaza (Tabakalera)

El coronavirus y el futuro que nos espera (round table)
Sara de La Rica, Eduardo Maíz y Juan Ignacio Pérez
Chairman: Aitor Bergara
26/09/2020
Bidebarrieta Library

II CURSO DE CULTURA CONTEMPORÁNEA

Las ciencias y las humanidades en la cultura contemporánea
Gustavo Ariel Schwartz
16/10/2020
Online

ZIENTZIA KUTXA

Talks organized by DIPC and Kutxa fundazioa

Supereroankortasuna, markak hausten!
Ion Errea
29/05/2020
Online

CINEMA AND SCIENCE
Cycle organized by DIPC and Filmoteka Vasca.
Presentation and discussion on the following movies:

Agora
Pedro Miguel Etxenike
20/01/2020
Tabakalera (Donostia)
11/01/2020
Museum of Fine Arts of Bilbao

Her
Gustavo Ariel Schwartz
06/02/2020
Tabakalera (Donostia)
08/02/2020
Museum of Fine Arts of Bilbao

X: The man with X-Ray eyes
Javier Aizpurua
05/03/2020
Tabakalera (Donostia)
07/03/2020
Museum of Fine Arts of Bilbao

Outreach talk in the framework of the cycle:

Herramientas de luz: de la ciencia ficción a las películas moleculares
Nerea Zabala
26/02/2020
Bidebarrieta Central Library

ZIENTZIAREN GILTZAK

Talks organized by Zientziaren Giltzak science community at Ondarroa

Argia ttiki egiten denean
Javier Aizpurua
19/10/2020
Behikozini (Ondarroa)

PRISMA CONFERENCE

Outreach to get out there
Idoia Mugica (CFM)
16/11/2020
Online
ACTIVITY IN MASS MEDIA

During 2020, CFM was cited over 300 times in the media, including press, online articles, TV and Radio.

<table>
<thead>
<tr>
<th>Press articles</th>
<th>Online press</th>
</tr>
</thead>
<tbody>
<tr>
<td>46*</td>
<td>240*</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Radio</th>
<th>TV</th>
</tr>
</thead>
<tbody>
<tr>
<td>56</td>
<td>13</td>
</tr>
</tbody>
</table>

*Scientific publications excluded

Science, and particularly Material Physics Science, is presented in a simple and close language, in an effort to make scientific concepts and properties understandable and attractive to the general public.

An example of this intense activity is Ion Errea’s collaboration with Udako Faktoria program that continued throughout the summer on a weekly basis, and the permanent section “Breakfast with Science” in the Goiz Kronika program of Euskadi Irratia, run every Sunday by Idoia Mugica, head of communication and dissemination of CFM. In addition to this, since September 2020 every two weeks Idoia Mugica presents a science section in the daily TV show “Eztabaidan” in the Basque Public Television (ETB1).

Many researchers were invited to participate in debates, interviews or articles in the general press. Television programs such as ‘Ur Handitan’ (ETB1) or “Teknopolis” (ETB1/ETB2) focused on science and particularly on the CFM and its researchers.
CFM is also present and active online and in the social media, and can be officially found in Twitter, Instagram, YouTube and, LinkedIn, as well as in CFM website.

As of February 2021, we had more than 1000 followers in Twitter, 243 in Instagram, and 261 in LinkedIn. CFM’s YouTube channel already contains more than 30 videos featuring different events. Besides, the CFM website is very regularly updated with news, workshops, seminars, and much more. Our Job Offers section, which is of great interest for many of our visitors receives most of the traffic.

Users can subscribe to CFM’s mail list to be updated on the information about the activities and events organized at CFM and stay tuned following us in our social media channels.
CFM has established strategic alliances regarding scientific outreach initiatives which create important synergies. These are the CFM’s main partners in this strategy:
Since the need for a specific Gender Equality Plan (GEP) at CFM was first envisioned in 2017, CFM has succeeded in its development and is fully immerse in the implementation of the latter. In this four-year process, it has become clear that a gender plan goes far beyond the goal of achieving parity in the gender balance. It must be an active instrument to guarantee a safe, friendly and attractive work environment for any person, regardless of gender, race, religion or sexual orientation.

The design of the GEP was the result of a collective process. This process was driven by the Gender Equality Committee, formed by staff members representing CFM’s different working areas. The Committee remains active in the critical phase of the implementation that will last 4 years. During 2020 Elhuyar, which is approved by Emakunde (the Basque Institute for Women) to give technical Gender Equality support to institutions, has been giving technical advice and supporting CFM in this major task, and continues to do so in 2021.

The current GEC is composed by:

- Daniel Sánchez Portal (Director and Plan’s Responsible)
- Idoia Mugica Mendiola (Coordinator)
- Elixabet Sarasketa Zabala
- Arantza Iturrio Ezeiza
- Nerea Zabala Unzalu
- Gabriel Molina Terriza
- Sara Barja Martinez
- Ester Verde Sesto
- Cristina Mier González
- Amaia González Azpeitia

All the information on the GEP is updated in CFM’s webpage. Any researcher can also reach the gender equality committee at any time, and a specific email account regarding equality issues was created to ensure the proper communication with the community.
CFM’s 1st Gender Equality Plan has a total of 5 key areas, 8 objectives and 44 actions.

