We develop novel computational methods to understand the properties of solids from their basic ingredients. We apply them to unveil the mysteries hidden in materials and to predict new exciting compounds.

Research

We use first-principles quantum mechanical methods to understand and predict the properties of materials.

Know more about Research

Latest publications

The impact of ionic anharmonicity on superconductivity in metal-stuffed B-C clathrates

Wenbo Zhao, Ying Sun, Jiaxiang Li, Peng Yuan, Toshiaki Iitaka, Xin Zhong, Hefei Li, Yue-Wen Fang, Hanyu Liu, Ion Errea and Yu Xie
npj Computational Materials 11, 347 (2025)

Ambient pressure high temperature superconductivity in RbPH3 facilitated by ionic anharmonicity

Đorđe Dangić, Yue-Wen Fang, Tiago F. T. Cerqueira, Antonio Sanna, Trinidad Novoa, Hao Gao, Miguel A. L. Marques and Ion Errea
Computational Materials Today 8, 100043 (2025)

Many-body interference in kagome crystals

Chunyu Guo, Kaize Wang, Ling Zhang, Carsten Putzke, Dong Chen, Maarten R. van Delft, Steffen Wiedmann, Feodor F. Balakiev, Ross D. McDonald, Martin Gutierrez-Amigo, Manex Alkorta, Ion Errea, Maia G. Vergniory, Takashi Oka, Roderich Moessner, Mark H. Fischer, Titus Neupert, Claudia Felser and Philip J. W. Moll
Nature 647, 68 (2025)