<table>
<thead>
<tr>
<th>KEY AREA</th>
<th>OBJECTIVES</th>
<th>ACTIONS</th>
</tr>
</thead>
</table>
| Organizational culture | • Create an inclusive organizational culture, with a gender-aware leadership and transparency at its core
• Promote diversity and inclusivity with the institutional use of language (written and visual) | 14 |
| A diverse workforce | • Improve the gender balance at all work-positions and levels | 11 |
| | • Promote initiatives to support the career progression of the underrepresented gender to high and top positions | |
| Work-life balance | • Develop a working environment that facilitates the combination of work, family and private life for women and men | 6 |
| Sexual harassment at the working environment | • Prevent and combat sexual and gender-based sexist harassment at CFM. | 8 |
| Gender equality and research | • Promote gender-aware research excellency within and outside CFM | 5 |
| | • Promoting gender diversity and inclusivity at congresses and conferences | |
Staff distribution at CFM according to category and gender (percentage)

<table>
<thead>
<tr>
<th>Category</th>
<th>Female (%)</th>
<th>Male (%)</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Administration and Services</td>
<td>9</td>
<td>5</td>
<td>14</td>
</tr>
<tr>
<td>Laboratory Technicians</td>
<td>4</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>Undergraduate Students</td>
<td>0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Master Students</td>
<td>6</td>
<td>6</td>
<td>12</td>
</tr>
<tr>
<td>Pre-Doctoral Researchers</td>
<td>14</td>
<td>48</td>
<td>62</td>
</tr>
<tr>
<td>Post-Doctoral Researchers</td>
<td>12</td>
<td>37</td>
<td>49</td>
</tr>
<tr>
<td>Permanent Researchers</td>
<td>11</td>
<td>35</td>
<td>46</td>
</tr>
<tr>
<td>Guest Researchers</td>
<td>3</td>
<td>14</td>
<td>17</td>
</tr>
<tr>
<td>Total</td>
<td>59</td>
<td>149</td>
<td>208</td>
</tr>
</tbody>
</table>

CFM is a highly masculinized workforce (71.6% men and 28.4% women at the moment), presenting vertical segregation, with women lacking at top management positions.
According to this data, the disproportion in the distribution of women/men in the center starts already at the earliest stage of the scientific career. Currently, less than 25% of the pre-doctoral researchers at CFM are women. The gender imbalance is accentuated as the responsibility for the job and level in the research career is greater, corroborating the general trend observed in the Basque Autonomous Community, Spain and Europe.

Regarding the evolution of the gender distribution of CFM scientific staff (including technical staff), since 2017 has remained at a ratio of about 30/70 (women/men), being the 2020 data the worst measured so far.
CFM scientific staff (including technical staff) has remained at a ratio of about 30/70 (women/men)

ACTIONS IN PLACE 2020

When the CFM GEP was officially launched in October 2020, a series of specific actions to be addressed in the short term were already identified. The aim of those was, among other things, to inform and carry out activities to raise awareness of gender issues among the entire center’s staff, as well as to the general public, and to encourage scientific vocation in young women.

The organization of the “International Day of Women and Girls in Science”, and the celebration of the “Pride in Science Day”, which have been described in depth in section Science and Society of this report, stand out.

In addition to this programs, specific actions like “Science by Women” or “Learn Africa” carried out together with Women for Africa Foundation and Gipuzkoa Coopera, show the commitment acquired so far (see Miscellaneous section of this report for further detail).

Nevertheless, it is worth mentioning that during 2020 CFM did also achieve:

• Ensuring the representation of 50% of women in all the dissemination lectures organized by CFM.

• Encouraging women researchers to participate in the different dissemination programs, especially those aimed at children, families and young people.

• Using the CFM social media to highlight the research results of the women scientists working at CFM.

• Promoting other initiatives that share the fundamental contributions of women in science, such as "Women with Science" by Marta Macho (Chair in Scientific Culture), "Women and Girls in Science Day", Donostia WeekInn, etc.
In 2020 CFM organized the third PhD Recruitment Fair as part of the strategic plan to recruit new talent. From the applications received, 21 applicants were shortlisted for online interviews. In the interviews, the candidates had the opportunity to discuss the research projects with the supervisors of the different projects and/or the Evaluation Committee.

After the evaluation, 7 candidates were selected and granted full studentships to join one research group at CFM:

- **Alberto Hijano Mendizabal**
 Group: Mesoscopic Physics
 Supervisor: F. Sebastián Bergeret Sbarbaro

- **Claudia Borredon**
 Group: Polymers and Soft Matter
 Supervisor: Gustavo A. Schwartz Pomeraniec

- **Bruno Josu Diego López**
 Group: Quantum Theory of Materials
 Supervisor: Ion Errea Lope

- **Francisco Javier Manterola Marañón**
 Group: Spectroscopy at Atomic Scale
 Supervisor: Lucia Vitali

- **Alba María Jumbo Nogales**
 Group: Nanomaterials and Spectroscopy
 Supervisor: Yury Rakovich

- **Martin Davide Arena**
 Group: Polymers and Soft Matter
 Supervisor: Josetxo Pomposo Alonso

- **Jonathan Sepúlveda Henríquez**
 Group: Theory of Nanophotonics
 Supervisor: Javier Aizpurua inazabal
GIPUZKOA COOPERA PROGRAM WITH THE WOMEN FOR AFRICA FOUNDATION, DIPC, AND CFM

Gipuzkoa Coopera is a project launched by the Provincial Council of Gipuzkoa in 2017 and aims to promote development and cooperation by extending them to non-conventional activities. CFM has been part of the program since its very beginning, and the last three years it has materialized in a collaboration with the foundation Women for Africa.

The aim of the initiative is facilitating the professional growth of African women scientists and entrepreneurs through temporary residencies in research centers of reference in Gipuzkoa, so that they can broaden their knowledge and then apply it in their country of origin.

Thanks to this initiative, in the framework of the program “Science by Women” promoted by the foundation Women for Africa, two African researchers would carry out six-month research stays at DIPC and CFM. The Provincial Council of Gipuzkoa financed each of these long stays with 25,000 €. The female African researcher visiting and collaborating at CFM in 2019 and early 2020 was Dr. Jetro Epse Njukeng Nkengafac from Cameroon, who joined the Polymers and Soft Matter group, hosted by Prof. Ángel Alegría. However, her stay was interrupted by the health alert caused by COVID-19.

Dr. Aline Simo from Cameroon was the selected candidate to join Jorge Sánchez Dolado’s team at the Ceramic and Cement-Based Materials group of CFM in 2020, but once again, her stay had to be cancelled due to the pandemic emergency.

Unfortunately, Dr. Aline Simo will not be able to join the CFM in the end, and it will be Dr. Mary Ogundiran from Nigeria who will enjoy this program, hosted by Jorge Sánchez Dolado at the Ceramic and Cement-Based Materials group of CFM. Her stay has been delayed to November 2021.

The next selected candidate of the 2020 call, Dr. Abeer Adel from Egypt, is scheduled to start her stay at the end of June 2021. She will join the Polymers and Soft Matter group with Silvina Cerveny as the hostess.

LEARN AFRICA

Together with the “Science by Women” program, the Women for Africa Foundation launches “Learn Africa”, an initiative that aims to promote the transfer of knowledge, exchange and training of undergraduate and graduate young African women students through scholarships in Spanish universities that collaborate in this initiative.

Since 2018, DIPC and CFM joined the program and offered a grant that fully covers the stay and expenses of a student to enroll in the Master in Nanoscience program of the UPV/EHU. In 2020, Harriet Kumi from Ghana, the recipient of the scholarship in 2019, finished and defended her Master Thesis at CFM under the supervision of Gabriel Molina at the Quantum Nanophotonics Lab.
PROF. JAVIER AIZPURUA IRIAZABAL

After being included for the first time in 2017, Professor Javier Aizpurua remained in the 2020 list of the most cited researchers in the world for the fourth year in a row, according to the database drawn up by Clarivate Analytics. Prof. Javier Aizpurua is head of the “Theory of Nanophotonics” group at CFM and DIPC. Highly cited researchers are acknowledged by the number of highly cited papers (in the top 1%) within an area (in this case, Physics), according to the database of “Web of Science” over the last eleven-year period.

ERC GRANT FOR THE PHOTONOW PROJECT BY DR. JULEN IBAÑEZ

The European Research Council (ERC) approved a grant of 1.4 million euros to Julen Ibáñez, a researcher from the UPV/EHU at CFM, in the ERC Starting Grant 2020 call for proposals. Thanks to this grant, Dr. Ibáñez will be able to create his own research team, giving work to 3 post-doctoral researchers and 2 PhD students, and will also be able to acquire a High Performance Computing (HPC) cluster. It will be a great boost to carry out this research project linked to this unusual photovoltaic effect during the next 5 years.
The European Commission, within its FET Open program (Future Emerging Technologies), granted over three million euros to the research project MIRACLE (Photonic Metaconcrete with Infrared RAdiative Cooling capacity for Large Energy savings) to design a photonic concrete with autonomous cooling capacity by radiative emission.

The project is led by the researcher Jorge S. Dolado, from the Center for Materials Physics (CFM, mixed center CSIC-UPV/EHU) and has the participation of the Public University of Navarra (UPNA), TECNALIA, the Polytechnic University of Darmstad (TU Darmstad), the Catholic University of Leuven (KU Leuven), Microligh3D, and the Polytechnic University of Turin.